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ABSTRACT 

Development and Application of New Solid-State Models for Low-Energy Vibrations, 
 Lattice Defects, Entropies of Mixing, and  

Magnetic Properties 
 

Jacob M. Schliesser 
Department of Chemistry and Biochemistry, BYU 

Doctor of Philosophy 
 

Low-temperature heat capacity data contain information on the physical properties of 
materials, and new models continue to be developed to aid in the analysis and interpretation of 
heat capacity data into physically meaningful properties. This work presents the development of 
two such models and their application to real material systems. Equations describing low-energy 
vibrational modes with a gap in the density of states (DOS) have been derived and tested on 
several material systems with known gaps in the DOS, and the origins of such gaps in the DOS 
are presented. Lattice vacancies have been shown to produce a two-level system that can be 
modeled with a sum of low-energy Schottky anomalies that produce an overall linear 
dependence on temperature in the low-temperature heat capacity data.  

  
These two models for gaps in the vibrational DOS and the relationship between a linear 

heat capacity and lattice vacancies and many well-known models have been applied to several 
systems of materials to test their validity and applicability as well as provide greater information 
on the systems themselves.  

 
A series of bulk and nanoscale Mn-Fe and Co-Fe spinel solid solutions were analyzed 

using the entropies derived from heat capacity data, and excess entropies of mixing were 
determined. These entropies show that changes in valence, cation distribution, bonding, and the 
microstructure between the mixing ions is non-ideal, especially in the nanoparticles.  

 
The heat capacity data of ten Al doped TiO2 anatase nanoparticle samples have also been 

analyzed to show that the Al3+ dopant ions form small regions of short-range order, similar to a 
glass, within the TiO2 particles, while the overall structure of TiO2 remains unchanged. This has 
been supported by X-ray diffraction (XRD) and electron energy-loss spectroscopy and provides 
new insights to the synthesis and characterization of doped materials. 

 
The final investigation examines nanocrystalline CuO using heat capacities, 

magnetization, XRD, and electron microscopy and compares the findings to the known 
properties of bulk CuO. All of these measurements show transitions between antiferromagnetic 
and paramagnetic states in the temperature range of about 150-350 K that are greater in number 
and higher in temperature than the transitions in bulk CuO. These changes are shown to cause an 
increase in the temperature range of multiferroicity in CuO nanoparticles.  
 
 
Keywords: thermodynamics, heat capacity, lattice vacancies, materials, nanoparticles, mixing, 
characterization 
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1 INTRODUCTION 

Modern materials have become significantly more advanced and refined than the materials 

of previous generations. Although the general compositions of the materials on a bulk scale are 

often similar, small changes in structure and composition have turned many common materials 

into functional and technologically significant materials. Silicon is an excellent example of how 

a simple material can evolve and expand into new applications. Elemental silicon has 

traditionally been used in metallurgical fields for making aluminum-silicon alloys, but with the 

invention of new purification methods such as the Siemens and Czochralski processes silicon has 

penetrated the fields of solar photovoltaics and electronics.1-2 Often the small features, such as a 

few impurity atoms, dopants, or defects, make a material uniquely useful or useless. Advances in 

materials have created the need for more specialized characterization measurements and 

modeling to determine chemical and physical properties that contribute to the function of the 

material. 

The field of nanomaterials has received significant attention over the past few decades, and 

advances with these materials have also introduced new chemical and physical properties that 

conventional characterization techniques are unable to fully elucidate. These properties include 

particle size, morphology, surface structure and chemistry, mixing, and localized electronic or 

vibrational properties. Creating new models and theories to understand the function and 

significance of such properties is an important area of scientific research.  
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Traditional theories and techniques can often be used to investigate and explain the basic 

properties of a material, but extending such models and techniques to accommodate new 

phenomena is a common and significant aspect of many investigations. The well-established 

fields of thermodynamics and statistical mechanics have seen many advances that have kept 

these areas useful for investigations of modern materials. The field of thermodynamics provides 

a bulk measurement of a system, while statistical mechanics treats a system as a sum of many 

small systems (like atoms or molecules) with known, or at least predicted, properties that can be 

averaged over the volume of the system to give bulk properties such as thermodynamics.  

The physical principles on which statistical mechanics is based come from the most 

fundamental sciences. Quantum mechanics has been used to identify the discrete energy levels of 

many properties for different systems. These energies and their states can be analyzed with 

statistical mechanics to provide thermodynamic data. In this way, one can link the bulk, 

measurable properties of a system with the fundamental science and features that occur on an 

atomic scale. 

 Heat Capacities of Solids 

 Many theoretical models are used to simplify sophisticated systems and produce the 

internal energies of various states.3 Although energy can be calculated and predicted for any 

system, directly measuring that energy and thereby testing the models and predictions is difficult. 

Heat capacity measurements, however, are quite simple to perform, and because heat capacity is 

the derivative of the energy with respect to temperature (𝐶𝐶𝑝𝑝 = (𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ )𝑝𝑝 or 𝐶𝐶𝑉𝑉 = (𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ )𝑉𝑉), 

these measurements provide a method for testing models of microscopic features and their 

energies.3-4  
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The most common energetic features of a material that heat capacities have investigated 

include vibrations, electronic character, and magnetic properties.3-7 Because these properties are 

common to many materials, it is profitable to introduce their fundamental heat capacity 

contributions here, though several new models that have similar features to these will be 

presented later as the bulk of this dissertation.  

1.1.1 Vibrational Heat Capacity 

Vibrational character is common to all materials due to the atomic and molecular bonds. In 

a solid, the interactions between the different atoms or molecules are very different from a gas or 

even liquid. The atoms occupy fixed locations and have strong interactions with their neighbors 

due to chemical and physical bonds.3, 5 The atoms and their connecting bonds are often treated as 

a simple array of balls and springs (see Figure 1-1) in which the atoms are viewed as balls of 

mass that are all attached to each other with springs, which represent the bonds between the 

atoms. Although very simplified, this treatment of solid vibrations is typically quite accurate and 

valid for many purposes. 

 

 

Figure 1-1: 2D Ball and Spring Model of a Crystal Lattice (from McQuarrie3) 
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This simple model quantitatively describes the interatomic forces that are exerted on the 

atoms from the other atoms in the lattice. The atoms occupy low-energy states within a potential 

well that has steep walls, which typically makes the atomic vibrations small in amplitude. The 

vibrations about the equilibrium position (minimum energy) of each atom are usually represented 

as harmonic oscillations, and because the position of each atom influences the neighboring 

atoms, a solid can be treated as a system of coupled harmonic oscillators.3  

In a solid with N atoms, there are 3N total degrees of freedom (DOF) in which the atoms 

can move. Three of these 3N DOF are given to translational motion, three are given to rotations, 

and the remaining 3N-6 are all accounted for with vibrational motion. Because N is large for 

solids (O(1020)), the number of vibrational DOF is usually approximated as 3N.  

Through several statistical considerations, the vibrational energy of a solid based on the 

individual energies of the N atoms can be reduced to the expression:3 

 
𝑑𝑑 = 𝑈𝑈(0;𝜌𝜌) + � �

ℎ𝜈𝜈𝑒𝑒−ℎ𝜈𝜈 𝑘𝑘𝑘𝑘⁄

1 − 𝑒𝑒−ℎ𝜈𝜈 𝑘𝑘𝑘𝑘⁄ +
ℎ𝜈𝜈
2
� 𝑔𝑔(𝜈𝜈)𝑑𝑑𝜈𝜈

∞

0
 

(1-1) 

where U is the potential energy due to atomic displacement, h is Planck’s constant, v is the 

frequency of oscillation, k is Boltzmann’s constant, T is temperature, and g(v) is the distribution 

function or vibrational density of states (DOS). Because the heat capacity is the derivative of the 

energy with respect to temperature, the vibrational heat capacity of a solid can be derived from 

Eq. 1-1:3 

 
𝐶𝐶𝑉𝑉 = 𝑘𝑘�

(ℎ𝜈𝜈 𝑘𝑘𝑑𝑑⁄ )2𝑒𝑒−ℎ𝜈𝜈 𝑘𝑘𝑘𝑘⁄ 𝑔𝑔(𝜈𝜈)𝑑𝑑𝜈𝜈
(1 − 𝑒𝑒−ℎ𝜈𝜈 𝑘𝑘𝑘𝑘⁄ )2

∞

0
 

(1-2) 

The complicating feature of this equation is the function g(v), which is generally unknown. 

 The DOS g(v) is simply defined as the density of energy states that exist in a given 

frequency range. Figure 1-2 shows the experimental DOS of aluminum and iron. At low 
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frequencies/energies the density – or number of states available to be occupied – is small, but as 

energy increases, the number of available states within a range of energies increases. Typically, 

the number of states drops back to a low density above a certain energy. The density of states 

that is lower in magnitude but extends over a wide range of frequencies is typically caused by 

acoustic phonons or vibrations.4-5 The sharp peaks in the DOS arise from optical phonons. In 

many instances, the transverse and longitudinal modes of each of these are distinguishable.5  

 

 

Figure 1-2: Experimental DOS of a) Aluminum and b) Iron (from McQuarrie3) 

 

 The exact DOS as shown in Figure 1-2 can be measured with sophisticated (and typically 

expensive) techniques, or it can be roughly calculated using lattice dynamics.3-4 A common 

method to approximate the features in the DOS is to use simplified models of g(v) that are 
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inserted into Eq. 1-2 with variable parameters; experimental heat capacity data are then fit with 

the newly simplified Eq. 1-2 to yield information about the different features of the DOS such as 

maxima or cutoffs. Because these models will be significant for this text, several of the most 

common models will be presented. 

1.1.1.1 The Einstein Model 

To produce DOS models, one typically takes a bottom-up approach by modeling the 

physical properties (such as vibrations) of the individual atoms that make up the solid and then 

calculating the DOS from the energy levels of these properties. Einstein’s approach was the most 

simple and straightforward and approximates to the vibrational DOS at higher temperatures to a 

fair degree of accuracy. Before Einstein’s contribution, classical mechanics had established that 

the atoms in a solid behave as harmonic oscillators, which gives a heat capacity of R for each 

vibrational DOF for one mole of material. This is known as the Dulong-Petit law and produces a 

predicted heat capacity of 3R for monatomic solids, which is independent of temperature and 

therefore only crudely resembles heat capacity data at high temperatures.  

 Einstein improved upon this model by removing the classical understanding of vibrations 

and applying quantum mechanical ideas that had been recently developed by Planck.8 Einstein 

treated each atom in a solid as a simple harmonic oscillator that is independent of all the other 

oscillating atoms in the solid, but his use of quantized oscillation energies produced a heat 

capacity model that agrees much more with experiment. Because most atoms are in their ground 

vibrational state at low temperatures (even below a few thousand Kelvin), there is only one 

appreciable vibrational state of concern in the DOS with this simple model; therefore, the DOS 

as given by Einstein’s model is represented as a delta function at a single frequency.3-4, 9 
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 When this DOS function g(v) is inserted into Eq. 1-2, the integral can be evaluated in 

closed-form and produces the heat capacity expression:3 

 
𝐶𝐶𝐸𝐸 = 3𝑁𝑁𝑘𝑘 �

𝜃𝜃𝐸𝐸
𝑑𝑑
�
2 𝑒𝑒𝜃𝜃𝐸𝐸 𝑘𝑘⁄

(𝑒𝑒𝜃𝜃𝐸𝐸 𝑘𝑘⁄ − 1)2
 

(1-3) 

where N is the number of atoms, and the Einstein temperature is defined as 𝜃𝜃𝐸𝐸 = ℎ𝑣𝑣𝐸𝐸/𝑘𝑘. Thus 

the Einstein heat capacity of a solid has only one adjustable parameter, θE. This value 

corresponds to the peak in the delta function DOS. Figure 1-3 shows the heat capacity data of 

copper with an Einstein heat capacity fit. The fit is a decent qualitative representation at 

temperatures above about 50 K, but the low-temperature data are not accurately modeled with 

this equation, and a quantitative representation is lacking overall; however, this model has been 

successful at identifying dispersion in acoustic modes.10  

 

 

Figure 1-3: Heat Capacity Data of Cu Metal from 0-300 K Fit with an Einstein Function 
(Eq. 1-3). The inset shows a measure of the deviation of the data from the fit. 
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1.1.1.2 The Debye Model 

 The Debye model for vibrational heat capacities is much more robust than the Einstein 

model, and quantitative agreement between this model and experimental data has been observed 

for many simple solids. The lengthy derivation will not be given herein, but a qualitative 

explanation involving the most important features of the model will be presented. 

 The success of the Debye model comes from treating low-energy atomic vibrations in a 

solid in an exact manner: as a concerted movement and vibration.3-4 The normal mode 

frequencies are not treated for each individual atom but rather as a collective harmonic motion of 

all the atoms in the solid. Figure 1-4 shows the two extreme normal mode vibrations that a one-

dimensional (1D) chain of atoms can have: atoms vibrating against each other, and long chains 

of atoms vibrating smoothly together to create a long-wavelength/low-frequency vibrational 

mode. The success of the Debye model is attributed to its accurate treatment of the long-

wavelength modes on the bottom of Figure 1-4.  

 

 

Figure 1-4: Lattice Vibrations Showing the Highest Frequency (top) and a Low-frequency 
(bottom) Normal Mode (from McQuarrie3) 

 

 Debye recognized that the wavelengths of the lowest energy vibrations in a crystal are 

very long (theoretically as long as the crystal itself) relative to the atomic spacing of the atoms in 
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the crystal and therefore treated these vibrations as independent of the atomic character of the 

material. In other words, he treated the solid body as a continuous elastic body of infinite length. 

