On the extremal cactus graphs for variable sum exdeg index with a fixed number of cycles

Mubeen Javaid, Akbar Ali, Igor Milovanović \& Emina Milovanović

To cite this article: Mubeen Javaid, Akbar Ali, Igor Milovanović \& Emina Milovanović (2020): On the extremal cactus graphs for variable sum exdeg index with a fixed number of cycles, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1016/j.akcej.2019.08.007

To link to this article: https://doi.org/10.1016/j.akcej.2019.08.007

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 22 Apr 2020.

Submit your article to this journal

Article views: 136

View related articles

View Crossmark data [$\sqrt{\top}$

On the extremal cactus graphs for variable sum exdeg index with a fixed number of cycles

Mubeen Javaid ${ }^{\text {a }}$, Akbar Ali $^{\text {a,b }}$ (D) Igor Milovanovićc , and Emina Milovanovićc ${ }^{\text {c }}$
${ }^{a}$ Knowledge Unit of Science University of Management and Technology, Sialkot, Pakistan; ${ }^{\text {b }}$ Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia; 'Faculty of Electronic Engineering, University of Niš, Niš, Serbia

Abstract

The variable sum exdeg index, introduced by Vukičević [Croat. Chem. Acta 84 (2011) 87-91] for predicting the octanol-water partition coefficient of certain chemical compounds, of a graph G is defined as $\operatorname{SEI}_{a}(G)=\sum_{v \in V(G)} d_{v} a^{d_{v}}$, where a is any positive real number different from $1, V(G)$ is the vertex set of G and d_{v} denotes the degree of a vertex v. A connected graph G is a cactus if and only if every edge of G lies on at most one cycle. For $n>3$ and $k \geq 0$, let $\mathcal{C}_{n, k}$ be the class of all n-vertex cacti with k cycles. The present paper is devoted to find the graphs with minimal and maximal SEI_{a} values among all the members of the graph class $\mathcal{C}_{n, k}$ for $a>1$.

KEYWORDS

Topological index; variable sum exdeg index; extremal problem; cactus graph

2010 MATHEMATICS SUBJECT
CLASSIFICATION
05C07; 05C35

1. Introduction

Throughout this paper, we discuss only simple and connected graphs. Vertex set and edge of a graph G will be denoted by $V(G)$ and $E(G)$, respectively. Degree of a vertex $v \in V(G)$ will be denoted by $d_{v}(G)$ (or simply by d_{v} if the graph under consideration is clear). The (chemical) graph theoretical terminology, not defined here, can be found in some relevant standard books, like [4, 11].

In order to predict physicochemical properties of chemical compounds, graphs are usually used to model molecules [8, 11]. In molecular graphs, vertices correspond to the atoms while edges represent the covalent bonds between atoms [9, 12]. Among the various existing techniques for handling the issues of predicting physicochemical properties of chemical compounds and seeking combinatorial libraries to find molecular structures that are generally comparative to a target structure, the method involving topological indices is one of the simplest and most widely used such techniques $[1,3,6,16,17]$. Topological indices are actually those numerical quantities of (molecular) graph which remain same under graph isomorphism [8]. In order to predict the octanol-water partition coefficient of some particular type of molecules, Vukičević [14] devised the following topological index and called it as the variable sum exdeg index:

$$
\operatorname{SEI}_{a}(G)=\sum_{v \in V(G)} d_{v} a^{d_{v}}
$$

where a is any positive real number different from 1.
Due to chemical applicability of the topological index SEI_{a}, several papers concerning the mathematical properties of SEI_{a} have been appeared in literature. Vukičević [13]
initiated the mathematical study of the topological index SEI_{a} by addressing the extremal problems for SEI_{a} against ten well-known graph classes. Using the definition of SEI_{a}, Yarahmadi and Ashrafi [15] introduced the variable sum exdeg polynomial and explored some mathematical aspects of this polynomial. For $a>1$, Ghalavand and Ashrafi [7] solved some extremal problems for SEI_{a} using the concept of majorization. Ali and Dimitrov [2] gave alternative proofs of four main results proved in [7] and extended one of the theorems proved in [7]. Khalid and Ali [10] investigated the properties of the variable sum exdeg index SEI_{a} of trees having a fixed number of vertices and vertices with a prescribed degree. Recently, Dimitrov and Ali [5] attempted the problem of finding graphs with a fixed number of vertices and cyclomatic number (the minimum number of edges of a graph whose removal give a graph containing no cycle).

