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ABSTRACT 
 
 
 

THE STATE OF SECURE APPLICATION DEVELOPMENT FOR 802.15.4 

 
 

Janell Armstrong 

School of Technology 

Master of Science 
 
 
 

A wireless sensor network consists of small, limited-resource embedded systems 

exchanging environment data and activating controls. These networks can be deployed in 

hostile environments to monitor wildlife habitats, implemented in factories to locate 

mobile equipment, and installed in home environments to optimize the use of utilities. 

Each of these scenarios requires network security to protect the network data. The IEEE 

802.15.4 standard is designed for WSN communication, yet the standard states that it is 

not responsible for defining the initialization, distribution, updating, or management of 

network public keys. 

Individuals seeking to research security topics will find that there are many 

802.15.4-compliant development hardware kits available to purchase. However, these 

kits are not easily compared to each other without first-hand experience. Further, not all 

available kits are suitable for research in WSN security. 

 



 

 



 

This thesis evaluates a broad spectrum of  802.15.4 development kits for security 

studies. Three promising kits are examined in detail: Crossbow MICAz, Freescale 

MC1321x, and the Sun SPOT. These kits are evaluated based on their hardware, 

software, development environment, additional libraries, additional tools, and cost. 

Recommendations are made to security researchers advising which kits to use depending 

on their design needs and priorities. Suggestions are made to each company on how to 

further improve their kits for security research. 
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1 Introduction 

Wireless sensor networks (WSN) are a key component to turn the dream of 

“smart homes” into reality. A smart home, home automation, or environment automation 

describes a system where appliances communicate with one another, users remotely 

control and monitor their home, the environment automatically adjusts to a user’s 

preferences, and so forth.  Technologists and authors have long dreamed of achieving this 

technology - from E.M. Forster’s science fiction short story describing an automated 

living environment (Forster, 2001)(originally published in 1909) to Mark Weiser’s 

journal article defining ubiquitous computing (Weiser, 1991).  

A WSN is a foundational technology in home automation. WSN’s establish a 

channel through which multiple devices may communicate with each other. WSN’s 

provide a means to monitor an individual’s activities and habits. WSN’s facilitate the 

ability to actuate both software and mechanical events throughout the system 

environment. 

Typical users – even those accustomed to the pervasive technologies of cell 

phones, MP3 players, and computers – may not understand the benefits of home or 

environment automation; after all, manual control of their homes serves them well. Why 

would individuals wish for their appliances to collaborate, their security system to be 



2 

remotely accessible, their homes to monitor the occupants’ health, and their house lights 

to automatically turn on and off? 

Automation through a WSN allows individuals and families unprecedented peace 

of mind, environment control, and home optimization. An automated home may provide 

independence for elderly relatives while alerting their caregivers when something is 

amiss (e.g. to summon assistance in response to a fall-related injury). An automated home 

may enable a person with handicaps to control their surroundings with ease. An 

automated home may help reduce utility bills by optimizing a family’s use of electric 

lighting where young children and busy adults often neglect simple energy optimizations 

such as turning the lights off as they exit a room. 

1.1 Wireless Sensor Network Technology 

A wireless sensor network includes a set of sensor-equipped embedded systems, 

known as motes, communicating via a wireless channel. Each mote typically collects 

local environmental data, and then shares the data with its neighboring motes. Interested 

entities (e.g. users, system administrators, and other motes) may harvest these data to 

observe and control the current state and history of the monitored environment. Entities – 

including motes – may issue commands to or requests from the networked motes that in 

turn may control the user’s home environment (e.g. the lawn watering system). Data and 

mote commands are considered privileged and sensitive because divulging the data may 

be reveal habits, routines, and the state of that which the network is monitoring. 

The application program of the WSN may observe network traffic or receive mote 

data to analyze, monitor, and control the entire system. This application, usually running 
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from a desktop computer, often acts as a director of the system: interpreting mote data 

and instructing motes on how to act. Specialized motes may aid the application in system 

tasks; these motes are known by many names including ‘bridge,’ ‘gateway,’ ‘sink mote,’ 

and ‘coordinator mote.’ Utilizing a specialized mote to control the network security 

creates a single point of failure, thus it is frowned upon in drop networks (thousands of 

motes deployed in a hostile environment)(Gamage et al, 2006). In home automation, 

however, this practice may be encouraged as a central point for a user to interact with, 

configure, and control the system while assuming the home itself provides sufficient 

physical security to protect the specialized mote. 

Motes may pass messages from one to another over multiple hops within a peer-

to-peer network. These messages may consist of acknowledgements, routing commands, 

the exchange of data, commands, and responses to commands. Each mote may read, 

analyze, ignore, forward, or respond to each received packet. 

1.2 Network Standards 

Several wireless technologies may be used to implement a wireless sensor 

network. Researchers created an irrigation system that used Bluetooth to deliver water to 

specific sites (Yunseop, Evans, Iversen, 2008). WiFi has been proposed as a backbone to 

multiple mesh networks (Leal et al, 2007). ZigBee (an implementation of 802.15.4) is 

commonly implemented within environment monitoring projects such as the oft-cited 

Great Duck Island application (Kumagai, 2004) used ZigBee devices to monitor the heat 

levels within bird burrows. Of these IEEE 802.15.4-compliant standards are often used 

because the standard is designed specifically for low-power, mesh network devices. 
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The Institute for Electrical and Electronics Engineers (IEEE) proposed and first 

ratified the 802.15.4 standard in 2003 for communication within wireless sensor networks 

(IEEE Computer Society, 2006). The 802.15.4 standard, part of the WPAN (Wireless 

Personal Area Network) working group, is specifically tailored to low-bandwidth, 

limited-battery devices communicating in peer-to-peer, ad-hoc connections. The ZigBee 

alliance, a consortium of over 250 member companies (ZigBee Alliance, 2008), 

developed and ratified the ZigBee specification that defines additional security 

mechanisms, routing protocols, and efficiency measure to 802.15.4 (ZigBee Alliance, 

2004, ZigBee Alliance, 2006). Each of these standards as well as other common wireless 

network standards will be discussed further in Section 2.1. 

1.3 Network Security Threats 

This new technology introduces many benefits to its users, yet wireless sensor 

networks may also introduce new problems for its users. Like all wireless 

communication, a WSN is vulnerable to both passive and aggressive security attacks. 

Data transmitted through a WSN channel without security precautions may be intercepted 

or altered by unauthorized users. Security flaws may permit identify theft, cause system 

down time, and allow unauthorized users to control the network and its devices. 

Examples of potential security vulnerabilities include eavesdropping, service disruption, 

protocol attacks, etc.  (See Chapter 2 for a further discussion on security threats and the 

research towards resolving the system weaknesses.) 

The network owner must protect the network data by making it difficult to 

understand and by blocking unauthorized entities from entering the network. 
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Furthermore, a balance between security and resource consumption must be achieved; a 

high-consumption security system may disable a WSN’s ability to allocate resources to 

its core application, yet a low-cost security system may not sufficiently defend the 

network. Security tools must be developed to enable network owner to create a secure 

WSN. 

1.4 Development Challenges 

Researchers may study the effectiveness in preventing network attacks by 

studying WSN weaknesses and developing security fortifications. Typically, this research 

is discussed as theory defended by a comparison to similar methods within other wireless 

network standards or by data produced by software simulations. WSN software is not 

often studied on actual hardware due to scaling constraints, budgeting, or an assumption 

that simulation is sufficient to prove a security method effective.  

Implementing a wireless sensor network on real hardware is not without its 

challenges. The exchange of large data packets between two motes is often restricted by 

narrow bandwidth. Debugging is difficult because of the nature of a distributed system. 

The mote software may be particularly constrained by the hardware’s limited processor 

and limited RAM. An example of the limited mote resources is the Freescale MC13213 

mote. This mote has only a 40 MHz, 8-bit processor; 60 KB flash; and 4 KB RAM 

(Freescale Semiconductor Inc., 2007z). These hardware limitations limit the speed, 

program size, application complexity, and security of the WSN. 

Further challenges exist when the learning curve of existing hardware is taken 

into consideration. The available documentation and tutorials; accessible, active, online 
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communities; open-source code and demonstration code each have an impact on the 

success of a developer in writing code. A developer is aided in debugging software by the 

hardware interfaces used to communicate with the device and by the device’s buttons and 

LEDs. The cost of the hardware impacts the number of devices researchers can obtain 

and consequently influences the network scale. The existing Operating Systems and code 

may further assist a developer by adhering to an OSI-model of code by separating out the 

code necessary for activating an LED from the network routing code; thus enabling the 

new users to focus on development without perfecting their knowledge of the lower 

levels of coding. 

Unfortunately, there is no “perfect solution” development kit available to student 

researchers. Most existing development kits lack one of the crucial components and may 

hinder success in security research.  

1.5 Proposed Research 

This thesis shall assess several WSN development kits for suitability to security 

development and research. The hardware of each kit will be described including its 

memory, processor, user interface and sensors, daughterboards, power supply, and 

housing. The development environment and software requirements will be described in 

enough detail to support the analysis. The available documentation for each kit will be 

described. The various kit configurations available for purchase and the expense of each 

will be noted. 

The suitability of each kit will be measured against a security development 

scenario.  The test scenario shall be a hypothetical implementation of a simplified version 
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of SSL to create a secure channel between two motes and of a periodic key distribution. 

The number of necessary SSL packets to establish communication shall be reduced by 

eliminating certificates and by limiting each mote to a single encryption method. In 

addition, due to the large memory overhead of Public Key Infrastructure (PK) systems, 

these will also be excluded from consideration in this research. The justification for 

selecting this particular test scenario will be discussed further in Section 3.2. 

The strengths and weaknesses of each development kit will be discussed in the 

context of the tools required to develop the test scenario. Conclusions will be drawn 

identifying what types of research and tasks for which each development kit is best 

suited, since one kit may be better suited to research in application security whereas 

another kit may be better suited to research in the implementation of encryption 

algorithms.  Recommendations will be made on how to improve each kit to better suit it 

for security development in academic research. 
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2 Review of Literature 

This chapter provides an overview of the state of the art of development and 

security within wireless sensor networks. The suitability of several wireless standards 

will be reviewed for WSN. The current state of 802.15.4 and ZigBee security is 

presented. WSN security threats are enumerated, and existing research is discussed.  

2.1 Wireless Communication Standards 

Wi-Fi, UWB (Ultra Wideband), Bluetooth and ULP (Ultra Low Power) 

Bluetooth, IEEE 802.15.4, and ZigBee have emerged as wireless protocols. Each protocol 

has its own strengths and weaknesses. This section considers each protocol for use within 

a wireless sensor network.  

WSN communication standards should accommodate the expected hardware 

limitations of WSN motes and support peer-to-peer networking. Hardware constraints 

further require code with lightweight memory footprints and efficient algorithms. The 

network standard must allow for several anticipated scenarios: new motes may enter the 

network without warning; current motes may exit the network without warning (e.g. a 

battery dies or a fatal accident occurs); mobile motes may move throughout the network 

unpredictably; and motes may exchange data with any other mote within the network. 
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Potential standards to WSN communication include Wi-Fi, UWB, Bluetooth, 802.15.4 

and ZigBee. 

2.1.1 Wi-Fi 

The IEEE 802.11 standard (Wi-Fi) specifies network access to high-powered 

devices with high data rates. This standard is commonly used for WLAN connectivity; 

particularly when channeling Internet traffic. Typically, the 802.11 network topology 

consists of a base station communicating directly with child nodes and a single Internet or 

LAN connection. While less commonly implemented, Wi-Fi-enabled devices may 

operate in a peer-to-peer, ad hoc mode. The proposed 802.11s, will allow base stations to 

route internet traffic through a mesh network (Cherry, 2006); vendors have begun to 

release draft-compliant products in anticipation of the standard’s completion in late 2009 

(PacketHop Inc., 2008).  

The widespread adoption of Wi-Fi provides a ready-infrastructure to home 

automation; however, the high price of the Wi-Fi chipsets and their very high power 

consumption lessens the appeal of Wi-Fi for WSN devices. Anis Koubaa and Mario 

Alves make a good argument and later demonstrated that Wi-Fi ought to be used as a 

backbone in a large-scale WSN (Koubaa, Alves, 2005; Leal et al, 2007). However, their 

2007 demonstration shows that the 802.11 standard is inappropriate for local, inter-mote 

communication. 

2.1.2 Ultrawideband 

Ultrawideband (UWB, IEEE 802.15.3) is expected by its designers to become a 

USB cable replacement technology by transmitting data over many frequencies (similarly 
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to the way gigabit Ethernet transmits over several wires). Standard ratification has been 

delayed because the design committee was divided into two factions. The UWB Forum 

argued for direct-sequence ultrabandwidth; whereas the WiMedia Alliance supported 

multiband orthogonal frequency-division multiplexing (OFDM)(Geer, 2006). Arguments 

for each communication method were based on their effect on radio interference with 

existing devices, ungoverned use of the frequency spectrum in Europe and Asia, power 

consumption, chipset expense, and backwards compatibility with USB 2.0 (Schilit, 

Sengupta, 2004; Jones, 2004; Goth, 2007). 

Eventually, the UWB Forum yielded to the WiMedia Alliance (Leavitt, 2007). 

During the schism, the WiMedia Alliance – led by Intel – continued to seek alternate 

standardization for its technology from the ECMA International and International 

Standards Organization (ISO). WiMedia had also gathered endorsements from the USB 

Implementers Forum (USB-IF) and the Bluetooth Special Interest Group. 

During the time without a unified UWB standard, companies began to create their 

own wireless USB solutions. Freescale, the original leader of the UWB forum, withdrew 

and developed its CableFree standard and attempted to take the technology straight to 

market through the 2006 Consumer Electronics Show (Geer, 2006; Jones 2006; Goth, 

2007). Pulse~Link, at the 2007 Consumer Electronics show, demonstrated its own 

proprietary UWB technology for communication between multiple home entertainment 

devices and a data network (Pulse~Link, 2007). As of 2007, 15 other companies began to 

release their own wireless USB products including Belkin International, D-Link, Hewlett-

Packard, and Intel (Leavitt, 2007). 
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The divisions, uncertainty, and foreboding of future compatibility problems were 

sufficient to disqualify UWB as a communication standard within WSN’s. 

2.1.3 Bluetooth and ULP Bluetooth 

Bluetooth (IEEE 802.15.1) was originally designed to replace cables between 

computer peripherals for the high-volume transfer of files and data. The Bluetooth 

standard allows for point-to-multipoint, ad hoc communication for inter-peripheral or 

desktop-peripheral communications. A Bluetooth piconet allows a single device to be the 

master of up to seven child devices. The master device communicates with each child in a 

round-robin fashion, and a child device may not communicate directly with another child 

device. In a Bluetooth scatternet a child may participate in multiple piconets, but the 

standard does not define any communication between piconets.  

Ultra Low Power Bluetooth (ULP Bluetooth), on the other hand, is designed to 

enable communication between small devices. Nokia initially announced this Bluetooth-

complimentary standard as WiBree in 2006. They proposed an adapted Bluetooth 

standard that featured 1Mbps bandwidth, peer-to-peer mesh networking, and Bluetooth-

compatibility (Nokia Corporation, 2007a). In 2007, the Bluetooth SIG announced that it 

would adopt WiBree as part of the Bluetooth communication standard (Nokia 

Corporation, 2007b). Recently, CSR (a British silicon chip company) provided the first 

public demonstration of the technology (now called ULP Bluetooth).  The demonstrated 

technology achieved packet transfers at 50 times the rate of standard Bluetooth and 

consumed 1/10 the power required by standard Bluetooth (CSR, 2008). 

Bluetooth is an attractive choice with its inclusion of device type profiles, 

authentication and pairing protocols, and widespread adoption. End-users may find 
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convenience in a home network that seamlessly connects with their existing Bluetooth 

WPAN. The “ultra low” power consumption of ULP Bluetooth even promises to enable 

small, battery-powered devices to standby for years (CSR, 2008). 

Unfortunately, ULP Bluetooth build environments are unavailable to the public at 

this time. Further, Bluetooth does not inherently accommodate peer-to-peer networking. 