The derivation for the DOS of this model is somewhat similar to the derivation for standing 

waves in a blackbody and yields the distribution function:3 

 
𝑔𝑔(𝜈𝜈)𝑑𝑑𝜈𝜈 =

12𝜋𝜋𝜋𝜋
𝑣𝑣𝑜𝑜3

𝜈𝜈2𝑑𝑑𝜈𝜈 (1-4) 

where V is the volume, and 𝑣𝑣𝑜𝑜 is the average velocity of the two transverse waves and one 

longitudinal wave. Because the total number of normal modes is approximately 3N, the integral 

of g(v) must equal 3N. Using this correlation and rearranging Eq. 1-4 gives the simplified 

version:3 

 
𝑔𝑔(𝜈𝜈)𝑑𝑑𝜈𝜈 = �

9𝑁𝑁
𝜈𝜈𝐷𝐷3

𝜈𝜈2𝑑𝑑𝜈𝜈, 0 ≤ 𝜈𝜈 ≤ 𝜈𝜈𝐷𝐷

0, 𝜈𝜈 > 𝜈𝜈𝐷𝐷
 

(1-5) 

where vD is the characteristic Debye frequency and is observed in the DOS as the cutoff energy 

for the vibrational modes.  

 When Eq. 1-5 is inserted into Eq. 1-2, the Debye heat capacity can be generated:3 

 
𝐶𝐶𝐷𝐷 = 9𝑁𝑁𝑘𝑘 �

𝑑𝑑
𝜃𝜃𝐷𝐷
�
3

�
𝑥𝑥4𝑒𝑒𝑥𝑥

(𝑒𝑒𝑥𝑥 − 1)2
𝜃𝜃𝐷𝐷 𝑘𝑘⁄

0
𝑑𝑑𝑥𝑥 

(1-6) 

where the Debye temperature 𝜃𝜃𝐷𝐷 = ℎ𝜈𝜈𝐷𝐷/𝑘𝑘, and 𝑥𝑥 = ℎ𝑣𝑣/𝑘𝑘𝑑𝑑. Although this equation cannot be 

evaluated in closed-form, several approximations can yield simple functions for different 

temperature regions. At high temperatures, the upper limit of the integral becomes small, and 

through simple expansions, the integral evaluates to3 

 𝐶𝐶𝐷𝐷(𝑑𝑑 ≫ 𝜃𝜃𝐷𝐷) = 3𝑁𝑁𝑘𝑘 = 3𝑅𝑅 (1-7) 
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which is the classical Dulong-Petit law. At low temperatures (𝑑𝑑 ≪ 𝜃𝜃𝐷𝐷), the upper limit of the 

integral can be assumed to be infinity in which case the integral has a closed-form solution of 

4π4/15, and the heat capacity at low temperatures becomes3 

 
𝐶𝐶𝐷𝐷(𝑑𝑑 ≪ 𝜃𝜃𝐷𝐷) =

12𝜋𝜋4

5
𝑁𝑁𝑘𝑘 �

𝑑𝑑
𝜃𝜃𝐷𝐷
�
3

 
(1-8) 

which exhibits the famous T3 dependence that matches the basic shape of low-temperature data. 

Thus, the Debye heat capacity function gives a quantitative model of experimental heat capacity 

data at low temperatures. 

 Eq. 1-6 can be evaluated numerically at all temperatures, which has become more 

common practice with the availability of better computers and operators. Figure 1-5 shows the 

same heat capacity data presented in Figure 1-3 above but with the data fit numerically with the 

Debye heat capacity function (Eq. 1-6). The data show significantly better agreement than the 

Einstein model, but there are still drawbacks to this model as seen by the deviation plot in the 

inset, and a quantitative representation of the data over the entire temperature range is generally 

unfeasible.  

Figure 1-6 shows the measured vibrational DOS of Cu11 in relation to the DOS 

determined from the heat capacity data fit with the Einstein and Debye models. As can be seen, 

both models simplify the actual DOS, but the Debye model represents the DOS significantly 

better. This amount of agreement between the experimental DOS and the DOS derived from heat 

capacity data seen in Figure 1-6 is typical of many solids.  

As can be seen in Figure 1-5, the Debye model works well at low and high temperatures; 

however, data at intermediate temperatures are typically poorly modeled by the Debye heat 

capacity function even when evaluated using numerical methods. The reason for this error will 

be discussed in chapter 3 herein, but in brief, the Debye temperature, which appears as a constant 
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Figure 1-5: Heat Capacity Data of Cu Metal from 0-300 K Fit with a Debye Function (Eq. 
1-6). The inset shows a measure of the deviation of the data from the fit. 

 

 

Figure 1-6: Vibrational DOS of Bulk Cu. The points show actual data (from Yildirim et 
al.11), the solid vertical line (just above 20 meV) shows the Einstein DOS, and the dashed 
line shows the Debye DOS. 

 

in Eq. 1-6, is actually not a constant but is dependent on temperature itself due to various 

physical properties.12-13 Figure 1-7 below shows how a typical Debye temperature varies as a 

function of temperature.3  
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Figure 1-7: Debye Temperature θD as a Function of Temperature (from McQuarrie3) 

 

1.1.1.3 Lattice Dynamics 

 The use of lattice dynamics to accurately approximate the DOS from first-principle 

calculations has been extremely significant over the past few decades as computer hardware and 

software become better and more able to handle complex and laborious calculations.3 Because 

lattice dynamics is a field of itself, only brief mention will be made of its use.  

 The primary focus of lattice dynamics is to calculate a dispersion relation from first-

principles. Atoms in a solid are treated as balls (mass) and springs (force), and a set of equations 

of motion can be obtained from this simple but generally valid approximation. The set of 

equations is then solved to give the dispersion relation.3, 5 The one and two dimensional 

equations (see Figure 1-1) are easily solved with conventional techniques and software, but as 

the dimensionality increases and the solid to be modeled becomes more complex, sophisticated 

modeling software becomes required.  

 Figure 1-8 shows how well lattice dynamics predicts the dispersion relation of 

graphene.14 (The dispersion relation is related to the DOS.) The experimental data can be 
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determined with inelastic neutron scattering experiments, which is not the most accessible 

technique; nevertheless, this dispersion data could be converted into a DOS, and a more accurate 

heat capacity could then be predicted.  

 

 

Figure 1-8: Molecular Dynamics and Lattice Dynamics (LD) Simulations of Graphene 
(from Wei et al.14) 

 

1.1.2 Electronic Heat Capacity 

The contribution to the heat capacity from the free-electron gas can also be derived from 

basic principles. The conducting electrons in metals are the valence electrons of the metal atoms 

that experience an essentially constant Coulombic potential throughout the entire lattice and are 

free to migrate throughout the metal.3, 5, 15 The free-electron gas is composed of individual 

electrons that each occupy a defined state of energy, but because electrons are fermions (i.e. they 

cannot occupy the same state) they fill in increasing energy states starting from the lowest 

energy. Figure 1-9 shows the occupancy of these states at temperatures from 500 K to 105 K.5 

The occupancy at 0 K would be similar in shape to that of the occupancy at 500 K, but there 
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would be no rounded edges at the Fermi level (5×104 K in Figure 1-9) meaning that all electrons 

would occupy states below this energy level.  

 

 

Figure 1-9: Fermi Level and Electronic State Occupancy at Various Temperatures (from 
Kittel5) 

 

Note that even at thousands of Kelvin only a small amount of the electrons would be in 

an excited state above the Fermi level. At 0 K all electrons are in the lowest energy configuration 

below the Fermi level, and the energy of the electrons in this state can be derived from a 

combination of quantum mechanics and statistical mechanics:3 

 
𝑑𝑑𝑜𝑜 =

3
5
𝑁𝑁𝜇𝜇𝑜𝑜 (1-9) 

where N is the number, and μo is the Fermi energy. Because heat capacity is the temperature 

derivative of the energy, and this energy has no temperature dependence, the heat capacity would 

be zero.  

 To produce a non-zero electronic heat capacity consistent with observations, some of the 

electrons must be in excited states above the Fermi level even at temperatures as low as a few K. 
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Although the number of electrons that have enough thermal energy to populate these excited 

states is very small, they produce a measurable and even significant heat capacity, especially at 

low temperatures. The distribution of such small populations appears similar to the 500 K 

distribution shown in Figure 1-9 but with even less spillover or rounding around the Fermi level. 

The electronic heat capacity is derived from these few excited electrons. The steps of the 

derivation are beyond the scope of this dissertation, but the result is well-known and turns out to 

be:3 

 
𝐶𝐶𝑉𝑉 =

𝜋𝜋2𝑁𝑁𝑘𝑘𝑑𝑑
2(𝜇𝜇𝑜𝑜 𝑘𝑘⁄ )

=
𝜋𝜋2

2
𝑁𝑁𝑘𝑘 �

𝑑𝑑
𝑑𝑑𝐹𝐹
� 

(1-10) 

where TF is the Fermi temperature which is directly related to the Fermi level. 

 This contribution to the heat capacity is small (on the order of 10-4·T J·mol-1·K-1), so it is 

typically too small to distinguish from the relatively massive vibrational contribution; however, 

at very low temperatures (T < 10 K), where the vibrational heat capacity drops off as T3, this 

term becomes significant and observable. Figure 1-10 shows a linear electronic heat capacity 

contribution to the total heat capacity, which has been plotted as C/T vs T2 to show the 

magnitude of the linear term at the y-intercept.16  

 Although a linear contribution to the heat capacity is determined for the free-electron gas 

typical of metals, many other materials have shown a linear heat capacity at low temperatures.7, 

17-19 This will be the subject of chapter 4 in which other linear heat capacity models will be 

discussed, and a new linear heat capacity model that is generally applicable to all materials with 

lattice vacancies will be introduced.7  
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Figure 1-10: Heat Capacity Data of the Superconducting YBa2Cu3O7 (YBCO) Plotted as 
C/T vs T2 Showing the Electronic Contribution. The solid line represents a least-squares fit 
of the data including electronic and vibrational terms (the y-intercept gives the magnitude 
of the linear contribution). The dashed line shows a simple straight line fit (from Fisher et 
al.16) 

 

1.1.3 Magnetic Heat Capacity 

A magnetic heat capacity for solids is understandably only present when there are 

magnetic properties in the material, but since many significant materials are magnetic (including 

those investigated herein), the basic concepts of magnetism as well as various magnetic 

contributions to the heat capacity of solids will be introduced.  

Diamagnetism occurs when there are no unpaired spins in a material. Although these 

materials have a slight interaction with a magnetic field, they exhibit no magnetic heat capacity 

behavior. Paramagnetic materials have unpaired spins that are randomly oriented with respect to 

each other making the overall magnetic moment of the material null.15 Although paramagnetism 
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itself is quite uninteresting in terms of the heat capacity analyses used herein, paramagnetic 

materials typically have very interesting heat capacity features. 

The function of magnetism was explained in 1928 by Werner Heisenberg, who showed 

that a quantum mechanical exchange interaction exists between neighboring electrons and tends 

to align the spins.20 When thermal energy becomes insufficient to disrupt this weak interaction 

and the alignment of the electron spins, a paramagnetic material can transition into a new 

magnetic state with spins oriented in a specific way. The temperature at which this change occurs 

is called the Curie temperature TC or the Néel temperature TN depending on the type of magnetic 

state reached below the transition and varies from less than 1 K to over 1000 K depending on the 

material.5 Figure 1-11 shows the heat capacity on one such transition.21 

 

 

Figure 1-11: Heat capacity of Fe4(P2O7)3 around the magnetic transition. The line shows the 
lattice heat capacity (from Shi et al.21) 

 

When spins align parallel to each other from the random paramagnetic state, this is called 

ferromagnetism, and the transition temperature is the Curie temperature TC.5 A ferromagnet has a 
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net magnetic moment and is commonly observed in bar magnets. When the spins align anti-

parallel to each other, this is call antiferromagnetism, and the transition temperature is referred to 

as the Néel temperature TN.5 Antiferromagnets have no net magnetic moment since the spins all 

cancel each other out. Another special form of magnetism can occur in which the spins align 

antiparallel, but the spins pointing in one direction have a weaker moment than the spins aligned 

in the opposite direction. Materials with this property are called ferrimagnets and behave 

similarly to ferromagnets in that they also have a net magenetic moment.5 Figure 1-12 shows the 

electron spin orientations of all these common types of magnetism.22 

 

 

Figure 1-12: Spin Orientation of Several Types of Common Magnetism. a) Paramagnetism, 
b) Ferromagnetism, c) Antiferromagnetism, d) Ferrimagnetism (from Housecroft and 
Sharpe22) 

 

 Several uncommon forms of magnetism are significant to this text, specifically chapter 7. 

