
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2012-03-13

Improving Filtering of Email Phishing Attacks by
Using Three-Way Text Classifiers
Alberto Trevino
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Information Security Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Trevino, Alberto, "Improving Filtering of Email Phishing Attacks by Using Three-Way Text Classifiers" (2012). All Theses and
Dissertations. 3103.
https://scholarsarchive.byu.edu/etd/3103

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F3103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarsarchive.byu.edu%2Fetd%2F3103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3103?utm_source=scholarsarchive.byu.edu%2Fetd%2F3103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


TITLE PAGE

Improving Filtering of Email Phishing Attacks

by Using Three-Way Text Classifiers

Alberto Treviño

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

J. J. Ekstrom, Chair
Dale C. Rowe

Eric K. Ringger

School of Technology

Brigham Young University

April 2012

Copyright © 2012 Alberto Treviño

All Rights Reserved



ABSTRACT

Improving Filtering of Email Phishing Attacks
by Using Three-Way Text Classifiers

Alberto Treviño
School of Technology, BYU

Master of Science

The Internet has been plagued with endless spam for over 15 years. However, in the last 
five years spam has morphed from an annoying advertising tool to a social engineering attack 
vector. Much of today’s unwanted email tries to deceive users into replying with passwords, bank 
account information, or to visit malicious sites which steal login credentials and spread malware. 
These email-based attacks are known as phishing attacks. Much has been published about these 
attacks which try to appear real not only to users and subsequently, spam filters. Several sources 
indicate traditional content filters have a hard time detecting phishing attacks because the emails 
lack the traditional features and characteristics of spam messages. This thesis tests the hypothesis 
that by separating the messages into three categories (ham, spam and phish) content filters will 
yield better filtering performance. Even though experimentation showed three-way classification 
did not improve performance, several additional premises were tested, including the validity of 
the claim that phishing emails are too much like legitimate emails and the ability of Naive Bayes 
classifiers to properly classify emails.

Keywords: Alberto Trevino, email, spam filtering, phish, phishing attacks, support vector 
machines, maximum entropy, naive bayes, bayesian filters
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1  INTRODUCTION

1.1  Background

Spam, or bulk unsolicited (often commercial) email has become a large problem on the 

Internet. Spam consumes network bandwidth, drastically increases load on mail servers, 

consumes storage space, overwhelms users (the most visible and annoying problem) and 

provides a delivery vector for security exploits.

The first piece of spam appeared on the ARPANET on May 1, 1978. Shortly after a small 

amount of spam and chain letters began to appear. But, it was not until 1994 when spamware 

(software which automated the delivery of high volumes of spam) became available to mark the 

beginning of the spam we known and endure today. Today around 89% of all email is unwanted 

and considered spam (MAAGW, 2011). Part of the problem has been how easy spam is to 

produce and deliver. With today’s spamware and botnets, a spammer can easily deliver hundreds 

of thousands of messages with very little effort.

Another factor contributing to the inundation of spam are the Internet standards (RFCs) 

which had their origins in the 80s and 90s. Even though they prohibit misinterpreting the origins 

of email message, they did not provide a way of validating the data until recently. This allowed 

spammers to hide in a cloak of forgery and deceit which made it hard for Internet provides to 

find and shut them down.
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With the creation of the Spamhaus Project in 1998, the Internet began to fight back 

against spam. Unfortunately, nearly 18 years later, the fight is far from over.

The first decade of the new millennium has seen the spam battle take on new dimensions. 

An increasing amount of today’s spam has a more sinister purpose than promoting questionable 

goods and services. Some spam contain and/or link to many types of malware (viruses, 

backdoors, trojans, etc.) Some spam, pretending to be a reputable source, ask for personal 

information such as name, address, bank account numbers, credit card information and even 

usernames and passwords. This type of spam have been labeled as phishing emails or phishing 

attacks. The term phishing ‘originally comes from the analogy that early Internet criminals used 

email lures to “phish” for passwords and financial data from a sea of Internet users’ (Ollmann, 

n.d.).

Phishing attacks pose a serious security problem that has been difficult to deal with. To be 

effective, phishing attacks must appear like legitimate messages from a bank, company or 

acquaintance of the victim. Many sources suggest filtering phishing attacks require different 

methods than those used for spam since they lack features often found in common spam 

messages (Bergholz, 2008; Fette 2007; Zdziarski 2006), but there is little consensus on the 

approach.

1.2  Problem Statement

Security problems caused by phishing attacks are one of the most urgent issues facing 

System Administrators today. During the first half of 2011, there were over 26,000 unique 

phishing attacks reported (APWG, 2011). The literature suggests the attackers’ success in 

making the emails look legitimate confuse content filters which then mark the email as 
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legitimate. If phishing emails thwart filters by looking less like spam, then perhaps content filters 

need to be taught to recognize phish as a separate type of email in order to make them more 

effective. Most text classifiers (the technology employed in content filters) are capable of 

classifying text into one of several predefined categories. It should therefore be possible to use 

multiple categories beyond spam/not spam to train filters to specifically detect what spam, phish 

and legitimate emails look like in an effort to mitigate the security risk.

1.3  Hypothesis

It is the hypothesis of this thesis that a three-way text classifier can be created and trained 

to classify incoming email into three separate categories: ham (legitimate), phish and spam, and 

that through this process the classifier should be able to find better characteristics of what 

constitutes legitimate email, phishing attacks and spam and therefore improve filtering. In 

particular, this approach should avoid labeling phishing emails as legitimate simply because they 

lack the spam features required to label them as spam.

To test this hypothesis I will create labeled corpora of ham, phish and spam. I will also 

build a feature extractor to extract the elements of each message from these corpora to train and 

test the classifier. To compare the performance of the three-way classifier, the data will be fed to 

the text classifier in a traditional two-category configuration where phish and spam corpora will 

be combined into one large corpus. The filter’s performance on the corpora will be compared in 

the two and three-way configuration with three text classification measures: accuracy, precision 

and recall in order to determine if using a three-way classifier offered additional performance 

benefits over the traditional two-way classifier.
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1.4  Justification

Even though the literature contains many examples of using text classifiers to identify 

spam and phishing attacks in serial configurations (first a spam filter followed by a phish filter), 

there doesn’t seem to be any suggestion that a single three-way classifier has been used to deal 

with spam and phish simultaneously. This simultaneous approach should provide similar filtering 

performance to the multistage filters already proposed, but also provide a reduction of 

computational power required to filter spam and phishing attacks.

1.5  Assumptions

For the purposes of being consistent with much of the literature, and to encourage 

reproducibility, publicly available corpora will be used for ham, spam and phish emails. These 

corpora will be assumed to be representative of messages found today in the wild.

The feature extraction process will be generic enough to make sure it can be used with 

any other corpora.

1.6  Delimitations

Even though the meaning of the term spam has evolved to include unsolicited messages 

to blogs, websites and text messages, this thesis will focus strictly on email messages. No effort 

will be done to extrapolate the techniques or results in this thesis to other forms of spam.

This thesis will deal exclusively with bulk spam and phish messages. Spear phishing, a 

highly targeted and focused attack (APWG, 2011) will not be analyzed.

This thesis will not provide statistically meaningful performance comparisons of the 

many text classifier algorithms. The literature is full of many performance comparisons and this 
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thesis will not attempt to add to it. The criteria for selecting a classifier will be based on finding a 

classifier with adequate performance, that has the ability to handle multiple categories (or 

classes), and is freely available for research.
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2  REVIEW OF THE LITERATURE

2.1  Introduction to the Literature

Much has been published about spam in the academic, commercial and Internet space. 

There are several trade and educational conferences dedicated to the subject and many 

individuals have posted their solutions and frustrations on the Internet. People have even built 

profitable businesses around that provide spam filtering to other companies and organizations.

The literature converges on three main aspects of spam filtering: standards, heuristics 

(design and improvement), and machine learning algorithms. Interestingly, very little is 

published about how these three aspects should be integrated  or used in conjunction with each 

other. Marketing information for several products suggest these aspects are being integrated and 

combined, but these companies do not provide the details on how it’s being done.

The approach I have taken in my literature review is to analyze the literature to find a 

research aspect that may not have been published. This requires a full understanding of 

standards, the history and evolution of spam, and the main solutions that have been proposed and 

are in use today. This approach provides a solid foundation from which one can begin to 

understand the problem, the limits of current technologies and identify new areas of research.
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2.2  Understanding Email Communications

The email standard which forms the foundation of today’s email infrastructure was 

drafted and published in the form of RFC 821 in August 1982. The standard is titled “Simple 

Mail Transfer Protocol,” abbreviated as SMTP (RFC 821). RFC 821 is not a complete system; it 

only specifies server-to-server email communication. The entire email system requires at least 

three other standards in order to work:

• RFC 822: Standard for ARPA Internet Text Messages.

• RFC 974: Mail Routing and the Domain System.

• RFC 918: Post Office Protocol.

RFC 822 specifies how email messages and email addresses are to be constructed. RFC 

974 specifies how email servers find each other to deliver email across domains. RFC 821 

explains how email servers will talk to one another to deliver email from one server to another. 

And RFC 974 describes how a user can get email from a mailbox.

2.2.1  Overall Delivery Process

In order to understand email communications, we need to define the components that 

play a part in it. These components are specified in RFC 5068:

• Mail User Agents (MUA)

• Mail Submission Agents (MSA)

• Mail Transfer Agents (MTA)

• Mail Delivery Agents (MDA)
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The overall process can be described as follows. A user authors a message in the Mail 

User Agent (MUA). Once authored, the MUA sends the message to its configured Mail 

Submission Agent (MSA). The MSA will query the Mail Exchange (MX) records in DNS for the 

host where the email will be delivered. Once found, the MSA will contact the responsible Mail 

Transfer Agent (MTA) and transmit the message via SMTP. Once accepted and received by the 

MTA, the MTA will pass the message to the Mail Delivery Agent (MDA) where it will be stored 

in the appropriate mailbox(es) of the recipient(s). From there, the recipient(s) will obtain the 

message via POP or other means through his/her MUA where the message will be read (RFC 

5068). The Kavi Help Center provides a diagram of this process, shown in Figure 2-1.

One crucial difference of today’s email delivery practices from those of the early Internet 

and ARPANET, is relaying. During the early days of the ARPANET automatic, routed 

connections were not possible between many of the available nodes. It was therefore a common 
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practice to relay email through several MTAs from one server to the next. Thus, an email 

message may have passed through several SMTP servers before reaching its final destination. 

This crude but necessary practice could have made the tracing and debugging of email delivery 

problems very difficult. However, the first RFCs (821 and 822 in particular) were designed to 

accommodate logging and tracing of the many paths the email may have taken. In Section 4.1.1 

RFC 821 states:

When the receiver-SMTP accepts a message either for relaying or for final 
delivery it inserts at the beginning of the mail data a time stamp line.  The time 
stamp line indicates the identity of the host that sent the message, and the identity 
of the host that received the message (and is inserting this time stamp), and the 
date and time the message was received.  Relayed messages will have multiple 
time stamp lines.

When the receiver-SMTP makes the "final delivery" of a message it inserts 
at the beginning of the mail data a return path line.  The return path line preserves 
the information in the <reverse-path> from the MAIL command. Here, final 
delivery means the message leaves the SMTP world.  Normally, this would mean 
it has been delivered to the destination user, but in some cases it may be further 
processed and transmitted by another mail system (RFC 821).

It is important to note none of the email standards provide mechanisms for verifying the 

route taken by an email message. The use of the “Received” and “Return-Path” headers was 

designed to provide this information as a debugging tool. It was never meant to a forensic tool.

2.2.2 The SMTP Session

The Simple Mail Transfer Protocol is the heart of email delivery. It is often used by the 

MSA to start message delivery, and it is used by all public MTAs to deliver email throughout the 

Internet. SMTP is the glue that binds all email delivery.

The SMTP session is a lot like a telephone conversation. A typical SMTP session starts 

with the two sides exchanging greetings. Then, the SMTP client (the system sending the email 
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message, usually the MSA) specifies who is sending the email, followed by a list of recipients. 

Once the source and destinations have been exchanged, the actual mail message is transferred at 

which point the receiving end (the SMTP server) either acknowledges the reception of the email 

or rejects it, either temporarily or permanently. The SMTP session is, to a degree, human 

readable. Figure 2-2 shows a modern, sample SMTP session as specified in RFC 5321.

Figure 2-2: Example SMTP Transmission

RFC 821 and its subsequent revisions (2821 and 5321) specify that a server should be 

rather forgiving, following the Internet tradition of making communications as usable and 

reliable as possible. For example, commands are not case-sensitive and any command errors 

10

This SMTP example shows mail sent by Smith at host bar.com, and to
Jones, Green, and Brown at host foo.com.  Here we assume that host
bar.com contacts host foo.com directly.  The mail is accepted for
Jones and Brown.  Green does not have a mailbox at host foo.com.

      S: 220 foo.com Simple Mail Transfer Service Ready
      C: EHLO bar.com
      S: 250-foo.com greets bar.com
      S: 250-8BITMIME
      S: 250-SIZE
      S: 250-DSN
      S: 250 HELP
      C: MAIL FROM:<Smith@bar.com>
      S: 250 OK
      C: RCPT TO:<Jones@foo.com>
      S: 250 OK
      C: RCPT TO:<Green@foo.com>
      S: 550 No such user here
      C: RCPT TO:<Brown@foo.com>
      S: 250 OK
      C: DATA
      S: 354 Start mail input; end with <CRLF>.<CRLF>
      C: Blah blah blah...
      C: ...etc. etc. etc.
      C: .
      S: 250 OK
      C: QUIT
      S: 221 foo.com Service closing transmission channel



should be properly handled. Even though some rules are fairly strict (for example, the command 

verbs) the predicates of such verbs are relaxed (RFC 5321). Here is a summarized list of the 

minimum commands that should be supported by an SMTP server, and how they are to be 

transmitted by the client.

Table 2-1: Minimum Set of Commands Required to Implement an SMTP Server 
and Their Descriptions

Command Description

EHLO
EHLO (extended hello or HELO for backward compatibility) 
must be the first command sent by a client with the Fully 
Qualified Domain Name (FQDN) of the client or, its IP address.

VRFY

Checks (verifies) if an email address is valid for a particular 
domain (RFC 821). RFC 5321 suggests this feature might be 
turned off on most systems since it is believed to be abused by 
spammers to harvest email addresses. But the same RFC 
emphasizes that it should be enabled and properly verify 
addresses.

MAIL FROM
Specifies the email address responsible for sending the email. 
This gets recorded as the Return-Path in the headers by the 
receiving SMTP server.

RCPT TO
Specifies the recipients for the message. Multiple addresses can 
be given and they can be individually accepted or rejected by 
the SMTP server.

DATA
Sends the headers and body of the email. After the data has been 
set, another session can be initiated by using the RSET 
command or by sending another MAIL FROM command.

RSET
Resets the connection back to the state established after initial 
EHLO/HELO.

NOOP
Sends a command that does nothing, usually to keep the 
connection alive.

QUIT Used to end the session and close the connection.

There are a few things to notice about the standard, mostly from the things it does not 

contain. SMTP does not require any type of authentication. Extensions for it exist, and RFC 5068 
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recommends the use of authentication for the submission of email from the MUA to the MSA 

preferably over TCP port 587 (RFC 5068). Another purposeful omission was the verification of 

the email itself. The SMTP server expects the message to be properly formatted as stated in RFC 

5322, but it is not required to verify it. Verifications on the fully qualified domain name (FQDN) 

of the HELO/EHLO command, or verifications on the existence of the MAIL FROM address are 

also missing.

One thing the standard did address properly is relaying. Any SMTP client can ask any 

SMTP server to send a message to any recipient outside the domains it handles. The server has 

the prerogative to accept and relay the message, or reject the recipient. There are two reasons 

why an SMTP server would reject a recipient: the recipient does not exist on that server, or the 

server does not handle nor relay email to that particular domain. Spammers often try to relay 

spam in order to avoid being blacklisted (see Section 2.5.2) However, the SMTP standard does 

not require SMTP servers to support relaying. It is highly recommended that SMTP servers 

disallow relaying to avoid being abused by spammers (RFC 2505).

Even though relaying was once a necessity, today it is no longer necessary. In RFC 5321 

we read:

In general, the availability of Mail eXchanger records in the domain name system 
makes the use of explicit source routes in the Internet mail system unnecessary. 
Many historical problems with the interpretation of explicit source routes have 
made their use undesirable. SMTP clients SHOULD NOT generate explicit source 
routes except under unusual circumstances. SMTP servers MAY decline to act as 
mail relays or to accept addresses that specify source routes (RFC 5321).

One other aspect of SMTP which should not be ignored are the three possible responses 

which a server can provide to an incoming message: accepted (2yz response code), temporary 

failure (4xx response code) and permanent failure (5yz response code). Note there is no 
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“message received, please wait while we run your message through our spam filters” option. 

That means MTAs must make a relatively quick decision as to whether to accept or reject a 

message. RFC 2821 includes a section minimum SMTP command timeouts. These timeouts are 

to be used per command and not for the entire transmission. Section 4.5.3.2 of RFC 2821 states 

the SMTP client should wait a minimum of 10 minutes after the message has been sent for a 

response from the SMTP server, before considering the session lost (RFC 2821). This provides 

SMTP servers with at least 10 minutes to process the email and decide whether it is spam or not.

2.2.3  Sending Spam

Sending spam is not much different than sending legitimate email. “The very 

characteristics that make email such a convenient communications medium -- its near ubiquity, 

rapid delivery, low cost, and support for exchanges without prior arrangement -- have made it a 

fertile ground for the distribution of unwanted or malicious content” (RFC 5068). From the 

SMTP perspective, there is no difference between legitimate email and spam. SMTP, as 

designed, does not require or allow for the transmission of intent, which is the only difference 

between legitimate email and spam. This is why spam is so difficult to accurately detect. 

However, the many spam detection techniques explained later on are intended to do just that.

One aspect of the SMTP process in particular has proved to be detrimental to spammers: 

its reliability. The SMTP standard specifies that if an email message was not delivered, a notice 

must be sent back to the sender notifying him/her of the error (RFC 5321). If a spammer is not 

carefully, he/she could quickly be inundated with error messages (bounce notices). To avoid the 

flood of bounced messages, spammers learned early on they could provide false return 

information on the email’s envelope and redirect these bounces to another recipient or even to 
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non-existent email addresses. Additionally, spammers hide their tracks by providing erroneous or 

invalid HELO and MAIL FROM information. An SMTP server implemented as specified by the 

SMTP standard does not care if it is lied to. In fact, it is designed to be forgiving of mistakes and 

to accept anything that may be good enough to be delivered. “Utility and predictability of the 

Internet mail system requires that messages that can be delivered should be delivered, regardless 

of any syntax or other faults associated with those messages and regardless of their content (RFC 

5321). Spammers, of course, have exploited the good will of the Internet in this regard.

2.3  History of Spam

The first piece of spam appeared on May 1, 1978 as an advertisement for a product 

demonstration by Digital Equipment Corporation over the ARPANET (Zdziarski 2005). The 

reaction to this first piece of spam (although the term spam had not be coined yet) was quite 

strong by the ARPANET community and the ARPANET’s managers, the U.S. Department of 

Defense. In one reply Major Raymond Czahor stated the DEC message “was a flagrant violation 

of the use of ARPANET as the network is to be used for official U.S. government business only” 

(Templeton, n.d.).

During the 1980s bulk emails such as chain letters and religious messages appeared from 

time to time  in slowly increasing volume. In 1994 a husband and wife attorney team “decided to 

hire a programmer who could write software to post an advertisement to every single newsgroup 

in existence” (Zdziarski, 2005). The email, referred in the literature as the Canter & Siegel spam, 

promoted the husband and wife’s immigration legal services. Their idea of automating the 

posting of emails was revolutionary since before this time spam was sent by entering individual 
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email addresses by hand to a new message. In 1994 and 1995 spamware, or automated spam 

software, hit the market and several large spamming companies emerged (Zdziarski, 2005).

Around 2003 a shift began on how spam was delivered, from relatively small distribution 

points to fully distributed methods through botnets (Seabrook, 2008). (Botnets are defined by 

Wikipedia as a collection of compromised computers on the Internet.) By 2008 it was believed 

that 85% of all spam originated from only six different botnets (M86 Security, 2008). With so 

few botnets responsible for such a large amount of spam, one may quickly think it would be an 

easy feat to end spam. That is not the case, however. Botnets are extremely resilient systems. 

They can be considered the Internet equivalent of organized crime and, as soon as one system is 

shut down, another quickly takes its place (Leyden, 2012).

2.4  Types of Spam

Although the term spam is used loosely as a general term to describe unwanted email, it 

is important to distinguish the many different variations of spam.

2.4.1  Unsolicited Commercial Email

Unsolicited Commercial Email (UCE) was the most common type of spam of the mid to 

late 1990’s and early 2000’s. Its primary purpose is to promote goods and services. They often 

promote a variety of services including adult content, health, IT, personal finance, education and 

training, politics and even anti-spam solutions (Securelist, n.d.).

The rise of UCE during the 1990’s also led to a rise of questionable, underground 

companies. One common example are emails promoting sales of male enlargement pills through 

rogue online pharmacies. One other example common in the mid 2000’s was stock promotion 
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which would send “positive ‘touts’ for a low-volume security in order to manipulate its price and 

thereby profit on an existing position in the stock” (Kanich, 2009).

