Secure total domination in chain graphs and cographs

Anupriya Jha

To cite this article: Anupriya Jha (2020): Secure total domination in chain graphs and cographs, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1016/j.akcej.2019.10.005

To link to this article: https://doi.org/10.1016/j.akcej.2019.10.005

Published online: 27 May 2020.

Submit your article to this journal

Article views: 111

View related articles

View Crossmark data ${ }^{\top}$

Secure total domination in chain graphs and cographs

Anupriya Jha
Department of Mathematics \& Computing, Indian Institute of Technology (ISM), Dhanbad, India

Abstract

Let $G=(V, E)$ be a graph without isolated vertices. A subset D of vertices of G is called a total dominating set of G if for every $u \in V$, there exists a vertex $v \in D$ such that $u v \in E$. A total dominating set D of a graph G is called a secure total dominating set of G if for every $u \in V \backslash D$, there exists a vertex $v \in D$ such that $u v \in E$ and $(D \backslash\{v\}) \cup\{u\}$ is a total dominating set of G. The secure total domination number of G, denoted by $\gamma_{s t}(G)$, is the minimum cardinality of a secure total dominating set of G. Given a graph G, the secure total domination problem is to find a secure total dominating set of G with minimum cardinality. In this paper, we first show that the secure total domination problem is linear time solvable on graphs of bounded clique-width. We then propose linear time algorithms for computing the secure total domination number of chain graphs and cographs.

KEYWORDS

Total domination; secure total domination; chain graphs; cographs; linear time algorithm

1. Introduction

Let $G=(V, E)$ be a simple and undirected graph without isolated vertices. A subset D of vertices of G is called a dominating set (resp. total dominating set) of G if for every $u \in V \backslash D$ (resp. $u \in V$), there exists a vertex $v \in D$ such that $u v \in E$. The minimum cardinality of a dominating set (resp. total dominating set) of G is denoted by $\gamma(G)$ (resp. $\gamma_{t}(G)$). A dominating set D of a graph G is called a secure dominating set of G if for every $u \in V \backslash D$, there exists a vertex $v \in D$ such that $u v \in E$ and $(D \backslash\{v\}) \cup\{u\}$ is a dominating set of G. The concept of secure domination in graphs was introduced by Cockayne et al. [3] and studied in the literature $[8,10,12,14]$. The concept of secure domination in graphs was extended to secure total domination in graphs by Benecke et al. [2]. A total dominating set D of a graph G is called a secure total dominating set of G if for every $u \in V \backslash D$, there exists a vertex $v \in D$ such that $u v \in$ E and $(D \backslash\{v\}) \cup\{u\}$ is a total dominating set of G. The secure total domination number of G, denoted by $\gamma_{s t}(G)$, is the minimum cardinality of a secure total dominating set of G. Given a graph G, the secure total domination problem is to find a secure total dominating set of G with minimum cardinality. Klostermeyer and Mynhardt [10] gave several bounds on the secure total domination number of a graph. Further, Duginov [7] has studied the hardness of the approximation of the secure total domination problem in graphs. He also established various bounds on the secure total domination number of a graph.

The reduction used in [7] for showing the NP-completeness of the decision version of the secure total domination problem for chordal bipartite graphs and graphs of separability at most 2 can be used to show that the decision
version of the secure total domination problem is NP-complete for undirected path graphs and circle graphs.

In this paper, we first show that the secure total domination problem can be solved in linear time on graphs of bounded cli-que-width by exploiting the result due to Courcelle et al. [6] on Monadic Second Order Logic. Courcelle et al. [6] do not give any explicit idea to obtain the solution of the problem using the structure of the given graph. By using the structure of chain graphs and cographs, we propose linear time algorithms for computing the secure total domination number of a given chain graph and cograph.

The paper is organized as follows. In Section 2, we present some pertinent definitions and preliminary results. In Section 3, we show the linear time solvability of the secure total domination problem in graphs of bounded cliquewidth. In Section 4 and Section 5, we present a linear time algorithm to compute the secure total domination number of a given chain graph and cograph, respectively.

2. Preliminaries

Let $G=(V, E)$ be a simple and undirected graph. For any vertex $v \in V$, the open neighborhood of v in G is the set $N_{G}(v)=\{u: u v \in E\}$ and the closed neighborhood of v in G is the set $N_{G}[v]=N_{G}(v) \cup\{v\}$. For $A \subseteq V$, we define $N_{G}(A)=\cup_{x \in A} N_{G}(x)$. The degree of a vertex v in G is $\left|N_{G}(v)\right|$ and is denoted by $d_{G}(v)$. A vertex of G with degree one is said to be a pendant vertex. A vertex of G that is adjacent to a pendant vertex is said to be a support vertex. The complement of the graph G, denoted by G^{c}, is the graph with the vertex set V and the edge set $\{x y: x, y \in V$ and $x y \notin$ $E\}$. For $A \subseteq V$, let $G[A]$ denote the subgraph of G induced

Figure 1. A cograph G and its cotree T_{G} (Dashed line in G represents each vertex of a set is adjacent to each vertex of another set).
by A. Let G_{1} and G_{2} be two graphs with disjoint vertex sets. The disjoint union of G_{1} and G_{2}, denoted by $G_{1} \cup G_{2}$, is the graph with the vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The join of G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, is the graph with the vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{x y: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$. A complete graph G with n vertices is denoted by K_{n}. A graph G is complete k-partite graph if $V(G)$ is the union of k disjoint independent sets, called partite sets of G, and two vertices are adjacent if and only if they are in different partite sets. We denote complete k-partite graph G by $K_{m_{1}, m_{2}, \ldots, m_{k}}$, where m_{1}, m_{2}, \ldots, and m_{k} are the cardinality of k partite sets.

A bipartite graph $G=(X, Y, E)$ is called a chain graph if the neighborhoods of the vertices of X form a chain, i.e., the vertices of X can be linearly ordered, say $x_{1}, x_{2}, \ldots, x_{p}$ such that $N_{G}\left(x_{1}\right) \subseteq N_{G}\left(x_{2}\right) \subseteq \cdots \subseteq N_{G}\left(x_{p}\right)$. If $G=(X, Y, E)$ is a chain graph, then the neighborhoods of the vertices of Y also form a chain [9].

Cographs or complement reducible graphs were introduced by Lerchs [11]. Cographs are defined recursively as follows: (i) K_{1} is a cograph, (ii) If G is a cograph, then G^{c} is a cograph, and (iii) If G_{1} and G_{2} are cographs, then $G_{1} \cup G_{2}$ is a cograph. A cograph G can be represented as a rooted tree T_{G}, called the cotree of G [4]. In the cotree representation, pendant vertices of T_{G} are the vertices of G and each internal vertex of T_{G} is labelled with \cup or + . A vertex u is said to be a child of a vertex v in T_{G} if u is adjacent to v but does not lie in the path from the root of T_{G} to v. Each internal vertex of T_{G} has at least two children. We denote the set containing the children of a vertex v in T_{G} as $C\left(T_{G}, v\right)$. A vertex of T_{G} with label $\cup($ resp. +) corresponds to a cograph obtained from the disjoint union (resp. join) of the cographs associated with its children. A cograph G and its corresponding cotree T_{G} are illustrated in Figure 1.