Therefore the standard is currently unsuitable for WSN applications. 

2.1.4 802.15.4 

IEEE 802.15.4 defines a mesh-networking, communication standard for very low 

data-rate, battery-limited devices (IEEE Computer Society, 2006). The standard defines 

the Media Access Control (MAC) layer and physical (PHY) layer of the OSI model. The 

key features of this standard are its minimal power consumption for extended battery life, 

simultaneous support of hundreds (and in some configurations, thousands) of devices, 

and peer-to-peer communication.  

Several companies have sought to create similar technologies; three of these 

proprietary variations are particularly notable. SmartLab’s Insteon implements the 

802.15.4 standard while eliminating the need for a network controller and message 

routing (SmartLabs Inc, 2007).  Likewise, Microchip’s MiWi creates a light-weight 

version of 802.15.4 by eliminating all security measures and by limiting the network 

communication to 4 hops (Microchip Technology Inc, 2006). Zensys’s Z-Wave is similar 

to 802.15.4 in functionality but is not 802.15.4-compliant (Z-Wave Alliance, 2007). At 

the time of this thesis neither academia nor industry had seriously adopted any of these 

variations.   
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2.1.5 ZigBee 

The ZigBee specification (ZigBee Alliance, 2007b), adds application framework 

and network layers, and some security measures to IEEE 802.15.4. This specification 

defines three types of motes and three network topologies. The specification also 

decreases power consumption by allowing developers to synchronize the duty cycle of 

the network motes. 

Every ZigBee node must be one of three types of motes: Coordinator, Router, or 

End Device. The ZigBee Coordinator is responsible for network configuration and 

synchronization.  Every network, regardless of topology, must have a Coordinator. Every 

network, regardless of topology, may only have one Coordinator. ZigBee Routers are 

responsible for the routing of network messages to their associated End Devices and 

neighboring Routers. The Coordinator also shares routing responsibilities with the Router 

nodes. ZigBee End Devices only communicate with their parent Routers.  

ZigBee supports three network topologies: star, tree, and mesh. Regardless of 

network topology, every network type must have one and only one Coordinator and End 

Devices may only communicate with their parent node. The ZigBee star network is like a 

Bluetooth piconet, for neither make allowance for communication between the children 

of the network hub device (i.e. Coordinator).  In a mesh and tree network, if a device’s 

parent ceases to exist within the network the device will identify and join another Router 

within its range; if no new parent is available the device will be unable to rejoin the 

network. In a mesh topology messages between two out-of-range nodes are routed 

through the network Routers.   
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ZigBee minimizes power consumption and prolongs the battery life by operating 

on a very low duty cycle of less than 1%, by transitioning devices from sleep state to an 

active state in 15ms, and by requiring only 30ms for a device to join the network (ZigBee 

Alliance, 2007a).  

The device duty cycle of star and tree networks are defined by beacon mode 

synchronization. Coordinator transmits beacon frames to all its associated nodes which in 

turn route the frames to their associated nodes, etc. Following each of these frames is the 

active period in which devices may exchange messages by CSMA (Carrier Sense 

Multiple Access). This methodology requires a node to listen for network traffic and wait 

for the channel to be free. All nodes sleep during an inactive period and awaken for the 

next anticipated beacon frame.  

The beacon frame is propagated throughout the network, so a mesh network may 

not operate in beacon mode. In non-beacon mode data transmissions may take place at 

any time and are not limited to the active period. All transfers take place during a free 

period determined by CSMA. Nodes participating in a mesh topology must have an 

increased duty cycle (and thereby increased battery consumption) because there is no 

defined active period.   

These ZigBee specification constraints prevent the network from being robust 

because the entire network may fail if the Coordinator is cut off from the network. 

Relying on specialized devices to perform network tasks may interfere with a network’s 

robustness. In a beaconing network the loss of the Coordinator would be detrimental 

because only the Coordinator sends the synchronization beacons. Similarly, in a star 

network the loss of the Coordinator would be detrimental because only the Coordinator 
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may route messages. In a tree or mesh network, the loss of a Router may cut many 

devices off from the remaining network if no other Routers are within range of the lost 

Router’s associated devices. 

Unfortunately, despite the nearly ideal design of the ZigBee specification, the 

ZigBee Alliance has unintentionally hindered the adoption of the technology. One author 

succinctly stated, “ZigBee has feature-creeped far beyond its humble 'home RF' 

beginnings. That's not necessarily bad, reflecting an understandable migration of 

application aspirations to bigger and better things. . . On the other hand, with wireless it's 

always the more the merrier, and ZigBee feature creep leaves the door open for new low-

end alternatives” (Cantrell, 2008). Additionally, ZigBee-compliant, open-source, 

security-enabled, stack source code is difficult to obtain. Closed stack code greatly 

increases the complexity of manipulating the security state machine to add additional 

measures or add evaluation and measurement algorithms. 

2.1.6 Conclusions 

IEEE 802.15.4 and its derivative, ZigBee, are equally appropriate protocols for 

the development of a WSN. Unlike Bluetooth and UWB, 802.15.4 and ZigBee allow for 

mesh networking. Unlike WiFi, 802.15.4 and ZigBee may be powered from a single set 

of batteries for weeks or months. Both 802.15.4 and ZigBee are specifically designed for 

devices with small microprocessors and limited memory. 

Alternatively, researchers may find that either 802.15.4 or ZigBee is better suited 

to specific research topics. The 802.15.4 standard may be more accommodating to the 

advancement of WSN security research, as it defines only the basic conventions for 

security thus allowing the researcher to define a complete security system. ZigBee is 
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appropriate for the design of secure WSN applications because it standardizes the 

network-layer among third party devices.  

The remainder of this thesis will address both 802.15.4 and ZigBee as either may 

be selected for WSN research.  

2.2 802.15.4 and ZigBee Security 

Both 802.15.4 and ZigBee provide basic mechanisms necessary to implementing 

a security policy (IEEE Computer Society, 2006; ZigBee Alliance, 2007b). The 802.15.4 

standard provides frames security, and ZigBee adds key transport, device management, 

and a permissions matrix. Unfortunately, each standard acknowledges that much of 

security necessary to WSN implementation is outside the scope of its standardization.  

IEEE 802.15.4 is a standard focused on specifying the physical and data layers of 

WSN communication. It acknowledges that, “[Most] security architectural elements can 

be implemented at higher layers and may, therefore, be considered to be outside the scope 

of this standard” (IEEE Computer Society, 2006). The standard provides frame protection 

using a key shared between two devices or among a group of devices, and a security level 

may be associated within a request command frame. The standard also provides 

cryptographic mechanisms based on symmetric-key cryptography using a key provided 

by high layer processes. However, despite providing the basic mechanisms for a security 

policy, the standard declares that “the establishment and maintenance of keys are outside 

the scope of this standard.” 

The ZigBee specification further defines the Network and Application layer, and 

the more recent revisions have emphasized network security. The specification designates 
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a specialized mote with controlling the network security, and it defines a master key from 

which all other keys are derived. The specification also provides a mechanism for key 

transport – that may only be encrypted if the key has already been defined on both the 

server and client motes. Within the specification, all master keys are either preinstalled or 

the key updating scheduling is left to the application layer. ZigBee-2007 also provides a 

configuration table for permissions to matrix what commands a mote may or may not 

heed. 

The ZigBee-2007 specification includes many security mechanisms for key 

establishment, key transport, frame protection, and device management. The specification 

notes, “These services form the building blocks for implementing security policies within 

a ZigBee device.” (ZigBee Alliance, 2007b) Particularly useful to a researcher 

developing a security policy are the mechanism provided to request a key, transport a 

key, switch a key, or inform a router than one of its children must be updated or removed 

from the network.  

The security mechanisms of ZigBee-2007 do not negate the need for careful 

attention when developing a security policy. The specification rests on the assumptions in 

the safekeeping of keys, in the secure initialization and installation of keying material, 

and in the processing of the keying material. The specification also relies on the 

application to handle error conditions, detect and handle loss of key synchronization, and 

manage the expiration and updating of key. Indeed, the specification emphasizes, “Trust 

in the security architecture ultimately reduces to trust in the secure initialization and 

installation of keying material and to trust the secure processing and storage of keying 

material.” (ZigBee Alliance, 2007b).  
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2.3 Security Threats 

Mote communication is inherently public because motes communicate through a 

wireless channel. Authorized entities have access to the network data while 

eavesdroppers have equal access to unprotected data; an eavesdropping device, Eve, may 

access the network traffic of a user, Alice, by merely sitting within the network broadcast 

range. Conversely, wired network is secured by tethering the system to a firewall or 

secured gateway, but a wireless connection has no such luxury. In a wireless network 

there is no authorized man-in-the-middle monitoring for suspicious traffic and blocking 

ill-doers. Further, passive access to wireless connections is virtually undetectable. A 

WSN is therefore susceptible to attack from unauthorized users. (Attack being here 

defined as reading, modifying, blocking, or adding to network traffic without permission 

from the network owner.) 

Threats to information security are often classified within several subgroups 

relevant to security: integrity, confidentiality, availability, and authentication. This 

section touches on several of the issues pertaining to WSN threats. For a full threat 

analysis see the threat analysis report edited by Casaca and Westhoff (Girao et al, 2006). 

Integrity verifies that data cannot be modified without authorization. Without any 

security whatsoever it is possible for a neighboring network to simply mistake a device 

for one of its own. However, an attacker may also utilize attack a system by exploiting a 

protocol weakness; thus establishing a man-in-the-middle mote that may read and alter 

messages between a client and a server without either device knowing about the intruding 

mote’s presence. The integrity of a network may also be compromised when a mote 

accepts forged messages or replayed messages from an unauthorized device. 
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Confidentiality prevents information from being revealed to unauthorized entities. 

Information is revealed to unauthorized entities when commands, messages, or keys are 

transmitted by plaintext. Messages without sufficient obfuscation – even when encrypted 

– may be easily understood by an observer when the packet is as simple as a “yes,” “no,” 

“on,” or “off.” 

Availability ensures the network services and devices are able to communicate 

when needed. Service disruption attacks occur when an attacker disables the network 

communication by either preventing a signal from being received by the end device. An 

attacker may physically attack the device by jamming the signal or by physically 

tampering with the device; neither of these scenarios can be addressed by software. An 

attacker may also disrupt the network service by forming a DoS attack against a network 

device – by inundating it with so many messages that the device cannot respond to 

normal network traffic. A corollary of the DoS attack is called “sleep deprivation” 

(Stajano, 2002) in which an attacker forces a device to remain active and thereby draining 

its battery. 

Authentication validates the communicating entities and prevents unauthorized 

entities from masquerading as a valid device or user. For example, Eve introduces a 

network-compatible, yet unauthorized, mote is to her neighbor’s network. This 

unauthorized mote may now have the ability to forward the network traffic to Eve’s 

desktop computer and it may have the ability to issue false data to the authorized network 

motes.  
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2.4 Existing Security Implementations 

The communication security of wireless sensor networks presents many unique 

challenges. Traditional methods of encryption with session keys and public keys are too 

resource heavy for the limited motes. In this section the desirable attributes for the 

security of a wireless sensor network are identified, and the state-of-the-art of 802.15.4 

and ZigBee are evaluated.  Emphasis is placed on security solutions that provide key 

initialization, key updating, and group management policies. 

As previously discussed, motes have limited processor, memory, and power 

resources. While future motes may have more processor and memory resources, motes 

will likely always be constrained by their batteries (Casas, 2005). The selected security 

measures must respect these limitations. 

Three concerns are within the scope of this thesis: low computation overhead, low 

communication overhead, and data confidentiality. The computation overhead directly 

impacts the mote’s battery lifetime. A low communication overhead helps reduce power 

consumption due to antenna usage as well as preserving bandwidth. Data confidentiality 

ensures the content of a message is only understood by the intended recipient. 

Many researchers have addressed aspects of WSN security. As discussed below, 

the TinySec library addresses the message integrity and confidentiality within a ZigBee 

network. SPINS focuses on preventing replay attacks and on providing broadcast 

message authentication. LEAP enables multiple key distribution mechanisms for different 

messaging scenarios (e.g. The Network Coordinator sending a message to a specific 

mote). Sizzle supports Internet SSL access through a specialized gateway mote that uses 

the HTTP stack. The “resurrecting duckling”, though not directly applied to WSN, 
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defines a security policy to introduce an embedded system into a network, to ensure the 

device performs only authorized actions, and to permanently remove an embedded 

system from the network; several interesting off-shoots of this research have been 

developed.  

2.4.1 TinySec 

UC Berkeley designed TinySec (Karlof, Sastry, Wagner, 2004) to achieve access 

control, message integrity, and message confidentiality within WSN. TinySec uses 

message authentication code (MAC) to authenticate message, initialization vectors (IV) 

to mask packet contents, and the Skipjack algorithm (Schneier, 1996) to encrypt 

messages. 

TinySec implements MAC to achieve message authentication. A MAC is a one-

way hash function paired with a key. The hash is appended to an encrypted message and 

used as a checksum. A mote with the same hash key may recalculate the checksum to 

verify the authenticity of the packet data (Schneier, 1996). 

Intialization vectors disguise packet content within TinySec. WSN messages may 

be highly repetitive such as when motes respond with a simple YES or NO packet. 

Eavesdroppers may study the network messages and behavior of a network and learn to 

distinguish YES packets despite encryption. An IV forces repeated plaintext messages to 

become unique by appending a variable block of unique data to the packet. The simple 

message, “YES,” frequently sent by a fictional network would be changed to, “123YES,” 

and later when repeated changes to, “964YES” (Schneier, 1996). 

The Skipjack encryption algorithm was selected for its conservative RAM usage 

and processing speed. UC Berkley researchers rejected AES (Schneier, 1996) and Triple-
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DES (Schneier, 1996) as being too processor intensive and too slow (Karlof, Sastry, 

Wagner, 2004). 

TinySec is flawed as it does not prevent a message from being replayed by an 

unauthorized device at a later date (a quality known as data freshness). The RAM-

constraints of a typical mote prevent the creation and maintenance of a table with the last 

IV value sent from each of the other mote on the network. Further, TinySec may not be 

practical as it is built upon a mote Operating System, Tiny OS, and the additional 

computation and footprint required to include the OS on a mote may exceed the abilities 

of some motes. 

2.4.2 SPINS 

SPINS (Perrig et al, 2002), developed by Carnegie Mellon University, emphasizes 

data freshness over confidentiality. SPINS is developed on the assumption that 

constrained computation abilities of motes prevents the use of public keys. Two 

technologies create the foundation of SPINS: SNEP and µTESLA. 

The SNEP portion ensures data freshness. Each mote knows a pre-distributed 

master key common among all network motes, and each mote has a counter. To establish 

communication, the client mote sends its current counter number to the mote it wishes to 

contact. The server mote returns its own counter to the client with the MAC calculated 

using the server’s calculated MAC hash. The client then responds with its own counter 

and MAC calculated using its own MAC hash. Following this exchange, motes continue 

to communicate using a calculated encryption key, a pseudorandom block of code, and 

MAC hashed with a calculated key. All keys are based on the current mote counter. 
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The µTELSA technology – adapted from a stream authentication called TESLA – 

provides broadcast authentication. Essentially, each key is self-authenticating as it is 

based on a key previously sent to the receiving mote; the initial parameters are distributed 

unicast by the network base station (Liu, Ning, 2007). The broadcasting mote repeatedly 

hashes a key over a period of time. Each message is appended with a MAC using a hash 

of the previous message’s key. Each receiving mote knows the duration of time between 

messages and also calculates the chained MAC key to authenticate each message (Luk, 

Perrig, Whillock, 2006). 

2.4.3 LEAP 

LEAP (Localization Encryption and Authentication Protocol)(Zhu, Setia, Jajodia, 

2003), designed by George Mason University, supports multiple keying mechanisms with 

which to encrypt four classes of mote data exchange: controller to mote, mote to mote, 

mote to multiple neighboring motes, and mote to all motes. Additionally, µTESLA is 

used for authenticated broadcasts by the controller mote. Periodic group rekeying 

prevents compromised motes from decrypting group messages with the current key. 