One such form of magnetism that will be discussed in chapter 7 is the helical magnetism 

observed in CuO.23-24 Figure 1-13 shows several complex magnetic ordering systems that deviate 

from the traditional types of magnetism shown in Figure 1-12.4 
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Figure 1-13: Unconventional Forms of Magnetism Including a) Collinear Ferromagnetism, 
b) Helicoidal Antiferromagnetism, c) Helicoidal Ferromagnetism, d) Cycloidal 
Antiferromagnetism, e) Transverse Oscillatory Antiparallel Ordering (from Gopal4) 

 

 Magnetic states (similar to phonon or vibrational states) exist and also have a DOS or 

dispersion relation. In regards to magnetic states, however, the concept of waves is not as 

straightforward as it is for vibrations. A perfectly ordered ferromagnetic or antiferromagnet will 

have all spins aligned without exception. This unique state only occurs at 0 K as any thermal 

agitation of the lattice could be enough to disrupt the spin alignment at some point in the lattice 

by exciting an electron spin to a higher energy state. The distribution of the excited spins can be 

Fourier-analyzed into a set of waves called magnons.4  

 The spins of each electron can be classically thought of as precessing around some 

common axis. At perfect order (0 K), all spins will precess in phase, but when a magnon/spin 

wave is excited, the electron spins no longer precess in phase. The frequencies of these different 
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phases and the number of electron spins with those frequencies produces the dispersion relation 

or DOS. For ferromagnets (and ferrimagnets), the dispersion relation takes the form:4-5, 25 

 
𝜔𝜔𝑞𝑞 = 𝛼𝛼𝑓𝑓

2𝐽𝐽𝐽𝐽𝑎𝑎2

ℏ
𝑞𝑞2 

(1-11) 

and for antiferromagnetics, it takes the form:4-5, 25 

 
𝜔𝜔𝑞𝑞 = 𝛼𝛼𝑎𝑎

2𝐽𝐽′𝐽𝐽𝑎𝑎2

ℏ
𝑞𝑞 

(1-12) 

where αf and αa are constants dependent on the crystal structure, J and J’ are the magnitude of 

the ferromagnetic and antiferromagnetic exchange constants, respectively, ℏ is Plank’s constant, 

and q is the wavevector. It is noted that the vibrational dispersion relation (at low frequencies) 

has the same dependence on q as the antiferromagnet (𝜔𝜔 ∝ 𝑞𝑞).3-5, 25 

 The heat capacity of these magnetic contributions can be derived using first-principle 

equations as was done with the vibrational heat capacity. McQuarrie3 shows that when a system 

of wavelike quasi-particles (such as phonons and magnons) has a dispersion relation 𝜔𝜔 = 𝐴𝐴𝑘𝑘𝑛𝑛, 

the heat capacity is proportional to 𝑑𝑑3 𝑛𝑛⁄  at low temperatures. Neglecting the details of the 

derivations, the low-temperature heat capacity contribution from ferromagnetism (and 

ferrimagnetism) becomes:4 

 
𝐶𝐶𝐹𝐹𝐹𝐹 = 𝑐𝑐𝑓𝑓𝑁𝑁𝑘𝑘 �

𝑘𝑘𝑑𝑑
2𝐽𝐽𝐽𝐽

�
3 2⁄

 
(1-13) 

and of antiferromagnetic contributions becomes:4 

 
𝐶𝐶𝐴𝐴𝐹𝐹𝐹𝐹 = 𝑐𝑐𝑎𝑎𝑁𝑁𝑘𝑘 �

𝑘𝑘𝑑𝑑
2𝐽𝐽′𝐽𝐽

�
3

 
(1-14) 

where cf and ca are constants dependent on the crystal structure. Although the heat capacity of 

the antiferromagnetic dependence on temperature is the same as that of vibrations at low 

temperatures (T3), these magnetic contributions can still be identified in heat capacity data since 
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the magnitude of the magnetic contribution is usually about twenty times larger than the 

vibrational contribution (see Figure 1-11 above).4 

These heat capacities are generally only valid at low temperatures and therefore low 

frequencies. At higher temperatures approaching the transition to the disordered paramagnetic 

state, modeling is much more ambiguous. Several models have been proposed, but these are 

generally only valid for the most simple of cases since the transition from a mostly ordered state 

to a mostly disordered state often involves a singularity where the heat capacity becomes 

infinite.15 

One model that has been quite successful at representing a transition in the heat capacity 

data is the Schottky anomaly.4 This transition is quite different from the order-disorder 

transitions associated with conventional magnetism. It is typically observed with magnetic 

properties, though many other non-magnetic systems also exhibit Schottky anomalies.7, 17, 26-30 

Figure 1-14 shows a simple Schottky heat capacity anomaly.4 

 

 

Figure 1-14: Schottky Heat Capacity Anomaly in α-NiSO4·6H2O (from Gopal4) 
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 Schottky anomalies are indicative of multi-level systems. In terms of magnetization and 

electron spins, the Schottky heat capacity arises from a transition of an electron from one spin 

state to another. Through simple Boltzmann statistics and the probabilities of an electron 

occupying a given state, one can derive an expression for energy and therefore heat capacity for 

this two (or more) level system:4 

 
𝐶𝐶𝑆𝑆𝑆𝑆ℎ = 𝑁𝑁𝑘𝑘 �

𝛿𝛿
𝑑𝑑
�
2 𝑔𝑔0
𝑔𝑔1

𝑒𝑒𝛿𝛿 𝑘𝑘�

�1 + 𝑔𝑔0
𝑔𝑔1
𝑒𝑒𝛿𝛿 𝑘𝑘� �

2 
(1-15) 

where δ is the energy separation of the two states with units of K (δ = ΔE/k), and g0 and g1 are 

the degeneracies of the ground and first excited states. This function is valuable for determining 

the separation of the multiple states as well as the number of particles participating in this effect 

as will be discussed in great detail in chapter 4.7 

 One other magnetic heat capacity feature relevant to this dissertation is anisotropy. 

Anisotropy in magnetism occurs when spins align “easier” along one direction of the crystal than 

another. An anisotropy energy directs the magnetic alignment along a particular direction as can 

be seen in Figure 1-15.5 The energies of magnetization along the different axes are offset from 

each other producing an energy gap. This energy gap in the magnetization is manifest in the heat 

capacity with the formula for anisotropic ferromagnetism:31 

 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓 = 𝛬𝛬𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑3 2⁄ 𝑒𝑒−𝛿𝛿 𝑘𝑘⁄  (1-16) 

and for anisotropic antiferromagnetism:32 

 𝐶𝐶𝑎𝑎𝑓𝑓𝑓𝑓 = 𝛬𝛬𝑎𝑎𝑓𝑓𝑓𝑓𝑑𝑑3𝑒𝑒−𝛿𝛿 𝑘𝑘⁄  (1-17) 

where Λfsw and Λasw are constants proportional to the molar volume and spin-wave stiffness 

constant, and δ is the spin-wave gap in units of K. In chapter 3, equations similar to these will be 
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derived from a model in which the vibrational DOS has a gap at low energies, and the value of 

the heat capacity modeling will be presented.9 

 

 

Figure 1-15: Magnetization Along Different Axes for Fe, Ni, and Co Showing Anisotropy. 

 

 Aside from the basic models introduced here, there are many other models that are more 

applicable under various circumstances.6, 33-38 The purpose of this dissertation is to introduce two 

new models that describe some underlying physical properties of important materials (chapters 3 

and 4). The remainder of the dissertation will apply these models to real systems of current 

interest and introduce many new scientific features derived from the heat capacity analyses. 

These new models as well as the traditional models will be shown to provide substantial 

information, especially for systems with nanoscale features. 

 Materials 

 Since these models will be applied to several materials, it is useful to briefly introduce the 

materials that will be discussed herein and identify the properties that are relevant to this work. 
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All of these material systems include nanoparticles, but comparison is often made between the 

nanoparticles and their bulk analogues. 

1.2.1 Spinels 

 
 Metal oxides with the spinel structure are important in many areas of research and 

technology, with applications in magnetism, semiconductors, electrochemistry, geology, 

metallurgy, catalysis, fuel cells, water splitting, and others.39-46 Not only are these materials 

significant in terms of technology, but the underlying physical phenomena intrinsic to these 

materials tend to be unusual and often lead to new discoveries of basic science.47 

The common occurrence of spinels and their thermodynamic stability are related to the 

large number of valences that the cations can accommodate.  Normal spinels of the 2-3 charge 

type, such as Co3O4 and Mn3O4, have the formula A2+(B3+)2O4 where the A2+ cations occupy 

tetrahedral sites, and the B3+ cations occupy octahedral sites. Inverse 2-3 spinels, such as Fe3O4, 

fill the tetrahedral sites with B3+ cations, and the octahedral sites are occupied, usually 

approximately randomly, by the remaining B3+ and A2+ cations.  

Co3O4 is a cubic normal spinel with Co2+ ions on tetrahedral sites and Co3+ ions on 

octahedral sites and exhibits Type-A or Type-II antiferromagnetism below its Néel temperature 

TN of 30 K for bulk Co3O4.42, 48-52 Mn3O4 is a tetragonal normal spinel with Mn2+ ions on the 

tetrahedral sites and Mn3+ ions on the octahedral sites but transforms to a cubic structure above 

about 1445 K.53-55 It is ferrimagnetic below its Curie temperature TC of about 43 K.44-45, 54-57 

Fe3O4 is a cubic inverse spinel having tetrahedral sites occupied by Fe3+ and octahedral sites that 

are approximately randomly occupied by the remaining Fe3+ and Fe2+. It is ferrimagnetic up to a 

TC of about 860 K,58-59 but it also has a Verwey transition in which it converts from an insulator 
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to a metal below about 118 K (depending on oxygen stoichiometry).58-60 The transition 

temperatures in these spinels are known to be related to particle size and typically decrease as 

particle size decreases.42, 44, 47-48, 61-64 

Because of the different structures and cation site occupancies of these pure spinels, the 

solid solutions of these materials are strongly dependent on the cation distributions and site 

preferences.65 These materials gradually shift from a cubic normal spinel to a cubic inverse 

spinel for the Co-Fe solid solutions and from a tetragonal normal spinel to a cubic inverse spinel 

for the Mn-Fe system. The mixing behavior of these materials has been the focus of many 

investigations;39, 50, 53, 56-57, 65-72 however, a better understanding of the mixing in these spinels, 

especially in nanocrystalline species, can be acquired through the use of heat capacity 

measurements and modeling. This investigation targets the bulk and nanophase spinels Co3O4, 

Mn3O4, Fe3O4, and their solid solutions, with a focus on the effect of structural differences on 

entropies of mixing as determined by our new heat capacity measurements as well as work of 

others.64, 73-81 

 

1.2.2 Al doped TiO2 Nanoparticles 

TiO2 nanoparticles are widely used in industry as catalysts, catalyst supports, components 

of solar cells, and even household products.82-87 Dopants are often incorporated into the 

nanoparticles to improve their structural and thermal stability, catalytic activity and selectivity, 

photoresponse, and other desirable chemical and physical properties.88-93 Aluminum is a 

common dopant added to TiO2 nanoparticles to control the thermal stability, surface area, and 

porosity of the nanostructure; however, the role the Al dopant has in stabilizing the structure is 
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unclear, as is often the case with doped materials. Understanding the role that the Al dopant has 

on TiO2 nanoparticles is necessary to produce particles with optimized properties. 

Many investigations using conventional methods have failed to provide a detailed 

understanding of the role that the Al has in stabilizing TiO2 nanoparticles. Heat capacity is useful 

for identifying and quantifying concentrations of impurities and the average properties of a 

material;4 therefore, using sophisticated models to treat the low-temperature (T < 10 K) heat 

capacity data one can determine structural information and the location of the dopant in Al doped 

TiO2 nanoparticles.7, 94 This chapter will use heat capacity measurements and models 

corroborated with traditional techniques to show that the Al dopant neither enters the Ti sites in 

the TiO2 lattice nor binds to the surface (as has been proposed). It will be shown that the dopant 

forms a hybrid TiO2-Al2O3 microstructure with short-range order. 

1.2.3 CuO 

Cupric oxide, CuO (tenorite), has been extensively investigated due to its significance in 

fundamental science as well as technological applications. Its structural and magnetic properties 

are unique,95-97 and it is closely related to high-temperature superconducting cuprates such as 

YBa2Cu3O7-x.98 In terms of applications, it has use in catalysis,99 photovoltaics,100-102 batteries,103 

and possibly spintronic devices.104-106 The high-temperature multiferroic behavior of CuO could 

also be used in sensors, memory devices, and magnetoelectric devices.107 

The structure and magnetic properties of CuO are unique for a 3d transition-metal 

monoxide,104, 108-110 and its Cu–O–Cu chains running along the [101] and [101�] directions make 

it relevant to cuprate superconductor research.23-24, 98, 104, 111 CuO has multiple regions of different 

magnetic properties as shown by various measurements.112-113 Heat capacity measurements show 

two distinct magnetic transitions at about 213 and 230 K.96-98, 105, 111, 114-123 Magnetic 
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susceptibility data show a broad maximum at about 540 K, a minimum at about 150 K, and a 

subtle change in slope around 230 K.95, 97-98, 104-106, 117, 122, 124-127 Neutron experiments have 

provided more details about the magnetic character of CuO in the various temperature regions 

and have shown that a helical incommensurate phase exists from 213-230 K.23-24, 128-129  

Above the Néel temperature TN2 of 230 K, antiferromagnetism persists – in a 1D form –

through the very large superexchange interactions (35-73 meV) along the [101�] direction.23-24, 96-

98, 125, 130-131 Multiferroic behavior, which is the coexistence of magnetism and ferroelectricity, 

has recently been discovered in the 213-230 K temperature range, which is significantly higher 

in temperature than most other materials.104 This high temperature of multiferroicity in CuO has 

spurred many recent investigations involving practical applications as well as basic science 

related to cuprate superconductors and other similar materials.104-106, 112-113  

All of the physical properties mentioned above (heat capacity, magnetization, etc.) have 

been extensively investigated for bulk CuO, but few studies have focused on these physical 

properties of CuO nanoparticles.124-126, 132-134 Chapter 7 will present an investigation on the 

magnetic and structural properties of CuO nanoparticles and use heat capacity synergistically 

with other techniques show that structural features common to nanoparticles are responsible for 

extending the magnetic and ferroelectric temperature ranges to room temperature.  
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2 METHODS 

 Introduction  

The focus of this dissertation is to present several solid-state models that describe the 

energetics of various physical features found in nanoparticle samples. To extend the modeling 

from simple theory, measurements of the different physical properties related to the models have 

been performed. The relationship between theoretical models and measured properties is a 

significant portion of this dissertation; therefore, the techniques used for studying the physical 

and structural properties of the materials will be briefly reviewed here.  

This work uses heat capacity measurements, X-ray diffraction (XRD), transmission 

electron microscopy (TEM), electron energy-loss spectroscopy (EELS), thermogravimetric 

analysis (TGA), and magnetization measurements to analyze physical and structural properties. 

Heat capacities provide an indirect measure of the vibrational, electronic, and magnetic energies 

to test the models. XRD and TEM were used to study the crystal structure, size, phase purity, and 

morphology. EELS provided information on the bonding, oxidation states, coordination 

numbers, and local geometries. TGA was used to provide stoichiometries of surface adsorbed 

water as well as metal to oxygen stoichiometries in some metal oxides. Magnetization 

measurements were used to determine susceptibility as a function of temperature of the magnetic 

phases in CuO nanoparticles. This chapter gives an overview of these techniques, but several 
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references are given that provide significantly more details on the mechanics and applications of 

each technique.  

