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Secure total domination in chain graphs and cographs

Anupriya Jha

Department of Mathematics & Computing, Indian Institute of Technology (ISM), Dhanbad, India

ABSTRACT
Let G ¼ (V,E) be a graph without isolated vertices. A subset D of vertices of G is called a total dominat-
ing set of G if for every u 2 V , there exists a vertex v 2 D such that uv 2 E: A total dominating set D of
a graph G is called a secure total dominating set of G if for every u 2 VnD, there exists a vertex v 2 D
such that uv 2 E and ðDnfvgÞ [ fug is a total dominating set of G. The secure total domination number
of G, denoted by cstðGÞ, is the minimum cardinality of a secure total dominating set of G. Given a
graph G, the secure total domination problem is to find a secure total dominating set of G with min-
imum cardinality. In this paper, we first show that the secure total domination problem is linear time
solvable on graphs of bounded clique-width. We then propose linear time algorithms for computing
the secure total domination number of chain graphs and cographs.
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1. Introduction

Let G ¼ (V,E) be a simple and undirected graph without iso-
lated vertices. A subset D of vertices of G is called a dominating
set (resp. total dominating set) of G if for every u 2 VnD (resp.
u 2 V), there exists a vertex v 2 D such that uv 2 E: The min-
imum cardinality of a dominating set (resp. total dominating
set) of G is denoted by c(G) (resp. ct(G)). A dominating set D
of a graph G is called a secure dominating set of G if for every
u 2 VnD, there exists a vertex v 2 D such that uv 2 E and
ðDnfvgÞ [ fug is a dominating set of G. The concept of secure
domination in graphs was introduced by Cockayne et al. [3]
and studied in the literature [8, 10, 12, 14]. The concept of
secure domination in graphs was extended to secure total
domination in graphs by Benecke et al. [2]. A total dominating
set D of a graph G is called a secure total dominating set of G if
for every u 2 VnD, there exists a vertex v 2 D such that uv 2
E and ðDnfvgÞ [ fug is a total dominating set of G. The secure
total domination number of G, denoted by cst(G), is the min-
imum cardinality of a secure total dominating set of G. Given
a graph G, the secure total domination problem is to find a
secure total dominating set of G with minimum cardinality.
Klostermeyer and Mynhardt [10] gave several bounds on the
secure total domination number of a graph. Further, Duginov
[7] has studied the hardness of the approximation of the
secure total domination problem in graphs. He also estab-
lished various bounds on the secure total domination number
of a graph.

The reduction used in [7] for showing the NP-complete-
ness of the decision version of the secure total domination
problem for chordal bipartite graphs and graphs of separ-
ability at most 2 can be used to show that the decision

version of the secure total domination problem is NP-com-
plete for undirected path graphs and circle graphs.

In this paper, we first show that the secure total domination
problem can be solved in linear time on graphs of bounded cli-
que-width by exploiting the result due to Courcelle et al. [6]
on Monadic Second Order Logic. Courcelle et al. [6] do not
give any explicit idea to obtain the solution of the problem
using the structure of the given graph. By using the structure
of chain graphs and cographs, we propose linear time algo-
rithms for computing the secure total domination number of a
given chain graph and cograph.

The paper is organized as follows. In Section 2, we pre-
sent some pertinent definitions and preliminary results. In
Section 3, we show the linear time solvability of the secure
total domination problem in graphs of bounded clique-
width. In Section 4 and Section 5, we present a linear time
algorithm to compute the secure total domination number
of a given chain graph and cograph, respectively.

2. Preliminaries

Let G ¼ (V,E) be a simple and undirected graph. For any
vertex v 2 V, the open neighborhood of v in G is the set
NGðvÞ ¼ fu : uv 2 Eg and the closed neighborhood of v in G
is the set NG½v� ¼ NGðvÞ [ fvg: For A � V , we define
NGðAÞ ¼ [x2A NGðxÞ: The degree of a vertex v in G is
jNG(v)j and is denoted by dG(v). A vertex of G with degree
one is said to be a pendant vertex. A vertex of G that is
adjacent to a pendant vertex is said to be a support vertex.
The complement of the graph G, denoted by Gc, is the graph
with the vertex set V and the edge set fxy : x, y 2 V and xy 62
Eg: For A � V, let G[A] denote the subgraph of G induced
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by A. Let G1 and G2 be two graphs with disjoint vertex sets.
The disjoint union of G1 and G2, denoted by G1 [ G2, is the
graph with the vertex set VðG1Þ [ VðG2Þ and the edge set
EðG1Þ [ EðG2Þ: The join of G1 and G2, denoted by G1 þ G2,
is the graph with the vertex set VðG1Þ [ VðG2Þ and the edge
set EðG1Þ [ EðG2Þ [ fxy : x 2 VðG1Þ, y 2 VðG2Þg: A complete
graph G with n vertices is denoted by Kn. A graph G is com-
plete k-partite graph if V(G) is the union of k disjoint inde-
pendent sets, called partite sets of G, and two vertices are
adjacent if and only if they are in different partite sets. We
denote complete k-partite graph G by Km1,m2, :::,mk , where
m1,m2,… , and mk are the cardinality of k partite sets.

