
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2009-04-16

State of Secure Application Development for
802.15.4
Janell Armstrong
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Armstrong, Janell, "State of Secure Application Development for 802.15.4" (2009). All Theses and Dissertations. 1776.
https://scholarsarchive.byu.edu/etd/1776

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1776?utm_source=scholarsarchive.byu.edu%2Fetd%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

THE STATE OF SECURE APPLICATION DEVELOPMENT FOR 802.15.4

by

Janell Armstrong

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

School of Technology

Brigham Young University

August 2009

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Janell Armstrong

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date Michael G. Bailey, Chair

Date C. Richard Helps

Date Joseph J. Ekstrom

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Janell
Armstrong in its final form and have found that (1) its format, citations, and
bibliographical style are consistent and acceptable and fulfill university and
department style requirements; (2) its illustrative materials including figures, tables,
and charts are in place; and (3) the final manuscript is satisfactory to the graduate
committee and is ready for submission to the university library.

Date Michael G. Bailey

Chair, Graduate Committee

Accepted for the Department

Ron Terry
Graduate Coordinator

Accepted for the College

 Alan R. Parkinson
Dean, Ira A. Fulton College of Engineering
and Technology

ABSTRACT

THE STATE OF SECURE APPLICATION DEVELOPMENT FOR 802.15.4

Janell Armstrong

School of Technology

Master of Science

A wireless sensor network consists of small, limited-resource embedded systems

exchanging environment data and activating controls. These networks can be deployed in

hostile environments to monitor wildlife habitats, implemented in factories to locate

mobile equipment, and installed in home environments to optimize the use of utilities.

Each of these scenarios requires network security to protect the network data. The IEEE

802.15.4 standard is designed for WSN communication, yet the standard states that it is

not responsible for defining the initialization, distribution, updating, or management of

network public keys.

Individuals seeking to research security topics will find that there are many

802.15.4-compliant development hardware kits available to purchase. However, these

kits are not easily compared to each other without first-hand experience. Further, not all

available kits are suitable for research in WSN security.

This thesis evaluates a broad spectrum of 802.15.4 development kits for security

studies. Three promising kits are examined in detail: Crossbow MICAz, Freescale

MC1321x, and the Sun SPOT. These kits are evaluated based on their hardware,

software, development environment, additional libraries, additional tools, and cost.

Recommendations are made to security researchers advising which kits to use depending

on their design needs and priorities. Suggestions are made to each company on how to

further improve their kits for security research.

ACKNOWLEDGMENTS

Thank you to Dr. Michael Bailey. He has been my guide, my taskmaster, and my

cheerleader for the past several years. I would not have been able to complete this thesis

without his assistance in removing research obstacles, his abundant corrections to my

faulty grammar, and to his miraculously fast, detailed reviews of my work.

Thank you also to my thesis advisors. Thank you to Mr. Richard Helps for his

insights in embedded system development, his assistance in finding funding for hardware

kits, and for allowing me to work as his research assistant. Thank you to Dr. Joseph

Ekstrom for teaching that the answer to an imprecise question is always, "it depends;" I

still cherish the day I asked a question and received a direct answer.

Thank you also to the other present and former faculty and staff. Dr. Gordon

Romney served as my first chair before his retirement. Dr. Barry Lunt provided an

example of perfection organization and attention to detail. The current lab manager Mr.

Mark Bailey and the former lab manager "Mac" who always kindly provided a listening

ear when I needed to chat, and who almost always were able to provide the cables and

tools I needed for my research. Thank you to Ms. Ruth Ann Lowe and Ms. Lynda

Richmond for their attentive copy editing of my final thesis. Thanks also to Dr. Ron

Gonzales, Mr. Steve Renshaw, Dr. David Anthony, and Ms. Jane Cunningham for their

encouragement.

Thank you to the School of Technology for funding my research and providing

lab facilities. Thank you to the School of Technology, the Engineering and Technology

Student Council, and Boeing for granting me scholarships. Thank you also to the

Graduate Student Committee who helped fund my conference travels. Thank you to

FedEx and to General Electric for permitting me to take time off as necessary for my

thesis.

Thank you to my supporting cast, particularly to Crystal Bateman for assistance in

selecting hardware, collaboration in reading research papers, and for co-authoring

conference papers. Thank you to all the other lab folk for their commiserations and

advice: Rob Broadbent, Lloyd Brown, Nathan Blackham, Erin Bourgeous, Lane

Broadbent, Travis Marks, and those whose faces I remember but whose names I cannot

recall.

Thank you to my parents, Marian and Tim Armstrong, and to my brother, Eric

Armstrong, for providing food and shelter for several years. Thank you to Becky and Koy

Rehme and to Veronica Anderson for providing sanctuaries away from the lab.

In many ways I grew up in the Information Technology Program at Brigham

Young University - from my first freshman-level IT classes to the defense of my master’s

thesis. It is impossible to properly acknowledge everyone who has helped me during this

phase of my life without exceeding the number of pages already written for this thesis, so

I must offer my general gratitude. Thank you to the many people who smiled and nodded

while I raved about my thesis successes and while I ranted about my troubles despite

their lack of understanding what "eight-oh-two-dot-fifteen-dot-four" let alone "C" really

are.

 vii

TABLE OF CONTENTS

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

1 Introduction ... 1

1.1 Wireless Sensor Network Technology ... 2

1.2 Network Standards .. 3

1.3 Network Security Threats ... 4

1.4 Development Challenges .. 5

1.5 Proposed Research .. 6

2 Review of Literature ... 9

2.1 Wireless Communication Standards ... 9

2.1.1 Wi-Fi ... 10

2.1.2 Ultrawideband ... 10

2.1.3 Bluetooth and ULP Bluetooth ... 12

2.1.4 802.15.4 ... 13

2.1.5 ZigBee ... 14

2.1.6 Conclusions ... 16

2.2 802.15.4 and ZigBee Security ... 17

2.3 Security Threats .. 19

2.4 Existing Security Implementations ... 21

2.4.1 TinySec ... 22

 viii

2.4.2 SPINS .. 23

2.4.3 LEAP ... 24

2.4.4 Sizzle ... 25

2.4.5 MiniSec ... 26

2.4.6 Resurrecting Duckling .. 26

2.5 Related Work .. 27

2.6 Conclusions ... 28

3 Methodology .. 29

3.1 Candidate Development Kits .. 29

3.1.1 Necessary Hardware Characteristics ... 29

3.1.2 Disregarded Hardware Characteristics.. 31

3.1.3 Notable Excluded Platforms ... 32

3.1.4 Hardware for Evaluation ... 34

3.2 Security Scenario .. 35

3.2.1 Description of the Solution ... 35

3.2.2 Network Entities ... 37

3.2.2.1 Network Coordinator .. 37

3.2.2.2 Network Mote ... 38

3.2.3 Joining a Network ... 39

3.2.4 Establishing a Session ... 44

3.2.5 Updating the Network Key ... 45

3.2.6 Requesting the Network Key .. 48

3.2.7 Exiting the Network .. 52

3.3 Software Components ... 52

3.4 Key Development Concerns ... 53

 ix

4 Analysis .. 55

4.1 Introduction of Evaluated Hardware ... 55

4.1.1.1 Crossbow MICAz ... 56

4.1.1.2 Freescale MC1321x .. 57

4.1.1.3 Sun SPOT .. 58

4.2 Hardware ... 60

4.2.1 Memory and Processor ... 60

4.2.2 User Interface and Sensors .. 61

4.2.3 Daughterboards ... 62

4.2.4 Power .. 63

4.2.5 Housing ... 63

4.2.6 Device Types .. 65

4.3 Development Environment ... 67

4.4 Software .. 68

4.4.1 Software Language ... 69

4.4.2 Radio Stack ... 69

4.4.3 Demonstration Code ... 70

4.4.4 Additional Libraries .. 72

4.4.5 Java Virtual Machine .. 73

4.4.6 Operating System .. 74

4.5 Analysis of the Security Scenario ... 75

4.6 Suitability to the Security Scenario .. 77

4.6.1 Access to 802.15.4 Headers .. 77

4.6.2 Timers ... 78

4.6.3 Encryption Algorithms .. 79

 x

4.7 Development Assistance ... 80

4.7.1 Tutorials .. 81

4.7.2 Data Sheets .. 81

4.7.3 Software Documentation .. 82

4.7.4 Online Community .. 83

4.8 Other Tools ... 84

4.8.1 Simulators ... 85

4.8.2 Emulators .. 86

4.8.3 Background Debug Interfaces ... 86

4.8.4 Benchmarking Tools ... 86

4.9 Expense ... 88

4.10 Summary ... 91

5 Conclusions .. 93

5.1 Summary of Hardware Kits .. 95

5.2 Recommended Improvements .. 103

5.3 Future Work .. 105

6 References .. 107

 xi

LIST OF TABLES

Table 4-1: Crossbow MICAz Features (Crossbow Technology Inc., 2007) 56

Table 4-2: Freescale MC13213 SRB Features (Freescale Semiconductor Inc.,
2007a) ... 57

Table 4-3: Sun SPOT Features (Sun Microsystems Inc., 2009a) 59

Table 4-4 - Online Communities .. 84

Table 4-5: Crossbow MICAz Development Kits (Crossbow Technology Inc.,
2009a,b,c) .. 89

Table 4-6: Freescale MC1321x Development Kits (Freescale Semiconductor
Inc, 2009a) .. 90

Table 4-7: Sun Spot Development Kit (Sun Microsystems Inc., 2009a) 91

Table 5-1: Development Kits Summary ... 96

Table 5-2 – Evaluated Kits Comparison ... 97

 xii

 xiii

LIST OF FIGURES

Figure 3-1: Network Join Communication Sequence ... 41

Figure 3-2: Network Join Network Coordinator Activity ... 42

Figure 3-3: Network Join Mote Activity .. 43

Figure 3-4: Key Update Communication Sequence ... 46

Figure 3-5: Key Update Coordinator Decision Process .. 47

Figure 3-6: Key Update Mote Decision Process ... 48

Figure 3-7 - Key Request Communication Sequence ... 49

Figure 3-8- Key Request Coordinator Decision ... 50

Figure 3-9 - Key Request Mote Decision ... 50

Figure 3-10 – Network Coordinator Decryption Decision ... 51

Figure 4-1- Crossbow MICAz .. 64

Figure 4-2 - Freescale MC13213 SRB .. 64

Figure 4-3 - Sun SPOT ... 65

 xiv

1

1 Introduction

Wireless sensor networks (WSN) are a key component to turn the dream of

“smart homes” into reality. A smart home, home automation, or environment automation

describes a system where appliances communicate with one another, users remotely

control and monitor their home, the environment automatically adjusts to a user’s

preferences, and so forth. Technologists and authors have long dreamed of achieving this

technology - from E.M. Forster’s science fiction short story describing an automated

living environment (Forster, 2001)(originally published in 1909) to Mark Weiser’s

journal article defining ubiquitous computing (Weiser, 1991).

A WSN is a foundational technology in home automation. WSN’s establish a

channel through which multiple devices may communicate with each other. WSN’s

provide a means to monitor an individual’s activities and habits. WSN’s facilitate the

ability to actuate both software and mechanical events throughout the system

environment.

Typical users – even those accustomed to the pervasive technologies of cell

phones, MP3 players, and computers – may not understand the benefits of home or

environment automation; after all, manual control of their homes serves them well. Why

would individuals wish for their appliances to collaborate, their security system to be

2

remotely accessible, their homes to monitor the occupants’ health, and their house lights

to automatically turn on and off?

Automation through a WSN allows individuals and families unprecedented peace

of mind, environment control, and home optimization. An automated home may provide

independence for elderly relatives while alerting their caregivers when something is

amiss (e.g. to summon assistance in response to a fall-related injury). An automated home

may enable a person with handicaps to control their surroundings with ease. An

automated home may help reduce utility bills by optimizing a family’s use of electric

lighting where young children and busy adults often neglect simple energy optimizations

such as turning the lights off as they exit a room.

1.1 Wireless Sensor Network Technology

A wireless sensor network includes a set of sensor-equipped embedded systems,

known as motes, communicating via a wireless channel. Each mote typically collects

local environmental data, and then shares the data with its neighboring motes. Interested

entities (e.g. users, system administrators, and other motes) may harvest these data to

observe and control the current state and history of the monitored environment. Entities –

including motes – may issue commands to or requests from the networked motes that in

turn may control the user’s home environment (e.g. the lawn watering system). Data and

mote commands are considered privileged and sensitive because divulging the data may

be reveal habits, routines, and the state of that which the network is monitoring.

The application program of the WSN may observe network traffic or receive mote

data to analyze, monitor, and control the entire system. This application, usually running

3

from a desktop computer, often acts as a director of the system: interpreting mote data

and instructing motes on how to act. Specialized motes may aid the application in system

tasks; these motes are known by many names including ‘bridge,’ ‘gateway,’ ‘sink mote,’

and ‘coordinator mote.’ Utilizing a specialized mote to control the network security

creates a single point of failure, thus it is frowned upon in drop networks (thousands of

motes deployed in a hostile environment)(Gamage et al, 2006). In home automation,

however, this practice may be encouraged as a central point for a user to interact with,

configure, and control the system while assuming the home itself provides sufficient

physical security to protect the specialized mote.

Motes may pass messages from one to another over multiple hops within a peer-

to-peer network. These messages may consist of acknowledgements, routing commands,

the exchange of data, commands, and responses to commands. Each mote may read,

analyze, ignore, forward, or respond to each received packet.

1.2 Network Standards

Several wireless technologies may be used to implement a wireless sensor

network. Researchers created an irrigation system that used Bluetooth to deliver water to

specific sites (Yunseop, Evans, Iversen, 2008). WiFi has been proposed as a backbone to

multiple mesh networks (Leal et al, 2007). ZigBee (an implementation of 802.15.4) is

commonly implemented within environment monitoring projects such as the oft-cited

Great Duck Island application (Kumagai, 2004) used ZigBee devices to monitor the heat

levels within bird burrows. Of these IEEE 802.15.4-compliant standards are often used

because the standard is designed specifically for low-power, mesh network devices.

4

The Institute for Electrical and Electronics Engineers (IEEE) proposed and first

ratified the 802.15.4 standard in 2003 for communication within wireless sensor networks

(IEEE Computer Society, 2006). The 802.15.4 standard, part of the WPAN (Wireless

Personal Area Network) working group, is specifically tailored to low-bandwidth,

limited-battery devices communicating in peer-to-peer, ad-hoc connections. The ZigBee

alliance, a consortium of over 250 member companies (ZigBee Alliance, 2008),

developed and ratified the ZigBee specification that defines additional security

mechanisms, routing protocols, and efficiency measure to 802.15.4 (ZigBee Alliance,

2004, ZigBee Alliance, 2006). Each of these standards as well as other common wireless

network standards will be discussed further in Section 2.1.

1.3 Network Security Threats

This new technology introduces many benefits to its users, yet wireless sensor

networks may also introduce new problems for its users. Like all wireless

communication, a WSN is vulnerable to both passive and aggressive security attacks.

Data transmitted through a WSN channel without security precautions may be intercepted

or altered by unauthorized users. Security flaws may permit identify theft, cause system

down time, and allow unauthorized users to control the network and its devices.

Examples of potential security vulnerabilities include eavesdropping, service disruption,

protocol attacks, etc. (See Chapter 2 for a further discussion on security threats and the

research towards resolving the system weaknesses.)

The network owner must protect the network data by making it difficult to

understand and by blocking unauthorized entities from entering the network.

5

Furthermore, a balance between security and resource consumption must be achieved; a

high-consumption security system may disable a WSN’s ability to allocate resources to

its core application, yet a low-cost security system may not sufficiently defend the

network. Security tools must be developed to enable network owner to create a secure

WSN.

1.4 Development Challenges

Researchers may study the effectiveness in preventing network attacks by

studying WSN weaknesses and developing security fortifications. Typically, this research

is discussed as theory defended by a comparison to similar methods within other wireless

network standards or by data produced by software simulations. WSN software is not

often studied on actual hardware due to scaling constraints, budgeting, or an assumption

that simulation is sufficient to prove a security method effective.

Implementing a wireless sensor network on real hardware is not without its

challenges. The exchange of large data packets between two motes is often restricted by

narrow bandwidth. Debugging is difficult because of the nature of a distributed system.

The mote software may be particularly constrained by the hardware’s limited processor

and limited RAM. An example of the limited mote resources is the Freescale MC13213

mote. This mote has only a 40 MHz, 8-bit processor; 60 KB flash; and 4 KB RAM

(Freescale Semiconductor Inc., 2007z). These hardware limitations limit the speed,

program size, application complexity, and security of the WSN.

Further challenges exist when the learning curve of existing hardware is taken

into consideration. The available documentation and tutorials; accessible, active, online

6

communities; open-source code and demonstration code each have an impact on the

success of a developer in writing code. A developer is aided in debugging software by the

hardware interfaces used to communicate with the device and by the device’s buttons and

LEDs. The cost of the hardware impacts the number of devices researchers can obtain

and consequently influences the network scale. The existing Operating Systems and code

may further assist a developer by adhering to an OSI-model of code by separating out the

code necessary for activating an LED from the network routing code; thus enabling the

new users to focus on development without perfecting their knowledge of the lower

levels of coding.

Unfortunately, there is no “perfect solution” development kit available to student

researchers. Most existing development kits lack one of the crucial components and may

hinder success in security research.

1.5 Proposed Research

This thesis shall assess several WSN development kits for suitability to security

development and research. The hardware of each kit will be described including its

memory, processor, user interface and sensors, daughterboards, power supply, and

housing. The development environment and software requirements will be described in

enough detail to support the analysis. The available documentation for each kit will be

described. The various kit configurations available for purchase and the expense of each

will be noted.

The suitability of each kit will be measured against a security development

scenario. The test scenario shall be a hypothetical implementation of a simplified version

7

of SSL to create a secure channel between two motes and of a periodic key distribution.

The number of necessary SSL packets to establish communication shall be reduced by

eliminating certificates and by limiting each mote to a single encryption method. In

addition, due to the large memory overhead of Public Key Infrastructure (PK) systems,

these will also be excluded from consideration in this research. The justification for

selecting this particular test scenario will be discussed further in Section 3.2.

The strengths and weaknesses of each development kit will be discussed in the

context of the tools required to develop the test scenario. Conclusions will be drawn

identifying what types of research and tasks for which each development kit is best

suited, since one kit may be better suited to research in application security whereas

another kit may be better suited to research in the implementation of encryption

algorithms. Recommendations will be made on how to improve each kit to better suit it

for security development in academic research.

8

9

2 Review of Literature

This chapter provides an overview of the state of the art of development and

security within wireless sensor networks. The suitability of several wireless standards

will be reviewed for WSN. The current state of 802.15.4 and ZigBee security is

presented. WSN security threats are enumerated, and existing research is discussed.

2.1 Wireless Communication Standards

Wi-Fi, UWB (Ultra Wideband), Bluetooth and ULP (Ultra Low Power)

Bluetooth, IEEE 802.15.4, and ZigBee have emerged as wireless protocols. Each protocol

has its own strengths and weaknesses. This section considers each protocol for use within

a wireless sensor network.