2.4.2  Chain Letters

Chain letters became very popular in the early days of the Internet (1980’s to early 

1990’s) (Zdziarski 2005). They basically asked users to proliferate the email to a number of other 

people in order to obtain good luck. Although not commercial, these types of emails are 

considered unwanted by most.

2.4.3  Scams

There are many scams sent by email. Some of the most popular scams are the Nigerian 

Letter scams which found new life in the digital age. The FBI describes these scams on their 

website:

Nigerian letter frauds combine the threat of impersonation fraud with a variation 
of an advance fee scheme in which a letter mailed from Nigeria offers the 
recipient the "opportunity" to share in a percentage of millions of dollars that the 
author—a self-proclaimed government official—is trying to transfer illegally out 
of Nigeria. The recipient is encouraged to send information to the author, such as 
blank letterhead stationery, bank name and account numbers, and other 
identifying information using a fax number provided in the letter. Some of these 
letters have also been received via e-mail through the Internet. The scheme relies 
on convincing a willing victim, who has demonstrated a "propensity for larceny" 
by responding to the invitation, to send money to the author of the letter in 
Nigeria in several installments of increasing amounts for a variety of reasons.

Payment of taxes, bribes to government officials, and legal fees are often 
described in great detail with the promise that all expenses will be reimbursed as 
soon as the funds are spirited out of Nigeria. In actuality, the millions of dollars 
do not exist, and the victim eventually ends up with nothing but loss. Once the 
victim stops sending money, the perpetrators have been known to use the personal 
information and checks that they received to impersonate the victim, draining 
bank accounts and credit card balances.
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2.4.4  Malware Proliferation

Much of today’s spam is intended to spread malware. These messages purport to have 

information regarding a package delivery, offer software licenses, or even have information 

about tax payments or failed bank transfers (Websense, n.d.). These messages often contain 

infected attachments or links to infected websites to aid in the spread of various types of 

malware.

2.4.5  Phishing Attacks

Phishing attacks try to extract private information from users by creating legitimate-

looking emails from common organizations which directly ask for username, passwords, account 

numbers, etc. or link to legitimate looking websites which collect that information from users. 

Some pretend to be from PayPal, eBay, and wide variety of banks. These messages are bulk, and 

cast a wide net and often are sent to people who may not do business with the company they 

pretend to represent. In contrast, a targeted form of phishing attack is called spear phishing 

which, as described by the FBI on their website,

[targets] select groups of people with something in common—they work at the 
same company, bank at the same financial institution, attend the same college, 
order merchandise from the same website, etc. The e-mails are ostensibly sent 
from organizations or individuals the potential victims would normally get e-
mails from, making them even more deceptive. . .

First, criminals need some inside information on their targets to convince 
them the e-mails are legitimate. They often obtain it by hacking into an 
organization’s computer network (which is what happened in the above case) or 
sometimes by combing through other websites, blogs, and social networking sites.

Then, they send e-mails that look like the real thing to targeted victims, 
offering all sorts of urgent and legitimate-sounding explanations as to why they 
need your personal data.

Finally, the victims are asked to click on a link inside the e-mail that takes 
them to a phony but realistic-looking website, where they are asked to provide 
passwords, account numbers, user IDs, access codes, PINs, etc.
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2.5  Proposed Solutions

There have been many solutions proposed to solving the spam problem. This section 

attempts to summarize some of the known approaches explaining how they work, their benefits 

and their shortcomings.

2.5.1  Keywords, Phrases and Regular Expressions

One of the first solutions to combat spam was the use of keywords and phrases 

(Zdziarski, 2005). This solution is simple. A list of keywords, phrases, or even regular 

expressions commonly found in spam is run through the filter. If the phrase is present in the 

message, the message is labeled as spam.

This method is not considered very effective. Even though it can be very efficient at 

blocking certain emails, it can also have a high false positive rate (legitimate emails marked as 

spam). This method also requires large administrative resources since each unique spam must be 

individually dissected and programmed. False positives also have to be individually handled. In 

all this manual tuning, it is very easy to have unintended consequences which can be very 

difficult to correct (Zdziarski, 2005). Because of its high administrative cost and low 

performance, this type of filtering is strongly discouraged.

2.5.2  Blacklists

Blacklists are a simple but effective approach. The idea is to make list of IP addresses 

which are known to send spam and block them outright (Jacob, 2003). Blacklists can either be 

manually created by each organization or obtained from blacklist services. In 1996 Spamhous 

became the first non-profit blacklist provider (Zdziarski, 2005).
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Blacklists are not perfect, however. For any given IP address it is an all-or-nothing 

approach. There is also the inconvenience of being wrongfully listed in a blacklist. This can 

happen due to abusive behavior by someone who has used the IP address previously, or whom 

you may share the IP address with in some hosting scenarios, or simply because the blacklist 

administrator felt like it (Jacob, 2003).

The introduction of IPv6 threatens to destabilize blacklists. Since blacklist are stored 

mostly by IP address, the new addressing scheme will force blacklist administrators to recreate a 

lot of their work (Leyden, 2011).

2.5.3  Whitelists

Whitelists, the reverse of blacklists, provide a list of IP addresses that are allowed to send 

email. If a particular IP address is not on the list, it will be blocked and not allowed to send 

email. As with blacklists, whitelists are hard to maintain, are not exhaustive by nature, and tend 

to block much more than just spam (Zdziarski, 2005). They can have a legitimate use in closed 

systems that only talk to other trusted systems.

2.5.4  Heuristics

Heuristics is a general term used to describe rules or checks performed on email. An 

example would be checking for a valid, fully qualified domain name (FQDN) in the 

HELO/EHLO command. Heuristics are a mixed bag. They can perform anywhere from really 

well to very poorly. One way to improve performance is to combine multiple heuristics with a 

point-based system so that no one heuristic is usually entirely responsible for flagging an email 

as spam. The decision is deferred until all heuristics have been considered, adding up and 
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subtracting all the necessary points. If the total points is higher than some configurable threshold, 

the email is flagged as spam and rejected. (Zdziarski, 2005).

SpamAssassin, perhaps the most common spam fighting tool in use, is heuristic based. In 

version 3.3.x (current stable branch at the time of writing) SpamAssassin comes with 356 

different heuristics. They check a variety of things from header structure, keywords and phrases, 

remote client identification, etc. (SpamAssassin Documentation, n.d.).

Proper heuristics offer acceptable performance although they carry a very high 

administrative cost. Heuristics are nearly always hand-written, and even though their point 

systems can be tuned with algorithms, often times they are manually adjusted (Youngman, 

2004).

2.5.5  Machine Classifiers

Machine classifiers are often used in Natural Language Processing. They are capable of 

classifying text into predefined categories. Machine classifiers are usually built on top of 

machine learning algorithms to create probabilistic models for each category. When a classifier 

classifies text similar to the one given in training, it returns the most probable category for the 

text (Manning, 2004). There are many different types of machine classifiers, such as Naive 

Bayes, CRM114 (Zdziarski, 2005), Maximum Entropy (Manning, 2004), Winnow (Chhabra, 

2005), Decision Trees, Random Forests, Neural Networks (Caruana, 2006) and Support Vector 

machines (SVMs) (Joachims, 2002). Each method is usually built to solve a particular problem, 

so their performance can vary greatly depending on the problem they are applied to. (See 

Carauna, 2006 for explanations and comparisons between many of these classifiers.)
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Classifiers, when used as spam filters, are usually configured with two categories or 

classes: spam and not spam. SpamBayes offers an exception, adding the ability to return an 

unsure classification for messages which are difficult to predict (Spambayes, n.d.).

Overall, text classifiers can be classified into two categories, depending on the statistical 

model they use. These are generative (such as Naive Bayes and CRM114) or non-generative 

(such as Maximum Entropy, Winnow, and SVM). Generative models get their name from the 

ability to generate new, representative documents for each category in their models. In general, 

they keep separate statistical models for each defined category. Non-generative models (also 

known as conditional models and discriminatively trained models) are not able to generate any 

documents. In contrast to generative models, non-generative models contain  a single statistical 

model which, during the training phase, systematically find the differences in the documents that 

help determine the category they belong to. Non-generative models are able to calculate the 

posterior probability (the probability a document belongs to a particular category given its 

features) directly, while generative models must do it from the joint (generative) distribution 

using Bayes’ Law (Ringger, 2012).

One aspect affecting the performance of classifiers is feature extraction. The literature 

seems to favor single word features which represent email messages by their individual words. 

Word features work fairly well, but can be driven into feature deprivation, a condition where 

features have never been seen in training and are not accounted for in the model (Kanaris, 2006).

Another approach which reduces the possibility of feature deprivation is using character-

based features. Even though it may seem counter intuitive, character-based spam filtering can 

still be quite effective. One benefit of character-based features is that the feature space is 

21



theoretically smaller, meaning there is a higher probability of accounting for most features 

during training (Kanaris, 2006).

2.5.6  Challenge and Response Systems

An idea suggested and implemented in the late 1990s was the challenge/response model.

Basically, whenever a new sender would try to deliver email to a new mailbox, the system would 

place the delivery of the message on hold and automatically reply to the sender with a 

confirmation email. If the original sender wanted the email delivered, the sender would have to 

reply to the confirmation email using the same email address of the original message. On 

successful confirmation, the original email would be delivered to the recipient. In case several 

emails would arrive from the same sender only one confirmation email would go out (if designed 

properly) and would all be released upon confirmation. The reasoning behind this approach was 

that real senders would receive the confirmation email and would reply, while spammers would 

not be interested in replying to every single confirmation from all the spam they had sent. In a 

way, proper delivery required cooperation from the sender and would shift some of the burden 

back on spammers (Templeton, n.d.)

This idea worked a little too well: the user would see little flowing into his/her inbox, 

both in terms of email and spam. Most legitimate senders would reply , and some spammers as 

well. But, just like this approach put an extra burden on spammers, it also added to the burden of 

regular users as well. Some people refused to reply to these automated messages (SpamCop 

FAQ, n.d.).

In terms of solving all the problems with spam, this approach relieved inboxes (often 

relieving them too much) but also increased bandwidth, since many messages would require a 
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confirmation email. Storage requirements didn’t really reduce since much of the spam was stored 

awaiting confirmation. Finally, there was the issue of forgery. Since spammers often forge email 

addresses, confirmation emails were either sent to unsuspecting users or were bounced by the 

innocent domains (SpamCop FAQ, n.d.). Thus, this approach has been mostly abandoned.

2.5.7  Greylisting

Greylisting can be considered a variation on white lists, black lists and 

challenge/response systems, except that it all happens at the machine level, not the user level. 

The idea behind it is that any new sender will be temporarily blocked until the sender’s identity 

can be confirmed. Instead of sending a confirmation email to the sender, the receiving SMTP 

server temporarily denies the message with a 4yz response after the message has been received. 

This situation forces the sender’s server to retry sending the same message some time later. If the 

resent messages matches the first attempt (which it should) then the user is added to the whitelist 

and the original message is delivered. If, however, the message is not resent then the message is 

never delivered. This method works because most spam is not resent; resending spam would go 

against the economics of bulk deliveries (Yamai, 2008).

This method has proved very effective. However, it is not perfect. First, additional 

bandwidth is created by forcing the email server to resend a message. This problem is 

exacerbated with large attachments. Additionally, extra care needs to be taken when deciding 

what constitutes the same message. Large organizations with multiple outgoing mail servers 

cannot guarantee the email will be resent by the same server. Thus, precautions need to be made 

to ensure the message can be delivered from multiple servers. Finally, greylisting introduces 
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noticeable delays in the delivery queue. Standards suggest waiting at least 30 minutes before 

resending the message, thus adding 30 minutes to the deliver of email (RFC 2821).

In an effort to improve on the delay aspect of greylisting, Yamai suggests that perhaps 

closing the connection without warning (instead of providing a proper 4xx response) may be a 

better approach. Based on his presentation, a dropped connection triggers a near immediate retry 

from the server, removing the time delay. Additionally, it is usually retried from the same server, 

removing the problem of retransmissions from another host (Yamai, 2008).

2.5.8  Tarpitting

Tarpitting is another technique aimed at hurting the cost margins of spam. This technique 

was developed in the mid 2000’s and was aimed at the many penny stock scams. The technique 

works by purposely slowing down communications between the client and the server, thereby 

slowing the spammer. With the incredibly low reply rates (estimated to 0.003% by Kanich, 2008) 

a spammer must send millions of messages in order to make a profit. By tarpitting, the spammer 

is unable to send the large amounts of spam required to make a profit in a fast enough time frame 

(Eggendorfer, 2007).

In order to understand this technique better, it is important to understand the delivery 

times involved and the suggested latencies clients should expect. A regular email message (one 

without large attachments) between moderately busy servers can be delivered within a few 

seconds. However, when combined, the minimum timeout periods suggested in RFC 2821 

provide up to 30 minutes in wait times for a single message. If a simple message can be 

delivered in less than 3 seconds but SMTP clients should be designed to wait at least 1,800 

seconds, that means one could potentially slow down the deliver of spam by a factor of 600. Of 
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course, legitimate email can also be slowed down to those levels. In practice 30 minute delays 

are not typical. Even delays of about five minutes are enough to deter impatient spammers while 

still allowing legitimate mail to come through at a more regular pace.

There are two drawbacks with this solution. First, the delay imposed on all email. The 

second, the extra load on mail servers since they will have to cope with a much larger number of 

simultaneous connections (Eggendorfer, 2007).

2.5.9  Sender Policy Framework (SPF)

Sender Policy Framework (or SPF) is one of the first standard-based approaches to the 

spam problem. SPF began as a proper solution for authenticating outgoing mail servers for a 

particular domain. SPF had its starts with an idea by Hadmut Danisch of publishing Reverse MX 

(RMX) records through DNS. That way, an SMTP server could get a list of valid outgoing mail 

servers in a way similar to how they get a list of incoming mail servers. The basic idea of RMX 

was to reduce forgery by having a way to authenticate whether a particular client attempting to 

send email was a valid outgoing server for that domain.

SPF took the basics of MX and improved on them by allowing the publishing of policies 

regarding outgoing email for a particular domain, authorizing or blocking IP addresses and 

subnets. SPF also allows for simple configurations for domains where the outgoing servers are 

the same as the incoming mail servers by simply authorizing all servers listed in the MX record 

(RFC 4408). The different SPF policies (or validation outcomes) allow for great flexibility in 

how to deal with apparent rouge email. The SPF policies specified in RFC 4408 are:
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• PASS: The specified IP or host is allowed to send email for the domain

• NEUTRAL: The sender is neither authorized to or prohibited from sending email for 

the domain.

• SOFT FAIL: The use of this host is discouraged sending email for the domain.

• HARD FAIL: The host is prohibited from sending email for the domain.

SPF has had some success. Some people don’t think it has done anything at all. Transient 

media reports early on seem to suggest more spammers were using SPF than legitimate domains. 

This seems to be a continuous problem as J. Goodman from Microsoft reported in 2007 40% of 

the servers that sent email to Hotmail had SenderID records (Goodman, 2007). But SPF seems to 

get its bad reputation from a misunderstanding of what the technology actually does. When it 

was first released, it was touted as the solution that would end spam . That obviously did not 

happen. For that reason, many dismissed it. SPF is no miracle cure, but it does exactly what it 

was intended to do: authenticate sender MTAs for a domain. Of course, spammers can 

authenticate as well, and the biggest complaint has its source at unconditionally trusting SPF 

records, or not doing additional checks with neutral policies which should be considered as 

having no SPF record at all (RFC 4408). 

2.5.10  Sender ID

Sender ID is a variation of SPF developed by Microsoft which can authenticate the MAIL 

FROM field along with what it calls the Purported Responsible Address (PRA) obtained from the 

headers. Sender ID works in a very similar ways to SPF by using DNS records to publish its 

information. (RFC 4406).
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SenderID has not been very popular outside of the Microsoft partners since several of its 

technologies are patent-incumbered and cannot be implemented in free software projects 

(Apache Foundation, 2004). For those projects SPF is preferred.

2.5.11  Relay Header Detection

In cases where SPF or SenderID do not have any records, there are other DNS queries 

which can be performed to ascertain the validity of the EHLO greeting and MAIL FROM 

commands. Relay Header Detection specifies the order and type of DNS queries which can be 

performed to ensure the message comes from a reputable source. In testing, this technique was 

able to filter email with over 99% accuracy with very low false positives (Treviño, 2007b).

2.5.12  DomainKeys Identified Email

DomainKeys Identified Email (DKIM) is a digital signature system for email created by 

Yahoo!. It serves as a way of ensuring that a valid server for a domain has sent a particular 

message. It works by adding the DKIM-Signature email header containing the domain 

information along with a digital signature to the message. The receiving MTA can then obtain a 

copy of the public key and verify the digital signature (RFC 4871).

Just like SPF and Sender ID, DKIM suffers from adoption problems. Additionally, having 

a signed email does not mean you won’t have spam. Spammers can sign messages too. And, 

ironically, Yahoo! is responsible for spam itself when spammers create and use Yahoo! accounts 

to distribute spam. However, its weaknesses should not deter its use .

27



2.5.13  DMARC

On January 30, 2012 Google, Facebook, Microsoft, PayPal and several other Internet 

giants unveiled a new plan to combat phishing attacks. Their approach called Domain-based 

Message Authentication, Reporting & Conformance (DMARC) hopes to improve on existing 

SPF/SenderID and DKIM standards. From the DMARC website:

DMARC standardizes how email receivers perform email authentication using the 
well-known SPF and DKIM mechanisms. This means that senders will experience 
consistent authentication results for their messages at AOL, Gmail, Hotmail, 
Yahoo! and any other email receiver implementing DMARC. We hope this will 
encourage senders to more broadly authenticate their outbound email which can 
make email a more reliable way to communicate.

The number of industry heavyweights which have come together to form this new 

approach is a testament to the extent and difficulty of dealing with the phishing problem. With 

time we will be able to see how much this new approach will help reduce the number of phishing 

attacks.

2.5.14  Legislation

Several countries including the United States and the European Union have enacted laws 

regulating the mass distribution of unsolicited, commercial email and providing punishments for 

those who break them. The U.S. law (known as the CAN SPAM Act) was signed into law in 

December 2003. Since then, it has provided means for Internet Service Providers (ISPs) and law 

enforcement to charge, prosecute and incarcerate spammers. Since their inception, several 

prominent spammers have been successfully convicted. One well-known example was the 

conviction of Alan Raisky, known for running many stock fraud scams (Leyden, 2008).
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The laws in the United States don’t ban all bulk or commercial emails. However, it states 

that bulk commercial email must provide the following:

1. Legitimate information about the sender in the headers.

2. Mention the email is an advertisement.

3. Instructions on how to be removed from the sender’s list.

4. Human-readable information of the origins of the message. (FTC).

Legislation by itself has done little to stop spam, however. It would appear most 

spammers are not concerned about breaking any laws. Before federal legislation was passed in 

the United States, several of its states had created their own laws and often conflicted with each 

other. These conflicts made it hard for spammers to simultaneously comply with multiple laws in 

one message, giving them an extra reason to ignore such laws.

2.5.15  SMTP Proxies

SMTP proxies act as intermediary SMTP servers between Internet SMTP servers and an 

organization’s incoming SMTP servers. By being in the middle they attempt to catch spam 

before it gets to the SMTP server that will deliver email to users. The most interesting 

implementation is a product called ASSP (or @SSP). It stands for Anti-Spam SMTP Proxy. It is 

written in Perl and sits and listens to incoming SMTP connections and relays commands to a 

standard SMTP server listening on another address or port. ASSP then applies most of the 

techniques described so far to try to filter spam by ensuring it never reaches the actual SMTP 

server (Hanna, n.d.).

ASSP, unfortunately lacks good documentation. It has too many options without any 

explanation of how they worked, or how they should be (or shouldn’t be) combined. Overall, this 
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solution followed the recommendation made in RFC 2505 to implement spam filtering at the 

SMTP level. Additionally, by implementing a command proxy model, the developers were able 

to ensure quick deployment and compatibility with all SMTP servers without having to write 

delivery modules.

2.6  Current State of the Commercial Industry

The IT industry has created some formidable anti-spam solutions. Some of these 

solutions have been so effective one editor of Communications of the ACM wondered if the 

spam war had been won (Dacier, 2009). That’s the real advantage of an commercial solution: if 

you have the budget, you can hire a company to take care of the problem for you. This type of 

solution is very appealing for many organizations since it will virtually eliminate spam, and 

won’t require investments in infrastructure, personnel and training. However, these solutions are 

not a panacea. First, there are the contract fees for their services. Additionally, the organization 

will lose control over their email and filtering. Granted, these services give the users some 

control, but if what you want to do is outside of the company’s model, you may be out of luck. 

Then there is fear. If an organization deems its email communications as too valuable to hand 

over to an external company, they may have to continue to do their spam filtering in-house.

There is also the arms race between companies. Most of these companies will not 

disclose their methods. This secrecy greatly hurts the academic world since it is very difficult to 

pursue academic research without stepping on some toes or someone’s cash cow.

Here is a quick review of some of the most popular commercial solutions.
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2.6.1  Barracuda Networks

Barracuda Networks provides a hardware appliance which handles incoming and 

outgoing mail for an entire company. It also offers its services as virtual appliances and hosted 

services. The appliance approach has the advantage of allowing organizations to maintain control 

over their email systems.

