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Proteomic analysis on Aspergillus strains that are useful for industrial enzyme 
production
Shinobu Takagi a, Kaihei Kojimaa and Shinichi Ohashib

aNovozymes Japan, Ltd. R&D, Chiba, Japan; bGenome Biotechnology Laboratory, Kanazawa-Institute of Technology, Ishikawa, Japan

ABSTRACT
A simple intracellular proteomic study was conducted to investigate the biological activities of 
Aspergillus niger during industrial enzyme production. A strain actively secreting 
a heterologous enzyme was compared to a reference strain. In total, 1824 spots on 2-D gels 
were analyzed using MALDI-TOF MS, yielding 343 proteins. The elevated levels of UPR compo-
nents, BipA, PDI, and calnexin, and proteins related to ERAD and ROS reduction, were observed 
in the enzyme-producer. The results suggest the occurrence of these responses in the enzyme- 
producers. Major glycolytic enzymes, Fba1, EnoA, and GpdA, were abundant but at a reduced 
level relative to the reference, indicating a potential repression of the glycolytic pathway. 
Interestingly, it was observed that a portion of over-expressed heterologous enzyme accumu-
lated inside the cells and digested during fermentation, suggesting the secretion capacity of 
the strain was not enough for completing secretion. Newly identified conserved-proteins, likely 
in signal transduction, and other proteins were also investigated.

Abbreviations: 2-D: two-dimensional; UPR: unfolded protein response; ER: endoplasmic reti-
culum; ERAD: ER-associated protein degradation; PDI: protein disulfide-isomerase; ROS: reac-
tive oxygen species; RESS: Repression under Secretion Stress; CSAP: Conserved Small Abundant 
Protein; TCTP: translationally controlled tumor protein.
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Aspergillus niger is an important industrial fungus used 
in the manufacturing of organic acids, such as citric acid, 
and industrial enzymes [1–3]. A. niger secretes several 
enzymes that decompose plant biomass, such as amylo-
lytic, proteolytic (hemi) cellulolytic, pectinolytic 
enzymes, and oxidoreductases (catalase and glucose oxi-
dase) [4,5]. Many of these enzymes are used safely in 
food processing [1,2]. These products and A. niger are 
recognized as “generally regarded as safe (GRAS)” by the 
United States Food and Drug Administration (FDA) [1]. 
Their safety and ability to secrete enzymes in large 
amounts have rendered A. niger as popular host organ-
isms for heterologous protein production [6–9]. 
Numerous enzymes and mammalian proteins, including 
bovine prochymosin and human interleukin-6 are 
expressed in A. niger [7,8]. A. niger can secrete native 
enzyme at high levels (>20 g/L) [10], but yields of hetero-
logous proteins are typically low [7,10]. Approaches that 
have been taken to address this problem of low yield [7– 
9] include over-expression of chaperones or foldases 
[11], eliminating a protein degradation pathway [12], 
and altering morphology [13]. A recent trend has been 
to explore cellular activities for systematic control of 
protein production [10,14–17].

The advancement and expansion of bioinformatics to 
embrace the new “omics,” namely; genomics, proteo-
mics, transcriptomics, and metabolomics, has facilitated 

the comprehensive analysis of cellular processes and 
a better understanding of their associated cellular activ-
ities [15–18]. Because of their commercial importance, 
the genome sequence of two strains of A. niger has been 
determined: strain CBS513.88, the ancestor of the cur-
rently used enzyme-production strains [19], and strain 
ATCC1015, known for citric acid production [3]. This 
genomic information has led to a comprehensive omic 
analysis of this organism, including several transcrip-
tomic analyses and proteomic studies [10,20–27]. These 
studies have contributed to the understanding of certain 
cellular activities of A. niger strains producing enzymes, 
such as cellular responses to secretion stress [10,20,25] or 
metabolic responses under oxygen-limited conditions 
[26]. However, Aspergillus genes are far from fully char-
acterized and the functions of many remain unknown. 
Furthermore, cellular activities that comprise a response 
to enzyme production and secretion will be many and 
complex, hence a significant amount of further investiga-
tion is required to achieve a full understanding of them.

Here we report a proteomic study of A. niger strains 
used for the production of industrial enzymes, in 
order to add to the information database and contri-
bute to an understanding of the cellular activities 
involved in enzyme production. The study identifies 
several proteins at elevated expression levels during 
enzyme production, most of which are established 
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components of a stress response. However, two 
uncharacterized abundant proteins were also identi-
fied, which seem to be conserved in Aspergillus and 
likely participate in signal transduction.