A bipartite graph G ¼ (X,Y,E) is called a chain graph if
the neighborhoods of the vertices of X form a chain, i.e., the
vertices of X can be linearly ordered, say x1, x2, :::, xp such
that NGðx1Þ � NGðx2Þ � � � � � NGðxpÞ: If G ¼ (X,Y,E) is a
chain graph, then the neighborhoods of the vertices of Y
also form a chain [9].

Cographs or complement reducible graphs were introduced
by Lerchs [11]. Cographs are defined recursively as follows:
(i) K1 is a cograph, (ii) If G is a cograph, then Gc is a
cograph, and (iii) If G1 and G2 are cographs, then G1 [ G2

is a cograph. A cograph G can be represented as a rooted
tree TG, called the cotree of G [4]. In the cotree representa-
tion, pendant vertices of TG are the vertices of G and each
internal vertex of TG is labelled with [ or þ. A vertex u is
said to be a child of a vertex v in TG if u is adjacent to v but
does not lie in the path from the root of TG to v. Each
internal vertex of TG has at least two children. We denote
the set containing the children of a vertex v in TG as
CðTG, vÞ: A vertex of TG with label [ (resp. þ) corresponds
to a cograph obtained from the disjoint union (resp. join) of
the cographs associated with its children. A cograph G and
its corresponding cotree TG are illustrated in Figure 1.

3. Secure total domination in bounded
clique-width graphs

In this section, we show that the secure total domination
problem can be solved in linear time on graphs of bounded
clique-width.

Let {E} be a finite set containing one binary relation sym-
bol E. We denote the vocabulary {E} by s1. The presentation
of any graph G as a logical structure < V, E > is denoted by
Gðs1Þ, where V is the domain of logical structure containing
the vertices of G and E is the binary relation corresponding
to the adjacency matrix of G.

A graph property p is expressible in s1-monadic second-
order logic, MSOL(s1) for short, if p can be defined using
vertices and sets of vertices of G, the logical quantifiers 9
and 8 over vertices and sets of vertices of G, the logical
operators OR (�), AND (�), NOT (:), the binary adjacency
relation adj, where adj(u, v) holds if and only if u and v are
adjacent in G, and the membership relation 2 to check the
existence of any vertex in a set, and the equality opera-
tor¼ for vertices of G.

Definition 3.1 ([6]). An optimization problem is a
LinEMSOL(s1) optimization problem if it can be defined as
follows: Given a graph G presented as Gðs1Þ and m evaluat-
ing functions f1, f2, :::, fm, find an assignment z to the free
set variables in h such that

X
1�i�l
l�j�m

aijjzðXiÞjj

¼ min
X
1�i�l
l�j�m

aijjz0ðXiÞjj : hðX1, :::,XlÞ is true for G and z0
( )

,

where h is an MSOL(s1) formula having free set variables
X1, :::,Xl and for 1 � i � l, 1 � j � m, aij are inte-
gers, jzðXiÞjj ¼

P
a2zðXiÞ fjðaÞ:

Theorem 3.2 ([1, 6]). Let C be a class of graphs of clique-
width at most k, where k is a positive integer. Then every
LinEMSOL(s1) optimization problem on C can be solved in
linear time.

We now show that the secure total domination problem
can be expressed as a LinEMSOL(s1) optimization problem.
Given a graph G, the total domination problem is to find a
total dominating set of G with minimum cardinality.

� Given a graph G, the following MSOLðs1Þ formula
shows that G has a total dominating set.

Figure 1. A cograph G and its cotree TG (Dashed line in G represents each vertex of a set is adjacent to each vertex of another set).
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TdomðXÞ ¼ 8vð9uðu 2 X�adjðu, vÞÞÞ:
� Given a graph G, the following MSOLðs1Þ formula

shows that G has a secure total dominating set.

STdomðXÞ ¼ 8vðv 2 X � ð9uðu 2 X�adjðu, vÞ
�TdomððXnfugÞ [ fvgÞÞÞÞ:

The secure total domination problem is a LinEMSOL(s1)
optimization problem since it can be expressed as follows:
given a graph G presented as Gðs1Þ structure, one evaluating
function f that assigns positive integer ‘1’ to each vertex of
Gðs1Þ, find an assignment z to the free set variable X1 in h
such that jzðX1Þj1 ¼ minfjz0ðX1Þj1 : hðX1Þ is true for G
and z0g, where hðX1Þ is defined as hðX1Þ ¼ STdomðX1Þ: So
by Theorem 3.2, we have the following theorem.

Theorem 3.3. The secure total domination problem can be
solved in linear time on graphs with clique-width bounded by
a constant.