The information on the Barracuda Networks’ Spam and Virus Firewall website mentions 

the product provides anti-spam, anti-virus, anti-spoofing, anti-phishing anti-spyware, denial of 

service, and data leak protection through “twelve defense layers: network denial of service 

protection, rate control, IP reputation analysis, sender authentication, recipient verification, virus 

scanning, policy (user-specified rules), spam fingerprint check, intent analysis, image analysis, 

bayesian analysis, and rule-based scoring. One key sale point is its simplicity, promising easy 

installation and management. However, this is about as much information they provide about 

their methodology to the general public.

2.6.2  MessageLabs

MessageLabs (now a division of Symantec) is a UK-based company providing spam 

filtering, email virus protection, and encryption solutions. Their emphasis is to become a worry-

free solution. If a company contracts their services, they will take care of everything. 

MessageLabs will monitor the performance of their filters to ensure their clients get what they 

paid for. Currently, the product website advertises 99% accuracy with less than 0.0003% false 

positive rate. In order to achieve their high accuracy, Andrew Oakley, anti-spam technical 

architect of MessageLabs, said they employ many employees to constantly monitor and modify 

their filtering technology as necessary. In their view, man is the best filter.
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Organizations deploying MessageLabs’ services do so by pointing all their MX records to 

MessageLabs. From there, MessageLabs dynamically filters spam and viruses and forwards 

legitimate email to the organization’s mail servers. That way organizations can deploy whatever 

email management solutions suit their needs. Their services are considered premium, and 

therefore are not cheap. As with most commercial solutions, the details of their technology are a 

trade secret.

2.6.3  Google Gmail

With the introduction of Gmail, Google has also entered the spam filtering market. From 

its beginnings, Gmail has boasted an impressive spam filter which remains mostly secret.

Gmail offers complete cloud-based email solutions. Email is stored on their servers and 

all appropriate MX, and SPF records point to their servers. Users then connect to Gmail to send 

and retrieve email. Gmail is a complete email solution compared to Barracuda Networks or 

MessageLabs which still require the organization to manage their storage and delivery. This full 

approach, combined with a lower cost, makes Gmail a very attractive solution.

When it comes to spam filtering, however, Gmail has one weakness. Since there is little 

separation between the free, personal Gmail service and the commercial services they offer, 

spammers are able to test their latest assaults on Gmail address they control. Once they are able 

to successfully penetrate their filters, they can unleash their campaigns on all Gmail users, 

private and commercial. This problem is not unique to Gmail however. Yahoo!, Hotmail and 

other large email provides have the same problem.
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2.6.4  MailRoute

MailRoute is another company providing high quality, low cost spam filtering. Their 

solution works by rerouting your email through their service, similar to the way MessageLabs 

does. The MailRoute website describes the product as a “multi-layered spam filtering system that 

identifies up to 96% of inbound spam” and “acheives an extremely low false-positive rate - 1 in 

250,000 messages.” The website also states MailRoute’s multi-layered approach uses greylisting, 

blacklists, fingerprint databases, lexical analysis, bayesian filtering, distributed traffic analysis 

and user configured whitelists and blacklists.

2.7  Conclusions on the Literature Review

The arrival and growth of spam can be attributed to several factors: loose standards made 

worse by a lose implementation of the standards, a trusting community, and a group of people 

willing to move marketing into new areas. Much has been done about spam throughout the 

nearly 18  years of uncontrolled growth. Some solutions did not work, while some have stuck 

around for a long time. Companies have proved it is possible to get very high accuracy and 

precision, but the academic world doesn’t really know how.

Ultimately, we see that in spite of our efforts to end spam, spammer continue to evolve, 

adapt and bombard the world. So even if it seems the anti-spam world has the upper hand, the 

battle continues.
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3  RESEARCH PROCEDURES

3.1  Finding Room for Improvement

Several researchers have suggested different approaches for filtering spam. However, 

there is little agreement on how to deal effectively with phishing attacks. Several sources hint 

that text classifiers are not up to the task. Putting together the pieces from the literature, several 

things become apparent:

1. The majority of the free and/or open spam content filters are based on Naive Bayes 

(generative model).

2. Naive Bayes classifiers are susceptible to performance degradation when the 

documents share many common features.

3. Creating a third category for phish may help isolate the features which may be unique 

to phishing email and therefore improve performance.

4. Non-generative models often achieve better performance than generative models 

since their training algorithms will ignore common features and focus only on the key 

differences between the documents. Non-generative models may therefore deal better 

with phishing attacks.

The literature contains much information about using non-generative text classifiers to 

identify and eliminate spam. However, missing from the literature were attempts of using a 

34



three-way (or three-class) classifier to classify emails into ham, spam and phish. Creating and 

testing this three-way classifier is the focus and main hypothesis of this thesis.

3.2  Overall Approach

To test the hypothesis, it will be necessary to put together a labeled email corpus that 

contains legitimate emails (ham), phishing emails (phish) and unwanted commercial email 

(spam).  Once the corpus is built, a feature extractor will extract generic features from each of 

the emails and put them in a format which can be used by a freely available tool to train and 

classify the corpora. Once the classifier can be trained and validated, it will be necessary to 

adjust any parameters it may have to ensure the best possible classification performance.

Once a solid set of features and classifier parameters are found, a 10-way cross-validation 

will be run to test the entire corpus (see Section 3.5 for details) to find the filtering performance 

of the text classifier. First, performance will be measured with two categories (ham and spam), 

then with three categories (ham, spam and phish). Once those numbers are found, it will be 

possible to determine if using three categories improved phish detection without impacting the 

filtering accuracy of spam and ham.

3.3  Building the Necessary Corpora

There are three main corpora which are used research because they contain both 

legitimate and junk emails. The first is the SpamAssassing corpus. This is a labeled corpus 

(labeled meaning messages have been separated into ham and spam). The corpus is further 

divided into two parts: easy and hard. When combined, the corpus contains 6,951 ham messages 

and 2,398 spam messages. The ham portion contain some personal emails, but many are 
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subscription-type messages with daily or weekly deals. Some may consider these messages 

unwanted. However, since these emails came from valid subscriptions, they are technically 

wanted and are not spam.

The second labeled corpus is the Ling-Spam corpus (Androutsopoulos, 2000). This 

corpus comes from the Linguist mailing list. The list is considered public, so publishing the 

emails does not create a security problem. However, in order to provide some level of security to 

its subscribers, some information has been removed. Additionally, the messages come pre-parsed 

and formatted for NLP tools and do not conform to email message standards. This corpus is 

therefore ideal for testing language tools, but inadequate for analyzing email structure 

information.

The third labeled corpus is the 2005 TREC Public Spam Corpus. It contains 92,189 total 

messages (39,399 are ham and 52,790 are spam). The messages come from Enron company 

emails made public by the Federal Energy Regulatory Commission during its trials. The headers 

contain very little modification and the messages contain Enron business emails without 

attachments (TREC, 2005).

Finally, Jose Nazario has collected phishing emails for several years and made them 

available, with slight header modification. There are four compilations total.  The newest 

compilation has phishing emails from August 2006 to August 2007 and contains 2,279 phishing 

emails (Nazario, 2007).

3.4  Feature Extraction

Feature extraction refers to the process of extracting data from the documents which can 

help the classifier identify the document. There are many different ways to extract features for 
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different applications. For some classification problems, extracting certain keywords is enough 

(Joachims, 2002). For other problems, all words and perhaps even word pairs are extracted. For 

problems where the document only contains a couple of words, characters are extracted to form 

character distributions (NLTK Documentation).

Kanaris and several others have suggested that using character distributions in the form 

of character-based n-grams yields excellent performance (Kanaris, 2006). In this approach all  

characters are used including white space, punctuation and control characters. Table 3-1 shows 

the features that would be extracted from the phrase Hello World! using single characters 

(unigrams), character pairs (bigrams) and character triplets (trigrams).

Table 3-1: Sample Character N-grams

N-gram size Features

Unigram H e l l o [sp]  W o r l d !

Bigram He el ll lo o[sp] [sp]W Wo or rl ld d!

Trigram Hel ell llo lo[sp] o[sp]W [sp]Wo Wor orl rld ld!

Character-based n-grams provide several benefits over word-based n-grams. Kanaris has 

noted:

Character n-grams are able to capture information on various levels: lexical (‘the 
’, ‘free’), word-class (‘ed ’, ‘ing ’), structural (‘!!!’, ‘f.r.’). In addition, they are 
robust to grammatical errors and strange usage of abbreviations, punctuation 
marks etc. The bag of character n-grams representation is language-independent 
and does not require any text preprocessing (tokenizer, lemmatizer, or other ‘deep’ 
NLP tools). It has already been used in several tasks including language 
identification, authorship attribution, and topic-based text categorization with 
remarkable results in comparison to word-based representations.

An important characteristic of the n-grams on the character-level is that it 
avoids (at least to a great extent) the problem of sparse data that arises when using 
n-grams on the word level. That is, there is much less character combinations than 
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word combinations, therefore, less n-grams will have zero frequency (Kanaris, 
2006).

Additional considerations for the use of character-based n-grams are:

• They deal better with obfuscation, such as writing Viagra as \/|@6R/-\ or using 

HTML tables to obfuscate words

• They work with all languages, even glyph-based without special modifications

• They can detect syntax styles in the way the email, HTML or Javascript is written

It is also important to note email messages have structure which can be used during 

feature extraction. For example, it is possible to construct different character distributions for the 

body of the email and the subject heading. It is also possible to use other headers such as the To, 

From, Return-Path and/or Received headers which are often forged by spammers.

Using character n-grams over words may seem unintuitive and perhaps even inefficient at 

first. To understand their value we have to remember that spam filtering is not a typical 

classification problem. Unlike other classification problems (such as finding sports or political 

news in a news feed), spammers are often trying to evade proper classification. Take, for 

example, the following subject from a spam message, taking notice of the space between letters 

and the hyphens between words:

Y o u r - A D - on 2 - M i l l i o n - W e b s i t e s

A word-based feature extractor would extract each individual letter and not make much 

sense of them. A character-based unigram feature extractor would extract the same letters if the 

spaces were not there and notice key words like “AD.” Additionally, the feature extractor would 

note a very high number of spaces which may rarely happen in legitimate messages. Thus the 
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features given to the classifier capture word-equivalent information plus additional information 

to aid in the classification process. 

Consider another example: the email’s From field. Character distributions are very 

capable of discerning minute differences in personal names. An email with a sender of 

p4ZogeKa3Mahoney looks very different statistically to John Smith. In fact, character-based n-

grams are so sensitive they can even distinguish gender (NLTK Documentation, n.d.).

Best of all, character-based features achieve all of these benefits by simply collecting 

individual and groups of characters. There is no need for anti-obfuscation measures or lexical 

analyzers to improve feature extraction.

During the implementation of the feature extractor it will be necessary to test its 

performance and find the best combination of features which can produce respectable 

classification performance without requiring an immense amount of computing power or storage. 

Respectable performance will be defined as accuracy greater of 95%. During this process it will 

be necessary to employ Feature Engineering to improve classifier performance. Feature 

engineering is an iterative process which includes feature design, selection, induction and impact 

analysis. (Ringger, 2005). As a rule, however, all features remain generic. That is, no features 

match specific characteristics of the corpora, such as specific phrases, senders, recipients, 

subjects or even words.

Extracted features are stored in the SVMlight file format. This format combines all 

documents into one file. Documents are represented individually, one per line, with a numeric 

class identifier first, followed by the features separated by spaces. Features are represented in 

pairs delimited by colons. The first value in the pair is the feature number, the second is the 
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number of times the feature appeared in the document. It is possible to skip feature numbers for 

features which were not present in the document (SVMlight Documentation, n.d.).

3.5  Training and Classification

In order to avoid the bias that may come from the selection of training and validation 

groups, a ten-way cross-validation will be used in all training and classification runs. The cross-

validation is done by dividing the individual corpora into ten equal sections. Then, nine of the ten 

parts are chosen to serve as the training corpus, and the tenth part is used for validation and 

performance measurements. Ten iterations are performed, ensuring each of the ten groups is used 

as the validation group only once. The raw performance numbers are then added together, 

allowing us to classify the entire corpus (Kanaris, 2006).

3.6  Finding a Classifier

As mentioned in Section 3.1, non-generative classifiers offer excellent performance when 

classifying spam. Some non-generative classifiers include Maximum Entropy (MaxEnt), Support 

Vector Machines (SVM), Decision Trees and Neural Networks. Maximum Entropy and Support 

Vector Machines will be considered here as their use is well established in the literature and their 

high performance (Zhang, 2004; Kanaris, 2006).

3.6.1  Maximum Entropy

Maximum Entropy is a model which tries to find a distribution with the highest entropy. 

Entropy, in information theory, “measures the amount of information in a random variable” 

(Manning, 2000). Manning and Schütze define Maximum Entropy modeling as follows:
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Maximum entropy modeling is a framework for integrating information from 
many heterogeneous information sources for classification. The data for a 
classification problem is described as a (potentially large) number of features. 
These features can be quite complex and allow the experimenter to make user of 
prior knowledge about what types of information are expected to be important for 
classification. Each feature corresponds to a constraint on the model. We then 
compute the maximum entropy model, the model with maximum entropy of all 
models that satisfy the constraints. . . . Choosing the maximum entropy model is 
motivated by the desire to preserve as much uncertainty as possible. . . .

In maximum entropy modeling, feature selection and training are usually 
integrated. Ideally, this enables us to specify all potentially relevant information at 
the beginning, and then to let the training procedure worry about how to come up 
with the best model for classification (Manning, 2000).

A publicly available NLP framework with Maximum Entropy support is the Natural 

Language Toolkit (NLTK). This framework is written in Python. Unfortunately, preliminary 

testing proved it to be slow and incapable of handling large feature sets required for this 

application.

Another publicly available toolkit is Mallet (MAchine Learning for LanguagE Toolkit), 

courtesy of the University of Massachusetts at Amherst (McCallum, 2002). This toolkit has the 

advantage that it is ready run and only requires data. It even includes a simple word-based 

feature extractor and a tool to convert SVMlight data to its own vector format.

3.6.2  Support Vector Machines

Support Vector Machines attempt to find a hyperplane that can separate two distinct sets 

of documents. Joachims explains it as follows:

Let’s assume that the training data can be separated by at least one hyperplane h'. 
This means that there is a weight vector w and a threshold b', so that all positive 
training examples are on one side of the hyperplane, while negative training 
examples lie on the other side (Joachims, 2002).
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In general, there can be multiple hyperplanes that separate the training data 
without error. . . . From these separating hyperplanes, the support vector machine 
chooses the one with the largest margin δ. (Joachims, 2002).

The simplest hyperplane that can divide the two sets of documents is a straight line, either 

with a hard margin (as explained in Figure 3-2) or with a soft margin where distance from the 

support vectors and the hyperplane are different (Joachims, 2002). Some real-world data sets 

don’t fit into linear models. SVMs allow for non-linear planes through polynomial hyperplanes 
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or the use of a kernel functions to map a non-linear space into an equivalent linear space 

(Joachims, 2002).

One drawback of SVMs is that they only consider binary classification with positive and 

negative documents. Fortunately, it is possible to do multi-cateogry classification with SVMs. 

One way is through “reducing a single multiclass problems into multiple binary problems” 

(Crammer, 2001)  This solution is considered suboptimal since “it cannot capture correlations 

between the different classes since it breaks a multiclass problem into multiple independent 

binary problems” (Crammer, 2001). Crammer and Singer instead suggested a different approach 

in 2001 with a “simple generalization of separating hyperplanes and, analogously, a generalized 

notion of margins for multiclass problems” (Crammer, 2001).

SVMlight is considered the reference implementation for Support Vector Machines text 

classifiers. Two versions are available: SVMlight for traditional binary classification and SVM 

Multiclass which uses the Crammer and Singer method for multi-class classification. The default 

kernel in SVMlight and SVM Multiclass are different. The SVM Multiclass kernel has the 

advantage of being much faster than the default SVMlight kernel.

3.6.3  Choosing the Classifier

Initial work for this research began with Mallet. It offered several advantages: it provided 

Maximum Entropy modeling, automatic 10-way cross-validation, and offered excellent speed. 

However, it had one drawback: the maximization algorithm would error out with large feature 

sets and deliver suboptimal results and had to be scrapped. This forces the use SVM Multiclass 

for the classifier. One advantage of using SVM Multiclass is that features will have to be 
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extracted to svmlight files which can also be used by Mallet. (Mallet vector files are not 

compatible with SVM Multiclass, however.)

3.7  Measuring Performance

To test the performance of the two and three-way classifiers raw data will be put into 

confusion matrices (see section 3.7.1). From these matrices accuracy, precision and recall are 

calculated as stated in the formulas 3-1, 3-2 and 3-3. Precision and recall can be calculated 

separately for ham, spam and phish. For the purposes of measuring performance, precision and 

recall will be calculated for ham only, unless otherwise stated.

3.7.1  Confusion Matrix

A confusion matrix provides a way to summarize and tabulate classifier performance. For 

this thesis, truth will be represented in rows, while the prediction of the classifier will be 

identified by the column. For the two-class configuration, the confusion matrix will be 

constructed as shown in Table 3-2, where n h → h represents the number of ham messages 

classified as ham, n h → s represents the number ham messages incorrectly classified as spam, n s →  

h represents the number of spam messages incorrectly  classified as ham, and n s → s represents the 

number of spam messages classified as spam (Kanaris, 2006).

Table 3-2: Binary Confusion Matrix

Ham Spam

Ham n h → h n h → s

Spam n s → h n s → s

44



In the binary case, categories are often described as positive and negative (see Section 

3.6.2). In this thesis, ham messages are considered positive, while spam and phish messages are 

considered negative. True positives (tp) are positive messages that were properly classified. 

Consequently, true negatives (tn) are negative messages that were properly classified. False 

positives (fp) are positive messages that were incorrectly classified (in our case, ham messages 

classified as spam) and false negatives (fn) are negative messages that were incorrectly classified 

(see Table 3-3).

Table 3-3: Binary Confusion Matrix with Alternate Terminology

Ham Spam

Ham tp fp

Spam fn tn

3.7.2  Accuracy

Accuracy is measured by taking the number of messages that were correctly classified 

(whether positive or negative) divided by the total number of messages (Manning, 2000):

(3-1)

For the three-category classification, spam and phish messages will be considered as 

correctly classified if they are not classified as ham (that is, classified as either spam or phish). 

This approach is acceptable since a spam filter would throw out any emails labeled as either 

spam and phish.
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From the accuracy we can also obtain the error rate which is simply 1 minus the 

accuracy.

3.7.3  Precision

Ham precision is calculated by taking the number of ham messages properly identified as 

ham (true positives), divided by the total number of messages identified as ham (Kanaris, 2006):

(3-2)

Precision measures how many of the messages classified as ham were actually ham, 

providing an indication of filter safety (Kanaris, 2006). This measurement can also be computed 

in terms of spam or phish.

3.7.4  Recall

Recall is computed by taking the number of ham messages properly identified as ham 

divided by the total number of ham messages:

(3-3)

In simple terms, recall measures how many of the known ham messages were correctly 

classified. This measurement can be considered the effectiveness of the classifier (Kanaris, 

2006). This measurement can also be computed in terms of spam or phish.
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From the recall we can also obtain the false-positive rate, which is simply 1 minus the 

recall.

3.7.5  Student’s t-test, p-value and Statistical Significance

The student’s t-test provides a statistical method to “estimate error” around a mean. When 

combined with the p-value, it allows for testing “the difference between means” (Ramsey, 2002). 

The p-value provides the probability that the two means (and their corresponding distributions) 

are equal. “If the p-value is small, then either the hypothesis [that the means are equal] is correct

—and the sample happened to be of those rare ones that produce such an unusual [error]–or the 

hypothesis is incorrect. . . . The p-value . . . therefore provides a measure of credibility” (Ramsey, 

2002). Thus, the p-value can be considered as the probability that the two means are not equal. In 

statistics, a statistically significant result is one where we can say with 95% certainty that it is 

true. Consequently, in order to determine with 95% confidence that two means (or in this case, 

two classification results) are different, we need a corresponding p-value of 0.05 from the two 

different results. The computation of the p-value is quite complex. Fortunately, statistical 

software and several websites make it really easy to compute from two sets of data points.

The 10-way cross-validation explained in Section 3.5 provides the perfect foundation to 

statistically verify the difference between the two-way and three-way classifiers. By taking the 

accuracy of each of the 10 classification runs and providing them to a t-test calculator, I will be 

able to determine with 95% confidence if the three-way classifier results are different from the 

two-way classifier and therefore statistically significant.
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4  RESULTS AND DATA ANALYSIS

4.1  Building the Corpora

The corpora was built from the SpamAssassin spam corpus which contains both spam 

and ham. For the phish corpus Jose Nazario’s third phishing corpus was used. (See Section 3.3) 

The total number of messages on each of the corpora is given in Table 4-1.