Materials and methods

Strains and samples for the analysis

Two strains of A. niger were used in this study. C1100 is 
a transformant that produces a heterologous glucoamy-
lase from Trametes cingulate described in US8148127 
[28]. The strain was generated using an in-house 
A. niger strain derived from NN049184, which was ori-
ginally isolated in Denmark from a soil sample. The 
endogenous glucoamylase gene was inactivated in 
C1100. The plasmid used for transformation comprised 
the cDNA clone of T. cingulate glucoamylase and an 
expression cassette. The cassette comprises the neutral 
amylase II promoter from A. niger fused to the 5ʹ- 
untranslated region (5ʹ-UTR) of triosephosphate isomer-
ase gene from A. nidulans, the glucoamylase terminator 
from A. niger and the selective marker gene, amdS, from 
A. nidulans. The second strain, C1844, was derived from 
NN059095 [29] of NN049184 lineage. The endogenous 
glucoamylase gene and alpha-amylase genes were inacti-
vated by gene disruption in C1844. Fermentations were 
conducted in lab-scale 5 L tanks (ABLE corporation, 
Tokyo) with fed-batch fermentation to mimic commer-
cial enzyme production conditions [30]. Culture broths 
were collected at 48, 72 and 120 h for preparation of the 
cell extract.

Preparation of cell extract

Cells were harvested from the culture broths by filtra-
tion through a paper filter, followed by immediately 
rinsing with plenty of water and dehydrated on 
a paper towel. The harvested mycelia were frozen in 
liquid nitrogen and kept at −80°C until analysis. 
Frozen mycelia were ground to powder under liquid 
nitrogen using a pre-chilled mortar. Ground cells were 
suspended in lysis buffer consisting of; urea 5.1 g, 10% 
(w/v) SDS 0.2 mL, 20% (v/v) Triton X-100 1.0 mL, 
DTT 0.1 g, Pharmalyte [3–10] (GE Healthcare Japan) 
0.2 mL, and one tablet of cOmpleteTM Mini protease 
inhibitor cocktail (Roche product, Sigma-Aldrich 
/Merck, Japan), made up to 10 mL in Milli-Q water. 
The homogenate was incubated at 16°C for 20 min, 
and then centrifuged at 3500 rpm to collect the super-
natant solution. Disulfide-bonds in proteins were 
reduced and alkylated using the ProteoPrep 
Reduction and Alkylation Kit (PROTRA, Sigma- 
Aldrich/Merck, Japan) according to the manufac-
turer’s protocol. Protein solutions were concentrated 
and purified using a ReadyPrepTM 2-D Cleanup Kit 
(BIO-RAD Laboratories, Inc., Japan). This process 

was repeated twice to obtain protein concentrations 
around 20 mg/mL. A 2-D Quant Kit (GE Healthcare 
Japan) was used for the determination of protein con-
centration in crude and purified protein solutions.

Two-dimensional gel electrophoresis

Two-dimensional (2-D) gel electrophoresis was con-
ducted on two scales. A preliminary run was made on 
a small scale using the DiskRun system (Atto 
Corporation, Tokyo). A precast agarose gel column, 
agarGEL A-M310 (2.5 mm diameter x 75 mm, pH 
3–10, Atto), was used for the first dimension of iso-
electric focusing, and precast poly-acrylamide gel, 
e-PAGEL (12.5%T, 90 mm (W) × 83 mm (H) × 1 mm 
(T), Atto) was used for the second dimension of SDS- 
PAGE. Large-scale electrophoresis was conducted for 
better separation yielding more spots. The apparatus, 
CoolPhoreStar IPG-IEF (Anatech Co., Ltd., Tokyo) was 
used for immobilized pH-gradient isoelectric focusing 
in the first dimension and CoolPhoreStar SDS-PAGE 
Dual-200 K was used for SDS-PAGE in the second 
dimension. Electrophoresis was conducted following 
the procedure previously described by T. Toda accessed 
at: http://proteome.tmig.or.jp/2D/2DE_method.html. 
The separation was achieved by employing 
Immobiline® DryStrip pH3-10NL or DryStrip pH 4–7, 
18 cm (GE Healthcare Japan) for the first dimension, 
and a manually made poly-acrylamide gel (12.5% T, 
190 mm (W) x 175 mm (H) x 1 mm (T)) for the second- 
dimensional electrophoresis. After electrophoresis, gels 
were stained with Coomassie brilliant blue (CBB) for 
visualization of the protein spots. Images of 2-D gels 
were scanned by Xcise (Shimadzu Corporation, Kyoto). 
Spot intensity was analyzed using Image-J (NIH, 
https://imagej.nih.gov/ij/).

Mass Spectrometry and protein identification

Protein spots were machine-excised, destained, and 
digested with trypsin using Xcise (Shimadzu 
Corporation, Kyoto). The digested peptides were pur-
ified and concentrated with ZipTip® (Millipore/Merck, 
Japan) and extracted with 0.1% TFA-acetonitrile solu-
tion containing α-cyano-4-hydroxycinnamic acid, and 
finally spotted on to metal plates for mass analysis. 
The mass spectrometric analysis was carried out using 
a MALDI-TOF_MS AXIMA CFR Plus (Shimadzu. 
Kyoto). The peptide mass fingerprint was analyzed 
using the MASCOT Sever and the NCBInr database 
(updated in August 2016). Protein identification was 
described using the locus tag of A. niger CBS 513.88 
[19]. Information regarding predicted protein func-
tion and yeast homolog was sourced from AspDB 
(http://www.aspergillusgenome.org/) (up-dated in 
2015).
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Results and discussion