By Theorem 3.3, it is clear that the secure total domin-
ation problem is solvable in linear time in chain graphs and
cographs as clique-width of chain graphs and cographs are
bounded. Courcelle et al. [6] does not give any explicit idea
to obtain solution of the problem using the structure of a
graph. We use the structure of chain graphs and cographs
to propose linear time algorithms for computing the secure
total domination number of a given chain graph and
cograph. We conclude this section with the definition of a
replacing vertex in a secure total dominating set of a
graph G.

Definition 3.4. Let D be a secure total dominating set of a
graph G. A vertex v of D is said to be a replacing vertex for
u 2 NGðvÞ \ ðVnDÞ if ðDnfvgÞ [ fug is a total dominating
set of G.

4. Secure total domination in chain graphs

In this section, we present a linear time algorithm to com-
pute the secure total domination number of a given chain
graph G ¼ ðX,Y ,EÞ: An ordering r ¼ ðx1, x2, :::, xp,
y1, y2, :::, yqÞ of X [ Y is called a chain ordering if NGðx1Þ �
NGðx2Þ � � � � � NGðxpÞ, and NGðyqÞ � NGðyq�1Þ � � � � �
NGðy1Þ: It is known that every chain graph admits a chain
ordering [9, 15]. A chain ordering of a chain graph G ¼
ðX,Y , EÞ can be computed in linear time [13]. The following
observation is true.

Observation 4.1. ([2]). Any secure total dominating set of a
graph G contains every support vertex and pendant vertex
of G.

Theorem 4.2. Suppose that G ¼ (X,Y,E) is a chain graph
with a chain ordering r ¼ ðx1, x2, :::, xp, y1, y2, :::, yqÞ and P
is the set of pendant vertices of G. Let XP ¼ P \ X and
YP ¼ P \ Y. Then the following are true.

(i) If jXnXPj � 3 and jYnYPj � 3, then cstðGÞ ¼ jPj þ 4:
(ii) If jXnXPj ¼ 2 or jYnYPj ¼ 2, then cstðGÞ ¼ jPj þ 3:

(iii) If jXnXPj ¼ 1 and jYnYPj ¼ 1, then cstðGÞ ¼ jPj þ 2:
(iv) If XnXP ¼ ; and YnYP ¼ ;, then cstðGÞ ¼ 2:

Proof. Since r is a chain ordering, NGðx1Þ � NGðx2Þ � � � � �
NGðxpÞ, and NGðyqÞ � NGðyq�1Þ � � � � � NGðy1Þ: This
implies that y1 is adjacent to all vertices of X and y2 is adja-
cent to all vertices of XnXP: Similarly, xp is adjacent to all
vertices of Y and xp�1 is adjacent to all vertices of YnYP:
Notice that NGðXPÞ ¼ fy1g and NGðYPÞ ¼ fxpg: We first
prove the following claim.

Claim 1. Let Q be a secure total dominating set of G.
If XnXP 6�Q (resp. YnYP 6�Q), then jQ \ ðYnYPÞj � 2
(resp. jQ \ ðXnXPÞj � 2).

Proof of Claim 1. Without loss of generality, assume that
XnXP 6�Q: Let w 2 ðXnXPÞnQ be an arbitrary vertex. Since
Q is a secure total dominating set of G and w 62 Q, there
exits a replacing vertex for w in Q, say w0: Clearly w0 2
Q \ Y as G is a chain graph. Now ðQnfw0gÞ [ fwg is a total
dominating set of G. Since w is not adjacent to any vertex
of X, jNGðwÞ \ ðQ \ YÞj � 2: This implies that jQ \ Yj � 2:
We now show that jQ \ ðYnYPÞj � 2: First suppose that w
¼ xp. Since xp 62 Q,YP ¼ ;; otherwise Q is a not a secure
total dominating set of G as NGðYPÞ ¼ fxpg: This implies
that YnYP ¼ Y: So jQ \ ðYnYPÞj � 2 as jQ \ Yj � 2: Now
suppose that w 6¼ xp: Since NGðYPÞ ¼ fxpg and xp 6¼ w, w is
not adjacent to any vertex of YP. So jNGðwÞ \ ðQ \ ðYn
YPÞÞj � 2 as jNGðwÞ\ðQ\YÞj�2: Hence jQ\ðYnYPÞj�2:
This completes the proof of the claim. w