Table 4-1: Number of Messages in Corpora

Corpus
Number of 
Messages

Wanted/Unwanted
Totals

Ham 6,951 6,951

Phish 2,279
4,677

Spam 2,398

4.1.1  Splitting the Corpora

As explained in Section 3.2, each corpus needs to be split into 10 equal parts in order to 

do the 10-way cross-validation. Since none of the message counts are exactly divisible by 10, it 

was necessary to find a mechanism that would ensure all 10 parts would be as balanced as 

possible. (An unbalanced approach would be to divide the phish corpus into 9 parts of 227 with 

the 10th part having 236 messages. Or, divide it into 9 parts of 228 with the 10th only having 227 

messages.)
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To split the corpora evenly, I devised a simple rounding mechanism to determine where 

messages should be placed. Here is an example. Let’s assume we have 16 messages which are 

going to be divided into 6 groups. Dividing the number of messages by the number of groups 

would yield 2.667 messages per group in this case. Since it is not possible to divide individual 

elements, traditional rounding is used to find the number of elements in each group. Group 1 

should contain documents 1 through 2.667. Rounding 2.667 to 3 means documents  1, 2 and 3 

are put into Group 1. The next range should contain the next document (4 in this case) through 

the next division point: 5.333. Rounding 5.333 down to 5 means Group 2 contains documents 4 

and 5. The next division point is 8, so Group 3 contains documents 6, 7 and 8. These numbers are 

then repeated for Groups 4, 5 and 6 which contain 3, 2 and 3 documents respectively. With this 

technique, deficiencies and remainders are divided equally and are balanced among all the 

groups. Table 4-2 lists the groups and the number of messages from each corpus.

Table 4-2: Split Corpora Group Breakdown

Group
Number of Messages

Ham Phish Spam

01 696 227 240

02 695 228 240

03 695 228 239

04 695 228 240

05 695 228 240

06 695 228 240

07 695 228 240

08 695 228 239

09 695 228 240

10 695 228 240
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One more issue remains: which messages should go into each group. For the ham and 

spam corpora from SpamAssassin, messages were stored one per file. The messages were 

divided by sorting them by their filename in a case-sensitive alphabetic order (normal output of 

ls command in Unix). The messages were then sequentially renamed to their ordered sequence 

number with leading zeros (0000, 0001, 0002, 0003, etc.) Then, as listed on Table 4-2, the 

appropriate number of messages was placed into each group.

For the phish corpus the messages come in the mbox format (all emails in one file). To 

separate the emails into separate files, it was necessary to import the mbox file into an email 

program (in this case, KMail 1.7.x). From there, the messages were moved to a maildir mailbox 

and the resulting individual files were divided in the same way the ham and spam corpora. It is 

assumed the messages were separated in the order they appeared in the mbox file.

4.2  Extracting Features

There are two types of features that were used: continuous and binary. Continuous 

features count the number of times a particular feature is found. For example, for unigrams, it 

will count the number of times a particular character (such as a the letter A) is found. Another 

example of a continuous feature is the number of attachments an email may contain. Binary 

features don’t count the number of features found; they only record that a particular feature exists 

in the document. For example, whether the email contained attachments. The inspiration for the 

features will be explained as the features are created. (The source code for the Feature Extractor 

class and the associated executable, both written in Python 3, can be found in Appendix E.)

For all Feature Engineering iterations, the purpose was to create a respectable email text 

classifier/spam filter. Thus, a full 10-way cross-validation was performed using the ham and 
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spam corpora. Phish was not included at this stage in order to focus on building a solid spam 

filter.

4.2.1  Unigrams, Bigrams and Trigrams

As explained and justified in Section 3.4, all text-based features will use character-based 

n-grams. Kinaris suggests n-grams of sizes 4, 5 and 6 yield the best classifier performance. 

However, to keep things simple, n-grams of sizes 1 (unigrams), 2 (bigrams) and 3 (trigrams) 

were used. Figure 4-1 shows this approach yields acceptable performance (over 95% accuracy) 

when using unigrams and bigrams, or unigrams, bigrams and trigrams on the body of the 

message.

51

Figure 4-1: Performance Comparison of Unigram, Bigram and Trigram 
Distributions for Ham and Spam
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4.2.2  Header Features

As suggested by Graham and Kanaris, email messages contain structure which can be 

used in addition to pure text classification (Graham, 2003). This structure can be represented as 

additional features. For example, a separate character distribution can be created for the 

characters in the subject, to/from headers, etc. Since it is often possible for humans to detect 

spam simply by looking at the email’s subject, the subject header was added as its own 

distribution. Seeing as the to/from headers are often forged and the forgery is often evident to 

humans, to/from headers were also included, each as its own distribution. Another forged header 

rarely seen by users is the Return-Path (the email address presented during the MAIL-FROM 

SMTP command). This was added as well at the suggestion that the Return-Path yields effective 

results in detecting spam (Treviño, 2007a). After a quick run of these new header features and 

the errors incurred, a pattern was found that many of the misclassified ham messages came from 

mailing lists. Thus, the Mailing-List and List-Id headers were added. The performance if these 

new features, both by themselves and combined with the body is summarized in Figure 4-2.
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Figure 4-2: Performance Comparison of Features from Headers and Body
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4.2.3  Splitting Text and HTML Message Parts

Continuing with the concept of structure, it seems logical to split the plain text and 

HTML versions of the email into separate distributions. This would help fingerprint different 

body parts separately and hopefully improve performance. Additionally, counting the number of 

plain text parts, HTML parts and other parts (such as attachments) seemed logical as well. This 

helps identify message that only contain plain text or HTML, or any other format combinations. 

Finally, while analyzing the classifier errors, I noticed some misclassified spam messages had 

both plain text and HTML parts, but the plain text part was completely empty. Another feature 

was added to specify a part had been defined in the multi-part message structure but did not have 

any real content in it.

The performance when these features are added is summarized in Figure 4-3. The blank-

part feature helped eliminate spam messages with blank text parts. Unfortunately, adding the 

count feature did affect performance, and splitting the multi-part messages into separate 

distributions hurt performance slightly.
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Figure 4-3: Performance with Multi-part Counts and Splitting Multi-part Messages

Headers + Body
Headers + Body + Counts

Headers + Split Body + Counts

98.0%
98.2%
98.4%
98.6%
98.8%
99.0%
99.2%
99.4%
99.6%
99.8%

100.0%

99.2% 99.2%
99.2%

99.3% 99.3%
99.2%

99.7% 99.7% 99.7%

Accuracy

Precision

Recall



4.2.4   Using the Start and End of the Message Body

It has become apparent by this point in the feature extraction process that the more 

features are added the longer training takes. Humans seldom read every word in an email before 

determining it is unwanted. Thus, it should be possible to extract features only from the 

beginning and/or end of the message. I created an alternate feature set where only the first 1024 

and last 1024 characters of text and HTML parts are used. For messages with less than 2048 

characters, the entire text is used. The classification performance of the short body compared to 

the entire body of the message is summarized in Figure 4-4. 

Because the amount of data that is actually processed is reduced, short body features 

bring a noticeable improvement in speed, as seen in Figure 4-5.
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Figure 4-4: Performance Comparison Between Full and Short Body
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Extracting features from the beginning and end of the body has the added benefit of 

providing basic content length normalization, ensuring long messages are not weighted more 

heavily than smaller messages. Joachims provides several mechanisms for normalizing 

continuous features (Joachims, 2002). SVMlight also provides kernels for these normalized 

feature sets. However, when used, training took considerably longer and performance dropped 

considerably. I wasn’t sure why there was a drop in classification performance so feature 

normalization was abandoned.

4.2.5  Phish-Specific Features

Fette suggests 10 features which may help detect phishing emails which “[extract] 

information that can be used to detect deception” (Fette, 2007). Some of those features use DNS 

record analysis which is hard to implement after the fact. However, the URL analysis features 

they suggest appear to be quite useful. I programmed the feature extractor to look for four of 

these features in the HTML part of the messages. These were programmed as binary features and 

are described in Table 4-3.
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Figure 4-5: Execution Run Time Comparison Between Full and Short Body
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Table 4-3: Binary URL Features

Feature Description

Raw URL
The text of the URL is a URL (no human-readable link description):

<a href="http://www.google.com">http://www.google.com</a>

Non-matching 
Raw URL

The text of the URL is a URL, but it does not match the href property of 
the anchor tag:

<a href="http://www.google.com">http://www.yahoo.com</a>

“Click here” 
URL

The text of the URL contains variations of the phrase click here:

<a href="http://www.google.com">CLICK HERE</a>

IP URL
The href property points to an IP address, suggesting a rouge site:

<a href="74.125.224.115">CLICK HERE</a>

In addition to the binary features, an additional continuous feature was added: the number 

of domains referenced. Phishing attacks often link to the real site and to the rouge (fake) site set 

up by the attacker. (Fette, 2007).

The addition of the URL analysis features improved performance slightly, as summarized 

in Figure 4-6.
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Figure 4-6: Performance of URL Features
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4.2.6  Message Parsing Error Features

While writing the feature extractor Python required proper handling of message parsing 

errors. Assuming legitimate messages should not contain parsing errors but spam or phish might, 

I decided to add two binary features that would record these errors. The first feature records 

when Python is unable to parse the email message. The second records when Python encounters 

a character decoding error in the message. Python 3 is able to ignore the character decoding error 

allowing the feature extractor to extract the features from the text, the offending characters and 

that fact that offending characters existed in the message.

4.2.7  Corrections to the Corpora

During the feature engineering cycle there were four messages from the phishing corpus 

which were consistently categorized as ham. As it turns out, the classifier was right: three of 

these messages were clearly legitimate: 0118, 0768, and 0908. To correct this error, these 

messages were moved from the phishing corpus to the ham corpus. The form message was 

suspicious, because it was a phish message which had been forwarded to Jose Nazario (Figure 4-

7).

Message 1352 posed an interesting dilemma: is the message actually unwanted? The 

original message certainly was. But, if a known recipient emails you an unwanted email (like in 

this case, for research) certainly this message is wanted. Additionally, the sender forwarded a text 

version of the message, removing the attack’s payload. Interestingly the classifier believed the 

message was wanted and constantly classified it as ham, which I believe to be correct. At first, 

moving it to the ham corpus seemed like the right thing to do. However, the author of the corpus 

believed that message to be phish. Keeping the message in the phish corpus would add an 
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additional error to the results. Moving the message would introduce my bias into the corpus. The 

best and simplest solution I came up with was to simply throw the message away.

Figure 4-7: Phish Message 1352
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From: David Helder <dhelder@gizmolabs.org>
Subject: Weird phish
To: user <user@example.com>

For your collection.

Begin forwarded message:
> From: "eBay" <vote@eBay.com>
> Date: January 19, 2007 9:55:11 PM GMT-05:00
> To: dhelder@umich.edu
> Subject: Your opinion counts
>
> January 19, 2007
>
> Dear eBay Community:
>
> We have decided to close eBay on 27 February 2007 due to the  
> repeatedly abuses on our company. We ask your opinion on this  
> matter and we want to know if you agree with us or disagree .Below  
> you can make your choice.
>
> If you want eBay to stay open click YES otherwise click NO .Your  
> opinion is very important to us. If 50% of the eBay members vote  
> positive eBay stays open otherwise it will be closed.
>
> Regards,
> eBay Team
>
>                               
> YES                                                        NO
>
>
> eBay sent this message to you based on your good account standing.
> Your registered name is included to show this message originated  
> from eBay.
>

--
David Helder - dhelder@gizmolabs.org - http://www.gizmolabs.org/~dhelder



To avoid having to redo a lot of the work that had been done already, I decided to simply 

move the three mislabeled messages to their corresponding ham group. The forth problematic 

email was simply thrown out. However, I did not rebalance the numbers in each group, creating 

slightly imbalanced groups. Since the changes are small I did not feel this was detrimental to the 

analysis or results. In the interest of full disclosure Table 4-4 contains the final number of 

messages in each group. The numbers in bold represent the changes from table Table 4-2.

Table 4-4: Final Corpora Group Breakdown

Group
Number of Messages

Ham Phish Spam

01 696 227 240

02 695 228 240

03 695 228 239

04 697 226 240

05 696 228 240

06 695 226 240

07 695 228 240

08 695 228 239

09 695 228 240

10 695 228 240

4.2.8  Feature Summary

Appendix A contains a full list of the feature sets which can be extracted by the feature 

extractor. Each feature set consists of one or more of the features described in Section 4.2. Each 

feature set was given a descriptive name which is used throughout the text and it’s included in 

the table.
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The best feature combinations use headers and a single n-gram distribution of the 

message body, with the addition of the HTML text (stripped of tags). Using the shortened body 

as described in Section 4.2.4 yields very similar performance, but greatly reduces computational 

running time. Because of their performance, classifier performance comparisons will use 

variations of these features.

4.3  Maximizing SVM Performance

SVMlight includes a parameter which specifies “the tradeoff between training error and 

margin” (SVMmulticlass). In short, the higher the number, the better filter performance at the 

expense of training time. To maximize filter performance it is necessary to find the right value.

To find the optimum value of c I ran a series of tests on some of the best feature sets with 

different values of the tradeoff value c. The range of values tested was 0.1, 1, 10, 100, 500, 

1,000, 5,000 and 10,000. The accuracy of the filter at each value of c was recorded along with its 

total run time (training + classification) for the 10-way cross-validation. The performance peaked 

at around 1,000. Values of c above 1,000 rarely yielded better results. For many of the feature 

sets, the best performance was achieved with a value of 500. (The full results are found in 

Appendix B.) Figure 4-8 summarizes the classification performance for the various values of c, 

while Figure 4-9 summarizes the total running time which increases proportionally to the 

classifier performance.
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4.4  Confirming the Phishing Problem

With several high-performance feature sets and a tuned classifier, it is possible to test the 

phish corpus. The first test classifies the entire phish corpus with a classifier model trained 

entirely from the ham and spam corpora and no phish. By blindly classifying phishing emails 

without any prior knowledge, we will be able to quantify how the classifier behaves. If phishing 

61

Figure 4-8: Classification Performance for Various Values of c
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Figure 4-9: Running Time for Various Values of c
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emails truly resemble legitimate email more  than spam, we should see most of the phish corpus 

classified as ham and consequently, achieve less than 50% accuracy. If the classifier is truly 

confused, accuracy (in theory) should be around 50%. If the classifier believes most of these 

messages are unwanted, accuracy will be above 50%. Figure Figure 4-10 shows the results of 

this first test with feature sets that did not use Fette’s URL features. Figure 4-11 Shows the 

results with the URL features. Appendix B contains the full results.

These results are surprising. The data suggests that the phishing emails in the phish 

corpus look more like spam. The range and confidence interval for the data leads to the 

conclusion (with 95% confidence) that phish resembles spam much more than it does ham (see 

Figure 4-12).
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Figure 4-10: Blind Phish Classification Results
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4.5  Results of the Two-Way Classifier

The next test establishes the baseline performance to test my hypothesis. For this test the 

phishing corpus will be added to the spam corpus to train a model with a traditional two-class 

configuration. Figure Figure 4-13 provides a summary of the results.
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Figure 4-11: Blind Phish Classification with URL Features
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Figure 4-12: Accuracy Range and Skew of Blind Phish Classifier



The baseline performance remained consistent with the original performance without the 

phishing emails. The data in Appendix B suggests there was no statistically significant drop in 

performance. Figure Figure 4-14 shows the performance of the Headers + Short Body + URL 

feature set with and without phishing emails side by side.
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Figure 4-13: Classifier Performance for Ham, Spam and Phish in 
Traditional 2-Way Configuration
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Figure 4-14: Comparison of Classifier Performance With and Without 
Phish Corpus
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Comparing the two results shows comparable numbers with a slight increase in accuracy 

when the phish corpus was introduced. Table 4-5 Provides the confusion matrix and class-

specific recall, showing no significant changes in performance.

Table 4-5. Classifier Performance Comparison in a Two-Class Configuration

Ham and Spam Ham, Spam and Phish

Ham Spam Recall Ham Spam Recall

Ham 6934 20 99.71% Ham 6933 21 99.70%

Spam 54 2344 97.75% Spam 49 2349 97.96%

Phish 6 2263 99.74%

4.6  Results of the Three-Way Classifier

The next step is to test the performance of the classifier in the three-class configuration. 

The results are summarized in Figure 4-15 and compared to the two-class configuration in figure 

Figure 4-16.
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Figure 4-15: Performance of the Three-Way Classifier (c = 500)
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These results are quite intriguing. Accuracy improved 0.01% while precision and recall 

improved by 0.02% and 0.01% respectively. Table 4-6 contains the raw data along with the recall 

for spam and phish while Figure 4-17 Shows runtime nearly tripled with the three-way classifier.

Table 4-6: Performance Comparison of Two-way vs. Three-way Classifiers with 
Class-specific Recall (c = 500)

Two-way Classifier Three-way Classifier

Ham Spam Recall Ham Spam Phish Recall

Ham 6934 20 99.71% Ham 6934 14 6 99.71%

Spam 49 2349 97.96% Spam 50 2344 4 97.75%

Phish 3 2272 99.87% Phish 4 21 2250 98.90%
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Figure 4-16: Performance of Two-way vs. Three-way Classifiers, 
(Headers + Short Body + URL, c = 500)
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The result of the t-test on the data allows us to see if the differences in performance are 

statistically significant. As given in Appendix D, the p-value comparing the two results is 0.48, 

which means the differences in performance are statistically insignificant. This means there is no 

significant performance to be gained by using a three-way classifier (see Figure 4-18). The 

original hypothesis that a three-way classifier will improve phishing detection is proved to be 

incorrect.
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Figure 4-17: Running Time Comparison Between Two-way and 
Three-way Classification
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Figure 4-18: Comparison of Mean and Variance of the Accuracy of 
Two-way vs. Three-way Classifier



4.7  Further Analysis of the Results

Another way of explaining the results is that the three-way classifier was not able to beat 

the traditional two-way classifier because a two-way classifier already achieves similar 

performance. This contradicts the literature which suggests content filters can’t deal with 

phishing emails as efficiently as regular spam (Fette 2007, 1). In fact, the data in Table 4-6 

suggests the classifier was able to differentiate phish better than spam. This discrepancy is 

something I explored further to try to find the reason why other researchers reached their 

conclusions.

Before trying to explain the discrepancy, I must first offer a preliminary conclusion: even 

though phishing emails are designed to appear legitimate, they are not so legitimate that text 

classifiers have a hard time distinguishing them. With proper training, non-generative text 

classifiers are capable of finding the differences between phishing and legitimate emails enough 

to tell them apart. This is the perspective I used to explain the discrepancy between my findings 

and those found in the literature.

4.7.1 Corpora

There is a possibility the corpora itself may introduce features that help the classifier 

discriminate phishing emails. As mentioned in Section 3.3, the ham and spam corpora came from 

the SpamAssassin corpus, while the phishing corpus came from Jose Nazario. Each source took 

their own unique precautions to ensure the privacy of the emails by modifying some of the 

header information. For example, many of the messages in the phish corpus had their destination 

domain changed to example.com (see Figure 4-7). These modifications may be enough to 

provide a hint to the classifier and distinguish which corpus the message came from.
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A simple way check the effect of these inadvertent hints is to remove the headers from 

the feature set and focus entirely on the body of the message. Figure 4-19 compares the 

classification results with and without headers. From this figure it is possible to see the classifier 

still provides adequate performance without the headers, and any bias that may be introduced 

should be negligible.

4.7.2  Generative vs. Non-generative Classifiers

Another factor contributing to the high performance of the two-way classifier may be the 

use of a non-generative classifier. As explained in Section 2.5.5, most known email content 

filters use variations of Naive Bayes classifiers. Perhaps bayesian classifiers are prone to 

confusion when phish is introduced into the corpus.

To test this possible explanation, I ran the feature sets through Mallet’s Naive Bayes 

classifier to see how it would perform with the same corpora and feature set both with and 

without phish. I used Mallet’s built-in 10-way cross-validation feature which randomly divides 
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Figure 4-19: Performance Comparison on the Effect of Headers for 
Ham vs. Spam + Phish (c = 500)
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the corpora into 10 equal parts and runs the 10-way cross-validation in the same way the 

previous testing was conducted: ham vs. spam, ham vs. spam + phish, and ham vs. spam vs. 

phish. Since Mallet also provides a Maximum Entropy classifier, both were run to provide 

validation on the performance of non-generative classifiers.

The results of the first test (ham vs. spam) immediately show the difference in classifier 

performance between generative (i.e. Naive Bayes) and non-generative (i.e. Maxent and SVM) 

classifiers, with Naive Bayes’ performance being much lower than that of SVM or MaxEnt (see 

Figure 4-20). We also see that using the URL features improves non-generative performance 

while it degrades generative performance. This shows feature selection affects generative 

classifiers much more than non-generative ones.

For the second test the phish corpus was added to the spam corpus and the test was run 

again (see Figure 4-21). Surprisingly, the performance of all three classifiers increased when 

phish was introduced to the corpora. This is due to the fact that each classifier was able to 
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Figure 4-20: Accuracy Comparison Between Generative and 
Non-generative Models (Ham vs. Spam)
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classify phish more accurately than ham or spam (see Appendix B for category-specific 

performance for SVM). These results show that with proper training, even Naive Bayes models 

are able to handle phishing emails.

Finally, the three-way classifier offered similar performance to the two-way classifier 

when using MaxEnt, slightly worse performance using SVM, but significantly worse 

performance with Naive Bayes, proving once again that using three categories does not improve 

filtering performance (see Figure 4-22).
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Figure 4-21: Accuracy Comparison Between Generative and Non-
generative Models (Ham vs. Spam + Phish)
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4.7.3  Feature Selection and Reduction

As was evident during the previous tests, feature selection appears to have a large impact 

on the performance of a Naive Bayes classifier. In order to improve performance with Naive 

Bayes, several sources suggest reducing the number of features. For example, Graham states that 

“another effect of a larger vocabulary [feature space] is that when you look at an incoming mail 

you find more interesting tokens [features], meaning those with probabilities far from .5. I use 

the 15 most interesting to decide if mail is spam” (Graham, 2003). Houser does not limit his 

filter to 15 features: ‘“Interesting tokens” were tokens in the message with a spam statistic 

“greater than 0.95”and “less than 0.05”’ (Houser, n.d.). These types of reductions make sense, 

especially in probabilistic classifiers like Graham’s and Houser’s (variation of Naive Bayes) 

since they allow the filter to focus on the most telling features (“spamminess”) that are most 

helpful to the classification problem. For example, when considering word-based features, 

ignoring common words such as “the,” , “a,” “an,” “for,”, “to,” etc. allows the classifier to focus 

72

Figure 4-22: Accuracy Comparison Between Generative and Non-
generative Models (Ham vs. Spam vs. Phish)
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on more important spam features such as “buy,” “Viagra,” and “now!!!” However, the 

“interesting features” that make spam so obvious to the classifier are mostly absent from phish. 