Proteomic analysis and protein detection

A proteomic study was made using two recombinant 
A. niger strains; C1100, the test strain which over- 
secretes a heterologous glucoamylase, and C1844, 
a reference strain, which is not producing 
a heterologous enzyme and whose major secreted pro-
tein genes have been deleted. Both strains were fer-
mented in lab-scale tanks under fed-batch conditions, 
mimicking industrial enzyme productions. Culture 
samples at different time points, 48, 72 and 120 h, 
were collected and preparation of cell extract was 
attempted for two-dimensional (2-D) gel electrophor-
esis. However, the quality of the samples obtained at 
the later stage of fermentation was poor due to partial 
cell lysis; therefore, the 48-h samples were mainly used 
for the analysis. In total, 14 gels were made, and 1832 
stained spots were analyzed by MALDI-TOF_MS. Of 
these, 1445 spots were successfully identified based on 
the obtained amino acid sequences, resulting in the 
detection of 343 proteins. Detected proteins were cate-
gorized based on their predicted or known functions 
(see Table 1 for a summary). As most proteins in 
A. niger have not been characterized, many protein 
functions were predicted based on their similarity to 
or orthologues in other organisms. A full list of 
detected proteins in this study is shown in Table S1.

Comparison of proteins detected in the two strains

Visual comparison with differential 2-D gels
A comparison of protein profiles between two strains, 
an enzyme-producer and the reference strain, can 
identify proteins and associated cellular activities that 
are affected on enzyme production in A. niger. A better 

understanding of the effect of heterologous protein 
production on the organism could lead to strategies 
to improve the yield and is also of basic interest with 
respect to gaining molecular insight into underlying 
cellular response mechanisms.

A qualitative visual comparison was made by ana-
lysis of differential 2-D gels (pH4-7) with 48-h samples 
for each strain. A different color was used to visualize 
the spots and gel images for each, then overlaid for 
spot comparisons (Figure 1). When spot intensity was 
stronger in one strain versus the other, the spot 
appears in a specific color. If spot intensity is equal 
in the two strains, the spot appears black. The image 
shown in Figure 1 displays a couple of spots in differ-
ent colors, indicating that the concentrations of these 
proteins were significantly different between the two 
strains. The large green spots labeled HP in Figure 1 
are the heterologous glucoamylase expressed in 
C1100. Other spots shown in green include BipA 
(An11g04180), calnexin (ClxA) (An01g08420) and 
protein disulfide isomerase (PDI) (An02g14800). 
They are chaperones and foldases assisting protein 
folding in the ER. Pink spots represent proteins pro-
duced at a higher level in C1844 and are identified as 
fructose bisphosphate aldolase (Fba1) (An02g07470) 
of glycolysis, Nmt1 (An02g10320) for thiamine bio-
synthesis and Vip1 (An16g05020), an inositol phos-
phate kinase. The former two are the enzymes for 
carbon metabolism, and the latter is for the synthesis 
of inositol phosphates that play roles in signal trans-
duction for processes such as cellular growth, apopto-
sis, and endocytosis. It is not possible to determine 
whether these proteins were absolutely reduced in the 
enzyme-producing strain or were simply diluted in the 
protein extract due to the presence of heterologous 
enzyme.

Quantitative comparison of detected proteins by 
measurement of spot-intensities
A quantitative analysis was undertaken to provide 
a more accurate comparison of protein levels secreted 
by the two strains. To conduct a quantitative compar-
ison between the two strains, Coomassie brilliant blue- 
stained gels (large scale, pH 3–10) were imaged and 
spot intensities were measured by the image scanner. 
The intensity of each protein spot per the total inten-
sity of all protein spots was calculated as a percentage 
(%). When a protein appeared as multiple spots on 
a gel, intensities of these spots were combined and 
used for the calculation. The results are shown in 
Table 2. As mentioned before, in the case of C1100, 
the produced heterologous glucoamylase appeared on 
the gels. The intensity of this enzyme was 16.5%, if 
included in the calculation of the total intensity of the 
gel. It was the most abundant protein in this sample, 
but, since it is not a native protein of A. niger, it was 
not included in the calculation of the total intensity of 

Table 1. Functional category of the identified proteins.

Category of Functions
No. of 

proteins %

METABOLISM
Carbohydrate Metabolism 58 16.9
Amino Acid Metabolism 40 11.7
Nucleotide metabolism 10 2.9
Metabolism of Cofactors and Vitamins 5 1.5
Lipid metabolism 6 1.7
Energy Metabolism 14 4.1

INFORMATION STRAGE AND PROCESSING 　 　
Transcription 29 8.5
Translation, ribosomal structure 31 9.0

SIGNALING 　 　
Protein folding, sorting, vesicle trafficking and 
degradation

52 15.2

Signal transduction 16 4.7
CELLULAR PROCESSES 　 　

Cellular processes (cell cycle and 
morphogenesis)

23 6.7

OTHERS 　 　
Other functions 39 11.4
Unknown function 20 5.8

Total 343 100

*The category was based on KOG [31] with some modification.
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the spots on the gel. The 28 most abundant proteins in 
each strain are listed in Table 2.