3. Secure total domination in bounded clique-width graphs

In this section, we show that the secure total domination problem can be solved in linear time on graphs of bounded clique-width.

Let $\{E\}$ be a finite set containing one binary relation symbol E. We denote the vocabulary $\{E\}$ by τ_{1}. The presentation of any graph G as a logical structure $\langle V, E\rangle$ is denoted by $G\left(\tau_{1}\right)$, where V is the domain of logical structure containing the vertices of G and E is the binary relation corresponding to the adjacency matrix of G.

A graph property π is expressible in τ_{1}-monadic secondorder logic, $\operatorname{MSOL}\left(\tau_{1}\right)$ for short, if π can be defined using vertices and sets of vertices of G, the logical quantifiers \exists and \forall over vertices and sets of vertices of G, the logical operators OR (\vee), AND (\wedge), NOT (\neg), the binary adjacency relation adj, where $\operatorname{adj}(u, v)$ holds if and only if u and v are adjacent in G, and the membership relation \in to check the existence of any vertex in a set, and the equality operator $=$ for vertices of G.

Definition 3.1 ([6]). An optimization problem is a $\operatorname{LinEMSOL}\left(\tau_{1}\right)$ optimization problem if it can be defined as follows: Given a graph G presented as $G\left(\tau_{1}\right)$ and m evaluating functions $f_{1}, f_{2}, \ldots, f_{m}$, find an assignment z to the free set variables in θ such that

$$
\begin{aligned}
& \sum_{\substack{1 \leq i \leq l \\
l \leq j \leq m}} a_{i j}\left|z\left(X_{i}\right)\right|_{j} \\
& =\min \left\{\sum_{\substack{1 \leq i \leq l \\
l \leq \leq \leq m}} a_{i j}\left|z^{\prime}\left(X_{i}\right)\right|_{j}: \theta\left(X_{1}, \ldots, X_{l}\right) \text { is true for } G \text { and } z^{\prime}\right\}
\end{aligned},
$$

where θ is an $\operatorname{MSOL}\left(\tau_{1}\right)$ formula having free set variables X_{1}, \ldots, X_{l} and for $1 \leq i \leq l, 1 \leq j \leq m, a_{i j}$ are integers, $\left|z\left(X_{i}\right)\right|_{j}=\sum_{a \in z\left(X_{i}\right)} f_{j}(a)$.

Theorem 3.2 ($[1,6]$). Let \mathcal{C} be a class of graphs of cliquewidth at most k, where k is a positive integer. Then every LinEMSOL $\left(\tau_{1}\right)$ optimization problem on \mathcal{C} can be solved in linear time.

We now show that the secure total domination problem can be expressed as a $\operatorname{LinEMSOL}\left(\tau_{1}\right)$ optimization problem. Given a graph G, the total domination problem is to find a total dominating set of G with minimum cardinality.

- Given a graph G, the following $\operatorname{MSOL}\left(\tau_{1}\right)$ formula shows that G has a total dominating set.

$$
\operatorname{Tdom}(X)=\forall v(\exists u(u \in X \wedge \operatorname{adj}(u, v))) .
$$

- Given a graph G, the following $\operatorname{MSOL}\left(\tau_{1}\right)$ formula shows that G has a secure total dominating set.

$$
\begin{aligned}
\operatorname{STdom}(X)= & \forall v(v \in X \vee(\exists u(u \in X \wedge a d j(u, v) \\
& \wedge \operatorname{Tdom}((X \backslash\{u\}) \cup\{v\})))) .
\end{aligned}
$$

The secure total domination problem is a $\operatorname{LinEMSOL}\left(\tau_{1}\right)$ optimization problem since it can be expressed as follows: given a graph G presented as $G\left(\tau_{1}\right)$ structure, one evaluating function f that assigns positive integer ' 1 ' to each vertex of $G\left(\tau_{1}\right)$, find an assignment z to the free set variable X_{1} in θ such that $\left|z\left(X_{1}\right)\right|_{1}=\min \left\{\left|z^{\prime}\left(X_{1}\right)\right|_{1}: \theta\left(X_{1}\right)\right.$ is true for G and $\left.z^{\prime}\right\}$, where $\theta\left(X_{1}\right)$ is defined as $\theta\left(X_{1}\right)=\operatorname{STdom}\left(X_{1}\right)$. So by Theorem 3.2, we have the following theorem.

Theorem 3.3. The secure total domination problem can be solved in linear time on graphs with clique-width bounded by a constant.

By Theorem 3.3, it is clear that the secure total domination problem is solvable in linear time in chain graphs and cographs as clique-width of chain graphs and cographs are bounded. Courcelle et al. [6] does not give any explicit idea to obtain solution of the problem using the structure of a graph. We use the structure of chain graphs and cographs to propose linear time algorithms for computing the secure total domination number of a given chain graph and cograph. We conclude this section with the definition of a replacing vertex in a secure total dominating set of a graph G.

Definition 3.4. Let D be a secure total dominating set of a graph G. A vertex v of D is said to be a replacing vertex for $u \in N_{G}(v) \cap(V \backslash D)$ if $(D \backslash\{v\}) \cup\{u\}$ is a total dominating set of G.

4. Secure total domination in chain graphs

In this section, we present a linear time algorithm to compute the secure total domination number of a given chain graph $G=(X, Y, E)$. An ordering $\sigma=\left(x_{1}, x_{2}, \ldots, x_{p}\right.$, $\left.y_{1}, y_{2}, \ldots, y_{q}\right)$ of $X \cup Y$ is called a chain ordering if $N_{G}\left(x_{1}\right) \subseteq$ $N_{G}\left(x_{2}\right) \subseteq \cdots \subseteq N_{G}\left(x_{p}\right), \quad$ and $\quad N_{G}\left(y_{q}\right) \subseteq N_{G}\left(y_{q-1}\right) \subseteq \cdots \subseteq$ $N_{G}\left(y_{1}\right)$. It is known that every chain graph admits a chain ordering [9, 15]. A chain ordering of a chain graph $G=$ (X, Y, E) can be computed in linear time [13]. The following observation is true.

Observation 4.1. ([2]). Any secure total dominating set of a graph G contains every support vertex and pendant vertex of G.