WSN communication standards should accommodate the expected hardware

limitations of WSN motes and support peer-to-peer networking. Hardware constraints

further require code with lightweight memory footprints and efficient algorithms. The

network standard must allow for several anticipated scenarios: new motes may enter the

network without warning; current motes may exit the network without warning (e.g. a

battery dies or a fatal accident occurs); mobile motes may move throughout the network

unpredictably; and motes may exchange data with any other mote within the network.

10

Potential standards to WSN communication include Wi-Fi, UWB, Bluetooth, 802.15.4

and ZigBee.

2.1.1 Wi-Fi

The IEEE 802.11 standard (Wi-Fi) specifies network access to high-powered

devices with high data rates. This standard is commonly used for WLAN connectivity;

particularly when channeling Internet traffic. Typically, the 802.11 network topology

consists of a base station communicating directly with child nodes and a single Internet or

LAN connection. While less commonly implemented, Wi-Fi-enabled devices may

operate in a peer-to-peer, ad hoc mode. The proposed 802.11s, will allow base stations to

route internet traffic through a mesh network (Cherry, 2006); vendors have begun to

release draft-compliant products in anticipation of the standard’s completion in late 2009

(PacketHop Inc., 2008).

The widespread adoption of Wi-Fi provides a ready-infrastructure to home

automation; however, the high price of the Wi-Fi chipsets and their very high power

consumption lessens the appeal of Wi-Fi for WSN devices. Anis Koubaa and Mario

Alves make a good argument and later demonstrated that Wi-Fi ought to be used as a

backbone in a large-scale WSN (Koubaa, Alves, 2005; Leal et al, 2007). However, their

2007 demonstration shows that the 802.11 standard is inappropriate for local, inter-mote

communication.

2.1.2 Ultrawideband

Ultrawideband (UWB, IEEE 802.15.3) is expected by its designers to become a

USB cable replacement technology by transmitting data over many frequencies (similarly

11

to the way gigabit Ethernet transmits over several wires). Standard ratification has been

delayed because the design committee was divided into two factions. The UWB Forum

argued for direct-sequence ultrabandwidth; whereas the WiMedia Alliance supported

multiband orthogonal frequency-division multiplexing (OFDM)(Geer, 2006). Arguments

for each communication method were based on their effect on radio interference with

existing devices, ungoverned use of the frequency spectrum in Europe and Asia, power

consumption, chipset expense, and backwards compatibility with USB 2.0 (Schilit,

Sengupta, 2004; Jones, 2004; Goth, 2007).

Eventually, the UWB Forum yielded to the WiMedia Alliance (Leavitt, 2007).

During the schism, the WiMedia Alliance – led by Intel – continued to seek alternate

standardization for its technology from the ECMA International and International

Standards Organization (ISO). WiMedia had also gathered endorsements from the USB

Implementers Forum (USB-IF) and the Bluetooth Special Interest Group.

During the time without a unified UWB standard, companies began to create their

own wireless USB solutions. Freescale, the original leader of the UWB forum, withdrew

and developed its CableFree standard and attempted to take the technology straight to

market through the 2006 Consumer Electronics Show (Geer, 2006; Jones 2006; Goth,

2007). Pulse~Link, at the 2007 Consumer Electronics show, demonstrated its own

proprietary UWB technology for communication between multiple home entertainment

devices and a data network (Pulse~Link, 2007). As of 2007, 15 other companies began to

release their own wireless USB products including Belkin International, D-Link, Hewlett-

Packard, and Intel (Leavitt, 2007).

12

The divisions, uncertainty, and foreboding of future compatibility problems were

sufficient to disqualify UWB as a communication standard within WSN’s.

2.1.3 Bluetooth and ULP Bluetooth

Bluetooth (IEEE 802.15.1) was originally designed to replace cables between

computer peripherals for the high-volume transfer of files and data. The Bluetooth

standard allows for point-to-multipoint, ad hoc communication for inter-peripheral or

desktop-peripheral communications. A Bluetooth piconet allows a single device to be the

master of up to seven child devices. The master device communicates with each child in a

round-robin fashion, and a child device may not communicate directly with another child

device. In a Bluetooth scatternet a child may participate in multiple piconets, but the

standard does not define any communication between piconets.

Ultra Low Power Bluetooth (ULP Bluetooth), on the other hand, is designed to

enable communication between small devices. Nokia initially announced this Bluetooth-

complimentary standard as WiBree in 2006. They proposed an adapted Bluetooth

standard that featured 1Mbps bandwidth, peer-to-peer mesh networking, and Bluetooth-

compatibility (Nokia Corporation, 2007a). In 2007, the Bluetooth SIG announced that it

would adopt WiBree as part of the Bluetooth communication standard (Nokia

Corporation, 2007b). Recently, CSR (a British silicon chip company) provided the first

public demonstration of the technology (now called ULP Bluetooth). The demonstrated

technology achieved packet transfers at 50 times the rate of standard Bluetooth and

consumed 1/10 the power required by standard Bluetooth (CSR, 2008).

Bluetooth is an attractive choice with its inclusion of device type profiles,

authentication and pairing protocols, and widespread adoption. End-users may find

13

convenience in a home network that seamlessly connects with their existing Bluetooth

WPAN. The “ultra low” power consumption of ULP Bluetooth even promises to enable

small, battery-powered devices to standby for years (CSR, 2008).

Unfortunately, ULP Bluetooth build environments are unavailable to the public at

this time. Further, Bluetooth does not inherently accommodate peer-to-peer networking.

Therefore the standard is currently unsuitable for WSN applications.

2.1.4 802.15.4

IEEE 802.15.4 defines a mesh-networking, communication standard for very low

data-rate, battery-limited devices (IEEE Computer Society, 2006). The standard defines

the Media Access Control (MAC) layer and physical (PHY) layer of the OSI model. The

key features of this standard are its minimal power consumption for extended battery life,

simultaneous support of hundreds (and in some configurations, thousands) of devices,

and peer-to-peer communication.

Several companies have sought to create similar technologies; three of these

proprietary variations are particularly notable. SmartLab’s Insteon implements the

802.15.4 standard while eliminating the need for a network controller and message

routing (SmartLabs Inc, 2007). Likewise, Microchip’s MiWi creates a light-weight

version of 802.15.4 by eliminating all security measures and by limiting the network

communication to 4 hops (Microchip Technology Inc, 2006). Zensys’s Z-Wave is similar

to 802.15.4 in functionality but is not 802.15.4-compliant (Z-Wave Alliance, 2007). At

the time of this thesis neither academia nor industry had seriously adopted any of these

variations.

14

2.1.5 ZigBee

The ZigBee specification (ZigBee Alliance, 2007b), adds application framework

and network layers, and some security measures to IEEE 802.15.4. This specification

defines three types of motes and three network topologies. The specification also

decreases power consumption by allowing developers to synchronize the duty cycle of

the network motes.

Every ZigBee node must be one of three types of motes: Coordinator, Router, or

End Device. The ZigBee Coordinator is responsible for network configuration and

synchronization. Every network, regardless of topology, must have a Coordinator. Every

network, regardless of topology, may only have one Coordinator. ZigBee Routers are

responsible for the routing of network messages to their associated End Devices and

neighboring Routers. The Coordinator also shares routing responsibilities with the Router

nodes. ZigBee End Devices only communicate with their parent Routers.

ZigBee supports three network topologies: star, tree, and mesh. Regardless of

network topology, every network type must have one and only one Coordinator and End

Devices may only communicate with their parent node. The ZigBee star network is like a

Bluetooth piconet, for neither make allowance for communication between the children

of the network hub device (i.e. Coordinator). In a mesh and tree network, if a device’s

parent ceases to exist within the network the device will identify and join another Router

within its range; if no new parent is available the device will be unable to rejoin the

network. In a mesh topology messages between two out-of-range nodes are routed

through the network Routers.

15

ZigBee minimizes power consumption and prolongs the battery life by operating

on a very low duty cycle of less than 1%, by transitioning devices from sleep state to an

active state in 15ms, and by requiring only 30ms for a device to join the network (ZigBee

Alliance, 2007a).

The device duty cycle of star and tree networks are defined by beacon mode

synchronization. Coordinator transmits beacon frames to all its associated nodes which in

turn route the frames to their associated nodes, etc. Following each of these frames is the

active period in which devices may exchange messages by CSMA (Carrier Sense

Multiple Access). This methodology requires a node to listen for network traffic and wait

for the channel to be free. All nodes sleep during an inactive period and awaken for the

next anticipated beacon frame.

The beacon frame is propagated throughout the network, so a mesh network may

not operate in beacon mode. In non-beacon mode data transmissions may take place at

any time and are not limited to the active period. All transfers take place during a free

period determined by CSMA. Nodes participating in a mesh topology must have an

increased duty cycle (and thereby increased battery consumption) because there is no

defined active period.

These ZigBee specification constraints prevent the network from being robust

because the entire network may fail if the Coordinator is cut off from the network.

Relying on specialized devices to perform network tasks may interfere with a network’s

robustness. In a beaconing network the loss of the Coordinator would be detrimental

because only the Coordinator sends the synchronization beacons. Similarly, in a star

network the loss of the Coordinator would be detrimental because only the Coordinator

16

may route messages. In a tree or mesh network, the loss of a Router may cut many

devices off from the remaining network if no other Routers are within range of the lost

Router’s associated devices.

Unfortunately, despite the nearly ideal design of the ZigBee specification, the

ZigBee Alliance has unintentionally hindered the adoption of the technology. One author

succinctly stated, “ZigBee has feature-creeped far beyond its humble 'home RF'

beginnings. That's not necessarily bad, reflecting an understandable migration of

application aspirations to bigger and better things. . . On the other hand, with wireless it's

always the more the merrier, and ZigBee feature creep leaves the door open for new low-

end alternatives” (Cantrell, 2008). Additionally, ZigBee-compliant, open-source,

security-enabled, stack source code is difficult to obtain. Closed stack code greatly

increases the complexity of manipulating the security state machine to add additional

measures or add evaluation and measurement algorithms.

2.1.6 Conclusions

IEEE 802.15.4 and its derivative, ZigBee, are equally appropriate protocols for

the development of a WSN. Unlike Bluetooth and UWB, 802.15.4 and ZigBee allow for

mesh networking. Unlike WiFi, 802.15.4 and ZigBee may be powered from a single set

of batteries for weeks or months. Both 802.15.4 and ZigBee are specifically designed for

devices with small microprocessors and limited memory.

Alternatively, researchers may find that either 802.15.4 or ZigBee is better suited

to specific research topics. The 802.15.4 standard may be more accommodating to the

advancement of WSN security research, as it defines only the basic conventions for

security thus allowing the researcher to define a complete security system. ZigBee is

17

appropriate for the design of secure WSN applications because it standardizes the

network-layer among third party devices.

The remainder of this thesis will address both 802.15.4 and ZigBee as either may

be selected for WSN research.

2.2 802.15.4 and ZigBee Security

Both 802.15.4 and ZigBee provide basic mechanisms necessary to implementing

a security policy (IEEE Computer Society, 2006; ZigBee Alliance, 2007b). The 802.15.4

standard provides frames security, and ZigBee adds key transport, device management,

and a permissions matrix. Unfortunately, each standard acknowledges that much of

security necessary to WSN implementation is outside the scope of its standardization.

IEEE 802.15.4 is a standard focused on specifying the physical and data layers of

WSN communication. It acknowledges that, “[Most] security architectural elements can

be implemented at higher layers and may, therefore, be considered to be outside the scope

of this standard” (IEEE Computer Society, 2006). The standard provides frame protection

using a key shared between two devices or among a group of devices, and a security level

may be associated within a request command frame. The standard also provides

cryptographic mechanisms based on symmetric-key cryptography using a key provided

by high layer processes. However, despite providing the basic mechanisms for a security

policy, the standard declares that “the establishment and maintenance of keys are outside

the scope of this standard.”

The ZigBee specification further defines the Network and Application layer, and

the more recent revisions have emphasized network security. The specification designates

18

a specialized mote with controlling the network security, and it defines a master key from

which all other keys are derived. The specification also provides a mechanism for key

transport – that may only be encrypted if the key has already been defined on both the

server and client motes. Within the specification, all master keys are either preinstalled or

the key updating scheduling is left to the application layer. ZigBee-2007 also provides a

configuration table for permissions to matrix what commands a mote may or may not

heed.

The ZigBee-2007 specification includes many security mechanisms for key

establishment, key transport, frame protection, and device management. The specification

notes, “These services form the building blocks for implementing security policies within

a ZigBee device.” (ZigBee Alliance, 2007b) Particularly useful to a researcher

developing a security policy are the mechanism provided to request a key, transport a

key, switch a key, or inform a router than one of its children must be updated or removed

from the network.

The security mechanisms of ZigBee-2007 do not negate the need for careful

attention when developing a security policy. The specification rests on the assumptions in

the safekeeping of keys, in the secure initialization and installation of keying material,

and in the processing of the keying material. The specification also relies on the

application to handle error conditions, detect and handle loss of key synchronization, and

manage the expiration and updating of key. Indeed, the specification emphasizes, “Trust

in the security architecture ultimately reduces to trust in the secure initialization and

installation of keying material and to trust the secure processing and storage of keying

material.” (ZigBee Alliance, 2007b).

19

2.3 Security Threats

Mote communication is inherently public because motes communicate through a

wireless channel. Authorized entities have access to the network data while

eavesdroppers have equal access to unprotected data; an eavesdropping device, Eve, may

access the network traffic of a user, Alice, by merely sitting within the network broadcast

range. Conversely, wired network is secured by tethering the system to a firewall or

secured gateway, but a wireless connection has no such luxury. In a wireless network

there is no authorized man-in-the-middle monitoring for suspicious traffic and blocking

ill-doers. Further, passive access to wireless connections is virtually undetectable. A

WSN is therefore susceptible to attack from unauthorized users. (Attack being here

defined as reading, modifying, blocking, or adding to network traffic without permission

from the network owner.)

Threats to information security are often classified within several subgroups

relevant to security: integrity, confidentiality, availability, and authentication. This

section touches on several of the issues pertaining to WSN threats. For a full threat

analysis see the threat analysis report edited by Casaca and Westhoff (Girao et al, 2006).

Integrity verifies that data cannot be modified without authorization. Without any

security whatsoever it is possible for a neighboring network to simply mistake a device

for one of its own. However, an attacker may also utilize attack a system by exploiting a

protocol weakness; thus establishing a man-in-the-middle mote that may read and alter

messages between a client and a server without either device knowing about the intruding

mote’s presence. The integrity of a network may also be compromised when a mote

accepts forged messages or replayed messages from an unauthorized device.

20

Confidentiality prevents information from being revealed to unauthorized entities.

Information is revealed to unauthorized entities when commands, messages, or keys are

transmitted by plaintext. Messages without sufficient obfuscation – even when encrypted

– may be easily understood by an observer when the packet is as simple as a “yes,” “no,”

“on,” or “off.”

Availability ensures the network services and devices are able to communicate

when needed. Service disruption attacks occur when an attacker disables the network

communication by either preventing a signal from being received by the end device. An

attacker may physically attack the device by jamming the signal or by physically

tampering with the device; neither of these scenarios can be addressed by software. An

attacker may also disrupt the network service by forming a DoS attack against a network

device – by inundating it with so many messages that the device cannot respond to

normal network traffic. A corollary of the DoS attack is called “sleep deprivation”

(Stajano, 2002) in which an attacker forces a device to remain active and thereby draining

its battery.

Authentication validates the communicating entities and prevents unauthorized

entities from masquerading as a valid device or user. For example, Eve introduces a

network-compatible, yet unauthorized, mote is to her neighbor’s network. This

unauthorized mote may now have the ability to forward the network traffic to Eve’s

desktop computer and it may have the ability to issue false data to the authorized network

motes.

21

2.4 Existing Security Implementations

The communication security of wireless sensor networks presents many unique

challenges. Traditional methods of encryption with session keys and public keys are too

resource heavy for the limited motes. In this section the desirable attributes for the

security of a wireless sensor network are identified, and the state-of-the-art of 802.15.4

and ZigBee are evaluated. Emphasis is placed on security solutions that provide key

initialization, key updating, and group management policies.

As previously discussed, motes have limited processor, memory, and power

resources. While future motes may have more processor and memory resources, motes

will likely always be constrained by their batteries (Casas, 2005). The selected security

measures must respect these limitations.

Three concerns are within the scope of this thesis: low computation overhead, low

communication overhead, and data confidentiality. The computation overhead directly

impacts the mote’s battery lifetime. A low communication overhead helps reduce power

consumption due to antenna usage as well as preserving bandwidth. Data confidentiality

ensures the content of a message is only understood by the intended recipient.

Many researchers have addressed aspects of WSN security. As discussed below,

the TinySec library addresses the message integrity and confidentiality within a ZigBee

network. SPINS focuses on preventing replay attacks and on providing broadcast

message authentication. LEAP enables multiple key distribution mechanisms for different

messaging scenarios (e.g. The Network Coordinator sending a message to a specific

mote). Sizzle supports Internet SSL access through a specialized gateway mote that uses

the HTTP stack. The “resurrecting duckling”, though not directly applied to WSN,

22

defines a security policy to introduce an embedded system into a network, to ensure the

device performs only authorized actions, and to permanently remove an embedded

system from the network; several interesting off-shoots of this research have been

developed.

2.4.1 TinySec

UC Berkeley designed TinySec (Karlof, Sastry, Wagner, 2004) to achieve access

control, message integrity, and message confidentiality within WSN. TinySec uses

message authentication code (MAC) to authenticate message, initialization vectors (IV)

to mask packet contents, and the Skipjack algorithm (Schneier, 1996) to encrypt

messages.

TinySec implements MAC to achieve message authentication. A MAC is a one-

way hash function paired with a key. The hash is appended to an encrypted message and

used as a checksum. A mote with the same hash key may recalculate the checksum to

verify the authenticity of the packet data (Schneier, 1996).

Intialization vectors disguise packet content within TinySec. WSN messages may

be highly repetitive such as when motes respond with a simple YES or NO packet.

Eavesdroppers may study the network messages and behavior of a network and learn to

distinguish YES packets despite encryption. An IV forces repeated plaintext messages to

become unique by appending a variable block of unique data to the packet. The simple

message, “YES,” frequently sent by a fictional network would be changed to, “123YES,”

and later when repeated changes to, “964YES” (Schneier, 1996).

The Skipjack encryption algorithm was selected for its conservative RAM usage

and processing speed. UC Berkley researchers rejected AES (Schneier, 1996) and Triple-

23

DES (Schneier, 1996) as being too processor intensive and too slow (Karlof, Sastry,

Wagner, 2004).

TinySec is flawed as it does not prevent a message from being replayed by an

unauthorized device at a later date (a quality known as data freshness). The RAM-

constraints of a typical mote prevent the creation and maintenance of a table with the last

IV value sent from each of the other mote on the network. Further, TinySec may not be

practical as it is built upon a mote Operating System, Tiny OS, and the additional

computation and footprint required to include the OS on a mote may exceed the abilities

of some motes.

2.4.2 SPINS

SPINS (Perrig et al, 2002), developed by Carnegie Mellon University, emphasizes

data freshness over confidentiality. SPINS is developed on the assumption that

constrained computation abilities of motes prevents the use of public keys. Two

technologies create the foundation of SPINS: SNEP and µTESLA.