Analysis of increased abundance upon enzyme 
production

ER chaperones and the unfolded protein response 
(UPR)
Among the 28 most abundant proteins, 11 proteins 
were abundant especially in the enzyme-producing 
strain (Table 3a). They were primarily chaperones 
and foldases, as mentioned in the previous section. 
Their elevated abundance will be discussed in the 
context of a potential role in enzyme production by 
this strain.

BipA is an ER chaperone that assists in the translo-
cation of newly synthesized proteins to the ER and 
their proper folding within the ER [32]. BipA is also 
a sensor for unfolded proteins in the ER and interacts 
with Ire1 to activate the transcription factor HacA and 
induce the unfolded protein response (UPR) [33]. PDI 
is a foldase that assists S-S bond formation for correct 
protein folding [34] which is necessary for optimal 
secretion [35]. Calnexin is an ER chaperone that 
binds only to N-linked glycoproteins [36] and assists 
their proper folding. The heterologous glucoamylase 
was a heavily glycosylated protein. Therefore, calnexin 
was likely necessary for proper folding and secretion 
of this enzyme.

Over-expression of a secreted protein gives rise to 
secretion stress in the ER and leads to UPR [10,20,37]. 

Both BipA and PDI [38,39], as well as calnexin [20,40], 
are known to be up-regulated by the UPR, which 
would fit with a hypothesis whereby over-expression 
of the heterologous enzyme in our strain induces this 
stress response. A previous transcriptomic analysis on 
an A. niger strain over-expressing a native glucoamy-
lase [40] identified elevated transcription of 130 genes 
linked to the secretory pathway. The genes were cate-
gorized into four functional groups; ER membrane 
translocation, protein glycosylation, vesicle transport, 
and ion homeostasis. Among these upregulated genes, 
besides BipA, PDI, and calnexin, only six also 
appeared in this study. Corresponding proteins 
detected in our study include two protein disulfide 
isomerases, TigA (An18g02020) and PrpA 
(An01g04600), the chaperone Lhs1 (An01g13220), 
the beta-subunit of ER alpha-glucosidase 
(An13g00620) linked to protein glycosylation, gol-
gin-160 related protein Rud3 (An08g00290) (for 
Golgi transport), and a hypothetical protein YIL041w 
(An02g03460), with predicted function in the secre-
tory pathway. No other detected proteins matched 
genes identified by transcriptomics. The reason for 
this discrepancy could be the difference in the tested 
strains, but it is also the case that results of transcrip-
tome and proteome analyses are not well corre-
lated [10].

The UPR is closely related to ER-associated protein 
degradation (ERAD) [25,33,41]. In this study, several 
proteins related to proteasome and ERAD were 
detected (Table S1). Of these, Cdc48 (An04g09170) is 

Figure 1. Visual comparison of 2D-gel electrophoresis with two strains. The spots shown in green are from C1100 producing 
a heterologous enzyme, and the spots shown in pink are from C1844 not producing enzyme. The samples collected at 48 h were 
used.  ND is a protein not determined. The 1st dimensional electrophoresis was conducted at the gradient pH 4–7. The spots 
shown as HP are the ones from heterologous glucoamylase. The rest of proteins are described in the text. GpdA, Mdh1, HexA, 
Tpm1 were abundant, but did not appear in the gel of this pH range. These protein spots can be detected on the gels of pH 3–10 
(Figure S1).
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Table 2. Comparison of the detected proteins on two strains with 48-h samples.
C1100                                               C1844

Systematic 
code Description

Intensity 
(%)

Systematic 
code Description

Intensity 
(%)

An11g04180 DnaK-type molecular chaperone, bipA 11.6 An02g10320 Thiamine biosynthetic process, nmt1 7.8
An02g10320 Thiamine biosynthetic process, nmt1 5.0 An02g07470 Fructose-bisphosphate aldolase, fba1 3.9
An01g08420 Putative calnexin, integral membrane ER 

chaperone, clxA
4.1 An16g01830 Glyceraldehyde-3-phosphate 

dehydrogenase, gpdA
3.9

An09g06410 Hypothetical protein, CSAP 3.5 An18g06250 Phosphopyruvate hydratase, enolase, eno1 3.8
An07g09990 Heat shock protein hsp70 family, putative 

ssa4
3.0 An19g00420 Cation transmembrane transporter 3.7

An01g10050 IgE-dependent histamine-releasing factor/ 
TCTP family

2.9 An16g05020 Inositol hexaki-/heptaki-phosphate kinase, vip1 2.7

An01g07870 Uncharacterized protein with PH domain, 
aph1

2.6 An15g01700 Alpha-subunit of NAC (EGD2) 2.5

An15g01700 Alpha-subunit of NAC (EGD2) 2.5 An09g06410 Hypothetical protein, CSAP 2.3
An16g03740 cAMP-dependent protein kinase regulatory 

subunit, pkaR
2.4 An02g07210 Aspartic protease, pepE 2.1

An16g01830 Glyceraldehyde-3-phosphate 
dehydrogenase, gpdA

2.3 An18g02140 Spi1-GTPase binding protein, sbp1 2.1

An19g00420 Cation transmembrane transporter 2.0 An07g04570 Putative woronin body protein, hexA 2.0
An15g07240 Alkyl sulfatase activity, uncharacterized 1.8 An01g10050 IgE-dependent histamine-releasing factor/ 