Phishing attacks don’t try to get you to “buy Viagra now!!!” Thus, feature reduction deprives 

classifiers of the phish-specific features, causing a drop in classification performance.

 Figure 4-23 Explores the performance variability as a product of feature set. By taking 

the accuracies of all common feature sets for the three classifiers from Appendix C, we can see 

Naive Bayes has a tremendous amount of variance in performance compared to non-generate 

classifiers. Thus we see that variations in features, whether from the source or the feature 

extractor, disrupt Naive Bayes classifiers but have little effect on non-generative classifiers.

4.8  Validating the Results

To validate the results and test the validity of the assumptions in Section 4.7, the 

experiments were performed again on new corpora. If the results and assumptions are valid the 

results should be reproducible across different types of data.
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Figure 4-23: Performance Variance for Naive Bayes, Maximum Entropy 
and SVM Using Different Feature Sets



The corpora chosen for validation are the first 10,000 entries of the 2005 TREC Public 

Spam Corpus for ham and spam, and sets 0, 1 (20051114) and 2 of Jose Nazario’s phish corpus. 

These corpora provide equivalent volume of emails to the original corpora, although the number 

of messages in the ham and spam corpora are reversed as illustrated in Table 4-7. The high 

number of unwanted messages should also provide a more real-world testing scenario.

Table 4-7: Number of Messages in Corpora

Corpus
Number of 
Messages

Wanted/Unwanted
Totals

Ham 2,126 2,126

Phish 7,874
10,154

Spam 2,280

The data was run through the Short Body + HTML + URL feature set. This feature set is 

nearly identical to one of the best feature sets except that no features were extracted from any 

headers. This was to avoid any bias that may be introduced through the headers and focus purely 

on content.

The results confirm all the findings (see Appendix B). First, there was no degradation of 

performance when phishing is introduced. Second, blind phish classification results lean towards 

spam (95% of phish emails were blindly classified as spam in this case). Third, using a three-way 

classifier yielded nearly identical performance to the two-way classifier (see Figure 4-24).
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Testing these results for statistical significance also leads to the same conclusion: the 

difference in performance is statistically insignificant (p-value: 0.9805). This confirms the 

finding that there is no performance to be gained by using three-way classifiers (see Appendix 

D). The performance can be easily compared in Figure 4-25.
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Figure 4-24: Performance of Two-way vs. Three-way Classifiers with the 
2005 TREC Corpus (Headers + Short Body + URL, c = 500)
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Figure 4-25: Comparison of Mean and Variance of the Accuracy of 
Two-way vs. Three-way Classifier for the 2005 TREC Corpus



5  CONCLUSIONS AND RECOMMENDATIONS

5.1  Conclusions

The purpose of the research for this thesis was to see if a spam filter’s performance drop 

caused by phishing attacks could be reduced by creating a third classification category for phish. 

To test this hypothesis I gathered public email corpora with legitimate email (ham), spam and 

phishing emails and built a text classifier using a Support Vector Machine (SVM) to test how 

well it could classify the corpora in a traditional two-class configuration. Then, I classified the 

corpora using my proposed three-class configuration and compared the results.

The results and their analysis strongly suggest there is no statistically significant change 

in performance by using a three-way classifier. The difference in mean performance was 0.12% 

with a p-value of 0.48 (see Section 4.6). Additionally, the three-way classifier took three times 

more computing time than its two-way counterpart.

Part of the reason why the three-way classifier did not have a statistically significant 

improvement in performance was because the traditional two-way classifier performed 

admirably when phishing emails were introduced (see Section 4.5). It’s performance was 

surprising since it contradicts the literature which suggests phishing emails cause a drop in 

classifier performance.

I further explored the apparent discrepancy between the literature and my results by 

running the same data through the same tests with a Naive Bayes classifier. Two things were very 
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apparent. First, Naive Bayes had substantially lower performance on the same feature set than 

SVM (see Section 4.7.2). Second, the variance in Naive Bayes’ classification performance was 

so large it proved variations in the training features, whether they come from the source data or 

the feature extraction process, can significantly disrupt performance (see Section 4.7.3).

In addition to running the data through a Naive Bayes classifier, I also ran the data 

through a Maximum Entropy classifier. It’s performance was on par with SVM and did not suffer 

from the variability of Naive Bayes (see Sections 4.7.2 and 4.7.3), indicating that these non-

generative classifiers are better suited to solve the spam and phish filtering problem.

Finally, to validate the findings, I ran all tests using a different corpora to ensure the 

results remained consistent. These new tests confirmed all findings (see Section 4.8).

5.2  Recommendations

Based on the results I recommend four things to improve spam and phish filtering to 

email administrators.

First recommendation: move away from Naive Bayes or “Bayesian” classifiers to a non-

generative classifier such as Maximum Entropy or Support Vector Machines. The data shows 

both Maximum Entropy and SVM classifiers outperform Naive Bayes classifiers when using 

generic features (see Appendix C). This will provide administrators with three benefits:

1. Better performance both in terms of accuracy and precision.

2. Less variability in performance.

3. Significantly less time spent managing features and tuning performance.

Second recommendation: move away from word-based features to character-based 

features. As explained in Section 3.4 and demonstrated in section 4.2, character-based features 
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provide much more robust features which deal better with obfuscation and extend effortlessly to 

foreign languages. Character-based features need to be paired with non-generative classifiers, as 

they do not offer good performance with Naive Bayes classifiers.

Third: ensure a proper and representative amount of phishing emails are included in the 

training corpus. The data has shown that adding an adequate amount of representative phishing 

emails to the training corpus will allow the classifier to achieve excellent results over “blind” 

phish classification (see and compare results in Sections 4.4 and 4.5). What constitutes an 

adequate amount and representative messages will depend on the type and volume of email 

handled by a particular domain.

Forth, training data should be divided into two categories: wanted and unwanted. The 

results suggest there is nothing to be gained by separating the unwanted category into phish and 

spam (or even other categories). If you are reading thesis trying to find a way to achieve better 

phish-filtering performance, follow the first three recommendations and do not create a third 

category.

5.3  Future Work

Since the corpora is rather old and limited in terms of the volume of global email, the 

results should be confirmed on newer, more representative and diverse corpora.

One of the reasons why Naive Bayes is still heavily used on the Internet is that there is no 

simple, freely available tool which provides non-generative spam filtering. I believe that if a 

simple tool that was easy to deploy in multiple environments was available, the Internet would 

move away from bayesian filters. The feature extractor in Appendix B provides a good 

foundation for such a tool.
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Even though maximizing the performance of the filter was not a specific goal of this 

thesis, it became clear that more research should be done into obtaining better filter performance 

by improving feature extraction. As suggested by Kanaris, using n-grams of size 4, 5 and 6 offer 

better classification performance. Additionally, other features are possible candidates. For 

example, a new feature could create a character distribution on attachment filenames. Legitimate 

attachments appear have normal names, while spam and phishing emails usually don’t. Another 

feature could look at the Received headers. These are often forged by spammers and may carry a 

spammer’s signature.

Finally, the open source/academic communities need to create a holistic filter at the 

SMTP level. If content filter were combined with virus scanning, SPF/Sender ID, tarpitting, and 

some of the other techniques of Section 2.5, it should be possible to create an effective spam 

filtering solution that reduces security threats, bandwidth, storage, processing and the amount of 

unwanted email delivered to recipients.

Significant research should still be done in the spam filtering arena. In particular, we need 

to find simple yet effective solutions to the problem. The literature is replete with many 

approaches, few of which have provided applicable solutions and fewer have made it to the open 

source community.

79



REFERENCES

2005 TREC Public Spam Corpus. 2005. http://plg.uwaterloo.ca/~gvcormac/treccorpus/ (accessed 
February 27, 2012).

Allman, E., J. Callas, M. Delany, M. Libbey, J. Fenton, and M. Thomas. “RFC 4871: 
DomainKeys Identfied Mail (DKIM) Signatures”. Internet Engineering Task Force, May 
2007. http://tools.ietf.org/html/rfc4871.

Androutsopoulos, I. Ling-Spam datasets - Csmining Group, 2000. 
http://csmining.org/index.php/ling-spam-datasets.html. (accessed February 6, 2012).

Apache Foundation. 2004. ASF Position Regarding Sender ID. September 2, 2004. 
http://www.apache.org/foundation/docs/sender-id-position.html. (accessed February 6, 
2012).

APWG. 2007. Phishing Activities Trends Report, 1st Half / 2011. Anti-Phishing Working Group, 
December 23, 2011. 
http://www.antiphishing.org/reports/apwg_trends_report_h1_2011.pdf (accessed January 
30, 2012).

Barracuda Networks. Barracuda Spam & Virus Firewall - Comprehensive Spam and Virus 
Protection, n.d. http://www.barracudanetworks.com/ns/products/spam_overview.php. 
(accessed February 6, 2012).

Bergholz, A., G. Paaß, F. Reichartz, S. Strobel, and J. Chang. 2008. “Improved Phishing 
Detection using Model-Based Features”. In Conference on Email and Anti-Spam 
(CEAS).

Caruana, R., and A. Niculescu-Mizil. 2006. An Empirical Comparison of Supervised Learning 
Algorithms. In Proceedings of the 23rd International Conference on Machine Learning. 
Pittsburgh, PA.

Chhabra, S. 2005. Fighting Spam, Phishing and Email Fraud. Riverside, CA: University of 
California Riverside. http://www.cs.ucr.edu/~schhabra/ack.pdf.

80

http://www.cs.ucr.edu/~schhabra/ack.pdf
http://www.barracudanetworks.com/ns/products/spam_overview.php
http://www.antiphishing.org/reports/apwg_trends_report_h1_2011.pdf
http://www.apache.org/foundation/docs/sender-id-position.html
http://csmining.org/index.php/ling-spam-datasets.html
http://tools.ietf.org/html/rfc4871
http://plg.uwaterloo.ca/~gvcormac/treccorpus/


Crammer K. and Y. Singer. 2001. On the Algorithmic Implementation of Multi-class SVMs. 
Journal of Machine Learning Research. December 2001. 
http://www.cis.uab.edu/zhang/Spam-mining-papers/
On.the.Algorithmic.Implementation.of.Multiclass.Kernel.based.Vector.machines.pdf.

Crocker, D. 1982. RFC 822: Standard for the Format of ARPA Internet Text Messages. Internet 
Engineering Task Force,  August 13, 1982. http://tools.ietf.org/html/rfc822.

Dacier, M. 2009. Technical Perspective: They Do Click, Don’t They? Communications of the 
ACM 52, no. 9 (September 2009).

DMARC.org. Domain-based Message Authentication, Reporting and Conformance, n.d. 
http://www.dmarc.org/. (accessed February 6, 2012).

Eggendorfer, T. 2007. Reducing spam to 20% of its original value with a SMTP tar pit simulator. 
In MIT Spam Conference. Cambridge, MA, 2007.

FBI. Common Fraud Schemes, n.d. http://www.fbi.gov/scams-safety/fraud. (accessed February 
6, 2012).

FBI. 2009. Spear Phishing. April 1, 2009. 
http://www.fbi.gov/news/stories/2009/april/spearphishing_040109. (accessed February 6, 
2012).

Fette, I., N. Sadeh, and A. Tomasic. 2007. Learning to Detect Phishing Emails.  Proceedings of 
the International World Wide Web Conference (WWW). Banff, Alberta. 
http://www.cs.cmu.edu/~tomasic/doc/2007/FetteSadehTomasicWWW2007.pdf.

Google. Gmail – Google Apps, n.d. http://www.google.com/apps/intl/en/business/gmail.html. 
(accessed February 6, 2012).

Goodman, J., G. Cormack, and D. Heckerman. Spam and the Ongoing Battle for the Inbox. 
Communications of the ACM 50, no. 2 (February 2007): 25-33.

Graham, P. 2003. Better Bayesian Filtering, January 2003. 
http://www.paulgraham.com/better.html (accessed November 17, 2011).

Hanna, J. ASSP, n.d. http://assp.sourceforge.net/.

Houser, S. Free Unix Shell Statistical Spam Filter and Whitelist, n.d. 
http://sofbot.com/article/Statistical_spam_filter.html (accessed January 2, 2012).

Hutzler, C., D. Crocker, P. Resnick, E. Allman, and T. Finch. RFC 5068: Email Submission 
Operations: Access and Accountability Requirements. Internet Engineering Task Force, 
November 2007. http://tools.ietf.org/html/rfc5068.

81

http://tools.ietf.org/html/rfc5068
http://sofbot.com/article/Statistical_spam_filter.html
http://assp.sourceforge.net/
http://www.paulgraham.com/better.html
http://www.google.com/apps/intl/en/business/gmail.html
http://www.cs.cmu.edu/~tomasic/doc/2007/FetteSadehTomasicWWW2007.pdf
http://www.fbi.gov/news/stories/2009/april/spearphishing_040109
http://www.fbi.gov/scams-safety/fraud
http://www.dmarc.org/
http://tools.ietf.org/html/rfc822
http://www.cis.uab.edu/zhang/Spam-mining-papers/On.the.Algorithmic.Implementation.of.Multiclass.Kernel.based.Vector.machines.pdf
http://www.cis.uab.edu/zhang/Spam-mining-papers/On.the.Algorithmic.Implementation.of.Multiclass.Kernel.based.Vector.machines.pdf
http://www.cis.uab.edu/zhang/Spam-mining-papers/


Jacob, P. 2003. The SPAM Problem: Moving Beyond RBLs. January 3, 2003. 
http://www.whirlycott.com/phil/antispam/rbl-bad/rbl-bad.html (accessed February 6, 
2012).

Joachims, T. 2002. Learning to Classify Text Using Support Vector Machines: Methods Theory 
and Algorithms. Norwell, MA: Kluwer Academic Publishers, 2002.

Kavi Help Center. How Email Really Works. 
http://www.niso.org/khelp/kmlm/user_help/html/how_email_works.html (accessed 
January 24, 2012).

Kanich, C., C. Kreibich, K. Levchenko, B. Enright, G. Voelker, V. Paxson, and S. Savage. 2009. 
Spamalytics: An Empirical Analysis of Spam Marketing Conversion. Communications of 
the ACM 52, no. 9 (September 2009): 99-107.

Kanaris, I., K. Kanaris, and E. Stamatatos. 2006. Spam Detection Using Character N-Grams. 
3955:95-104. Greece: Lecture Notes in Artificial Intelligence.

Klensin, J. RFC 2821: Simple Mail Transfer Protocol. Internet Engineering Task Force, April 
2001. http://tools.ietf.org/html/rfc2821.

Klensin, J. RFC 5321: Simple Mail Transfer Protocol. Internet Engineering Task Force, October 
2008. http://tools.ietf.org/html/rfc5321.

Leyden, J. 2011. IPv6 intro creates spam-filtering nightmare. The Register, March 8, 2011. 
http://www.theregister.co.uk/2011/03/08/ipv6_spam_filtering_headache/ (accessed March 
8, 2011).

Leyden, J. 2012. Kelihos botnet BACK FROM THE DEAD. The Register. London, UK, 
February 2, 2012. http://www.theregister.co.uk/2012/02/02/kelihos_botnet_returns/ 
(accessed February 5, 2012).

Lindberg, G. 1999. RFC 2505: Anti-Spam Recommendations for SMTP MTAs. Internet 
Engineering Task Force, February 1999. http://tools.ietf.org/html/rfc2505.

Lyon, J., and M. Wong. RFC 4406: Sender ID: Authenticating E-Mail. Internet Engineering Task 
Force, April 2006. http://tools.ietf.org/html/rfc4406.

M86 Security. 2008. Srizbi now leads the spam pack. February 29, 2008. 
http://www.m86security.com/labs/traceitem.asp?article=567 (accessed April 6, 2011).

MAAWG. 2011. Email Metrics Program: The Network Operators’ Perspective, Report #15 – 
First, Second and Third Quarter 2011. Messaging Anti-Abuse Working Group. 
http://www.maawg.org/sites/maawg/files/news/
MAAWG_2011_Q1Q2Q3_Metrics_Report_15.pdf.

82

http://www.maawg.org/sites/maawg/files/news/MAAWG_2011_Q1Q2Q3_Metrics_Report_15.pdf
http://www.maawg.org/sites/maawg/files/news/MAAWG_2011_Q1Q2Q3_Metrics_Report_15.pdf
http://www.maawg.org/sites/maawg/files/news/
http://www.m86security.com/labs/traceitem.asp?article=567
http://tools.ietf.org/html/rfc4406
http://tools.ietf.org/html/rfc2505
http://www.theregister.co.uk/2012/02/02/kelihos_botnet_returns/
http://www.theregister.co.uk/2011/03/08/ipv6_spam_filtering_headache/
http://tools.ietf.org/html/rfc5321
http://tools.ietf.org/html/rfc2821
http://www.niso.org/khelp/kmlm/user_help/html/how_email_works.html
http://www.whirlycott.com/phil/antispam/rbl-bad/rbl-bad.html


Manning, C. and H. Schütze. 2000. Foundations of Statistical Natural Language Processing. The 
MIT Press.

MailRoute. MailRoute: Email Protection - Spam and Virus Filtering Services, n.d. 
http://mailroute.info/services.html#spam (accessed February 8, 2011).

McCallum, A. 2002. MALLET: A Machine Learning for Language Toolkit. 
http://mallet.cs.umass.edu.

Nasario, J.. Monkey.org’s Phishing Email Corpus, n.d. 
http://www.monkey.org/~jose/wiki/doku.php?id=phishingcorpus (accessed February 22, 
2011).

NLTK Documentation. n.d. Learning to Classify Text 
http://nltk.googlecode.com/svn/trunk/doc/book/ch06.html (accessed February 6, 2012).

Ollmann, G. The Phishing Guide (Part 1). http://www.technicalinfo.net/papers/Phishing.html 
(accessed January 24, 2012).

Partridge, C. 1986. RFC 974: Mail Routing and the Domain System. Internet Engineering Task 
Force,  Jaunary 1986. http://tools.ietf.org/html/rfc974.

Postel, J. 1982. RFC 821: Simple Mail Transfer Protocol. Internet Engineering Task Force, 
August 1982. http://tools.ietf.org/html/rfc821.

Ramsey, F. and D. Schafer. 2002. The Statistical Sleuth: A Course in Methods of Data Analysis. 
Second ed. Belmont, CA: Brooks/Cole, 2002.

Reynolds, J. K. 1984. RFC 918: Post Office Protocol. Internet Engineering Task Force,  October 
1984. http://tools.ietf.org/html/rfc918.

Ringger, E. 2005. Proceedings of the Workshop. In ACL 2005 Workshop on Feature Engineering 
for Machine Learning in Natural Language Processing. Ann Arbor, Michigan, 2005.

Ringger, E. 2012. Personal email to author. Feburary 28, 2012.

Seabrook, A.. At 30, Spam Going Nowhere Soon : NPR, May 2008.   
http://www.npr.org/templates/story/story.php?storyId=90160617 (accessed April 6, 2011).

Securelist, n.d. Types of Spam. http://www.securelist.com/en/threats/spam?chapter=88 (accessed 
November 23, 2011).

SpamAssassin Public Corpus, n.d. http://spamassassin.apache.org/publiccorpus/ (accessed 
February 6, 2012).

83

http://spamassassin.apache.org/publiccorpus/
http://www.securelist.com/en/threats/spam?chapter=88
http://www.npr.org/templates/story/story.php?storyId=90160617
http://tools.ietf.org/html/rfc5068
http://tools.ietf.org/html/rfc5068
http://tools.ietf.org/html/rfc5068
http://www.technicalinfo.net/papers/Phishing.html
http://nltk.googlecode.com/svn/trunk/doc/book/ch06.html
http://www.monkey.org/~jose/wiki/doku.php?id=phishingcorpus
http://mallet.cs.umass.edu/
http://mailroute.info/services.html#spam


SpamAssassin. Tests Performed. The Apache SpamAssassin Project, n.d. 
http://spamassassin.apache.org/tests.html (accessed February 19, 2011).

SpamBayes. n.d. SpamBayes: Background Reading. SpamBayes Website. 
http://spambayes.sourceforge.net/background.html (accessed February 6, 2012).

SpamCop FAQ. Why are auto responders bad? n.d. http://www.spamcop.net/fom-
serve/cache/329.html (accessed February 6, 2012).

Spamhous Project. About Spamhouse. http://www.spamhaus.org/organization/index.lasso 
(accessed January 31, 2012).

Symantec. Spam Filter Service - Email Spam Filtering - Symantec.Cloud, n.d. 
http://www.symanteccloud.com/products/email/anti_spam.aspx (accessed February 6, 
2012).

Templeton, B. n.d. Reaction to the DEC Spam of 1978. 
http://www.templetons.com/brad/spamreact.html (accessed April 6, 2011).