The network controller assigns a unique key to every mote within the network. 

The network controller contains a master key known only to the controller mote. A 

unique key is generated with a pseudorandom function using the mote’s unique id and the 

controller mote’s master key. 

Each mote shares a pairwise key with each neighbor mote within one hop. During 

the initial introduction of a mote to the system, the controller mote provides the mote 

with an initial, generated key. The mote then generates its own key using the initial key 

as a seed. When the mote is deployed, it discovers it’s near neighbors and exchanges the 
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mote-generated key. The mote then uses its own key and its neighbor key to generate a 

new, shared key and deletes the key originally given by its neighbor. The mote repeats 

this process for each of its neighbors. Thus every mote shares a unique key with each of 

its neighbors. If a mote is added to the network after the initial set up, it may obtain a list 

of neighborhood motes from an established neighbor. 

Clusters of motes may be established. The mote initiating the cluster generates a 

random key, encrypts the key with the pairwise key for each neighbor, and sends the 

cluster key. The receiving mote decrypts the message to obtain the cluster key. The 

receiving mote may encrypt this key and share it with its own neighbors. 

Finally, a mote may generate a pairwise key specific to a mote several hops away. 

By network discovery a mote may indentify motes further than one-hop away. Using a 

process similar to the establishment of pairwise keys with one-hop neighbors, a pairwise 

key may be established with n-hop motes. This scenario is useful during data aggregation 

and allows the data to only be decrypted by the end mote. 

A great fault of LEAP is its assumption that all motes are static. Even more 

troublesome, the establishment of a unique, pairwise key with every network mote a 

sending mote may wish to communicate with can easily become an onerous, RAM-

consuming task.  

2.4.4 Sizzle 

Sun Microsystems developed Sizzle to create a secure Internet connection to a 

wireless sensor network (Gupta et al, 2005). Their abbreviated SSL protocol and small-

footprint HTTPS stack require less than 4KB RAM. A single mote acts as a gateway 

between an Internet connection and the remainder of the WSN. Sizzle successfully 
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addresses Internet access to a wireless sensor network including establishing a secure 

connection and transporting encrypted data. Sizzle does not address communication 

between motes. 

2.4.5 MiniSec 

In 2007, some of the same researchers who developed SPINS at CMU introduced 

a new WSN security architecture named MiniSec (Luk et al, 2007). MiniSec focuses on 

network layer security and assumes pre-established symmetric keys. This architecture 

seeks to provide a secure network layer protocol providing a high level of security with 

low energy consumption. These goals are achieved by operating through a block cipher 

mode, transmitting only a portion of the IV (unlike TinySec and SNEP), and creating a 

distinct protocol for broadcast messages and unicast messages.  

2.4.6 Resurrecting Duckling 

The resurrecting duckling (Stajano, 2002; Stajano, Anderson, 2002) is an 

embedded system security policy designed to address the issues of device authorization to 

command actions and perform actions. The basis of Stajano’s policy is comparable to the 

hatching of a duckling – the duckling imprints itself to the first being it sees as its mother. 

A device is “soulless” until it is introduced to its mother who provides it with a soul.  The 

authors recommend assuring the validity of the soul by transmission only via IrDA or a 

physical link. This “soul” is a policy dictating what actions the duckling may perform: 

the exchange of information, the adherence to commands, and the issuing of commands. 

This policy also dictates that a device can “die,” or cease to use its policy; thereby 

returning to a state without imprint. After the imprinted policy has been removed from a 



27 

device it may be introduced to a new mother device. This policy is suitable for a WSN in 

which motes must be recognized as a network member despite frequently entering and 

leaving the network and a WSN in which motes may participate in group relationships.  

Several Zigbee researchers at CMU have taken note of Stajano’s work (Kuo, et al. 2007). 

The goal of the researchers’ “Message-in-a-bottle” is to provide a secure means to 

initialize a mote cryptographic key without requiring specialized hardware. They observe 

that the resurrecting duckling may require specialized hardware in order to securely 

transmit the initial key. The “bottle” of their solution is a faraday cage that protects the 

key transmissions from eavesdroppers and frequency jamming.  

2.5 Related Work  

Numerous research and hobbyist projects exist using 802.15.4-compatiable 

hardware kits. Unfortunately, it is extremely rare for the corresponding publications to 

provide details on the decision process, rationale, or experience in using their selected 

hardware. There are only two publications detailing the selection of a development kit.  

The first publication is a paper presented at an ASEE (American Society of 

Engineering Educators) conference regarding a hands-on introduction to ZigBee for 

undergraduates co-written by the author of this thesis (Bateman, Armstrong, and Helps, 

2007). This paper only mentions the qualities desired in the development hardware and 

notes which kits were considered. Few details regarding the selection of one development 

kit of another are provided by the authors, and the topic of security is never addressed. 

The second publication is a master’s thesis examining the suitability of ZigBee for 

wireless applications (Andersson, 2007). In his thesis, Andreas Andersson provides a 
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brief discussion on the market's opinion of several development 802.15.4-compliant 

transceivers. He notes that the CC2420 receiver is the most commonly used within 

hardware kits (including Ember, Microchip and Crossbow). He also notes that the ZigBee 

development community infrequently uses the Freescale MC13192 that may indicate that 

they are impressed by neither the chip's price nor its performance. Andersson further 

compares 7 development kits based on the (then) availability of a ZigBee-compliant 

stack, the number of nodes in a kit, the transceiver used, the size of the company 

developing the kit, and the cost of the kit. Ultimately, he chose the CC2320 DK from 

Chipcon because it offered a more complete, ZigBee-compliant stack, the best 

transceiver, and the shortest time for delivery. 

2.6 Conclusions 

IEEE 802.15.4 and its derivative ZigBee are the standards best suited for WSN 

communication, yet they each rely on a developer to ensure the security of the channel 

between two devices. Much research remains on security techniques with WSN, and the 

impact of the security techniques on the limited resource environment needs to be 

studied.  At this time, very little has been published regarding the selection of a 

development kit emphasizing the purpose of security research. 
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3 Methodology 

In this chapter the methodology necessary to address the problem stated in 

Chapter 1 is dicussed. Several development kits are selected for evaluation. A security 

scenario to measure the platforms is presented. The scenario is the assessed for the 

qualities necessary in a development kit. Finally, additional development requirements 

and concerns are discussed.   

3.1 Candidate Development Kits 

The objective of this thesis is to compare several, readily available hardware kits 

for WSN security development. The selection process for the demonstration hardware 

shall be completed in four phases. First, the hardware characteristics necessary to 

compare the development kits shall be discussed. Second, the hardware characteristics 

eliminated from consideration shall be noted. Third, the notable hardware development 

kits not selected shall be mentioned. Fourth, the hardware development kits to be 

evaluated shall be presented. 

3.1.1 Necessary Hardware Characteristics  

Several characteristics must be considered when assessing the candidate 

development kits: MCU (micro controller) and memory resources, user interfaces, 
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integrated sensors, power supplies, and technical support. These five characteristics 

influence the ease of development, and they may limit the design of the proposed 

solution. 

Insufficient processor and memory resources may restrict which security tools are 

viable on the development hardware. The available RAM defines the number of private 

keys a mote may store; thus, the capability of the hypothetical network may be impeded 

if a security policy requires that a mote record the private key of each networked mote. 

Similarly, the memory storage space and processor size may be insufficient to run 

cryptographic code or may exclude the use of resource intensive algorithms such as RSA. 

Alternative developmental interfaces influence the ease of providing feedback to 

the code developer. A USB or serial link may provide confirmation of code execution 

and program traces to a host computer. An LCD on a mote may display clear messages 

without the aid of a host computer. LEDs may also communicate data to the developer. 

Integrated sensor capabilities influence the system application and affect a 

programmer’s debugging strategies. Common integrated- and daughterboard-sensors 

include general I/O ADC and DAC, push-buttons, thermistors, phototransistors, and 

accelerometers. On one hand, this thesis allows the demonstration application to be 

designed around the available mote sensors. On the other hand, the sensors of the 

evaluated hardware are highly relevant because sensors provide a means of debugging 

and application input. For example, the inclusion of a single push button allows the 

developer to easily control the mote in order to simulate input for debugging; whereas a 

lack of any push buttons and an inclusion of a photodiode require the developer to control 

the mote’s environment (e.g. a rigged shoe box) in order to simulate input for debugging. 
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The cost of research may be influenced by the cost of a power supply to run the 

hardware. Development motes are designed to operate with less optimization, fewer sleep 

cycles, and increased processing power requirements compared to a completed, 

manufactured mote. The resulting higher rate of battery consumption may require a 

researcher to frequently replace a mote’s batteries or invest in rechargeable batteries. 

Development motes are often powered by one or more of the following: AA batteries, 

USB cables, and 110 V AC/DC converters. 

While not a physical hardware component, another consideration is the candidate 

hardware’s available technical support. The quality of documentation, technical support, 

and demonstration code may ease the development process for the unfamiliar hardware. 

The presence of an online developers’ community may assist in troubleshooting hardware 

difficulties and software bugs. Completed, prior research successes using the mote 

hardware demonstrates the implementation feasibility of the hardware. 

3.1.2 Disregarded Hardware Characteristics 

The three characteristics excluded from consideration include the hardware 

programming language, mote physical size, and mote power consumption. The 

programming language is irrelevant to the selection process because hardware kits 

commonly run C/C++. (The only known exception is the Sun SPOT which runs Java.) 

The physical size and power consumption of the development motes will not be 

considered because these optimizations are unnecessary for this research. 
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3.1.3 Notable Excluded Platforms 

Several kits common to embedded system development have been excluded from 

consideration. The Gumstix lacks a readily available 802.15.4-compatible stack. The 

PICDEM Z, despite several years on the market, has not garnered any market support. 

Finally, TelosB was disregarded in favor of its sibling product, MICA Z, which is 

ZigBee-compliant. The Ember EM250 is seriously considered because of Ember’s 

popularity in industry; however, this device was rejected due to expense of both its kit 

and its expansion boards. The TI CC2430 and TI CC2431 and are also considered, yet 

each are disregarded due to the expense of the kits. 

The Gumstix (Gumstix Inc., 2009) is a small motherboard – literally about the 

size of a gum stick. This device has been used in many applications: from creating a 

clarinet-playing robot (Wolfe, 2008) to gathering and viewing real-time measurements of 

probes in the San Francisco Bay (Google, 2009). Bluetooth and Wi-Fi capabilities may 

be added to the Gumstix with a Wi-Fi module. In 2007, Research Studios of Austria 

noted on their website that they had completed a Gumstix-ZigBee adaptor, but no further 

information, publications, or software releases could be found. 

The PICDEM Z (Microchip Technology Inc., 2008) is a PIC18 motherboard and 

daughterboard kit for use with the MPLAB IDE. This kit was excluded because its only 

802.15.4-compatible stack was a vastly trimmed version of ZigBee. Some researchers 

experienced with Microchip embedded systems may find this kit favorable because it is 

compatible with the MPLab IDE, ICD2, and MCC18 compiler. The only notable 

PICDEM Z published research evaluates the signal strength of wireless sensor networks 

within indoor scenarios (Ferrari, 2007).    
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The TelosB is an 802.15.4-compatible, Crossbow product (Crossbow Technology 

Inc., 2008b). The device was originally design in conjunction with WSN research at UC 

Berkeley, so the platform depends on TinyOS. Examples of research include a Purdue 

study on how cryptography effects node lifetime (Piotrowski, Langendoefer, and Peter, 

2006) and creating a mesh network to transmit audio and video (Song, Hatzinakos, 

Wang, 2008). It was not considered as a hardware kit in favor of Crossbow’s ZigBee-

compliant MICAz.  

Ember sells a ZigBee-compliant device called the EM250 as part of their InSight 

ZigBee development kit. The Em250 data sheet (Ember Corporation, 2006) indicates that 

the device is built with a 16-bit XAP2b microprocessor, 128 KB program memory, and 

5k of RAM. No information is provided regarding additional communication hardware 

(i.e. Serial or USB). Ember offers very detailed documentation on the EM250 

microprocessor; however, they provide little information about the mote hardware itself. 

This device was rejected for this research because, at the time of writing, the InSight 

development kits range from thousands to tens of thousands of dollars (Digi-Key 

Corporation, 2009). 

Chipcon, the creators of the devices used in Andersson’s research, was acquired 

by Texas Instruments in 2006 (Mumford). Their most recent ZigBee development 

platform is the CC2430. Of all the available hardware kits, TI appears to offer the most 

complete kit: a ZigBee-compliant stack, 2 evaluation boards 2 evaluation modules, 2 

demonstration boards, batteries, a C-compiler with debugger on a 90-day evaluation 

license, and a copy of the Daintree sensor network analyzer (later described in Section 
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4.8). Unfortunately, this more complete kit comes at a cost (starting at $1,500), so is will 

not be evaluated within this thesis. 

3.1.4 Hardware for Evaluation 

Many companies offer development hardware and microchips for 802.15.4 WSN 

applications. Both ZigBee-compliant and 802.15.4-compliant kits are considered – 

though more weight it given towards ZigBee-compliant kits due to the specification’s 

more thorough security definition. The hardware considered – those which were readily 

available at the time of hardware selection – include the Crossbow MICAz, the Freescale 

MC1321x, and the Sun SPOT.  

In general WSN literature, the word ‘mote’ frequently refers to a node within a 

wireless sensor network. It should be noted that the Crossbow claims the word ‘mote’ to 

describe any of its WSN node products. Sun Microsystems literature prefers to call their 

device ‘SPOT’ and refer to Crossbow’s device as ‘mote.’ Throughout the Freescale 

documentation they use the unwieldy label ‘MC1321x’ or ‘ZigBee End Device’ (ZED). 

This thesis shall use the words ‘mote,’ ‘node,’ and ‘device’ interchangeably regardless of 

company origin. MICAz, SPOT, and MC1321x shall be used to directly refer to the given 

product. 

The Crossbow, Freescale, and Sun kits all have sufficient resources for the 

research outlined here, and are affordable enough that they are accessible. A more 

thorough examination of their specific qualities is included in Chapter 4. 
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3.2 Security Scenario 

A security development scenario will be used to determine which software 

qualities are most important in a study of WSN key distribution and updating. This 

security development scenario will address a few common issues in creating a security 

policy, and partially addresses a key management policy. The hypothetical security 

policy shall define means to establish the user's approval of a node within the network, to 

create a session between two network motes, to periodically update the network key, to 

request the current network key, and to remove a mote from the network. The security 

scenario assumes that the network tasks a Network Coordinator with the management of 

the network security. 

3.2.1 Description of the Solution 

This section expounds on the security scenario. The primary objective of this 

policy is to establish a secure exchange of data between motes within a WSN network. 

The tasks critical to the success of the scenario include the acceptance of a new node into 

the network, the distribution of network keys, and the establishment of secure sessions. 

The Network Coordinator shall control the security and authorization of its 

network. When a mote wishes to join the network, it must first authenticate with the 

Network Coordinator. If the mote is permitted to join the network, the Network 

Coordinator will provide the current network key to the joining mote (this transaction is 

detailed in Section 0). Thereafter, the Network Coordinator will generate and distribute a 

new key at the end of a defined time; if a mote misses this update it must contact the 

Network Coordinator to receive the new key.  
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Communication between motes shall be secured by a session key. The 

handshaking necessary to establish the session key shall be based on SSL (Secure Socket 

Layers) and all handshaking packets shall be encrypted with the network key. Motes are 

encouraged to formally close the session with a termination packet, but a timeout 

scenario will prevent system deadlock. A session may not be reestablished once it is 

terminated. 