The SNEP portion ensures data freshness. Each mote knows a pre-distributed

master key common among all network motes, and each mote has a counter. To establish

communication, the client mote sends its current counter number to the mote it wishes to

contact. The server mote returns its own counter to the client with the MAC calculated

using the server’s calculated MAC hash. The client then responds with its own counter

and MAC calculated using its own MAC hash. Following this exchange, motes continue

to communicate using a calculated encryption key, a pseudorandom block of code, and

MAC hashed with a calculated key. All keys are based on the current mote counter.

24

The µTELSA technology – adapted from a stream authentication called TESLA –

provides broadcast authentication. Essentially, each key is self-authenticating as it is

based on a key previously sent to the receiving mote; the initial parameters are distributed

unicast by the network base station (Liu, Ning, 2007). The broadcasting mote repeatedly

hashes a key over a period of time. Each message is appended with a MAC using a hash

of the previous message’s key. Each receiving mote knows the duration of time between

messages and also calculates the chained MAC key to authenticate each message (Luk,

Perrig, Whillock, 2006).

2.4.3 LEAP

LEAP (Localization Encryption and Authentication Protocol)(Zhu, Setia, Jajodia,

2003), designed by George Mason University, supports multiple keying mechanisms with

which to encrypt four classes of mote data exchange: controller to mote, mote to mote,

mote to multiple neighboring motes, and mote to all motes. Additionally, µTESLA is

used for authenticated broadcasts by the controller mote. Periodic group rekeying

prevents compromised motes from decrypting group messages with the current key.

The network controller assigns a unique key to every mote within the network.

The network controller contains a master key known only to the controller mote. A

unique key is generated with a pseudorandom function using the mote’s unique id and the

controller mote’s master key.

Each mote shares a pairwise key with each neighbor mote within one hop. During

the initial introduction of a mote to the system, the controller mote provides the mote

with an initial, generated key. The mote then generates its own key using the initial key

as a seed. When the mote is deployed, it discovers it’s near neighbors and exchanges the

25

mote-generated key. The mote then uses its own key and its neighbor key to generate a

new, shared key and deletes the key originally given by its neighbor. The mote repeats

this process for each of its neighbors. Thus every mote shares a unique key with each of

its neighbors. If a mote is added to the network after the initial set up, it may obtain a list

of neighborhood motes from an established neighbor.

Clusters of motes may be established. The mote initiating the cluster generates a

random key, encrypts the key with the pairwise key for each neighbor, and sends the

cluster key. The receiving mote decrypts the message to obtain the cluster key. The

receiving mote may encrypt this key and share it with its own neighbors.

Finally, a mote may generate a pairwise key specific to a mote several hops away.

By network discovery a mote may indentify motes further than one-hop away. Using a

process similar to the establishment of pairwise keys with one-hop neighbors, a pairwise

key may be established with n-hop motes. This scenario is useful during data aggregation

and allows the data to only be decrypted by the end mote.

A great fault of LEAP is its assumption that all motes are static. Even more

troublesome, the establishment of a unique, pairwise key with every network mote a

sending mote may wish to communicate with can easily become an onerous, RAM-

consuming task.

2.4.4 Sizzle

Sun Microsystems developed Sizzle to create a secure Internet connection to a

wireless sensor network (Gupta et al, 2005). Their abbreviated SSL protocol and small-

footprint HTTPS stack require less than 4KB RAM. A single mote acts as a gateway

between an Internet connection and the remainder of the WSN. Sizzle successfully

26

addresses Internet access to a wireless sensor network including establishing a secure

connection and transporting encrypted data. Sizzle does not address communication

between motes.

2.4.5 MiniSec

In 2007, some of the same researchers who developed SPINS at CMU introduced

a new WSN security architecture named MiniSec (Luk et al, 2007). MiniSec focuses on

network layer security and assumes pre-established symmetric keys. This architecture

seeks to provide a secure network layer protocol providing a high level of security with

low energy consumption. These goals are achieved by operating through a block cipher

mode, transmitting only a portion of the IV (unlike TinySec and SNEP), and creating a

distinct protocol for broadcast messages and unicast messages.

2.4.6 Resurrecting Duckling

The resurrecting duckling (Stajano, 2002; Stajano, Anderson, 2002) is an

embedded system security policy designed to address the issues of device authorization to

command actions and perform actions. The basis of Stajano’s policy is comparable to the

hatching of a duckling – the duckling imprints itself to the first being it sees as its mother.

A device is “soulless” until it is introduced to its mother who provides it with a soul. The

authors recommend assuring the validity of the soul by transmission only via IrDA or a

physical link. This “soul” is a policy dictating what actions the duckling may perform:

the exchange of information, the adherence to commands, and the issuing of commands.

This policy also dictates that a device can “die,” or cease to use its policy; thereby

returning to a state without imprint. After the imprinted policy has been removed from a

27

device it may be introduced to a new mother device. This policy is suitable for a WSN in

which motes must be recognized as a network member despite frequently entering and

leaving the network and a WSN in which motes may participate in group relationships.

Several Zigbee researchers at CMU have taken note of Stajano’s work (Kuo, et al. 2007).

The goal of the researchers’ “Message-in-a-bottle” is to provide a secure means to

initialize a mote cryptographic key without requiring specialized hardware. They observe

that the resurrecting duckling may require specialized hardware in order to securely

transmit the initial key. The “bottle” of their solution is a faraday cage that protects the

key transmissions from eavesdroppers and frequency jamming.

2.5 Related Work

Numerous research and hobbyist projects exist using 802.15.4-compatiable

hardware kits. Unfortunately, it is extremely rare for the corresponding publications to

provide details on the decision process, rationale, or experience in using their selected

hardware. There are only two publications detailing the selection of a development kit.

The first publication is a paper presented at an ASEE (American Society of

Engineering Educators) conference regarding a hands-on introduction to ZigBee for

undergraduates co-written by the author of this thesis (Bateman, Armstrong, and Helps,

2007). This paper only mentions the qualities desired in the development hardware and

notes which kits were considered. Few details regarding the selection of one development

kit of another are provided by the authors, and the topic of security is never addressed.

The second publication is a master’s thesis examining the suitability of ZigBee for

wireless applications (Andersson, 2007). In his thesis, Andreas Andersson provides a

28

brief discussion on the market's opinion of several development 802.15.4-compliant

transceivers. He notes that the CC2420 receiver is the most commonly used within

hardware kits (including Ember, Microchip and Crossbow). He also notes that the ZigBee

development community infrequently uses the Freescale MC13192 that may indicate that

they are impressed by neither the chip's price nor its performance. Andersson further

compares 7 development kits based on the (then) availability of a ZigBee-compliant

stack, the number of nodes in a kit, the transceiver used, the size of the company

developing the kit, and the cost of the kit. Ultimately, he chose the CC2320 DK from

Chipcon because it offered a more complete, ZigBee-compliant stack, the best

transceiver, and the shortest time for delivery.

2.6 Conclusions

IEEE 802.15.4 and its derivative ZigBee are the standards best suited for WSN

communication, yet they each rely on a developer to ensure the security of the channel

between two devices. Much research remains on security techniques with WSN, and the

impact of the security techniques on the limited resource environment needs to be

studied. At this time, very little has been published regarding the selection of a

development kit emphasizing the purpose of security research.

29

3 Methodology

In this chapter the methodology necessary to address the problem stated in

Chapter 1 is dicussed. Several development kits are selected for evaluation. A security

scenario to measure the platforms is presented. The scenario is the assessed for the

qualities necessary in a development kit. Finally, additional development requirements

and concerns are discussed.

3.1 Candidate Development Kits

The objective of this thesis is to compare several, readily available hardware kits

for WSN security development. The selection process for the demonstration hardware

shall be completed in four phases. First, the hardware characteristics necessary to

compare the development kits shall be discussed. Second, the hardware characteristics

eliminated from consideration shall be noted. Third, the notable hardware development

kits not selected shall be mentioned. Fourth, the hardware development kits to be

evaluated shall be presented.

3.1.1 Necessary Hardware Characteristics

Several characteristics must be considered when assessing the candidate

development kits: MCU (micro controller) and memory resources, user interfaces,

30

integrated sensors, power supplies, and technical support. These five characteristics

influence the ease of development, and they may limit the design of the proposed

solution.

Insufficient processor and memory resources may restrict which security tools are

viable on the development hardware. The available RAM defines the number of private

keys a mote may store; thus, the capability of the hypothetical network may be impeded

if a security policy requires that a mote record the private key of each networked mote.

Similarly, the memory storage space and processor size may be insufficient to run

cryptographic code or may exclude the use of resource intensive algorithms such as RSA.

Alternative developmental interfaces influence the ease of providing feedback to

the code developer. A USB or serial link may provide confirmation of code execution

and program traces to a host computer. An LCD on a mote may display clear messages

without the aid of a host computer. LEDs may also communicate data to the developer.

Integrated sensor capabilities influence the system application and affect a

programmer’s debugging strategies. Common integrated- and daughterboard-sensors

include general I/O ADC and DAC, push-buttons, thermistors, phototransistors, and

accelerometers. On one hand, this thesis allows the demonstration application to be

designed around the available mote sensors. On the other hand, the sensors of the

evaluated hardware are highly relevant because sensors provide a means of debugging

and application input. For example, the inclusion of a single push button allows the

developer to easily control the mote in order to simulate input for debugging; whereas a

lack of any push buttons and an inclusion of a photodiode require the developer to control

the mote’s environment (e.g. a rigged shoe box) in order to simulate input for debugging.

31

The cost of research may be influenced by the cost of a power supply to run the

hardware. Development motes are designed to operate with less optimization, fewer sleep

cycles, and increased processing power requirements compared to a completed,

manufactured mote. The resulting higher rate of battery consumption may require a

researcher to frequently replace a mote’s batteries or invest in rechargeable batteries.

Development motes are often powered by one or more of the following: AA batteries,

USB cables, and 110 V AC/DC converters.

While not a physical hardware component, another consideration is the candidate

hardware’s available technical support. The quality of documentation, technical support,

and demonstration code may ease the development process for the unfamiliar hardware.

The presence of an online developers’ community may assist in troubleshooting hardware

difficulties and software bugs. Completed, prior research successes using the mote

hardware demonstrates the implementation feasibility of the hardware.

3.1.2 Disregarded Hardware Characteristics

The three characteristics excluded from consideration include the hardware

programming language, mote physical size, and mote power consumption. The

programming language is irrelevant to the selection process because hardware kits

commonly run C/C++. (The only known exception is the Sun SPOT which runs Java.)

The physical size and power consumption of the development motes will not be

considered because these optimizations are unnecessary for this research.

32

3.1.3 Notable Excluded Platforms

Several kits common to embedded system development have been excluded from

consideration. The Gumstix lacks a readily available 802.15.4-compatible stack. The

PICDEM Z, despite several years on the market, has not garnered any market support.

Finally, TelosB was disregarded in favor of its sibling product, MICA Z, which is

ZigBee-compliant. The Ember EM250 is seriously considered because of Ember’s

popularity in industry; however, this device was rejected due to expense of both its kit

and its expansion boards. The TI CC2430 and TI CC2431 and are also considered, yet

each are disregarded due to the expense of the kits.

The Gumstix (Gumstix Inc., 2009) is a small motherboard – literally about the

size of a gum stick. This device has been used in many applications: from creating a

clarinet-playing robot (Wolfe, 2008) to gathering and viewing real-time measurements of

probes in the San Francisco Bay (Google, 2009). Bluetooth and Wi-Fi capabilities may

be added to the Gumstix with a Wi-Fi module. In 2007, Research Studios of Austria

noted on their website that they had completed a Gumstix-ZigBee adaptor, but no further

information, publications, or software releases could be found.

The PICDEM Z (Microchip Technology Inc., 2008) is a PIC18 motherboard and

daughterboard kit for use with the MPLAB IDE. This kit was excluded because its only

802.15.4-compatible stack was a vastly trimmed version of ZigBee. Some researchers

experienced with Microchip embedded systems may find this kit favorable because it is

compatible with the MPLab IDE, ICD2, and MCC18 compiler. The only notable

PICDEM Z published research evaluates the signal strength of wireless sensor networks

within indoor scenarios (Ferrari, 2007).

33

The TelosB is an 802.15.4-compatible, Crossbow product (Crossbow Technology

Inc., 2008b). The device was originally design in conjunction with WSN research at UC

Berkeley, so the platform depends on TinyOS. Examples of research include a Purdue

study on how cryptography effects node lifetime (Piotrowski, Langendoefer, and Peter,

2006) and creating a mesh network to transmit audio and video (Song, Hatzinakos,

Wang, 2008). It was not considered as a hardware kit in favor of Crossbow’s ZigBee-

compliant MICAz.

Ember sells a ZigBee-compliant device called the EM250 as part of their InSight

ZigBee development kit. The Em250 data sheet (Ember Corporation, 2006) indicates that

the device is built with a 16-bit XAP2b microprocessor, 128 KB program memory, and

5k of RAM. No information is provided regarding additional communication hardware

(i.e. Serial or USB). Ember offers very detailed documentation on the EM250

microprocessor; however, they provide little information about the mote hardware itself.

This device was rejected for this research because, at the time of writing, the InSight

development kits range from thousands to tens of thousands of dollars (Digi-Key

Corporation, 2009).

Chipcon, the creators of the devices used in Andersson’s research, was acquired

by Texas Instruments in 2006 (Mumford). Their most recent ZigBee development

platform is the CC2430. Of all the available hardware kits, TI appears to offer the most

complete kit: a ZigBee-compliant stack, 2 evaluation boards 2 evaluation modules, 2

demonstration boards, batteries, a C-compiler with debugger on a 90-day evaluation

license, and a copy of the Daintree sensor network analyzer (later described in Section

34

4.8). Unfortunately, this more complete kit comes at a cost (starting at $1,500), so is will

not be evaluated within this thesis.

3.1.4 Hardware for Evaluation

Many companies offer development hardware and microchips for 802.15.4 WSN

applications. Both ZigBee-compliant and 802.15.4-compliant kits are considered –

though more weight it given towards ZigBee-compliant kits due to the specification’s

more thorough security definition. The hardware considered – those which were readily

available at the time of hardware selection – include the Crossbow MICAz, the Freescale

MC1321x, and the Sun SPOT.

In general WSN literature, the word ‘mote’ frequently refers to a node within a

wireless sensor network. It should be noted that the Crossbow claims the word ‘mote’ to

describe any of its WSN node products. Sun Microsystems literature prefers to call their

device ‘SPOT’ and refer to Crossbow’s device as ‘mote.’ Throughout the Freescale

documentation they use the unwieldy label ‘MC1321x’ or ‘ZigBee End Device’ (ZED).

This thesis shall use the words ‘mote,’ ‘node,’ and ‘device’ interchangeably regardless of

company origin. MICAz, SPOT, and MC1321x shall be used to directly refer to the given

product.

The Crossbow, Freescale, and Sun kits all have sufficient resources for the

research outlined here, and are affordable enough that they are accessible. A more

thorough examination of their specific qualities is included in Chapter 4.

35

3.2 Security Scenario

A security development scenario will be used to determine which software

qualities are most important in a study of WSN key distribution and updating. This

security development scenario will address a few common issues in creating a security

policy, and partially addresses a key management policy. The hypothetical security

policy shall define means to establish the user's approval of a node within the network, to

create a session between two network motes, to periodically update the network key, to

request the current network key, and to remove a mote from the network. The security

scenario assumes that the network tasks a Network Coordinator with the management of

the network security.

3.2.1 Description of the Solution

This section expounds on the security scenario. The primary objective of this

policy is to establish a secure exchange of data between motes within a WSN network.

The tasks critical to the success of the scenario include the acceptance of a new node into

the network, the distribution of network keys, and the establishment of secure sessions.

The Network Coordinator shall control the security and authorization of its

network. When a mote wishes to join the network, it must first authenticate with the

Network Coordinator. If the mote is permitted to join the network, the Network

Coordinator will provide the current network key to the joining mote (this transaction is

detailed in Section 0). Thereafter, the Network Coordinator will generate and distribute a

new key at the end of a defined time; if a mote misses this update it must contact the

Network Coordinator to receive the new key.

36

Communication between motes shall be secured by a session key. The

handshaking necessary to establish the session key shall be based on SSL (Secure Socket

Layers) and all handshaking packets shall be encrypted with the network key. Motes are

encouraged to formally close the session with a termination packet, but a timeout

scenario will prevent system deadlock. A session may not be reestablished once it is

terminated.

Symmetric cryptography was selected to secure the communication channels of

the proposed security scenario. The network master key is used to encrypt and secure

messages and the same key is used to decrypt those messages. This prevents any device

without the master key from decrypting the packets. Symmetric keys were selected

because it is a well-studied cryptographic technique that can be deployed on limited

resource devices. Asymmetric key cryptography was not used due to concern that motes

would have insufficient RAM to store a key for each device in the network. Similarly,

digital certificates are excluded from the proposed security policy due to anticipated

RAM constraints. There are several known weaknesses of symmetric cryptography –

namely the initial key distribution. In a sense the Network Coordinator functions as the

key distribution center (KDC), but not to the extent that a mote may contact the KDC to

verify the network key. Another known weakness is the distribution of the initial key –

how does one securely transmit a key when two devices do not yet share a secure

communications channel or a secret key by which to encrypt and decrypt? Both 802.15.4

and ZigBee rely on a pre-installed key placed on the hardware either by coding or

configuration. The proposed security policy transmits this key in clear text; a large

vulnerability. This could be worked around by requiring the initial join process to be

37

completed over a secure wire or could be secured by locking each device in a faraday

cage before transmitting the initial key wirelessly. Neither solution is completely

satisfactory, but the issue at hand is appropriate for a separate study in WSN security and

is outside the scope of this thesis. This thesis will accept the symmetric key limitation of

802.15.4 and improve the security of it by proposing temporal key updating policy.

3.2.2 Network Entities

A typical network topology will consist of one Network Coordinator and one or

more Network Motes. This is consistent with the ZigBee specification designation of a

specialized node charged with managing the network security of a network of typical

nodes.

3.2.2.1 Network Coordinator

The Network Coordinator shall be responsible for initiating the network, verifying

motes wishing to enter the network, distributing the network key, and maintaining a list

of all mote groups. The Network Coordinator shall have the following properties.

1. The Network Coordinator shall admit new motes into the network.

2. The Network Coordinator shall generate the network key.

3. The Network Coordinator shall generate a new network key after a defined period

of time.

4. The Network Coordinator shall store one prior network key.

5. The Network Coordinator shall distribute the network key to new motes admitted

to the network.

38

6. The Network Coordinator shall provide the current network key to valid motes

which know the prior network key.

7. The Network Coordinator may update the new network key by sending a message

to each mote within a session established with the prior key.

3.2.2.2 Network Mote

The term “Network Mote” shall refer to any device except the Network

Coordinator. Each Network Mote shall maintain its functions as defined by 802.15.4

specification (i.e. routing). Each Network Mote shall have the following properties.

1. Motes shall connect to the network prior to being authenticated by the

Network Coordinator.

2. After joining the Network Coordinator, the mote shall complete the

authentication process.