Templeton, Brad. n.d. Proper principles for Challenge/Response anti-spam systems. 
http://www.templetons.com/brad/spam/challengeresponse.html (accessed April 6, 2011).

Treviño, A. and J. Ekstrom. 2007a. Email sender authentication: advantages and shortcomings. 
Virus Bulletin, August 1, 2007.

Treviño, A. and J. Ekstrom. 2007b. Spam Filtering Through Header Relay Detection. In MIT 
Spam Conference. Cambridge, MA, 2007.

Websense. Websense Advanced Classification Engine, n.d. 
http://www.websense.com/content/websense-advanced-classification-engine.aspx 
(accessed November 22, 2011).

Wong, M., and W. Schlitt. 2006. RFC 4408: Sender Policy Framework (SPF) for Authorizing 
Use Domains in E-Mail, Version 1. Internet Engineering Task Force, April 2006. 
http://tools.ietf.org/html/rfc4408.

Yamai, N., K. Okayama, T. Seike, K. Kawano, M. Nakamura, and S. Maruyama. 2008. An Anti-
Spam Method with SMTP Session Abort. MIT Spam Conference 2008. 
http://projects.csail.mit.edu/spamconf/SC2008/Yamai_SMTP-session-
abort/yamai_SMTP_session_abort.pdf.

Youngman, N. 2004. Fine-tuning SpamAssassin LG #105. Linux Gazette, August 2004. 
http://linuxgazette.net/105/youngman.html. (accessed February 6, 2012).

84

http://linuxgazette.net/105/youngman.html
http://projects.csail.mit.edu/spamconf/SC2008/Yamai_SMTP-session-abort/yamai_SMTP_session_abort.pdf
http://projects.csail.mit.edu/spamconf/SC2008/Yamai_SMTP-session-abort/yamai_SMTP_session_abort.pdf
http://tools.ietf.org/html/rfc4408
http://www.websense.com/content/websense-advanced-classification-engine.aspx
http://www.templetons.com/brad/spam/challengeresponse.html
http://www.templetons.com/brad/spamreact.html
http://www.symanteccloud.com/products/email/anti_spam.aspx
http://www.spamhaus.org/organization/index.lasso
http://www.spamcop.net/fom-serve/cache/329.html
http://www.spamcop.net/fom-serve/cache/329.html
http://spambayes.sourceforge.net/background.html
http://spamassassin.apache.org/tests.html


Zdziarski, J. 2005. Ending Spam: Bayesian Content Filtering and the Art of Statistical Language 
Classification. No Starch Press.

Zdziarski, J., W. Yang, and P. Judge. 2006. Approaches to Phishing Identification Using Match 
and Probabilistic Digital Fingerprinting Techniques. In MIT Spam Conference. 
Cambridge, MA, 2006.

Zhang L., J. Zhu, T. Yao. 2004. An evaluation of statistical spam filtering techniques. ACM 
Transactions on Asian Language Information Processing (TALIP) 3, no. 4 (December 
2004).

85



APPENDIX A:  FEATURE SETS

The following table contains a list of the different feature sets producible by the feature extractor. 
Each set contains the feature set name, the way it was referenced in the text, and the specific 
features it includes. (References to short body means only the first and last 1,024 characters of a 
body part were used.)

Feature Set Descriptions

Feature Set Text Reference Features

unigram Unigram • Unigram distribution of message body

bigram Unigram + Bigram • Unigram and bigram distributions of message 
body

trigram Unigram + Bigram +
Trigram / Body

• Unigram, bigram and trigram distributions of 
message body

headers_only Headers Only • Unigram, bigram and trigram distributions of 
select headers

headers_body Headers + Body • Unigram, bigram and trigram distributions of:
◦ Select headers
◦ Message body

headers_body_count Headers + Body + 
Counts

• Unigram, bigram and trigram distributions of:
◦ Select headers
◦ Message body

• Multi-part counts

headers_body_split Headers + Body + 
HTML

• Unigram, bigram and trigram distributions of:
◦ Select headers
◦ Plain text body
◦ HTML body

headers_body_split_
strip

Headers + Body + 
HTML Text

• Unigram, bigram and trigram distributions of:
◦ Select headers
◦ Plain text body
◦ HTML body
◦ HTML text (no HTML tags)
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Feature Set Descriptions

Feature Set Text Reference Features

short_body Short Body • Unigram, bigram and trigram distributions of 
short message body

headers_short_body Headers + Short 
Body

• Unigram, bigram and trigram distributions of:
◦ Select headers
◦ Short message body

headers_short_
body_strip

Headers + Short 
Body + HTML Text

• Unigram, bigram and trigram distributions of:
◦ Select headers
◦ Short plain text body and HTML text

headers_short_
body_split_strip

Headers + Short 
Body + HTML Text

• Unigram, bigram and trigram distributions of:
◦ Short plain text body
◦ Short HTML body
◦ Short HTML text (no HTML tags)

full Headers + Body + 
HTML Text + URL

• Unigram, bigram and trigram distributions of:
◦ Select headers
◦ Plain text body
◦ HTML body
◦ HTML text (no HTML tags)

• Multi-part counts
• URL analysis

full_short Headers + Short 
Body + HTML Text 
+ URL

• Unigram, bigram and trigram distributions of:
◦ Select headers
◦ Short plain text body
◦ Short HTML body
◦ Short HTML text (no HTML tags)

• Multi-part counts
• URL analysis

full_short_no_split Headers + Short 
Body + HTML + 
URL

• Unigram, bigram and trigram distributions of:
◦ Select headers
◦ Short plain text body, short HTML body 

and short HTML text (no HTML tags)
• Multi-part counts
• URL analysis

full_short_no_split_
no_count

Headers + Short 
Body + HTML + 
URL

• Unigram, bigram and trigram distributions of:
◦ Select headers
◦ Short plain text body, short HTML body 

and short HTML text (no HTML tags)
• URL analysis
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Feature Set Descriptions

Feature Set Text Reference Features

full_short_no_split_
no_headers

Short Body +
HTML + URL

• Unigram, bigram and trigram distributions of:
◦ Short plain text body, short HTML body 

and short HTML text (no HTML tags)
• Multi-part counts
• URL analysis
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APPENDIX B:  RAW CLASSIFIER RESULTS

The following are the full results of the classification tests for Section 4.2.

Ham vs. Spam Results (c = 100)

Feature Set
Raw Results (Confusion Matrix)

Performance
Running

TimeHam Spam Phish

unigram

Ham 6794 160 – Accuracy 93.37%

0:00:59Spam 462 1972 – Precision 93.63%

Phish – – – Recall 97.70%

bigram

Ham 6915 39 – Accuracy 98.45%

0:02:53Spam 106 2292 – Precision 98.49%

Phish – – – Recall 99.44%

trigram

Ham 6930 24 – Accuracy 98.90%

0:11:06Spam 79 2319 – Precision 98.87%

Phish – – – Recall 99.65%

headers_only

Ham 6774 180 – Accuracy 95.61%

0:00:58Spam 231 2167 – Precision 96.70%

Phish – – – Recall 97.41%

headers_body

Ham 6931 23 – Accuracy 99.24%

0:16:39Spam 48 2341 – Precision 99.31%

Phish – – – Recall 99.67%

headers_body_
count

Ham 6931 23 – Accuracy 99.24%

0:16:33Spam 48 2350 – Precision 99.31%

Phish – – – Recall 99.67%

headers_body_
split

Ham 6931 23 – Accuracy 99.17%

0:21:30Spam 55 2343 – Precision 99.21%

Phish – – – Recall 99.67%

headers_body_
split_strip

Ham 6931 23 – Accuracy 99.14% 0:29:46

Spam 57 2341 – Precision 99.18%

89



Ham vs. Spam Results (c = 100)

Feature Set
Raw Results (Confusion Matrix)

Performance
Running

TimeHam Spam Phish

Phish – – – Recall 99.67%

short_body

Ham 6930 24 – Accuracy 98.85%

0:07:53Spam 84 2314 – Precision 98.80%

Phish – – – Recall 99.65%

headers_short_
body

Ham 6931 23 – Accuracy 99.12%

0:10:39Spam 59 2339 – Precision 99.16%

Phish – – – Recall 99.67%

headers_short_
body_strip

Ham 6931 23 – Accuracy 99.12%

0:10:40Spam 59 2339 – Precision 99.16%

Phish – – – Recall 99.67%

headers_short_
body_split_strip

Ham 6927 27 – Accuracy 99.07%

0:11:59Spam 60 2338 – Precision 99.14%

Phish – – – Recall 99.61%

full

Ham 6931 23 – Accuracy 99.16%

0:30:47Spam 56 2342 – Precision 99.20%

Phish – – – Recall 99.67%

full_short

Ham 6928 26 – Accuracy 99.04%

0:11:49Spam 64 2334 – Precision 99.08%

Phish – – – Recall 99.63%

full_short_no_
split

Ham 6930 24 – Accuracy 99.13%

0:10:33Spam 57 2341 – Precision 99.18%

Phish – – – Recall 99.65%

full_short_no_
split_no_count

Ham 6932 22 – Accuracy 99.12%

0:10:33Spam 60 2338 – Precision 99.14%

Phish – – – Recall 99.68%
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The following are the full results of the classification tests in Section 4.3 for the purposes of 
finding the optimal value of c.

Ham vs. Spam Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

full 0.1

Ham 6861 93 – Accuracy 88.18%

0:07:00Spam 1012 1386 – Precision 87.15%

Phish – – – Recall 98.66%

full 1

Ham 6892 62 – Accuracy 94.93%

0:11:04Spam 412 1986 – Precision 94.36%

Phish – – – Recall 99.11%

full 10

Ham 6923 31 – Accuracy 98.29%

0:16:47Spam 129 2269 – Precision 98.17%

Phish – – – Recall 99.55%

full 100

Ham 6931 23 – Accuracy 99.16%

0:30:49Spam 56 2342 – Precision 99.20%

Phish – – – Recall 99.67%

full 500

Ham 6929 25 – Accuracy 99.17%

0:54:10Spam 53 2345 – Precision 99.24%

Phish – – – Recall 99.64%

full 1000

Ham 6929 25 – Accuracy 99.17%

0:54:15Spam 53 2345 – Precision 99.24%

Phish – – – Recall 99.64%

full 5000

Ham 6929 25 – Accuracy 99.17%

0:54:13Spam 53 2345 – Precision 99.24%

Phish – – – Recall 99.64%

full 10000

Ham 6929 25 – Accuracy 99.17%

0:54:19Spam 53 2345 – Precision 99.24%

Phish – – – Recall 99.64%

full_short 0.1 Ham 6633 311 – Accuracy 84.28% 0:03:30

Spam 1158 1240 – Precision 85.14%
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Ham vs. Spam Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

Phish – – – Recall 95.52%

full_short 1

Ham 6847 107 – Accuracy 91.91%

0:04:55Spam 650 1748 – Precision 91.33%

Phish – – – Recall 98.46%

full_short 10

Ham 6884 70 – Accuracy 97.81%

0:07:54Spam 135 2263 – Precision 98.08%

Phish – – – Recall 98.99%

full_short 100

Ham 6928 26 – Accuracy 99.04%

0:11:46Spam 64 2334 – Precision 99.08%

Phish – – – Recall 99.63%

full_short 500

Ham 6932 22 – Accuracy 99.16%

0:20:53Spam 57 2341 – Precision 99.18%

Phish – – – Recall 99.68%

full_short 1000

Ham 6931 23 – Accuracy 99.16%

0:21:10Spam 56 2342 – Precision 99.20%

Phish – – – Recall 99.67%

full_short 5000

Ham 6931 23 – Accuracy 99.16%

0:21:09Spam 56 2342 – Precision 99.20%

Phish – – – Recall 99.67%

full_short 10000

Ham 6931 23 – Accuracy 99.16%

0:21:10Spam 56 2342 – Precision 99.20%

Phish – – – Recall 99.67%

full_short_
no_split

0.1

Ham 6696 258 – Accuracy 82.68%

0:03:18Spam 1362 1036 – Precision 83.10%

Phish – – – Recall 96.29%

full_short_
no_split

1

Ham 6862 92 – Accuracy 92.62%

0:04:55Spam 598 1800 – Precision 91.98%

Phish – – – Recall 98.68%
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Ham vs. Spam Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

full_short_
no_split

10

Ham 6897 57 – Accuracy 98.08%

0:07:14Spam 123 2275 – Precision 98.25%

Phish – – – Recall 99.18%

full_short_
no_split

100

Ham 6930 24 – Accuracy 99.13%

0:10:31Spam 57 2341 – Precision 99.18%

Phish – – – Recall 99.65%

full_short_
no_split

500

Ham 6934 20 – Accuracy 99.21%

0:18:09Spam 54 2344 – Precision 99.23%

Phish – – – Recall 99.71%

full_short_
no_split

1000

Ham 6936 18 – Accuracy 99.22%

0:18:43Spam 55 2343 – Precision 99.21%

Phish – – – Recall 99.74%

full_short_
no_split

5000

Ham 6936 18 – Accuracy 99.22%

0:18:48Spam 55 2343 – Precision 99.21%

Phish – – – Recall 99.74%

full_short_
no_split

10000

Ham 6936 18 – Accuracy 99.22%

0:18:45Spam 55 2343 – Precision 99.21%

Phish – – – Recall 99.74%

full_short_
no_split_
no_count

0.1

Ham 6705 249 – Accuracy 82.80%

0:03:18Spam 1360 1038 – Precision 83.14%

Phish – – – Recall 96.42%

full_short_
no_split_
no_count

1

Ham 6857 97 – Accuracy 92.60%

0:04:59Spam 595 1803 – Precision 92.02%

Phish – – – Recall 98.61%

full_short_
no_split_
no_count

10

Ham 6895 59 – Accuracy 98.09%

0:07:13Spam 120 2278 – Precision 98.29%

Phish – – – Recall 99.15%

full_short_ 100 Ham 6932 22 – Accuracy 99.13% 0:10:30
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Ham vs. Spam Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

no_split_
no_count

Spam 60 2388 – Precision 99.14%

Phish – – – Recall 99.68%

full_short_
no_split_
no_count

500

Ham 6935 19 – Accuracy 99.19%

0:18:10Spam 57 2341 – Precision 99.18%

Phish – – – Recall 99.73%

full_short_
no_split_
no_count

1000

Ham 6935 19 – Accuracy 99.22%

0:18:57Spam 54 2344 – Precision 99.23%

Phish – – – Recall 99.73%

full_short_
no_split_
no_count

5000

Ham 6935 19 – Accuracy 99.22%

0:18:59Spam 54 2344 – Precision 99.23%

Phish – – – Recall 99.73%

full_short_
no_split_
no_count

10000

Ham 6935 19 – Accuracy 99.22%

0:18:59Spam 54 2344 – Precision 99.23%

Phish – – – Recall 99.73%

The following are the full results of the classification tests in Section 4.4.

Blind Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

headers_body_
split_strip

100 Phish 598 1677 – Accuracy 73.71% 0:03:18

headers_body_
split_strip

500 Phish 426 1849 – Accuracy 81.27% 0:06:52

headers_body_
split_strip

1000 Phish 426 1849 – Accuracy 81.27% 0:06:53

headers_body_
split_strip

5000 Phish 426 1849 – Accuracy 81.27% 0:06:49
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Blind Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

headers_short_
body_strip

100 Phish 637 1638 – Accuracy 72.00% 0:01:12

headers_short_
body_strip

500 Phish 604 1671 – Accuracy 73.45% 0:01:57

headers_short_
body_strip

1000 Phish 591 1684 – Accuracy 74.02% 0:02:07

headers_short_
body_strip

5000 Phish 591 1684 – Accuracy 74.02% 0:02:07

headers_short_
body_split_strip

100 Phish 425 1850 – Accuracy 81.32% 0:01:22

headers_short_
body_split_strip

500 Phish 266 2009 – Accuracy 88.31% 0:02:11

headers_short_
body_split_strip

1000 Phish 182 2093 – Accuracy 92.00% 0:02:14

headers_short_
body_split_strip

5000 Phish 182 2093 – Accuracy 92.00% 0:02:14

full 100 Phish 495 1780 – Accuracy 78.24% 0:03:31

full 500 Phish 567 1708 – Accuracy 75.08% 0:05:18

full 1000 Phish 567 1708 – Accuracy 75.08% 0:05:16

full 5000 Phish 567 1708 – Accuracy 75.08% 0:05:14

full_short 100 Phish 362 1913 – Accuracy 84.09% 0:01:26

full_short 500 Phish 148 2127 – Accuracy 93.49% 0:02:21

full_short 1000 Phish 224 2051 – Accuracy 90.15% 0:02:23

full_short 5000 Phish 224 2051 – Accuracy 90.15% 0:02:20

full_short_
no_split

100 Phish 660 1615 – Accuracy 70.99% 0:01:10

full_short_
no_split

500 Phish 578 1697 – Accuracy 74.59% 0:02:04

full_short_
no_split

1000 Phish 597 1678 – Accuracy 73.76% 0:02:17

full_short_
no_split

5000 Phish 597 1678 – Accuracy 73.76% 0:02:18
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Blind Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

full_short_no_
split_no_count

100 Phish 655 1620 – Accuracy 71.21% 0:01:11

full_short_no_
split_no_count

500 Phish 503 1772 – Accuracy 77.89% 0:01:55

full_short_no_
split_no_count

1000 Phish 619 1656 – Accuracy 72.79% 0:02:01

full_short_no_
split_no_count

5000 Phish 619 1656 – Accuracy 72.79% 0:02:02

The following are the full classification results for tests in Section 4.5.

Ham vs. Spam + Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

trigram (body) 100

Ham 6926 28 – Accuracy 98.92%

0:16:25Spam 71 2327 – Precision 98.60%

Phish 27 2248 – Recall 99.60%

trigram (body) 500

Ham 6930 24 – Accuracy 99.17%

0:25:10Spam 48 2350 – Precision 98.96%

Phish 25 2250 – Recall 99.65%

trigram (body) 1000

Ham 6932 22 – Accuracy 99.16%

0:31:48Spam 50 2348 – Precision 98.92%

Phish 26 2249 – Recall 99.68%

trigram (body) 5000

Ham 6931 23 – Accuracy 99.16%

0:56:38Spam 47 2351 – Precision 98.93%

Phish 28 2247 – Recall 99.67%

headers_body 100 Ham 6929 25 – Accuracy 99.33% 0:22:42

Spam 43 2355 – Precision 99.24%
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Ham vs. Spam + Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

Phish 10 2265 – Recall 99.64%

headers_body 500

Ham 6931 23 – Accuracy 99.38%

0:39:10Spam 40 2358 – Precision 99.30%

Phish 9 2266 – Recall 99.67%

headers_body 1000

Ham 6932 22 – Accuracy 99.42%

0:43:06Spam 37 2361 – Precision 99.36%

Phish 8 2267 – Recall 99.68%

headers_body 5000

Ham 6932 22 – Accuracy 99.42%

0:43:18Spam 37 2361 – Precision 99.36%

Phish 8 2267 – Recall 99.68%

headers_body_
split_strip

100

Ham 6924 30 – Accuracy 99.22%

0:42:16Spam 51 2347 – Precision 99.13%

Phish 10 2265 – Recall 99.57%

headers_body_
split_strip

500

Ham 6929 25 – Accuracy 99.33%

1:19:02Spam 45 2353 – Precision 99.24%

Phish 8 2267 – Recall 99.64%

headers_body_
split_strip

1000

Ham 6930 24 – Accuracy 99.35%

1:22:01Spam 45 2353 – Precision 99.26%

Phish 7 2268 – Recall 99.65%

headers_body_
split_strip

5000

Ham 6930 24 – Accuracy 99.35%

1:22:02Spam 45 2353 – Precision 99.26%

Phish 7 2268 – Recall 99.65%

short_body 100

Ham 6926 28 – Accuracy 98.92%

0:10:37Spam 74 2324 – Precision 98.60%

Phish 24 2251 – Recall 99.60%

short_body 500

Ham 6639 18 – Accuracy 99.03%

0:15:59Spam 66 2332 – Precision 98.63%

Phish 26 2249 – Recall 99.73%

short_body 1000 Ham 6936 18 – Accuracy 99.17% 0:20:50
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Ham vs. Spam + Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