Symmetric cryptography was selected to secure the communication channels of 

the proposed security scenario. The network master key is used to encrypt and secure 

messages and the same key is used to decrypt those messages. This prevents any device 

without the master key from decrypting the packets. Symmetric keys were selected 

because it is a well-studied cryptographic technique that can be deployed on limited 

resource devices. Asymmetric key cryptography was not used due to concern that motes 

would have insufficient RAM to store a key for each device in the network. Similarly, 

digital certificates are excluded from the proposed security policy due to anticipated 

RAM constraints. There are several known weaknesses of symmetric cryptography – 

namely the initial key distribution. In a sense the Network Coordinator functions as the 

key distribution center (KDC), but not to the extent that a mote may contact the KDC to 

verify the network key. Another known weakness is the distribution of the initial key – 

how does one securely transmit a key when two devices do not yet share a secure 

communications channel or a secret key by which to encrypt and decrypt? Both 802.15.4 

and ZigBee rely on a pre-installed key placed on the hardware either by coding or 

configuration. The proposed security policy transmits this key in clear text; a large 

vulnerability. This could be worked around by requiring the initial join process to be 
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completed over a secure wire or could be secured by locking each device in a faraday 

cage before transmitting the initial key wirelessly. Neither solution is completely 

satisfactory, but the issue at hand is appropriate for a separate study in WSN security and 

is outside the scope of this thesis. This thesis will accept the symmetric key limitation of 

802.15.4 and improve the security of it by proposing temporal key updating policy. 

3.2.2 Network Entities 

A typical network topology will consist of one Network Coordinator and one or 

more Network Motes. This is consistent with the ZigBee specification designation of a 

specialized node charged with managing the network security of a network of typical 

nodes.  

3.2.2.1 Network Coordinator 

The Network Coordinator shall be responsible for initiating the network, verifying 

motes wishing to enter the network, distributing the network key, and maintaining a list 

of all mote groups. The Network Coordinator shall have the following properties. 

1. The Network Coordinator shall admit new motes into the network. 

2. The Network Coordinator shall generate the network key. 

3. The Network Coordinator shall generate a new network key after a defined period 

of time. 

4. The Network Coordinator shall store one prior network key. 

5. The Network Coordinator shall distribute the network key to new motes admitted 

to the network. 
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6. The Network Coordinator shall provide the current network key to valid motes 

which know the prior network key. 

7. The Network Coordinator may update the new network key by sending a message 

to each mote within a session established with the prior key. 

3.2.2.2 Network Mote 

The term “Network Mote” shall refer to any device except the Network 

Coordinator. Each Network Mote shall maintain its functions as defined by 802.15.4 

specification (i.e. routing). Each Network Mote shall have the following properties.  

1. Motes shall connect to the network prior to being authenticated by the 

Network Coordinator. 

2. After joining the Network Coordinator, the mote shall complete the 

authentication process. 

3. Network Motes shall store only one network key.  

4. Should the Network Mote miss a periodic network key update from the 

Network Coordinator, the Network Mote shall request the new network 

key. 

5. If a Network Mote misses more than one network key update, the Network 

Mote must rejoin the network. 

6. Whenever possible a mote shall inform the Network Coordinator when the 

mote is permanently leaving the network. 
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3.2.3 Joining a Network 

Every mote must be introduced to the network. This initial communication shall 

occur over a wireless link in clear text. For greater security the initial communication 

may be transmitted via a hardware link, but this thesis shall not implement that option.  

Like the Resurrecting Duckling policy, a Network Mote shall be loyal first and 

foremost to the Network Coordinator. The physical press of a mote button and the 

physical press of a coordinator button shall validate the user’s intent to include the mote 

in the system network. Once the mote is validated, the Network Coordinator shall provide 

the mote with the network key (i.e. “imprinting”).  

The hypothetical security policy resembles the security mechanism of the ZigBee-

2006 specification with two critical additions. Both policies require the existence of one 

and only one mote trusted with the security of the network. Both policies require that 

trust center (i.e. the base station) manage with the distribution of a network key. The 

proposed policy, however, adds the requirement of a physical permission to transmit the 

key, allows the Network Coordinator to generate a network key rather than relying on a 

pre-loaded key, and establishes the requirement and processes that the network key be 

periodically updated. 

The Network Join Communication sequence is illustrated in Figure 3-1. This 

diagram emphasizes that the mote must join the network (i.e. the nebulous, ether, 

communication cloud) before messages of any sort can be transmitted or received. All 

transactions are completed in clear text. First, the mote joining the network sends a 

packet to the Network Coordinator requesting the initiation of the handshaking. The 

Network Coordinator responds with an ACK. The joining mote and the Network 
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Coordinator then each request the user to verify the join with either a keystroke from the 

host computer or a press of a button on the mote. If the user responds within the allotted 

time (e.g. 10 seconds), the Mote then sends an ACK to the Network Coordinator. 

Likewise, if the user responds within the allotted time and an ACK is received from the 

joining mote, the Network Coordinator records the mote’s entry into the network. Then 

the Network Coordinator sends the network key to the mote within the 

CoordinatorWelcome packet. Finally, the mote then saves these settings.  

The activity of the Network Coordinator is shown in Figure 3-2 and the activity of 

the Mote joining the network is shown in Figure 3-3. These diagrams each show the 

program flow of each device as it transmits the packets of the Network Join 

communication sequence. These diagrams emphasize how each device avoids deadlock 

by requiring that the corresponding device respond within an allotted window of time. 

When the Network Join sequence is unsuccessful (i.e. an error occurs) than the mote still 

wishing to join the network must restart the entire Network Join process. Upon successful 

completion the mote is ready to begin transferring data with any member of the system 

network. 
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Figure 3-1: Network Join Communication Sequence 
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Figure 3-2: Network Join Network Coordinator Activity 
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Figure 3-3: Network Join Mote Activity 
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3.2.4 Establishing a Session 

Any two motes with the current network key may exchange data after establishing 

a session. Secure sessions shall be established using SSL (Secure Socket Layers), 

abbreviated to accommodate small processors and limited bandwidth. The SSL security 

protocol is commonplace among client-server transactions; however, SSL is designed for 

systems with which have faster processing and have better reliability than the typical 

WSN. The number of necessary SSL packets to establish communication shall be 

reduced by eliminating certificates and by limiting each mote to a single encryption 

method. This also reduces required code overhead, RAM usage, bandwidth, etc. 

The network key may periodically be updated (described in Sections 3.2.5 and 

3.2.6). Any mote as the client with the current or prior network key may establish a 

session with the Network Coordinator as the server; any mote-client not using the 

immediate last key or the current key shall be rejected. Motes must have the current 

network key when communicating with other motes.  

Within the Session Establish sequence is the client is charged with generating a 

random, session key. This session key is included in the ClientHello packet which is 

encrypted with the network key and transmitted to the server. (The initial transmission of 

the network key is described in Section 3.2.3.) All Session Establish packets shall be 

encrypted by the network key until the ChangeCipher command is issued at which point 

all communication will commence encrypting with the session key. Once a session is 

established, all communication shall be encrypted using the session key until the session 

is terminated. 
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To prevent system deadlock, the client shall terminate each session with a 

CipherFinished packet, and either the client or the server will timeout if after a given 

period of time the data transfer does not commence. Forbidding the motes from storing 

session keys will conserve mote RAM, thus a session may not be resumed once it is 

terminated. 

3.2.5 Updating the Network Key 

To adhere to best practices, the Network Coordinator shall update the network 

key at the end of a defined time period. This key update transaction assumes all motes are 

present on the network at the time the update packets are transmitted. For simplicity, this 

scenario intentionally omits addressing the issue occurring when a mote is not present on 

the network during a key update transaction. (Section 3.2.6 addresses how a mote can 

return to a network after having missed a key update.) 

The packet sequence of distributing the new network key is illustrated in Figure 

3-4. First, the Network Coordinator overwrites the prior key with the current network 

key, generates a new key, and stores the new key as the current network key. Then the 

Network Coordinator establishes a session using the prior key and sends the new network 

key to each mote one by one. 
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Figure 3-4: Key Update Communication Sequence 
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Figure 3-5: Key Update Coordinator Decision Process 
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The decision activity of the Network Coordinator is shown in Figure 3-5. If a 

mote does not acknowledge the receipt of a packet within a user-defined number of 

attempts than the Network Coordinator proceeds to contact the next known mote – no 

record of failed key distribution is kept. The key update process is considered complete 

after the Network Coordinator has attempted to distribute the new key to each mote.  

The decision activity of the Network Mote as shown in Figure 3-6 is simple. 

When a mote receives a new network key packet it acknowledges the receipt of the new 

key, and overwrites its existing network key.  

 

 

Figure 3-6: Key Update Mote Decision Process 

3.2.6 Requesting the Network Key 

A mote with an expired network key cannot communicate with other networked 

motes which have the updated network key. The Key Request process exists to allow 

motes absent from the network during the Network Key Update process (described in 

Section 3.2.5 to obtain the new key.  

When a mote’s network key has expired the mote must request the current key 

from the Network Coordinator. Figure 3-7 shows the sequence of packets exchanged 
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when an authorized mote requests the new network key from the Network Coordinator. 

During the data exchange portion of a session established with the Network Coordinator 

using the prior network key the mote requests the new key. Then the Network 

Coordinator responds by providing the new network key. Finally, the network mote 

stores the provided key as the new network key.  

  

 

Figure 3-7 - Key Request Communication Sequence 

 

The Network Coordinator is charged with responding to mote requests for the 

new key (shown in Figure 3-8). Any mote with the prior network key may establish a 

secure session with the Network Coordinator; however only authorized motes shall 

receive the updated network key. A mote will be refused the new network key if the 

Network Coordinator cannot verify the mote as part of the system, or if the mote has 

missed more than one network key update, or if the mote has been removed from the 

system. During a session date exchange, the mote may attempt to request the new 

network key (shown in Figure 3-9). 
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Figure 3-8- Key Request Coordinator Decision 

 

 

Figure 3-9 - Key Request Mote Decision 
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To enable motes to request the most recent network key using the prior – and only 

the prior – network key, the Network Coordinator may be required to attempt to decrypt a 

packet with either key. Figure 3-10 illustrates the decision process the Network 

Coordinator shall follow when determining which key to decrypt with. Essentially, it is a 

trial-and-error approach. The correct key must have been selected if the packet can be 

successfully decrypted and restored to a legible cleartext packet (i.e. ClientHello). 

 

 

Figure 3-10 – Network Coordinator Decryption Decision 

 

Should the decryption process fail the Network Coordinator shall not respond to 

the out-of-date Network Mote, and the Network Mote shall treat the lack of response as a 

no-response, timeout.  
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3.2.7 Exiting the Network 

Motes may remain a member of the network indefinitely until it is removed in one 

of three manners. First, a mote will automatically be refused by the network if a mote 

misses two or more network updates; that is, when a mote does not have the current 

network key and when the Network Coordinator has expired the prior key. Second, a user 

may initiate the exit through the mote application which will then erase the mote’s stored 

keys and inform the Network Coordinator that the mote is no longer a network node. 

Third, a user may remove the mote through the Network Coordinator application which 

will then instruct the mote to erase its stored keys (admittedly, only obedient motes will 

comply with this command) and exclude the mote from the network key updates. After a 

mote has been permanently removed from the network the mote cannot communicate 

with the system without completing the Network Join process. The ZigBee-2007 

specification provides mechanisms for device management that may be useful to 

implementing this hypothetical security policy transaction. 

3.3 Software Components 

The vital resources necessary to develop and test the security policy are revealed by 

observation. These resources include editable transfer protocol, timers, and an existing 

encryption algorithm. A development platform must include each of these resources to 

enable the efficient development of an effective security policy. For example, a 

researcher exploring how to best implement session handshaking should have access to a 

provided encryption algorithm that will fit within the device’s flash memory rather than 

requiring the researcher to find or develop a suitable encryption algorithm.   
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It is necessary that a transfer protocol exist that can be modified and extended by 

the researcher. A developer ought to be able to access and set the values of the existing 

802.15.4 or ZigBee headers. Several of these header settings may use useful such as the 

key identification fields or the security type fields. In some instances it may be necessary 

to expand the headers without violating the standard’s constructs.  

Timers are critical to measuring time intervals. These intervals may be used to 

calculate when to next release the periodic key update, and to time the communication 

between two devices to prevent system deadlock. Timers may also be used when 

developing tests to ensure the quality of a proposed solution (i.e. measuring the increased 

time necessary for a mote to join the network). 

An existing encryption algorithm that can fit with the development kit’s available 

flash and RAM is crucial. A sufficiently cryptographically secure pseudo-random number 

generator is also crucial. The security of the test scenario will fail if its components are 

not reliably secure. 

3.4 Key Development Concerns 

In Chapter 4, each development kit will be evaluated for its suitability for 

academic research in security. The hardware topics discussed shall include the sensors, 

displays, communication interfaces, power supply, device types, daughter boards, 

housing, and cost. The software topics shall include the available stack, demonstration 

code, and any additional security libraries. The development tools section shall include 

notes on the easy of loading, compiling, debugging, cost, and overall usability of the 

development applications. The development assistance for each kit shall be evaluated 
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including available manuals, tutorials, data sheets, and online community. Finally, other 

development resources such as simulators and benchmarking tools shall be noted for each 

kit. 
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4 Analysis 

This chapter shall examine and compare the Crossbow MICAz, the Freescale 

MC1321x, and the Sun SPOT. The background and basic characteristics of each kit shall 

be introduced. The hardware shall be evaluated based on sensors, user interface, daughter 

boards, power options, housing, and the multiple device types. The software shall be 

assessed based on its language, radio stack, demonstration code, additional libraries, Java 

Virtual Machine (JVM), and available operating systems. The hypothetical security 

scenario will be analyzed and each platform shall be audited for the security resources 

required by the scenario. Remarks shall be made regarding the hardware’s available 

documentation, demonstration code, and online community. Additional simulation, 

emulation, and benchmarking tools available to the devices shall be noted. The expense 

of the hardware and software of each kit will be compared. Finally, the evaluation of each 

hardware kit shall be summarized. 

4.1 Introduction of Evaluated Hardware 

Three readily available hardware kits were selected for evaluation in Chapter 2: 

Crossbow MICAz, Freescale MC1321x, and Sun SPOT. They were each found to have 

the basic hardware characteristics necessary to serve as a platform for WSN security 

research. A basic background and summary of each device shall now be presented. 
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4.1.1.1 Crossbow MICAz 

The Crossbow MICAz has been selected for evaluation. This primary code base 

of this device is TinyOS (Levis, et al, 2005). This device fulfills all the established 

requirements, offers more flash memory than its competitors, and finds popularity within 

WSN research communities.  

Crossbow Technology Inc. leads the industry in the number of WSN products 

offered to the research market. Currently, Crossbow sells three 802.15.4-compliant 

motes: MICAz, Telos B, and IRIS; of these products the MICAz was preferred for its 

ZigBee-compliance. The MICAz includes many desirable features including 128 KB of 

program storage, 4 KB of RAM, several LEDs, a variety of daughterboard sensors, and a 

2 AA battery power supply (see Table 4-1) (Crossbow Technology Inc., 2007). Due to 

the mote’s popularity among ZigBee researchers much MICAz documentation and many 

troubleshooting tips exist online. Researchers have used the MICAz to examine the 

possibility of implementing a WSN for medical sensor data (Hansen, Støa, 2006); to 

determine the feasibility of real-time, wearable, PAN devices (Koh, Kong, 2006); and to 

collect greenhouse environment data (Zhu, Zhong, Shir, 2006). 

Table 4-1: Crossbow MICAz Features (Crossbow Technology Inc., 2007) 

MCU MPR2400 (based on the Atmel Atmega128L  
(16 MHz, 8-bit)) 

Program Memory 128 KB 
RAM 4 KB 
Communications ZigBee, Serial UART 
Power Options 2, AA Batteries 
User Interface 3 LEDs 
Size 58 mm x 32 mm x 14 mm 
Sensors 51-pin Expansion Connector for Crossbow Sensor 

Boards (Light, Temperature, RH, Barometric Pressure, 
Acceleration/Seismic, Acoustic, Magnetic, Etc.) 
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4.1.1.2 Freescale MC1321x 

The Freescale MC1321x has been selected for evaluation. Freescale’s inclusion of 

multiple LEDs, multiple push buttons, and an LCD on the network coordinator supplies 

multiple methods for data input and output. The serial port and the USB port provides 

alternative means of data transfer while troubleshooting the wireless connection. The 

mote’s plastic casing allows for easy handling and protects the mote circuitry.  