(i) Let jXnXPj � 3 and jYnYPj � 3: We first show that
cstðGÞ � jPj þ 4: Let Q ¼ P [ fxp, xp�1, y1, y2g: Notice
that Q is a total dominating set of G as xp, y1 2 Q:
Let u 2 VðGÞnQ be an arbitrary vertex. If u 2 XnXP,
then ðQnfy2gÞ [ fug is a total dominating set of G as
xp, y1 2 Q: This implies that y2 is a replacing vertex
for u. Similarly, if u 2 YnYP, then xp�1 is a replacing
vertex for u. So Q is a secure total dominating set of
G and hence cstðGÞ � jPj þ 4:
We now show that jPj þ 4 � cstðGÞ: Let Q0 be a min-
imum secure total dominating set of G. Since Q0 is
total dominating set of G, Q0 \ X 6¼ ; and Q0 \ Y 6¼
;: Let u 2 Q0 \ X and v 2 Q0 \ Y: By Observation
4.1, P 	 Q0: First assume that XnXP � Q0: Since
jXnXPj � 3 and fvg [ P 	 Q0, jPj þ 4 � Q0: Hence we
are done. Now assume that XnXP 6�Q0: By Claim 1,
jQ0 \ ðYnYPÞj � 2: If jQ0 \ ðYnYPÞj � 3, then jPj þ
4 � cstðGÞ as fug [ P � Q0 and jQ0 \ ðYnYPÞj � 3:
Hence we are done. Now assume jQ0 \ ðYnYPÞj � 2:
This implies that jQ0 \ ðYnYPÞj ¼ 2 as jQ0 \
ðYnYPÞj � 2: So YnYP 6�Q0 as jYnYPj � 3: By
Claim 1, jQ0 \ðXnXPÞj�2: Since jQ0 \ ðXnXPÞj � 2,
jQ0 \ ðYnYPÞj ¼ 2, and P�Q0, jPjþ 4� cstðGÞ:
Therefore, cstðGÞ ¼ jPjþ 4:

(ii) Without loss of generality, assume that jXnXPj ¼ 2:
This implies that jYnYPj � 2: We first show that
cstðGÞ � jPj þ 3: Let Q ¼ P [ fxp, xp�1, y1g: Notice
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that Q is a total dominating set of G as xp, y1 2 Q:
Let u 2 VðGÞnQ be an arbitrary vertex. Clearly u 62
YP as YP 	 Q: Since u 62 YP, uxp�1 2 EðGÞ: Now
ðQnfxp�1gÞ [ fug is a total dominating set of G as
xp, y1 2 Q: Hence xp�1 is a replacing vertex for u. So
Q is a secure total dominating set of G. Therefore,
cstðGÞ � jPj þ 3:
We now show that jPj þ 3 � cstðGÞ: Let Q0 be a min-
imum secure total dominating set of G. Since Q0 is
total dominating set of G, Q0 \ X 6¼ ; and Q0 \ Y 6¼
;: Let u 2 Q0 \ X and v 2 Q0 \ Y: By Observation
4.1, P 	 Q0: If XnXP � Q0, then jPj þ 3 � cstðGÞ as
jXnXPj ¼ 2 and fvg [ P 	 Q0: Hence we are done. So
assume that XnXP 6�Q0: By Claim 1, jQ0 \ ðYnYPÞj �
2: Since fug [ P 	 Q0 and jQ0 \ ðYnYPÞj �
2, jPj þ 3 � cstðGÞ: Therefore, cstðGÞ ¼ jPj þ 3:

(iii) Let jXnXPj ¼ 1 and jYnYPj ¼ 1: This implies that
VðGÞ¼P[fxp,y1g: By Observation 4.1, cstðGÞ¼
jPjþ 2:

(iv) Let XnXP ¼ ; and YnYP ¼ ;: This implies that G ¼
K2. Therefore, cstðGÞ ¼ 2: w

A chain ordering of a chain graph G ¼ (X,Y,E) can be
computed in linear time [13]. The set P of pendant vertices
of G can be computed in O(nþm) time. Then by Theorem
4.2, a minimum secure total dominating set of a chain graph
G can be computed in O(nþm) time.

5. Secure total domination in cographs

In this section, we propose a linear time algorithm to com-
pute the secure total domination number of a given cograph
G. The following observations are easy to verify.

Observation 5.1. If G is the graph obtained from the join
of the graphs G1,G2, :::,Gk; k � 2, then {u, v}, where u 2
VðGiÞ, v 2 VðGjÞ for 1 � i, j � k and i 6¼ j, is a minimum
total dominating set of G.

Observation 5.2. If G is the graph obtained from the
disjoint union of the graphs G1,G2, :::,Gk, then cðGÞ ¼Pk

i¼1 cðGiÞ and cstðGÞ ¼
Pk

i¼1 cstðGiÞ:
If G is a disconnected graph with components G1, :::,Gk,

then by Observation 5.2, cstðGÞ ¼
Pk

i¼1 cstðGiÞ: So from
now onwards, we only consider connected cographs. We
first prove some lemmas that will help in designing
our algorithm.

If G is the cograph obtained from the join of
G1,G2, :::,Gk; k � 2, where each Gi is either K1 or a discon-
nected graph, then in Lemma 5.3, we characterize when the
secure total domination number of G is 2. Also in Lemma
5.4, we give a sufficient condition when the secure total
domination number of G is 3.

Lemma 5.3. Suppose that G is the cograph obtained from the
join of the graphs G1,G2, :::,Gk; k � 2, where each Gi is either
K1 or a disconnected graph. Then cstðGÞ ¼ 2 if and only if

there exist p and q, where 1 � p, q � k and p 6¼ q, such that
Gp and Gq are K1.

