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Degree associated edge reconstruction number of split graphs with biregular
independent set is one

N. Kalai Mathi and S. Monikandan

Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India

ABSTRACT
A degree associated edge card of a graph G is an edge deleted subgraph of G with which the
degree of the deleted edge is given. The degree associated edge reconstruction number of a
graph G (or dern(G)) is the size of the smallest collection of the degree associated edge cards of G
that uniquely determines G. A split graph G is a graph in which the vertices can be partitioned
into an independent set and a clique. We prove that the dern of all split graphs with biregular
independent set is one.
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1. Introduction

All graphs considered are nonempty, simple and finite. We
shall mostly follow the graph theoretic terminology of [5]. A
vertex-deleted subgraph or card G – v of a graph (digraph) G
is the unlabeled graph (digraph) obtained from G by delet-
ing the vertex v and all edges (arcs) incident with v. The
deck of a graph (digraph) G is the collection of all cards of
G. Following the formulation in [2], a graph (digraph) G is
reconstructible if it can be uniquely determined from its
deck. The well-known Reconstruction Conjecture (RC), due
to Kelly [9] and Ulam [23], asserts that every graph with at
least three vertices is reconstructible. Several classes of
graphs and many parameters of graphs are proved to be
reconstructible. Nevertheless, the full conjecture remains
open. Surveys of results on the RC and related problems
include [4, 12, 17]. In their paper, Harary and Plantholt [7]
have defined the reconstruction number of a graph G,
denoted by rnðGÞ, to be the minimum number of cards
which can only belong to the deck of G and not to the deck
of any other graph H, H 6ffiG, these cards thus uniquely
identifying G. Reconstruction number is known for only few
classes of graphs [2].

An extension of the RC to digraphs is the Digraph
Reconstruction Conjecture (DRC), proposed by Harary [6],
which asserts that every digraph with at least seven vertices
is reconstructible. The DRC was disproved by Stockmeyer
[22] by exhibiting several infinite families of counter-exam-
ples. In 1981, Ramachandran [18] studied degree associated
reconstruction for digraphs and proposed a new conjecture.
It was proved [18] that the digraphs in all these counterex-
amples to the DRC obey the new conjecture.

The ordered triple (a, b, c) where a, b and c are respect-
ively the number of unpaired outarcs, unpaired inarcs and
symmetric pair of arcs incident with v in a digraph D is
called the degree triple of v. The degree associated card or
dacard of a digraph (graph) is a pair (d, C) consisting of a
card C and the degree triple (degree) d of the deleted vertex.
The dadeck of a digraph D is the multiset of all the dacards
of D. A digraph is said to be N-reconstructible if it can be
uniquely determined from its dadeck. The new digraph
reconstruction conjecture [18] (NDRC) asserts that all
digraphs are N-reconstructible. Ramachandran [19, 20] then
studied the degree associated reconstruction number of
graphs and digraphs in 2000. The degree (degree triple) asso-
ciated reconstruction number of a graph (digraph) D is the
size of the smallest collection of dacards of D that uniquely
determines D. Articles [1, 3] and [11] are recent papers on
this parameter.

The edge card, edge deck, edge reconstructible graphs and
edge reconstruction number are defined similarly with edge
deletions instead of vertex deletions. The edge reconstruction
conjecture, proposed by Harary [6], states that all graphs
with at least 4 edges are edge reconstructible. The ordered
pair ðdðeÞ,G� eÞ is called a degree associated edge card or
da-ecard of the graph G, where d(e) (called the degree of e)
is the number of edges adjacent to e in G. The edeck (da-
edeck) of a graph G is the collection of all ecards (da-ecards)
of G. For an edge reconstructible graph G, the edge recon-
struction number of G is defined to be the size of the small-
est subcollection of the edeck of G which is not contained
in the edeck of any other graph H, H 6ffi G: The edge recon-
struction number is known for only few classes of graphs
[13, 14]. For an edge reconstructible graph G from its
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da-edeck, the degree associated edge reconstruction number
of a graph G, denoted by dern(G), is the size of the smallest
subcollection of the da-edeck of G which is not contained in
the da-edeck of any other graph H, H 6ffi G: Articles [10, 15]
and [16] are recent papers on this parameter.

A split graph G is a graph in which the vertices can be
partitioned into an independent set (say X) and a clique
(say Y). Throughout this paper, we use G, X and Y in the
sense of this definition. In their paper, Ramachandran and
Monikandan [21] proved a reduction on the RC that the
family F of all 2-connected graphs G with diam(G) ¼ 2 or
diamðGÞ ¼ diamð�GÞ ¼ 3 is reconstructible if and only if all
graphs are reconstructible. So, any result proving or deter-
mining the possibility of the (edge) reconstructibility of a
subclass of F is of interest. In this paper, as all connected
split graphs without end vertices belong to F, we shall
determine the dern of split graphs. We prove that the dern
of all split graphs with biregular independent set is one.