Freescale Semiconductors Inc. offers several different memory configurations of 

their MC1321x mote design. Each design may be purchased as an NCB (Network 

Coordinator Board) or SRB (Sensor Reference Board). The MC13213 SRB includes 

UART, USB, 60 KB Flash memory, 4KB RAM, 4 buttons, and 4 LEDs. Each mote is 

powered by either two AA batteries, a USB connection, or an 110V adapter (see Table 

4-2)(Freescale Semiconductor Inc., 2007a). The NCB includes several additional 

hardware integrations such as an external antenna connection, an LCD, and an RS-232 

port. Unfortunately, little research exists using these relatively new Freescale motes.  

Table 4-2: Freescale MC13213 SRB Features (Freescale Semiconductor Inc., 2007a) 

MCU Freescale HCS08 (40 MHz, 8-bit) 
Program Memory 60 KB 
RAM 4 KB 
Communications ZigBee, USB 
Power Options 2x, AA Batteries; USB; External Power Supply 
User Interface 5 LEDs and 4 Switches 
Size 86 mm x 56 mm x 30 mm 
Sensors Integrated 3-Axis Accelerometer; Temperature Sensor, 

26-pin I/O Ports 

Notably, Freescale now offers a MC1322x kit which was not available when the 

MC1321x was selected and purchased (Freescale Semiconductor Inc, 2008; Freescale 
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Semiconductor Inc, 2009c). The MC1322x uses a 26MHz, 32-bit ARM processor, an 

AES hardware accelerator, 128 KB Flash and 96 KB RAM. Further, this device offers 80 

KB ROM for the boot software. This kit also further specializes the Freescale ZigBee 

devices by creating a ‘Low Power Board’ (LPB) which runs on AAA batteries; the lower 

power profile appears to be achieved by removing the sensor board included in the SRB. 

Finally, the kit includes an 802.15.4 sniffer for monitoring nearby traffic. 

4.1.1.3 Sun SPOT 

As of March 2008, Sun has released all the code (including the JVM) as open 

source and introduced academic pricing available to students. Further, the SPOT offers 

the convenience of the Java language (this author’s “native” programming language) and 

a small community of researchers implementing SSH on the Sun SPOT devices. Notably, 

the Sun SPOT is not ZigBee-compliant like the other two kits, but is 802.15.4-compliant. 

Sun Microsystems Inc. offers a novel hardware design that runs a JVM directly on 

the hardware thus enabling Java development for the 802.15.4-compliant embedded 

system and eliminating the need for an Operating System. Manufacturing difficulties 

caused several release delays from the initially predicated release in 2006, but the 

hardware was eventually released in 2007.  

Each Sun SPOT kit includes 1 base station and 2 full Sun SPOT devices. The base 

station acts as a gateway between a host computer and the WSN; the base station cannot 

run on battery-power and does not have any sensors. Each Sun SPOT device includes a 

180 Mhz, 32-bit ARM processor, 512 RAM, 4 M flash, 8 tri-color LEDs, and 2 switches 

(see Table 4-3).  The SPOT may be powered by a USB interface or a built-in lithium-ion 

battery The SPOT is significantly more powerful than the prior two evaluated kits, but 
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there are no existing studies documenting how this affects the device’s battery life in 

comparison to the other devices. The differences in specifications make it impossible for 

researchers to equally compare the Crossbow and Freescale motes to the SPOT where 

software efficiency and device lifetime are concerned. Empirical observation shows the 

Sun SPOT development motes to consume batteries more rapidly than others, but within 

the same order of magnitude. 

Table 4-3: Sun SPOT Features (Sun Microsystems Inc., 2009a) 

MCU ARM920T (180 MHz, 32-bit) 
Program Memory 4,000 KB (4 M) 
RAM 512 KB 
Communications 802.15.4 
Power Options Rechargeable Battery; USB Interface 
User Interface 8, Tri-Color LEDs and 2 Switches 
Size 41 mm x 23 mm x 70 mm 
Sensors Integrated 3-Axis Accelerometer; Temperature Sensor; 

Light Sensor; 6 Analog Inputs Readable by ADC; 6 
General Purpose I/O Pins; 5 High Current Output Pins 

Sun SPOTS have been implemented in several application-based projects such as 

art-installations (Sukumaran, 2006), collecting data in a Panama forest (Fusting, 2008), 

and guiding a robot with a gesture-remote (marvelouskobe, 2008). (It must be noted that 

there are very few periodical or academic publications featuring Sun SPOTs and many of 

the existing applications are from Sun Labs.) 

An excellent feature of the Sun SPOT software is its open source code – including 

a security library. The library contains readily available code to generate ECC (Schneier, 

1996) keys and perform SSL exchanges. The library expects the developer to create the 

application layer to manage the keys and establish the network interactions. 
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4.2 Hardware 

The hardware specification of each mote impacts the developer’s ability to design 

software for the embedded system. The memory and processor capabilities may influence 

a researcher’s freedom in using readily available algorithms. The user interface tools such 

as LEDs and push buttons will aid a developer in debugging mote software. The power 

options of a kit are notable as it may require a budget for batteries or require a mote to be 

tethered to a power supply; the power options also impact the motes usability in deployed 

experiments and applications. Good housing of a device is necessary to protect the 

circuitry of a device while not preventing the user from interacting with the device’s 

interfaces. Crossbow, Freescale, and Sun each offers a kit with at least one standard mote 

that may be used as an endpoint or router within a WSN, as well as a specialized mote. 

Crossbow and Sun offer a mote for programming the network over the air, and Freescale 

offers a mote with an LCD interface and additional break-out pins. 

4.2.1 Memory and Processor  

In Table 4-1, Table 4-2, and Table 4-3 a comparison of each of the device 

hardware specs was presented. Each of the platform’s memory and processer capabilities 

was found to be suitable for 802.15.4 and ZigBee development. On one hand, the MICAz 

and MC1321x are comparable. The Crossbow mote has 4KB RAM; 128KB Flash; and 16 

MHz, 8-bit processor. The Freescale mote has 4 KB RAM; 60KB Flash; and a 40MHz, 8-

bit processor. On the other hand, the Sun SPOT far exceeds the concept of “small, and 

limited” for a mote with 512 KB RAM, 4,000KB (4 M) Flash, and a 180 MHz, 32-bit 

processor. The Crossbow and Freescale devices will provide a more accurate test 
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platform for real application expected to survive years on battery power alone, yet the 

Sun enables a security developer to use most common security algorithms without 

constraint.  

4.2.2 User Interface and Sensors 

The user interface of each mote is of great importance to the user. The interfaces 

of the device must enable the user to control the device actions, determine the point of the 

mote within a state diagram or process, debug the software code, and generate system 

output. Such interfaces may include a UART, LCDs, LEDs, and buttons. Sensor 

accessories such as accelerometers may be useful as well. 

The MICAz offers the most limited interface of the evaluated devices. The mote 

itself only includes capabilities for processing and communication. An expansion 

connector is available for its daughterboards (discussed in Section 4.2.3). Only two LEDs 

are available on the device, and a third LED is reserved to indicate power. No buttons are 

available to the developer. The desktop may communicate and program the device either 

over the air (OTA) through a base station or via a serial connection. 

Freescale MC1321x offers several interfaces and sensors. The mote offers 5 

LEDs: 1 of which is dedicated to power and reset indication with, and the other 4 are 

available for use by the developer. The 4 development LEDS are situated above 4 

buttons; though there is no hardware correlation between the lights and the buttons. 

Further, the NCB device offers an LCD for message output (see Section 4.2.6  for more 

information on Device Types). The device also has a 3-axis accelerometer, a temperature 

sensor, a 36-pin general purpose I/O, and an 8-channel, 10-bit ADC. The Freescale mote 

code is loaded from the development computer using a BDM (Background Debug Mode) 
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interface; additionally, the BDM permits the user to debug and step through code while 

running it on the hardware.  

The Sun SPOT provides several interfaces and sensors. The SPOT offers 8 tri-

colored LEDS. These lights are a great benefit to programmers as it enables them to 

color-code messages. (For example, LED1 may be “blue” to indicate that no network 

connection has been established, “purple” to indicate that the mote is in the process of 

establishing a connection, and “red” to indicate a connection has been established.) A 

slight disadvantage is that the mote only offers 2 buttons – certainly an improvement over 

the MICAz, but not as convenient as the MC1321x. As with the Freescale mote, the 

SPOT offers a 3-axis accelerometer and a temperature sensor. The mote also offers a 

light sensor, 6 ADC pins, 6 general purpose I/O pins, and 5 high current output pins. 

Code may be loaded onto the SPOT via USB or by OTA distribution by a base station. 

4.2.3 Daughterboards  

Daughterboards may be attached to a mote to provide additional sensors or 

outputs. Neither Freescale nor Sun offer expansion daughterboards for their devices, yet 

each of those devices offer sufficient capabilities as they are. Crossbow, however, may 

cripple a developer with its lack of inputs and outputs. Fortunately, Crossbow offers a 

variety of daughterboards. 

The MICAz has a built-in expansion connector. Sensing capabilities offered by 

these boards include GPS, magnetic field, sound, a light sensor, humidity, and 

temperature. These boards may not be useful for a developer except for very narrowly 

defined applications. The starter kit for the MICAz ships with 2 sensor nodes. These 
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nodes add capabilities for temperature, acceleration, humidity, barometric pressure, and 

light monitoring – hardly helpful when one wishes for a simple push button. 

4.2.4 Power 

A mote’s source of power may impact the cost of research should a mote require 

batteries and may affect the mobility of a mote if it must be tethered to a power source. 

The Crossbow MICAz is powered by 2 AA batteries that may need periodic changing 

when used by a device with un-optimized code. The Freescale MC1321x may be 

powered either by 2 AA batteries, by wall adaptor, or by USB. The Sun SPOT may 

powered by USB or by an internal battery that must be charged via USB. All the motes 

are suitable in regards to power for security research.  

4.2.5 Housing 

The housing of a device affects the developer’s ability to interact with the device. 

A lack of housing increases the probability the device circuitry will be damaged by static; 

particularly as software developers rarely wear grounding straps. However, the housing 

itself may prevent a developer from being able to read the user interface, press the device 

buttons, access the device’s break-out pins, or make it difficult (where applicable) to 

change the device’s batteries. The housing must be designed with a careful balance of 

attention to protecting the device while permitting the user to handle the device. 

As-is, the MICAz is difficult to safely handle without fear of causing static 

damage (Figure 4-1); only the battery casing and sides of the circuit boards may be safely 

touched without grounding the developer. Crossbow offers an injection-molded housing 

for the MICAz as an accessory product (Crossbow Technology Inc., 2008a). As 



64 

previously discussed the mote essentially lacks buttons and LEDs, so a bubble enclosure 

is suitable for the MICAz.  

 

 

Figure 4-1- Crossbow MICAz 

 

The Freescale MC1321x SRB and NCB offer the best, plastic housing of the 

evaluated kits (Figure 4-2). The clear, top-half of the housing allows easy viewing of the 

mote’s LEDs and allows easy access to the mote’s buttons. The housing also has 

openings for each of the device’s power connections, the USB interface, and break-out 

pins. The only inconvenience of this housing is removing the stiff, battery cover.  

 

 

Figure 4-2 - Freescale MC13213 SRB 
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The SPOT housing is pretty, but is wanting in functionality (Figure 4-3). The 

casing and fin allow for easy handling of the device. The case offers an opening for the 

USB interface and has a built-out power button. The dark plastic can make it difficult to 

read the LEDs at a glance – particularly if some messages are transmitted by turning the 

LED off or if the LED brightness is not at full capacity. Inconveniently, the user must 

remove the casing cover to access the mote buttons, easily view the LEDs, or work with 

the break-out pins.  

 

 

Figure 4-3 - Sun SPOT 

4.2.6 Device Types 

The available hardware platforms often consist of multiple types of devices. 

Typically this will include a “base station” type device used for network communication 

and for programming devices over the air, and sometimes specialized mote offering 

additional sensor boards or communication interfaces. Each of the evaluated kits offers 

both regular motes and specialized motes.  
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A Crossbow MICAz starter kit includes of 3 wireless modules, 2 sensor nodes, 

and a base station node. The base station is a modified MICAz device that connects to a 

desktop via USB in order to program network devices and relay messages between the 

desktop and the network. The regular MICAz motes lack a USB interface or serial port, 

so they are restricted to communicating with the desktop OTA via the base station. 

The Freescale offers a kit that includes two different devices: 2 SRB and 1 NCB. 

The NCB is designed to act as the network coordinator by adding an LCD and additional 

break-out pins to the SRB capabilities (described in Table 4-2). The NCB LCD is 

particularly useful for printing debug messages without having to transmit a message to 

the desktop and without developing codes for LEDs. Freescale also offers a kit that 

includes 3 SRB devices and no NCB devices.  

The Sun SPOT kit includes two different devices: 2 full SPOT devices and 1 base 

station. The full SPOT device includes battery, a sensor board, a processing board, and 

the plastic housing. The base station includes only a processing board and the plastic 

housing. The purpose of the base station is to primarily act as a network link between the 

desktop and the network: deploying software updates, gathering responses, and 

forwarding network data to the desktop. (Notably, motes can speak directly with the 

desktop if they are connected via USB.) Sun provides software that allows the desktop to 

emulate a full SPOT device. Inconveniently, the base station is difficult to use without a 

connected desktop as it has no sensor board (i.e. sensors, LEDs, or interface buttons) and 

must be powered by USB at all times. 
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4.3 Development Environment 

Like a strong nail and a solid hammer help an individual to create a table from 

wood, a good development environment with debugging capabilities help an individual to 

program and to deploy a secure network. A development IDE will provide a clean 

interface to control and manage multiple files and may provide debugging tools to aid a 

user in resolving software bugs. A clean deployment system will minimize the difficulty 

of distributing the software changes to the network nodes. 

Crossbow does not provide or recommend a particular development environment. 

It is left to the developers to choose their favorite C editor (be that an IDE or a text 

editor) and use Linux (or Cygwin) to build and deploy the code. Fortunately, many tools 

are available at no cost. Developers with little unaided C experience will struggle as they 

attempt to determine how to write, build, and deploy code through gcc cross compilers.  

The Freescale education mote kit ships with an educational copy of CodeWarrior 

HC(S)08, yet Freescale’s BeeStack is too large be compiled by the restricted, educational 

software copy (i.e. not even the demonstration software configured with mesh 

networking and security can be compiled without significant modification). Typically, 

CodeWarrior with HC(S)08 support costs $950 (Freescale Semiconductor Inc, 2009b). 

CodeWarrior itself is a common IDE for developing in C, but the real difficulty in 

departing from CodeWarrior is obtaining a compiler compatible with the MC1321x 

processing board. The developer may find some frustration in that a CodeWarrior tool is 

used to build and deploy the code that often fails if multiple instances are running. 

Further frustrations may be found when the compiler reports a link or compile error using 

a CodeWarrior error code that provides little to no information regarding the bug. 
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Sun recommends using the NetBeans IDE and the Apache ANT Java-based build 

tool to develop code for the SPOT. Any Java editor may be used to develop code, but Sun 

offers a SPOT-specific module for NetBeans that enables users to build and deploy code 

to the mote with two clicks in the IDE. ANT may be used for fine control of the code 

build and deployment. NetBeans offers several debugging tools common to IDE 

applications, yet NetBeans does not provide an easily read tutorial on how to use the 

debugging tools. Similarly, users new to ANT may not understand how to configure the 

build configuration files; however, Sun does provide an excellent default build.xml and 

provides a good SPOT-specific introduction on how to use ANT. Both of these software 

tools are available online at no cost. 

4.4 Software 

The available software for a device may ease the path of development by 

providing solid ground for a developer to being work. The language of the software may 

influence the speed developers learn to use the software. The Radio Stack software is 

critical for programming radio streams and handshaking between two devices. Any 

available demonstration code may show the developer how a certain library is best used 

and may provide a template for the developer’s custom code. Additional libraries 

available to the user will enable a developer’s ability to program more complex security 

policies. The Sun SPOTs use a JVM to execute the developer’s Java code on the 

hardware. Finally, an operating system may handle software tasks for the user. 
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4.4.1 Software Language 

The language of the kits was disregarded as a deciding factor in the preliminary 

selection of these kits, yet language can make a difference to a developer. Just like 

individuals find it easier to communicate in their native tongue; a programmer may find it 

easier to program in one language or another. The choice of language is particularly 

notable when a programmer must choose between C and Java. 