Proof. First assume that cst(G) ¼ 2 and Q ¼ fu, vg is a min-
imum secure total dominating set of G. Since Q is a total
dominating set of G, uv 2 EðGÞ and NGðuÞ [ NGðvÞ ¼ VðGÞ:
We now show that NG½u� ¼ NG½v� ¼ VðGÞ: If possible, let
w 2 VðGÞnQ be a vertex such that uw 62 EðGÞ: Since w 62 Q
and Q is a minimum secure total dominating set of G, v is a
replacing vertex for w. So ðQnfvgÞ [ fwg is a total dominat-
ing set of G. This implies that uw 2 EðGÞ: This is a contra-
diction to the fact that uw 62 EðGÞ: So NG½u� ¼ VðGÞ:
Clearly u 2 VðGaÞ for some 1 � a � k: Notice that Ga is
either K1 or a disconnected graph. Since NG½u� ¼ VðGÞ, u is
adjacent to each vertex of Ganfug: This implies that Ga is
connected and hence Ga is K1. Similarly, NG[v] ¼ V (G) and
Gb is K1, where y 2 VðGbÞ and 1 � b � k:

Next assume that Gp and Gq are K1, where 1 � p, q � k
and p 6¼ q: Let VðGpÞ ¼ fu0g and VðGqÞ ¼ fv0g: Notice that
NG½u0� ¼ NG½v0� ¼ VðGÞ: Let Q0 ¼ fu0, v0g: By Observation
5.1, Q0 is a minimum total dominating set of G. Let w 2
VðGÞnQ0 be an arbitrary vertex. Clearly w 2 VðGlÞ for some
1 � l � k: Notice that l 6¼ p and l 6¼ q as Gp and Gq are K1.
Clearly u0w 2 EðGÞ as NG½u0� ¼ VðGÞ: By Observation 5.1,
ðQnfu0gÞ [ fwg is a minimum total dominating set of G.
This implies that u0 is a replacing vertex for w. So Q0 is a
minimum secure total dominating set of G and hence
cstðGÞ ¼ 2: w

Lemma 5.4. Suppose that G is the cograph obtained from the
join of the graphs G1,G2, :::,Gk, where each Gi is either K1 or
a disconnected graph. If k � 3 and there exists at most one i,
where 1 � i � k, such that Gi is K1, then cstðGÞ ¼ 3:

Proof. By Lemma 5.3, cst(G) > 2 as there exists at most one
i, where 1� i� k, such that Gi is K1. Let Q ¼ fu1, u2, u3g,
where u1 2 VðG1Þ, u2 2 VðG2Þ, and u3 2 VðG3Þ: By
Observation 5.1, Qnfug, where u 2 fu1, u2, u3g, is a min-
imum total dominating set of G. This implies that Q is a
total dominating set of G. We now show that Q is a secure
total dominating set of G. Let w 2 VðGÞnQ be an arbitrary
vertex. Then there exists a vertex v 2 Q such that vw 2
EðGÞ: Since Qnfvg is a minimum total dominating set of G,
ðQnfvgÞ [ fwg is a total dominating set of G. This implies
that v is a replacing vertex for w. So Q is a secure total
dominating set of G and hence cstðGÞ ¼ 3: w

If G is the cograph obtained from the join of K1 and a
disconnected graph, then in Lemma 5.6, we find the secure
total domination number of G. For this, we first prove the
following lemma.

Lemma 5.5. Suppose that G is the cograph obtained from the
join of two graphs G1 and G2, where G1 is a disconnected
graph and G2 ¼ fug. Then there exists a minimum secure
total dominating set of G containing u.

Proof. Let Q0 be a minimum secure total dominating set of G.
If u 2 Q0, then we are done. So assume that u 62 Q0: Since Q0 is
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a minimum secure total dominating set of G and u 62 Q0, there
exists a replacing vertex for u in Q0, say v. Let Q ¼ ðQ0nfvgÞ [
fug: Since u 2 Q, Q is a dominating set of G. Also vw 2 EðGÞ
for some w 2 Q0 as Q0 is a total dominating set of G. Clearly
w 2 Q as w 6¼ v: Notice that uw 2 EðGÞ: This implies that Q is
a total dominating set of G. We now show that Q is a secure
total dominating set of G. Let x 2 VðGÞnQ be an arbitrary ver-
tex. Clearly x 2 VðG1Þ as u 2 Q: If x¼ v, then u is a replacing
vertex for x as Q0 is a total dominating set of G. If x 6¼ v, then
x 2 VðGÞnQ0: This implies that there exists a replacing vertex
for x in Q0, say y. If y 6¼ v, then y 2 Q: Now ðQnfygÞ [ fxg is
a total dominating set of G as u 2 Q and u is adjacent to each
vertex of G1. So y is a replacing vertex for x in Q. Again if y¼ v,
then ðQnfugÞ [ fxg is a total dominating set of G as
ðQ0nfvgÞ [ fxg is a total dominating set of G. So u is a replac-
ing vertex for x in Q. Hence Q is a secure total dominating set
of G containing u. Since jQ0j ¼ jQj, Q is a minimum secure
total dominating set of G containing u. w