 Heat Capacities  

Four general techniques exist for measuring heat capacity data: adiabatic or semi-

adiabatic pulse, continuous heating, AC, and relaxation. Each of these techniques has its own 

unique advantages and disadvantages. The adiabatic techniques are generally the most accurate, 

but large amounts of sample are required, which tends to make measurement times very long. 

The continuous heat technique is quite accurate and is good for measurements in which the heat 

capacity does not change much with temperature (typically high temperatures), but this 

technique also requires large amounts of sample. The advantage and disadvantages of the AC 

method are essentially opposite to those of the previous two methods in that much smaller 

samples can be used, but the data are not very accurate. Relaxation methods are perhaps the most 

versatile or all-around applicable. They can accommodate small amounts of sample, have good 

accuracy, and reasonable precision, but relaxation methods are typically poor for analyzing 

pronounced features in the heat capacity data such as first-order transitions.1-2 

2.2.1 Physical Properties Measurement System (PPMS) 

All of the heat capacity measurements performed for this dissertation were carried out on 

a Quantum Design Physical Propertied Measurement System (PPMS) which uses the relaxation 

technique.3-5 The basic principles of operation are similar to the other heat capacity techniques in 

that a known amount of heat is added to or removed from the sample, and the change in 

temperature is measured. The PPMS adds a known amount of heat by applying a constant power 
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for a specified time, and the sample is then allowed to cool for the same amount of time. The 

resultant data is then fit to a function that produces the heat capacity at constant pressure Cp:5-6 

 
𝐶𝐶𝑝𝑝 =

−𝐾𝐾𝑓𝑓(𝑑𝑑 − 𝑑𝑑𝑏𝑏) + 𝑃𝑃(𝑡𝑡)
𝑑𝑑𝑑𝑑 𝑑𝑑𝑡𝑡⁄  

(2-1) 

where Kw is the thermal conductance of the supporting wires, T is the sample temperature, Tb is  

the (reference) temperature of the puck frame, P(t) is the power applied by the heater, and t is 

time. The heater and thermometer are attached to the platform that holds the sample, which is 

thermally connected with Apiezon grease, as shown in Figure 2-1. 

 

 

Figure 2-1: Sample Platform of PPMS Showing the Heater and Thermometer in Relation 
to the Sample (from PPMS manual3). 

 

 The PPMS itself consists of a large dewar for holding the cryogens and a sample probe 

that houses the superconducting magnet, the electronics, and the temperature control devices. A 

simple diagram of the main PPMS components is shown in Figure 2-2. Figure 2-3 shows the 

various components of the sample probe.  
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Figure 2-2: Simplified Schematic of the PPMS (from PPMS manual4) 

 

2.2.2 Data Analysis 

Collecting a single heat capacity data point at a single temperature consists of a 

measurement that takes from a few seconds at low temperatures to an hour or more at high 

temperatures. Power (heat) and temperature data are collected at each temperature specified by 

the user between about 1.8-400 K. Figure 2-4 shows a typical relaxation curve that is fit to Eq. 2-

1 (or some variation of Eq. 2-1) to produce a single heat capacity point.  

Typically the amount of physical features that can be observed in a sample increases (as 

temperature decreases) with orders of magnitude of temperature (i.e. 1-10 K contains different 

data from 10-100 K, which contains different information from 100-1000 K). Because of this, 
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the density of data points is typically higher at low temperatures and decreases as temperature 

increases. Figure 2-5 shows the data of a typical heat capacity measurement. 

 

 

Figure 2-3: PPMS Sample Probe (from PPMS manual4) 

 

 

 

Figure 2-4: Relaxation curve for a typical heat capacity measurement 
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Figure 2-5: Heat Capacity of a Bulk Rutile TiO2 Standard Collected on a PPMS 

 

 Because the heat capacity data collected on a PPMS span three orders of magnitude, 

typical data contain roughly three different temperature regions that each contain different 

information.2 High-temperature data (higher than about 30 or 50 K) typically contain only 

information on vibrational properties in the absence of phase transitions. Low-temperature data 

(generally below 10 or 15 K) contain information on all the measureable heat capacity features a 

sample has such as vibrational, electronic, magnetic, superconducting, etc. The physical features 

in the mid-temperature data between these two extremes are usually too complicated to glean any 

useful information as has been discussed in chapter 1.  

 The general analysis of heat capacity data involves fitting a specific temperature range of 

data to functions.7-9 To get the most information from the heat capacity data, these functions 

should be based on theoretical models such as has been discussed in chapter 1 and will be 

discussed in greater detail throughout the remainder of this dissertation; however, simple 

polynomial functions can be used to analyze heat capacity data. Fitting the mid-temperature 

region with polynomials has been done throughout this dissertation.  
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 Because the low-temperature region can have many different contributions to the heat 

capacity, there are many possible functions that can possibly model the data. The specifics of 

each function will not be discussed in this portion of the dissertation but will be reserved for the 

subsequent chapters. The basic theory behind fitting low-temperature data, however, will be 

beneficial to the reader. Typical samples will have multiple low-temperature heat capacity 

contributions and as such will require data to be fit with a linear combination of the functions 

that describe each contribution. Because the number of possible fitting functions is O(101), the 

number of possible combinations of such functions is O(103); therefore, to avoid the need to sift 

through so many different fits, having some preliminary knowledge about the features that might 

be found in the sample is helpful in identifying what functions and combinations of functions to 

use. This problem can also be simplified with the use of modern programming and data analysis 

techniques, so data can quickly be fit to many combinations of functions, and bad fits can be 

identified and discarded.  

 Fitting high-temperature data is generally less arbitrary and more straightforward since 

vibrations are usually the only feature in this temperature range;10 however, many transitions 

occur in this approximate region as will be seen in the chapters that will follow.11 Analyzing data 

with a transition can be done in several ways, but a common basic principle is subtracting the 

lattice contribution from the total to give just the heat capacity of the transition. Perhaps the 

easiest way to do this is to fit the data around the transition to the traditional functions and just 

extrapolate that data into the transition region. This vibrational/lattice heat capacity can then be 

subtracted from the total heat capacity to produce the heat capacity of the transition. Another 

way to determine the lattice heat capacity is to find (or collect) heat capacity data of a similar 

sample (structure and properties) that does not have a transition and scale that heat capacity data 
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by the differences in mass.2 The last common method is to measure or calculate the vibrational 

DOS of the sample and determine the lattice heat capacity from that. Because the bare transition 

data are often too sophisticated for modeling, they are typically fit with a cubic spline function. 

 With the various functions and their temperature ranges of validity, thermodynamic data 

such as entropies and enthalpies can then be determined using common thermodynamic 

definitions:2, 12 

 
𝑆𝑆(𝑑𝑑) = �

𝐶𝐶𝑣𝑣
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑘𝑘

0
 

(2-2) 

and 

 
𝑑𝑑(𝑑𝑑) = � 𝐶𝐶𝑝𝑝𝑑𝑑𝑑𝑑

𝑘𝑘

0
 

(2-3) 

These functions give the absolute entropy and enthalpy from the heat capacity data.13 Absolute 

entropies are the values found in textbooks and tables, but enthalpies are usually not published as 

absolute values but rather as relative values. As such, enthalpies derived from heat capacities 

have limited use compared to the easily determined relative enthalpies of formation. 

 X-ray Diffraction 

X-ray diffraction (XRD) is a valuable technique for the study of materials for many 

reasons. It is a relatively fast, simple, and nondestructive technique that can be used to determine 

crystal structure, lattice parameters, particle size (and morphology to some degree), phase, and 

phase composition (including the degree of amorphicity).  

To produce the X-rays impinging on a sample, high-energy electrons are collided with a 

metal to eject core-level electrons from the atomic nuclei. Electrons that occupy higher energy 

levels in the ionized metal atoms then drop down to the vacant core level and release X-ray 
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photons in the process. The energies/frequencies of these X-rays are dependent on the metal. 

Copper is a typical metal and produces Kα (a 2p electron drops into the vacant 1s state) X-rays 

with a wavelength of 1.5418 Å. The X-rays are typically filtered with a monochromator, pass 

through various optics to reach the sample, and the diffracted X-rays are then collected and 

analyzed.  

The information gained from XRD comes from the diffraction of the X-rays in the 

material being investigated. When monochromatic X-rays interact with a crystal lattice, they are 

diffracted at all angles, but because diffracted photons will destructively or constructively 

interfere at angles that correspond to the angles and distances between the atoms, peaks at angles 

characteristic of each sample appear in a diffraction pattern as seen in Figure 2-6 below.  It is 

noted that Figure 2-6 shows the diffraction profile of a powder sample (all samples in this work 

were powders), but a single crystal produces a three dimensional plot of intensity with two 

spacial axes. 

 

 

Figure 2-6: Powder X-ray Diffraction Pattern of CuO Nanoparticles 
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The diffraction pattern is unique for each crystalline structure. A crystal consists of 

repeating groups of atoms called a unit cell; thus, the unit cell that typically consist of a few 

atoms can describe the entire crystal that is made up of O(1020) atoms by translation of that unit 

cell in 3 dimensions. Figure 2-7 shows the translation of a body-centered cubic unit cell, which is 

one of the 14 possible Bravais lattices. The unit cell can have any of these general shapes in 

which the axes have different lengths and the corners have different angles. These lengths and 

angles (called lattice parameters) are dependent on the atomic nature and bonding of the 

component atoms; therefore, diffraction patterns are typically unique for every material, though 

similar materials can have similar diffraction patterns.  

 

 

Figure 2-7: Unit Cell Translation Vectors of the Body Centered Cubic Lattice. (from 
Kittel14) 

 

 It is instructive to note the conventions for discussing directions and orientations in a 

crystal lattice. In a 3D lattice, there are three axes and three angles. The simplest structure is the 

cubic structure that has all axes equal and all angles equal, a = b = c and α = β = γ = 90° (hence 
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the name “cubic”). The direction within a crystal is defined by the vector that points from the 

origin of the three intersecting axes towards the atom of interest [a,b,c]. For example, the [1,1,1] 

direction is the vector that cuts through the center of the cube to point at the corner opposite of 

the origin. The plane of atoms normal to this vector can be described by the reciprocal of these 

values and is denoted as (h,k.l) (note the distinction between the brackets for direction and 

parentheses for the plane normal to that direction). Figure 2-8 shows several examples of such 

planes called Miller indices. 

 

 

Figure 2-8: Miller Indices of Significant Planes in a Cubic Crystal. (from Kittel14) 

 

X-rays can interact with each of the atoms whether on the corners, faces, edges, or body-

center. When the diffracted X-rays constructively interfere, a diffraction peak is observed. The 

constructive interference occurs under the Bragg condition: 

 𝑛𝑛𝑛𝑛 = 2𝑑𝑑 𝐽𝐽𝑠𝑠𝑛𝑛(𝜃𝜃) (2-4) 

where n is an integer, λ is the wavelength of the impinging light, d is the spacing between lattice 

planes, and θ is the angle formed between the light and the surface. Figure 2-9 shows the 
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geometry of the Bragg condition. Basically, for constructive interference to occur, the length of 

BA2 plus A2C must equal an integer number of wavelengths of the impinging radiation. Figure 2-

10 shows how diffraction occurs at various angles using the concept of Huygen wavelets. The 

diffracted peak in XRD is measured as a large intensity at the angles that satisfy the Bragg 

condition for the crystal structure of the material. 

 

 

Figure 2-9: Bragg Diffraction from a Simple Lattice 

 

 

Figure 2-10: Sets of Huygen Wavelets Emitted from a Line of Coherent Point Sources. 
(from Hecht15) 



50 
 

 The most basic analysis of XRD data is for phase identification using the peak positions 

compared to those of a standard reference material of the same phase and composition. 

Extracting other information requires more sophisticated analysis. One of the less rigorous 

analyses is profile fitting. This procedure separately fits each peak in the data set to a sum of 

various statistical functions (Gaussian, Lorentzian, and Cagliotti). The width of the peak (when 

corrected for instrument broadening) gives information on the particle size and micro-strain. The 

positions of the peaks can give d-spacing, but this method is not very accurate. The most 

accurate method for determining all of these properties as well as the other properties mentioned 

above is through a Rietveld refinement. This process involves calculating the position and 

intensity of all diffraction peaks from the known crystal structure. The crystal structure and 

various other parameters are then slightly altered to make the theoretical diffraction pattern 

match the actual diffraction pattern. Although often tedious, Rietveld refinement significantly 

expands the usefulness of XRD and the amount of quantitative information that can be procured 

from it.  

 Transmission Electron Microscopy 

 The many imaging and analytical techniques afforded with transmission electron 

microscopy (TEM) are another invaluable technique for understanding and investigating solids.16 

Because electrons in a TEM have much smaller wavelengths than visible light, the spatial 

resolution of an image on the TEM can be less than an Angstrom, or diffraction patterns can be 

collected from sub-Angstrom regions of sample; whereas, the resolution of an optical 

microscope is limited to a few hundred nanometers. This makes TEM essential for imaging 

nanomaterials or any features with a nano scale.  
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 The basic features of a TEM are the electron beam source, electromagnetic lenses, the 

sample stage, and something to collect and interpret the emergent electrons such as a CCD 

camera. Figure 2-11 shows the basic schematic of a modern TEM. Because the strength of the 

various lenses is adjustable, the beam can be focused in different ways to produce different 

images, specifically images of diffracted electrons and actual images of the sample.  

 

 

Figure 2-11: Schematic of a TEM 

  

Electron diffraction occurs as electrons interact with the sample just as X-rays diffract 

from the sample lattice. Various modes of diffraction can be employed to produce different 

images on a TEM. Figure 2-12 shows that the difference between diffraction and imaging mode 

on the TEM is just a matter of where in the column the beam is focused. As the figure shows, 

imaging the sample actually requires the beam to be defocused on the screen. 
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Figure 2-12: The Two Basic Forms of TEM Experiments: a) Diffraction, b) Imaging (from 
Williams and Carter16) 

 

 Forming basic images on the TEM is often called parallel beam mode since the beam is 

not convergent when it passes through the sample; however, the beam can also be focused onto 

the sample, rastered across a selected area of sample, and the diffracted beam used to form an 

image. This latter method is called scanning TEM (STEM) and is capable of forming images 

with higher resolution than typical parallel beam images. 