A graph G is a cactus if and only if every edge of G lies on at most one cycle. For $n \geq 4$ and $k \geq 0$, let $\mathcal{C}_{n, k}$ be the class of all n-vertex cacti with k cycles. The main purpose of this paper is to find the graphs with minimal and maximal SEI_{a} values among all the members of the graph class $\mathcal{C}_{n, k}$ for $a>1$.

2. Main results

Firstly, we attempt the problem of finding graphs with minimal SEI_{a} value from the class $\mathcal{C}_{n, k}$ for $a>1$. We recall that for $k=0$ and $k=1$ this problem has already been solved in $[5,7,13]$, because the classes $\mathcal{C}_{n, 0}$ and $\mathcal{C}_{n, 1}$ are actually the classes of all n-vertex tree and unicyclic graphs, respectively. We note that there is a unique cactus graph for $k \geq 2$

[^0]and $n=5$. Thus, the aforementioned problem concerning minimal SEI_{a} value make sense if $n \geq 6$ for $k \geq 2$. Before moving further, we prove a lemma for SEI_{a} concerning the degree sequence of two graphs.

Lemma 2.1. Let c be a positive even integer and $d_{i} \geq d_{j}+c$. If G and G^{\prime} are graphs with degree sequences $\left(d_{1}, d_{2}, \ldots\right.$, $\left.d_{i-1}, d_{i}, d_{i+1}, \ldots, d_{j-1}, d_{j}, d_{j+1}, \ldots, d_{n}\right)$ and $\left(d_{1}, d_{2}, \ldots, d_{i-1}, d_{i}-\right.$ $\left.\frac{c}{2}, d_{i+1}, \ldots, d_{j-1}, d_{j}+\frac{c}{2}, d_{j+1}, \ldots, d_{n}\right)$, respectively, then $\operatorname{SEI}_{a}(G)>$ $\mathrm{SEI}_{a}\left(G^{\prime}\right)$ for $a>1$.
Proof. By using the definition of the variable sum exdeg index SEI_{a}, we have

$$
\begin{aligned}
\operatorname{SEI}_{a}(G)-\operatorname{SEI}_{a}\left(G^{\prime}\right)= & d_{i} a^{d_{i}}-\left(d_{i}-\frac{c}{2}\right) a^{d_{i}-\frac{c}{2}} \\
& -\left[\left(d_{j}+\frac{c}{2}\right) a^{d_{j}+\frac{c}{2}}-d_{j} a^{d_{j}}\right] \\
& \geq \frac{c}{2}\left[a^{\Theta_{1}}\left(1+\Theta_{1} \ln a\right)-a^{\Theta_{2}}\left(1+\Theta_{2} \ln a\right)\right]
\end{aligned}
$$

where

$$
d_{i}-\frac{c}{2}<\Theta_{1}<d_{i}
$$

and

$$
d_{j}<\Theta_{2}<d_{j}+\frac{c}{2}
$$

As $d_{i} \geq d_{j}+c$, we have $\Theta_{1}>\Theta_{2}$ and hence the desired result follows.

For a graph $G, V^{*} \subset V(G), E^{*} \subseteq E(G)$ and $E^{* *} \subseteq E(\bar{G})$ where $V^{*} \cap\{u, v\}=\emptyset$ for all $u v \in E^{* *}$, let $G-V^{*}-E^{*}+$ $E^{* *}$ be the graph obtained from G by removing the elements of V^{*} and E^{*}, and adding the edges of $E^{* *}$, where \bar{G} is the complement of G. If some of the aforementioned sets V^{*}, E^{*} and $E^{* *}$ in the notation $G-V^{*}-E^{*}+E^{* *}$ are empty, we do not write those empty sets; for example, if E^{*} is empty then we write $G-V^{*}+E^{* *}$ instead of $G-V^{*}-\emptyset+E^{* *}$. The cyclomatic number $\nu(G)$ of G is the minimum number of edges of G whose removal from G gives a graph containing no cycle.