Lemma 5.6. Suppose that G is the cograph obtained from the
join of two graphs G1 and G2, where G1 is a disconnected
graph and G2 ¼ fug. Then cstðGÞ ¼ 1þ cðG1Þ:

Proof. We first show that 1þ cðG1Þ � cstðGÞ: By Lemma
5.5, there is a minimum secure total dominating set Q of G
containing u. Let U1,U2, :::, and Uk be the components of
G1. Assume that jQ \ VðUiÞj > cðUiÞ for some 1 � i � k:
Let Q0 ¼ ðQnðQ \ VðUiÞÞÞ [ DðUiÞ, where DðUiÞ is a min-
imum dominating set of Ui. Notice that Q0 is a dominating
set of G as u 2 Q0: Since u is adjacent to each vertex of
Q0nfug,Q0 is a total dominating set of G. We now show
that Q0 is a secure total dominating set of G. Let x 2
VðGÞnQ0 be an arbitrary vertex. Clearly x 2 VðG1ÞnQ0

as u 2 Q0: This implies that x 2 VðUjÞ for some 1 � j � k:
If j 6¼ i, then x 2 VðGÞnQ: This implies that there exists a
replacing vertex for x in Q, say y. Notice that y 2 Q0 as y 62
VðUiÞ: Now ðQ0nfygÞ [ fxg is a total dominating set of G
as u 2 Q0 and u is adjacent to each vertex of G1. Again if
j¼ i, then xz 2 EðGÞ for some z 2 DðUiÞ: Such a vertex z
exists as DðUiÞ is a minimum dominating set of Ui. Now
ðQ0nfzgÞ [ fxg is a total dominating set of G as u 2 Q0 and
u is adjacent to each vertex of G1. This implies that z is a
replacing vertex for x in Q0: Hence Q0 is a secure total dom-
inating set of G such that jQ0j < jQj: This is a contradiction
to the fact that Q is a minimum secure total dominating set
of G. So jQ \ VðUiÞj � cðUiÞ: By Observation 5.2, cðG1Þ ¼Pk

i¼1 cðUkÞ: So 1þ cðG1Þ � cstðGÞ:
We now show that there exists a secure total dominating

set Q of G such that jQj ¼ 1þ cðG1Þ: For each 1 � i � k,
let DðUiÞ be a minimum dominating set of Ui. Again let
Q ¼ fug [k

i¼1 DðUiÞ: Since u 2 Q, Q is a dominating set of
G. Also u is adjacent to each vertex of Qnfug: So Q is a
total dominating set of G. We now show that Q is a secure
total dominating set of G. Let x 2 VðGÞnQ be an arbitrary
vertex. Clearly x 2 VðG1ÞnQ as u 2 Q: This implies that x 2
VðUiÞ for some 1 � i � k: Let y 2 DðUiÞ such that xy 2
EðGÞ: Such a vertex y exists as DðUiÞ is a minimum domi-
nating set of Ui. Now ðQnfygÞ [ fxg is a total dominating

set of G as u 2 Q and u is adjacent to each vertex of G1. So
y is a replacing vertex for x. Hence Q is a secure total domi-
nating set of G. By Observation 5.2, cðG1Þ ¼ [k

i¼1 DðUiÞ: So
jQj ¼ 1þ cðG1Þ and hence cstðGÞ � 1þ cðG1Þ: w

If G is the cograph obtained from the join of two graphs
G1 and G2 such that jVðG1Þj � 2 and jVðG2Þj � 2, then in
Lemma 5.7, we give an upper bound to the secure total
domination number of G.

Lemma 5.7. If G is the cograph obtained from the join of
two graphs G1 and G2 such that jVðG1Þj � 2 and
jVðG2Þj � 2, then cstðGÞ � 4:

Proof. Let Q ¼ fu1, u2, v1, v2g, where u1, u2 2 VðG1Þ and
v1, v2 2 VðG2Þ: By Observation 5.1, Qnfui, vjg is a minimum
total dominating set of G, where i, j 2 f1, 2g: This implies
that Q and Qnfwg, where w 2 fu1, u2, v1, v2g, is a total
dominating set of G. Let x 2 VðGÞnQ be an arbitrary vertex.
If x 2 VðG1Þ, then v1x 2 EðGÞ: Now ðQnfv1gÞ [ fxg is a
total dominating set of G as Qnfv1g is a total dominating
set of G. This implies that v1 is a replacing vertex for x.
Similarly, if x 2 VðG2Þ, then u1 is a replacing vertex for x.
So Q is a secure total dominating set of G and hence
cstðGÞ � 4: w

If G is the cograph obtained from the join of two discon-
nected graphs, then in Lemma 5.8, we give a necessary and
sufficient condition under which the secure total domination
number of G is 3.