TCTP family
2.0

An14g05320 Putative cell cycle regulator p21 protein, 
wos2

1.7 An13g00760 Tropomyosin, tpm1 1.7

An18g06270 14-3-3 protein, artA 1.7 An14g04180 ATP synthase subunit beta 1.6
An04g09170 Putative cdc48, cdc48 1.6 An03g04280 Pyridoxine biosynthesis protein pyroA 1.5
An16g09260 DnaK-type molecular chaperone, ssb2 1.6 An18g06270 14-3-3 protein, artA 1.4
An18g02140 Spi1-GTPase binding protein, sbp1 1.6 An08g02260 Phosphoglycerate kinase 1.4
An13g00760 Tropomyosin, tpm1 1.5 An07g09990 Heat shock protein hsp70 family, putative 

ssa4
1.4

An07g03850 Putative transaldolase, tal1 1.5 An01g07870 Uncharacterized protein with PH domain, 
aph1

1.4

An04g06380 Mitochondrial aspartate aminotransferase, 
mAspAT

1.5 An07g02160 Mitochondrial malate dehydrogenase, mdh1 1.2

An04g04060 Cytochrome-c peroxidase precursor, ccp1 1.5 An12g08570 Type 2 peroxiredoxin, prxII 1.2
An07g04570 Putative woronin body protein, hexA 1.4 An07g03850 Putative transaldolase, tal1 1.1
An02g07500 Saccharopine dehydrogenase, lys1 1.3 An01g12210 Mitochondrial-processing peptidase subunit 

beta
1.0

An02g14800 Protein disulfide isomerase, pdiA 1.3 An16g05930 Ortholog of AN3975, AN9193, AN2891 
(A. nudulans)

0.9

An18g06250 Phosphopyruvate hydratase, enolase, eno1 1.2 An14g05320 Putative cell cycle regulator p21 protein, 
wos2

0.9

An07g07760 14-3-3 protein, unnamed, artB 1.2 An04g03360 Putative mitochondrial peroxiredoxin, prxI 0.9
An02g07470 Fructose-bisphosphate aldolase, fba1 1.1 An01g06970 Glycerol dehydrogenase; ara1 0.9
An16g05090 Putative mitochondrial heat shock protein, ssc1 1.1 An04g06380 Mitochondrial aspartate aminotransferase 

(mAspAT)
0.8

The proteins appeared in both columns are shown in bold.

Table 3. Proteins abundant in the samples of 48 h.
a) Proteins especially abundant in the enzyme strain C1100 b) Proteins abundant in both C1100 and C1844

Chaperons and foldases Carbon metabolism and energy generation
DnaK type ER chaperone, BipA Glyceraldehyde-3-phosphate dehydrogenase, Gpd1
Protein disulfide-isomerase, PdiA Enolase, Eno1
Calnexin, ClxA Fructose-bisphosphate aldolase, Fba1
Putative cell division control protein 48, Cdc48 Mitochondrial aspartate aminotransferase, mAspAT
Molecular chaperone, Ssb2 Putative transaldolase, Tal1
Putative mitochondrial chaperone, Ssc1 Thiamine biosynthesis, Nmt1

Signal transduction Chaperons, signaling and other regulators
cAMP-dependent protein kinase regulatory subunit, PkaR Heat shock protein hsp70 family, putative Ssa4
14-3-3 proteins, ArtB Spi1-GTPase binding protein, Sbp1

Oxidative stress response Cell cycle regulator p21 protein, Wos2
Cytochrome C peroxidase, Ccp1 Hypothetical protein, CSAP

Protein with putative PH domain, Aph1
Others TCTP family protein, AngA

Putative alkyl sulfatase and related hydrolases 14-3-3 proteins, ArtA
Saccharopine dehydrogenase, Lys1 Cell components

Woronin body protein, HexA
Tropomyosin, Tpm1

Others
Cation transmembrane transporter
Alpha-subunit of NAC, (Egd2)

PROTEOMICS OF ASPERGILLUS USED FOR ENZYME PRODUCTION 5



a chaperone with AAA+ ATPase activity involved in 
ERAD via the ubiquitin fusion degradation pathway 
[42–45]. In ERAD, Cdc48 recognizes misfolded pro-
teins in the ER and translocates them to the cytoplasm 
for degradation by the proteasome [44]. Calnexin is 
also known to play a role in ERAD [46]. The identifi-
cation of proteins involved in both the UPR and 
ERAD in our proteomic study indicates that both 
stress responses are occurring during heterologous 
enzyme production. However, the gene products of 
several major ERAD components, such as derA, doaA, 
hrdC, which are known to be up-regulated during the 
UPR [25,41], were not detected by our proteomics. 
Again, this might be attributable to the strain differ-
ence, or the difference between transcriptomic analysis 
and proteomic analysis. It would be interesting to 
conduct transcriptomic analysis on our strains to clar-
ify it.