Spam 56 2342 – Precision 98.89%

Phish 22 2253 – Recall 99.74%

short_body 5000

Ham 6937 17 – Accuracy 99.15%

0:38:04Spam 58 2340 – Precision 98.83%

Phish 24 2251 – Recall 99.76%

headers_short_
body

100

Ham 6927 27 – Accuracy 99.24%

0:14:18Spam 48 2350 – Precision 99.13%

Phish 13 2262 – Recall 99.61%

headers_short_
body

500

Ham 6933 21 – Accuracy 99.36%

0:23:28Spam 47 2351 – Precision 99.24%

Phish 6 2269 – Recall 99.70%

headers_short_
body

1000

Ham 6932 22 – Accuracy 99.32%

0:25:50Spam 50 2348 – Precision 99.18%

Phish 7 2268 – Recall 99.68%

headers_short_
body

5000

Ham 6932 22 – Accuracy 99.32%

0:25:43Spam 50 2348 – Precision 99.18%

Phish 7 2268 – Recall 99.68%

headers_short_
body_strip

100

Ham 6927 27 – Accuracy 99.24%

0:14:08Spam 48 2350 – Precision 99.13%

Phish 13 2262 – Recall 99.61%

headers_short_
body_strip

500

Ham 6933 21 – Accuracy 99.36%

0:23:02Spam 47 2351 – Precision 99.24%

Phish 6 2269 – Recall 99.70%

headers_short_
body_strip

1000

Ham 6932 22 – Accuracy 99.32%

0:25:13Spam 50 2348 – Precision 99.18%

Phish 7 2268 – Recall 99.68%

headers_short_
body_strip

5000

Ham 6932 22 – Accuracy 99.32%

0:25:14Spam 50 2348 – Precision 99.18%

Phish 7 2268 – Recall 99.68%
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Ham vs. Spam + Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

headers_short_
body_split_strip

100

Ham 6924 30 – Accuracy 99.15%

0:15:23Spam 56 2342 – Precision 99.01%

Phish 13 2262 – Recall 99.57%

headers_short_
body_split_strip

500

Ham 6928 26 – Accuracy 99.22%

0:25:25Spam 58 2340 – Precision 99.07%

Phish 7 2268 – Recall 99.63%

headers_short_
body_split_strip

1000

Ham 6931 23 – Accuracy 99.25%

0:28:04Spam 57 2341 – Precision 99.09%

Phish 7 2268 – Recall 99.67%

headers_short_
body_split_strip

5000

Ham 6931 23 – Accuracy 99.25%

0:28:03Spam 57 2341 – Precision 99.09%

Phish 7 2268 – Recall 99.67%

full 100

Ham 6925 29 – Accuracy 99.22%

0:42:00Spam 51 2347 – Precision 99.11%

Phish 11 2264 – Recall 99.58%

full 500

Ham 6929 25 – Accuracy 99.31%

1:16:35Spam 45 2353 – Precision 99.21%

Phish 10 2265 – Recall 99.64%

full 1000

Ham 6929 25 – Accuracy 99.34%

1:20:59Spam 41 2357 – Precision 99.26%

Phish 11 2264 – Recall 99.64%

full 5000

Ham 6929 25 – Accuracy 99.34%

1:21:04Spam 41 2357 – Precision 99.26%

Phish 11 2264 – Recall 99.64%

full_short 100

Ham 6924 30 – Accuracy 99.14%

0:15:10Spam 56 2342 – Precision 99.00%

Phish 14 2261 – Recall 99.57%

full_short 500 Ham 6929 25 – Accuracy 99.25% 0:25:06

99



Ham vs. Spam + Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

Spam 57 2341 – Precision 99.11%

Phish 5 2270 – Recall 99.64%

full_short 1000

Ham 6924 30 – Accuracy 99.18%

0:27:37Spam 58 2340 – Precision 99.07%

Phish 7 2268 – Recall 99.57%

full_short 5000

Ham 6930 24 – Accuracy 99.23%

0:27:38Spam 58 2340 – Precision 99.07%

Phish 7 2268 – Recall 99.65%

full_short_
no_split

100

Ham 6927 27 – Accuracy 99.23%

0:13:55Spam 50 2348 – Precision 99.11%

Phish 12 2263 – Recall 99.61%

full_short_
no_split

500

Ham 6933 21 – Accuracy 99.35%

0:22:52Spam 49 2349 – Precision 99.21%

Phish 6 2269 – Recall 99.70%

full_short_
no_split

1000

Ham 6934 20 – Accuracy 99.38%

0:26:03Spam 49 2349 – Precision 99.26%

Phish 3 2272 – Recall 99.71%

full_short_
no_split

5000

Ham 6934 20 – Accuracy 99.38%

0:26:03Spam 49 2349 – Precision 99.26%

Phish 3 2272 – Recall 99.71%

full_short_no_
split_no_count

100

Ham 6929 25 – Accuracy 99.29%

0:13:59Spam 46 2352 – Precision 99.17%

Phish 12 2263 – Recall 99.64%

full_short_no_
split_no_count

500

Ham 6934 20 – Accuracy 99.35%

0:23:08Spam 50 2348 – Precision 99.20%

Phish 6 2269 – Recall 99.71%

full_short_no_
split_no_count

1000 Ham 6933 21 – Accuracy 99.34% 0:27:22

Spam 50 2348 – Precision 99.20%
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Ham vs. Spam + Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

Phish 6 2269 – Recall 99.70%

full_short_no_
split_no_count

5000

Ham 6933 20 – Accuracy 99.35%

0:27:45Spam 50 2348 – Precision 99.20%

Phish 6 2269 – Recall 99.71%

The following are the full classification results of tests in Section 4.6.

Ham vs. Spam vs. Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

trigram (body) 100

Ham 6928 23 3 Accuracy 98.90%

0:40:05Spam 76 2301 21 Precision 98.55%

Phish 26 44 2205 Recall 99.63%

trigram (body) 500

Ham 6940 12 2 Accuracy 99.22%

1:08:05Spam 57 2318 23 Precision 98.90%

Phish 20 48 2207 Recall 99.80%

trigram (body) 1000

Ham 6941 11 2 Accuracy 99.28%

1:30:03Spam 49 2326 23 Precision 98.99%

Phish 22 45 2208 Recall 99.81%

trigram (body) 5000

Ham 6940 14 0 Accuracy 99.29%

2:58:51Spam 47 2328 23 Precision 99.02%

Phish 22 51 2202 Recall 99.80%

headers_body 100

Ham 6929 21 4 Accuracy 99.31%

0:57:54Spam 46 2336 16 Precision 99.21%

Phish 9 38 2228 Recall 99.64%

headers_body 500 Ham 6929 18 7 Accuracy 99.41% 1:45:41
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Ham vs. Spam vs. Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

Spam 38 2346 14 Precision 99.37%

Phish 6 35 2234 Recall 99.64%

headers_body 1000

Ham 6928 20 6 Accuracy 99.36%

2:05:57Spam 42 2345 11 Precision 99.31%

Phish 6 32 2237 Recall 99.63%

headers_body 5000

Ham 6928 20 6 Accuracy 99.36%

2:04:03Spam 42 2345 11 Precision 99.31%

Phish 6 32 2237 Recall 99.63%

headers_body_
split_strip

100

Ham 6927 22 5 Accuracy 99.29%

2:18:10Spam 45 2337 16 Precision 99.20%

Phish 11 45 2219 Recall 99.61%

headers_body_
split_strip

500

Ham 6931 18 5 Accuracy 99.32%

4:16:46Spam 44 2331 23 Precision 99.20%

Phish 12 46 2217 Recall 99.67%

headers_body_
split_strip

1000

Ham 6927 22 5 Accuracy 99.29%

4:27:57Spam 45 2337 16 Precision 99.20%

Phish 11 45 2219 Recall 99.61%

headers_body_
split_strip

5000

Ham 6927 22 5 Accuracy 99.29%

4:16:59Spam 45 2337 16 Precision 99.20%

Phish 11 45 2219 Recall 99.61%

short_body 100

Ham 6929 21 4 Accuracy 98.91%

0:25:36Spam 79 2303 16 Precision 98.55%

Phish 23 43 2209 Recall 99.64%

short_body 500

Ham 6937 12 5 Accuracy 98.92%

0:40:05Spam 66 2315 17 Precision 98.76%

Phish 21 50 204 Recall 99.76%

short_body 1000

Ham 6938 11 5 Accuracy 99.11%

0:53:59Spam 64 2318 16 Precision 98.75%

Phish 24 47 2204 Recall 99.77%
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Ham vs. Spam vs. Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

short_body 5000

Ham 6937 13 4 Accuracy 99.19%

1:49:01Spam 55 2320 23 Precision 98.90%

Phish 22 51 2202 Recall 99.76%

headers_short_
body

100

Ham 6927 21 6 Accuracy 99.29%

0:33:45Spam 50 2341 7 Precision 99.20%

Phish 6 25 2244 Recall 99.61%

headers_short_
body

500

Ham 6934 14 6 Accuracy 99.38%

0:59:38Spam 47 2346 5 Precision 99.26%

Phish 5 26 2244 Recall 99.71%

headers_short_
body

1000

Ham 6934 14 6 Accuracy 99.37%

1:13:29Spam 47 2348 3 Precision 99.24%

Phish 6 20 2249 Recall 99.71%

headers_short_
body

5000

Ham 6934 14 6 Accuracy 99.37%

1:13:27Spam 47 2348 3 Precision 99.24%

Phish 6 20 2249 Recall 99.71%

headers_short_
body_strip

100

Ham 6927 21 6 Accuracy 99.29%

0:35:23Spam 50 2341 7 Precision 99.20%

Phish 6 25 2244 Recall 99.61%

headers_short_
body_strip

500

Ham 6934 14 6 Accuracy 99.38%

1:02:41Spam 47 2346 5 Precision 99.26%

Phish 5 26 2244 Recall 99.71%

headers_short_
body_strip

1000

Ham 6934 14 6 Accuracy 99.37%

1:16:10Spam 47 2348 3 Precision 99.24%

Phish 6 20 2249 Recall 99.71%

headers_short_
body_strip

5000

Ham 6934 14 6 Accuracy 99.37%

1:16:29Spam 47 2348 3 Precision 99.24%

Phish 6 20 2249 Recall 99.71%

headers_short_
body_split_strip

100 Ham 6927 22 5 Accuracy 99.18% 0:40:26

Spam 62 2328 8 Precision 99.03%
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Ham vs. Spam vs. Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

Phish 6 28 2241 Recall 99.61%

headers_short_
body_split_strip

500

Ham 6931 16 7 Accuracy 99.28%

1:13:10Spam 54 2339 5 Precision 99.13%

Phish 7 28 2240 Recall 99.67%

headers_short_
body_split_strip

1000

Ham 6931 17 6 Accuracy 99.27%

1:28:38Spam 56 2339 3 Precision 99.11%

Phish 6 30 2239 Recall 99.67%

headers_short_
body_split_strip

5000

Ham 6931 17 6 Accuracy 99.27%

1:26:38Spam 56 2339 3 Precision 99.11%

Phish 6 30 2239 Recall 99.67%

full 100

Ham 6928 23 3 Accuracy 99.22%

1:53:54Spam 53 2324 21 Precision 99.07%

Phish 12 43 2220 Recall 99.63%

full 500

Ham 6929 20 5 Accuracy 99.28%

3:48:52Spam 49 2329 20 Precision 99.16%

Phish 10 45 2220 Recall 99.64%

full 1000

Ham 6926 23 5 Accuracy 99.29%

4:25:44Spam 43 2334 21 Precision 99.23%

Phish 11 43 2221 Recall 99.60%

full 5000

Ham 6926 23 5 Accuracy 99.29%

4:26:37Spam 43 2334 21 Precision 99.23%

Phish 11 43 2221 Recall 99.60%

full_short 100

Ham 6927 23 4 Accuracy 99.17%

0:39:30Spam 62 2327 9 Precision 99.01%

Phish 7 28 2240 Recall 99.61%

full_short 500

Ham 6931 17 6 Accuracy 99.30%

1:10:56Spam 51 2342 5 Precision 99.17%

Phish 7 30 2238 Recall 99.67%
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Ham vs. Spam vs. Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

full_short 1000

Ham 6931 18 5 Accuracy 99.27%

1:26:56Spam 53 2341 4 Precision 99.11%

Phish 9 30 2236 Recall 99.67%

full_short 5000

Ham 6931 18 5 Accuracy 99.27%

1:26:47Spam 53 2341 4 Precision 99.11%

Phish 9 30 2236 Recall 99.67%

full_short_
no_split

100

Ham 6927 21 6 Accuracy 99.23%

0:33:07Spam 54 2338 6 Precision 99.10%

Phish 9 26 2240 Recall 99.61%

full_short_
no_split

500

Ham 6934 14 6 Accuracy 99.36%

0:59:04Spam 50 2344 4 Precision 99.23%

Phish 4 21 2250 Recall 99.71%

full_short_
no_split

1000

Ham 6932 16 6 Accuracy 99.31%

1:11:34Spam 51 2343 4 Precision 99.17%

Phish 7 21 2247 Recall 99.68%

/full_short_
no_split

5000

Ham 6932 16 6 Accuracy 99.31%

1:11:30Spam 51 2343 4 Precision 99.17%

Phish 7 21 2247 Recall 99.68%

full_short_no_
split_no_count

100

Ham 6926 22 6 Accuracy 99.29%

0:33:35Spam 49 2341 8 Precision 99.21%

Phish 6 24 2245 Recall 99.60%

full_short_no_
split_no_count

500

Ham 6935 13 6 Accuracy 99.40%

0:59:44Spam 48 2346 4 Precision 99.27%

Phish 3 23 2249 Recall 99.73%

full_short_no_
split_no_count

1000

Ham 6932 16 6 Accuracy 99.34%

1:13:45Spam 50 2343 5 Precision 99.21%

Phish 5 25 2245 Recall 99.68%

full_short_no_ 5000 Ham 6932 16 6 Accuracy 99.34% 1:13:36
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Ham vs. Spam vs. Phish Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

split_no_count
Spam 50 2343 5 Precision 99.21%

Phish 5 25 2245 Recall 99.68%

The following are the full classification results of tests in Section 4.8 on the 2005 TREC corpus.

2005 TREC Results

Feature Set c
Raw Results

(Confusion Matrix) Performance
Running

Time
Ham Spam Phish

ham vs. spam 500

Ham 2074 52 – Accuracy 98.19%

0:10:13Spam 129 7745 – Precision 94.14%

Phish – – – Recall 97.55%

blind phish 500

Ham – – – Accuracy 95.13%

0:01:13Spam – – – Precision –

Phish 111 2169 – Recall –

ham vs.
spam + phish

500

Ham 2063 63 – Accuracy 98.17%

0:12:22Spam 96 7778 – Precision 92.72%

Phish 66 2214 – Recall 97.04%

ham vs. spam 
vs. phish

500

Ham 2065 57 4 Accuracy 98.18%

0:49:00Spam 101 7645 128 Precision 92.68%

Phish 62 194 2024 Recall 97.13%
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APPENDIX C:  CLASSIFIER PERFORMANCE COMPARISONS

The following is a summary of the accuracy of all three classifiers for the tests performed in 
Section 4.2. Entries with a long dash (–) means the feature set/classifier combination was not 
run. Two asterisks (**) means the Maximum Entropy classifier did not run properly and the 
result was thrown out.

Feature Set
Accuracy Running Time

NB MaxEnt SVM NB MaxEnt SVM

unigram 86.80% ** 93.37% 0:00:03 ** 0:00:59

bigram 87.91% ** 98.45% 0:00:13 ** 0:02:53

trigram 90.77% ** 98.90% 0:00:39 ** 0:11:06

headers_only 95.54% 99.25% 95.61% 0:00:11 0:01:59 0:00:58

headers_body 92.98% ** 99.24% 0:01:07 ** 0:16:39

headers_body_count 92.80% ** 99.24% 0:00:59 ** 0:16:33

headers_body_split 88.03% ** 99.17% 0:00:48 ** 0:21:30

headers_body_split_strip 87.11% ** 99.14% 0:00:57 ** 0:29:46

short_body 77.54% 99.20% 98.85% 0:00:29 0:19:49 0:07:53

headers_short_body 81.02% 99.27% 99.12% 0:00:41 0:28:29 0:10:39

headers_short_body_strip 80.49% 99.52% 99.12% 0:00:40 0:28:37 0:10:40

headers_short_body_split_
strip

85.88% 99.33% 99.07% 0:00:42 0:30:39 0:11:59

full 87.63% ** 99.16% 0:01:06 ** 0:30:47

full_short 86.62% 99.35% 99.04% 0:00:42 0:32:02 0:11:49

full_short_no_split 79.85% 99.39% 99.13% 0:00:41 0:27:33 0:10:33

full_short_no_split_
no_count

80.92% 99.43% 99.12% 0:00:41 0:28:18 0:10:33
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The following is a summary of the accuracy of all three classifiers for the tests performed in 
Section 4.5. Entries with a long dash (–) means the feature set/classifier combination was not 
run. Two asterisks (**) means the Maximum Entropy classifier did not run properly and the 
result was thrown out.

Feature Set
Accuracy Running Time

NB MaxEnt SVM NB MaxEnt SVM

unigram 80.03% ** – 0:00:04 ** –

bigram 85.19% ** – 0:00:15 ** –

trigram 88.05% ** 99.17% 0:01:07 ** 0:25:10

headers_only 96.08% 99.44% – 0:00:13 0:02:34 –

headers_body 90.97% ** 99.38% 0:01:05 ** 0:39:10

headers_body_count 91.01% ** – 0:01:14 ** –

headers_body_split 87.71% ** – 0:01:39 ** –

headers_body_split_strip 88.51% ** 99.33% 0:01:29 ** 1:19:02

short_body 78.87% 99.29% 99.03% 0:00:41 0:32:22 0:15:59

headers_short_body 81.47% 99.60% 99.36% 0:01:03 0:38:28 0:23:28

headers_short_body_strip 81.47% 99.55% 99.36% 0:01:02 0:40:30 0:23:02

headers_short_body_split_
strip

87.33% 99.43% 99.22% 0:01:18 0:44:24 0:25:25

full 88.19% ** 99.31% 0:01:52 ** 1:16:35

full_short 87.70% 99.37% 99.25% 0:00:56 0:43:39 0:25:06

full_short_no_split 81.02% 99.45% 99.35% 0:00:52 0:38:38 0:22:52

full_short_no_split_
no_count

80.50% 99.58% 99.35% 0:00:52 0:40:23 0:23:08

108



The following is a summary of the accuracy of all three classifiers for the tests performed in 
Section 4.6. Entries with a long dash (–) means the feature set/classifier combination was not 
run. Two asterisks (**) means the Maximum Entropy classifier did not run properly and the 
result was thrown out.

Feature Set
Accuracy Running Time

NB MaxEnt SVM NB MaxEnt SVM

unigram 75.42% ** – 0:00:08 ** –

bigram 83.30% ** – 0:00:16 ** –

trigram 87.64% ** 98.61% 0:01:00 ** 1:08:05

headers_only 96.07% 99.35% – 0:00:13 0:04:29 –

headers_body 91.73% ** 98.99% 0:01:15 ** 1:45:41

headers_body_count 92.07% ** – 0:01:27 ** –

headers_body_split 80.87% ** – 0:01:34 ** –

headers_body_split_strip 83.04% ** 98.73% 0:01:51 ** 4:16:46

short_body 74.63% 99.10% 98.22% 0:00:43 0:51:39 0:40:05

headers_short_body 77.81% 99.29% 99.11% 0:00:55 1:09:14 0:59:38

headers_short_body_strip 78.51% 99.50% 99.11% 0:00:55 1:07:17 1:02:41

headers_short_body_split_
strip

82.03% 99.35% 98.99% 0:00:57 1:16:04 1:13:10

full 83.06% ** 98.72% 0:01:32 ** 3:48:52

full_short 82.55% 99.34% 99.00% 0:01:00 1:19:51 1:10:56

full_short_no_split 77.52% 99.40% 99.15% 0:00:55 1:09:34 0:59:04

full_short_no_split_
no_count

78.13% 99.36% 99.17% 0:00:55 1:10:04 0:59:44
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APPENDIX D:  PERFORMANCE DATA FOR P-VALUE CALCULATIONS

The following are the group classification results required for calculating the p-value. The 
accuracy is taken from the Headers + Short Body + HTML + URL feature set, with c = 500.

Group
Accuracy

Ham vs. Spam Ham vs. Spam + Phish Ham vs. Spam vs. Phish

01 99.359% 99.312% 99.656%

02 98.824% 98.968% 99.968%

03 99.679% 99.742% 99.742%

04 99.573% 99.398% 99.656%

05 98.825% 98.969% 98.969%

06 98.717% 99.139% 99.225%

07 99.251% 99.570% 99.226%

08 98.822% 99.139% 99.225%

09 99.144% 99.226% 98.968%

10 100.000% 100.000% 100.000%

mean 0.99219 0.99346 0.99464

std. dev. 0.00434 0.00337 0.00388

p  -value  0.05695 0.48016

110



The following are the group classification results required for calculating the p-value for the 
2005 TREC corpus. The accuracy is taken from the Short Body + HTML + URL feature set, with 
c = 500.