C is the language most commonly used in embedded system development. This is 

true for both the Crossbow and Freescale products. C is best suited for working directly 

to control hardware. Developers more familiar with procedural coding and C headers will 

be most comfortable programming these devices. 

In recent years it has become common to teach computer students Java as their 

first language, and many find it difficult to move to the conventions of the C languages; 

particularly when they are unaccustomed to thinking in procedural or state-machine 

architectures. The Sun SPOT is a novel device that uses the Squawk JVM to run Java 

directly on the hardware. Java users will be particularly happy with the familiarity of the 

Java class structure and the ease of using System.out.println() to send a message through 

the UART. 

4.4.2 Radio Stack 

The Radio Stack implements the 802.15.4- or ZigBee-compliant source code for 

communicating between separate nodes. The functions and variables made available by 

this code will enable a developer to interact directly with the network joining, 

handshaking, and packet formation of network communication. A radio stack that cannot 

be easily interfaced with may be detrimental to a developer researching network security. 
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Crossbow ships with the TinyOS code which is a small, open source Operating 

System. TinyOS includes a stack that transmits 802.15.4-compliant frames, but does not 

adhere to 802.15.4 physical and data link definitions (TinyOS, 2009). Any datastream 

security will be implemented using separate TinyOS libraries.  

Freescale offers its ZigBee-2006-compliant BeeStack. A 90-day trial license for 

this software is included in every Freescale development kit. The BeeStack is a closed-

source library that cannot be modified. The BeeStack communications and network 

configurations may be configured using the BeeKit software available through Freescale 

requires most of the mote memory.  The BeeStack code on the device may require 17-

35KB of memory; that is, the code requires 28% to 58% of the memory available to the 

SRB depending on networking and security settings leaving as little as 29KB for 

researcher object code and other memory objects. (Freescale Semiconductor Inc., 2007a) 

Thus the BeeStack (as of 2007) is not appropriate for developers seeking to modify 

protocols and handshaking or include their own security algorithms.  

The Sun SPOT library includes an 802.15.4-compliant communications stack. 

The stack utilities are available through the Radiogram and Datagram libraries. The lack 

of a ZigBee-compliant library may hinder the developer as the 802.15.4 does not include 

any basic security functions for key transport or storage. Fortunately, all the SPOT code 

is open source and an additional security library is available (see Section 4.4.4), so a 

determined developer may achieve their objectives.  

4.4.3  Demonstration Code 

Demonstration code provides a template and a tutorial to the user. Well-written 

demonstration code provides the user with a good understanding of how code for the 
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mote is structured. Modular demonstration code can lend tools to the user for reuse such 

as sensor board commands or radio stream initialization. Demonstration code may also 

serve as a template for users to begin their own code by editing and revising particular 

sections of the code. 

Crossbow does not provide any demonstration code, so the developers must rely 

on the device datasheet, their knowledge of C, and code available online from both 

Crossbow and other developers. Researchers familiar with the software tools may not 

experience any troubles, but any researcher not firmly grounded in C tools and coding 

will become frustrated as they struggle to launch an OTA, “Hello World,” application. 

Freescale does not provide any demonstration code per se; the only code provided 

by Freescale is generated by the BeeKit configuration and a few demonstrations may be 

inferred from the BeeKit and BeeStack documentation. This code may be overwhelming 

to the new developer as it consists of several hundred files and several pre-compiled files. 

The “main” function of this code initializes the BeeStack and application state machine, 

and the initialization of the main function for the user application is located in a file 

called “beeapp.c” This compiled code includes a small application that will transmit an 

incrementing integer over the radio stream to another device to be displayed on that 

device’s LED array. The code is not well commented, but a developer with basic 

programming experience should be able to understand from this code the basics of 

interfacing with and LCD and transmitting an integer. 

Sun Labs offers the best demonstration application code. The demonstration 

clearly conveys the potential of the motes with “ectoplasmic bouncing ball” code: when a 

new node joins the network it communicates with the existing devices to choose a unique 
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ball color and allows users to “bounce” each ball between any two devices on the 

network by actuating the accelerometer. Sun’s code includes simple libraries for 

controlling LEDs and the sensor board providing excellent functions to invoke. The 

template demonstration application used in the tutorial documentation is written clearly 

and makes it obvious how and where to create custom code. 

4.4.4 Additional Libraries 

Additional libraries and code may enable a researcher to focus on developing 

code specific to their topic without having to first “reinvent the wheel.” For example, a 

researcher studying the propagation of key updating is better served by an existing key 

storage and updating system than writing code from scratch.  

Crossbow’s additional libraries are created primarily by the online, TinyOS 

community. This community provides a great deal of source code for the MICAz and 

other Crossbow motes. The most notable of the additional libraries is TinySec (fully 

discussed in Section 2.4.1) that adds access control, encryption, and key management to 

TinyOS.  Notably, the University of Cambridge assessed TinySec and found it 

incompatible with MICAz, but they have since released their own edition that is 

compatible with the Crossbow device (Cvrcek, 2008). Inexperienced developers may find 

it difficult to learn to work with TinyOS as it uses NesC instead of regular C and much of 

the existing online documentation and wikis are incomplete or written by knowledgeable 

individuals who have forgotten the struggles of a fledgling TinyOS programmer.  

There are no known additional libraries or source code specifically for the 

Freescale MC1321x. The absence of libraries indicates a lack of adoption by the research 

community and limited public-release research on the part of Freescale. The developer 
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will be able to find generic C libraries for use on the mote, but (as previously discussed) 

may encounter difficulties in integrating this code with the BeeStack particularly in the 

limited resources of the mote. 

Sun Labs has released additional, open-source libraries for the Sun SPOT. The 

libraries do include the aforementioned core, network, and sensor board libraries. What is 

notable is the ongoing development of a security library for the Sun SPOT. This library is 

available for free to guest users through an online subversion repository. This library 

currently includes tools for SSL/TLS handshaking, session establishment, ECC 

encryption, and HTTPS. The downloadable code includes a read-me file giving a general 

explanation of the code, yet there is little online documentation or discussion regarding 

the development of this library. Researchers unfamiliar with SSL, ECC, or the Sun SPOT 

may find a steep learning curve as there is no supporting documentation.  

4.4.5 Java Virtual Machine 

The Squawk Java Virtual Machine enables a Sun SPOT to run Java code “on the 

bare metal” (Simon et al, 2006). JVM itself provides an embedded system developer with 

garbage collection, pointer safety, thread management, and exception handling. Squawk 

provides several OS-level mechanisms: the handling of interrupts, network stack 

functionality, and resource management. The JVM itself takes up very little of a SPOT’s 

resources. The Squawk 1.1 VM and CLDC require a total of 512 KB. The SPOT core 

libraries require 156 KB. This leaves 3.4M of memory for the research code. 
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4.4.6 Operating System 

An Operating System enables a developer to allow the system to control batch 

processes, timesharing, process control, memory management, resource allocation, 

scheduling, and logging. An OS for an 802.15.4 or ZigBee device must consume little of 

the system’s scarce memory and consume few of the processing cycles of the relatively 

slow CPU. Many developers may elect to include an Operating System on their motes to 

control multiple applications and provide better memory and resource management. 

Many Operating Systems for lightweight embedded systems exist:  

• Contiki (Dunkels, Grovall, Voigt, 2004),  

• Mantis (Bhatti, et al, 2005),  

• SOS (Han, et al, 2005),  

• TinyOS (Levis, et al, 2005), and 

• ZWOS (Melkonian, Wu, 2005).  

Of these, TinyOS is the de facto OS for ZigBee applications. The remaining 

Operating Systems are rarely implemented outside of the original development group. 

The TinyOS is quite specific to the Crossbow products, including the MICAz. The 

greatest challenge of TinyOS may be its use of the NesC language rather than a more 

common variety of C.  

Despite the existence of many possible Operating Systems, an OS is not strictly 

required to implement a WSN and sometimes is not even available. There is no existing 

Operating System implementation for the Freescale and Sun motes.  
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4.5 Analysis of the Security Scenario  

The 802.15.4 standard and the ZigBee specification both lack critical security 

definitions. Neither standard provides any means of authorizing a mote, establishing a 

key, or updating a key. The current security definitions rely on a key that is preloaded on 

a mote by either hard coding or by configuration. This security weakness may be 

exploited if a mote is captured or if unencrypted code is obtained by an unauthorized 

user. The hypothetical security policy increases its network security by first requiring the 

user to verify the identity of the mote (i.e. a button press) and then by distributing the 

master key to the mote. This eliminates the need for a pre-installed key. Further, the 

hypothetical security policy by providing the utilities necessary to periodically update the 

master key; this enables the developer to adhere to current best practices. 

In the standard implementation, when a device wishes to join a network it simply 

establishes a link with the nearest router thus joining the network cloud. A more secure 

system for a home application would require a user to physically authorize a device to 

join the network, “Yes. I see my toaster wants to join my home network, so I now press 

this button on the toaster to indicate that I approve.” The networked device is then 

recorded as a valid mote until the device is removed by the user. 

A user must physically press a button on the Coordinator mote as well as the mote 

wishing to join the network. The strategy reduces the likelihood of an unauthorized mote 

entering the network as it requires the user to handle each of the motes. Difficulties may 

arise if the network coordinator and the motes are physically separated; and this may 

require one user to be present at each of the devices. This strategy assumes that at least 

the Coordinator is physically protected and not accessible to an unauthorized individual.  



76 

The proposed security scenario transmits the master key in a packet after the user 

has verified that the requesting mote may be permitted into the network. On one hand, 

this enables the coordinator to provide the latest version of the network key without 

relying on a default key. One the other hand, since this initial communication occurs by 

plaintext a packet sniffer will likely be able to capture the key. This key initialization can 

be strengthened by requiring that the initial communication be established by a wired 

link, at the cost of user convenience. A mote USB interface or a mote I/O pin may 

provide the wired link. 

An application which periodically updates the master key strengthens its network 

security. Over time, as greater amounts of encrypted data are passed with a static key, the 

cipher becomes vulnerable to cryptanalysis techniques that require large data sets.  The 

proposed security policy provides utilities to update the network key to all motes that 

have formerly been provided with the network key; this will enable an application to 

initiate the propagation of new key throughout the network without requiring any user 

involvement.  

The hypothetical security scenario will enable the Coordinator to periodically 

update the network key on all of the authorized motes.  The frequency of this update is 

application-dependant on several parameters: the amount of traffic on the network, the 

level of security required by the network, and the amount of time required to propagate 

the new key throughout the network.  

A mobile mote’s network key will become out of date if is away from the network 

for a key update. The probability of this occurring depends on the application design 
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which includes the definitions of the duration and frequency at which a mote may be 

away from the network and defines the definition of how frequently a new key is created. 

To receive the updated key the motes must know the prior network key. This 

allows the new key to be securely transmitted using the prior network key and only to 

transmit the key to motes having received prior authorization to be on the network.  

The establishment that a mote be loyal to the Coordinator is not fully discussed or 

realized in the hypothetical security scenario. This loyalty can ensure that a mote is 

removed from a network when directed by the coordinator (the key utilities for this are 

provided in ZigBee-2007). Further, it can be used to command obedient motes to scrub 

their memory of any prior network keys – thus ensuring prior and current keys are not 

revealed to unauthorized entities.  

4.6 Suitability to the Security Scenario 

It is crucial that a mote can accommodate the key security components that have 

been identified as necessary to the developer: packet header access, timers, and ready 

encryption algorithms (see Section 3.2.6). These components may rely on both hardware 

and software; for example, a timer is an implementation within hardware, yet the user 

must have proper software and headers to give register access to the timer. 

4.6.1 Access to 802.15.4 Headers 

TinyOS and thereby MICAz only offer 802.15.4-compatible frames rather than a 

full implementation of 802.15.4 (TinyOS, 2009). A small memo exists with 

documentation of these frames (Hui, Levis, Moss, 2009), but there is no other 
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documentation describing access or manipulation of these frames. A developer can 

discover how to manipulate the packet headers by exploring the open-source code.  

The Freescale BeeStack does not provide any access to the packet headers. The 

appropriate headers and functions are inaccessible to developers, due to the closed nature 

of the code. Thus the MC1321x is impractical for security developers not wishing to 

discard the existing software framework and begin from scratch. 

The Sun SPOT core and security code does not provide any direct method to read 

or to manipulate the packet headers. Determined developers will likely be able to modify 

the open-source code to suit their needs. 

4.6.2 Timers 

The ATmega 128L used by the MICAz has two, single-channel, 8-bit 

timer/counters. The TinyOS and TinySec documentation are each unclear how many of 

these timers are reserved and how many are available to the developer. A proposal for a 

TinyOS revision comments that the OS does not do a sufficient job exposing the 

microcontroller through interfaces and that the area of timers ought to include several 

improvements including a need for a counter and a periodic event scheduler (Sharp, 

Turon, and Gay, 2007). The internal hardware is accessible by the developer when using 

the C language, but TinyOS itself does not provide any interfaces to the MICAz timers. 

The MC1321x has one 5-channel, 16-bit timer/PWM module and one 3-channel, 

16-bit timer/PWM (Freescale, datasheet); the BeeKit documentation isn’t clear on how 

many of these timers are claimed by BeeKit itself and how many are available to the 

developer. The timers are easily used for interrupts, but the developer can expect to run 

into difficulties measuring time intervals as the timer frequently rolls over. Freescale 
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provides structures for the handling of rollovers, but relies on the user-written application 

to manage them. 

The Sun SPOT processor has two AT91 Timer/Counters. Each timer counter 

offers three, 16-bit channels; two of these counters are reserved for system use and the 

remaining four counters are available to the developer. Sun provides applications notes 

on how to measure a time interval and how to perform a periodic task using an interrupt 

(Sun Microsystems Inc, 2007).  The difficulty, like the other platforms, is that the timer 

interval is often much shorter than what the developer may wish to measure; as is the 

case of the hypothetical security method where a device may wish to wait “10 seconds” 

for a user to press a button. 

4.6.3 Encryption Algorithms 

TinyOS as provided by Crossbow does not provide any encryption algorithms; 

however, the OS may be supplemented with additional code such as TinySec. This 

module includes support for the SkipJack algorithm, yet documentation describing the 

use of the code is readily available. It must be noted that TinySec is not necessarily 

compatible with 802.15.4- and ZigBee-standard radios, so a version ported to the MICAz 

must be used (Cvrcek, 2008). Determined developers will be able to modify the open-

source code to suit their needs. 

Freescale offers an 802.15.4-compliant stack for the MC1321x, and it includes an 

AES algorithm. However, including this code on the device may require 17-35KB of 

MCU memory depending on the configuration of the security and the network (Freescale, 

2007); that is; the code requires 28% to 58% of the memory available to the SRB 

depending on networking and security settings (Freescale Semiconductor Inc., 2007a). 
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Unfortunately, it is impossible in the BeeKit to configure which portions of the security 

utility a developer wishes to include. Furthermore, the interfaces to the built-in utilities 

are extremely limited, almost to the point of simply being “turn the security on,” “ok, 

now turn it off,” and “here’s the datagram to encrypt – work your enigmatic security 

magic.” Understandably, Freescale may anticipate selling the BeeStack and BeeKit as a 

ready-made solution for commercial developers and therefore do not wish the details (and 

thereby weaknesses) of the security code to be known to the general public; however, the 

black-box code renders the BeeStack and BeeKit unusable to the individual wishing to 

study and improve the security code.  

The Sun libraries do not ship with any encryption-ready code; however, an open-

source, Sun SPOT security library may be downloaded by the developers (Goldman, 

Meike, Gupta, 2009). This security library for the Sun SPOT includes support for ECC 

and RSA (Schneier, 1996). (The documentation acknowledges that running RSA will 

severely slow the system.) A readme.txt documentation file only provides a quick list of 

instructions on how to build a new SPOT library that includes the crypto code. A short 

Javadoc API includes a few examples on how to establish a secure radio stream. 