3. Network Motes shall store only one network key.

4. Should the Network Mote miss a periodic network key update from the

Network Coordinator, the Network Mote shall request the new network

key.

5. If a Network Mote misses more than one network key update, the Network

Mote must rejoin the network.

6. Whenever possible a mote shall inform the Network Coordinator when the

mote is permanently leaving the network.

39

3.2.3 Joining a Network

Every mote must be introduced to the network. This initial communication shall

occur over a wireless link in clear text. For greater security the initial communication

may be transmitted via a hardware link, but this thesis shall not implement that option.

Like the Resurrecting Duckling policy, a Network Mote shall be loyal first and

foremost to the Network Coordinator. The physical press of a mote button and the

physical press of a coordinator button shall validate the user’s intent to include the mote

in the system network. Once the mote is validated, the Network Coordinator shall provide

the mote with the network key (i.e. “imprinting”).

The hypothetical security policy resembles the security mechanism of the ZigBee-

2006 specification with two critical additions. Both policies require the existence of one

and only one mote trusted with the security of the network. Both policies require that

trust center (i.e. the base station) manage with the distribution of a network key. The

proposed policy, however, adds the requirement of a physical permission to transmit the

key, allows the Network Coordinator to generate a network key rather than relying on a

pre-loaded key, and establishes the requirement and processes that the network key be

periodically updated.

The Network Join Communication sequence is illustrated in Figure 3-1. This

diagram emphasizes that the mote must join the network (i.e. the nebulous, ether,

communication cloud) before messages of any sort can be transmitted or received. All

transactions are completed in clear text. First, the mote joining the network sends a

packet to the Network Coordinator requesting the initiation of the handshaking. The

Network Coordinator responds with an ACK. The joining mote and the Network

40

Coordinator then each request the user to verify the join with either a keystroke from the

host computer or a press of a button on the mote. If the user responds within the allotted

time (e.g. 10 seconds), the Mote then sends an ACK to the Network Coordinator.

Likewise, if the user responds within the allotted time and an ACK is received from the

joining mote, the Network Coordinator records the mote’s entry into the network. Then

the Network Coordinator sends the network key to the mote within the

CoordinatorWelcome packet. Finally, the mote then saves these settings.

The activity of the Network Coordinator is shown in Figure 3-2 and the activity of

the Mote joining the network is shown in Figure 3-3. These diagrams each show the

program flow of each device as it transmits the packets of the Network Join

communication sequence. These diagrams emphasize how each device avoids deadlock

by requiring that the corresponding device respond within an allotted window of time.

When the Network Join sequence is unsuccessful (i.e. an error occurs) than the mote still

wishing to join the network must restart the entire Network Join process. Upon successful

completion the mote is ready to begin transferring data with any member of the system

network.

41

Figure 3-1: Network Join Communication Sequence

42

Figure 3-2: Network Join Network Coordinator Activity

43

Figure 3-3: Network Join Mote Activity

44

3.2.4 Establishing a Session

Any two motes with the current network key may exchange data after establishing

a session. Secure sessions shall be established using SSL (Secure Socket Layers),

abbreviated to accommodate small processors and limited bandwidth. The SSL security

protocol is commonplace among client-server transactions; however, SSL is designed for

systems with which have faster processing and have better reliability than the typical

WSN. The number of necessary SSL packets to establish communication shall be

reduced by eliminating certificates and by limiting each mote to a single encryption

method. This also reduces required code overhead, RAM usage, bandwidth, etc.

The network key may periodically be updated (described in Sections 3.2.5 and

3.2.6). Any mote as the client with the current or prior network key may establish a

session with the Network Coordinator as the server; any mote-client not using the

immediate last key or the current key shall be rejected. Motes must have the current

network key when communicating with other motes.

Within the Session Establish sequence is the client is charged with generating a

random, session key. This session key is included in the ClientHello packet which is

encrypted with the network key and transmitted to the server. (The initial transmission of

the network key is described in Section 3.2.3.) All Session Establish packets shall be

encrypted by the network key until the ChangeCipher command is issued at which point

all communication will commence encrypting with the session key. Once a session is

established, all communication shall be encrypted using the session key until the session

is terminated.

45

To prevent system deadlock, the client shall terminate each session with a

CipherFinished packet, and either the client or the server will timeout if after a given

period of time the data transfer does not commence. Forbidding the motes from storing

session keys will conserve mote RAM, thus a session may not be resumed once it is

terminated.

3.2.5 Updating the Network Key

To adhere to best practices, the Network Coordinator shall update the network

key at the end of a defined time period. This key update transaction assumes all motes are

present on the network at the time the update packets are transmitted. For simplicity, this

scenario intentionally omits addressing the issue occurring when a mote is not present on

the network during a key update transaction. (Section 3.2.6 addresses how a mote can

return to a network after having missed a key update.)

The packet sequence of distributing the new network key is illustrated in Figure

3-4. First, the Network Coordinator overwrites the prior key with the current network

key, generates a new key, and stores the new key as the current network key. Then the

Network Coordinator establishes a session using the prior key and sends the new network

key to each mote one by one.

46

Figure 3-4: Key Update Communication Sequence

47

Figure 3-5: Key Update Coordinator Decision Process

48

The decision activity of the Network Coordinator is shown in Figure 3-5. If a

mote does not acknowledge the receipt of a packet within a user-defined number of

attempts than the Network Coordinator proceeds to contact the next known mote – no

record of failed key distribution is kept. The key update process is considered complete

after the Network Coordinator has attempted to distribute the new key to each mote.

The decision activity of the Network Mote as shown in Figure 3-6 is simple.

When a mote receives a new network key packet it acknowledges the receipt of the new

key, and overwrites its existing network key.

Figure 3-6: Key Update Mote Decision Process

3.2.6 Requesting the Network Key

A mote with an expired network key cannot communicate with other networked

motes which have the updated network key. The Key Request process exists to allow

motes absent from the network during the Network Key Update process (described in

Section 3.2.5 to obtain the new key.

When a mote’s network key has expired the mote must request the current key

from the Network Coordinator. Figure 3-7 shows the sequence of packets exchanged

49

when an authorized mote requests the new network key from the Network Coordinator.

During the data exchange portion of a session established with the Network Coordinator

using the prior network key the mote requests the new key. Then the Network

Coordinator responds by providing the new network key. Finally, the network mote

stores the provided key as the new network key.

Figure 3-7 - Key Request Communication Sequence

The Network Coordinator is charged with responding to mote requests for the

new key (shown in Figure 3-8). Any mote with the prior network key may establish a

secure session with the Network Coordinator; however only authorized motes shall

receive the updated network key. A mote will be refused the new network key if the

Network Coordinator cannot verify the mote as part of the system, or if the mote has

missed more than one network key update, or if the mote has been removed from the

system. During a session date exchange, the mote may attempt to request the new

network key (shown in Figure 3-9).

50

Figure 3-8- Key Request Coordinator Decision

Figure 3-9 - Key Request Mote Decision

51

To enable motes to request the most recent network key using the prior – and only

the prior – network key, the Network Coordinator may be required to attempt to decrypt a

packet with either key. Figure 3-10 illustrates the decision process the Network

Coordinator shall follow when determining which key to decrypt with. Essentially, it is a

trial-and-error approach. The correct key must have been selected if the packet can be

successfully decrypted and restored to a legible cleartext packet (i.e. ClientHello).

Figure 3-10 – Network Coordinator Decryption Decision

Should the decryption process fail the Network Coordinator shall not respond to

the out-of-date Network Mote, and the Network Mote shall treat the lack of response as a

no-response, timeout.

52

3.2.7 Exiting the Network

Motes may remain a member of the network indefinitely until it is removed in one

of three manners. First, a mote will automatically be refused by the network if a mote

misses two or more network updates; that is, when a mote does not have the current

network key and when the Network Coordinator has expired the prior key. Second, a user

may initiate the exit through the mote application which will then erase the mote’s stored

keys and inform the Network Coordinator that the mote is no longer a network node.

Third, a user may remove the mote through the Network Coordinator application which

will then instruct the mote to erase its stored keys (admittedly, only obedient motes will

comply with this command) and exclude the mote from the network key updates. After a

mote has been permanently removed from the network the mote cannot communicate

with the system without completing the Network Join process. The ZigBee-2007

specification provides mechanisms for device management that may be useful to

implementing this hypothetical security policy transaction.

3.3 Software Components

The vital resources necessary to develop and test the security policy are revealed by

observation. These resources include editable transfer protocol, timers, and an existing

encryption algorithm. A development platform must include each of these resources to

enable the efficient development of an effective security policy. For example, a

researcher exploring how to best implement session handshaking should have access to a

provided encryption algorithm that will fit within the device’s flash memory rather than

requiring the researcher to find or develop a suitable encryption algorithm.

53

It is necessary that a transfer protocol exist that can be modified and extended by

the researcher. A developer ought to be able to access and set the values of the existing

802.15.4 or ZigBee headers. Several of these header settings may use useful such as the

key identification fields or the security type fields. In some instances it may be necessary

to expand the headers without violating the standard’s constructs.

Timers are critical to measuring time intervals. These intervals may be used to

calculate when to next release the periodic key update, and to time the communication

between two devices to prevent system deadlock. Timers may also be used when

developing tests to ensure the quality of a proposed solution (i.e. measuring the increased

time necessary for a mote to join the network).

An existing encryption algorithm that can fit with the development kit’s available

flash and RAM is crucial. A sufficiently cryptographically secure pseudo-random number

generator is also crucial. The security of the test scenario will fail if its components are

not reliably secure.

3.4 Key Development Concerns

In Chapter 4, each development kit will be evaluated for its suitability for

academic research in security. The hardware topics discussed shall include the sensors,

displays, communication interfaces, power supply, device types, daughter boards,

housing, and cost. The software topics shall include the available stack, demonstration

code, and any additional security libraries. The development tools section shall include

notes on the easy of loading, compiling, debugging, cost, and overall usability of the

development applications. The development assistance for each kit shall be evaluated

54

including available manuals, tutorials, data sheets, and online community. Finally, other

development resources such as simulators and benchmarking tools shall be noted for each

kit.

55

4 Analysis

This chapter shall examine and compare the Crossbow MICAz, the Freescale

MC1321x, and the Sun SPOT. The background and basic characteristics of each kit shall

be introduced. The hardware shall be evaluated based on sensors, user interface, daughter

boards, power options, housing, and the multiple device types. The software shall be

assessed based on its language, radio stack, demonstration code, additional libraries, Java

Virtual Machine (JVM), and available operating systems. The hypothetical security

scenario will be analyzed and each platform shall be audited for the security resources

required by the scenario. Remarks shall be made regarding the hardware’s available

documentation, demonstration code, and online community. Additional simulation,

emulation, and benchmarking tools available to the devices shall be noted. The expense

of the hardware and software of each kit will be compared. Finally, the evaluation of each

hardware kit shall be summarized.

4.1 Introduction of Evaluated Hardware

Three readily available hardware kits were selected for evaluation in Chapter 2:

Crossbow MICAz, Freescale MC1321x, and Sun SPOT. They were each found to have

the basic hardware characteristics necessary to serve as a platform for WSN security

research. A basic background and summary of each device shall now be presented.

56

4.1.1.1 Crossbow MICAz

The Crossbow MICAz has been selected for evaluation. This primary code base

of this device is TinyOS (Levis, et al, 2005). This device fulfills all the established

requirements, offers more flash memory than its competitors, and finds popularity within

WSN research communities.

Crossbow Technology Inc. leads the industry in the number of WSN products

offered to the research market. Currently, Crossbow sells three 802.15.4-compliant

motes: MICAz, Telos B, and IRIS; of these products the MICAz was preferred for its

ZigBee-compliance. The MICAz includes many desirable features including 128 KB of

program storage, 4 KB of RAM, several LEDs, a variety of daughterboard sensors, and a

2 AA battery power supply (see Table 4-1) (Crossbow Technology Inc., 2007). Due to

the mote’s popularity among ZigBee researchers much MICAz documentation and many

troubleshooting tips exist online. Researchers have used the MICAz to examine the

possibility of implementing a WSN for medical sensor data (Hansen, Støa, 2006); to

determine the feasibility of real-time, wearable, PAN devices (Koh, Kong, 2006); and to

collect greenhouse environment data (Zhu, Zhong, Shir, 2006).

Table 4-1: Crossbow MICAz Features (Crossbow Technology Inc., 2007)

MCU MPR2400 (based on the Atmel Atmega128L
(16 MHz, 8-bit))

Program Memory 128 KB
RAM 4 KB
Communications ZigBee, Serial UART
Power Options 2, AA Batteries
User Interface 3 LEDs
Size 58 mm x 32 mm x 14 mm
Sensors 51-pin Expansion Connector for Crossbow Sensor

Boards (Light, Temperature, RH, Barometric Pressure,
Acceleration/Seismic, Acoustic, Magnetic, Etc.)

57

4.1.1.2 Freescale MC1321x

The Freescale MC1321x has been selected for evaluation. Freescale’s inclusion of

multiple LEDs, multiple push buttons, and an LCD on the network coordinator supplies

multiple methods for data input and output. The serial port and the USB port provides

alternative means of data transfer while troubleshooting the wireless connection. The

mote’s plastic casing allows for easy handling and protects the mote circuitry.

Freescale Semiconductors Inc. offers several different memory configurations of

their MC1321x mote design. Each design may be purchased as an NCB (Network

Coordinator Board) or SRB (Sensor Reference Board). The MC13213 SRB includes

UART, USB, 60 KB Flash memory, 4KB RAM, 4 buttons, and 4 LEDs. Each mote is

powered by either two AA batteries, a USB connection, or an 110V adapter (see Table

4-2)(Freescale Semiconductor Inc., 2007a). The NCB includes several additional

hardware integrations such as an external antenna connection, an LCD, and an RS-232

port. Unfortunately, little research exists using these relatively new Freescale motes.

Table 4-2: Freescale MC13213 SRB Features (Freescale Semiconductor Inc., 2007a)

MCU Freescale HCS08 (40 MHz, 8-bit)
Program Memory 60 KB
RAM 4 KB
Communications ZigBee, USB
Power Options 2x, AA Batteries; USB; External Power Supply
User Interface 5 LEDs and 4 Switches
Size 86 mm x 56 mm x 30 mm
Sensors Integrated 3-Axis Accelerometer; Temperature Sensor,

26-pin I/O Ports

Notably, Freescale now offers a MC1322x kit which was not available when the

MC1321x was selected and purchased (Freescale Semiconductor Inc, 2008; Freescale

58

Semiconductor Inc, 2009c). The MC1322x uses a 26MHz, 32-bit ARM processor, an

AES hardware accelerator, 128 KB Flash and 96 KB RAM. Further, this device offers 80

KB ROM for the boot software. This kit also further specializes the Freescale ZigBee

devices by creating a ‘Low Power Board’ (LPB) which runs on AAA batteries; the lower

power profile appears to be achieved by removing the sensor board included in the SRB.

Finally, the kit includes an 802.15.4 sniffer for monitoring nearby traffic.

4.1.1.3 Sun SPOT

As of March 2008, Sun has released all the code (including the JVM) as open

source and introduced academic pricing available to students. Further, the SPOT offers

the convenience of the Java language (this author’s “native” programming language) and

a small community of researchers implementing SSH on the Sun SPOT devices. Notably,

the Sun SPOT is not ZigBee-compliant like the other two kits, but is 802.15.4-compliant.

Sun Microsystems Inc. offers a novel hardware design that runs a JVM directly on

the hardware thus enabling Java development for the 802.15.4-compliant embedded

system and eliminating the need for an Operating System. Manufacturing difficulties

caused several release delays from the initially predicated release in 2006, but the

hardware was eventually released in 2007.

Each Sun SPOT kit includes 1 base station and 2 full Sun SPOT devices. The base

station acts as a gateway between a host computer and the WSN; the base station cannot

run on battery-power and does not have any sensors. Each Sun SPOT device includes a

180 Mhz, 32-bit ARM processor, 512 RAM, 4 M flash, 8 tri-color LEDs, and 2 switches

(see Table 4-3). The SPOT may be powered by a USB interface or a built-in lithium-ion

battery The SPOT is significantly more powerful than the prior two evaluated kits, but

59

there are no existing studies documenting how this affects the device’s battery life in

comparison to the other devices. The differences in specifications make it impossible for

researchers to equally compare the Crossbow and Freescale motes to the SPOT where

software efficiency and device lifetime are concerned. Empirical observation shows the

Sun SPOT development motes to consume batteries more rapidly than others, but within

the same order of magnitude.

Table 4-3: Sun SPOT Features (Sun Microsystems Inc., 2009a)

MCU ARM920T (180 MHz, 32-bit)
Program Memory 4,000 KB (4 M)
RAM 512 KB
Communications 802.15.4
Power Options Rechargeable Battery; USB Interface
User Interface 8, Tri-Color LEDs and 2 Switches
Size 41 mm x 23 mm x 70 mm
Sensors Integrated 3-Axis Accelerometer; Temperature Sensor;

Light Sensor; 6 Analog Inputs Readable by ADC; 6
General Purpose I/O Pins; 5 High Current Output Pins

Sun SPOTS have been implemented in several application-based projects such as

art-installations (Sukumaran, 2006), collecting data in a Panama forest (Fusting, 2008),

and guiding a robot with a gesture-remote (marvelouskobe, 2008). (It must be noted that

there are very few periodical or academic publications featuring Sun SPOTs and many of

the existing applications are from Sun Labs.)

An excellent feature of the Sun SPOT software is its open source code – including

a security library. The library contains readily available code to generate ECC (Schneier,

1996) keys and perform SSL exchanges. The library expects the developer to create the

application layer to manage the keys and establish the network interactions.

60

4.2 Hardware

The hardware specification of each mote impacts the developer’s ability to design

software for the embedded system. The memory and processor capabilities may influence

a researcher’s freedom in using readily available algorithms. The user interface tools such

as LEDs and push buttons will aid a developer in debugging mote software. The power

options of a kit are notable as it may require a budget for batteries or require a mote to be

tethered to a power supply; the power options also impact the motes usability in deployed

experiments and applications. Good housing of a device is necessary to protect the

circuitry of a device while not preventing the user from interacting with the device’s

interfaces. Crossbow, Freescale, and Sun each offers a kit with at least one standard mote

that may be used as an endpoint or router within a WSN, as well as a specialized mote.

Crossbow and Sun offer a mote for programming the network over the air, and Freescale

offers a mote with an LCD interface and additional break-out pins.

4.2.1 Memory and Processor

In Table 4-1, Table 4-2, and Table 4-3 a comparison of each of the device

hardware specs was presented. Each of the platform’s memory and processer capabilities

was found to be suitable for 802.15.4 and ZigBee development. On one hand, the MICAz

and MC1321x are comparable. The Crossbow mote has 4KB RAM; 128KB Flash; and 16

MHz, 8-bit processor. The Freescale mote has 4 KB RAM; 60KB Flash; and a 40MHz, 8-

bit processor. On the other hand, the Sun SPOT far exceeds the concept of “small, and

limited” for a mote with 512 KB RAM, 4,000KB (4 M) Flash, and a 180 MHz, 32-bit

processor. The Crossbow and Freescale devices will provide a more accurate test

61

platform for real application expected to survive years on battery power alone, yet the

Sun enables a security developer to use most common security algorithms without

constraint.