2. Dern of split graphs

For a da-ecard ðd,CÞ, let dsumðCÞ ¼ fdeguþ degv : u and v
are nonadjacent vertices in C and deguþ degv is possibly
equal to d}. For the sake of clarity of the proof, even though
the elements in dsum(C) have no specific ordering, we
denote the first element, second element and so on in
dsum(C) by d1, d2, :::, respectively. For U,W � VðGÞ, the
set of edges of G that join a vertex in U to a vertex in W is
denoted by EðU,WÞ: By NXðUÞ, we mean the set of all ver-
tices in X that are adjacent to a vertex in a subset U of Y.
Let jXj ¼ m > 0 and jYj ¼ n > 0: For i ¼ 1, 2, let Xri
denote the set of vertices in X of degree ri: For i¼ 0, 1,… ,
m, let Yi denote the set of vertices in Y adjacent to exactly i
vertices in X; therefore, the degree of a vertex v 2 Yi is n�
1þ i in G.

Let k1, k2, :::, kt be integers with 1 � k1 < k2 < ::: < kt �
m such that Yki 6¼ / for all i ¼ 1, 2, :::, t and Y ¼ Y0 [
ð[t

i¼1YkiÞ: For expediency, we shall write sometimes a da-
ecard as ðd1 þ d2 � 2,G� eÞ, which indicates that the
deleted edge e is joined to a d1-vertex and a d2-vertex in G
(Figure 1).

Lemma 1. The dern of a graph G is 1 if G has a da-ecard
(d, C) containing only one pair of nonadjacent vertices whose
degree sum is d.

Proof. Such a da-ecard has a unique extension and it is iso-
morphic to G. w

Lemma 2. If G is a split graph such that every vertex in X is
of degree zero in G, then dernðGÞ ¼ 1:

Proof. Now G is Kn [ �Km and all its da-ecards are ð2n�
4,G� eÞ: Since EðGÞj j � 4 and EðX,YÞ ¼ /, it follows that
n � 4: Since G – e contains exactly one pair of nonadjacent
vertices with degree sum 2n� 4, every extension Hð2n�
4,G� eÞ obtained by adding a new edge that joins the two
nonadjacent vertices of degree sum 2n� 4 is isomorphic to
G and hence dernðGÞ ¼ 1: w

Theorem 3. Let G be a split graph such that every vertex in
X is of degree r1 or r2: Then dern(G) ¼ 1 if every vertex in Y
is adjacent to at least one vertex in X.

Proof. Now Y ¼ [t
i¼1Yki since Y0 ¼ /: We proceed by two

cases depending upon the cardinality of Ykt : By Lemma 2,
we can take that 0 < r1 < r2:

Case 1. jYkt j ¼ 1
Since k1 � 1, we have kt � 2 and we proceed by two

cases depending upon the values of k1:

Case 1.1. k1 ¼ 1
We proceed by three subcases depending upon the values

of r2:

Case 1.1.1. r2 ¼ n
If r1 ¼ n� 1, then, since k1 ¼ 1, it follows that jXnj ¼ 1:

Also, since r1 ¼ n� 1, we have jY1j ¼ 1 and Y ¼ Y1 [ Ym:
Clearly jYmj ¼ 1, n¼ 2 and r1 ¼ 1: Consider a da-ecard
ð2þ ðmþ 1Þ � 2,G� eÞ, where e 2 ðY1,YmÞ: Then
dsumðG� eÞ ¼ f1þ 1, 1þ 2, 1þmg: If d1 were equal to
mþ 1, then m would be one, giving a contradiction. If d2 is
equal to mþ 1, then m¼ 2 and the two 1-vertices of G – e
have the same neighbourhood in G� e: Hence the extension
Hð3,G� eÞ is isomorphic to G and hence dernðGÞ ¼ 1:
Finally, if d3 is equal to mþ 1, then, since there is only one
such pair of non adjacent vertices in G� e ðm > 2Þ,
dern(G) ¼ 1 by Lemma 1.

Now suppose that r1 � n� 2: Since jYkt j ¼ 1 and k1 ¼
1, kt � 2 and jXnj ¼ 1: Consider a da-ecard ðnþ ðn� 1þ
ktÞ � 2,G� eÞ, where e 2 EðY1,YktÞ: Then dsumðG� eÞ ¼
fr1 þ r1, r1 þ n, r1 þ ðn� 1Þ, r1 þ ðn� 1þ kt � 1Þ, r1 þ
ðn� 1þ k1Þ, r1 þ ðn� 1þ k2Þ, :::, r1 þ ðn� 1þ kt�1Þ, ðn�
1Þ þ ðn� 1þ kt � 1Þg: If d1, d2 or d3 were equal to dðeÞ, then
kt would be strictly less than 2, giving a contradiction. If d4
were equal to dðeÞ, then r1 would be n� 1, again a contradic-
tion. If di were equal to d(e) for i ¼ 5, 6, :::, t þ 3, then kt
would be at most kj, j ¼ 1, 2, :::, t � 1, again a contradiction.
But for the last element dtþ4 in dsumðG� eÞ, since there is
only one such pair of non adjacent vertices in G� e, it follows
that dern(G)¼ 1 by Lemma 1.