Theorem 4.2. Suppose that $G=(X, Y, E)$ is a chain graph with a chain ordering $\sigma=\left(x_{1}, x_{2}, \ldots, x_{p}, y_{1}, y_{2}, \ldots, y_{q}\right)$ and P is the set of pendant vertices of G. Let $X_{P}=P \cap X$ and $Y_{P}=P \cap Y$. Then the following are true.
(i) If $\left|X \backslash X_{P}\right| \geq 3$ and $\left|Y \backslash Y_{P}\right| \geq 3$, then $\gamma_{s t}(G)=|P|+4$.
(ii) If $\left|X \backslash X_{P}\right|=2$ or $\left|Y \backslash Y_{P}\right|=2$, then $\gamma_{s t}(G)=|P|+3$.
(iii) If $\left|X \backslash X_{P}\right|=1$ and $\left|Y \backslash Y_{P}\right|=1$, then $\gamma_{s t}(G)=|P|+2$.
(iv) If $X \backslash X_{P}=\emptyset$ and $Y \backslash Y_{P}=\emptyset$, then $\gamma_{s t}(G)=2$.

Proof. Since σ is a chain ordering, $N_{G}\left(x_{1}\right) \subseteq N_{G}\left(x_{2}\right) \subseteq \cdots \subseteq$ $N_{G}\left(x_{p}\right)$, and $\quad N_{G}\left(y_{q}\right) \subseteq N_{G}\left(y_{q-1}\right) \subseteq \cdots \subseteq N_{G}\left(y_{1}\right)$. This implies that y_{1} is adjacent to all vertices of X and y_{2} is adjacent to all vertices of $X \backslash X_{P}$. Similarly, x_{p} is adjacent to all vertices of Y and x_{p-1} is adjacent to all vertices of $Y \backslash Y_{P}$. Notice that $N_{G}\left(X_{P}\right)=\left\{y_{1}\right\}$ and $N_{G}\left(Y_{P}\right)=\left\{x_{p}\right\}$. We first prove the following claim.

Claim 1. Let Q be a secure total dominating set of G . If $X \backslash X_{P} \nsubseteq Q \quad$ (resp. $\quad Y \backslash Y_{P} \nsubseteq Q$), then $\left|Q \cap\left(Y \backslash Y_{P}\right)\right| \geq 2$ (resp. $\left|Q \cap\left(X \backslash X_{P}\right)\right| \geq 2$).

Proof of Claim 1. Without loss of generality, assume that $X \backslash X_{P} \nsubseteq Q$. Let $w \in\left(X \backslash X_{P}\right) \backslash Q$ be an arbitrary vertex. Since Q is a secure total dominating set of G and $w \notin Q$, there exits a replacing vertex for w in Q, say w^{\prime}. Clearly $w^{\prime} \in$ $Q \cap Y$ as G is a chain graph. Now $\left(Q \backslash\left\{w^{\prime}\right\}\right) \cup\{w\}$ is a total dominating set of G. Since w is not adjacent to any vertex of $X,\left|N_{G}(w) \cap(Q \cap Y)\right| \geq 2$. This implies that $|Q \cap Y| \geq 2$. We now show that $\left|Q \cap\left(Y \backslash Y_{P}\right)\right| \geq 2$. First suppose that w $=x_{p}$. Since $x_{p} \notin Q, Y_{P}=\emptyset$; otherwise Q is a not a secure total dominating set of G as $N_{G}\left(Y_{P}\right)=\left\{x_{p}\right\}$. This implies that $Y \backslash Y_{P}=Y$. So $\left|Q \cap\left(Y \backslash Y_{P}\right)\right| \geq 2$ as $|Q \cap Y| \geq 2$. Now suppose that $w \neq x_{p}$. Since $N_{G}\left(Y_{P}\right)=\left\{x_{p}\right\}$ and $x_{p} \neq w, w$ is not adjacent to any vertex of Y_{P}. So $\mid N_{G}(w) \cap(Q \cap(Y \backslash$ $\left.\left.Y_{P}\right)\right) \mid \geq 2$ as $\left|N_{G}(w) \cap(Q \cap Y)\right| \geq 2$. Hence $\left|Q \cap\left(Y \backslash Y_{P}\right)\right| \geq 2$. This completes the proof of the claim.
(i) Let $\left|X \backslash X_{P}\right| \geq 3$ and $\left|Y \backslash Y_{P}\right| \geq 3$. We first show that $\gamma_{s t}(G) \leq|P|+4$. Let $Q=P \cup\left\{x_{p}, x_{p-1}, y_{1}, y_{2}\right\}$. Notice that Q is a total dominating set of G as $x_{p}, y_{1} \in Q$. Let $u \in V(G) \backslash Q$ be an arbitrary vertex. If $u \in X \backslash X_{P}$, then $\left(Q \backslash\left\{y_{2}\right\}\right) \cup\{u\}$ is a total dominating set of G as $x_{p}, y_{1} \in Q$. This implies that y_{2} is a replacing vertex for u. Similarly, if $u \in Y \backslash Y_{P}$, then x_{p-1} is a replacing vertex for u. So Q is a secure total dominating set of G and hence $\gamma_{s t}(G) \leq|P|+4$.
We now show that $|P|+4 \leq \gamma_{s t}(G)$. Let Q^{\prime} be a minimum secure total dominating set of G. Since Q^{\prime} is total dominating set of $G, Q^{\prime} \cap X \neq \emptyset$ and $Q^{\prime} \cap Y \neq$ \emptyset. Let $u \in Q^{\prime} \cap X$ and $v \in Q^{\prime} \cap Y$. By Observation 4.1, $P \subset Q^{\prime}$. First assume that $X \backslash X_{P} \subseteq Q^{\prime}$. Since $\left|X \backslash X_{P}\right| \geq 3$ and $\{v\} \cup P \subset Q^{\prime},|P|+4 \leq Q^{\prime}$. Hence we are done. Now assume that $X \backslash X_{P} \nsubseteq Q^{\prime}$. By Claim 1, $\left|Q^{\prime} \cap\left(Y \backslash Y_{P}\right)\right| \geq 2$. If $\left|Q^{\prime} \cap\left(Y \backslash Y_{P}\right)\right| \geq 3$, then $|P|+$ $4 \leq \gamma_{s t}(G)$ as $\{u\} \cup P \subseteq Q^{\prime}$ and $\left|Q^{\prime} \cap\left(Y \backslash Y_{P}\right)\right| \geq 3$. Hence we are done. Now assume $\left|Q^{\prime} \cap\left(Y \backslash Y_{P}\right)\right| \leq 2$. This implies that $\left|Q^{\prime} \cap\left(Y \backslash Y_{P}\right)\right|=2$ as $\mid Q^{\prime} \cap$ $\left(Y \backslash Y_{P}\right) \mid \geq 2$. So $\quad Y \backslash Y_{P} \nsubseteq Q^{\prime} \quad$ as $\quad\left|Y \backslash Y_{P}\right| \geq 3$. By Claim 1, $\left|Q^{\prime} \cap\left(X \backslash X_{P}\right)\right| \geq 2$. Since $\left|Q^{\prime} \cap\left(X \backslash X_{P}\right)\right| \geq 2$, $\left|Q^{\prime} \cap\left(Y \backslash Y_{P}\right)\right|=2, \quad$ and $\quad P \subseteq Q^{\prime},|P|+4 \leq \gamma_{s t}(G)$. Therefore, $\gamma_{s t}(G)=|P|+4$.
(ii) Without loss of generality, assume that $\left|X \backslash X_{P}\right|=2$. This implies that $\left|Y \backslash Y_{P}\right| \geq 2$. We first show that $\gamma_{s t}(G) \leq|P|+3$. Let $Q=P \cup\left\{x_{p}, x_{p-1}, y_{1}\right\}$. Notice
that Q is a total dominating set of G as $x_{p}, y_{1} \in Q$. Let $u \in V(G) \backslash Q$ be an arbitrary vertex. Clearly $u \notin$ Y_{P} as $Y_{P} \subset Q$. Since $u \notin Y_{P}, u x_{p-1} \in E(G)$. Now $\left(Q \backslash\left\{x_{p-1}\right\}\right) \cup\{u\}$ is a total dominating set of G as $x_{p}, y_{1} \in Q$. Hence x_{p-1} is a replacing vertex for u. So Q is a secure total dominating set of G. Therefore, $\gamma_{s t}(G) \leq|P|+3$.
We now show that $|P|+3 \leq \gamma_{s t}(G)$. Let Q^{\prime} be a minimum secure total dominating set of G. Since Q^{\prime} is total dominating set of $G, Q^{\prime} \cap X \neq \emptyset$ and $Q^{\prime} \cap Y \neq$ \emptyset. Let $u \in Q^{\prime} \cap X$ and $v \in Q^{\prime} \cap Y$. By Observation 4.1, $P \subset Q^{\prime}$. If $X \backslash X_{P} \subseteq Q^{\prime}$, then $|P|+3 \leq \gamma_{s t}(G)$ as $\left|X \backslash X_{P}\right|=2$ and $\{v\} \cup P \subset Q^{\prime}$. Hence we are done. So assume that $X \backslash X_{P} \nsubseteq Q^{\prime}$. By Claim 1, $\left|Q^{\prime} \cap\left(Y \backslash Y_{P}\right)\right| \geq$ 2. Since $\quad\{u\} \cup P \subset Q^{\prime} \quad$ and $\quad\left|Q^{\prime} \cap\left(Y \backslash Y_{P}\right)\right| \geq$ $2,|P|+3 \leq \gamma_{s t}(G)$. Therefore, $\gamma_{s t}(G)=|P|+3$.
(iii) Let $\left|X \backslash X_{P}\right|=1$ and $\left|Y \backslash Y_{P}\right|=1$. This implies that $V(G)=P \cup\left\{x_{p}, y_{1}\right\} . \quad$ By Observation $4.1, \quad \gamma_{s t}(G)=$ $|P|+2$.
(iv) Let $X \backslash X_{P}=\emptyset$ and $Y \backslash Y_{P}=\emptyset$. This implies that $G=$ K_{2}. Therefore, $\gamma_{s t}(G)=2$.