 Diffraction patterns similar to those collected on an XRD can also be collected. Figure 2-

13 shows the diffraction patter of a single crystal of Si. Powder samples have similar features, 

but because each crystallite is oriented randomly, rings are formed instead of spots. The unique 
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strength of diffraction on the TEM is not necessarily the diffraction pattern itself but that an 

image can be taken of a single diffracting beam. Dark field imaging utilizes this feature and can 

produce images of grains with a single orientation to show the randomness of the orientations. 

Hollow-cone dark field imaging can show all crystallites that diffract at a specified angle, which 

is useful for identifying phase impurities and amorphous material and then removing them from 

the images. 

 

 

Figure 2-13: Diffraction Pattern of Single Crystal Si Along the [111] Direction. 

 

 There are many other ways that electrons can interact with a sample. Figure 2-14 shows 

the possible interactions, though the intensity of each varies significantly which can limit their 

use. These interactions can be summarized into three types of interactions: no interaction, elastic 

(no energy change of electrons), and inelastic (electrons lose energy to sample). Most imaging 

and diffraction techniques are performed with the elastically scattered electrons to produce mass 

contrast, bright field, dark field, hollow-cone dark field, high-resolution images, STEM, and 

various forms of diffraction patterns. The analytical techniques, such as X-ray energy dispersive 

spectroscopy (XEDS) and electron energy-loss spectroscopy (EELS), use the inelastically 
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scattered electrons and require more equipment to separate photons and electrons with different 

energies. 

 

 

Figure 2-14: Types of Electron-Sample Interactions (from Williams and Carter16) 

 

 Electron Energy Loss Spectroscopy 

 Although most electron energy-loss spectroscopy is performed inside a TEM, it is 

significantly unique from most other TEM methods to be a technique of its own. The basic 

principle behind EELS is collecting and analyzing the inelastically scattered electrons that have 

lost energy to the sample in some way and will therefore have a lower energy than that of the 

elastically scattered electrons (which are by far the most abundant).17-18 Thus, EELS can be 

viewed as a measure of the unoccupied DOS since it measures transitions from the ground state 

to excited, unoccupied states. The various energy regions of EELS provide information on which 

specific energy-loss processes occur. Figure 2-15 shows the EELS spectrum of NiO and includes 

all regions of interest. 
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Figure 2-15: EELS Spectrum of NiO from Energy-loss Values of about 0 eV to about 900 
eV (from Williams and Carter16) 

 

Elemental analysis, or chemical fingerprinting, is perhaps the easiest and most common 

EELS method. This method is similar to just obtaining phase information from XRD data, but 

instead of information on phases, elemental analysis give information on chemical composition. 

This is done by comparing the peaks observed in the acquired data to peaks of standard reference 

materials specific to each element.18-19 Spectral comparison is often sufficient to identify the type 

of elements present in a sample.20-27 Other information such as oxidation state and coordination 

number can also be obtained by comparing one’s acquired spectrum to spectra of known samples 

of different oxidation state or coordination, though such data is not always available, in which 

case, a more detailed understanding of the causes for peak shapes is required to interpret such 

features and properties. 

In general, there are two regions in an EELS spectrum that arise from different features of 

a sample’s electronic character: low-loss and high-loss. The low-loss region is typically taken as 

all data below about 50 eV. This region includes the zero-loss peak (ZLP), which is the most 

intense feature since it contains all the electrons that did not undergo inelastic interactions. 
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Slightly above the ZLP (about 5-30 eV) is a very broad peak called the plasmon peak.28-32 

Plasmons occur when an electron from the beam interacts with the electrons in the conduction or 

valence band of the material and causes an excitation or vibration of the entire electron cloud 

around the solid structure. Most plasmons occur within the bulk of the material and represent 

three dimensional waves, while surface plasmons only occur on the surface of a material like 

ripples of water on the surface of a pond making them quite prevalent in nanoparticles.16, 33 The 

low-energy loss peaks (also called edges) around 2-20 eV are the result of interband and 

intraband transitions. The low-loss data also contains information on dielectric constants and 

band gaps since these involve valence electrons which require much less energy to remove than 

core electrons.18, 34-36 

The energy-loss region above about 50 eV contains information on core-level excitations 

and ionizations. Most elemental analysis uses this region of data, but, as mentioned above, much 

more information can be obtained from an understanding of the peak shapes. Two methods deal 

with interpreting peak shapes to provide useful information: energy-loss near-edge structure 

(ELNES) and extended energy-loss fine structure (EXELFS), which are analogous to the X-ray 

techniques X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine 

structure (EXAFS), respectively. Figure 2-16 shows a peak that exhibits the features found in 

ELNES and EXELFS.  

These methods are perhaps the most complicated methods of EELS because they involve 

rigorous calculations; however, they don’t require the comparison to other spectra and the 

resultant information is very valuable. From these two techniques, information on how atoms are 

bonded, the coordination of those specific atoms, and their density of states can be generated. 

One can also determine an atom’s radial distribution function, observe the anisotropy of 

chemical bonds, and create maps and images of all of these features.16 Few other methods exist 
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Figure 2-16: EELS Spectrum Showing ELNES (left) and EXELFS (right) Features of an 
Ionization Edge (from Williams and Carter16). 

 

for obtaining this information, and they usually require expensive instrumentation and high 

energy electron, neutron, or x-ray beams. Although the quantum physics required to thoroughly 

understand these methods is beyond the scope of this work, a basic introduction will be valuable 

for understanding the analysis of such data presented in chapter 6.  

Basically, the energy of an ionized electron in excess of the ionization energy is modeled 

as a wave. If the wave has a small energy (a few eV) then it undergoes plural, elastic scattering 

from the surrounding atoms. As the excess energy is increased the wave interacts with atoms 

farther from the ionized atom. These interactions are seen as small intensity variations in an 

ionization edge (see Figure 2-16). These variations represent an empty density of states which 

can be compared to standards or used for calculations. The calculations involve carefully 

removing the background signal, Fourier transforms, and inverse Fourier transforms to produce a 

radial probability distribution. Such calculations have provided many researchers with incredibly 

detailed information about bonding and coordination.37-52. 
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 Thermogravimetric Analysis 

Thermal analysis in general is the study of how various material properties change with 

temperature and is typically used to provide information on enthalpy, heat capacity, mass 

change, coefficient of heat expansion, solid-state reactions, thermal degradation, and phase 

transitions.53 Thermogravimetric analysis (TGA), which is usually coupled with differential 

thermal analysis (DTA), is performed in a furnace that has a purge gas flowing over the sample 

(usually in an inert cup). The mass of the sample is constantly measured to give the TGA signal, 

and thermocouples measure the temperature difference between the sample and a reference to 

give the DTA signal. 

TGA is a very basic method in that it simply measures mass; however, mass changes that 

occur as temperature changes, such as decomposition or desorption of an adsorbed or absorbed 

gas, can be indicative of various properties of a material. These changes in mass indicate a 

change in composition of the material. TGA has been used in this work mostly for identifying 

the amount of surface adsorbed water on nanoparticles, though metal-oxide stoichiometry was 

also determined using a temperature programed reduction (TPR) in hydrogen gas for various 

samples. 

DTA is somewhat more sophisticated, though it is still a basic method. In DTA 

experiments, the sample and an inert reference undergo identical thermal cycles (typically 

concomitantly). The instrument measures their temperature difference (determined by the 

voltage on the thermocouples), and the difference provides information on any process that 

would cause the sample to change temperature faster than the reference such as adsorption 

(exothermic), desorption (endothermic), crystallization (exothermic), melting (endothermic), or 
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phase transitions (endo- or exothermic). DTA can also provide heat capacities with the correct 

experimental setup as in differential scanning calorimetry (DSC). 

 VSM 

Magnetization can be measured on the PPMS using the vibrating sample magnetometry 

(VSM) option.4 This method uses a large motor that the sample is attached to and hangs from. 

The sample hangs in the center of a wire coil that is placed within the superconducting magnet 

field. The motor vibrates the sample, and the oscillating field of the sample induces an electrical 

response in the coil that is converted into a magnetic moment.14, 54 In the PPMS, the magnetic 

moment can be measured as a function of temperature from 2-400 K or as a function of external 

field from 0-9 T.  

 Summary 

These methods all provide a significant understanding of the chemical, physical, and 

structural properties of the materials that will be presented herein. Although many other 

techniques exist that could potentially provide more specific information to each technical 

problem, these techniques have been found to be generally applicable and valuable for material 

characterization. 
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3 DEVELOPMENT OF A DEBYE HEAT CAPACITY MODEL FOR 

VIBRATIONAL MODES WITH A GAP IN THE DENSITY OF STATES 

 Introduction 

 Heat capacity measurements can provide valuable information about the various 

energetic contributions of a material. Many theories model these contributions by simplifying the 

energy levels of the system to a mean energy through statistical methods and then converting the 

simplified energy into a heat capacity.1-2 Heat capacity data can then be fit with these theoretical 

heat capacity functions to extract valuable information about each energetic contribution of a 

system. 

Typical contributions to the heat capacity of solids include vibrational, electronic, 

magnetic, superconducting, and even energy states associated with lattice vacancies.1-5 The 

vibrational contribution dominates the heat capacity at all but low temperatures (below about 10 

or 15 K) where the other contributions become observable. These contributions can be 

determined by fitting the low-temperature heat capacity data to many different combinations of 

these theoretical functions and selecting the best fit, but determining the fit that most correctly 

models the data and underlying energy contributions is not trivial. 

The best fit is determined by its physical meaningfulness, the percent root mean squared 

deviation (%RMS), and a deviation plot. To be physically meaningful, the fit must be a sum of 

functions or terms that correspond to the physical properties of the system (e.g. the fit of a 
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nonmagnetic material should not contain a magnetic function), and the parameters should have a 

reasonable magnitude and be positive (with a few exceptions in the harmonic lattice expansion). 

The %RMS gives a gross approximation to the quality of the fit especially when comparing 

different fits of the same data. Generally, the best fit has the lowest %RMS, but fits of low 

precision data sets may have a deceptively low %RMS if a function is fitting the noise. The 

deviation plot overcomes this problem by showing how each data point deviates from the fit. 

Data points will deviate randomly from a good fit but systematically from a bad fit. Each of these 

aspects should be considered when determining the best fit of heat capacity data and, therefore, 

the underlying contributions. 

We have measured the heat capacities of over thirty samples that should only have 

vibrational contributions but do not fit well with conventional vibrational heat capacity models. 

Each of these materials either have AO4 tetrahedra or long chains, and their heat capacities 

exhibit a “boson peak”, which is observed as a broad peak in the data plotted as 𝐶𝐶/𝑑𝑑3 versus ln T 

and is related to excess low-energy modes. The low-temperature data of these samples could not 

be reasonably fit using conventional models; therefore, we introduce a new model for the 

vibrational heat capacity of materials that have excess low-energy modes that also have a gap in 

the density of states (DOS). Fits to these data show significant improvement in both quality and 

meaningfulness when using this model. To provide a context for our model, we introduce several 

of the conventional models, but complete reviews of these theories are available elsewhere.1-4 

3.1.1 Vibrational Heat Capacity 

The largest contribution to the heat capacity of a solid generally comes from atomic and 

molecular vibrations, which are represented by the equation:2 
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0
 

(3-1) 

where k is Boltzmann’s constant, h is Planck’s constant, v is the frequency of oscillation, T is  

temperature, and g(v) represents the vibrational DOS. For Eq. 3-1 to have a form that can be 

compared directly to heat capacity data, g(v) must be known, but rather than determining the 

entire set of individual frequencies exactly, g(v) can be generalized and simplified through 

various models that still yield heat capacity functions that agree reasonably well with 

experimental data.  

Einstein modeled the atoms in a solid as independent harmonic oscillators vibrating at the 

same frequency 𝑣𝑣𝐸𝐸  thereby modeling the DOS as a delta function (shown in Figure 3-1). Using 

the delta function as g(v) in Eq. 3-1 results in the Einstein heat capacity:2 

 
𝐶𝐶𝐸𝐸 = 3𝑁𝑁𝑘𝑘 �

𝜃𝜃𝐸𝐸
𝑑𝑑
�
2 𝑒𝑒𝜃𝜃𝐸𝐸 𝑘𝑘⁄

(𝑒𝑒𝜃𝜃𝐸𝐸 𝑘𝑘⁄ − 1)2
 

(3-2) 

where N is the number of atoms, and the Einstein temperature is defined as 𝜃𝜃𝐸𝐸 = ℎ𝑣𝑣𝐸𝐸/𝑘𝑘. This 

simple DOS model sometimes provides adequate correlation with experimental heat capacity 

measurements at high temperatures but fails at low temperatures where it approximates to1 

 
𝐶𝐶𝐸𝐸(𝑑𝑑 ≪ 𝜃𝜃𝐸𝐸) = 3𝑁𝑁𝑘𝑘 �

𝜃𝜃𝐸𝐸
𝑑𝑑
�
2

𝑒𝑒−𝜃𝜃𝐸𝐸 𝑘𝑘⁄  
(3-3) 

Although this model often fails, it has been useful for modeling optical modes,1 and dispersion in 

acoustic modes,6 while others have used a sum of multiple Einstein functions to model heat 

capacity data well.7 
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Figure 3-1: Generic DOS Models Showing Debye, Einstein, and Gapped Debye (Subject of 
this Chapter) Models. The various characteristic energies are also shown. 