Case 1.1.2. r2 ¼ n� 1
First, suppose that kt 6¼ kt�1 þ 1: Now we consider a da-

ecard ðnþ ðn� 1þ ktÞ � 2,G� eÞ, where e 2 EðY1,YktÞ:
Then dsumðG� eÞ ¼ fr1 þ r1, r1 þ ðn� 1Þ, ðn� 1Þ þ ðn�
1Þ, r1 þ ðn� 1þ kt � 1Þ, ðr1Þ þ ðn� 1þ k1Þ, ðr1Þ þ ðn�

Figure 1. The split graph G.
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1þ k2Þ, :::, ðr1Þ þ ðn� 1þ kt�1Þ, ðn� 1Þ þ ðn� 1þ k1Þ,
ðn� 1Þ þ ðn� 1þ k2Þ, :::, ðn� 1Þ þ ðn� 1þ kt�1Þ, ðn�
1Þ þ ðn� 1þ kt � 1Þg: If d1, d2 or d3 were equal to dðeÞ, then
kt would be at most one, a contradiction. If d4 were equal to
dðeÞ, then r1 would be n� 1, again a contradiction. If di were
equal to d(e) for i ¼ 5, 6, :::, t þ 3, then kt would be at most
kj, j ¼ 1, 2, :::, t � 1, contradicting. Similarly, if di was equal to
d(e) for i ¼ t þ 4, t þ 5, :::, 2t þ 2, , then kt would be equal to
kj þ 1, j ¼ 1, 2, :::, t � 1, again a contradiction. Finally, if the
last degree sum d2tþ3 in dsumðG� eÞ is equal to dðeÞ, then
either there is only one such pair of nonadjacent vertices in G – e
or the two ðn� 1Þ-vertices of G – e have the same neighbour-
hood in G� e: Hence the extension Hð2nþ kt � 3Þ is iso-
morphic to G and dernðGÞ ¼ 1:

Next, assume that kt ¼ kt�1 þ 1 and kt � 3: Consider a
da-ecard ððn� 1þ kt�1Þ þ ðn� 1þ ktÞ � 2,G� eÞ, where
e 2 EðYkt�1 ,YktÞ: Then dsumðG� eÞ ¼ fr1 þ r1, r1 þ ðn�
1Þ, r1 þ ðn� 1þ kt�1 � 1Þ, r1 þ ðn� 1þ kt � 1Þ, ðn� 1Þ
þðn� 1Þ, ðn� 1Þ þ ðn� 1þ kt�1 � 1Þ, ðn� 1Þ þ ðn� 1þ
kt � 1Þ, r1 þ ðn� 1þ k1Þ, r1 þ ðn� 1þ k2Þ, :::, r1 þ ðn�
1þ kt�1Þ, ðn� 1Þ þ ðn� 1þ k1Þ, ðn� 1Þ þ ðn� 1þ k2Þ, :::,
ðn� 1Þ þ ðn� 1þ kt�1Þ, ðn� 1þ kt�1 � 1Þ þ ðn� 1þ kt�
1Þg: If di was equal to d(e) for i ¼ 1, 2, :::, 7, then kt would
be at most two, a contradiction. If di was equal to d(e) for
i ¼ 8, 9, :::, t þ 6, then 2kt would be at most kj þ 2, j ¼
1, 2, :::, t � 1, again a contradiction. If di was equal to d(e)
for i ¼ t þ 7, t þ 8, :::, 2t þ 5, then 2kt would be equal to
kj þ 3, j ¼ 1, 2, :::, t � 1, again a contradiction to jYkt j ¼
1, kt � 3 and kt > kj: Finally, if the last degree sum in
dsumðG� eÞ is equal to dðeÞ, then dern(G) ¼ 1 by
Lemma 1, since there is only one such pair of nonadjacent
vertices in G� e:

Finally, we consider the case that kt ¼ kt�1 þ 1 and kt ¼ 2:
Clearly, the graph G has the following properties:

(i) n � 3;
(ii) Y ¼ Y1 [ Y2, where jY2j ¼ 1;
(iii) jXn�1j ¼ 1 (because jY2j ¼ 1 and jXr1 j � 1); and
(iv) jXr1 j ¼ 1 or 2 (as otherwise, jXr1 j � 3 and so jY2j � 2

or kt � 3, a contradiction).

If jXr1 j ¼ 1, then clearly r1 ¼ 2: Therefore r2 ¼ n� 1 � 3
and hence n � 4: Now consider a da-ecard ðnþ ðnþ 1Þ �
2,G� eÞ, where e 2 EðY1,Y2Þ: Clearly dsumðG� eÞ ¼
f2þ ðn� 1Þ, 2þ n, ðn� 1Þ þ ðn� 1Þ, ðn� 1Þ þ ng: If d1
or d2 was equal to ðnþ ðnþ 1Þ � 2Þ, then n would be at
most 3, a contradiction. If d3 was equal to dðeÞ, then we
would have �1 ¼ 0, contradicting. But the last degree sum
in dsumðG� eÞ, since there is only one such pair non adja-
cent vertices in G� e, it follows that dern(G) ¼ 1 by
Lemma 1. Otherwise, jXr1 j ¼ 2: Now r1 ¼ 1 and the two ver-
tices in X1 are adjacent either to the same vertex or to two
different vertices in Y. Consider a da-ecard ðnþ ðnþ 1Þ �
2,G� eÞ, where e 2 EðY1,Y2Þ: Clearly dsumðG� eÞ ¼
f1þ 1, 1þ ðn� 1Þ, 1þ n, ðn� 1Þ þ ng: If d1, d2 or d3
was equal to dðeÞ, then n would be at most 2, a contradic-
tion. For the last degree sum in dsumðG� eÞ, either only
one such pair of nonadjacent vertices in G – e or the two
ðn� 1Þ-vertices of G – e have the same neighbourhood and

so the extension Hð2n� 1Þ is isomorphic to G.
Hence dernðGÞ ¼ 1:

Case 1.1.3. r2 � n� 2
Consider the da-ecard ðnþ ðn� 1þ ktÞ � 2,G� eÞ,

where e 2 EðY1,Ykt Þ: Clearly, dsumðG� eÞ ¼ fr1 þ r1, r1 þ
r2, r2 þ r2, r1 þ ðn� 1Þ, r2 þ ðn� 1Þ, r1 þ ðn� 1þ kt � 1Þ,
r2 þ ðn� 1þ kt � 1Þ, r1 þ ðn� 1þ k1Þ, r1 þ ðn� 1þ k2Þ,
:::, r1 þ ðn� 1þ kt�1Þ, r2 þ ðn� 1þ k1Þ, r2 þ ðn� 1þ k2Þ,
:::, r2 þ ðn� 1þ kt�1Þ, ðn� 1Þ þ ðn� 1þ kt � 1Þg: If di
was equal to d(e) for i ¼ 1, 2, 3, 4, 5, then, since r1 � n� 3
and r2 � n� 2, we have kt would be at most zero, a contra-
diction. If di was equal to d(e) for i ¼ 6, 7, then both the
values of r1 and r2 would be n� 1, a contradiction. If di
was equal to d(e) for i ¼ 8, 9, :::, t þ 6, then kt would be at
most kj � 1, j ¼ 1, 2, :::, t � 1, again a contradiction.
Similarly, for each of dtþ7, dtþ8, :::, d2tþ5, the value of kt
would be at most kj, j ¼ 1, 2, :::, t � 1, again a contradic-
tion. But for the last degree sum in dsumðG� eÞ, since
there is only one such pair of nonadjacent vertices in G� e,
it follows that dern(G) ¼ 1 by Lemma 1.

Case 1.2. k1 > 1
Since k1 � 2, we have kt � 3 and k1 þ kt � 5: Consider

the da-ecard ððn� 1þ k1Þ þ ðn� 1þ ktÞ � 2,G� eÞ, where
e 2 EðYk1 ,YktÞ: Clearly, dsumðG� eÞ ¼ fr1 þ r1, r1 þ
r2, r2 þ r2, r1 þ ðn� 1þ k1 � 1Þ, r2 þ ðn� 1þ k1 � 1Þ,
r1 þ ðn� 1þ kt � 1Þ, r2 þ ðn� 1þ kt � 1Þ, r1 þ ðn� 1þ
k1Þ, r1 þ ðn� 1þ k2Þ, :::, r1 þ ðn� 1þ kt�1Þ, r2 þ ðn�
1þ k1Þ, r2 þ ðn� 1þ k2Þ, :::, r2 þ ðn� 1þ kt�1Þ, ðn�
1þ k1 � 1Þ þ ðn� 1þ kt � 1Þg: If di was equal to d(e) for
i ¼ 1, 2, 3, then, since r1 � n� 1 and r2 � n, the value of
k1 þ kt would be at most four, again a contradiction. If di
was equal to d(e) for i ¼ 4, 5, then the value of kt would be
at most one, a contradiction. If di was equal to d(e) for i ¼
6, 7, then the value of k1 would be at most one, a contradic-
tion. If di was equal to d(e) for i ¼ 8, 9, :::, t þ 6, then, the
value of kt would be at most kj � k1 þ 2, since kj < kt , j ¼
1, 2, :::, t � 1, k1 � 1, again a contradiction. Similarly, for
each of the degree sum dtþ8, dtþ9, :::, d2tþ6, , we would
have kt � kj � k1 þ 3, j ¼ 1, 2, :::, t � 1: If k1 � 3 then kt
would be less than or equal to kj, j ¼ 1, 2, :::, t � 1, a
contradiction. Otherwise, k1 ¼ 2: Now kt � kj þ 1 and kt ¼
kj þ 1, j ¼ 1, 2, :::, t � 1, which implies r2 ¼ n: This is not
possible, because no nonadjacent pair of r2-vertex and
ðn� 1þ kjÞ-vertex exists ðj ¼ 1, 2, :::, t � 1Þ: For the last
degree sum in dsumðG� eÞ, since there is only one such
pair of non adjacent vertices in G� e, it follows that
dern(G) ¼ 1 by Lemma 1.

Case 2. jYkt j � 1
We proceed by three cases depending upon the values

of kt:

Case 2.1. kt ¼ 1
Clearly Y ¼ Y1 and r2 � n� 1 (as otherwise, Xr1 would

be empty, contradicting). Hence we proceed by three sub-
cases depending on the possible values of r2:

Case 2.1.1. r2 ¼ n� 1

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 3



Clearly jXr1 j ¼ 1, r1 ¼ 1, jXn�1j ¼ 1 and n � 3: For this
case, the da-ecard we consider is ð1þ n� 2,G� eÞ, where
e 2 EðX1,Y1Þ: Clearly dsumðG� eÞ ¼ f0þ ðn� 1Þ, 0þ
ðnÞ, ðn� 1Þ þ ðn� 1Þg: If d1 is equal to dðeÞ, then, since
two ðn� 1Þ- vertices of G – e have the same neighbourhood
in G� e, the extension Hð1þ n� 2Þ is isomorphic to G
and hence dernðGÞ ¼ 1: If d2 was equal to dðeÞ, then we
would have 0 ¼ �1, a contradiction. Similarly, If d3 was
equal to dðeÞ, then n would be one, again a contradiction.