Group
Accuracy

Ham vs. Spam Ham vs. Spam + Phish Ham vs. Spam vs. Phish

01 96.800% 96.987% 97.476%

02 98.300% 98.371% 98.371%

03 98.000% 98.697% 98.697%

04 96.900% 96.906% 96.743%

05 99.400% 99.104% 99.186%

06 98.300% 98.941% 98.453%

07 98.800% 97.801% 97.883%

08 98.800% 98.453% 98.453%

09 98.800% 98.779% 98.779%

10 97.800% 97.638% 97.720%

mean 0.98190 0.98168 0.98176

std. dev. 0.00843 0.00792 0.00721

p  -value  0.95206 0.9805
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APPENDIX E:  SOURCE CODE

This appendix contains the code I wrote to extract features and run the 10-way validation on the 
data. I have not chosen a license. For now, the code is available for non-commercial or research 
use. You may modify the code as much as you want. And, of course, there is no warranty of any 
kind. If you use this code, please reference this thesis in your work. Use of this code without 
attributing the author is not allowed. Commercial users, please contact the author before using 
this code.

feature_extractor.py is the class which extracts the features from an email message. It has several 
configurable properties which specify which features to extract. (Note: requires Python 3)

feature_extractor.py
#!/usr/bin/env python
'''
Created on Jul 5, 2011
Last modified on Sept. 11, 2011

@author: alberto
'''

import re
#import math

class EmailFeatureExtractor:
    # Class properties
    __vectors = {}
    __features = {}
    __charset = ""
    
    doUnigram = True
    doBigram = False
    doTrigram = False
    doHeaders = True
    doPartCounts = False
    doBody = False
    doShortBody = False
    separateHtml = False
    stripHtml = False
    doUrlFeatures = False
    #normalizeCounts = False
    
    # Constructor
    def __init__(self):
        
        # Set the pre-defined features
        self.__vectors["MESSAGE_PARSE_ERROR"] = 1
        '''
        self.__vectors["BYTE_DECODE_ERROR"] = 2
        self.__vectors["MESSAGE_IS_MULTIPART"] = 3
        self.__vectors["HAS_PLAIN_TEXT_PART"] = 4
        self.__vectors["HAS_HTML_PART"] = 5
        self.__vectors["ATTACHMENT_COUNT"] = 6
        self.__vectors["EMPTY_BODY"] = 7
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        self.__vectors["EMPTY_PLAIN_TEXT_PART"] = 8
        self.__vectors["EMPTY_HTML_PART"] = 9
        self.__vectors["EMPTY_OTHER_PART"] = 10
        
        # Set the phish features
        self.__vectors["HAS_RAW_URL"] = 11
        self.__vectors["NON_MATCHING_RAW_URL"] = 12
        self.__vectors["USES_CLICK_HERE"] = 13
        self.__vectors["URL_USES_IP"] = 14
        self.__vectors["LINK_COUNT"] = 15
        self.__vectors["LINK_DOMAIN_COUNT"] = 16
        '''
        
        
    def getVectors(self):
        return self.__vectors

    def extract(self, message):
        # See what character set we have; if not, set a default
        if message.get_charset() != None:
            self.__charset = message.get_charset()
        else:
            self.__charset = "iso-8859-1"
        
        # Initialize the feature list for this message
        self.__features = {}
        
        # See if we are going to do headers
        if self.doHeaders:
            if "Subject" in message:
                self.__extractNgrams("SUBJECT_", message["Subject"])
                
            if "Return-Path" in message:
                self.__extractNgrams("RETURN_PATH_", message["Return-Path"])
                
            if "From" in message:
                self.__extractNgrams("FROM_", message["From"])
                
            if "To" in message:
                self.__extractNgrams("TO_", message["To"])
                
            if "Mailing-List" in message:
                self.__extractNgrams("MAILING_LIST_", message["List-Id"])
                
            if "List-Id" in message:
                self.__extractNgrams("LIST_ID_", message["List-Id"])
        
        # See if we are doing anything with the body
        if self.doPartCounts or self.doBody or self.doShortBody \
        or self.doUrlFeatures:
            # Extract features from the text parts of the message
            for part in message.walk():
                # See if we have a multipart container 
                if part.get_content_maintype() == 'multipart':
                    if self.doPartCounts:
                        self.__increase_feature_count("MESSAGE_IS_MULTIPART")
                    continue
                
                # Skip if this part is not text
                if part.get_content_maintype() != "text":
                    if self.doPartCounts:
                        self.__increase_feature_count("ATTACHMENT_COUNT")
                    continue
                
                # See what kind of text part we have
                content_type = ""
                if part.get_content_subtype() == "plain":
                    if self.doPartCounts:
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                        self.__increase_feature_count("HAS_PLAIN_TEXT_PART")
                    if self.separateHtml:
                        content_type = "PLAIN_TEXT"
                elif part.get_content_subtype() == "html":
                    if self.doPartCounts:
                        self.__increase_feature_count("HAS_HTML_PART")
                    if self.separateHtml:
                        content_type = "HTML"
                else:
                    # Consider this an attachment
                    if self.doPartCounts:
                        self.__increase_feature_count("ATTACHMENT_COUNT")
                    continue
                
                # Get the text and decode it
                text = part.get_payload()
                if part.get_content_charset() != None:
                    self.__charset = part.get_content_charset()
                if isinstance(text, bytes):
                    try:
                        text = text.decode(self.__charset)
                    except:
                        self._increase_feature_count("BYTE_DECODE_ERROR")
                        text = text.decode(self.__charset, "ignore")
                
                # See if the text part is empty
                if len(text.strip()) == 0:
                    self.__increase_feature_count("EMPTY_" + content_type +
                                                  "_PART")
                    continue
                
                # See if we are extracting features from the body
                if self.doBody:
                    # Extract the ngrams
                    self.__extractNgrams("BODY_" + content_type + "_", text)
                    
                    # See if we need to do stripped HTML
                    if content_type == "HTML" and self.stripHtml:
                        p = re.compile(r'<.*?>')
                        s_text = p.sub('', text)
                        self.__extractNgrams("BODY_S" + content_type + "_",
                                             s_text)
                
                # See if we are extracting features from the shortened body
                if self.doShortBody:
                    # See if the length is 2048 or larger
                    if len(text) >= 2048:
                        # See which features we need to extract
                        self.__extractNgrams("BODY_START_" + content_type + "_",
                                             text[:1024])
                        self.__extractNgrams("BODY_END_" + content_type + "_",
                                             text[-1024:])
                    else:
                        # Extract features from the whole text
                        self.__extractNgrams("BODY_" + content_type + "_", text)
                
                    # See if we need to do stripped HTML
                    if type == "HTML" and self.stripHtml:
                        p = re.compile(r'<.*?>')
                        s_text = p.sub('', text)
                        
                        if len(s_text) >= 2048:
                            self.__extractNgrams("BODY_START_S" +
                                                 content_type + "_",
                                                 s_text[:1024])
                            self.__extractNgrams("BODY_END_S" + content_type +
                                                 "_", s_text[-1024:])
                        else:    
                            self.__extractNgrams("BODY_S" + content_type + "_",
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                                                 s_text)
                        
                if self.doUrlFeatures:
                    if part.get_content_subtype() == "html":
                        self.__extractUrlFeatures(text)
        
        return self.__features
            
    
    def __extractNgrams(self, vector_prefix, text):
        if self.doUnigram:
            self.__extractNgramsBySize(1, vector_prefix + "1_", text)
    
        if self.doBigram:
            self.__extractNgramsBySize(2, vector_prefix + "2_", text)
            
        if self.doTrigram:
            self.__extractNgramsBySize(3, vector_prefix + "3_", text)
            
            
    def __extractNgramsBySize(self, size, vector_prefix, text):
        # Make sure we have either text or bytes for the text
        if not isinstance(text, str) and not isinstance(text, bytes):
            return
        
        # See if we need to decode bytes
        if isinstance(text, bytes):
            try:
                text = text.decode(self.__charset)
            except:
                self.__increase_feature_count("BYTE_DECODE_ERROR")
                text = text.decode(self.__charset, "ignore")
            
        # Make sure we have a size greater than 0
        if (size <= 0):
            return
        
        # Make sure the length of the text is greater than our ngram size
        if len(text) < size:
            # TODO: allow it to work with small amounts of text
            return
        
        # If size is greater than 1, begin extraction with start symbols
        for i in range(1, size):
            # Initialize the vector name
            vector = vector_prefix
            
            # Add the start symbols
            for j in range(0, size - i):
                vector += "[start]"
            
            # Add the start of the text    
            vector += text[0:i]
            
            # Add the feature
            self.__increase_feature_count(vector)
            
        for i in range(0, len(text) - size + 1):
            # Create the vector
            vector = vector_prefix + text[i:i+size]
            
            # Add this feature
            self.__increase_feature_count(vector)
        
        # Add the stop symbol
        if size > 1:
            vector = vector_prefix + text[1 - size:] + "[stop]"
        
            # Add the feature
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            self.__increase_feature_count(vector)

        # See if we are normalizing the counts
        #if self.normalizeCounts:
            # Get the total number of features
            #total = 0;
            #for count in features:
            #    total += count
            #norm_factor = total
            
        #    sum_sq = 0
        #    for count in features:
        #        sum_sq += count * count
        #    norm_factor = math.sqrt(sum_sq)
            
            # Adjust the entries
        #    for feature in features.keys():
        #        self.__features[feature] = \
        #            round(features[feature] / norm_factor, 6)
        #else:
        #    for feature in features.keys():
        #        self.__features[feature] = features[feature]
                
    def __extractUrlFeatures(self, text):
        # Get the link tags
        links = re.findall('''<a href=["'](http.[^"']+)["']>(.[^<>]*)</a>''', \
                           str(text), re.I)
        if len(links) > 0:
            # Store the number of links
            self.__increase_feature_count("LINK_COUNT", len(links))
            
            # Create the list of unique domains
            domain_list = {}
            
            # Go through each link
            for link in links:
                # See if the text of the link is a URL
                url = re.search('''(http|https)://.+''', link[1], re.I)
                if url:
                    # We have raw URLs
                    self.__increase_feature_count("HAS_RAW_URL")
                    
                    # See if the raw URL matches the href link
                    if url.group().find(link[0]) >= 0:
                        self.__increase_feature_count("NON_MATCHING_RAW_URLS")
                else:
                    # See if the link text has HERE
                    if re.search('''h.*e.*r.*e''', link[1], re.I):
                        self.__increase_feature_count("USES_CLICK_HERE")
                        
                # See if the href link uses IP address
                if re.search('''[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.''' +
                             '''[0-9]{1,3}''', link[0]):
                    self.__increase_feature_count("URL_USES_IP")
                
                # Add the domain to the list
                url_split = link[0].split("/")
                domain_list[url_split[2]] = True

            # Add the count of distinct domains
            self.__increase_feature_count("LINK_DOMAIN_COUNT", len(domain_list))
        
        
    def __get_vector_number(self, vector):
        if vector not in self.__vectors:
            self.__vectors[vector] = len(self.__vectors) + 1
        return self.__vectors[vector]
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    def __increase_feature_count(self, vector, count = 1):
        vector_number = self.__get_vector_number(vector)
        
        if vector_number in self.__features:
            self.__features[vector_number] += count
        else:
            self.__features[vector_number] = count

extract_features.py is the main executable script that loads the email messages from the corpora 
and feeds them into the feature extractor class. It requires three parameters: the directory where 
the corpora is located, where the features will be written to, and the model (or feature set) that 
will be used (run the program with no parameters for usage). The corpora directory needs to have 
subdirectories with the different categories. Inside each category the data needs to be split into 
directories which divide the data. In this case, the data was divided into 10 groups. (You can 
change the categories and groups by changing the definition of the corpus_dir and dir_list  
arrays.) This program will recursively  (Note: requires Python 3)

extract_features.py
#!/usr/bin/env python
'''
Created on Jul 5, 2011

@author: alberto

This script will extract features from email corpora in 10-way split
directories. It will save a file for each of the 10 directories based on the
model name given.
'''

# Imports
import sys
import os
import email
from feature_extractor import EmailFeatureExtractor

# Get the paths to the data from the command line arguments
corpora = None
feature_dir = None
model = "default"

# Initialize the feature extractor
extractor = EmailFeatureExtractor()

# Go through the arguments
for raw_arg in sys.argv[1:]:
    # Split the argument on =
    arg = raw_arg.split("=", 2)
    if (len(arg) == 2):
        # See which argument we have
        if (arg[0] == "--corpora"):
            if (os.path.isdir(arg[1])):
                corpora = arg[1]
        elif (arg[0] == "--features"):
            if (os.path.isdir(arg[1])):
                feature_dir = arg[1]
        elif (arg[0] == "--model"):
            # See which kind of model we are doing:
            if arg[1] == "unigram":
                model = "unigram"
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                extractor.doUnigram = True
                extractor.doBigram = False
                extractor.doTrigram = False
                extractor.doHeaders = False
                extractor.doPartCounts = False
                extractor.doBody = True
                extractor.doShortBody = False
                extractor.separateHtml = False
                extractor.stripHtml = False
                extractor.doUrlFeatures = False
            elif arg[1] == "bigram":
                model = "bigram"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = False
                extractor.doHeaders = False
                extractor.doBody = True
                extractor.doPartCounts = False
                extractor.doShortBody = False
                extractor.separateHtml = False
                extractor.stripHtml = False
                extractor.doUrlFeatures = False
            elif arg[1] == "trigram":
                model = "trigram"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = False
                extractor.doPartCounts = False
                extractor.doBody = True
                extractor.doShortBody = False
                extractor.separateHtml = False
                extractor.stripHtml = False
                extractor.doUrlFeatures = False
            elif arg[1] == "headers_only":
                model = "headers_only"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = True
                extractor.doPartCounts = False
                extractor.doBody = False
                extractor.doShortBody = False
                extractor.separateHtml = False
                extractor.stripHtml = False
                extractor.doUrlFeatures = False
            elif arg[1] == "headers_body":
                model = "headers_body"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = True
                extractor.doPartCounts = False
                extractor.doBody = True
                extractor.doShortBody = False
                extractor.separateHtml = False
                extractor.stripHtml = False
                extractor.doUrlFeatures = False
            elif arg[1] == "headers_body_count":
                model = "headers_body_count"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = True
                extractor.doPartCounts = True
                extractor.doBody = True
                extractor.doShortBody = False
                extractor.separateHtml = False
                extractor.stripHtml = False
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                extractor.doUrlFeatures = False
            elif arg[1] == "headers_body_split":
                model = "headers_body_split"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = True
                extractor.doPartCounts = True
                extractor.doBody = True
                extractor.doShortBody = False
                extractor.separateHtml = True
                extractor.stripHtml = False
                extractor.doUrlFeatures = False
            elif arg[1] == "headers_body_split_strip":
                model = "headers_body_split_strip"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = True
                extractor.doPartCounts = True
                extractor.doBody = True
                extractor.doShortBody = False
                extractor.separateHtml = True
                extractor.stripHtml = True
                extractor.doUrlFeatures = False
            elif arg[1] == "short_body":
                model = "short_body"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = False
                extractor.doPartCounts = False
                extractor.doBody = False
                extractor.doShortBody = True
                extractor.separateHtml = False
                extractor.stripHtml = False
                extractor.doUrlFeatures = False
            elif arg[1] == "headers_short_body":
                model = "headers_short_body"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = True
                extractor.doPartCounts = True
                extractor.doBody = False
                extractor.doShortBody = True
                extractor.separateHtml = False
                extractor.stripHtml = False
                extractor.doUrlFeatures = False
            elif arg[1] == "headers_short_body_strip":
                model = "headers_short_body_strip"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = True
                extractor.doPartCounts = True
                extractor.doBody = False
                extractor.doShortBody = True
                extractor.separateHtml = False
                extractor.stripHtml = True
                extractor.doUrlFeatures = False
            elif arg[1] == "headers_short_body_split_strip":
                model = "headers_short_body_split_strip"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = True
                extractor.doPartCounts = False
                extractor.doBody = False
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                extractor.doShortBody = True
                extractor.separateHtml = True
                extractor.stripHtml = True
                extractor.doUrlFeatures = False
            elif arg[1] == "full":
                model = "full"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = True
                extractor.doPartCounts = True
                extractor.doBody = True
                extractor.doShortBody = False
                extractor.separateHtml = True
                extractor.stripHtml = True
                extractor.doUrlFeatures = True
            elif arg[1] == "full_short":
                model = "full_short"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = True
                extractor.doPartCounts = True
                extractor.doBody = False
                extractor.doShortBody = True
                extractor.separateHtml = True
                extractor.stripHtml = True
                extractor.doUrlFeatures = True
            elif arg[1] == "full_short_no_split":
                model = "full_short_no_split"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = True
                extractor.doPartCounts = True
                extractor.doBody = False
                extractor.doShortBody = True
                extractor.separateHtml = False
                extractor.stripHtml = True
                extractor.doUrlFeatures = True
            elif arg[1] == "full_short_no_split_no_count":
                model = "full_short_no_split_no_count"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = True
                extractor.doPartCounts = False
                extractor.doBody = False
                extractor.doShortBody = True
                extractor.separateHtml = False
                extractor.stripHtml = True
                extractor.doUrlFeatures = True
            elif arg[1] == "full_short_no_split_no_headers":
                model = "full_short_no_split_no_headers"
                extractor.doUnigram = True
                extractor.doBigram = True
                extractor.doTrigram = True
                extractor.doHeaders = False
                extractor.doPartCounts = True
                extractor.doBody = False
                extractor.doShortBody = True
                extractor.separateHtml = False
                extractor.stripHtml = True
                extractor.doUrlFeatures = True
            else:
                print("Unknown model: " + arg[1])
                exit(1)

if (corpora == None) or (feature_dir == None):

120



    print("Error Invalid arguments.")
    print("")
    print ("Usage: " + sys.argv[0] + \
        " --corpora=/path/to/split/corpora" + \
        " --features=/path/to/split/features --model=model_name" + \
        " --model=model")
    exit(1)

print("Using " + model + " model")

# Define the corpus directories
corpus_list = ["ham", "spam", "phish"]
dir_list = ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10"] 

# Go through the corpus directories
class_id = 0

for corpus in corpus_list:
    # Increase the class id value
    class_id += 1
    
    # Go through the directories
    for dir in dir_list:
        # Make sure this directory exists
        path = corpora + "/" + corpus + "/" + dir
        save_path = feature_dir + "/" + model + "/"
        if not (os.path.isdir(path)):
            print("Error: " + path + " directory does not exist")
            exit(1)
        
        if not (os.path.isdir(save_path)):
            os.mkdir(save_path)
        
        print("Extracting features in " + corpus + "/" + dir + " ...")
        
        # Open the file where the features will be stored
        features_fp = open(save_path + "features." + corpus + "." + str(dir),
                           "w")
        
        # Go through each file in the directory
        for file in os.listdir(path):
            # Load the email
            fp = open(path + "/" + file, "rb")
            parse_ok = False
            #print("  "+ file)
            try:
                message = email.message_from_binary_file(fp)
                parse_ok = True
                
            except:
                print("Could not parse " + corpus + "/" + file)
                features = {}
                features[1] = 1;
                
            # Get the features
            if parse_ok:
                features = extractor.extract(message)
            
            # Write out the features
            features_fp.write(str(class_id))
            for feature_number in sorted(features.keys()):
                features_fp.write(" " + str(feature_number) + ":" + \
                              str(features[feature_number]))
            features_fp.write(" # " + corpus + "/" + dir + "/" + file + "\n")
            #features_fp.write("\n")
            
            fp.close
        
        # Close the file
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        features_fp.close()

#import pprint
#pprint.pprint(extractor.getVectors())

The following script is an example of the shell scripts I used to run the 10-way cross-validation. 
This particular script ran the three-way cross-validation. It shows how the data was combined 
from the feature extractor, combined and fed to svm_multiclass_learn to create the model. From 
there, the data was processed with svm_multiclass_classify and the script tallied the results.

 There were four of these scripts, one for each phase of testing. They are mostly the same, except 
on how they consolidated the features. For example, the two-way filter would use sed to change 
the category id of 3 to 2 for all phishing samples.

Sample 10-way validation script
#!/bin/bash

# This script will run a 10-way validation on ham and spam using the unigram +
#  bigram + trigram model. It will also consider phish but change its class
#  identifier to spam to test wanted vs. unwanted.

corpora_dir="corpora"
tmp_dir="tmp"
svm_dir="svm"
model="test"
classes="ham phish spam"
groups="01 02 03 04 05 06 07 08 09 10"
results_ham[1]=0
results_ham[2]=0
results_ham[3]=0
results_phish[1]=0
results_phish[2]=0
results_phish[3]=0
results_spam[1]=0
results_spam[2]=0
results_spam[3]=0

# Make sure things exist
if [ ! -e "$corpora_dir/ham/$model.tokens.01" ]; then

echo "Could not find tokens"
exit

fi

# Go through each group
for run in $groups; do

echo "Performing run #$run"

# Delete the files in the temp directory
for file in $tmp_dir/*; do

rm $file
done

# Go through each class and combine the tokens
for class in $classes; do

echo " Combining tokens in class $class"

# Go through each group
for group in $groups; do

# See if this group is the same as the run
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if [ "$group" == "$run" ]; then
cat "$corpora_dir/$class/$model.tokens.$group" > \

"$tmp_dir/$class.$model.validation"
else

cat "$corpora_dir/$class/$model.tokens.$group" >> \
"$tmp_dir/$model.train"

fi
done

done

# Training the SVM model
echo " Training the SVM model"
"$svm_dir/svm_multiclass_learn" -c 5000 -v 0 "$tmp_dir/$model.train" \

"$tmp_dir/$model.svm_model"

# Go through each class
for class in $classes; do

echo "  Testing $class"
"$svm_dir/svm_multiclass_classify" -v 1 \

"$tmp_dir/$class.$model.validation" "$tmp_dir/
$model.svm_model" \

"$tmp_dir/classification_results"

# Go through the classes
for i in 1 2 3; do

count=`cut -d " " -f 1 "$tmp_dir/classification_results" 
| \

grep $i | wc -l`
case $class in

"ham" )
results_ham[$i]=$(( ${results_ham[$i]} + 

$count ))
;;

"phish" )
results_phish[$i]=$(( ${results_phish[$i]} + 

$count ))
;;

"spam" )
results_spam[$i]=$(( ${results_spam[$i]} + 

$count ))
;;

esac
done

done
done

# Print the results
echo ""
echo "-----===== RESULTS =====-----"
echo "       ham     phish   spam"
echo "ham    ${results_ham[1]}    ${results_ham[2]}      ${results_ham[3]}"
echo "phish  ${results_phish[1]}      ${results_phish[2]}  ${results_phish[3]}"
echo "spam   ${results_spam[1]}      ${results_spam[2]}      ${results_spam[3]}"
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