Lemma 5.8. Suppose that G is the cograph obtained from the
join of two disconnected graphs G1 and G2. Then cstðGÞ ¼ 3
if and only if cðGiÞ ¼ 2 for some i 2 f1, 2g:

Proof. Assume that cst(G) ¼ 3 and Q be a minimum secure
total dominating set of G. We first show that VðGiÞ \ Q 6¼ ;
for each i 2 f1, 2g: On the contrary, assume that VðG1Þ \
Q ¼ ;: This implies that jVðG2Þ \ Qj ¼ 3: Notice that G2 is
a disconnected graph. So ctðG2Þ � 4: This implies that Q is
not a total dominating set of G2. This is a contradiction to
the fact that Q is a minimum secure total dominating set of
G. So VðGiÞ \ Q 6¼ ; for each i 2 f1, 2g: Since cstðGÞ ¼
3, jVðGiÞ \ Qj ¼ 2 for some i 2 f1, 2g: Without loss of gen-
erality, assume that jVðG1Þ \ Qj ¼ 2: Let VðG1Þ \ Q ¼
fu, vg and VðG2Þ \ Q ¼ fwg: We now show that {u, v} is a
dominating set of G1. If possible, let x 2 VðG1ÞnðNG1 ½u� [
NG1 ½v�Þ be an arbitrary vertex. Notice that x 62 Q: Since x 2
VðG1ÞnQ and Q is a minimum secure total dominating set
of G, w is a replacing vertex for x. So ðQnfwgÞ [ fxg is a
total dominating set of G. This implies that xu 2 EðGÞ or
xv 2 EðGÞ: This contradicts the fact that x 2
VðG1ÞnðNG1 ½u� [ NG1 ½v�Þ: So {u, v} is a dominating set of G1.
Since G1 is a disconnected graph, cðG1Þ � 2: This implies
that {u, v} is a minimum dominating set of G1 and hence
c(G1) ¼ 2.

We now prove the sufficient part of this lemma. Assume
that c(Gi) ¼ 2 for some i 2 f1, 2g: Without loss of general-
ity, assume that c(G1) ¼ 2. Since c(G1) ¼ 2 and G1 is
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disconnected, G1 has exactly two components, say U1 and
U2. By Observation 5.2, cðU1Þ ¼ cðU2Þ ¼ 1: Let {u} and {v}
be minimum dominating set of U1 and U2, respectively.
Again let Q ¼ fu, v,wg, where w 2 VðG2Þ: By Observation
5.1, Qnfxg, where x 2 fu, vg, is a minimum total dominat-
ing set of G. This implies that Q is a total dominating set of
G. We now show that Q is a secure total dominating set of
G. Let y 2 VðGÞnQ be an arbitrary vertex. If y 2 VðU1Þ [
VðG2Þ, then yu 2 EðGÞ: Now ðQnfugÞ [ fyg is a total dom-
inating set of G as Qnfug is a minimum total dominating
set of G. So u is a replacing vertex for y. If y 2 VðU2Þ, then
yv 2 EðGÞ: Now ðQnfvgÞ [ fyg is a total dominating set of
G as Qnfvg is a minimum total dominating set of G. So v is
a replacing vertex for y. Hence Q is a secure total dominat-
ing set of G. Since G1 and G2 are disconnected, by Lemma
5.3, cst(G) > 2. This implies that Q is a minimum secure
total dominating set of G. Hence cst(G) ¼ 3. w

We now present our algorithm, namely MIN-STDN-
CG(G) that computes the secure total domination number
of a connected cograph G. We use a vertex ordering k ¼
ðc1, c2, :::, clÞ of cotree TG, where k�1 ¼ ðcl, :::, c2, c1Þ is an
ordering of internal vertices of TG obtained by applying
breadth-first search starting at the root cl of TG. We call
such an ordering k of TG as Cotree-RBFS of TG. For any ver-
tex v of TG, we denote TGðvÞ as the subgraph of G induced
by the pendant vertices of the subtree of TG rooted at the
vertex v. We now discuss in detail the approach of our algo-
rithm MIN-STDN-CG(G).

[S1] The algorithm constructs a cotree TG and computes
Cotree-RBFS ordering k ¼ ðc1, c2, :::, clÞ of internal
vertices of TG.

[S2] Let CðTG, clÞ ¼ fx1, :::, xkg: Then TGðclÞ is the cograph
obtained from the join of the graphs TGðx1Þ, :::, and
TGðxkÞ as cl has label þ. Now one of the following
case arise.

Case 1: At least two children of cl in TG are pen-
dant vertices.

In this case, cstðTGðclÞÞ ¼ 2: This follows from Lemma 5.3.

Case 2: At most one child of cl in TG is a pendant vertex.
In this case, one of the following is true.

� If cl has at least three children, then cstðTGðclÞÞ ¼ 3: This
follows from Lemma 5.4.

� If CðTG, clÞ ¼ fx1, x2g and one of them, say x2 is the
pendant vertex, then cstðTGðclÞÞ ¼ 1þ cðTGðx1ÞÞ: This
follows from Lemma 5.6.