Case 2.1.2. r2 ¼ n� 2
Since kt ¼ 1 and jXr1 j 6¼ /, we have jXn�2j ¼ 1 and

jXr1 j ¼ 1 or 2.
If jXr1 j ¼ 1, then r1 ¼ 2 and n � 5: For this case, the da-

ecard we consider is ð2þ n� 2,G� eÞ, where e 2
EðX2,Y1Þ: Clearly dsumðG� eÞ ¼ f1þ n, 1þ ðn� 2Þ, ðn�
2Þ þ n, ðn� 2Þ þ ðn� 1Þ, 1þ ðn� 1Þg: If d1 or d2 was
equal to dðeÞ, then we would have 0 ¼ 1 or 0 ¼ �1, a
contradiction. If d3 or d4 was equal to dðeÞ, then the value
of n would be 2 or 3, again a contradiction. If d5 is equal to
dðeÞ, then, since there is only one such pair of nonadjacent
vertices in G� e, it follows that dernðGÞ ¼ 1, by Lemma 1.
Now suppose that jXr1 j ¼ 2: Clearly r1 ¼ 1 and n � 4: We
consider a da-ecard ðnþ n� 2,G� eÞ, where e ¼ u1u2 2
EðY1,Y1Þ such that both u1 and u2 are adjacent to none of
the ðn� 2Þ-vertices in X. Clearly dsumðG� eÞ ¼ f1þ
1, 1þ ðn� 2Þ, 1þ ðn� 1Þ, 1þ n, ðn� 2Þ þ ðn� 1Þ, ðn�
1Þ þ ðn� 1Þg: If di was equal to d(e) for i ¼ 1, 2, 3, 4, then
n would be at most three, a contradiction. If d5 was equal to
dðeÞ, then we would have �1 ¼ 0, again a contradiction.
But, for d6 ¼ dðeÞ, since there is only one such pair of non
adjacent vertices in G� e, we have dernðGÞ ¼ 1:

Case 2.1.3. r2 � n� 3
We consider a da-ecard ðnþ n� 2,G� eÞ, where e 2

EðY1,Y1Þ: Then dsumðG� eÞ ¼ fr1 þ r1, r1 þ r2, r2 þ r2,
r1 þ ðn� 1Þ, r1 þ n, r2 þ ðn� 1Þ, r2 þ n, ðn� 1Þ þ ðn�
1Þg: If di was equal to ðnþ n� 2Þ for i ¼ 1, 2, :::, 7, then,
since r1 � n� 4 and r2 � n� 3, the value of r1 would be n
– 1 or n – 2 and the value of r2 would be n – 1, n – 2 or at
least nþ 2, contradicting. For d7 ¼ dðeÞ, since there is only
one such pair of nonadjacent vertices in G� e, it follows
that dernðGÞ ¼ 1:

Case 2.2. kt ¼ 2
We proceed three cases depending upon the values of r2:

Case 2.2.1. r2 ¼ n
Since kt ¼ 2, we have jXr2 j ¼ jXnj ¼ 1:
If r1 ¼ n� 1 and n � 3, then jXn�1j ¼ 1, m¼ 2, jY1j ¼ 1

and Y ¼ Y1 [ Y2: Now consider a da-ecard ððnþ 1Þ þ ðnþ
1Þ � 2,G� eÞ, where e 2 EðY2,Y2Þ: Clearly dsumðG� eÞ ¼
fðn� 1Þ þ n, nþ ng: If d1 was equal to dðeÞ, then we
would have �1 ¼ 0, a contradiction. If d2 ¼ dðeÞ, then
dernðGÞ ¼ 1, since there is only one such pair of nonadja-
cent vertices in G� e:

Next, suppose that r1 ¼ n� 1 and n ¼ 2: Then jXn�1j �
2 and m¼ 2 or 3. If m ¼ 2, then Y ¼ Y1 [ Y2, jY1j ¼ 1 and
jY2j ¼ 1, a contradiction. If m ¼ 3, then we consider a da-
ecard ð3þ 3� 2,G� eÞ, where e 2 EðY2,Y2Þ: Clearly

dsumðG� eÞ ¼ f1þ 1, 1þ 2, 2þ 2g and the only possible
degree sum is d3: But in this case dernðGÞ ¼ 1, since there
is only one such pair of non adjacent vertices in G� e:

Finally, we consider the case that r1 � n� 2: Now we
consider a da-ecard ððnþ 1Þ þ ðnþ 1Þ � 2,G� eÞ, where
e 2 EðY2,Y2Þ: Then dsumðG� eÞ ¼ fr1 þ r1, r1 þ n, r1 þ
ðnþ 1Þ, nþ ng: If di was equal to d(e) for i ¼ 1, 2, 3, then
r1 would be n – 1 or n, a contradiction. If d4 ¼ dðeÞ, then
dernðGÞ ¼ 1, since there is only one such pair of nonadja-
cent vertices in G� e:

Case 2.2.2. r2 ¼ n� 1
Now n � 3 and jXn�1j � 2 (as otherwise, jXr1 j ¼ / or

kt � 3, contradicting). Now we consider a da-ecard ððnþ
1Þ þ ðnþ 1Þ � 2,G� eÞ, where the edge e is chosen in
EðY2,Y2Þ as below:

i. If jXn�1j ¼ 1 and if there exists exactly one vertex, say
u, of degree nþ 1 and also it is adjacent to no
ðn� 1Þ-vertex, then we choose an edge incident to u as
e; choose any edge in EðY2,Y2Þ as e otherwise.

ii. If jXn�1j ¼ 2 and if there exists exactly one vertex, say
u, of degree nþ 1 and also it is adjacent to no
ðn� 1Þ-vertex, then we choose an edge incident to u as
e; if there exists exactly one vertex, say v, of degree
nþ 1 and also it is adjacent to only one ðn� 1Þ-vertex,
then we choose an edge incident to u as e; if there
exists two vertices, say u1 and u2 of degree nþ 1 and
they are adjacent to only one ðn� 1Þ-vertex, then we
take the edge e to be u1u2; choose any edge in
EðY2,Y2Þ as e otherwise.

Clearly dsumðG� eÞ ¼ fr1 þ r1, r1 þ ðn� 1Þ, r1 þ n,
r1 þ ðnþ 1Þ, ðn� 1Þ þ n, nþ ng: If di was equal to d(e)
for i ¼ 1, 2, 3, 4 then r1 would be at least n� 1, contradict-
ing. If d5 was equal to dðeÞ, then we would have �1 ¼ 0,
again a contradiction. Finally, for d6 ¼ dðeÞ, we have
dernðGÞ ¼ 1, since there is only one such pair of nonadja-
cent vertices in G� e:

Case 2.2.2. r2 � n� 2
We consider a da-ecard ððnþ 1Þ þ ðnþ 1Þ � 2,G� eÞ,

where e 2 EðY2,Y2Þ: Then dsumðG� eÞ ¼ fr1 þ r1, r1 þ
n, r1 þ ðnþ 1Þ, r1 þ r2, r2 þ r2, r2 þ n, r2 þ ðnþ 1Þ, nþ
ng: If di was equal to d(e) for i ¼ 1, 2, 3, then r1 would be n
– 1 or n, giving a contradiction. If di was equal to d(e) for
i ¼ 4, 5, 6, 7, then r2 would be n – 1 or n or at least nþ 3,
again a contradiction. Finally, for d8 ¼ dðeÞ, we have
dernðGÞ ¼ 1, since there is only one such pair of nonadja-
cent vertices in G� e:

Case 2.3. kt � 3
Now consider a da-ecard ððn� 1þ ktÞ þ ðn� 1þ ktÞ �

2,G� eÞ, where e 2 EðYkt ,YktÞ: Clearly, dsumðG� eÞ ¼
fr1 þ r1, r1 þ r2, r2 þ r2, r1 þ ðn� 1þ kt � 1Þ, r2 þ ðn�
1þ kt � 1Þ, r1 þ ðn� 1þ k1Þ, r1 þ ðn� 1þ k2Þ, :::, r1 þ
ðn� 1þ ktÞ, r2 þ ðn� 1þ k1Þ, r2 þ ðn� 1þ k2Þ, :::, r2 þ
ðn� 1þ ktÞ, ðn� 1þ kt � 1Þ þ ðn� 1þ kt � 1Þg: If di was
equal to d(e) for i ¼ 1, 2, 3, then, since r1 � n� 1, r2 � n,
the value of kt would be at most two, a contradiction. If di

4 N. KALAI MATHI AND S. MONIKANDAN



was equal to d(e) for i ¼ 4, 5, then both r1 and r2 would be
at least nþ 1, giving a contradiction. If di was equal to d(e)
for i ¼ 6, 7, :::, t þ 5, then either r1 would be at least n

(when kj ¼ kt) or the value of kt would be at most kjþ2
2

(when kj 6¼ kt), j ¼ 1, 2, :::, t, giving a contradiction. If di
was equal to d(e) for i ¼ t þ 6, t þ 7, :::, 2t þ 5, then either
kt would be 3 (when kt ¼ kj) and r2 would be n, giving a
contradiction to the fact that no pair of vertices of degree r2
and ðn� 1þ kjÞ, j ¼ 1, 2, :::, t is nonadjacent, or the value

of kt would be at most kjþ3
2 (when kt 6¼ kj, j ¼ 1, 2, :::, t),

again a contradiction. For the last degree sum in dsumðG�
eÞ, we have dern(G) ¼ 1 since there is only one such pair of
nonadjacent vertices in G� e, which completes the proof. w

Theorem 4. Let G be a split graph such that every vertex in
X is of degree r1 or r2: Then dern(G) ¼ 1 if there is a vertex
in Y nonadjacent to any vertex in X.