Potential repression by secretion stress upon 
enzyme over-production
The quantitative analysis enabled us to compare the 
protein population between the two strains. This com-
parison not only identified more abundant proteins, as 
described above, but also proteins that decreased in 
abundance in the enzyme-producing strain relative to 
the reference strain.

When the total intensity (%) of each spot was 
compared, enzymes in carbon metabolism, such as 
Fba1 and enolase, as well as Vip1, an inositol phos-
phate kinase, were detected at an over two-fold lower 
level in the enzyme-producing strain. It is, therefore, 
possible that these enzymes are downregulated in this 
enzyme-producing strain. It is known that the over- 
expression of a secreted protein causes ER stress and 
represses the expression of other secreted proteins 
[47], a phenomenon called REpression under 
Secretion Stress (RESS) [48]. Although RESS sounds 
a good explanation of the down-regulation of proteins 
observed here, it is a mechanism of transcriptional 
regulation and does not affect the expression of non- 
secreted protein [47]. Carbon metabolizing enzymes 
are not secreted protein; thus, their observed repres-
sion in this study must be due to a different 
mechanism.

Other abundant proteins
In addition to the above-mentioned abundant pro-
teins, linked to the UPR and ERAD pathways which 
might be expected due to known induction of such 
stress responses upon enzyme-production, other iden-
tified proteins of significant abundance in the test 
strain are worth discussion (see Table 3a). Such pro-
teins include the house-keeping chaperones, Ssa4 
(An07g09990) and Ssb2 (An16g09260), cAMP- 
dependent protein kinase (An16g03740), cytochrome 

C peroxidase (CCP) (04g04060), some more chaper-
ones, and signaling proteins.

The cAMP-dependent protein kinase, or protein 
kinase A (PKA), plays important roles in the cAMP 
signaling cascade [49] in response to environmental 
fluctuations. It evokes various responses related to cell 
development, metabolisms, and virulence, through its 
protein phosphorylation activity of a range of targets 
such as protein kinases, signaling factors, and tran-
scription factors [49,50]. In Aspergillus, PKA is known 
to be involved in controlling morphology [51], lipid 
composition [52], conidial germination [53], and viru-
lence [54]. Its direct or indirect phosphorylation tar-
gets are not well characterized. Recently, 
a comprehensive phosphorylome was conducted on 
A. nidulans [50] and identified CreA, a main repressor 
for carbon catabolite repression, as one of the targets. 
PKA in A. niger may also be involved in sensing 
glucose and controlling glucose repression, besides 
controlling morphology.

Cytochrome C peroxidase (CCP) is a protein 
involved in the oxidative stress response by decreasing 
reactive oxygen species (ROS), such as hydrogen per-
oxide [55]. It is known that ROS are continuously 
formed during aerobic metabolism [56]. Moreover, it 
was suggested that active protein secretion caused 
oxidative stress [10]. Previously reported proteome 
studies of A. niger also detected proteins that reduce 
ROS, such as superoxide dismutase, peroxiredoxin 
[22], or thioredoxin [23]. The detection of CCP in 
our study is thus consistent with these previous 
studies.

House-keeping chaperones, such as Ssa4, Ssb2, and 
Ssc1, are present abundantly in S. cerevisiae [57]. 
These proteins were detected at a high level in our 
strains as well. The quantitative analysis revealed that 
these chaperones were at about a two-fold higher level 
in the enzyme-producing strain than the reference 
strain (data not shown).

Ssc1 is a mitochondrial chaperone that assists the 
translocation of mitochondrial proteins newly born in 
the cytosol [58,59]. Various cellular reactions relating 
to the energy generation, including the TCA cycle, 
pyruvate metabolism, as well as the electron transport 
system, occur in the mitochondria; hence, Ssc1 is likely 
required at a high level to support these cellular 
reactions.

Ssb2 is primarily a ribosome-binding chaperone 
located in the cytosol [57,60] that acts against nascent 
polypeptides [61] to prevent aggregation and potential 
interaction with the signal recognition particle (SRP) 
which would miss-target them to the ER. Ssb2 also has 
a role in ribosome-independent glucose sensing [62], 
controlling the activity of protein kinase Snf1, a central 
player in glucose repression via interaction with signal 
transduction protein(s). In yeast, 14-3-3 proteins, 
Bmh1 and Bmh2, are involved in glucose sensing 
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jointly with Ssb [63,64]. In A. nidulans, a homolog 
ArtA is involved in septum formation and conidia 
polarization [65]. 14-3-3 homologs, ArtA 
(An18g06270) and ArtB (An07g07760), were detected 
at a high level in our strains, which could have roles in 
glucose sensing and repression in A. niger.

Ssa4 is a cytosol chaperone, and in yeast, it serves to 
protect cells from stressors, such as heat, starvation, 
and oxidants [66,67]. Ssa4 shuttles between the 
nucleus and the cytosol during normal growth condi-
tions, but remains in the nucleus under stressed con-
ditions [68]. Sbp1 (An18g02140), which was also 
detected in abundance, is linked to the activity of 
Ssa4 in nuclear export. Data suggest that Ssa4 actively 
increases in A. niger during fermentation.