4.2.2 User Interface and Sensors

The user interface of each mote is of great importance to the user. The interfaces

of the device must enable the user to control the device actions, determine the point of the

mote within a state diagram or process, debug the software code, and generate system

output. Such interfaces may include a UART, LCDs, LEDs, and buttons. Sensor

accessories such as accelerometers may be useful as well.

The MICAz offers the most limited interface of the evaluated devices. The mote

itself only includes capabilities for processing and communication. An expansion

connector is available for its daughterboards (discussed in Section 4.2.3). Only two LEDs

are available on the device, and a third LED is reserved to indicate power. No buttons are

available to the developer. The desktop may communicate and program the device either

over the air (OTA) through a base station or via a serial connection.

Freescale MC1321x offers several interfaces and sensors. The mote offers 5

LEDs: 1 of which is dedicated to power and reset indication with, and the other 4 are

available for use by the developer. The 4 development LEDS are situated above 4

buttons; though there is no hardware correlation between the lights and the buttons.

Further, the NCB device offers an LCD for message output (see Section 4.2.6 for more

information on Device Types). The device also has a 3-axis accelerometer, a temperature

sensor, a 36-pin general purpose I/O, and an 8-channel, 10-bit ADC. The Freescale mote

code is loaded from the development computer using a BDM (Background Debug Mode)

62

interface; additionally, the BDM permits the user to debug and step through code while

running it on the hardware.

The Sun SPOT provides several interfaces and sensors. The SPOT offers 8 tri-

colored LEDS. These lights are a great benefit to programmers as it enables them to

color-code messages. (For example, LED1 may be “blue” to indicate that no network

connection has been established, “purple” to indicate that the mote is in the process of

establishing a connection, and “red” to indicate a connection has been established.) A

slight disadvantage is that the mote only offers 2 buttons – certainly an improvement over

the MICAz, but not as convenient as the MC1321x. As with the Freescale mote, the

SPOT offers a 3-axis accelerometer and a temperature sensor. The mote also offers a

light sensor, 6 ADC pins, 6 general purpose I/O pins, and 5 high current output pins.

Code may be loaded onto the SPOT via USB or by OTA distribution by a base station.

4.2.3 Daughterboards

Daughterboards may be attached to a mote to provide additional sensors or

outputs. Neither Freescale nor Sun offer expansion daughterboards for their devices, yet

each of those devices offer sufficient capabilities as they are. Crossbow, however, may

cripple a developer with its lack of inputs and outputs. Fortunately, Crossbow offers a

variety of daughterboards.

The MICAz has a built-in expansion connector. Sensing capabilities offered by

these boards include GPS, magnetic field, sound, a light sensor, humidity, and

temperature. These boards may not be useful for a developer except for very narrowly

defined applications. The starter kit for the MICAz ships with 2 sensor nodes. These

63

nodes add capabilities for temperature, acceleration, humidity, barometric pressure, and

light monitoring – hardly helpful when one wishes for a simple push button.

4.2.4 Power

A mote’s source of power may impact the cost of research should a mote require

batteries and may affect the mobility of a mote if it must be tethered to a power source.

The Crossbow MICAz is powered by 2 AA batteries that may need periodic changing

when used by a device with un-optimized code. The Freescale MC1321x may be

powered either by 2 AA batteries, by wall adaptor, or by USB. The Sun SPOT may

powered by USB or by an internal battery that must be charged via USB. All the motes

are suitable in regards to power for security research.

4.2.5 Housing

The housing of a device affects the developer’s ability to interact with the device.

A lack of housing increases the probability the device circuitry will be damaged by static;

particularly as software developers rarely wear grounding straps. However, the housing

itself may prevent a developer from being able to read the user interface, press the device

buttons, access the device’s break-out pins, or make it difficult (where applicable) to

change the device’s batteries. The housing must be designed with a careful balance of

attention to protecting the device while permitting the user to handle the device.

As-is, the MICAz is difficult to safely handle without fear of causing static

damage (Figure 4-1); only the battery casing and sides of the circuit boards may be safely

touched without grounding the developer. Crossbow offers an injection-molded housing

for the MICAz as an accessory product (Crossbow Technology Inc., 2008a). As

64

previously discussed the mote essentially lacks buttons and LEDs, so a bubble enclosure

is suitable for the MICAz.

Figure 4-1- Crossbow MICAz

The Freescale MC1321x SRB and NCB offer the best, plastic housing of the

evaluated kits (Figure 4-2). The clear, top-half of the housing allows easy viewing of the

mote’s LEDs and allows easy access to the mote’s buttons. The housing also has

openings for each of the device’s power connections, the USB interface, and break-out

pins. The only inconvenience of this housing is removing the stiff, battery cover.

Figure 4-2 - Freescale MC13213 SRB

65

The SPOT housing is pretty, but is wanting in functionality (Figure 4-3). The

casing and fin allow for easy handling of the device. The case offers an opening for the

USB interface and has a built-out power button. The dark plastic can make it difficult to

read the LEDs at a glance – particularly if some messages are transmitted by turning the

LED off or if the LED brightness is not at full capacity. Inconveniently, the user must

remove the casing cover to access the mote buttons, easily view the LEDs, or work with

the break-out pins.

Figure 4-3 - Sun SPOT

4.2.6 Device Types

The available hardware platforms often consist of multiple types of devices.

Typically this will include a “base station” type device used for network communication

and for programming devices over the air, and sometimes specialized mote offering

additional sensor boards or communication interfaces. Each of the evaluated kits offers

both regular motes and specialized motes.

66

A Crossbow MICAz starter kit includes of 3 wireless modules, 2 sensor nodes,

and a base station node. The base station is a modified MICAz device that connects to a

desktop via USB in order to program network devices and relay messages between the

desktop and the network. The regular MICAz motes lack a USB interface or serial port,

so they are restricted to communicating with the desktop OTA via the base station.

The Freescale offers a kit that includes two different devices: 2 SRB and 1 NCB.

The NCB is designed to act as the network coordinator by adding an LCD and additional

break-out pins to the SRB capabilities (described in Table 4-2). The NCB LCD is

particularly useful for printing debug messages without having to transmit a message to

the desktop and without developing codes for LEDs. Freescale also offers a kit that

includes 3 SRB devices and no NCB devices.

The Sun SPOT kit includes two different devices: 2 full SPOT devices and 1 base

station. The full SPOT device includes battery, a sensor board, a processing board, and

the plastic housing. The base station includes only a processing board and the plastic

housing. The purpose of the base station is to primarily act as a network link between the

desktop and the network: deploying software updates, gathering responses, and

forwarding network data to the desktop. (Notably, motes can speak directly with the

desktop if they are connected via USB.) Sun provides software that allows the desktop to

emulate a full SPOT device. Inconveniently, the base station is difficult to use without a

connected desktop as it has no sensor board (i.e. sensors, LEDs, or interface buttons) and

must be powered by USB at all times.

67

4.3 Development Environment

Like a strong nail and a solid hammer help an individual to create a table from

wood, a good development environment with debugging capabilities help an individual to

program and to deploy a secure network. A development IDE will provide a clean

interface to control and manage multiple files and may provide debugging tools to aid a

user in resolving software bugs. A clean deployment system will minimize the difficulty

of distributing the software changes to the network nodes.

Crossbow does not provide or recommend a particular development environment.

It is left to the developers to choose their favorite C editor (be that an IDE or a text

editor) and use Linux (or Cygwin) to build and deploy the code. Fortunately, many tools

are available at no cost. Developers with little unaided C experience will struggle as they

attempt to determine how to write, build, and deploy code through gcc cross compilers.

The Freescale education mote kit ships with an educational copy of CodeWarrior

HC(S)08, yet Freescale’s BeeStack is too large be compiled by the restricted, educational

software copy (i.e. not even the demonstration software configured with mesh

networking and security can be compiled without significant modification). Typically,

CodeWarrior with HC(S)08 support costs $950 (Freescale Semiconductor Inc, 2009b).

CodeWarrior itself is a common IDE for developing in C, but the real difficulty in

departing from CodeWarrior is obtaining a compiler compatible with the MC1321x

processing board. The developer may find some frustration in that a CodeWarrior tool is

used to build and deploy the code that often fails if multiple instances are running.

Further frustrations may be found when the compiler reports a link or compile error using

a CodeWarrior error code that provides little to no information regarding the bug.

68

Sun recommends using the NetBeans IDE and the Apache ANT Java-based build

tool to develop code for the SPOT. Any Java editor may be used to develop code, but Sun

offers a SPOT-specific module for NetBeans that enables users to build and deploy code

to the mote with two clicks in the IDE. ANT may be used for fine control of the code

build and deployment. NetBeans offers several debugging tools common to IDE

applications, yet NetBeans does not provide an easily read tutorial on how to use the

debugging tools. Similarly, users new to ANT may not understand how to configure the

build configuration files; however, Sun does provide an excellent default build.xml and

provides a good SPOT-specific introduction on how to use ANT. Both of these software

tools are available online at no cost.

4.4 Software

The available software for a device may ease the path of development by

providing solid ground for a developer to being work. The language of the software may

influence the speed developers learn to use the software. The Radio Stack software is

critical for programming radio streams and handshaking between two devices. Any

available demonstration code may show the developer how a certain library is best used

and may provide a template for the developer’s custom code. Additional libraries

available to the user will enable a developer’s ability to program more complex security

policies. The Sun SPOTs use a JVM to execute the developer’s Java code on the

hardware. Finally, an operating system may handle software tasks for the user.

69

4.4.1 Software Language

The language of the kits was disregarded as a deciding factor in the preliminary

selection of these kits, yet language can make a difference to a developer. Just like

individuals find it easier to communicate in their native tongue; a programmer may find it

easier to program in one language or another. The choice of language is particularly

notable when a programmer must choose between C and Java.

C is the language most commonly used in embedded system development. This is

true for both the Crossbow and Freescale products. C is best suited for working directly

to control hardware. Developers more familiar with procedural coding and C headers will

be most comfortable programming these devices.

In recent years it has become common to teach computer students Java as their

first language, and many find it difficult to move to the conventions of the C languages;

particularly when they are unaccustomed to thinking in procedural or state-machine

architectures. The Sun SPOT is a novel device that uses the Squawk JVM to run Java

directly on the hardware. Java users will be particularly happy with the familiarity of the

Java class structure and the ease of using System.out.println() to send a message through

the UART.

4.4.2 Radio Stack

The Radio Stack implements the 802.15.4- or ZigBee-compliant source code for

communicating between separate nodes. The functions and variables made available by

this code will enable a developer to interact directly with the network joining,

handshaking, and packet formation of network communication. A radio stack that cannot

be easily interfaced with may be detrimental to a developer researching network security.

70

Crossbow ships with the TinyOS code which is a small, open source Operating

System. TinyOS includes a stack that transmits 802.15.4-compliant frames, but does not

adhere to 802.15.4 physical and data link definitions (TinyOS, 2009). Any datastream

security will be implemented using separate TinyOS libraries.

Freescale offers its ZigBee-2006-compliant BeeStack. A 90-day trial license for

this software is included in every Freescale development kit. The BeeStack is a closed-

source library that cannot be modified. The BeeStack communications and network

configurations may be configured using the BeeKit software available through Freescale

requires most of the mote memory. The BeeStack code on the device may require 17-

35KB of memory; that is, the code requires 28% to 58% of the memory available to the

SRB depending on networking and security settings leaving as little as 29KB for

researcher object code and other memory objects. (Freescale Semiconductor Inc., 2007a)

Thus the BeeStack (as of 2007) is not appropriate for developers seeking to modify

protocols and handshaking or include their own security algorithms.

The Sun SPOT library includes an 802.15.4-compliant communications stack.

The stack utilities are available through the Radiogram and Datagram libraries. The lack

of a ZigBee-compliant library may hinder the developer as the 802.15.4 does not include

any basic security functions for key transport or storage. Fortunately, all the SPOT code

is open source and an additional security library is available (see Section 4.4.4), so a

determined developer may achieve their objectives.

4.4.3 Demonstration Code

Demonstration code provides a template and a tutorial to the user. Well-written

demonstration code provides the user with a good understanding of how code for the

71

mote is structured. Modular demonstration code can lend tools to the user for reuse such

as sensor board commands or radio stream initialization. Demonstration code may also

serve as a template for users to begin their own code by editing and revising particular

sections of the code.

Crossbow does not provide any demonstration code, so the developers must rely

on the device datasheet, their knowledge of C, and code available online from both

Crossbow and other developers. Researchers familiar with the software tools may not

experience any troubles, but any researcher not firmly grounded in C tools and coding

will become frustrated as they struggle to launch an OTA, “Hello World,” application.

Freescale does not provide any demonstration code per se; the only code provided

by Freescale is generated by the BeeKit configuration and a few demonstrations may be

inferred from the BeeKit and BeeStack documentation. This code may be overwhelming

to the new developer as it consists of several hundred files and several pre-compiled files.

The “main” function of this code initializes the BeeStack and application state machine,

and the initialization of the main function for the user application is located in a file

called “beeapp.c” This compiled code includes a small application that will transmit an

incrementing integer over the radio stream to another device to be displayed on that

device’s LED array. The code is not well commented, but a developer with basic

programming experience should be able to understand from this code the basics of

interfacing with and LCD and transmitting an integer.

Sun Labs offers the best demonstration application code. The demonstration

clearly conveys the potential of the motes with “ectoplasmic bouncing ball” code: when a

new node joins the network it communicates with the existing devices to choose a unique

72

ball color and allows users to “bounce” each ball between any two devices on the

network by actuating the accelerometer. Sun’s code includes simple libraries for

controlling LEDs and the sensor board providing excellent functions to invoke. The

template demonstration application used in the tutorial documentation is written clearly

and makes it obvious how and where to create custom code.

4.4.4 Additional Libraries

Additional libraries and code may enable a researcher to focus on developing

code specific to their topic without having to first “reinvent the wheel.” For example, a

researcher studying the propagation of key updating is better served by an existing key

storage and updating system than writing code from scratch.

Crossbow’s additional libraries are created primarily by the online, TinyOS

community. This community provides a great deal of source code for the MICAz and

other Crossbow motes. The most notable of the additional libraries is TinySec (fully

discussed in Section 2.4.1) that adds access control, encryption, and key management to

TinyOS. Notably, the University of Cambridge assessed TinySec and found it

incompatible with MICAz, but they have since released their own edition that is

compatible with the Crossbow device (Cvrcek, 2008). Inexperienced developers may find

it difficult to learn to work with TinyOS as it uses NesC instead of regular C and much of

the existing online documentation and wikis are incomplete or written by knowledgeable

individuals who have forgotten the struggles of a fledgling TinyOS programmer.

There are no known additional libraries or source code specifically for the

Freescale MC1321x. The absence of libraries indicates a lack of adoption by the research

community and limited public-release research on the part of Freescale. The developer

73

will be able to find generic C libraries for use on the mote, but (as previously discussed)

may encounter difficulties in integrating this code with the BeeStack particularly in the

limited resources of the mote.

Sun Labs has released additional, open-source libraries for the Sun SPOT. The

libraries do include the aforementioned core, network, and sensor board libraries. What is

notable is the ongoing development of a security library for the Sun SPOT. This library is

available for free to guest users through an online subversion repository. This library

currently includes tools for SSL/TLS handshaking, session establishment, ECC

encryption, and HTTPS. The downloadable code includes a read-me file giving a general

explanation of the code, yet there is little online documentation or discussion regarding

the development of this library. Researchers unfamiliar with SSL, ECC, or the Sun SPOT

may find a steep learning curve as there is no supporting documentation.

4.4.5 Java Virtual Machine

The Squawk Java Virtual Machine enables a Sun SPOT to run Java code “on the

bare metal” (Simon et al, 2006). JVM itself provides an embedded system developer with

garbage collection, pointer safety, thread management, and exception handling. Squawk

provides several OS-level mechanisms: the handling of interrupts, network stack

functionality, and resource management. The JVM itself takes up very little of a SPOT’s

resources. The Squawk 1.1 VM and CLDC require a total of 512 KB. The SPOT core

libraries require 156 KB. This leaves 3.4M of memory for the research code.

74

4.4.6 Operating System

An Operating System enables a developer to allow the system to control batch

processes, timesharing, process control, memory management, resource allocation,

scheduling, and logging. An OS for an 802.15.4 or ZigBee device must consume little of

the system’s scarce memory and consume few of the processing cycles of the relatively

slow CPU. Many developers may elect to include an Operating System on their motes to

control multiple applications and provide better memory and resource management.

Many Operating Systems for lightweight embedded systems exist:

• Contiki (Dunkels, Grovall, Voigt, 2004),

• Mantis (Bhatti, et al, 2005),

• SOS (Han, et al, 2005),

• TinyOS (Levis, et al, 2005), and

• ZWOS (Melkonian, Wu, 2005).

Of these, TinyOS is the de facto OS for ZigBee applications. The remaining

Operating Systems are rarely implemented outside of the original development group.

The TinyOS is quite specific to the Crossbow products, including the MICAz. The

greatest challenge of TinyOS may be its use of the NesC language rather than a more

common variety of C.

Despite the existence of many possible Operating Systems, an OS is not strictly

required to implement a WSN and sometimes is not even available. There is no existing

Operating System implementation for the Freescale and Sun motes.

75

4.5 Analysis of the Security Scenario

The 802.15.4 standard and the ZigBee specification both lack critical security

definitions. Neither standard provides any means of authorizing a mote, establishing a

key, or updating a key. The current security definitions rely on a key that is preloaded on

a mote by either hard coding or by configuration. This security weakness may be

exploited if a mote is captured or if unencrypted code is obtained by an unauthorized

user. The hypothetical security policy increases its network security by first requiring the

user to verify the identity of the mote (i.e. a button press) and then by distributing the

master key to the mote. This eliminates the need for a pre-installed key. Further, the

hypothetical security policy by providing the utilities necessary to periodically update the

master key; this enables the developer to adhere to current best practices.

In the standard implementation, when a device wishes to join a network it simply

establishes a link with the nearest router thus joining the network cloud. A more secure

system for a home application would require a user to physically authorize a device to

join the network, “Yes. I see my toaster wants to join my home network, so I now press

this button on the toaster to indicate that I approve.” The networked device is then

recorded as a valid mote until the device is removed by the user.

A user must physically press a button on the Coordinator mote as well as the mote

wishing to join the network. The strategy reduces the likelihood of an unauthorized mote

entering the network as it requires the user to handle each of the motes. Difficulties may

arise if the network coordinator and the motes are physically separated; and this may

require one user to be present at each of the devices. This strategy assumes that at least

the Coordinator is physically protected and not accessible to an unauthorized individual.

76

The proposed security scenario transmits the master key in a packet after the user

has verified that the requesting mote may be permitted into the network. On one hand,

this enables the coordinator to provide the latest version of the network key without

relying on a default key. One the other hand, since this initial communication occurs by

plaintext a packet sniffer will likely be able to capture the key. This key initialization can

be strengthened by requiring that the initial communication be established by a wired

link, at the cost of user convenience. A mote USB interface or a mote I/O pin may

provide the wired link.