 

Debye modeled the vibrations in a solid as normal mode vibrations of a continuous 

elastic body, which works well for long wavelength vibrations that do not depend on the detailed 

atomic character of the solid. For a three dimensional solid, this results in a DOS that is quadratic 

with v up to a cutoff frequency 𝑣𝑣𝐷𝐷 related to the total number of normal modes 3N (see Figure 3-

1). The Debye heat capacity that results when 𝑔𝑔(𝑣𝑣) ∝ 𝑣𝑣2 has the form2 

 
𝐶𝐶𝐷𝐷 = 9𝑁𝑁𝑘𝑘 �

𝑑𝑑
𝜃𝜃𝐷𝐷
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�
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(𝑒𝑒𝑥𝑥 − 1)2
𝜃𝜃𝐷𝐷 𝑘𝑘⁄

0
𝑑𝑑𝑥𝑥 

(3-4) 

where the Debye temperature 𝜃𝜃𝐷𝐷 = ℎ𝜈𝜈𝐷𝐷/𝑘𝑘, and 𝑥𝑥 = ℎ𝑣𝑣/𝑘𝑘𝑑𝑑. At low temperatures (𝑑𝑑 ≪ 𝜃𝜃𝐷𝐷) this 

approximates to1 

 
𝐶𝐶𝐷𝐷(𝑑𝑑 ≪ 𝜃𝜃𝐷𝐷) =

12𝜋𝜋4

5
𝑁𝑁𝑘𝑘 �

𝑑𝑑
𝜃𝜃𝐷𝐷
�
3

 
(3-5) 

Debye’s model was the first major step in relating a theoretical heat capacity to experimental 

data at low temperatures where the heat capacities of many materials were known to have a 𝑑𝑑3 

dependence.  
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Although Debye’s model fits the experimental heat capacity data of many materials well, 

it fails for many other materials. These materials have been found to have either a gap in the 

DOS (non-zero onset of the modes), many modes with frequencies higher than the Debye 

frequency 𝑣𝑣𝐷𝐷, or a DOS that does not have a 𝑣𝑣2 dependence at low frequencies.8-9 

The harmonic lattice dynamic theory is useful for materials that do not have a 𝑣𝑣2 

dependence at low frequencies.4, 10-16 This theory is similar to the Debye model but includes 

terms that are an expansion in 𝑣𝑣2, specifically, 𝑔𝑔(𝑣𝑣) = 𝑏𝑏2𝑣𝑣2 + 𝑏𝑏4𝑣𝑣4 + 𝑏𝑏6𝑣𝑣6 + ⋯. The extra 

terms produce a low temperature heat capacity expansion of the form:4 

 𝐶𝐶𝐻𝐻𝐻𝐻 = 𝐴𝐴3𝑑𝑑3 + 𝐴𝐴5𝑑𝑑5 + 𝐴𝐴7𝑑𝑑7 + ⋯ (3-6) 

where 

 
𝐴𝐴2𝑛𝑛+1 = 𝜋𝜋𝑘𝑘 �

𝑘𝑘
ℎ
�
2𝑛𝑛+1

𝐵𝐵2𝑛𝑛𝑏𝑏2𝑛𝑛 
(3-7) 

in which B2n are the Bernoulli numbers and the b2n terms are related to the normal mode density 

and can be approximated. For the first term in Eq. 3-6, b2 has the form4 
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(3-8) 

which, when inserted into Eq. 3-7, yields the low-temperature Debye coefficients (see Eq. 3-5). 

Because the Bernoulli numbers within the coefficients A5 and A9 in Eq. 3-6 are negative, the 𝑑𝑑5 

and 𝑑𝑑9 terms should be negative, though the heat capacity fits of some metals have been reported 

to have positive 𝑑𝑑5 terms.4 

The terms beyond 𝑑𝑑3 in Eq. 3-6 model the deviations from a Debye crystal in the form of 

phonon dispersion; whereas, Debye’s model attempts to handle such deviations by imposing a 

variable Debye temperature.1-2 The extra terms also extend the temperature range over which a 
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fit is valid. For data fit below 10 K, only the 𝑑𝑑3 and 𝑑𝑑5 terms should be necessary, but a 𝑑𝑑7 is 

acceptable when 𝜃𝜃𝐷𝐷 is small. Although heat capacity data is often fit to Eq. 3-6 better than the 

Debye model, the extra information provided about phonon dispersion is “rather severely 

limited”.4 The review by Phillips4 gives an excellent derivation of these equations and compares 

the various lattice heat capacity models in more detail. 

These theories form the foundation for modeling vibrational heat capacity data, but they 

have been adapted to better model heat capacity data through methods such as applying the 

Debye model to one and two dimensions,1, 17-18 which at low temperatures (𝑑𝑑 ≪ 𝜃𝜃𝐷𝐷) have the 

expressions (following the derivation of McQuarrie2) 

 𝐶𝐶𝑉𝑉(1𝐷𝐷) = 𝜋𝜋2𝑁𝑁𝑘𝑘
𝑑𝑑
𝜃𝜃𝐷𝐷

 (3-9) 

and 

 
𝐶𝐶𝑉𝑉(2𝐷𝐷) = 36𝜁𝜁(3)𝑁𝑁𝑘𝑘 �

𝑑𝑑
𝜃𝜃𝐷𝐷
�
2

 
(3-10) 

where ζ represents the Riemann zeta function. For the 1D system, g(v) is a constant value up to 

the cutoff energy 𝑣𝑣𝐷𝐷, which is proportional to 𝜃𝜃𝐷𝐷, and for the 2D system, g(v) is linear up to the 

cutoff energy. Also, using a sum of Einstein and Debye functions is a common alteration that has 

been applied to better analyze data that has low-energy modes.19-24 

3.1.2 Low-energy Modes and Gaps in the DOS  

Low-energy modes are caused by phonon scattering from regions of short-range order in 

the crystal structure and result in the “boson peak”.25 Boson peaks have been observed most 

notably in glasses,26-29 but they have also been observed in other materials such as the polymer 

poly(methyl methacrylate) (PMMA),30 the semiconductor α-Se, B2O3, As2S3,31 and the metallic 
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glass PdZr.32-33 Boson peaks also appear in the heat capacity data of biological compounds,34 

zeolites,21, 35 and even some negative thermal expansion (NTE) materials.21 Figure 3-2 shows the 

boson peaks of many more materials. The boson peaks in glasses, zeolites, and these NTE 

materials are believed to arise from coordinated vibrations of AO4 tetrahedra deemed “rigid unit 

modes” (RUMs).21, 36-43 Related investigations have shown that these low-energy modes have 

peak maxima around 5 meV (58 K) that are dependent on the size of the domain.26, 44-45  

The energy bands of these modes typically have a gap in the vibrational DOS due to the 

finite size of the contributing feature.46 Jura et al.47 noted such a low frequency cutoff or gap in 

the DOS of 10 nm cube particles. Burton et al.48 performed calculations that also suggest the 

vibrational modes of small particles have a non-zero energy onset. Saviot et al.44 found a gap in 

the phonon DOS from 0 to 2 meV (23 K) in TiO2 nanoparticles using inelastic neutron scattering 

(INS), which they attribute to the size of the 5 nm crystallites. Many others have also observed a 

gap in the DOS because of small particle size.45, 49-51  

Not surprisingly, because of the unconventional nature of these vibrations, conventional 

models have failed to properly analyze heat capacity data of these materials; however, a model 

specific to these gapped vibrational modes has never been established. Equations having an 

exponential dependence on temperature (𝐵𝐵𝑔𝑔𝑎𝑎𝑝𝑝𝑑𝑑𝑛𝑛𝑒𝑒−𝛿𝛿 𝑘𝑘⁄  - with many possible values of n related 

to the particular system) have been derived for magnetic and superconducting systems that have 

a gap in the DOS,52-60 and we extend those theories to derive low-temperature heat capacity 

equations for one, two, and three dimensions of a gapped vibrational DOS. Our derived 

equations provide insight on the short-range, phonon scattering domains in crystals that create 

boson peaks in the DOS and heat capacity. We have applied these equations to the low 

temperature heat capacity data fitting of the samples shown in Figure 3-2 and observe marked 
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Figure 3-2: Heat Capacity Data of Several Samples Plotted as 𝑪𝑪/𝑻𝑻𝟑𝟑 versus ln T Showing 
“Boson” Peaks or Excess Low-energy Modes. 

 

improvement in both quality and physical meaningfulness of the fits relative to fits without these 

terms. The fitting parameters of several samples have also been inverted into DOS, which are 

comparable to measured DOS data published in the literature.  
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 Derivation of Gapped Heat Capacities 

 The derivation of a gapped Debye function at low temperatures is similar to the 

derivation without the gap, but we now assume 𝑔𝑔(𝑣𝑣) ∝ (𝑣𝑣 − 𝑣𝑣𝑔𝑔𝑎𝑎𝑝𝑝)2 where vgap is the offset from 

zero; therefore, g(v) takes the form (similar to McQuarrie2) 

 
𝑔𝑔(𝜈𝜈)𝑑𝑑𝜈𝜈 = �

0, 𝜈𝜈 < 𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝 𝑜𝑜𝑜𝑜 𝜈𝜈 > 𝜈𝜈𝐷𝐷′
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(𝜈𝜈 − 𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝)2𝑑𝑑𝜈𝜈, 𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝 < 𝜈𝜈 < 𝜈𝜈𝐷𝐷′
 

(3-11) 

where V is the volume, vo is the average velocity of the two transverse waves and one 

longitudinal wave, and 𝑣𝑣𝐷𝐷′  is the high-end cutoff (where the prime indicates the cutoff of the 

gapped DOS as opposed to the conventional DOS cutoff 𝑣𝑣𝐷𝐷). The conventional derivation 

accounts for all 3N vibrational modes in the integral of g(v)dv, but the phonons in a band with a 

gapped DOS do not account for all of these modes; therefore, we will constrain the integral of 

the gapped g(v)dv to equal F, and the remaining modes integrate to a value G such that F + G = 

3N. This yields the integral 
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𝜈𝜈𝐷𝐷
′

𝜈𝜈𝑔𝑔𝑔𝑔𝑔𝑔
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𝑣𝑣𝑜𝑜3
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2𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝 + 3𝜈𝜈𝐷𝐷′ 𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝2 − 𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝3� = 𝐹𝐹 

We can now eliminate the volume and velocity terms to get g(v)dv in terms of the frequencies 

and F by solving for vo
3 and substituting this into Eq. 3-11 producing the equation 

 

𝑔𝑔(𝜈𝜈)𝑑𝑑𝜈𝜈 = �
0, 𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝 > 𝜈𝜈 > 𝜈𝜈𝐷𝐷′

3𝐹𝐹(𝜈𝜈 − 𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝)2𝑑𝑑𝜈𝜈
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3 − 3𝜈𝜈𝐷𝐷′
2𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝 + 3𝜈𝜈𝐷𝐷′ 𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝2 − 𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝3�

, 𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝 < 𝜈𝜈 < 𝜈𝜈𝐷𝐷′
 

(3-12) 

This can now be inserted into Eq. 3-1, which yields, with the substitution 𝑥𝑥 = ℎ𝑣𝑣/𝑘𝑘𝑑𝑑, 

 
𝐶𝐶𝑉𝑉 =

3𝐹𝐹𝑘𝑘
�𝑥𝑥𝐷𝐷′

3 − 3𝑥𝑥𝐷𝐷′
2𝑥𝑥𝑔𝑔𝑎𝑎𝑝𝑝 + 3𝑥𝑥𝐷𝐷′ 𝑥𝑥𝑔𝑔𝑎𝑎𝑝𝑝2 − 𝑥𝑥𝑔𝑔𝑎𝑎𝑝𝑝3�

�
𝑥𝑥2𝑒𝑒𝑥𝑥

(𝑒𝑒𝑥𝑥 − 1)2 (𝑥𝑥 − 𝑥𝑥𝑔𝑔𝑎𝑎𝑝𝑝)2𝑑𝑑𝑥𝑥
𝑥𝑥𝐷𝐷
′

𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔
 

(3-13) 
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This integral can be evaluated in closed form for low temperatures, where 𝑥𝑥𝐷𝐷′   can be assumed to 

approach infinity (𝑥𝑥𝐷𝐷′ = ℎ𝑣𝑣𝐷𝐷′ /𝑘𝑘𝑑𝑑 ≈ ∞), and if we assume xgap is approximately zero. With these 

assumptions, the integral in Eq. 3-13 evaluates to 

 4𝜋𝜋4

15
− 2𝑥𝑥𝑔𝑔𝑎𝑎𝑝𝑝6𝜁𝜁(3) + 𝑥𝑥𝑔𝑔𝑎𝑎𝑝𝑝2

𝜋𝜋2

3
 

 

By factoring out 4𝜋𝜋4/15 this becomes 

 4𝜋𝜋4

15
�1 −

90𝜁𝜁(3)
𝜋𝜋4

�
𝑥𝑥𝑔𝑔𝑎𝑎𝑝𝑝

2
� +

5
𝜋𝜋2

�
𝑥𝑥𝑔𝑔𝑎𝑎𝑝𝑝

2
�
2
� 

 

Because 90𝜁𝜁(3)/𝜋𝜋4 ≈ 1 and 5/𝜋𝜋2 ≈ 1/2, we can use the expansion 

 
𝑒𝑒−𝑥𝑥 = 1 − 𝑥𝑥 +

𝑥𝑥2

2
−⋯ 

 

and the integral of the heat capacity expression becomes 

 4𝜋𝜋4

15
𝑒𝑒−

𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔
2  

 

Plugging this back into Eq. 3-13 while making the substitutions 𝑥𝑥𝑔𝑔𝑎𝑎𝑝𝑝 = 𝛿𝛿 𝑑𝑑⁄  and 𝑥𝑥𝐷𝐷′ =  𝜃𝜃𝐷𝐷′ /𝑑𝑑 

produces the heat capacity equation 

 
𝐶𝐶𝑉𝑉 =

4𝜋𝜋4𝐹𝐹𝑘𝑘

5 �1 − 3 � 𝛿𝛿𝜃𝜃𝐷𝐷′
� + 3 � 𝛿𝛿𝜃𝜃𝐷𝐷′

�
2
− � 𝛿𝛿𝜃𝜃𝐷𝐷′
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�
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𝑑𝑑
𝜃𝜃𝐷𝐷′
�
3

𝑒𝑒−
𝛿𝛿
2𝑘𝑘 

(3-14) 

In line with the previous assumption that vgap or δ is small (𝛿𝛿 ≪ 𝜃𝜃𝐷𝐷′ ) this becomes 

 
𝐶𝐶𝑉𝑉(3𝐷𝐷) =

4𝜋𝜋4𝐹𝐹𝑘𝑘
5

�
𝑑𝑑
𝜃𝜃𝐷𝐷′
�
3

𝑒𝑒−
𝛿𝛿
2𝑘𝑘 

(3-15) 

By setting 𝛿𝛿 = 0 and 𝐹𝐹 = 3𝑁𝑁, the original Debye equation for low temperatures (see Eq. 3-5) is 

produced.  