Proteins abundant in both strains

Although proteins abundant in both strains may not 
be as interesting from the point of view of heterolo-
gous enzyme production in A. niger and a better 
understanding of how cellular activity is affected by 
enzyme production, it is worth highlighting some of 
those detected since so many A. niger genes have not 
been characterized.

Metabolic enzymes
Among the 28 most abundant proteins, 17 proteins 
appeared in both strains (Table 3b), indicating they 
have important roles in overall cell growth and func-
tion rather than enzyme production. The most domi-
nant functional group of the category comprises 
enzymes related to carbon metabolism. As mentioned 
previously, glycolytic enzymes and Nmt1 were 
detected at over two-fold lower levels in the enzyme- 
producing strains, although they were still abundant. 
The quantities of mAspAT and transaldolase (Tal1) 
remained equally or slightly higher in the enzyme- 
producing strains. Together, the analysis suggests 
that the metabolic pathway to gain energy shifted 
from glycolysis to other pathways, such as the pentose 
phosphate pathway, during enzyme over-production.

Signaling proteins
There were a couple of proteins abundant in both strains 
which are likely involved in signal transduction or reg-
ulation of cellular activities. These include a hypothetical 
translationally controlled tumor protein (TCTP) 
(An01g10050), two 14-3-3 family proteins ArtA and 
ArtB, a hypothetical protein with a predicted Pleckstrin- 
homology (PH) domain (An01g07870), and a newly 
identified hypothetical protein (An09g06410), CSAP. 
Although abundant in both strains, the quantitative ana-
lysis indicated that they were slightly elevated in the 
enzyme-producing strains.

TCTP is a small multi-functional protein of around 
20 kDa, and highly conserved and ubiquitous in 

eukaryote cells [69]. It is likely involved in cell growth, 
cell cycling, and protecting cell against various stres-
sors and apoptosis [70,71]. A homolog in A. nidulans, 
TcpA, was involved in the branching of vegetative 
mycelia and in the development of asexual spores 
[72]; however, it is unlikely that these functions are 
important during the submerged fermentation for 
enzyme production. The role of a TCTP homolog 
found in A. niger, termed AngA, could be protecting 
cells from stressors during fermentation or supporting 
cell growth other than branching.

A newly identified hypothetical protein (An09g06410) 
was abundant in both strains. The protein is relatively 
small, consisting of 256 amino acid residues, with multi-
ple repeats of glutamine, glycine, and serine. C-terminal 
half of the protein has a similarity to WW domain 
proteins such as A. fumigatus Afu5g03750 (Figure S2) 
or A. flavus RMZ45354. WW domain is a highly con-
served protein domain involved in protein–protein inter-
action [73]. It appears in various proteins working for 
signal transduction. There are a few orthologues in 
A. nidulans (AN9521, AN0790), A. fumigatus 
(Afu5g03750), A. oryzae (AO090102000585), and other 
Aspergillus species. Therefore, this protein is likely 
a conserved protein among Aspergillus. A protein- 
protein BLAST search using the NCBI database did not 
yield any hits from S. cerevisiae, in support of the propo-
sition that it is a unique protein for fungal species. Here 
we term the protein as Conserved Small Abundant 
Protein in Aspergillus (CSAP). The function of CSAP is 
yet to be elucidated.

Another hypothetical protein (An01g07870), 
termed Aph1, had a predicted Pleckstrin-homology 
(PH) domain [74], which is known to bind phos-
phorylated phosphatidylinositol, a lipid mediator 
located on the membrane of the organelle. The 
domain recruits the protein to the targeted organelle 
for signal transduction. As orthologues exist in 
A. oryzae (AO090009000457), A. fumigatus 
(Afu4g12450), A. nidulans (AN3674) and other 
Aspergillus species (data not shown), it is likely 
a conserved protein among Aspergillus. Exact roles 
for this protein in A. niger remain to be determined.

Cell components – HexA and tropomyosin
Among the detected cell components, the most abundant 
protein was HexA (An07g04570), which is a core protein 
of the Woronin body [75]. Similar results were observed 
in a Trichoderma reesei strain producing cellulases [76], 
suggesting the importance of this protein during 
enzyme-production. The Woronin body functions to 
seal septal pores upon cellular damage to avoid cell lysis 
[77]. Observations show that fungal cells might be 
damaged during fermentation; hence, HexA was 
required in high amounts to prevent mycelial death. 
Alternatively, it was observed in N. crassa that the expres-
sion of HexA was maximal in apical cells [78]. It is also 
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possible that the high level of HexA in this study may be 
related to active apical cell growth during fermentation.

Another abundant cellular protein was tropomyosin 
(An13g00760), which is a conserved actin-binding pro-
tein that stabilizes actin filaments [79]. Tropomyosin 
particularly has a high affinity to actin cable, so that it 
is used as a marker for it [80,81]. Actin cable plays a role 
in apical exocytosis assisting tip growth. In fact, tropo-
myosin was observed in the Spitzenkörper at the hyphal 
tip, but is also concentrated near the developing septa 
[82]. Importantly, protein secretion typically occurs in 
the apical cells [83] but can also occur near the septum 
[84]. An abundance of tropomyosin may be related to 
the stabilization of actin cable to support active secretion 
from the hyphal tip and septum. To our knowledge, our 
study represents the first discussion of tropomyosin 
function in A. niger.