A chain ordering of a chain graph $G=(X, Y, E)$ can be computed in linear time [13]. The set P of pendant vertices of G can be computed in $O(n+m)$ time. Then by Theorem 4.2, a minimum secure total dominating set of a chain graph G can be computed in $O(n+m)$ time.

5. Secure total domination in cographs

In this section, we propose a linear time algorithm to compute the secure total domination number of a given cograph G. The following observations are easy to verify.

Observation 5.1. If G is the graph obtained from the join of the graphs $G_{1}, G_{2}, \ldots, G_{k} ; k \geq 2$, then $\{\mathrm{u}, \mathrm{v}\}$, where $u \in$ $V\left(G_{i}\right), v \in V\left(G_{j}\right)$ for $1 \leq i, j \leq k$ and $i \neq j$, is a minimum total dominating set of G.

Observation 5.2. If G is the graph obtained from the disjoint union of the graphs $G_{1}, G_{2}, \ldots, G_{k}$, then $\gamma(G)=$ $\sum_{i=1}^{k} \gamma\left(G_{i}\right)$ and $\gamma_{s t}(G)=\sum_{i=1}^{k} \gamma_{s t}\left(G_{i}\right)$.

If G is a disconnected graph with components G_{1}, \ldots, G_{k}, then by Observation 5.2, $\gamma_{s t}(G)=\sum_{i=1}^{k} \gamma_{s t}\left(G_{i}\right)$. So from now onwards, we only consider connected cographs. We first prove some lemmas that will help in designing our algorithm.

If G is the cograph obtained from the join of $G_{1}, G_{2}, \ldots, G_{k} ; k \geq 2$, where each G_{i} is either K_{1} or a disconnected graph, then in Lemma 5.3, we characterize when the secure total domination number of G is 2 . Also in Lemma 5.4, we give a sufficient condition when the secure total domination number of G is 3 .

Lemma 5.3. Suppose that G is the cograph obtained from the join of the graphs $G_{1}, G_{2}, \ldots, G_{k} ; k \geq 2$, where each G_{i} is either K_{1} or a disconnected graph. Then $\gamma_{s t}(G)=2$ if and only if
there exist p and q, where $1 \leq p, q \leq k$ and $p \neq q$, such that G_{p} and G_{q} are K_{l}.

Proof. First assume that $\gamma_{s t}(G)=2$ and $Q=\{u, v\}$ is a minimum secure total dominating set of G. Since Q is a total dominating set of $G, u v \in E(G)$ and $N_{G}(u) \cup N_{G}(v)=V(G)$. We now show that $N_{G}[u]=N_{G}[v]=V(G)$. If possible, let $w \in V(G) \backslash Q$ be a vertex such that $u w \notin E(G)$. Since $w \notin Q$ and Q is a minimum secure total dominating set of G, v is a replacing vertex for w. So $(Q \backslash\{v\}) \cup\{w\}$ is a total dominating set of G. This implies that $u w \in E(G)$. This is a contradiction to the fact that $u w \notin E(G)$. So $N_{G}[u]=V(G)$. Clearly $u \in V\left(G_{a}\right)$ for some $1 \leq a \leq k$. Notice that G_{a} is either K_{1} or a disconnected graph. Since $N_{G}[u]=V(G), u$ is adjacent to each vertex of $G_{a} \backslash\{u\}$. This implies that G_{a} is connected and hence G_{a} is K_{1}. Similarly, $N_{G}[v]=V(G)$ and G_{b} is K_{1}, where $y \in V\left(G_{b}\right)$ and $1 \leq b \leq k$.