Proof. Now Y0 6¼ / and r2 � n� 1: If r2 ¼ n� 1, then let
y0 be the unique vertex in Y0: Now the set X [ fy0g and
Y � fy0g will become an independent set and a clique of G,
respectively, such that it satisfies the hypothesis of Theorem
3 and hence dernðGÞ ¼ 1: So, we can take that r2 � n� 2
and that 0 < r1 < r2 in view of Lemma 2. We proceed by
three cases depending upon the values of r2:

Case 1. r2 ¼ n� 2
Clearly r1 � n� 3 and jY0j ¼ 1 or 2. We proceed by two

cases depending upon the values of jYkt j:
Case 1.1. jYkt j ¼ 1

Consider the da-ecard ððn� 1þ k1Þ þ ðn� 1þ ktÞ �
2,G� eÞ, where e 2 EðYk1 ,Ykt Þ: Clearly, dsumðG� eÞ ¼
fr1 þ r1, r1 þ ðn� 2Þ, r1 þ ðn� 1Þ, ðn� 2Þ þ ðn� 2Þ, ðn�
2Þ þ ðn� 1Þ, r1 þ ðn� 1þ k1 � 1Þ, r1 þ ðn� 1þ kt � 1Þ,
ðn� 2Þ þ ðn� 1þ k1 � 1Þ, ðn� 2Þ þ ðn� 1þ kt � 1Þ, r1þ
ðn� 1þ k1Þ, r1 þ ðn� 1þ k2Þ, :::, r1 þ ðn� 1þ kt�1Þ, ðn�
2Þ þ ðn� 1þ k1Þ, ðn� 2Þ þ ðn� 1þ k2Þ, :::, ðn� 2Þ þ ðn�
1þ kt�1Þ, ðn� 1þ k1 � 1Þ þ ðn� 1þ kt � 1Þg: If di was
equal to d(e) for i ¼ 1, 2, :::, 5, then, since r1 � n� 3, the
value of k1 þ kt would be at most one, a contradiction. If di
was equal to d(e) for i ¼ 6, 7, 8, 9, then, since r1 � n� 3,
the values of k1 and kt would be at most �1, again a
contradiction. If di was equal to d(e) for i ¼ 10, 11, :::, t þ 8,
then kt would be at most kj � k1 and at most kj, j ¼
1, 2, :::, t � 1 (as k1 � 1), again a contradiction. Similarly, if
di was equal to d(e) for i ¼ t þ 9, t þ 10, :::, 2t þ 7, then the
value of kt would be equal to kj � k1 þ 1 and so kt would be
at most kj, j ¼ 1, 2, :::, t � 1, a contradiction. For the last
degree sum in dsumðG� eÞ, we have dern(G) ¼ 1 since
there is only one such pair of nonadjacent vertices in G� e:

Case 1.2. jYkt j � 2
Consider the da-ecard ððn� 1þ ktÞ þ ðn� 1þ ktÞ �

2,G� eÞ, where e 2 EðYkt ,YktÞ: Clearly, dsumðG� eÞ ¼
fr1 þ ðn� 1þ k1Þ, r1 þ ðn� 1þ k2Þ, :::, r1 þ ðn� 1þ ktÞ,
ðn� 2Þ þ ðn� 1þ k1Þ, ðn� 2Þ þ ðn� 1þ k2Þ, :::, ðn� 2Þ
þðn� 1þ ktÞ, ðn� 1þ kt � 1Þ þ ðn� 1þ kt � 1Þ, r1 þ r1,
r1 þ ðn� 2Þ, r1 þ ðn� 1Þ, r1 þ ðn� 1þ kt � 1Þ, ðn� 2Þ þ

ðn� 2Þ, ðn� 2Þ þ ðn� 1Þ, ðn� 2Þ þ ðn� 1þ kt � 1Þg: If
di was equal to d(e) for i ¼ 1, 2, :::, t, then either kt would
be at most zero (when kj ¼ kt) or kt would be at most kj=2
(when kj 6¼ kt), which is a contradiction to kj < kt , j ¼
1, 2, :::, t: If di was equal to d(e) for i ¼ t þ 1, t þ 2, :::, 2t,
then we will get either a contradiction or dern(G) ¼ 1 as
follows: If kj 6¼ kt , then kj ¼ 2kt � 1, giving a contradiction
to kj < kt , j ¼ 1, 2, :::, t: Otherwise, that is kj ¼ kt , j ¼
1, 2, :::, t: Then kt ¼ 1: Since r2 ¼ n� 2 and jXr1 j 6¼ /, we
have jY0j ¼ 1: Now, consider the graph G0, obtained from
G, whose independent set X0 ¼ X [ fy0g and clique Y 0 ¼
Y � fy0g, where Y0 ¼ fy0g: Then jX0

r1 j ¼ jX0
1j ¼ 1 and

jX0
r2 j ¼ jX0

n�2j ¼ 1: Consider the da-ecard ð1þ n0 � 2,G�
eÞ, where e 2 E0ðX0

1,Y
0
1Þ, where n0 ¼ n� 1: Clearly,

dsumðG0 � eÞ ¼ f0þ n0 � 2, 0 þ n0, 0þ n0 � 1, n0 � 2þ
n0 � 1g and n0 � 4: If each of the first two elements in
dsumðG0 � eÞ was equal to ð1þ n0 � 2Þ, then we would
have �2 ¼ �1 or �1 ¼ 0: If the third element in
dsumðG0 � eÞ is equal to ð1þ n0 � 2Þ, then, since the two
ðn0 � 1Þ-vertices of G – e have the same neighbourhood in
G0 � e, the extension H0ðn0 � 1Þ is isomorphic to G0 and
hence dernðGÞ ¼ dernðG0Þ ¼ 1: If the last element in
dsumðG0 � eÞ was equal to ð1þ n0 � 2Þ, then n0 would be 2,
again a contradiction. If d2tþ1 is equal to dðeÞ ¼ ðn� 1þ
ktÞ þ ðn� 1þ ktÞ � 2, then dernðGÞ ¼ 1, since there is
only one such pair of non adjacent vertices in G� e: If di
was equal to d(e) for i ¼ 2t þ 2, 2t þ 3, :::, 2t þ 8, then since
r1 � n� 3, the value of kt would be at most zero, a
contradiction.