Lemma 2.2. For $\nu \geq 1, n \geq 6$ and $a>1$, if G has minimal SEI_{a} value among all the n-vertex graphs with cyclomatic number ν, then minimum degree of G is at least 2 .

Proof. Suppose to the contrary that $v \in V(G)$ is a vertex of degree 1 . Since $\nu \geq 1$, let $P: v v_{1} v_{2} \cdots v_{r}$ be a path in G provided that v_{r} is the unique vertex of degree at least 3 of P in G. Let u be a neighbor of v_{r} in G. If $G^{\prime} \cong G-\left\{v_{r} u\right\}+$ $\{u v\}$, then by using Lemma 2.1, we have $\operatorname{SEI}_{a}(G)>$ $\operatorname{SEI}_{a}\left(G^{\prime}\right)$, which is a contradiction to the definition of G.

The following result is an immediate consequence of Lemma 2.2.
Corollary 2.3. For $k \geq 2, n \geq 6$ and $a>1$, if G has minimal SEI_{a} value among all the members of $\mathcal{C}_{n, k}$, then minimum degree of G is 2 .

For a graph G, the set of vertices adjacent to a vertex $v \in$ $V(G)$ is denoted by $N_{G}(v)$.

Lemma 2.4. For $k \geq 2, n \geq 6$ and $a>1$, if G has minimal SEI_{a} value among all the members of $\mathcal{C}_{n, k}$, then every vertex of G, which does not lie on any cycle of G, has degree at most 3 .

Proof. Suppose to the contrary that $v \in V(G)$ does not lie on any cycle of G but $d_{v}=r \geq 4$. Let $N_{G}(u)=$ $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$. For $i=1,2, \ldots, r$, let H_{i} be the component of $G-v$, containing v_{i}. It is clear that $H_{i} \not \neq H_{j}$ for $i \neq j$ (if $H_{i} \cong H_{j}$ for some $i \neq j$ then there exists a $v_{i}-v_{j}$ path in $G-$ $\{v\}$ and this path together with the path $v_{i} v v_{j}$ generates a cycle (in G) containing v, a contradiction). From Corollary 2.3 and the fact that G is a cactus graph, it follows that there exists a vertex $u \in V\left(H_{2}\right)$ of degree 2 . If $G^{\prime} \cong G-\left\{v_{1} v\right\}+$ $\left\{v_{1} u\right\}$ then from Lemma 2.1, it follows that $\operatorname{SEI}_{a}(G)>$ $\operatorname{SEI}_{a}\left(G^{\prime}\right)$, which is a contradiction.

Lemma 2.5. For $k \geq 2, n \geq 6$ and $a>1$, if G has minimal SEI_{a} value among all the members of $\mathcal{C}_{n, k}$ and if u is any vertex on some cycle of G, then $d_{u} \leq 4$.

Proof. Let C be a cycle in G. Suppose to the contrary that there exists a vertex $v \in V(C)$ of degree at least 5. Let $N_{G}(v) \backslash V(C):=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$. For $i=1,2, \ldots, r$, let H_{i} be the component of $G-\{v\}$, containing v_{i}. We claim that at most two vertices from the set $N_{G}(v) \backslash V(C)$ belong to the same component of $G-\{v\}$. Contrarily, without loss of generality, we assume that $H_{1} \cong H_{2} \cong H_{3}$. Then, the path $v_{1}-v_{3}$, containing the vertex v_{2}, together with the edges $v_{1} v, v_{3} v$, generate a cycle whose every edge lies on more than one cycle in G because $v_{2} v \in E(G)$, which is a contradiction to the definition of a cactus graph.

Case 1. There exists a component of $G-\{v\}$ containing exactly one vertex of $N_{G}(v) \backslash V(C)$.
Without loss of generality, we assume that H_{1} does not contain any of the vertices $v_{2}, v_{3}, \cdots, v_{r}$. Then, by Corollary 2.3, there exists a vertex $u \in V\left(H_{2}\right)$ of degree 2 . It is clear that $G^{\prime} \cong G-\left\{v v_{1}\right\}+\left\{u v_{1}\right\} \in \mathcal{C}_{n, k}$. But, by Lemma 2.1, we have $\operatorname{SEI}_{a}(G)>\operatorname{SEI}_{a}\left(G^{\prime}\right)$, a contradiction.