Next assume that G_{p} and G_{q} are K_{1}, where $1 \leq p, q \leq k$ and $p \neq q$. Let $V\left(G_{p}\right)=\left\{u^{\prime}\right\}$ and $V\left(G_{q}\right)=\left\{v^{\prime}\right\}$. Notice that $N_{G}\left[u^{\prime}\right]=N_{G}\left[v^{\prime}\right]=V(G)$. Let $Q^{\prime}=\left\{u^{\prime}, v^{\prime}\right\}$. By Observation 5.1, Q^{\prime} is a minimum total dominating set of G. Let $w \in$ $V(G) \backslash Q^{\prime}$ be an arbitrary vertex. Clearly $w \in V\left(G_{l}\right)$ for some $1 \leq l \leq k$. Notice that $l \neq p$ and $l \neq q$ as G_{p} and G_{q} are K_{1}. Clearly $u^{\prime} w \in E(G)$ as $N_{G}\left[u^{\prime}\right]=V(G)$. By Observation 5.1, $\left(Q \backslash\left\{u^{\prime}\right\}\right) \cup\{w\}$ is a minimum total dominating set of G. This implies that u^{\prime} is a replacing vertex for w. So Q^{\prime} is a minimum secure total dominating set of G and hence $\gamma_{s t}(G)=2$.

Lemma 5.4. Suppose that G is the cograph obtained from the join of the graphs $G_{1}, G_{2}, \ldots, G_{k}$, where each G_{i} is either K_{1} or a disconnected graph. If $k \geq 3$ and there exists at most one i, where $1 \leq i \leq k$, such that G_{i} is K_{1}, then $\gamma_{s t}(G)=3$.

Proof. By Lemma 5.3, $\gamma_{s t}(G)>2$ as there exists at most one i, where $1 \leq i \leq k$, such that G_{i} is K_{1}. Let $Q=\left\{u_{1}, u_{2}, u_{3}\right\}$, where $\quad u_{1} \in V\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)$, and $u_{3} \in V\left(G_{3}\right)$. By Observation 5.1, $Q \backslash\{u\}$, where $u \in\left\{u_{1}, u_{2}, u_{3}\right\}$, is a minimum total dominating set of G. This implies that Q is a total dominating set of G. We now show that Q is a secure total dominating set of G. Let $w \in V(G) \backslash Q$ be an arbitrary vertex. Then there exists a vertex $v \in Q$ such that $v w \in$ $E(G)$. Since $Q \backslash\{v\}$ is a minimum total dominating set of G, $(Q \backslash\{v\}) \cup\{w\}$ is a total dominating set of G. This implies that v is a replacing vertex for w. So Q is a secure total dominating set of G and hence $\gamma_{s t}(G)=3$.

If G is the cograph obtained from the join of K_{1} and a disconnected graph, then in Lemma 5.6, we find the secure total domination number of G. For this, we first prove the following lemma.

Lemma 5.5. Suppose that G is the cograph obtained from the join of two graphs G_{1} and G_{2}, where G_{1} is a disconnected graph and $G_{2}=\{u\}$. Then there exists a minimum secure total dominating set of G containing u.

Proof. Let Q^{\prime} be a minimum secure total dominating set of G. If $u \in Q^{\prime}$, then we are done. So assume that $u \notin Q^{\prime}$. Since Q^{\prime} is
a minimum secure total dominating set of G and $u \notin Q^{\prime}$, there exists a replacing vertex for u in Q^{\prime}, say v. Let $Q=\left(Q^{\prime} \backslash\{v\}\right) \cup$ $\{u\}$. Since $u \in Q, Q$ is a dominating set of G. Also $v w \in E(G)$ for some $w \in Q^{\prime}$ as Q^{\prime} is a total dominating set of G. Clearly $w \in Q$ as $w \neq v$. Notice that $u w \in E(G)$. This implies that Q is a total dominating set of G. We now show that Q is a secure total dominating set of G. Let $x \in V(G) \backslash Q$ be an arbitrary vertex. Clearly $x \in V\left(G_{1}\right)$ as $u \in Q$. If $x=v$, then u is a replacing vertex for x as Q^{\prime} is a total dominating set of G. If $x \neq v$, then $x \in V(G) \backslash Q^{\prime}$. This implies that there exists a replacing vertex for x in Q^{\prime}, say y. If $y \neq v$, then $y \in Q$. Now $(Q \backslash\{y\}) \cup\{x\}$ is a total dominating set of G as $u \in Q$ and u is adjacent to each vertex of G_{1}. So y is a replacing vertex for x in Q. Again if $y=v$, then $(Q \backslash\{u\}) \cup\{x\}$ is a total dominating set of G as $\left(Q^{\prime} \backslash\{v\}\right) \cup\{x\}$ is a total dominating set of G. So u is a replacing vertex for x in Q. Hence Q is a secure total dominating set of G containing u. Since $\left|Q^{\prime}\right|=|Q|, Q$ is a minimum secure total dominating set of G containing u.

Lemma 5.6. Suppose that G is the cograph obtained from the join of two graphs G_{1} and G_{2}, where G_{1} is a disconnected graph and $G_{2}=\{u\}$. Then $\gamma_{s t}(G)=1+\gamma\left(G_{1}\right)$.

Proof. We first show that $1+\gamma\left(G_{1}\right) \leq \gamma_{s t}(G)$. By Lemma 5.5, there is a minimum secure total dominating set Q of G containing u. Let U_{1}, U_{2}, \ldots, and U_{k} be the components of G_{1}. Assume that $\left|Q \cap V\left(U_{i}\right)\right|>\gamma\left(U_{i}\right)$ for some $1 \leq i \leq k$. Let $Q^{\prime}=\left(Q \backslash\left(Q \cap V\left(U_{i}\right)\right)\right) \cup D\left(U_{i}\right)$, where $D\left(U_{i}\right)$ is a minimum dominating set of U_{i}. Notice that Q^{\prime} is a dominating set of G as $u \in Q^{\prime}$. Since u is adjacent to each vertex of $Q^{\prime} \backslash\{u\}, Q^{\prime}$ is a total dominating set of G. We now show that Q^{\prime} is a secure total dominating set of G. Let $x \in$ $V(G) \backslash Q^{\prime}$ be an arbitrary vertex. Clearly $x \in V\left(G_{1}\right) \backslash Q^{\prime}$ as $u \in Q^{\prime}$. This implies that $x \in V\left(U_{j}\right)$ for some $1 \leq j \leq k$. If $j \neq i$, then $x \in V(G) \backslash Q$. This implies that there exists a replacing vertex for x in Q, say y. Notice that $y \in Q^{\prime}$ as $y \notin$ $V\left(U_{i}\right)$. Now $\left(Q^{\prime} \backslash\{y\}\right) \cup\{x\}$ is a total dominating set of G as $u \in Q^{\prime}$ and u is adjacent to each vertex of G_{1}. Again if $j=i$, then $x z \in E(G)$ for some $z \in D\left(U_{i}\right)$. Such a vertex z exists as $D\left(U_{i}\right)$ is a minimum dominating set of U_{i}. Now $\left(Q^{\prime} \backslash\{z\}\right) \cup\{x\}$ is a total dominating set of G as $u \in Q^{\prime}$ and u is adjacent to each vertex of G_{1}. This implies that z is a replacing vertex for x in Q^{\prime}. Hence Q^{\prime} is a secure total dominating set of G such that $\left|Q^{\prime}\right|<|Q|$. This is a contradiction to the fact that Q is a minimum secure total dominating set of G. So $\left|Q \cap V\left(U_{i}\right)\right| \leq \gamma\left(U_{i}\right)$. By Observation 5.2, $\gamma\left(G_{1}\right)=$ $\sum_{i=1}^{k} \gamma\left(U_{k}\right)$. So $1+\gamma\left(G_{1}\right) \leq \gamma_{s t}(G)$.