Retention of secreted over-produced enzyme 
within the cells

One of the striking observations in this proteomic study 
was that the heterologous glucoamylase, expressed for 
secretion outside of the cells, appeared in the proteome 
(Figure 2). Whether this glucoamylase accumulated 
inside the cell or associated with the cell wall, similarly 
to an alpha-amylase in A. oryzae [85], was not known. 
However, the concentration of the observed enzyme in 
the proteome was higher later stage of fermentation, 
indicating that accumulation is occurring during fermen-
tation. Interestingly, the size of abundant spots for 

glucoamylase varied during fermentation, smaller sizes 
appearing with higher frequency in the 120-h sample 
(Figure 2b). This suggests that the enzyme protein prob-
ably does accumulate inside the cell, and is subject to 
proteolytic digestion during fermentation. Besides the 
detection of proteins related to the proteasome, 
a couple of vacuolar proteases, such as pepE, pepC and 
carboxypeptidase Y, was detected in the proteome. 
Whether glucoamylase was degraded by the proteasome 
via ERAD, or digested by vacuolar degradation cannot be 
established in this study.

Observation of intracellular glucoamylase was sur-
prising, as the production of the enzyme in the cul-
ture broth increased linearly (data not shown). It is 
suggestive of most of the enzyme having been 
secreted, with a fraction remaining in the cell. The 
cause of retention could be indicative of 
a malfunction in a part of secretion machinery for 
newly borne protein, such as ER-entering, protein 
folding, glycosylation, and/or vesicle-trafficking, or 
could indicate over-capacity of the secretion path-
way. Previously, glucoamylase was detected in the 
A.niger proteome, but predominantly as a protein in 
the secretome [24]. In that case, the detected protein 
was likely an intermediate of a successful secretion 
process. Our observation is probably the first evi-
dence of the accumulation of a proportion of over- 
secreted enzyme in the cells during fermentation. 
Whatever the cause of this observation, our results 
indicate that there is some room for improvement of 
heterologous protein production.

Figure 2. Accumulation of glucoamylase in the cells. (a) Three 2D-gels of C1100 at different time points. Spots shown by arrows 
were originated from glucoamylase. Population of spots increased with time, indicating produced glucoamylase was being 
accumulated in the cells. (b) Magnified 2D-gel of the C1100 collected at 120 h. Spots shown with arrows had partial sequence of 
glucoamylase. This indicates the produced glucoamylase was digested in the cells.
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Conclusion

Simple proteomic analysis of industrial A. niger strains 
producing enzyme suggested that the UPR was hap-
pening, with the evidence that BipA, PDI, and cal-
nexin, all known as UPR elements, were detected at 
a high level in the enzyme-producing strain. It was 
probably due to the secretion stress caused by over- 
expression of a heterologous enzyme, as already 
reported by several researchers. A chaperone Cdc48, 
linked to ERAD, was also more abundant, that sug-
gests that ERAD was also occurring. However, other 
known components identified by the transcriptomic 
analysis, which were up-regulated in the UPR and 
ERAD in A. niger, were not observed in our proteomic 
study (with exception of six proteins in addition to the 
above). Additional investigations would be needed to 
clarify the reason for this discrepancy.

Besides, there were a couple of new findings 
through this study.

It was observed that enzymes in carbon metabolisms 
and others, such as inositol-phosphate kinase, were sig-
nificantly reduced in the enzyme-producing strain. Their 
spot-intensities were at over two-fold lower level com-
pared to the reference. The results indicated the shift of 
metabolic pathway to other than glycolysis. The phe-
nomenon sounds similar to a known protein expression 
repression, repression under secretion stress (RESS); 
however, RESS affects the expression of secreted proteins 
only; therefore, the observed phenomenon is different 
from RESS and must be due to another mechanism.

A couple of conserved proteins, likely playing roles 
in signal transduction or regulation of cellular activ-
ities, was relatively abundant regardless of the enzyme 
production. This time, two new components, termed 
CSAP (Conserved Small Abundant Protein in 
Aspergillus) and Aph1, were identified as abundant 
components in our strains and conserved among fun-
gal strains. The roles of these proteins have not been 
elucidated and awaits further study.

HexA, a core protein of Woronin body, and tropo-
myosin, which has a high affinity to actin cable, were 
detected at a high level from both, a tested and the 
reference strains. They must play important roles during 
fermentation, such as protecting cells or supporting api-
cal growth, or assisting exocytosis for active secretion.

There was a surprising observation, but it was found 
that a portion of the expressed secreted-enzyme 
remained inside the cells and accumulated during 
enzyme production. Moreover, there is evidence that 
this accumulated enzyme protein was digested during 
the fermentation. The results indicate the mal-function 
of the secretion pathway in the enzyme-producing strain, 
which might be due to the over-expression of heterolo-
gous enzyme. It suggests that improvement of the secre-
tion machinery in our strain could improve the enzyme- 
production yield even further. Whether the mechanism 

of digestion was ERAD or another mechanism was out-
side the scope of this study.
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