Case 2. Every component of $G-\{v\}$ contains exactly two vertices of $N_{G}(v) \backslash V(C)$.
In this case, we have $d_{v} \geq 6$. Without loss of generality, we assume that $H_{1} \cong H_{2}$. Clearly, $H_{3} \nsubseteq H_{1}$ and there exists a vertex $w \in V\left(H_{3}\right)$ of degree 2 , by Corollary 2.3. If $G^{\prime \prime} \cong$ $G-\left\{v v_{1}, v v_{2}\right\}+\left\{w v_{1}, w v_{2}\right\}$ then again by Lemma 2.1, we have $\operatorname{SEI}_{a}(G)>\operatorname{SEI}_{a}\left(G^{\prime \prime}\right)$, a contradiction.

Lemma 2.6. For $k \geq 2, n \geq 6$ and $a>1$, if $G \in \mathcal{C}_{n, k}$ has a cycle of length at least 4 containing an edge, whose end vertices have degrees 2 and 4, then there exists $G^{\prime} \in C_{n, k}$ such that $\operatorname{SEI}_{a}(G)>\operatorname{SEI}_{a}\left(G^{\prime}\right)$.

Proof. Let $u v \in E(G)$ be an edge on a cycle C of length at least 4 in G such that $d_{u}=4$ and $d_{v}=2$. Let $v^{\prime}(\neq v)$ be the other neighbor of u on C. Evidently, the graph $G^{\prime} \cong$ $G-\left\{v^{\prime} u\right\}+\left\{v^{\prime} v\right\}$ belongs to $\mathcal{C}_{n, k}$. On the other hand, Lemma 2.1 ensures that $\operatorname{SEI}_{a}(G)>\operatorname{SEI}_{a}\left(G^{\prime \prime}\right)$.

Let $\mathcal{C}_{n, k}^{*}$ be the class of all those members of $\mathcal{C}_{n, k}$ which satisfy the following constraints

- minimum degree is 2 ,
- maximum degree is at most 4 ,
- all those vertices which do not lie on any cycle have degree at most 3 ,
- does not have any cycle of length at least 4 containing an edge, whose end vertices have degrees 2 and 4 .

Now, we are in position to state and prove the first main result of this paper.

Theorem 2.7. For $k \geq 2, n \geq 6$ and $a>1$, if G has minimal SEI_{a} value among all the members of $\mathcal{C}_{n, k}$ then $G \in \mathcal{C}_{n, k}^{*}$.

Proof. The result follows directly from Corollary 2.3 and Lemmas 2.4, 2.5, 2.6.

The n-vertex star graph is denoted by S_{n}. Let $S_{n}^{(k)}$ be the cactus obtained from S_{n} by adding $k \geq 1$ mutually independent edges and take $S_{n} \cong S_{n}^{(0)}$. Next, we prove that $S_{n}^{(k)}$ is the unique graph with maximal SEI_{a} value among all the members of the graph class $\mathcal{C}_{n, k}$ for $a>1$. In order to prove this fact, we need the following already known result.

Lemma 2.8. [2, 5, 7, 13] Among all the n-vertex tree (unicyclic) graphs, the star $\left(S_{n}^{(1)}\right.$, respectively) is the unique graph with maximal SEI_{a} value for $a>1$.

The following lemma will also be useful in proving the second main result of this paper.

Lemma 2.9. Let

$$
f(x)=x a^{x}-(x-p) a^{x-p}
$$

where $x>p \geq 1$ and $a>1$. Then the function f is increasing.
Proof. Note that

$$
f^{\prime}(x)=a^{x}(1+x \ln a)-a^{x-p}(1+(x-p) \ln a)
$$

The assumptions $x>p \geq 1$ and $a>1$ give
$a^{x}(1+x \ln a)>a^{x}(1+(x-p) \ln a)>a^{x-p}(1+(x-p) \ln a)$.
Hence, $f^{\prime}(x)>0$ for all x with $x>p \geq 1$ and $a>1$.
Now, we are ready to prove the second main result of the present paper.
Theorem 2.10. For $k \geq 0, n \geq 4$ and $a>1, S_{n}^{(k)}$ is the unique graph with maximal SEI_{a} value among all the members of $\mathcal{C}_{n, k}$.