We now show that there exists a secure total dominating set Q of G such that $|Q|=1+\gamma\left(G_{1}\right)$. For each $1 \leq i \leq k$, let $D\left(U_{i}\right)$ be a minimum dominating set of U_{i}. Again let $Q=\{u\} \cup_{i=1}^{k} D\left(U_{i}\right)$. Since $u \in Q, Q$ is a dominating set of G. Also u is adjacent to each vertex of $Q \backslash\{u\}$. So Q is a total dominating set of G. We now show that Q is a secure total dominating set of G. Let $x \in V(G) \backslash Q$ be an arbitrary vertex. Clearly $x \in V\left(G_{1}\right) \backslash Q$ as $u \in Q$. This implies that $x \in$ $V\left(U_{i}\right)$ for some $1 \leq i \leq k$. Let $y \in D\left(U_{i}\right)$ such that $x y \in$ $E(G)$. Such a vertex y exists as $D\left(U_{i}\right)$ is a minimum dominating set of U_{i}. Now $(Q \backslash\{y\}) \cup\{x\}$ is a total dominating
set of G as $u \in Q$ and u is adjacent to each vertex of G_{1}. So y is a replacing vertex for x. Hence Q is a secure total dominating set of G. By Observation 5.2, $\gamma\left(G_{1}\right)=\cup_{i=1}^{k} D\left(U_{i}\right)$. So $|Q|=1+\gamma\left(G_{1}\right)$ and hence $\gamma_{s t}(G) \leq 1+\gamma\left(G_{1}\right)$.

If G is the cograph obtained from the join of two graphs G_{1} and G_{2} such that $\left|V\left(G_{1}\right)\right| \geq 2$ and $\left|V\left(G_{2}\right)\right| \geq 2$, then in Lemma 5.7, we give an upper bound to the secure total domination number of G.

Lemma 5.7. If G is the cograph obtained from the join of two graphs G_{1} and G_{2} such that $\left|V\left(G_{1}\right)\right| \geq 2$ and $\left|V\left(G_{2}\right)\right| \geq 2$, then $\gamma_{s t}(G) \leq 4$.

Proof. Let $Q=\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$, where $u_{1}, u_{2} \in V\left(G_{1}\right)$ and $v_{1}, v_{2} \in V\left(G_{2}\right)$. By Observation 5.1, $Q \backslash\left\{u_{i}, v_{j}\right\}$ is a minimum total dominating set of G, where $i, j \in\{1,2\}$. This implies that Q and $Q \backslash\{w\}$, where $w \in\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$, is a total dominating set of G. Let $x \in V(G) \backslash Q$ be an arbitrary vertex. If $x \in V\left(G_{1}\right)$, then $v_{1} x \in E(G)$. Now $\left(Q \backslash\left\{v_{1}\right\}\right) \cup\{x\}$ is a total dominating set of G as $Q \backslash\left\{v_{1}\right\}$ is a total dominating set of G. This implies that v_{1} is a replacing vertex for x. Similarly, if $x \in V\left(G_{2}\right)$, then u_{1} is a replacing vertex for x. So Q is a secure total dominating set of G and hence $\gamma_{s t}(G) \leq 4$.

If G is the cograph obtained from the join of two disconnected graphs, then in Lemma 5.8, we give a necessary and sufficient condition under which the secure total domination number of G is 3 .

Lemma 5.8. Suppose that G is the cograph obtained from the join of two disconnected graphs G_{1} and G_{2}. Then $\gamma_{s t}(G)=3$ if and only if $\gamma\left(G_{i}\right)=2$ for some $i \in\{1,2\}$.

Proof. Assume that $\gamma_{s t}(G)=3$ and Q be a minimum secure total dominating set of G. We first show that $V\left(G_{i}\right) \cap Q \neq \emptyset$ for each $i \in\{1,2\}$. On the contrary, assume that $V\left(G_{1}\right) \cap$ $Q=\emptyset$. This implies that $\left|V\left(G_{2}\right) \cap Q\right|=3$. Notice that G_{2} is a disconnected graph. So $\gamma_{t}\left(G_{2}\right) \geq 4$. This implies that Q is not a total dominating set of G_{2}. This is a contradiction to the fact that Q is a minimum secure total dominating set of G. So $V\left(G_{i}\right) \cap Q \neq \emptyset$ for each $i \in\{1,2\}$. Since $\gamma_{s t}(G)=$ $3,\left|V\left(G_{i}\right) \cap Q\right|=2$ for some $i \in\{1,2\}$. Without loss of generality, assume that $\left|V\left(G_{1}\right) \cap Q\right|=2$. Let $V\left(G_{1}\right) \cap Q=$ $\{u, v\}$ and $V\left(G_{2}\right) \cap Q=\{w\}$. We now show that $\{u, v\}$ is a dominating set of G_{1}. If possible, let $x \in V\left(G_{1}\right) \backslash\left(N_{G_{1}}[u] \cup\right.$ $\left.N_{G_{1}}[v]\right)$ be an arbitrary vertex. Notice that $x \notin Q$. Since $x \in$ $V\left(G_{1}\right) \backslash Q$ and Q is a minimum secure total dominating set of G, w is a replacing vertex for x. So $(Q \backslash\{w\}) \cup\{x\}$ is a total dominating set of G. This implies that $x u \in E(G)$ or $x v \in E(G)$. This contradicts the fact that $x \in$ $V\left(G_{1}\right) \backslash\left(N_{G_{1}}[u] \cup N_{G_{1}}[v]\right)$. So $\{u, v\}$ is a dominating set of G_{1}. Since G_{1} is a disconnected graph, $\gamma\left(G_{1}\right) \geq 2$. This implies that $\{u, v\}$ is a minimum dominating set of G_{1} and hence $\gamma\left(G_{1}\right)=2$.