An application which periodically updates the master key strengthens its network

security. Over time, as greater amounts of encrypted data are passed with a static key, the

cipher becomes vulnerable to cryptanalysis techniques that require large data sets. The

proposed security policy provides utilities to update the network key to all motes that

have formerly been provided with the network key; this will enable an application to

initiate the propagation of new key throughout the network without requiring any user

involvement.

The hypothetical security scenario will enable the Coordinator to periodically

update the network key on all of the authorized motes. The frequency of this update is

application-dependant on several parameters: the amount of traffic on the network, the

level of security required by the network, and the amount of time required to propagate

the new key throughout the network.

A mobile mote’s network key will become out of date if is away from the network

for a key update. The probability of this occurring depends on the application design

77

which includes the definitions of the duration and frequency at which a mote may be

away from the network and defines the definition of how frequently a new key is created.

To receive the updated key the motes must know the prior network key. This

allows the new key to be securely transmitted using the prior network key and only to

transmit the key to motes having received prior authorization to be on the network.

The establishment that a mote be loyal to the Coordinator is not fully discussed or

realized in the hypothetical security scenario. This loyalty can ensure that a mote is

removed from a network when directed by the coordinator (the key utilities for this are

provided in ZigBee-2007). Further, it can be used to command obedient motes to scrub

their memory of any prior network keys – thus ensuring prior and current keys are not

revealed to unauthorized entities.

4.6 Suitability to the Security Scenario

It is crucial that a mote can accommodate the key security components that have

been identified as necessary to the developer: packet header access, timers, and ready

encryption algorithms (see Section 3.2.6). These components may rely on both hardware

and software; for example, a timer is an implementation within hardware, yet the user

must have proper software and headers to give register access to the timer.

4.6.1 Access to 802.15.4 Headers

TinyOS and thereby MICAz only offer 802.15.4-compatible frames rather than a

full implementation of 802.15.4 (TinyOS, 2009). A small memo exists with

documentation of these frames (Hui, Levis, Moss, 2009), but there is no other

78

documentation describing access or manipulation of these frames. A developer can

discover how to manipulate the packet headers by exploring the open-source code.

The Freescale BeeStack does not provide any access to the packet headers. The

appropriate headers and functions are inaccessible to developers, due to the closed nature

of the code. Thus the MC1321x is impractical for security developers not wishing to

discard the existing software framework and begin from scratch.

The Sun SPOT core and security code does not provide any direct method to read

or to manipulate the packet headers. Determined developers will likely be able to modify

the open-source code to suit their needs.

4.6.2 Timers

The ATmega 128L used by the MICAz has two, single-channel, 8-bit

timer/counters. The TinyOS and TinySec documentation are each unclear how many of

these timers are reserved and how many are available to the developer. A proposal for a

TinyOS revision comments that the OS does not do a sufficient job exposing the

microcontroller through interfaces and that the area of timers ought to include several

improvements including a need for a counter and a periodic event scheduler (Sharp,

Turon, and Gay, 2007). The internal hardware is accessible by the developer when using

the C language, but TinyOS itself does not provide any interfaces to the MICAz timers.

The MC1321x has one 5-channel, 16-bit timer/PWM module and one 3-channel,

16-bit timer/PWM (Freescale, datasheet); the BeeKit documentation isn’t clear on how

many of these timers are claimed by BeeKit itself and how many are available to the

developer. The timers are easily used for interrupts, but the developer can expect to run

into difficulties measuring time intervals as the timer frequently rolls over. Freescale

79

provides structures for the handling of rollovers, but relies on the user-written application

to manage them.

The Sun SPOT processor has two AT91 Timer/Counters. Each timer counter

offers three, 16-bit channels; two of these counters are reserved for system use and the

remaining four counters are available to the developer. Sun provides applications notes

on how to measure a time interval and how to perform a periodic task using an interrupt

(Sun Microsystems Inc, 2007). The difficulty, like the other platforms, is that the timer

interval is often much shorter than what the developer may wish to measure; as is the

case of the hypothetical security method where a device may wish to wait “10 seconds”

for a user to press a button.

4.6.3 Encryption Algorithms

TinyOS as provided by Crossbow does not provide any encryption algorithms;

however, the OS may be supplemented with additional code such as TinySec. This

module includes support for the SkipJack algorithm, yet documentation describing the

use of the code is readily available. It must be noted that TinySec is not necessarily

compatible with 802.15.4- and ZigBee-standard radios, so a version ported to the MICAz

must be used (Cvrcek, 2008). Determined developers will be able to modify the open-

source code to suit their needs.

Freescale offers an 802.15.4-compliant stack for the MC1321x, and it includes an

AES algorithm. However, including this code on the device may require 17-35KB of

MCU memory depending on the configuration of the security and the network (Freescale,

2007); that is; the code requires 28% to 58% of the memory available to the SRB

depending on networking and security settings (Freescale Semiconductor Inc., 2007a).

80

Unfortunately, it is impossible in the BeeKit to configure which portions of the security

utility a developer wishes to include. Furthermore, the interfaces to the built-in utilities

are extremely limited, almost to the point of simply being “turn the security on,” “ok,

now turn it off,” and “here’s the datagram to encrypt – work your enigmatic security

magic.” Understandably, Freescale may anticipate selling the BeeStack and BeeKit as a

ready-made solution for commercial developers and therefore do not wish the details (and

thereby weaknesses) of the security code to be known to the general public; however, the

black-box code renders the BeeStack and BeeKit unusable to the individual wishing to

study and improve the security code.

The Sun libraries do not ship with any encryption-ready code; however, an open-

source, Sun SPOT security library may be downloaded by the developers (Goldman,

Meike, Gupta, 2009). This security library for the Sun SPOT includes support for ECC

and RSA (Schneier, 1996). (The documentation acknowledges that running RSA will

severely slow the system.) A readme.txt documentation file only provides a quick list of

instructions on how to build a new SPOT library that includes the crypto code. A short

Javadoc API includes a few examples on how to establish a secure radio stream.

4.7 Development Assistance

Documentation is critical in aiding a developer to learn new hardware. Tutorials

may guide the user in completing common development tasks such as building and

deploying code or transmitting OTA data. Datasheets may provide insight into how the

device functions. Software documentation manuals describe the utilities and functions

81

available to the developers. Finally, demonstration code may clarify how to use functions

by illustration and often provide a template to building more complex programs.

4.7.1 Tutorials

Tutorials, Owner’s Manuals, and Quick Start guides are essential to aiding a

developer in learning a new platform. Crossbow does not provide any form of “getting

started” manual to guide a new developer. The TinyOS community does provide a few

tutorials and tips on how to begin, but often these make inaccurate assumptions about the

new developer’s understanding of the hardware, the software, or the NesC language.

(NesC is a component-based and event-driven C-derivative language developed for WSN

embedded systems. (Gay et al, 2003)) Freescale offers a brief introduction, teaching how

to use CodeWarrior, and Freescale BeeKit provides a tutorial on how to launch a basic

application, but does not provide much in way of further assistance. Sun provides a Quick

Start guide that walks the new user through the development process: from building and

deploying (both in the IDE and via ANT) to the basics of using the base station. Further

manuals are available that walk a new developer through each of the sensor board

components and through using the radiostream.

4.7.2 Data Sheets

Datasheets provide a summary of the characteristics of the device hardware. This

is particularly useful when working in C where a developer may often need to reference

how to access a certain pin or sensor. The MICAz datasheet provides only a summary of

the basic hardware features and no details about the hardware design itself. The lack of

published information may frustrate developers needing more detailed information about

82

the hardware, yet these details might be found in publications written by the online

community. Freescale’s MC1321x datasheet is excellent documentation of the hardware

features and thoroughly explains the details of how the timer and ADC function.

Developers may find the Freescale datasheet to contain helpful hints on how variables or

functions may be named in the provided libraries. The Sun SPOT, being written in Java,

lacks the ability to directly address a portion of the microcontroller in the same sense that

C does, but the Sun libraries do provide excellent software interfaces. No true datasheet

exists for the Sun SPOT, but the documentation manuals do include example code on

how to set IRQ Timers and configure LEDs.

4.7.3 Software Documentation

The functions and classes unfamiliar to a developer should be described by

software documentation such as manuals or APIs. Crossbow’s documentation appears to

primarily reside in the community-written, Tiny-OS wiki. Freescale documents their

software in a long series of PDF documents that are so extensive that a PDF document is

required to explain which document manuals are which. The Freescale manuals do

appear to document every function within the BeeStack, but the sheer amount of

documentation in pdf format makes it cumbersome to locate the desired function – even

with an OS search function. The Freescale documentation also lacks clear examples on

how to use a function and often neglects recording that function x ought to be called to

configure library q before attempting to invoke function y. The Sun SPOT software API

documentation is easy to navigate for those familiar with the typical javadoc output – all

functions are categorized within their libraries and jars and an extensive index of

hyperlinks and a search engine are provided for those in doubt. The developer may find

83

difficulties with the Sun SPOT documentation as it isn’t as easily browsed as a PDF or a

wiki.

The difficulty with the Sun SPOT documentation is that if you don’t know what

you’re looking for, it is difficult to virtually thumb through various topics like it would be

possible to do in a PDF or a wiki.

4.7.4 Online Community

An online community actively discussing system development may help smooth

the path for an inexperienced developer. The presence of an online researching

community indicates the acceptance level of hardware platform for research. Such

communities may be manifest in online tutorials (often published in blog format), in

discussion forums, or through community-editable wikis. (Table 4-4 provides a summary

of the notable online communities.)

The Crossbow MICAz community is concentrated within the TinyOS community.

The hub of TinyOS is tinyos.net, where a documentation wiki, TinyOS tutorials, library

work groups, and a documentation wiki may all be found. A “tinyos-help” mailing list

links developers together to help answer questions and find resources; this mailing list is

archived so historic question and answers may be referenced before repeating a question.

Researchers at various universities also frequently publish on topics about the MICAz,

but it seems it is rather uncommon to publish one’s code online.

 The Freescale WSN community is very small and has not grown in recent years.

The only community for the MC1321x is the Freescale forums, and those consist of more

individuals requesting help than individuals offering answers. The sense within the

community is that the MC1321x is more meant for creating applications than it is meant

84

for the researcher. This sense may be derived from the black-box stack, as discussed

earlier.

 The Sun SPOT community is primarily an applications and hobbyist community.

A search on YouTube reveals many developers eager to show off their innovations. The

Sun SPOT world forum acts as a community center, and frequently answers the questions

of new developers. Sun Labs directs most of the security research using Sun SPOTs, and

periodically releases new updates to their security library.

Table 4-4 - Online Communities

Company Community URL
Crossbow TinyOS Community http://tinyos.net/
Freescale Freescale Forums:

8-bit MCU
http://forums.freescale.com/freescale/boar
d?board.id=8BITCOMM

Sun Sun SPOT World http://www.sunspotworld.com/forums
Sun Sun SPOTs Projects https://spots.dev.java.net/

Sun Sun SPOT Libraries https://spots-libraries.dev.java.net/

4.8 Other Tools

Additional tools may be available to the developer. Simulation tools may be

particularly useful to developers seeking to test the scalability of a system. Emulating

tools may likewise be useful for testing a prototype implementation and to test code

before deploying it to a mote. Background debugging interface devices may be useful for

debugging code on the mote itself. Bench marking tools can measure a security policy’s

impact on mote resources.

https://spots.dev.java.net/�

85

4.8.1 Simulators

Simulation of a network may provide data models regarding the feasibility of the

network. Simulators are a low cost, more practical for testing, and easier to implement

than a deployed network. Yet the limits of a simulator must be accounted for when

evaluating data provided by a simulator. Researchers often question the accuracy of

simulations stating that such programs' models of wireless propagation do not accurately

reflect real-world behavior (De, 2007; Heidemann et al, 2001) and that such programs do

not sufficiently create accurate values for lower layer phenomenon (i.e computation time,

packet loss, and routing) (De, 2007).

Dozens of wireless simulators are available and used within WSN research

(Becker, 2007), yet only five are compatible with 802.15.4: TOSSIM, ATEMU, Avrora,

DiSenS, and NS-2. Of these only a few are compatible with the MICAz, and none are

compatible to the MC1321x or Sun SPOT. TOSSIM (Levis, et al, 2003) is tailored

specifically to MICA motes running TinyOS. ATEMU (Polley, et al., 2004) and Avrora

are specific to the MICA2 platform; likewise, Avrora (UCLA Compilers Group, 2007)

and DiSenS (Wen, 2005) are designed for the MICA2 and MICAz motes running

TinyOS.

Only NS-2 (Marandin, 2007), a popular simulator for 802.15.4 applications,

seems able to simulate ZigBee networks without being dependent on TinyOS or a

specific hardware platform. NS2 has been used to simulate a mixed AODV and Tree

Routing algorithm within a ZigBee network (Ran, Mao-heng, Youmin, 2006), and to

simulate and measure the throughput of a ZigBee network (Burchfield, Venkatesan,

86

Weiner, 2007). It may be possible to simulate the Freescale or Sun devices with NS-2,

but there is no available documentation verifying such.

4.8.2 Emulators

Emulators enable one type of hardware (i.e. a PC) to function as another type of

hardware (i.e. a mote). The use of an emulator is twofold. First, an emulator may test a

developer’s software and identify bugs before the time is taken to deploy the software to

the networked motes. Second, an emulator may enable to user to test the scalability of a

solution by allowing readily available hardware to masquerade as a specialized mote. Of

the examined kits, only Sun offers a mote emulator. The software, called the Sun SPOT

Emulator, provides a GUI interface to enable a base station connected to the PC to act as

a full device.

4.8.3 Background Debug Interfaces

A Background Debug Module (BDM) is an embedded system that assists

developers in debugging mote software while the code is running on the mote. In-circuit

debugging enables users to test their programs under deployed conditions and under the

mote restricted hardware. Only Freescale offers a BDM device for debugging its motes –

and this device doubles as the mote program loader.

4.8.4 Benchmarking Tools

The actual measurement of a WSN network is challenging: environment variables

are difficult to repeat, motes often cannot spare their limited memory for benchmarking

software, and any data that is collected must be transmitted to a host computer (Park,

87

Chou, 2006). For example, the analysis software LMBench (McVoy, 1998) requires a

minimum of 16 MB of memory and 16 MB of program space to monitor the mote state

and resources.

To date, only two 802.15.4 benchmarking suites exist: EmPro and Daintree

Network's Sensor Network Analyzer. Both of which are ZigBee-compliant as well as

802.15.4-compliant. Either device may be used with the Crossbow MICAz or the

Freescale MC1321x. (The Sun SPOT is not ZigBee-compliant and therefore is excluded

from these benchmarking tools.)

EmPro (Park, Chou, 2006) claims to “monitor every activity of each wireless

sensor node.” The authors strive to create an emulation system that controls the

environment inputs in order to provide a repeatable means to compare WSN hardware

platforms. EmPro's energy consumption and packet error rate measurements would prove

useful to an evaluation of the hypothetical security solution. The system is created for

WSN hardware and can likely be used regardless of what runs on the networking and

application layer. Unfortunately, EmPro requires additional hardware required for

emulation, and the system EmPro appears to have been abandoned since Chulsung Park

achieved his PhD.

Daintree Network's Sensor Network Analyzer (SNA) (Daintree Networks, 2007)

is widely used within industry to debug, deploy, and manage ZigBee networks. SNA uses

specialized sniffer hardware to analyze and collect data in the ZigBee Network; therefore

it is compatible with all ZigBee devices (including those which use the ZigBee-2007

specification). The SNA Pro edition collects network packets to show packet contents, a

packet time line; analyzes the NWK and APS layers; reports on the ZigBee-2004 and

88

ZigBee-2006 security; creates extensive graphic representations of the network; provides

“comprehensive numerical statics” and visual statistics; maintains the network by

automatically detecting nodes; and provides management tools to control the clusters,

binding, and mote participation within the network. Unfortunately, the cost of the

standard addition software and the Sensor Network Adapter hardware is approximately

$1,000.

4.9 Expense

The cost of a platform is an important consideration when budgeting and

proposing research. Generally, the Crossbow MICAz, Freescale MC1321x, and Sun

SPOT devices are in similarly priced, but the total cost of research may be impacted by

the security policy experiment design and research tools. The total cost may be impacted

by the number of kits a researcher must purchase to acquired the desired number of motes

and base stations. The total cost may also be impacted by the inclusion or exclusion of

necessary software.

The Crossbow kits may include several Crossbow products. The corresponding

data sheets refer to MICAz “sensor nodes” which each consist of a processing board and

a sensing daughterboard and there are MICAz “base stations” which each consist of a

processing board and PC interface daughterboard. The kits may also include a data

acquisition daughterboard which has 11 channels of 12-bit ADC input, a temperature

sensor, and a humidity sensor.

Crossbow offers three development kits for the security researcher to consider

(see Table 4-5)(Crossbow Technology Inc, 2009a,b,c). The Starter Kit, the smallest

89

available, includes 2 sensor notes, 1 base station, and a copy of the MoteView software.

The Professional Kit includes an additional 5 sensor nods and a data acquisition board to

the Starter Kit. The Classroom kit includes 20 sensor nodes, 10 base station nodes, 10

seats of MoteWorks, and additional classroom materials; this kit is only available by

contacting the sales department. Additional MICAz sensor nodes may also be purchased

for $275 each. The Crossbow is a cost effective platform for researchers to consider –

especially as the development and compiler incur no additional cost.

Table 4-5: Crossbow MICAz Development Kits (Crossbow Technology Inc., 2009a,b,c)

 Starter Kit Professional Kit Classroom Kit
Sensor Nodes 2 6 20
Base Station 1 1 10
ADC Board 0 1 0

Software MoteView MoteView 10 Seats of MoteWorks
USD $795 $2,195 unpublished

Freescale offers seven kit selections – each differing slightly from one another

(see Table 4-6)(Freescale Semiconductor Inc, 2009a). The most basic kit is the Developer

Start Kit that includes 2 SRB devices, a limited version of CodeWarrior, and a 90 day

BeeKit license. This kit is best as a supplement kit, as it does not include any NCB motes

and does not include a BDM (used to program and debug the motes). On the other end of

the scale, the most deluxe kit is the ZigBee Development Kit that includes 4 SRB motes,

3 NCB motes, 1 BDM, a standard edition of CodeWarrior, a full BeeKit license, and a

standard edition of Daintree.

90

Table 4-6: Freescale MC1321x Development Kits (Freescale Semiconductor Inc, 2009a)

 Develop.
Starter

Kit

Develop.
Starter

Kit
-BDM

Consum
er

Starter
Kit

Nwk
Starter

Kit

Nwk
Starter

Kit
-BDM

ZigBee
Eval.
Kit

ZigBee
Eval. Kit
-SFTW

SRB 2 2 1 2 2 4 4
NCB 0 0 1 1 1 3 3
BDM X X X X X

IDE α α α α α α β
BeeKit ε ε ε ε ε ε θ

Daintree Basic Stnd.
USD 249 349 399 499 549 1,749 3,299
 α - CodeWarrior Special Edition

β - CodeWarrior Standard Edition
ε – 90 Day BeeKit License
θ – Full BeeKit License

It is very likely a researcher will find a kit or a combination of kits that will

provide the desired number of motes and base stations. The cost of the Freescale motes

lies within the range of the other motes. The great difficulty is that the limited

CodeWarrior edition is too limited and cannot compile the amount of code necessary to

include security algorithms. CodeWarrior with HC(S)08 support costs $950 (Freescale

Semiconductor Inc, 2009b). Further, the BeeKit license is only valid for 3 months.