Proof. Let G be any cactus graph in the collection $\mathcal{C}_{n, k}$ where $n \geq 4$ and $k \geq 0$. Then an equivalent statement of the theorem is:

$$
\operatorname{SEI}_{a}(G) \leq f(n, k, a)
$$

with equality if and only if $G \cong S_{n}^{(k)}$, where
$f(n, k, a)=\operatorname{SEI}_{a}\left(S_{n}^{(k)}\right)=(n-1) a^{n-1}+4 k a^{2}+(n-2 k-1) a$

We will prove the result by using induction on $n+k$. For $k=0,1$, the theorem follows directly from Lemma 2.8. Also, we note that $S_{5}^{(2)}$ is the unique cactus graph for $n=5$ and $k \geq 2$. Thus, we take $G \in \mathcal{C}_{n, k}$ with $k \geq 2$ and $n \geq 6$.

Case 1. Minimum degree of G is 1 .
Let $u_{0} \in V(G)$ be a pendent vertex adjacent to a vertex u with $N_{G}(u)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{x-1}\right\}$. Without loss of generality, we assume that $d_{u_{i}}=1$ for $0 \leq i \leq p-1$ and $d_{u_{i}} \geq 2$ for $p \leq i \leq x-1$. If $G^{\prime} \cong G-\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{p-1}\right\}$, then $G^{\prime} \in \mathcal{C}_{n-p, k}$ with $n-p \geq 5$ (because $k \geq 2$) and

$$
\operatorname{SEI}_{a}(G)=\operatorname{SEI}_{a}\left(G^{\prime}\right)+p a+x a^{x}-(x-p) a^{x-p}
$$

By inductive hypothesis, we have

$$
\begin{aligned}
\operatorname{SEI}_{a}(G)-f(n, k, a) \leq & (n-p-1) a^{n-p-1}-(n-1) a^{n-1} \\
& +x a^{x}-(x-p) a^{x-p}
\end{aligned}
$$

with equality if and only if $G^{\prime} \cong S_{n-p}^{(k)}$. Thus, Lemma 2.9 ensures that

$$
\operatorname{SEI}_{a}(G)-f(n, k, a) \leq 0
$$

with equality if and only if $G^{\prime} \cong S_{n-p}^{(k)}$ and $x=n-1$.
Case 2. Minimum degree of G is at least 2.
In this case, there must exist three vertices v_{1}, v_{2} and w on some cycle of G such that v_{1} is adjacent to both the vertices $v_{2}, w, d_{v_{1}}=d_{v_{2}}=2$ and $d_{w}=y \geq 3$. We have two possibilities.

Subcase 2.1. The vertices v_{2} and w are nonadjacent.
It is clear that $G^{\prime} \cong G-\left\{v_{1}\right\}+\left\{v_{2} w\right\} \in \mathcal{C}_{n-1, k} \quad$ and $\operatorname{SEI}_{a}(G)=\operatorname{SEI}_{a}\left(G^{\prime}\right)+2 a^{2}$. Due to the inductive hypothesis, we have

$$
\begin{aligned}
\operatorname{SEI}_{a}(G)-f(n, k, a) \leq & 2 a^{2}-a \\
& -\left[(n-1) a^{n-1}-(n-2) a^{n-2}\right]
\end{aligned}
$$

with equality if and only if $G^{\prime} \cong S_{n-1}^{(k)}$. However, it holds that

$$
\begin{aligned}
& 2 a^{2}-a-\left[(n-1) a^{n-1}-(n-2) a^{n-2}\right] \\
& \quad=\left[a^{\Theta_{1}}\left(1+\Theta_{1} \ln a\right)-a^{\Theta_{2}}\left(1+\Theta_{2} \ln a\right)\right]<0
\end{aligned}
$$

where $1<\Theta_{1}<2<n-2<\Theta_{2}<n-1$. Hence

$$
\operatorname{SEI}_{a}(G)-f(n, k, a)<0
$$

Subcase 2.2. The vertices v_{2} and w are adjacent.
We note that $G^{\prime} \cong G-\left\{v_{1}, v_{2}\right\} \in \mathcal{C}_{n-2, k-1}$ and hence

$$
\operatorname{SEI}_{a}(G)=\operatorname{SEI}_{a}\left(G^{\prime}\right)+4 a^{2}+y a^{y}-(y-2) a^{y-2}
$$