This derivation is of a three dimensional Debye equation with a gap in the DOS, but the 

one and two dimensional derivations are similar, resulting in the equations: 



74 
 

 
𝐶𝐶𝑉𝑉(1𝐷𝐷) =

𝜋𝜋2

3
𝐹𝐹𝑘𝑘 �

𝑑𝑑
𝜃𝜃𝐷𝐷′
� 𝑒𝑒−

𝛿𝛿
2𝑘𝑘 

(3-16) 

and 

 
𝐶𝐶𝑉𝑉(2𝐷𝐷) = 12𝐹𝐹𝑘𝑘𝜁𝜁(3)�

𝑑𝑑
𝜃𝜃𝐷𝐷′
�
2

𝑒𝑒−
𝛿𝛿
2𝑘𝑘 

(3-17) 

These also produce the conventional Debye heat capacity equations at low temperatures when 

𝛿𝛿 = 0 and 𝐹𝐹 = 3𝑁𝑁 (see Eqs. 3-9 and 3-10). These three equations (Eqs. 3-15 to 3-17) can be 

generalized to the n dimensional expression: 

 
𝐶𝐶𝑉𝑉(𝑛𝑛𝐷𝐷) = 2 × 6𝑛𝑛−1𝜁𝜁(𝑛𝑛 + 1)𝐹𝐹𝑘𝑘 �

𝑑𝑑
𝜃𝜃𝐷𝐷′
�
𝑛𝑛

𝑒𝑒−
𝛿𝛿
2𝑘𝑘 

(3-18) 

We note that we have also applied a gapped DOS to the harmonic lattice dynamic theory. 

The derivation is essentially the same as the gapped Debye derivation but results in the 

expansion 𝐴𝐴3𝑑𝑑3𝑒𝑒−𝛿𝛿/𝑘𝑘 + 𝐴𝐴5𝑑𝑑5𝑒𝑒−𝛿𝛿/𝑘𝑘 + ⋯. Fits with these extra gapped terms, however, were 

found to be cumbersome and did not show any significant improvement in quality versus fits 

with just a gapped 𝑑𝑑3 as in Eq. 3-15. 

These equations for gapped vibrational DOS (Eqs. 3-15 to 3-17) resemble the equations 

derived for the gapped DOS associated with superconducting and magnetic materials in terms of 

temperature dependence, but here we have explicitly derived the equations with all parameters 

defined in terms of constants and physically meaningful variables that can be directly related to 

the vibrational DOS. Thus, we have made it possible to invert heat capacity data into a 

meaningful vibrational DOS, but we note that inverting heat capacity data into a DOS is much 

less quantitative than directly measuring the DOS; nevertheless, heat capacity data can be 

inverted into a DOS with some degree of accuracy.61-62 
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 Comparison to Measured Heat Capacity Data 

 The low-temperature heat capacity data (𝑑𝑑 < 10 𝐾𝐾) of all samples listed in Table 3-1 

were fit to two basic functions: one having only conventional contributions and the other having 

conventional contributions and any necessary gapped terms (Eqs. 3-15 to 3-17). These functions 

have the general expression  

 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓 = 𝛾𝛾𝑑𝑑 + 𝐴𝐴3𝑑𝑑3 + 𝐴𝐴5𝑑𝑑5 + 𝐴𝐴7𝑑𝑑7 + 𝐴𝐴9𝑑𝑑9 + 𝐵𝐵𝑔𝑔𝑎𝑎𝑝𝑝𝑑𝑑𝑛𝑛𝑒𝑒
− 𝛿𝛿
2𝑘𝑘 (3-19) 

where the γ term represents lattice vacancies,5 the A3 through A9 terms represent the harmonic 

lattice expansion,4  and the Bgap term represent the bands of excess low-energy modes that have a 

gap. The dimensionality, given by n, was determined by fitting data to Eq. 3-19 using all three  

 

Table 3-1: %RMS of Low-temperature Heat Capacity Fits Comparing Fits with and 
without a Gapped Term 

material %RMS w/ 
gapped term 

%RMS w/o 
gapped term material %RMS w/ 

gapped term 
%RMS w/o 
gapped term 

sodalites zeolites 
Na8Al6Si6O24(ReO4)2 0.419 4.59a,b BEA 2.72 4.49a 
Na8Al6Si6O24I1.64 1.19 1.94a,b FAU 6.62c 6.42b 
Na8Al6Si6O24(SO4) 0.791 0.812a MFI 20.8 38.0b 
Na8Al6Si6O24Cl1.92 1.54 1.61a Al doped TiO2 

hollandites 5 % DRC 0.329 0.771a,b 
BaCs0.21Ti5.5Al2.5O16 1.13 1.42 14 % DRC 0.471 0.509b 
BaRb0.22Ti5.5Al2.5O16 1.26 1.87 22 % DRC 0.440 0.496b 
BaSr0.10Ti5.5Al2.5O16 0.708 1.01 5 % DCR 0.646 0.714a,b 

fresnoites 14 % DCR 0.477 0.505a,b 
Sr2TiSi2O8 0.676 0.780a polymers 
Ba2TiSi2O8 0.809 1.23a,b Cellulose 0.504 0.536a,b 

NTE P3HB 0.592 1.67a,b 
ZrMo2O8 5.48c 7.72a,b PNIPA 0.638 2.36a,b 
ZrW2O8 10.9 9.51a,b PNIPA-SA 1.04 1.87a,b 

   PU 1.24 1.45a,b 
aharmonic lattice parameters have incorrect sign 
bnumber of harmonic lattice parameters is unreasonable 
ctwo gapped terms used 
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dimensions and selecting the fit that had the lowest %RMS and the most random deviation. Bgap 

is zero for the conventional fits but nonzero for the fits with the gapped term. As mentioned in 

section I, the 𝑑𝑑9 harmonic lattice term is not valid for fits below 10 K, but we include it in the 

conventional fits in order to have the same number of terms as the fits with the gapped term. 

Even with the excessive terms, the conventional fits are worse than the fits that have a reasonable 

number of expansion terms but include the gapped term. Table 3-1 compares the %RMS of the 

fits both with and without the gapped term, but we will discuss the fitting details of a few 

representative samples. 

3.3.1 1-D Gapped Phonons 

Several of the samples with boson peaks are polymers that behave as 1D chains. In our 

recent work on cellulose, we found that a gapped 𝑑𝑑3/2 term substantially improved the low 

temperature heat capacity fitting.63 We have revisited this data and have found a 1D gapped term 

(see Eq. 3-16) to be more meaningful and produce a better fit. Table 3-1 gives the %RMS for 

amorphous cellulose, but the other cellulose samples had similar improvement in fit quality with 

the 1D gapped term. Other polymers that we have investigated have also shown a substantial 

improvement in fit quality and plausibility by adding the 1D gapped term: poly(3-

hydroxybutyrate) (P3HB),23 poly(N-isopropylacrylamide) (PNIPA),24 PNIPA with poly(sodium 

acrylate) (PNIPA-SA), and polyurethane (PU) (see Table 3-1). 

Stephens et al.30 also observed boson peaks in the heat capacity data of several polymers 

and suggested three possible causes – the most probable being attributed to 1D motion along the 

polymer backbone between entanglement points. Vibrations along the polymer backbone would 

likely have low-energies because the backbone chain is quite large relative to typical molecules 

allowing for longer wavelength modes; furthermore, a nonzero onset of these modes is 



77 
 

understandable since the length of the vibrating backbone is small relative to typical bulk crystals 

that obey the Debye model. 

 

Table 3-2: Fit Parameters and %RMS of Select Samples Fit with and without a Gapped 
Parameter (units are J·mol-1·K-x) 

 Re sodalite – 1D Ti0.95Al0.05O1.975 – 2D MFI zeolite – 3D 
γ   5.6E10-4 2.2E10-4 5.8E10-4 3.1E10-5 

A3 2.7E10-3 1.3E10-3 1.9E10-4 3.0E10-4 1.4E10-4 3.5E10-4 
A5 -2.3E10-5 2.6E10-4 -1.6E10-6 3.1E10-6 -4.0E10-6 -5.5E10-6 
A7  -9.8E10-7 5.3E10-9 -7.3E10-8  2.5E10-7 
A9  -6.8E10-9  4.0E10-10  -2.0E10-9 

Bgap 9.7  4.0E10-3  1.5E10-3  
δn 43  15  15.571  

%RMS 0.42 4.6 0.33 0.77 21 38 
 

As part of another investigation, we have measured the heat capacities of several sodalite 

samples containing ReO4
-, I-, Cl-, and SO4

2- ions that exhibit pronounced boson peaks. The data 

fitting of these materials greatly benefited by the addition of a 1D gapped term. Table 3-2 gives 

the fit parameters and %RMS of the ReO4
- sodalite fits. The %RMS of the fit with the gapped 

term is an order of magnitude smaller than the fit without the gapped term. The signs of several 

parameters of the fit without the gapped term are inverted from what they should be (see Table 

3-2), and the deviation plot of the conventional fit shows strong systematic error (see Figure 3-

3). Even when adding more terms to the harmonic lattice expansion, the quality of the 

conventional fit did not improve significantly; therefore, the fit with the gapped term is best with 

regards to the meaningfulness of the terms, %RMS, and the lack of a systematic deviation of the 

fit.  
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Figure 3-3: Deviation Plots of Na8Al6Si6O24(ReO4)2 (Re-sodalite) Comparing Fit Quality 
between Fits with (red circles) and without (blue triangles) a Gapped Term in the Low-
temperature Heat Capacity Fitting. 

 

These samples are very similar to zeolites in that they are composed of SiO4 and AlO4 

tetrahedra that form cages;64 therefore, it is not unreasonable to expect these compounds to have 

excess low-energy modes caused by the concerted motion of rigid tetrahedra (RUMs) as 

observed in zeolites.41 Because sodalites form small cages, having diameters on the order of a 

few nanometers, vibrations of these domains will have a relatively small minimum wavelength 

causing a gap in the DOS. The origin of the 1D vibrational character is unknown, but we 

postulate that the ring and wireframe-like structure of the connected tetrahedra creates pseudo-

linear vibrations. 

3.3.2 2-D Gapped Phonons 

We have recently investigated eight samples of Al doped TiO2 to determine the location 

of the Al3+ dopant ions from the low-temperature heat capacities, electron energy-loss 

spectroscopy (EELS), and X-ray diffraction (XRD).65-66 We have shown that these dopant ions 
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enter the TiO2 lattice and form small domains of short-range order that resemble a TiAlOx glass-

like structure.   

The five samples with the lowest concentrations of Al3+ dopant (5-22 mol% Al) required 

2D gapped terms (see Eq. 3-17) to fit the low-temperature heat capacity data; whereas, the pure 

TiO2 and TiO2 doped with 50 mol% Al did not need the gapped terms. The %RMS and fitting 

parameters of fits with and without the gapped term are given in Table 3-2 for the sample with 5 

mol% Al prepared with the dry-rinse-calcine (DRC) method. Justification for fitting the data of 

these samples with the gapped term versus conventional fits is similar to the other samples 

discussed thus far. The %RMS is significantly lower with the gapped term, the deviation is 

random (see Figure 3-4), and the terms are physically meaningful.  

 

 

Figure 3-4: Deviation Plots of TiO2 Doped with 5 mol% Al Using DRC Method Comparing 
Fit Quality between fits with (red circles) and without (blue triangles) a Gapped Term in 
the Low-temperature Heat Capacity Fitting. 

 

The small regions of the TiAlOx structure form in the TiO2 lattice during crystal growth. 

We speculate that the synthesis begins with the formation of small TiO2 clusters having on the 

order of a hundred atoms. Clusters that form near regions having a high concentration of Al3+ 
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(related to the solvent deficient synthesis that creates a slightly inhomogeneous environment on 

the nanoscale67-68) react with the Al3+, which forms thin island-like structures. The TiO2 structure 

continues to grow and eventually grows over the Al islands, similar to how a tree grows over a 

sign nailed to its trunk, creating highly disordered 2D regions of TiAlOx within the TiO2 lattice. 

These particles retain the TiO2-like structure as observed with EELS and XRD but have these 

small glass-like domains that are responsible for the excess low-energy modes similar to RUMs 

observed in glasses. The gap in the DOS exists in the particles with low concentrations of dopant 

because the TiAlOx domains are small; whereas, at higher dopant concentrations these domains 

become sufficiently large that their vibrations can be treated as traditional Debye modes. (See 

ref. 66 for more details.)  

3.3.3 3-D Gapped Phonons 

The other samples with boson peaks shown in Figure 3-2 required a 3D gapped term to fit 

the data well. Although our original publication of the fresnoites Ba2TiSi2O8 and Sr2TiSi2O8 used 

a gapped 𝑑𝑑3/2 term (ferromagnetic),69 we have found that a gapped 𝑑𝑑3 term (see Eq. 3-15) 

models the data better and is more meaningful since these materials are known to have TiO4 

tetrahedra.70 The heat capacity fitting of Rb hollandite benefits from a gapped 𝑑𝑑3 term as well; 

however, the Sr and Cs hollandites appear to have slightly better fits with the 1D gapped T term, 

though the difference between the 3D gapped 𝑑𝑑3 and 1D gapped T fits is very small for these 

samples. 