4.7 Development Assistance 

Documentation is critical in aiding a developer to learn new hardware. Tutorials 

may guide the user in completing common development tasks such as building and 

deploying code or transmitting OTA data. Datasheets may provide insight into how the 

device functions. Software documentation manuals describe the utilities and functions 
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available to the developers. Finally, demonstration code may clarify how to use functions 

by illustration and often provide a template to building more complex programs. 

4.7.1 Tutorials 

Tutorials, Owner’s Manuals, and Quick Start guides are essential to aiding a 

developer in learning a new platform. Crossbow does not provide any form of “getting 

started” manual to guide a new developer. The TinyOS community does provide a few 

tutorials and tips on how to begin, but often these make inaccurate assumptions about the 

new developer’s understanding of the hardware, the software, or the NesC language.  

(NesC is a component-based and event-driven C-derivative language developed for WSN 

embedded systems. (Gay et al, 2003)) Freescale offers a brief introduction, teaching how 

to use CodeWarrior, and Freescale BeeKit provides a tutorial on how to launch a basic 

application, but does not provide much in way of further assistance. Sun provides a Quick 

Start guide that walks the new user through the development process: from building and 

deploying (both in the IDE and via ANT) to the basics of using the base station. Further 

manuals are available that walk a new developer through each of the sensor board 

components and through using the radiostream.  

4.7.2 Data Sheets 

Datasheets provide a summary of the characteristics of the device hardware. This 

is particularly useful when working in C where a developer may often need to reference 

how to access a certain pin or sensor. The MICAz datasheet provides only a summary of 

the basic hardware features and no details about the hardware design itself. The lack of 

published information may frustrate developers needing more detailed information about 
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the hardware, yet these details might be found in publications written by the online 

community. Freescale’s MC1321x datasheet is excellent documentation of the hardware 

features and thoroughly explains the details of how the timer and ADC function. 

Developers may find the Freescale datasheet to contain helpful hints on how variables or 

functions may be named in the provided libraries. The Sun SPOT, being written in Java, 

lacks the ability to directly address a portion of the microcontroller in the same sense that 

C does, but the Sun libraries do provide excellent software interfaces. No true datasheet 

exists for the Sun SPOT, but the documentation manuals do include example code on 

how to set IRQ Timers and configure LEDs.  

4.7.3 Software Documentation 

The functions and classes unfamiliar to a developer should be described by 

software documentation such as manuals or APIs. Crossbow’s documentation appears to 

primarily reside in the community-written, Tiny-OS wiki. Freescale documents their 

software in a long series of PDF documents that are so extensive that a PDF document is 

required to explain which document manuals are which. The Freescale manuals do 

appear to document every function within the BeeStack, but the sheer amount of 

documentation in pdf format makes it cumbersome to locate the desired function – even 

with an OS search function. The Freescale documentation also lacks clear examples on 

how to use a function and often neglects recording that function x ought to be called to 

configure library q before attempting to invoke function y. The Sun SPOT software API 

documentation is easy to navigate for those familiar with the typical javadoc output – all 

functions are categorized within their libraries and jars and an extensive index of 

hyperlinks and a search engine are provided for those in doubt. The developer may find 
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difficulties with the Sun SPOT documentation as it isn’t as easily browsed as a PDF or a 

wiki. 

The difficulty with the Sun SPOT documentation is that if you don’t know what 

you’re looking for, it is difficult to virtually thumb through various topics like it would be 

possible to do in a PDF or a wiki. 

4.7.4 Online Community 

An online community actively discussing system development may help smooth 

the path for an inexperienced developer. The presence of an online researching 

community indicates the acceptance level of hardware platform for research. Such 

communities may be manifest in online tutorials (often published in blog format), in 

discussion forums, or through community-editable wikis.  (Table 4-4 provides a summary 

of the notable online communities.) 

The Crossbow MICAz community is concentrated within the TinyOS community. 

The hub of TinyOS is tinyos.net, where a documentation wiki, TinyOS tutorials, library 

work groups, and a documentation wiki may all be found. A “tinyos-help” mailing list 

links developers together to help answer questions and find resources; this mailing list is 

archived so historic question and answers may be referenced before repeating a question. 

Researchers at various universities also frequently publish on topics about the MICAz, 

but it seems it is rather uncommon to publish one’s code online. 

 The Freescale WSN community is very small and has not grown in recent years. 

The only community for the MC1321x is the Freescale forums, and those consist of more 

individuals requesting help than individuals offering answers. The sense within the 

community is that the MC1321x is more meant for creating applications than it is meant 
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for the researcher. This sense may be derived from the black-box stack, as discussed 

earlier.  

 The Sun SPOT community is primarily an applications and hobbyist community. 

A search on YouTube reveals many developers eager to show off their innovations.  The 

Sun SPOT world forum acts as a community center, and frequently answers the questions 

of new developers. Sun Labs directs most of the security research using Sun SPOTs, and 

periodically releases new updates to their security library.  

Table 4-4 - Online Communities 

Company Community URL 
Crossbow TinyOS Community http://tinyos.net/ 
Freescale Freescale Forums:  

8-bit MCU 
http://forums.freescale.com/freescale/boar
d?board.id=8BITCOMM 

Sun Sun SPOT World http://www.sunspotworld.com/forums 
Sun Sun SPOTs Projects https://spots.dev.java.net/ 

 
Sun Sun SPOT Libraries https://spots-libraries.dev.java.net/ 

4.8 Other Tools 

Additional tools may be available to the developer. Simulation tools may be 

particularly useful to developers seeking to test the scalability of a system. Emulating 

tools may likewise be useful for testing a prototype implementation and to test code 

before deploying it to a mote. Background debugging interface devices may be useful for 

debugging code on the mote itself. Bench marking tools can measure a security policy’s 

impact on mote resources. 

https://spots.dev.java.net/�
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4.8.1 Simulators 

Simulation of a network may provide data models regarding the feasibility of the 

network. Simulators are a low cost, more practical for testing, and easier to implement 

than a deployed network. Yet the limits of a simulator must be accounted for when 

evaluating data provided by a simulator. Researchers often question the accuracy of 

simulations stating that such programs' models of wireless propagation do not accurately 

reflect real-world behavior (De, 2007; Heidemann et al, 2001) and that such programs do 

not sufficiently create accurate values for lower layer phenomenon (i.e computation time, 

packet loss, and routing) (De, 2007).  

Dozens of wireless simulators are available and used within WSN research 

(Becker, 2007), yet only five are compatible with 802.15.4:  TOSSIM, ATEMU, Avrora, 

DiSenS, and NS-2. Of these only a few are compatible with the MICAz, and none are 

compatible to the MC1321x or Sun SPOT. TOSSIM (Levis, et al, 2003) is tailored 

specifically to MICA motes running TinyOS. ATEMU (Polley, et al., 2004) and Avrora 

are specific to the MICA2 platform; likewise, Avrora (UCLA Compilers Group, 2007) 

and DiSenS (Wen, 2005) are designed for the MICA2 and MICAz motes running 

TinyOS.  

Only NS-2 (Marandin, 2007), a popular simulator for 802.15.4 applications, 

seems able to simulate ZigBee networks without being dependent on TinyOS or a 

specific hardware platform. NS2 has been used to simulate a mixed AODV and Tree 

Routing algorithm within a ZigBee network (Ran, Mao-heng, Youmin, 2006), and to 

simulate and measure the throughput of a ZigBee network (Burchfield, Venkatesan, 
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Weiner, 2007). It may be possible to simulate the Freescale or Sun devices with NS-2, 

but there is no available documentation verifying such. 

4.8.2 Emulators 

Emulators enable one type of hardware (i.e. a PC) to function as another type of 

hardware (i.e. a mote). The use of an emulator is twofold. First, an emulator may test a 

developer’s software and identify bugs before the time is taken to deploy the software to 

the networked motes. Second, an emulator may enable to user to test the scalability of a 

solution by allowing readily available hardware to masquerade as a specialized mote. Of 

the examined kits, only Sun offers a mote emulator. The software, called the Sun SPOT 

Emulator, provides a GUI interface to enable a base station connected to the PC to act as 

a full device.  

4.8.3 Background Debug Interfaces 

A Background Debug Module (BDM) is an embedded system that assists 

developers in debugging mote software while the code is running on the mote. In-circuit 

debugging enables users to test their programs under deployed conditions and under the 

mote restricted hardware. Only Freescale offers a BDM device for debugging its motes – 

and this device doubles as the mote program loader. 

4.8.4 Benchmarking Tools 

The actual measurement of a WSN network is challenging: environment variables 

are difficult to repeat, motes often cannot spare their limited memory for benchmarking 

software, and any data that is collected must be transmitted to a host computer (Park, 
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Chou, 2006). For example, the analysis software LMBench (McVoy, 1998) requires a 

minimum of 16 MB of memory and 16 MB of program space to monitor the mote state 

and resources.  

To date, only two 802.15.4 benchmarking suites exist: EmPro and Daintree 

Network's Sensor Network Analyzer. Both of which are ZigBee-compliant as well as 

802.15.4-compliant. Either device may be used with the Crossbow MICAz or the 

Freescale MC1321x. (The Sun SPOT is not ZigBee-compliant and therefore is excluded 

from these benchmarking tools.) 

EmPro (Park, Chou, 2006) claims to “monitor every activity of each wireless 

sensor node.” The authors strive to create an emulation system that controls the 

environment inputs in order to provide a repeatable means to compare WSN hardware 

platforms. EmPro's energy consumption and packet error rate measurements would prove 

useful to an evaluation of the hypothetical security solution. The system is created for 

WSN hardware and can likely be used regardless of what runs on the networking and 

application layer. Unfortunately, EmPro requires additional hardware required for 

emulation, and the system EmPro appears to have been abandoned since Chulsung Park 

achieved his PhD. 

Daintree Network's Sensor Network Analyzer (SNA) (Daintree Networks, 2007) 

is widely used within industry to debug, deploy, and manage ZigBee networks. SNA uses 

specialized sniffer hardware to analyze and collect data in the ZigBee Network; therefore 

it is compatible with all ZigBee devices (including those which use the ZigBee-2007 

specification). The SNA Pro edition collects network packets to show packet contents, a 

packet time line; analyzes the NWK and APS layers; reports on the ZigBee-2004 and 



88 

ZigBee-2006 security; creates extensive graphic representations of the network; provides 

“comprehensive numerical statics” and visual statistics; maintains the network by 

automatically detecting nodes; and provides management tools to control the clusters, 

binding, and mote participation within the network.  Unfortunately, the cost of the 

standard addition software and the Sensor Network Adapter hardware is approximately 

$1,000. 

4.9 Expense 

The cost of a platform is an important consideration when budgeting and 

proposing research. Generally, the Crossbow MICAz, Freescale MC1321x, and Sun 

SPOT devices are in similarly priced, but the total cost of research may be impacted by 

the security policy experiment design and research tools. The total cost may be impacted 

by the number of kits a researcher must purchase to acquired the desired number of motes 

and base stations. The total cost may also be impacted by the inclusion or exclusion of 

necessary software.  

The Crossbow kits may include several Crossbow products. The corresponding 

data sheets refer to MICAz “sensor nodes” which each consist of a processing board and 

a sensing daughterboard and there are MICAz “base stations” which each consist of a 

processing board and PC interface daughterboard. The kits may also include a data 

acquisition daughterboard which has 11 channels of 12-bit ADC input, a temperature 

sensor, and a humidity sensor. 

Crossbow offers three development kits for the security researcher to consider 

(see Table 4-5)(Crossbow Technology Inc, 2009a,b,c). The Starter Kit, the smallest 
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available, includes 2 sensor notes, 1 base station, and a copy of the MoteView software. 

The Professional Kit includes an additional 5 sensor nods and a data acquisition board to 

the Starter Kit. The Classroom kit includes 20 sensor nodes, 10 base station nodes, 10 

seats of MoteWorks, and additional classroom materials; this kit is only available by 

contacting the sales department. Additional MICAz sensor nodes may also be purchased 

for $275 each. The Crossbow is a cost effective platform for researchers to consider – 

especially as the development and compiler incur no additional cost. 

Table 4-5: Crossbow MICAz Development Kits (Crossbow Technology Inc., 2009a,b,c) 

 Starter Kit Professional Kit Classroom Kit 
Sensor Nodes 2 6 20 
Base Station 1 1 10 
ADC Board 0 1 0 

Software MoteView MoteView 10 Seats of MoteWorks
USD $795 $2,195 unpublished 

Freescale offers seven kit selections – each differing slightly from one another 

(see Table 4-6)(Freescale Semiconductor Inc, 2009a). The most basic kit is the Developer 

Start Kit that includes 2 SRB devices, a limited version of CodeWarrior, and a 90 day 

BeeKit license. This kit is best as a supplement kit, as it does not include any NCB motes 

and does not include a BDM (used to program and debug the motes). On the other end of 

the scale, the most deluxe kit is the ZigBee Development Kit that includes 4 SRB motes, 

3 NCB motes, 1 BDM, a standard edition of CodeWarrior, a full BeeKit license, and a 

standard edition of Daintree.  
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Table 4-6: Freescale MC1321x Development Kits (Freescale Semiconductor Inc, 2009a) 

 Develop.  
Starter  

Kit 

Develop.  
Starter  

Kit 
-BDM 

Consum
er  

Starter 
Kit 

Nwk  
Starter 

Kit 

Nwk  
Starter 

Kit 
-BDM 

ZigBee  
Eval.  
Kit 

ZigBee 
Eval. Kit
-SFTW 

SRB 2 2 1 2 2 4 4 
NCB 0 0 1 1 1 3 3 
BDM  X X  X X X 

IDE α α α α α α β 
BeeKit  ε ε ε ε ε ε θ 

Daintree      Basic Stnd. 
USD 249  349  399  499  549  1,749  3,299  
 α - CodeWarrior Special Edition  

β - CodeWarrior Standard Edition  
ε – 90 Day BeeKit License 
θ – Full BeeKit License 

It is very likely a researcher will find a kit or a combination of kits that will 

provide the desired number of motes and base stations. The cost of the Freescale motes 

lies within the range of the other motes. The great difficulty is that the limited 

CodeWarrior edition is too limited and cannot compile the amount of code necessary to 

include security algorithms. CodeWarrior with HC(S)08 support costs $950 (Freescale 

Semiconductor Inc, 2009b). Further, the BeeKit license is only valid for 3 months. 

Academic researchers without additional uses for the IDE or the compiler may find that 

the Freescale kits may be both too costly and academic researchers may find the BeeKit 

license restricts them to too short a development and testing window. 

There is only one development kit selection offered by Sun. The SPOT 

Development Kit is comprised of 2 full SPOT devices, 1 base station device, and a 

software CD (see Table 4-7)(Sun Microsystems Inc., 2009a). The CD contents include 

development tools, demonstration code, and Squawk JVM. Developers seeking to create 
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larger networks will be find the offerings of this kit bothersome as the base station does 

not have any sensors and does not have a battery, so it can only serve as tethered mote in 

narrow applications.   

 All of the development software and programming code necessary are available 

at no cost. The published educational discount cost of the kit is $299 (Sun Microsystems 

Inc., 2009b). This is a very cost-effective kit for academic researchers to consider.  

Table 4-7: Sun Spot Development Kit (Sun Microsystems Inc., 2009a) 

 Development Kit
Full Device 2 

Base Station 1 
Squawk X 

Software NetBeans 
USD $750  

4.10 Summary 

This chapter has provided a detailed comparison of the Crossbow MICAz, 

Freescale MC1321x, and the Sun SPOT. Various aspects of the hardware, software, 

security resources, development tools, additional tools, and kit expense were discussed. 

Chapter 5 shall draw conclusions based on this data.  
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5 Conclusions 

Wireless Sensor Networks are anticipated to become common in future home 

environment applications. A WSN is a mesh network of very small nodes gathering 

environment data, sharing this data, and actuating devices according to their 

programming. Such a network may aid users by monitoring their health, managing their 

utilities, and assisting with their special needs.  