We now prove the sufficient part of this lemma. Assume that $\gamma\left(G_{i}\right)=2$ for some $i \in\{1,2\}$. Without loss of generality, assume that $\gamma\left(G_{1}\right)=2$. Since $\gamma\left(G_{1}\right)=2$ and G_{1} is
disconnected, G_{1} has exactly two components, say U_{1} and U_{2}. By Observation 5.2, $\gamma\left(U_{1}\right)=\gamma\left(U_{2}\right)=1$. Let $\{u\}$ and $\{v\}$ be minimum dominating set of U_{1} and U_{2}, respectively. Again let $Q=\{u, v, w\}$, where $w \in V\left(G_{2}\right)$. By Observation 5.1, $Q \backslash\{x\}$, where $x \in\{u, v\}$, is a minimum total dominating set of G. This implies that Q is a total dominating set of G. We now show that Q is a secure total dominating set of G. Let $y \in V(G) \backslash Q$ be an arbitrary vertex. If $y \in V\left(U_{1}\right) \cup$ $V\left(G_{2}\right)$, then $y u \in E(G)$. Now $(Q \backslash\{u\}) \cup\{y\}$ is a total dominating set of G as $Q \backslash\{u\}$ is a minimum total dominating set of G. So u is a replacing vertex for y. If $y \in V\left(U_{2}\right)$, then $y v \in E(G)$. Now $(Q \backslash\{v\}) \cup\{y\}$ is a total dominating set of G as $Q \backslash\{v\}$ is a minimum total dominating set of G. So v is a replacing vertex for y. Hence Q is a secure total dominating set of G. Since G_{1} and G_{2} are disconnected, by Lemma 5.3, $\gamma_{s t}(G)>2$. This implies that Q is a minimum secure total dominating set of G. Hence $\gamma_{s t}(G)=3$.

We now present our algorithm, namely Min-STDN$C G(G)$ that computes the secure total domination number of a connected cograph G. We use a vertex ordering $\lambda=$ $\left(c_{1}, c_{2}, \ldots, c_{l}\right)$ of cotree T_{G}, where $\lambda^{-1}=\left(c_{l}, \ldots, c_{2}, c_{1}\right)$ is an ordering of internal vertices of T_{G} obtained by applying breadth-first search starting at the root c_{l} of T_{G}. We call such an ordering λ of T_{G} as Cotree-RBFS of T_{G}. For any vertex v of T_{G}, we denote $T_{G}(v)$ as the subgraph of G induced by the pendant vertices of the subtree of T_{G} rooted at the vertex v. We now discuss in detail the approach of our algorithm Min-STDN-CG(G).
[S1] The algorithm constructs a cotree T_{G} and computes Cotree-RBFS ordering $\lambda=\left(c_{1}, c_{2}, \ldots, c_{l}\right)$ of internal vertices of T_{G}.
[S2] Let $C\left(T_{G}, c_{l}\right)=\left\{x_{1}, \ldots, x_{k}\right\}$. Then $T_{G}\left(c_{l}\right)$ is the cograph obtained from the join of the graphs $T_{G}\left(x_{1}\right), \ldots$, and $T_{G}\left(x_{k}\right)$ as c_{l} has label + . Now one of the following case arise.

Case 1: At least two children of c_{l} in T_{G} are pendant vertices.

In this case, $\gamma_{s t}\left(T_{G}\left(c_{l}\right)\right)=2$. This follows from Lemma 5.3.

Case 2: At most one child of c_{l} in T_{G} is a pendant vertex. In this case, one of the following is true.

- If c_{l} has at least three children, then $\gamma_{s t}\left(T_{G}\left(c_{l}\right)\right)=3$. This follows from Lemma 5.4.
- If $C\left(T_{G}, c_{l}\right)=\left\{x_{1}, x_{2}\right\}$ and one of them, say x_{2} is the pendant vertex, then $\gamma_{s t}\left(T_{G}\left(c_{l}\right)\right)=1+\gamma\left(T_{G}\left(x_{1}\right)\right)$. This follows from Lemma 5.6.
- If $C\left(T_{G}, c_{l}\right)=\left\{x_{1}, x_{2}\right\}$ and x_{1} and x_{2} are not pendant vertices, then $\gamma_{s t}\left(T_{G}\left(c_{l}\right)\right) \leq 4$. This follows from Lemma 5.7. In particular, if $\gamma\left(T_{G}\left(x_{1}\right)\right)=2$ or $\gamma\left(T_{G}\left(x_{2}\right)\right)=2$, then $\gamma_{s t}\left(T_{G}\left(c_{l}\right)\right)=3$. This follows from Lemma 5.8.

We now present our algorithm Min-STDN-CG(G) that computes the secure total domination number of a given connected cograph G.

Algorithm 1: Min-STDN-CG(G)

Input: A connected cograph $G=(V, E)$;
Output: $\gamma_{s t}(G)$;
1 Compute a Cotree-RBFS ordering $\lambda=\left(c_{1}, c_{2}, \ldots, c_{l}\right)$ of cotree T_{G};
2 Let $C\left(T_{G}, c_{l}\right)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$;
3 if (c_{l} is adjacent to at least two pendant vertices) then
$4 \quad \gamma_{s t}\left(T_{G}\left(c_{l}\right)\right)=2$;
5 else if $(k \geq 3)$ then
$6 \quad \gamma_{s t}\left(T_{G}\left(c_{l}\right)\right)=3$;
7 else if (c_{l} is adjacent to a pendant vertex) then
$8 \quad \gamma_{s t}\left(T_{G}\left(c_{l}\right)\right)=1+\gamma\left(T_{G}\left(x_{1}\right)\right)$, where x_{1} is the non pendant vertex.
9 else if (c_{l} is not adjacent to a pendant vertex) then 10
$\gamma_{s t}\left(T_{G}\left(c_{l}\right)\right)= \begin{cases}3 & \text { if } \gamma\left(T_{G}\left(x_{1}\right)\right)=2 \text { or } \gamma\left(T_{G}\left(x_{2}\right)\right)=2 ; \\ 4 & \text { otherwise. }\end{cases}$
$11 \gamma_{s t}(G)=\gamma_{s t}\left(T_{G}\left(c_{l}\right)\right) ;$
The proof of the correctness of the algorithm follows from Lemma 5.3, Lemma 5.4, Lemma 5.6, Lemma 5.7, and Lemma 5.8 as discussed in [S1] and [S2]. So the algorithm Min-STDN-CG(G) correctly computes $\gamma_{s t}(G)$ of a given connected cograph G. In the cograph G shown in Figure 1, the root c_{10} is adjacent to no pendant vertices and it has only two children. Notice that $\gamma\left(T_{G}\left(c_{8}\right)\right)=3$ and $\gamma\left(T_{G}\left(c_{9}\right)\right)=2$. Since $\gamma\left(T_{G}\left(c_{9}\right)\right)=2$, by Lemma 5.8, $\quad \gamma_{s t}\left(T_{G}\left(c_{10}\right)\right)=3$. Hence $\gamma_{s t}(G)=3$.