Case 2. r2 � n� 3
We proceed by two cases depending upon the value

of jYkt j:
Case 2.1. jYkt j ¼ 1

Consider the da-ecard ððn� 1þ k1Þ þ ðn� 1þ ktÞ � 2,
G� eÞ, where e 2 EðYk1 ,YktÞ: Clearly, dsumðG� eÞ ¼
fr1 þ r1, r1 þ r2, r1 þ ðn� 1Þ, r2 þ r2, r2 þ ðn� 1Þ, r1 þ
ðn� 1þ k1 � 1Þ, r1 þ ðn� 1þ kt � 1Þ, r2 þ ðn� 1þ k1 �
1Þ, r2 þ ðn� 1þ kt � 1Þ, r1 þ ðn� 1þ k1Þ, r1 þ ðn� 1þ
k2Þ, :::, r1 þ ðn� 1þ kt�1Þ, r2 þ ðn� 1þ k1Þ, r2 þ ðn� 1þ
k2Þ, :::, r2 þ ðn� 1þ kt�1Þ, ðn� 1þ k1 � 1Þ þ ðn� 1þ kt�
1Þg: If di was equal to d(e) for i ¼ 1, 2, :::, 5, then, since r1 �
n� 4 and r2 � n� 3, the value of k1 þ kt would be at most
zero, a contradiction. If di was equal to d(e) for i ¼ 6, 7, 8, 9,
then, since r1 � n� 4 and r2 � n� 3, both the values of k1
and kt would be at most �1, a contradiction. If di was equal to
d(e) for i ¼ 10, 11, :::, t þ 8, then, since r1 � n� 4, the value
of kt would be at most kj � k1 � 1, which is at most kj, j ¼
1, 2, :::, t � 1 (since k1 � 1), again a contradiction. Similarly, If
di was equal to d(e) for i ¼ t þ 9, t þ 10, :::, 2t þ 7, then kt
would be at most kj � k1, which is at most kj � 1, j ¼
1, 2, :::, t � 1 (since k1 � 1), a contradiction. For the last degree
sum in dsumðG� eÞ, we have dern(G) ¼ 1 since there is only
one such pair of nonadjacent vertices in G� e:

Case 2.2. jYkt j � 2
Consider the da-ecard ððn� 1þ ktÞ þ ðn� 1þ ktÞ �

2,G� eÞ, where e 2 EðYkt ,YktÞ: Clearly, dsumðG� eÞ ¼
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fr1 þ ðn� 1þ k1Þ, r1 þ ðn� 1þ k2Þ, :::, r1 þ ðn� 1þ ktÞ,
r2 þ ðn� 1þ k1Þ, r2 þ ðn� 1þ k2Þ, :::, r2 þ ðn� 1þ ktÞ,
ðn� 1þ kt � 1Þ þ ðn� 1þ kt � 1Þ, r1 þ r1, r1 þ r2, r1 þ
ðn� 1Þ, r1 þ ðn� 1þ kt � 1Þ, r2 þ r2, r2 þ ðn� 1Þ, r2 þ
ðn� 1þ kt � 1Þg: s If di was equal to d(e) for i ¼ 1, 2, :::, t,
then either kt would be at most –1 (if kj ¼ kt), or kt would

be at most kj�1
2 (if kj 6¼ kt), j ¼ 1, 2, :::, t, giving a contradic-

tion. Similarly, if di was equal to d(e) for i ¼ t þ 1, t þ
2, :::, 2t, then kt would be at most zero (if kj ¼ kt) or kt
would be at most kj

2 (if kj 6¼ kt), giving a contradiction to
kj < kt , j ¼ 1, 2, :::, t: If d2tþ1 is equal to dðeÞ, then, since
there is only one such pair of non adjacent vertices in G�
e, it follows that dernðGÞ ¼ 1: Finally, if di was equal to d(e)
for i ¼ 2t þ 2, 2t þ 3, :::, 2t þ 8, then, since r1 � n� 4 and
r2 � n� 3, the value of kt would be at most zero, giving a
contradiction and completing the proof. w

3. Conclusion

It seems that the value of dern of split graphs not covered
under this paper and [8] is also likely to be one or two. In
most of the cases of Theorems 3 and 4, we have determined
dernðGÞ, by using the da-ecards obtained by deleting edges
lying in the partite set Y that is complete. If one can able to
prove this result by using the da-ecards obtained by deleting
edges joining a vertex in X to a vertex in Y, then it may
lead to a way to find the dern of bipartite graphs, which
remains open in both reconstruction and edge reconstruc-
tion problems [4]. Degree associated (edge) reconstruction
number might be a strong tool for providing evidence to
support or reject the Edge Reconstruction Conjecture that
remains open.
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