� If CðTG, clÞ ¼ fx1, x2g and x1 and x2 are not pendant ver-
tices, then cstðTGðclÞÞ � 4: This follows from Lemma 5.7.
In particular, if cðTGðx1ÞÞ ¼ 2 or cðTGðx2ÞÞ ¼ 2, then
cstðTGðclÞÞ ¼ 3: This follows from Lemma 5.8.

We now present our algorithm Min-STDN-CG(G) that
computes the secure total domination number of a given
connected cograph G.

Algorithm 1: Min-STDN-CG(G)

Input: A connected cograph G ¼ (V,E);
Output: cst(G);

1 Compute a Cotree-RBFS ordering k ¼ ðc1, c2, :::, clÞ of

cotree TG;

2 Let CðTG, clÞ ¼ fx1, x2, :::, xkg;
3 if (cl is adjacent to at least two pendant vertices) then
4 cstðTGðclÞÞ ¼ 2;
5 else if ðk � 3Þ then
6 cstðTGðclÞÞ ¼ 3;
7 else if (cl is adjacent to a pendant vertex) then
8 cstðTGðclÞÞ ¼ 1þ cðTGðx1ÞÞ, where x1 is the non

pendant vertex.

9 else if (cl is not adjacent to a pendant vertex) then
10

cstðTGðclÞÞ ¼ 3 if cðTGðx1ÞÞ ¼ 2 or cðTGðx2ÞÞ ¼ 2;
4 otherwise:

�
11 cstðGÞ ¼ cstðTGðclÞÞ;

The proof of the correctness of the algorithm follows
from Lemma 5.3, Lemma 5.4, Lemma 5.6, Lemma 5.7, and
Lemma 5.8 as discussed in [S1] and [S2]. So the algorithm
MIN-STDN-CG(G) correctly computes cstðGÞ of a given con-
nected cograph G. In the cograph G shown in Figure 1, the
root c10 is adjacent to no pendant vertices and it has only
two children. Notice that cðTGðc8ÞÞ ¼ 3 and cðTGðc9ÞÞ ¼ 2:
Since cðTGðc9ÞÞ ¼ 2, by Lemma 5.8, cstðTGðc10ÞÞ ¼ 3:
Hence cstðGÞ ¼ 3:

We now discuss the running time of the algorithm MIN-
STDN-CG(G). Assume that G is a connected cograph with n
vertices and m edges. A cotree TG of G can be constructed
in OðnþmÞ time [5]. Let fci : 1 � i � lg be the set of
internal vertices of TG. Cotree-RBFS ordering k of TG can
be computed in OðjVðTGÞj þ jEðTGÞjÞ time by using breadth
first search. At the root cl of TG, our algorithm computes
cstðTGðclÞÞ: In some cases, to compute cstðTGðclÞÞ, the algo-
rithm uses cðTGðxÞÞ, where x 2 CðTG, clÞ: For this we store
cðTGðciÞÞ at each vertex ci of TG. Notice that for any con-
nected cograph G, cðGÞ � 2:
Computation of cðTGðciÞÞ :

If ci is a pendant vertex, then cðTGðciÞÞ ¼ 1: If ci is a ver-
tex with label [, then cðTGðciÞÞ ¼

P
x2CðTG, ciÞ cðTGðxÞÞ:

Assume that ci is a vertex with label þ. If ci has a child that
is a pendant vertex, then cðTGðciÞÞ ¼ 1; otherwise
cðTGðciÞÞ ¼ 2: So at any vertex ci of TG, the computation of
cðTGðciÞÞ can be done in OðjNTGðciÞjÞ time.
Computation of cstðTGðclÞÞ :

The algorithm first checks whether at least two children
of cl in TG are pendant vertices. This can be done in
OðjNTGðclÞjÞ time. If at most one child of cl in TG is a pen-
dant vertex, then the algorithm checks whether cl has at
least three children in TG. This can be done in OðjNTGðclÞjÞ
time. If cl has exactly two children in TG, then let
CðTG, clÞ ¼ fx1, x2g: If x1 and x2 are not pendant vertices,
then the algorithm checks whether cðTGðx1ÞÞ ¼ 2 or
cðTGðx2ÞÞ ¼ 2: This can be done in OðjNTGðclÞjÞ time. If
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only one of them is pendant vertex, say x2, then cstðTG, clÞ ¼
1þ cðTGðx1ÞÞ: This can be done in OðjNTGðclÞjÞ time.

Let CðTG, clÞ ¼ fx1, x2, :::, xkg: If cðTGðxiÞÞ is known for
each 1 � i � k, then computation of cstðTGðclÞÞ can be done
in OðjNTGðclÞjÞ time. So in total the algorithm MIN-STDN-
CG(G) takes OðjVðTGÞj þ jEðTGÞÞ to compute cstðTGðclÞÞ ¼
cstðGÞ and hence the algorithm MIN-STDN-CG(G) takes
OðnþmÞ time. Therefore, we have the following theorem.

Theorem 5.9. The secure total domination number of a con-
nected cograph can be computed in linear time.
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