Academic researchers without additional uses for the IDE or the compiler may find that

the Freescale kits may be both too costly and academic researchers may find the BeeKit

license restricts them to too short a development and testing window.

There is only one development kit selection offered by Sun. The SPOT

Development Kit is comprised of 2 full SPOT devices, 1 base station device, and a

software CD (see Table 4-7)(Sun Microsystems Inc., 2009a). The CD contents include

development tools, demonstration code, and Squawk JVM. Developers seeking to create

91

larger networks will be find the offerings of this kit bothersome as the base station does

not have any sensors and does not have a battery, so it can only serve as tethered mote in

narrow applications.

 All of the development software and programming code necessary are available

at no cost. The published educational discount cost of the kit is $299 (Sun Microsystems

Inc., 2009b). This is a very cost-effective kit for academic researchers to consider.

Table 4-7: Sun Spot Development Kit (Sun Microsystems Inc., 2009a)

 Development Kit
Full Device 2

Base Station 1
Squawk X

Software NetBeans
USD $750

4.10 Summary

This chapter has provided a detailed comparison of the Crossbow MICAz,

Freescale MC1321x, and the Sun SPOT. Various aspects of the hardware, software,

security resources, development tools, additional tools, and kit expense were discussed.

Chapter 5 shall draw conclusions based on this data.

92

93

5 Conclusions

Wireless Sensor Networks are anticipated to become common in future home

environment applications. A WSN is a mesh network of very small nodes gathering

environment data, sharing this data, and actuating devices according to their

programming. Such a network may aid users by monitoring their health, managing their

utilities, and assisting with their special needs.

IEEE 802.15.4 is a standard defining the physical and data layers of wireless

sensor network communication. This standard is designed to accommodate devices with

very small microprocessors running on small batteries with an anticipated lifetime

measured in years. The ZigBee specification is implemented atop 802.15.4 to add

standardization for the network layer and application framework.

The security of these standards is of particular interest because it is important to

protect the information of individuals using a wireless sensor network. The ubiquitous

devices may gather information about the users’ presence, habits, and identity that should

not be accessible to unauthorized entities.

Neither 802.15.4 nor ZigBee are completely secure. Each standard directly states

that its definitions on key initialization, key updating, and device group management are

either entirely out of scope or only partially implemented. Further research must be

94

completed to ensure the tools are available to secure these aspects of a wireless sensor

network.

Researching and developing for a WSN is not without its challenges. Ideally, the

mote processor and memory are very small in order to minimize their impact on a mote's

battery lifetime; subsequently the resources available to a researcher to store and run

security algorithms on the device are limited. Debugging by tracing communications

between devices, identifying faulty motes, and troubleshooting software on its native

processor becomes difficult because the code is run on a wireless, distributed, and

embedded system.

A researcher may find additional challenges when learning a new hardware

platform. Documentation describing how to use a system may be lacking. The hardware

may not provide sufficient inputs and outputs to aid the researcher in troubleshooting and

designing applications. There may be no existing security code to build security solutions

upon.

This thesis has assessed three prevalent hardware kits: Crossbow MICAz,

Freescale MC1321x, and the Sun SPOT. Each kit was evaluated for its suitability to

academic research. Evaluation parameters included hardware, software, security

resources, development environment, documentation, additional tools, and expense.

This final chapter draws conclusions from the data gathered and comparisons

made in Chapter 4. First, a summary of all the kit data is presented and recommendations

are made to researchers. Second, suggestions are made regarding how to improve the

usability of each kit for security research. Third, future research is recommended.

95

5.1 Summary of Hardware Kits

This section summarizes the data presented in Chapter 4. Table 5-1 provides a

quick reference of basic development features of each hardware kit and Table 5-2

provides a summary of the evaluated kits’ comparative features. The topics discussed

include the hardware specifications, power options, user interface, sensor availability,

development environment, software, security libraries, demonstration code, and expense

of each candidate platform. Recommendations are made to researchers regarding what

kits they ought to consider given certain goals, background, or constraints.

In terms of memory and processing, the Sun SPOT outclasses the MICAz and

Freescale MC1321x. The Sun SPOT has at least sixty times as much Flash memory, an

order of magnitude more RAM, a clock that’s at least 4 times faster, and a 32-bit

processor rather than an 8-bit processor. To an extent, this plethora of processing power

defeats a primary purpose of a mote – to run on relatively small batteries for a very long

time; though no WSN studies have been completed studying the impact of the

microprocessor on the battery lifetime. A researcher wishing to design security protocols

will prefer the Sun SPOT because the processor and memory will not restrict the size of

the implemented code as much as the other two kits will. A researcher wishing to work

within a more traditional WSN should consider the MICAz or Freescale MC1321x as

these kits adhere to the prevalent notion that WSN devices ought to be small and limited.

96

Table 5-1: Development Kits Summary

 MICAz MC13213 SPOT

H
ar

dw
ar

e MCU MPR2400 HCS08 ARM920T
Clock 16 Mhz 40 MHz 180 MHz

Bits 8-bit 8-bit 32-bit
Flash 128 KB 60 KB 4,000 KB
RAM 4 KB 4 KB 512 KB

Timers 2 8-bit channels 8 16-bit channels 6 16-bit channels

C
om

m
. 802.15.4 X X X

ZigBee X X
Serial X

USB X

Po
w

er
 AA Batteries 2 2 0

Internal X
USB X X

Power Supply X X

In
te

rf
ac

e LEDs 2 4 8
Switches 0 4 2

Integrated Sensors X X
I/O Pins X X X

Daughterboards X

D
ev

el
op

m
en

t Language C, NesC C Java
Recommended IDE none CodeWarrior NetBeans

Build GCC HC(S)08 ANT
Load Serial or OTA BDM (USB) USB or OTA

Serial X
USB X X
OTA X X

S/
W

 Stack TinyOS BeeStack Spot Core Library
OS TinyOS Squwak JVM

 Encryption Skipjack AES ECC

97

Table 5-2 – Evaluated Kits Comparison

 MICAz MC1321x SPOT

H
ar

dw
ar

e

Largest Processor X
Most Flash X
Most RAM X

Most Timers X
AA Batteries X X

In
te

rf
ac

e Most LEDs X
Most Switches X

LCD X
Daughterboards X

D
ev

el
op

m
en

t

IDE At No Cost X X
Compiler At No Cost X

Code Writen in C X X
Code Written in Java X

Security Libaries
Open Source X X

D
oc

um
en

ta
tio

n

Most Demo Code X
Best Datasheet X

Best API X
Active Online

Community
X X

Peer-Reviewed
Publications

X

Timers are expected to be used by the researchers to prevent system deadlock,

measure intervals of time, and benchmark their code. The Sun SPOT appears to offer

more timer channels than its competitor motes (due to its larger processor), yet several of

these timers may be undocumented as being reserved by the Squawk JVM. Researchers

must determine how many timers are needed for their research before selecting a

platform. One researcher may find the two 8-bit timer channels of the MICAz sufficient,

yet another researcher may not notice the number of MC1321x timers exceeding his or

98

her development code needs, while yet another researcher may find the lack of additional

channels frustrating.

The importance of a mote’s power source depends upon the application of the

security research. Researchers must design or anticipate the power needs of their

application assumptions before selecting a mote environment. If an application does not

need any mobile or distributed motes than any of the evaluated kits are suitable for the

research. If an application does require that a mote has freedom of movement than the

researcher must make the power options of a mote a priority. The Freescale MC1321x

and MICAz should be used for applications requiring motes with a longer battery

lifetime. Researchers wishing to quickly change AA batteries ought to select the

Freescale or Crossbow motes; these same researchers ought to avoid the Sun mote as the

SPOT’s internal battery can only be charged by USB and is not swappable.

A mote’s user interface impacts the user’s ability to design applications and

troubleshoot mote software. The Crossbow MICAz’s lacking interface may hinder the

developer. This device expects the developer to rely on communications with the mote

via terminal rather than plentiful providing onboard inputs and outputs. The Freescale

MC1321x NCB is particularly useful for debugging software and communicating with

the application user because it offers an LCD. Each Freescale SRB provides 4 buttons

and 4 LEDs. The MC1321x is the moderate choice of the evaluated platforms being that

its interface is neither limited nor plentiful. The Sun SPOT offers the most glitz with its

generous 8, tri-colored LED interface which may aid users in developing output codes.

Oddly, the Sun SPOT provides only 2 switches. Experienced developers with a

preference for utilitarian motes should consider the MICAz; however, developers with

99

less embedded system and wireless programming experience should not adopt the

MICAz. Researchers preferring an LCD interface should use the Freescale NCB whereas

researchers preferring more precise LED communication should use the Sun SPOT.

Conversely, researchers requiring more elaborate input options should reject the Sun

SPOT in favor of the Freescale.

Researchers should fully understand what types of data they wish to collect before

committing to a platform or allow time and resources for designing other sensors and

actuators. The MICAz, MC1321x, and SPOT each offer accelerometers, temperature

sensors, and ADC either onboard or through a daughterboard. The MICAz offers a wide

variety of expansion daughterboards for sale that will likely have a particular sensor a

researcher requires (be it anything from GPS to a barometric pressure sensor).

Researchers needing specific data collection should avoid the Freescale and Sun motes as

neither the Freescale nor the Sun motes offer any expansion daughterboards. Researchers

not needing specific data collection may use any of the development kits.

Each platform development environment prescribes different software and offers

different methods of code deployment. The MICAz relies on a developers’ choice of IDE

(if any), a gcc cross-compiler, and loads code via a serial port. The Freescale MC1321x

relies on a compiler offered only through CodeWarrior and loads code to motes through a

BDM. The special edition of CodeWarrior shipped with most Freescale kits limits the

size of the code that a developer may compile; observation indicates that in many cases

the code required for ZigBee-compliance and security exceeds that limitation. The Sun

SPOT recommends the NetBeans IDE, deploys code over USB through ANT, and uses

the Java SDK to build the code for its device. The MICAz and SPOT development

100

environments are available at no cost whereas a standard edition of CodeWarrior

HC(S)08 may need to be purchased for the Freescale kit. In this case, the selection of a

kit depends on which environments the researchers are accustomed to, which are already

available to the researcher, and what the budget of the researcher permits. Researchers

experienced in embedded system development should select the MICAz as it allows them

to use their familiar IDE and gcc tools at no cost. Researchers who do not yet own a

copy of CodeWarrior may prefer to avoid the Freescale motes due to the high cost of the

standard edition of the IDE. The Sun SPOT may be considered by both experienced and

inexperienced developers as the SPOT’s recommended suite is available at no cost.

Each evaluated platform provides software that is distinct. The MICAz relies on

the TinyOS, which is not fully 802.15.4-compliant, to provide the communication stack

and task management. TinySec is available to add additional security tools to the

TinyOS. The Freescale MC1321x relies on the Freescale BeeStack as configured by the

Freescale BeeKit. The BeeStack does include AES encryption, but its black-box

approach to code is much better suited to application developers rather than security

researchers. The Sun SPOT relies on the Squawk JVM to manage application tasks and

run the Java on the mote hardware. The basic SPOT core libraries may be extended using

the SPOT security libraries that include ECC encryption.

Each platform readily offers encryption algorithms. The Crossbow, through

TinySec, offers the Skipjack algorithm. The Freescale offers AES encryption. Sun offers

RSA and ECC. Notably, efficient implementations of ECC are still patented, and there is

some question if Sun has obtained the rights to distribute the ECC intellectual property.

101

Sun also support SSL/TLS which uses public key cryptography to authenticate the

network devices.

It is important that a researcher be able to extend the existing security libraries of

a platform. TinySec for MICAz is open source, but also very poorly documented. A

determined researcher should be able to use this platform. The Freescale MC1321x

cannot be easily extended – and therefore should be avoided by researchers who wish to

create their own protocols or include their own security algorithms. The SPOT security

library is open source, but, like the MICAz, is poorly documented for new-comers to the

code. Determined researchers should be able to modify and extend the code. The

Freescale motes should be rejected by any researcher wishing to develop more complex

security policies or measures. The MICAz should be selected by those researchers who

are more familiar with C. Finally, researchers who are more familiar with Java should

consider the Sun SPOT.

 The demonstration code offered by a platform may help developers understand

how to structure and design code for the given platform. The MICAz is lacking in

demonstration code, but an excessive amount of code (both good and bad) is available

through the active research community. The BeeKit compiles the BeeStack with a basic

demonstration application. That demonstration application provides a good template for

the overall code structure, but is insufficient in guiding a less experienced developer.

Finally, the Sun SPOT appears to be targeted to java developers with little embedded

system experience as it provides extensive demonstration tutorials and well-written

documentation manuals for that demonstration code. In this instance, those researchers

quite familiar with embedded system development may prefer the Crossbow MICAz

102

whereas researchers less familiar with embedded system development ought to prefer the

Sun SPOT.

Finally, the expense of each hardware kit is comparable to one another. The

distinguishing cost to the researcher is introduced first by the quantities of motes the

researcher wishes to work with and second by the cost of any additional tools or licenses.

Freescale may quickly become expensive if the researcher needs to purchase a copy of

the HC(S)08 compiler or if the researcher needs to extend the 90-day trial license of

BeeKit. The development kits and software for the MICAz and Sun SPOT are available

at no cost. Academic researchers should contact each company’s sales team for

educational discounts before purchasing a development kit.

Overall, a researcher’s hardware selection should be based on the needs of the

researcher regarding the experiment application and the depth of security development.

Crossbow MICAz is best suited to complex experiment applications (i.e. supplementing

the processor board with a daughterboard) and can be used for security research; this

system is particularly recommended to researchers familiar with C and embedded system

development. Freescale MC1321x should be useful to researchers already own the

HC(S)08 compiler who wish to only work on application development. Sun SPOT is

best suited to simple experiment applications (e.g. bouncing ball) and can be used for

security research; this system is particularly recommended to researchers familiar with

Java and who have a basic understanding of embedded system programming.

103

5.2 Recommended Improvements

Each of the examined platforms was found suitable for WSN research, though

each researcher may find one of the platforms to be better suited to a particular aspect of

security research over the others. Within this section several suggestions are offered on

how to improve each of the platforms.

The MICAz needs to improve its accessibility to new users. An additional

daughterboard needs to be created with basic user debugging devices: an LCD, multiple

switches, multiple LEDs, a buzzer, etc. The documentation of the MICAz needs to

become more centralized – the TinyOS wiki is a good start, but lacks details about

integration with the MICAz hardware. The usefulness of the existing documentation

would improve if they provided more hand-holding and technical explanation to the

inexperienced developer; individuals unfamiliar with the conventions of embedded

system programming often lack the intuition necessary to understand the documentation.

Finally, Crossbow needs to make more demonstration code readily available to the new

user.

Freescale needs to make many changes to improve the MC1321x for security

research. The IDE and compiler may too costly for some researchers to install – in many

cases more expensive than the development hardware itself. If the BeeStack code cannot

be opened, more interfaces need to be built into the code to allow developers to write

their own handshaking protocols and wrap in their own encryption algorithms. Further, a

more searchable code documentation set (such as an API or a wiki) would clarify the

existing utilities to new users. A final concern is that the development kits ship with only

a 90-day license of the BeeKit, which may not provide enough time for some individuals

104

to complete their research. Freescale should also find creative ways of fostering a

research community through incentives, competitions, introduction of small projects to

sponsored universities, etc.

The release delays and care in developing the Sun SPOT are evident in the quality

of the kit, yet Sun still needs to seek to improve the platform further. Foremost Sun needs

to promote the SPOT in more peer-reviewed research (most projects are currently

published through Sun Lab blogs or by hobbyists on YouTube). The Sun SPOT security

library also needs more tutorials and documentation describing to the new user how to

best implement the files and how to write their own protocols. The ease of using the Sun

SPOT security would be further improved by creating a utility that automatically

integrates the SPOT security library with the SPOT core library.

In general, none of these development systems have seriously pursued

implementing best practices in security within their development kits. Crossbow relies on

the TinyOS community for the development of its security features. Freescale provides a

measure of security with its BeeStack, but does not provide a means for researchers to

evaluate and build-upon the given security. Sun SPOT does have several individuals –

mostly Sun Labs members – working on the Sun SPOT security libraries, yet these

libraries are not yet developed and documented to a point where new researchers may

easily contribute. All the development platforms could use improvement in regards to

promoting security research on their hardware.

105

5.3 Future Work

Many topics worth further investigation were outside the scope of this thesis

regarding the state and suitability of 802.15.4 hardware for security research. First, a

number of notable kits were excluded for brevity or cost that ought to be examined as

well. Second, little research exists cross-examining the performance of the hardware

running similar software; extending and implementing the hypothetical security scenario

would be an excellent place to begin. Third, the suitability of 32-bit processors (i.e. the

SPOT) needs to be tested and measured for viability in an 802.15.4 deployed network. If

a 32-bit processor can be used within the power constraints of WSN devices than

processing-intensive security techniques formerly rejected by WSN researchers should be

investigated.

106

107

6 References

Andersson, A., and M. Thoren. 2005. ZigBee, A suitable base for embedded wireless
development? M.S. thesis., Chalmers University of Technology.

Bateman, C., J. Armstrong, and R. Helps. 2007. Introducing ZigBee theory and practice
into information and computer technology disciplines. In 2007 ASEE annual
conference & exposition.

Becker, M. Simulation tool comparison matrix. 2007-07-25 2007. Internet on-line.
Available from <http://www.ist-cruise.eu/cruise/Public%20documents/wp123-
wsn-simulation-tool-knowledgebase/simulation-tool-comparison-matrix>. [10/25,
2007].

Bhatti, S., J. Carlson, H. Dai, J. Deng, J. Rose, S. Sheth, B. Shucker, C. Gruenwald, A.
Torgerson, and R. Han. 2005. MANTIS OS: an embedded multithreaded
operating system for wireless micro sensor platforms Mobile Networks and
Applications 10, no. 4: 563-579.

Burchfield, T. R., S. Venkatesan, and D. Weiner. 2007. Maximizing throughput in
ZigBee wireless networks through analysis, simulations and implementations.
Dallas, Texas.

Cantrell, T. 2008. Got Chips? Circuit Cellar , no. 211 (Februrary 2008) : 78-86.

Casas, R., O. Casas. 2005. Battery sensing for energy-aware system design. Computer 38,
no. 11 (Nov 2005) : 48-54.

Cherry, S. 2006. Wi-Fi Nodes to Talk Amongst Themselves. IEEE Spectrum 43, no. 7:
55.

Crossbow Technology Inc. Housings. 2008. Internet on-line. Available from
<http://www.xbow.com/Products/productdetails.aspx?sid=162>. [03/30, 2009].

Crossbow Technology Inc. TelosB. 2008. Internet on-line. Available from
<http://www.xbow.com/Products/productdetails.aspx?sid=252>. [03/29, 2009].

108

Crossbow Technology Inc. WSN classroom kit. 2008. Internet on-line. Available from
<http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/WSN_Classroo
m_Kit.pdf>. [03/30, 2009].