IEEE 802.15.4 is a standard defining the physical and data layers of wireless 

sensor network communication. This standard is designed to accommodate devices with 

very small microprocessors running on small batteries with an anticipated lifetime 

measured in years. The ZigBee specification is implemented atop 802.15.4 to add 

standardization for the network layer and application framework. 

The security of these standards is of particular interest because it is important to 

protect the information of individuals using a wireless sensor network. The ubiquitous 

devices may gather information about the users’ presence, habits, and identity that should 

not be accessible to unauthorized entities.  

Neither 802.15.4 nor ZigBee are completely secure. Each standard directly states 

that its definitions on key initialization, key updating, and device group management are 

either entirely out of scope or only partially implemented. Further research must be 
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completed to ensure the tools are available to secure these aspects of a wireless sensor 

network. 

Researching and developing for a WSN is not without its challenges. Ideally, the 

mote processor and memory are very small in order to minimize their impact on a mote's 

battery lifetime; subsequently the resources available to a researcher to store and run 

security algorithms on the device are limited. Debugging by tracing communications 

between devices, identifying faulty motes, and troubleshooting software on its native 

processor becomes difficult because the code is run on a wireless, distributed, and 

embedded system.  

A researcher may find additional challenges when learning a new hardware 

platform. Documentation describing how to use a system may be lacking. The hardware 

may not provide sufficient inputs and outputs to aid the researcher in troubleshooting and 

designing applications. There may be no existing security code to build security solutions 

upon.  

This thesis has assessed three prevalent hardware kits: Crossbow MICAz, 

Freescale MC1321x, and the Sun SPOT. Each kit was evaluated for its suitability to 

academic research. Evaluation parameters included hardware, software, security 

resources, development environment, documentation, additional tools, and expense.  

This final chapter draws conclusions from the data gathered and comparisons 

made in Chapter 4. First, a summary of all the kit data is presented and recommendations 

are made to researchers. Second, suggestions are made regarding how to improve the 

usability of each kit for security research. Third, future research is recommended. 
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5.1 Summary of Hardware Kits 

This section summarizes the data presented in Chapter 4. Table 5-1 provides a 

quick reference of basic development features of each hardware kit and Table 5-2 

provides a summary of the evaluated kits’ comparative features. The topics discussed 

include the hardware specifications, power options, user interface, sensor availability, 

development environment, software, security libraries, demonstration code, and expense 

of each candidate platform. Recommendations are made to researchers regarding what 

kits they ought to consider given certain goals, background, or constraints.  

In terms of memory and processing, the Sun SPOT outclasses the MICAz and 

Freescale MC1321x. The Sun SPOT has at least sixty times as much Flash memory, an 

order of magnitude more RAM, a clock that’s at least 4 times faster, and a 32-bit 

processor rather than an 8-bit processor. To an extent, this plethora of processing power 

defeats a primary purpose of a mote – to run on relatively small batteries for a very long 

time; though no WSN studies have been completed studying the impact of the 

microprocessor on the battery lifetime. A researcher wishing to design security protocols 

will prefer the Sun SPOT because the processor and memory will not restrict the size of 

the implemented code as much as the other two kits will. A researcher wishing to work 

within a more traditional WSN should consider the MICAz or Freescale MC1321x as 

these kits adhere to the prevalent notion that WSN devices ought to be small and limited.  
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Table 5-1: Development Kits Summary 

  MICAz MC13213 SPOT 

H
ar

dw
ar

e MCU MPR2400 HCS08 ARM920T 
Clock 16 Mhz 40 MHz 180 MHz 

Bits 8-bit 8-bit 32-bit 
Flash 128 KB 60 KB 4,000 KB 
RAM 4 KB 4 KB 512 KB 

Timers 2 8-bit channels 8 16-bit channels 6 16-bit channels 

C
om

m
. 802.15.4 X X X 

ZigBee X X  
Serial X   

USB  X  

Po
w

er
 AA Batteries 2 2 0 

Internal   X 
USB  X X 

Power Supply  X X 

In
te

rf
ac

e LEDs 2 4 8 
Switches 0 4 2 

Integrated Sensors  X X 
I/O Pins X X X 

Daughterboards X   

D
ev

el
op

m
en

t Language C, NesC C Java 
Recommended IDE none CodeWarrior NetBeans 

Build GCC HC(S)08 ANT 
Load Serial or OTA BDM (USB) USB or OTA 

Serial X   
USB  X X 
OTA X  X 

S/
W

 Stack TinyOS BeeStack Spot Core Library
OS TinyOS  Squwak JVM 

 Encryption Skipjack AES ECC 
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Table 5-2 – Evaluated Kits Comparison 

  MICAz MC1321x SPOT 

H
ar

dw
ar

e 

Largest Processor   X 
Most Flash   X 
Most RAM   X 

Most Timers   X 
AA Batteries X X  

In
te

rf
ac

e Most LEDs   X 
Most Switches  X  

LCD  X  
Daughterboards X   

D
ev

el
op

m
en

t 

IDE At No Cost X  X 
Compiler At No Cost X   

Code Writen in C X X  
Code Written in Java   X 

Security Libaries    
Open Source X  X 

D
oc

um
en

ta
tio

n 

Most Demo Code   X 
Best Datasheet  X  

Best API   X 
Active Online 

Community
X  X 

Peer-Reviewed 
Publications

X   

Timers are expected to be used by the researchers to prevent system deadlock, 

measure intervals of time, and benchmark their code. The Sun SPOT appears to offer 

more timer channels than its competitor motes (due to its larger processor), yet several of 

these timers may be undocumented as being reserved by the Squawk JVM. Researchers 

must determine how many timers are needed for their research before selecting a 

platform. One researcher may find the two 8-bit timer channels of the MICAz sufficient, 

yet another researcher may not notice the number of MC1321x timers exceeding his or 
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her development code needs, while yet another researcher may find the lack of additional 

channels frustrating. 

The importance of a mote’s power source depends upon the application of the 

security research. Researchers must design or anticipate the power needs of their 

application assumptions before selecting a mote environment. If an application does not 

need any mobile or distributed motes than any of the evaluated kits are suitable for the 

research. If an application does require that a mote has freedom of movement than the 

researcher must make the power options of a mote a priority. The Freescale MC1321x 

and MICAz should be used for applications requiring motes with a longer battery 

lifetime. Researchers wishing to quickly change AA batteries ought to select the 

Freescale or Crossbow motes; these same researchers ought to avoid the Sun mote as the 

SPOT’s internal battery can only be charged by USB and is not swappable.  

A mote’s user interface impacts the user’s ability to design applications and 

troubleshoot mote software. The Crossbow MICAz’s lacking interface may hinder the 

developer. This device expects the developer to rely on communications with the mote 

via terminal rather than plentiful providing onboard inputs and outputs. The Freescale 

MC1321x NCB is particularly useful for debugging software and communicating with 

the application user because it offers an LCD. Each Freescale SRB provides 4 buttons 

and 4 LEDs. The MC1321x is the moderate choice of the evaluated platforms being that 

its interface is neither limited nor plentiful. The Sun SPOT offers the most glitz with its 

generous 8, tri-colored LED interface which may aid users in developing output codes. 

Oddly, the Sun SPOT provides only 2 switches. Experienced developers with a 

preference for utilitarian motes should consider the MICAz; however, developers with 
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less embedded system and wireless programming experience should not adopt the 

MICAz. Researchers preferring an LCD interface should use the Freescale NCB whereas 

researchers preferring more precise LED communication should use the Sun SPOT. 

Conversely, researchers requiring more elaborate input options should reject the Sun 

SPOT in favor of the Freescale.  

Researchers should fully understand what types of data they wish to collect before 

committing to a platform or allow time and resources for designing other sensors and 

actuators. The MICAz, MC1321x, and SPOT each offer accelerometers, temperature 

sensors, and ADC either onboard or through a daughterboard. The MICAz offers a wide 

variety of expansion daughterboards for sale that will likely have a particular sensor a 

researcher requires (be it anything from GPS to a barometric pressure sensor). 

Researchers needing specific data collection should avoid the Freescale and Sun motes as 

neither the Freescale nor the Sun motes offer any expansion daughterboards. Researchers 

not  needing specific data collection may use any of the development kits. 

Each platform development environment prescribes different software and offers 

different methods of code deployment. The MICAz relies on a developers’ choice of IDE 

(if any), a gcc cross-compiler, and loads code via a serial port. The Freescale MC1321x 

relies on a compiler offered only through CodeWarrior and loads code to motes through a 

BDM. The special edition of CodeWarrior shipped with most Freescale kits limits the 

size of the code that a developer may compile; observation indicates that in many cases 

the code required for ZigBee-compliance and security exceeds that limitation. The Sun 

SPOT recommends the NetBeans IDE, deploys code over USB through ANT, and uses 

the Java SDK to build the code for its device. The MICAz and SPOT development 
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environments are available at no cost whereas a standard edition of CodeWarrior 

HC(S)08 may need to be purchased for the Freescale kit. In this case, the selection of a 

kit depends on which environments the researchers are accustomed to, which are already 

available to the researcher, and what the budget of the researcher permits. Researchers 

experienced in embedded system development should select the MICAz as it allows them 

to use their familiar IDE and gcc tools at no cost.  Researchers who do not yet own a 

copy of CodeWarrior may prefer to avoid the Freescale motes due to the high cost of the 

standard edition of the IDE. The Sun SPOT may be considered by both experienced and 

inexperienced developers as the SPOT’s recommended suite is available at no cost. 

Each evaluated platform provides software that is distinct. The MICAz relies on 

the TinyOS, which is not fully 802.15.4-compliant, to provide the communication stack 

and task management. TinySec is available to add additional security tools to the 

TinyOS. The Freescale MC1321x relies on the Freescale BeeStack as configured by the 

Freescale BeeKit. The BeeStack does include AES encryption, but its black-box 

approach to code is much better suited to application developers rather than security 

researchers. The Sun SPOT relies on the Squawk JVM to manage application tasks and 

run the Java on the mote hardware. The basic SPOT core libraries may be extended using 

the SPOT security libraries that include ECC encryption. 

Each platform readily offers encryption algorithms. The Crossbow, through 

TinySec, offers the Skipjack algorithm. The Freescale offers AES encryption. Sun offers 

RSA and ECC. Notably, efficient implementations of ECC are still patented, and there is 

some question if Sun has obtained the rights to distribute the ECC intellectual property. 
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Sun also support SSL/TLS which uses public key cryptography to authenticate the 

network devices. 

It is important that a researcher be able to extend the existing security libraries of 

a platform. TinySec for MICAz is open source, but also very poorly documented. A 

determined researcher should be able to use this platform. The Freescale MC1321x 

cannot be easily extended – and therefore should be avoided by researchers who wish to 

create their own protocols or include their own security algorithms. The SPOT security 

library is open source, but, like the MICAz, is poorly documented for new-comers to the 

code. Determined researchers should be able to modify and extend the code. The 

Freescale motes should be rejected by any researcher wishing to develop more complex 

security policies or measures. The MICAz should be selected by those researchers who 

are more familiar with C. Finally, researchers who are more familiar with Java should 

consider the Sun SPOT.  

 The demonstration code offered by a platform may help developers understand 

how to structure and design code for the given platform. The MICAz is lacking in 

demonstration code, but an excessive amount of code (both good and bad) is available 

through the active research community. The BeeKit compiles the BeeStack with a basic 

demonstration application. That demonstration application provides a good template for 

the overall code structure, but is insufficient in guiding a less experienced developer. 

Finally, the Sun SPOT appears to be targeted to java developers with little embedded 

system experience as it provides extensive demonstration tutorials and well-written 

documentation manuals for that demonstration code. In this instance, those researchers 

quite familiar with embedded system development may prefer the Crossbow MICAz 
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whereas researchers less familiar with embedded system development ought to prefer the 

Sun SPOT. 

Finally, the expense of each hardware kit is comparable to one another. The 

distinguishing cost to the researcher is introduced first by the quantities of motes the 

researcher wishes to work with and second by the cost of any additional tools or licenses. 

Freescale may quickly become expensive if the researcher needs to purchase a copy of 

the HC(S)08 compiler or if the researcher needs to extend the 90-day trial license of 

BeeKit. The development kits and software for the MICAz and Sun SPOT are available 

at no cost. Academic researchers should contact each company’s sales team for 

educational discounts before purchasing a development kit.  

Overall, a researcher’s hardware selection should be based on the needs of the 

researcher regarding the experiment application and the depth of security development. 

Crossbow MICAz is best suited to complex experiment applications (i.e. supplementing 

the processor board with a daughterboard) and can be used for security research; this 

system is particularly recommended to researchers familiar with C and embedded system 

development. Freescale MC1321x should be useful to researchers already own the 

HC(S)08 compiler  who wish to only work on application development. Sun SPOT is 

best suited to simple experiment applications (e.g. bouncing ball) and can be used for 

security research; this system is particularly recommended to researchers familiar with 

Java and who have a basic understanding of embedded system programming. 
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5.2 Recommended Improvements 

Each of the examined platforms was found suitable for WSN research, though 

each researcher may find one of the platforms to be better suited to a particular aspect of 

security research over the others. Within this section several suggestions are offered on 

how to improve each of the platforms. 

The MICAz needs to improve its accessibility to new users. An additional 

daughterboard needs to be created with basic user debugging devices: an LCD, multiple 

switches, multiple LEDs, a buzzer, etc. The documentation of the MICAz needs to 

become more centralized – the TinyOS wiki is a good start, but lacks details about 

integration with the MICAz hardware. The usefulness of the existing documentation 

would improve if they provided more hand-holding and technical explanation to the 

inexperienced developer; individuals unfamiliar with the conventions of embedded 

system programming often lack the intuition necessary to understand the documentation. 

Finally, Crossbow needs to make more demonstration code readily available to the new 

user. 

Freescale needs to make many changes to improve the MC1321x for security 

research. The IDE and compiler may too costly for some researchers to install – in many 

cases more expensive than the development hardware itself. If the BeeStack code cannot 

be opened, more interfaces need to be built into the code to allow developers to write 

their own handshaking protocols and wrap in their own encryption algorithms. Further, a 

more searchable code documentation set (such as an API or a wiki) would clarify the 

existing utilities to new users. A final concern is that the development kits ship with only 

a 90-day license of the BeeKit, which may not provide enough time for some individuals 



104 

to complete their research.  Freescale should also find creative ways of fostering a 

research community through incentives, competitions, introduction of small projects to 

sponsored universities, etc. 

The release delays and care in developing the Sun SPOT are evident in the quality 

of the kit, yet Sun still needs to seek to improve the platform further. Foremost Sun needs 

to promote the SPOT in more peer-reviewed research (most projects are currently 

published through Sun Lab blogs or by hobbyists on YouTube). The Sun SPOT security 

library also needs more tutorials and documentation describing to the new user how to 

best implement the files and how to write their own protocols. The ease of using the Sun 

SPOT security would be further improved by creating a utility that automatically 

integrates the SPOT security library with the SPOT core library.  

In general, none of these development systems have seriously pursued 

implementing best practices in security within their development kits. Crossbow relies on 

the TinyOS community for the development of its security features. Freescale provides a 

measure of security with its BeeStack, but does not provide a means for researchers to 

evaluate and build-upon the given security. Sun SPOT does have several individuals – 

mostly Sun Labs members – working on the Sun SPOT security libraries, yet these 

libraries are not yet developed and documented to a point where new researchers may 

easily contribute. All the development platforms could use improvement in regards to 

promoting security research on their hardware. 
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5.3 Future Work 

Many topics worth further investigation were outside the scope of this thesis 

regarding the state and suitability of 802.15.4 hardware for security research. First, a 

number of notable kits were excluded for brevity or cost that ought to be examined as 

well. Second, little research exists cross-examining the performance of the hardware 

running similar software; extending and implementing the hypothetical security scenario 

would be an excellent place to begin. Third, the suitability of 32-bit processors (i.e. the 

SPOT) needs to be tested and measured for viability in an 802.15.4 deployed network. If 

a 32-bit processor can be used within the power constraints of WSN devices than  

processing-intensive security techniques formerly rejected by WSN researchers should be 

investigated.   
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