By inductive hypothesis, we get

$$
\begin{aligned}
\operatorname{SEI}_{a}(G)-f(n, k, a) \leq & (n-3) a^{n-3}-(n-1) a^{n-1}+y a^{y} \\
& -(y-2) a^{y-2},
\end{aligned}
$$

with equality if and only if $G^{\prime} \cong S_{n-2}^{(k-1)}$. Consequently, by Lemma 2.9, we have

$$
\operatorname{SEI}_{a}(G)-f(n, k, a) \leq 0
$$

with equality if and only if $G^{\prime} \cong S_{n-2}^{(k-1)}$ and $y=n-1$.
This completes the induction and hence the proof.

Acknowledgment

The authors would like to thank the anonymous referee for useful comments and valuable suggestions, which led to a number of improvements in the earlier version of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Akbar Ali (iD http://orcid.org/0000-0001-8160-4196

References

[1] Ahlawat, A., Khatkar, P., Singh, V, Asija, S. (2018). Diorganotin(IV) complexes of Schiff bases derived from salicylaldehyde and 2-amino-6-substituted benzothiazoles: synthesis, spectral studies, in vitro antimicrobial evaluation and QSAR studies. Res. Chem. Intermed. 44(7):4415-4435.
[2] Ali, A, Dimitrov, D. (2018). On the extremal graphs with respect to bond incident degree indices. Discrete Appl. Math 238:32-40.
[3] Basak, S. C. (2016). Use of graph invariants in quantitative structure-activity relationship studies. Croat. Chem. Acta 89(4): 419-429.
[4] Bondy, J. A, Murty, U. S. R. (2008). Graph Theory, Springer, London,
[5] Dimitrov, D, Ali, A. (2019). On the extremal graphs with respect to the variable sum exdeg index. Discrete Math. Lett 1 : 42-48.
[6] Emanuel, A., Doslić, T, Ali, A. (2019). Two upper bounds on the weighted Harary indices. Discrete Math. Lett. 1:21-25.
[7] Ghalavand, A, Ashrafi, A. R. (2017). Extremal graphs with respect to variable sum exdeg index via majorization. Appl. Math. Comput. 303:19-23.
[8] Gutman, I., Furtula, B., eds. (2010). Novel Molecular Structure Descriptors - Theory and Applications, Vols. I-II. Kragujevac: Univ. Kragujevac.
[9] Gutman, I, Polansky, O. E. (1986). Mathematical Concepts in Organic Chemistry. Berlin: Spinger.
[10] Khalid, S, Ali, A. (2018). On the zeroth-order general Randić index, variable sum exdeg index and trees having vertices with prescribed degree. Discrete Math. Algorithm. Appl. 10(02): 1850015.
[11] Todeschini, R, Consonni, V. (2009). Molecular Descriptors for Chemoinformatics. Weinheim: Wiley-VCH.
[12] Trinajstić, N. (1993). Chemical Graph Theory. 2nd revised ed. Boca Raton, FL: CRC Press.
[13] Vukičević, D. (2011). Bond additive modeling 5. Mathematical properties of the variable sum exdeg index. Croat. Chem. Acta 84:93-101.
[14] Vukičević, D. (2011). Bond additive modeling 4. QSPR and QSAR studies of the variable Adriatic indices. Croat. Chem. Acta 84:87-91.
[15] Yarahmadi, Z, Ashrafi, A. R. (2015). The exdeg polynomial of some graph operations and applications in nanoscience. J. Comput. Theor. Nanosci. 12:45-51.
[16] Zhang, Q., Xiao, K., Chen, M, Xu, L. (2018). Calculation of topological indices from molecular structures and applications. J. Chemom. 32(11):e2928.
[17] Zhokhov, A. K., Loskutov, A. Y, Rybal'chenko, I. V. (2018). Methodological approaches to the calculation and prediction of retention indices in capillary gas chromatography. J. Anal. Chem. 73(3):207-220.

[^0]: CONTACT Akbar Ali \otimes akbarali.maths@gmail.com Knowledge Unit of Science University of Management and Technology, Sialkot, Pakistan.
 (C) 2020 The Author(s). Published with license by Taylor \& Francis Group, LLC

 This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