Crossbow Technology Inc. WSN starter kit datasheet. 2008. Internet on-line. Available
from
<http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/WSN_START
_Datasheet.pdf>. [03/30, 2009].

Crossbow Technology Inc. WSN professional series datasheet.

CSR. CSR gives world's first public demonstration of ULP bluetooth. 14 April 2008
2008. Internet on-line. Available from <http://www.csr.com/pr/pr330.htm>.
[05/13, 2008].

Cvrcek, D.. Security of TinySec. 2008-06-01 2008. Internet on-line. Available from
<http://www.cl.cam.ac.uk/research/security/sensornets/tinysec/>. [03/29, 2009].

Daintree Networks. Daintree networks sensor network analyzer (SNA). 2007. Internet
on-line. Available from <http://daintree.net/products/sna.php>. [10/25, 2007].

De, P. 2007. MiNT: A reconfigurable mobile muli-hop[sic] wireless network testbed.
Ph.D. diss., Stony Brook University.

Digi-Key Corporation. Digi-Key Part Search. 2009. Internet on-line. Available from <
http://www.digikey.com/scripts/dksearch/dksus.dll?Cat=3539644&keywords=InS
ight&vendor=636>. [04/15, 2009].

Dunkels, A., B. Gronvall, and T. Voigt. 2004. Contiki - a lightweight and flexible
operating system for tiny networked sensors. In Proceedings on the 29th IEEE
international conference on local computer networks (LCN'04)455-462.

Ember Corporation. EM250 single-chip ZigBee/802.15.4 solution. July 5, 2006 2006.
Internet on-line. Available from
<http://www.ember.com/pdf/EM250_Datasheet.pdf>. [01/14, 2008].

Ferrari, G., P. Medagliani, D. Piazza, and M. Martalo. 2007. Wireless Sensor Networks:
Performance in Indoor Scenarios. EURASIP Journal on Wireless
Communications and Networking 2007.

Forster, E. M. 2001. The machine stops. In Selected stories. Edited by Anonymous New
York: Penguin Books.

Freescale Semiconductor Inc. 1321x development kits product summary. 2009. Internet
on-line. Available from
<http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=1321x_Dev
_Kits>. [03/30, 2009].

109

Freescale Semiconductor Inc. Development suites. 2009. Internet on-line. Available from
<http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=0127262E703B
C5>. [03/29, 2009].

Freescale Semiconductor Inc. Freescale's ZigBee technology products summary. 2007.
Internet on-line. Available from <http://www.farnell.com/datasheets/22865.pdf>.
[03/30, 2009].

Freescale Semiconductor Inc. MC13211/212/213/214 (MC1321x rev 1.1). 03/2007 2007.
Internet on-line. Available from
<http://www.freescale.com/files/rf_if/doc/data_sheet/MC1321x.pdf>. [05/07,
2007].

Freescale Semiconductor Inc. MC1322x Development Kits. 2008 2008. Internet on-line.
Available from
<http://www.freescale.com/files/wireless_comm/doc/brochure/BRIEEE802154D
KIT.pdf?fpsp=1 > [04/14, 2009].

Freescale Semiconductor Inc. MC13224V (MC1322x rev 1.2). 02/2009 2009. Internet
on-line. Available from
<http://www.freescale.com/files/rf_if/doc/data_sheet/MC1322x.pdf?pspll=1>
[04/14, 2009].

Fusting, C. 2008. Jungles, petabytes, and discoveries: Yggdrasil - A data collection
framework.

Gamage, C., K. Bicakci, B. Crispo, and A. S. Tanenbaum. 2006. Security for the
mythical air-dropped sensor network. In 11th IEEE symposium on computers and
communications, 2006. ISCC '06.41-47.

Gay, D., P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. 2004. The nesC
language: A holistic approach to networked embedded systems. In Conference on
programming language design and implementation archive proceedings of the
ACM SIGPLAN 2003 conference on programming language design and
implementation1-11.

Geer, D. 2006. UWB Standardization Effort Ends in Controversy. Computer 39, no. 7
(July 2006) : 13-19.

Girao, J., D. Westhoff, A. Poschmann, A. Weimerskirch, A. Grilo, R. Silva, M. Nunes,
A. Casaca, E. Osipov, J. Riihijarvi, P. Steffen, P. Langendorfer, K. Piotrowski, L.
Buttyan, G. Acs, P. Schaffer, C. Catelluccia, and A. Francillon. 2006. Scenario
definition and initial threat analysis.

Goldman, R., R. Meike and V. Gupta. Spots-security. March 2009 2009. Internet on-line.
Available from <https://spots-security.dev.java.net/>. [03/29, 2009].

110

Google. Netbeams. Mar 26, 2009 2009. Internet on-line. Available from
<http://code.google.com/p/netbeams/>. [03/29, 2009].

Goth, G. 2007. Wireless USB: Just the First UWB Battle? IEEE Pervasive Computing 6,
no. 1: 8-9.

Gumstix Inc. Gumstix motherboards. 2008. Internet on-line. Available from
<http://www.gumstix.com/platforms.html>. [03/29, 2009].

Gupta, V., M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle, and S.C. Shantz.
2005/12. Sizzle: A standards-based end-to-end security architecture for the
embedded Internet. Pervasive and Mobile Computing 1, no. 4: 425-445.

Han, C., R. Kumar, R. Shea, E. Kohler, and M. Srivastava. 2005. A dynamic operating
system for sensor nodes. In Proceedings of the 3rd international conference on
mobile systems, applications, and services, applications, and services.

Hansen, M.S., and S. Støa. 2006. Practical evaluation of IEEE 802.15.4/ZigBee medical
sensor networks. Ph.D. diss., Norwegian University of Science and Technology.

Heidemann, J., N. Bulusu, J. Elson, C. Intanagonwiwat, K. Lan, Y. Xu, W. Ye, D. Estrin,
and R. Govindan. 2001. Effects of details in wireless network simulation. In
Proceedings of the SCS communication networks and distributed systems
modeling and simulation conference.

Hui, J., P. Levis and D. Moss. TinyOS 802.15.4 frames. 2008/06/20 2008. Internet on-
line. Available from <http://tinyos.net/tinyos-2.x/doc/txt/tep125.txt>. [03/29,
2009].

IEEE Computer Society. Part 15.4: Wireless medium access control (MAC) and physical
layer (PHY) specifications for low-rate wireless personal area networks
(WPANs). 7 June 2006 2006. [03/10, 2009].

Jones, W. D. 2006. No Strings Attached. IEEE Spectrum 2006, no. April (April 2006) :
16-16-18.

Jones, W. D. 2004. Ultrawide gap on ultrawideband. IEEE Spectrum 41, no. 1 (Jan 2004)
: 30.

Karlof, C., N. Sastry, and D. Wagner. 2004. TinySec: A link layer security architecture
for wireless sensor networks. In Proceedings of the 2nd international conference
on embedded networked sensor systems 162-175. Baltimore, MD, USA: ACM
Press.

Kim, Y., R. Evans, and W. Iversen. 2006. Instrumentation and control for wireless sensor
network for automated irrigation. In Proceedings of the american society of
agricultural and biological engineers international (ASABE).

111

Koh, B. K., P. Kong. 2006. Performance Study on ZigBee-Based Wireless Personal Area
Networks for Real-Time Health Monitoring. ETRI Journal 28, no. 4: 537-540.

Koubaa, A., M. Alves. 2005. A two-tired architecture for real-time communications in
large-scale wireless sensor networks: Research challenges. In In proc. of 17th
euromicro conference on real-time systems (ECRTS'05), WiP session.

Kumagai, J., S. Cherry. 2004. Sensors & Sensibility. IEEE Spectrum 41, no. 7: 22-28.

Kuo, C., M. Luk, R. Negi, and A. Perrig. 2007. Message-in-a-bottle: User-friendly and
secure key deployment for sensor nodes. In Proceedings on the 5th international
conference on embedded networked sensor systems233-246. New York, NY,
USA: ACM.

Leal, J., A. Cunha, M. Alves, and A. Koubaa. 2007. On a IEEE 802.15.4/ZigBee to IEEE
802.11 gateway for the ART-WiSe architecture. In Emerging technologies &
factory automation, 2007. ETFA. IEEE conference on, edited by A. Cunha, 1388-
1391.

Leavitt, N. 2007. For Wireless USB, The Future Starts Now. Computer 40, no. 7: 14-16.

Levis, P., N. Lee, M. Welsh, and D. Culler. 2003. TOSSIM: Accurate and scalable
simulation of entire TinyOS applications. In Proceedings of the 1st international
conference on embedded networked sensor systems126-137.

Liu, D., and P. Ning. 2007. Security for wireless sensor networks. New York, NY:
Springer.

Luk, M., G. Mezzour, A. Perrig, and V. Gilgor. 2007. MiniSec: A secure sensor network
communication architecture. In Proceedings of the 6th international conference on
information processing in sensor networks479-488.

Luk, M., A. Perrig, and B. Whillock. 2006. Seven cardinal properties of sensor network
broadcast authentication. In Proceedings of the fourth ACM workshop on security
of ad hoc and sensor networks 147-156ACM Press.

Marandin, D. Simulation of IEEE 802.15.4/ZigBee with network simulator-2 (ns-
2).Internet on-line. Available from <http://www.ifn.et.tu-
dresden.de/~marandin/ZigBee/ZigBeeSimulation.html>. [11/20, 2007].

marvelouskobe. Spider-spots. July 14, 2008 2008. Internet on-line. Available from
<http://www.youtube.com/watch?v=NskP-4AjkRQ>. [31/12, 2008].

McVoy, L.. LMbench - tools for performance analysis. 98/06/26 1998. Internet on-line.
Available from <http://www.bitmover.com/lmbench/>. [05/08, 2007].

Melkonian, M., J. Wu. 2005. ZWOS - A lightweight operating system for lightweight
embedded wireless devices. In TENCON 2005 2005 IEEE region 101-6.

112

Microchip Technology Inc. PICDEM Z demonstration kit. 12/8/2008 2008. Internet on-
line. Available from
<http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId
=1406&dDocName=en021925&part=DM163027-2>. [03/29, 2009].

Microchip Technology Inc. MiWi. 2006. Internet on-line. Available from
<http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId
=2113¶m=en520414>. [2/22, 2007].

Mumford, R. 2006. Chipcon Acquired by Texas Instruments. Microwave Journal 49, no.
2 (February 2006) : 37.

Nokia Corporation. Wibree. 2007. Internet on-line. Available from
<http://www.wibree.com/>. [06/12, 2007].

Nokia Corporation. Wibree forum merges with bluetooth SIG. June 12, 2007 2007.
Internet on-line. Available from
<http://press.nokia.com/PR/200706/1132534_5.html>. [06/12, 2007].

PacketHop Inc. PacketHop announces availability of draft IEEE 802.11s mesh product.
April 28, 2008 2008. Internet on-line. Available from
<http://www.packethop.com/company/news_events/press_releases/2008/042708.
php>. [05/08, 2008].

Park, C., P. H. Chou. 2006. EmPro: An Environment/Energy emulation and profiling
platform for wireless sensor networks. In Annual IEEE communications society
on sensor and ad hoc communications and networks158-167.

Perrig, A., R. Szewcyk, J. D. Tygar, V. Wen, and D. E. Culler. 2002. SPINS: Security
Protocols for Sensor Networks. Wireless Networks 8, no. 5 (September 2002) :
521-534.

Piotrowski, K., P. Langendorfer, and Peter Steffen. 2006. How public key cryptography
influences wireless sensor node lifetime. In Proceedings of the fourth ACM
workshop on security of ad hoc and sensor networks.

Polley, J., D. Blazakis, J. McGee, D. Rusk, J. S. Baras, and M. Karir. 2004. ATEMU: A
fine-grained sensor network simulator. In First annual IEEE communications
society conference on sensor and ad hoc communications145-152.

Pulse~Link. Pulse~Link introduces first ultra wideband whole-home interactive HD
solutaion at CES-2008. January 4, 2007 2007. Internet on-line. Available from
<http://www.pulselink.net/press/pr-jan04-2007.htm>. [03/06, 2007].

Ran, P., S. Mao-heng, and Z. You-min. 2006. ZigBee routing selection strategy based on
data services and energy-balanced ZigBee routing. In 400-404.

113

Research Studios Austria. ZigBee for linux :: CC2420 gumstix board. 10/08/2007 2007.
Internet on-line. Available from
<http://pervasive.researchstudio.at/portal/node/42>. [03/29, 2009].

Schilit, B. N., U. Sengupta. 2004. Device Ensembles. Computer 37, no. 12 (December
2004) : 56-64.

Schneier, B. 1996. Applied cryptography: Protocols, algorithms, and source code in C.
John Wiley & Sons, Inc.

Sharp, C., M. Turon and D. Gay. Timers. 05-Sep-2007 2007. Internet on-line. Available
from <http://www.tinyos.net/tinyos-2.x/doc/html/tep102.html>. [03/29, 2009].

Simon, D., C. Cifuentes, D. Cleal, J. Daniels, and D. White. 2006. Java™ on the bare
metal of wireless sensor devices: the squawk Java virtual machine. In Proceedings
of the 2nd international conference on Virtual execution environments : 78-88.

SmartLabs Inc. Insteon: A smartlabs technology. 2007. Internet on-line. Available from
<http://www.insteon.net/>. [2/22, 2007].

Song, L., D. Hatzinako, and X. Wang. 2008. Wireless mesh infrastructure for ubiquitous
voice and video. In Consumer communications and networking conference, 2008.
CCNC 2008. 5th IEEE1267-1268.

Stajano, F. 2002. Security for ubiquitous computing. West Sussex, England: John Wiley
& Sons, LTD.

Stajano, F, R. Anderson. 2002. The Resurrecting Duckling: Security Issues for
Ubiquitous Computing. Computer 35, no. 4, Part Supplement (Apr 2002) : 22-26.

Sukumaran, A. 2006. Park view hotel.

Sun Microsystems Inc. Project sun SPOT products. 2009. Internet on-line. Available
from <http://sunspotworld.com/products/>. [03/30, 2009].

Sun Microsystems Inc. SunSPOTWorld educational sales. 2009. Internet on-line.
Available from <http://sunspotworld.com/products/edusales/>. [03/30, 2009].

TinyOS. TinyOS FAQ. 2009. Internet on-line. Available from
<http://www.tinyos.net/faq.html#SEC-77>. [03/28, 2009].

UCLA Compilers Group. Avrora - the AVR simulation and analysis framework. Nov 25,
2007 2007. Internet on-line. Available from
<http://compilers.cs.ucla.edu.erl.lib.byu.edu/avrora/>. [10/25, 2007].

Weiser, M. 1991. The Computer for the Twenty-first Centry. Scientific American 265,
no. 3 (Sept 1991) : 94-104.

114

Wen, Y. Distributed simulation of heterogeneous sensor network. Nov. 28, 2005 2006.
Internet on-line. Available from <http://www.cs.ucsb.edu/~wenye/disens.html>.
[10/25, 2007].

Wolfe, J. NICTA-UNSW robot clarinet. 2008. Internet on-line. Available from
<http://www.phys.unsw.edu.au.erl.lib.byu.edu/jw/clarinetrobot.html>. [03/29,
2009].

Zhu, S., S. Setia, and S. Jajodia. 2003. LEAP: Efficient security mechanisms for large-
scale distributed sensor networks. In Proceedings of the 10th ACM conference on
computer and communications security62-72ACM Press.

Zhu, Y.W., X.X. Zhong, and J.F. Shi. 2006. The Design of Wireless Sensor Network
System Based on ZigBee Technology for Greenhouse. Journal of Physics:
Conference Series 48: 1195-1119.

ZigBee Alliance. Our members. 2008. Internet on-line. Available from
<http://www.zigbee.org/en/about/members.asp>. [05/08, 2008].

ZigBee Alliance. FAQs. 2007. Internet on-line. Available from
<http://www.zigbee.org/en/about/faq.asp>. [05/15, 2007].

ZigBee Alliance. 2007. ZigBee Specification.

ZigBee Alliance. 2006. ZigBee Specification.

ZigBee Alliance. 2004. ZigBee Specification.

Z-Wave Alliance. 2007. Internet on-line. Available from <http://www.z-
wavealliance.org/>. [1/22, 2008].

	Brigham Young University
	BYU ScholarsArchive
	2009-04-16

	State of Secure Application Development for 802.15.4
	Janell Armstrong
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.2 Network Standards
	1.3 Network Security Threats
	1.4 Development Challenges
	1.5 Proposed Research

	2 Review of Literature
	2.1 Wireless Communication Standards
	2.1.1 Wi-Fi
	2.1.2 Ultrawideband
	2.1.3 Bluetooth and ULP Bluetooth
	2.1.4 802.15.4
	2.1.5 ZigBee
	2.1.6 Conclusions

	2.2 802.15.4 and ZigBee Security
	2.3 Security Threats
	2.4 Existing Security Implementations
	2.4.1 TinySec
	2.4.2 SPINS
	2.4.3 LEAP
	2.4.4 Sizzle
	2.4.5 MiniSec
	2.4.6 Resurrecting Duckling

	2.5 Related Work
	2.6 Conclusions

	3 Methodology
	3.1 Candidate Development Kits
	3.1.1 Necessary Hardware Characteristics
	3.1.2 Disregarded Hardware Characteristics
	3.1.3 Notable Excluded Platforms
	3.1.4 Hardware for Evaluation

	3.2 Security Scenario
	3.2.1 Description of the Solution
	3.2.2 Network Entities
	3.2.2.1 Network Coordinator
	3.2.2.2 Network Mote
	3.2.3 Joining a Network
	3.2.4 Establishing a Session
	3.2.5 Updating the Network Key
	3.2.6 Requesting the Network Key
	3.2.7 Exiting the Network

	3.3 Software Components
	3.4 Key Development Concerns

	4 Analysis
	4.1 Introduction of Evaluated Hardware
	4.1.1.1 Crossbow MICAz
	4.1.1.2 Freescale MC1321x
	4.1.1.3 Sun SPOT

	4.2 Hardware
	4.2.1 Memory and Processor
	4.2.2 User Interface and Sensors
	4.2.3 Daughterboards
	4.2.4 Power
	4.2.5 Housing
	4.2.6 Device Types

	4.3 Development Environment
	4.4 Software
	4.4.1 Software Language
	4.4.2 Radio Stack
	4.4.3 Demonstration Code
	4.4.4 Additional Libraries
	4.4.5 Java Virtual Machine
	4.4.6 Operating System

	4.5 Analysis of the Security Scenario
	4.6 Suitability to the Security Scenario
	4.6.1 Access to 802.15.4 Headers
	4.6.2 Timers
	4.6.3 Encryption Algorithms

	4.7 Development Assistance
	4.7.1 Tutorials
	4.7.2 Data Sheets
	4.7.3 Software Documentation
	4.7.4 Online Community

	4.8 Other Tools
	4.8.1 Simulators
	4.8.2 Emulators
	4.8.3 Background Debug Interfaces
	4.8.4 Benchmarking Tools

	4.9 Expense
	4.10 Summary

	5 Conclusions
	5.1 Summary of Hardware Kits
	5.2 Recommended Improvements
	5.3 Future Work

	6 References