We now discuss the running time of the algorithm Min-STDN-CG(G). Assume that G is a connected cograph with n vertices and m edges. A cotree T_{G} of G can be constructed in $O(n+m)$ time [5]. Let $\left\{c_{i}: 1 \leq i \leq l\right\}$ be the set of internal vertices of T_{G}. Cotree-RBFS ordering λ of T_{G} can be computed in $O\left(\left|V\left(T_{G}\right)\right|+\left|E\left(T_{G}\right)\right|\right)$ time by using breadth first search. At the root c_{l} of T_{G}, our algorithm computes $\gamma_{s t}\left(T_{G}\left(c_{l}\right)\right)$. In some cases, to compute $\gamma_{s t}\left(T_{G}\left(c_{l}\right)\right)$, the algorithm uses $\gamma\left(T_{G}(x)\right)$, where $x \in C\left(T_{G}, c_{l}\right)$. For this we store $\gamma\left(T_{G}\left(c_{i}\right)\right)$ at each vertex c_{i} of T_{G}. Notice that for any connected cograph $G, \gamma(G) \leq 2$.
Computation of $\gamma\left(\boldsymbol{T}_{\boldsymbol{G}}\left(\boldsymbol{c}_{\boldsymbol{i}}\right)\right)$:
If c_{i} is a pendant vertex, then $\gamma\left(T_{G}\left(c_{i}\right)\right)=1$. If c_{i} is a vertex with label \cup, then $\gamma\left(T_{G}\left(c_{i}\right)\right)=\sum_{x \in C\left(T_{G}, c_{i}\right)} \gamma\left(T_{G}(x)\right)$. Assume that c_{i} is a vertex with label + . If c_{i} has a child that is a pendant vertex, then $\gamma\left(T_{G}\left(c_{i}\right)\right)=1$; otherwise $\gamma\left(T_{G}\left(c_{i}\right)\right)=2$. So at any vertex c_{i} of T_{G}, the computation of $\gamma\left(T_{G}\left(c_{i}\right)\right)$ can be done in $O\left(\left|N_{T_{G}\left(c_{i}\right)}\right|\right)$ time.
Computation of $\gamma_{s t}\left(\boldsymbol{T}_{\boldsymbol{G}}\left(\boldsymbol{c}_{\boldsymbol{l}}\right)\right)$:
The algorithm first checks whether at least two children of c_{l} in T_{G} are pendant vertices. This can be done in $O\left(\left|N_{T_{G}}\left(c_{l}\right)\right|\right)$ time. If at most one child of c_{l} in T_{G} is a pendant vertex, then the algorithm checks whether c_{l} has at least three children in T_{G}. This can be done in $O\left(\left|N_{T_{G}}\left(c_{l}\right)\right|\right)$ time. If c_{l} has exactly two children in T_{G}, then let $C\left(T_{G}, c_{l}\right)=\left\{x_{1}, x_{2}\right\}$. If x_{1} and x_{2} are not pendant vertices, then the algorithm checks whether $\gamma\left(T_{G}\left(x_{1}\right)\right)=2$ or $\gamma\left(T_{G}\left(x_{2}\right)\right)=2$. This can be done in $O\left(\left|N_{T_{G}}\left(c_{l}\right)\right|\right)$ time. If
only one of them is pendant vertex, say x_{2}, then $\gamma_{s t}\left(T_{G}, c_{l}\right)=$ $1+\gamma\left(T_{G}\left(x_{1}\right)\right)$. This can be done in $O\left(\left|N_{T_{G}}\left(c_{l}\right)\right|\right)$ time.

Let $C\left(T_{G}, c_{l}\right)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. If $\gamma\left(T_{G}\left(x_{i}\right)\right)$ is known for each $1 \leq i \leq k$, then computation of $\gamma_{s t}\left(T_{G}\left(c_{l}\right)\right)$ can be done in $O\left(\left|N_{T_{G}}\left(c_{l}\right)\right|\right)$ time. So in total the algorithm Min-STDN$\mathrm{CG}(G)$ takes $O\left(\left|V\left(T_{G}\right)\right|+\mid E\left(T_{G}\right)\right)$ to compute $\gamma_{s t}\left(T_{G}\left(c_{l}\right)\right)=$ $\gamma_{s t}(G)$ and hence the algorithm $\operatorname{Min}-\operatorname{STDN}-\mathrm{CG}(G)$ takes $O(n+m)$ time. Therefore, we have the following theorem.

Theorem 5.9. The secure total domination number of a connected cograph can be computed in linear time.

Disclosure statement

The author declares no conflict of interest.

References

[1] Arnborg, S., Lagergren, J., Seese, D. (1991). Easy problems for tree-decomposable graphs. J. Algorithms 12(2): 308-340.
[2] Benecke, S., Cockayne, E. J., Mynhardt, C. M. (2007). Secure total domination in graphs. Util. Math. 74: 247-259.
[3] Cockayne, E. J., Grobler, P. J. P., Gründlingh, W. R., Munganga, J., van Vuuren, J. H. (2005). Protection of a graph. Util. Math. 67: 19-32.
[4] Corneil, D. G., Lerchs, H., Burlingham, L. S. (1981). Complement reducible graphs. Discrete Appl. Math. 3(3): 163-174.
[5] Corneil, D. G., Perl, Y., Stewart, L. K. (1985). A linear recognition algorithm for cographs. SIAM J. Comput. 14(4): 926-934.
[6] Courcelle, B., Makowsky, J. A, Rotics, U. (2000). Linear time solvable optimization problems on graphs of bounded cliquewidth. Theory Comput. Syst. 33(2): 125-150.
[7] Duginov, O. (2017). Secure total domination in graphs: bounds and complexity. Discrete Appl. Math. 222: 97-108.
[8] Jha, A., Pradhan, D., Banerjee, S. (2019). The secure domination problem in cographs. Inform. Process. Lett. 145: 30-38.
[9] Kloks, T., Kratsch, D, Müller, H. (1998). Bandwidth of chain graphs. Inform. Process. Lett. 68(6): 313-315.
[10] Klostermeyer, W. F, Mynhardt, C. M. (2008). Secure domination and secure total domination in graphs. Discuss. Math. Graph Theory 28(2): 267-284.
[11] Lerchs, H. (1971). On cliques and kernels, Tech. Report. Toronto: Dept of Comp. Sci., Univ. of Toronto.
[12] Pradhan, D, Jha, A. (2018). On computing a minimum secure dominating set in block graphs. J. Comb. Optim. 35(2): 613-631.
[13] Uehara, R, Uno, Y. (2004). Efficient algorithms for the longest path problem. In International Symposium on Algorithms and Computation, Berlin, Heidelberg: Springer, 871-883.
[14] Wang, H., Zhao, Y, Deng, Y. (2018). The complexity of secure domination problem in graphs. Discuss. Math. Graph Theory 38(2): 385-396.
[15] Yannakakis, M. (1981). Node-deletion problems on bipartite graphs. SIAM J. Comput. 10(2): 310-327.