We have also revisited the heat capacity data published by Boerio-Goates et al.21 of the 

negative thermal expansion (NTE) materials ZrW2O8 and ZrMo2O8 and the zeolites BEA, MFI, 

and FAU using gapped terms rather than the five Debye and Einstein functions originally used to 

fit each data set. The quality of our fits are comparable to those published in terms of modeling 
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the heat capacity data; however, we will show that our fits are more meaningful with regards to 

the derived DOS. We note that the FAU zeolite and ZrMo2O8 fits required two gapped 𝑑𝑑3 

parameters which are related to separate contributions. To illustrate the quality of our fits we 

present the MFI fitting results. The %RMS of the fit with the gapped term is about half that of 

the fit without the gapped term even when using lattice terms up to 𝑑𝑑9 (see Table 3-2). The 

deviation plot (Figure 3-5) shows that the fit with the gapped terms is random at all temperatures 

above 2 K; whereas, the conventional fit is systematic at all temperatures.  

 

 

Figure 3-5: Deviation Plots of Zeolite MFI Comparing Fit Quality between fits with (red 
circles) and without (blue triangles) a Gapped Term in the Low-temperature Heat 
Capacity Fitting. 

 

The fits of the other zeolites and NTE samples improve similarly by adding the gapped 

term, but we note that the %RMS of FAU and ZrW2O8 are slightly better for the conventional 

fits (see Table 3-1). We believe this is because the conventional fit is fitting the noise below 1 K 

as a result of the unrealistically large number of lattice expansion terms. The deviation plots of 

these samples show that the gapped fits are less systematic than the conventional fits, and the 𝑑𝑑5 



82 
 

term of the ZrW2O8 conventional fit is positive and therefore not physical; therefore, the fits of 

these samples using the gapped term are still better than conventional fits. 

Low frequency modes in these NTE materials and zeolites have been related to tetrahedra 

and RUMs.21, 35, 71-75 and because these span the volume of the crystal, it is reasonable that the 

gapped term is three-dimensional. The FAU zeolite is composed of tetrahedra that make 

secondary building units (primarily α-cages and β-cages), and the different characteristics of 

these units give rise to different vibrational bands.35 We believe these distinct bands create the 

need for two gapped terms. 

We note that fitting the heat capacity data of complex materials such as these is much 

easier when more is known about the materials. By knowing that many of these samples have 

tetrahedra, we could deduce the presence of low-energy modes; likewise, we knew that FAU and 

ZrMo2O8 have more than one excess, low-energy contribution to the DOS from the work of 

Greaves et al.35 and Mittal et al.73  

 Derived DOS Compared to Measured DOS 

Because the fitting parameters have been derived in terms of values related to the DOS, 

we can further verify the validity of these fits by converting the parameters into a DOS that can 

be compared to the measured DOS. Recall that δ in Eqs. 3-15 to 3-17 is proportional to the low-

energy gap in the DOS vgap, while 𝜃𝜃𝐷𝐷′  is related to the energy cutoff 𝜈𝜈𝐷𝐷′  (see Eq. 3-12). Because 

the fitting coefficient that contains 𝜃𝜃𝐷𝐷′  also contains F, and F is not necessarily known, we 

approximated F either from the number of tetrahedra or simply from the value that results in a 

realistic DOS. Table 3-3 gives the values of F used as well as the derived DOS parameters vgap 

and 𝜈𝜈𝐷𝐷′  of all samples in Table 3-1. We also note that several of the values of δ given in Table 3-
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3 are somewhat larger than permissible by our assumption that δ is small, but we consider these 

values to be qualitatively acceptable, nonetheless. 

 

Table 3-3: DOS Parameters Derived from Low-temperature Heat Capacity Fitting 
Variables (units are meV) 

Sample G F F' 𝜈𝜈𝐷𝐷 𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝,1 𝜈𝜈𝐷𝐷,1
′  𝜈𝜈𝑔𝑔𝑎𝑎𝑝𝑝,2 𝜈𝜈𝐷𝐷,2

′  
Na8Al6Si6O24(ReO4)2 80 20  27.19 3.705 7.902   

Na8Al6Si6O24I1.64 65 35  31.86 5.473 8.737   
Na8Al6Si6O24(SO4) 90 10  35.03 5.124 8.742   
Na8Al6Si6O24Cl1.92 90 10  40.54 8.503 12.80   

BaCs0.21Ti5.5Al2.5O16 67 33  39.89 8.606 12.67   
BaRb0.22Ti5.5Al2.5O16 67 33  36.11 4.710 10.39   
BaSr0.10Ti5.5Al2.5O16 67 33  36.64 8.760 12.24   

Sr2TiSi2O8 90 10  33.52 1.999 8.704   
Ba2TiSi2O8 90 10  28.19 2.904 7.295   

TiO2 5 % Al DRC 95 5  30.77 1.326 12.68   
TiO2 14 % Al DRC 95 5  27.50 4.566 6.636   
TiO2 22 % Al DRC 95 5  30.30 4.767 6.621   
TiO2 5 % Al DCR 95 5  33.29 3.582 6.631   

TiO2 14 % Al DCR 95 5  37.85 3.139 13.88   
P3HB 99 1  22.08 1.994 6.455   
PNIPA 99 1  19.54 1.777 6.041   

PNIPA-SA 99 1  19.58 2.099 5.520   
PU 99 1  21.06 2.528 5.861   

Cellulose 98.5 1.5  28.75 3.470 6.488   
BEA 90 10  23.64 0.2221 7.368   
MFI 90 10  28.76 1.342 6.271   
FAU 82 8 10 23.54 1.293 9.335 3.992 5.481 

ZrMo2O8 50 10 40 43.83 0.5654 6.420 1.696 17.72 
ZrW2O8 85 15  22.92 2.034 3.917   

 

The DOS data of several of the materials discussed herein have been measured with INS. 

Muller et al.76 showed that cellulose has low-energy modes that are nearly a constant with energy 

such as would be expected for 1D phonons. The energies of the excess modes derived from our 
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gapped fit of the amorphous cellulose data (Table 3-3) correspond to the energies in the 

measured DOS.  

 

 

Figure 3-6: Measured DOS Data (red circles) of a) ZrMo2O8,73 b) ZrW2O8,74-75 and c) 

FAU zeolite35 Compared to the DOS Derived from the Low-temperature Heat Capacity Fitting  
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The DOS of ZrMo2O8 and ZrW2O8 have been measured by Mittal et al.73-75 Figures 3-6a 

and 3-6b show their data as well the DOS derived from our heat capacity data fitting. As can be 

seen, the derived DOS grossly simplifies the actual DOS, but many of the most prominent 

features are identifiable. For example, the magnitude of the derived low energy peak in the 

ZrW2O8 data (Figure 3-6b) is rather large compared to the actual data, but the peak maximum 

corresponds to the peak from the INS data. Also included in Figure 3-6b is the DOS derived 

from the fitting method of Boerio-Goates et al.,21 which models the heat capacity data well, but 

the derived DOS does not appear to match any of the features of the actual DOS.  

 Greaves et al. 35 measured the DOS of zeolite Y, Na56Al56Si136O384, which has the same 

structure as FAU but with Al3+ and Na+ ions replacing some of the Si4+ ions. For the DOS of 

FAU to be comparable to the DOS of zeolite Y, it was scaled from SiO2 to Na56Al56Si136O384 

using a factor of 192 (number of equivalent SiO2 in Na56Al56Si136O384). Figure 3-6c shows the 

measured data with our derived DOS showing that our DOS is qualitatively similar to the 

measured DOS despite having a slightly different composition. 

 Conclusions 

 We have derived gapped heat capacity functions in one, two, and three dimensions from 

DOS with a non-zero onset of vibrational modes and have shown that adding these functions to 

the low-temperature heat capacity data fitting greatly improves fit quality for samples that have 

excess low-energy modes. From the fitting parameters, we have derived meaningful DOS that 

are comparable to the measured DOS of several materials. This study provides a physically 

meaningful method for analyzing low-temperature heat capacity data of materials that have an 

excess of low-energy modes with a gap in the DOS that also yields a crude approximation of the 

DOS. 
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4 LATTICE VACANCIES RESPONSIBLE FOR THE LINEAR DEPENDENCE 

ON THE LOW-TEMPERATURE HEAT CAPACITY OF INSULATING 

MATERIALS 

 Introduction 

4.1.1 Linear Heat Capacity at Low Temperatures 

Traditionally, the linear dependence on temperature of the low temperature (T < 15 K) 

heat capacity has been associated with conduction electrons in metals,1-2 but a linear term, γT, 

has been found in many non-metallic materials as well.3-5 The linear dependence of these 

materials has been an area of great interest and has resulted in a number of theories having broad 

and often inconsistent origins.  

In metals, the linear dependence arises from electrons that populate energy levels above 

the Fermi level at any finite temperature.1-2 High temperature ceramic superconductors have 

been found to show a linear dependence in the heat capacity. This could easily be misinterpreted 

as arising from conduction electrons similar to those in metals, but because the conductivity 

arises from Cooper pairs,6 which behave as bosons rather than fermions, new theories were 

needed to explain the linear dependence.  

Many theories suggested the linear dependence was intrinsic to superconductivity,4, 7-10 

while others have attributed the linear term to a tunneling-system related to oxygen,11 impurity 
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phases such as BaCuO2 in YBa2Cu3O7 (YBCO),12 or twin boundaries and oxygen vacancies.13-15 

The arguments of those against an intrinsic linear term are that linear terms are inconsistent from 

sample to sample and depend strongly on sample quality;4, 10 furthermore, some superconductors 

that become insulators at certain stiochiometries retain a similar linear term in the heat capacity 

even as insulators.16-17  

Several studies have attempted to identify the origins of the linear terms in insulating 

materials resulting in theories as diverse as the samples. Table 4-1 lists the linear terms of several 

insulating materials as determined from a combination of adiabatic,18-25 semi-adiabatic pulse,19-23, 

26-30 isothermal,21, 26 and relaxation calorimetry methods,5, 18, 21, 27, 31-43 and Figure 4-1 graphically 

shows a sampling of these linear terms relative to each other. The linear term in BaCuO2 has 

been attributed to magnetic degrees of freedom23 but has also been disregarded simply because it 

is an insulator.44 Nanocrystalline magnetite (Fe3O4) and hematite (Fe2O3) have linear terms that 

have been attributed to superparamagnetism.19, 31 The linear terms in several vanadium bronzes 

have been attributed to singlet bipolarons.24 In several insulating layered oxides, the linear terms 

are attributed to a localized density of states associated with lattice vacancies.5 Many 

investigations of  insulators with linear terms adopt some form of this latter explanation since 

lattice vacancies are inherent to all materials to some degree; however, the only derivation of a 

linear heat capacity from lattice vacancies treats the vacancies the same as a free-electron gas 

where vacancies “move practically freely through a crystal”, which is wholly unsupported in the 

original manuscript.45  

In glasses, the linear dependence on the low temperature heat capacity has been attributed 

to particles trapped in defect sites that create a particle-in-a-box system,46-47 but a more common 

theory is based on a system of tunneling states.3, 48-49 This theory assumes that there are two 
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Table 4-1: Linear Terms from Fits to the Low-temperature (T < 15 K) Heat Capacity Data 
(units are mJ⋅mol-1⋅K-2) 

Sample γ Sample γ Sample γ 
CuO18 0.022 γ-Al2O3 (n)41 1.3542 Sr2TiSi2O8

40 0.0803 
CuO (n)*  0.489 γ-Al2O3 (n)41 1.3905 BaCuO2

23 10.6 
ZnO (n)38 0.103 γ-Al2O3 (n)41 1.22 BaCuO2

23 12.4 
Co/ZnO38 31.64 γ-Al2O3 (n)41 1.3912 BaCuO2.14

23 5.7 
Co/ZnO (n)38 21.635 SnO2

37 0.172 Li1.2Ti1.8O4
16 3.6 

GeCo2O4
21 0.33 SnO2 (n)37 0.401 Na0.25V2O5

24 11.3 
CoO20 0.4 HfO2

39 0.0793 Na0.28V2O5
24 9.42 

CoO38 0.1856 γ-FeOOH27 0.0927 Na0.33V2O5
24 9.85 

CoO (n)20 6.0 γ-FeOOH27 0.3526 Na0.40V2O5
24 5.73 

Co3O4* 2.138 β-FeOOH27 0.1449 K0.20V2O5
24 15.2 

Co3O4 (n)* 8.46 2-line FeOOH32 0.1551 Cu0.40V2O5
24 60.1 

Co3O4 (n)* 14.111 α-FeOOH26 0.23 Cu0.55V2O5
24 32.5 

TiO2 rut22 0.0993 α-Fe2O3
33 0.0362 Cu0.60V2O5

24 26.4 
TiO2 ana22 0.1099 α-Fe2O3

33 0.0224 Ag0.33V2O5
24 8.05 

TiO2 rut (n)29 0.508 α-Fe2O3 (n)31 1.0235 La1.98Ba0.02CuO4
17 0.5 

TiO2 rut (n)29 0.564 Fe3O4 (n)19 3.4619 La0.7Ca0.3MnO3
25 5.2 

TiO2 rut (n)29 0.4994 FePO4
36 13.211 La0.7Ba0.3MnO3

25 6.1 
TiO2 ana (n)30 0.5941 Fe3PO7

35 16.32 La0.7Sr0.3MnO3
25 6.0 

TiO2 ana (n)30 0.6564 Fe3(P2O7)2
36 26.613 Y0.7Sr0.3MnO3

25 8.1 
TiO2 ana (n)30 0.6877 Fe4(P2O7)3

35 73.69 α-D-xylose43 0.4902 
Ti0.78Al0.22O2 (n)42 0.8118 Fe2P2O7

34 83.61 Muskovite5 25.5 
Ti0.5Al0.5O2 (n)42 1.101 SiO2

28 0.066   
*linear terms and data to be published elsewhere. 
(n) indicates nanoparticles 
 

 

Figure 4-1: Selected Linear Terms, γ, from Low-temperature Heat Capacity Fits. Hollow 
symbols represent the nanophase of the material; solid symbols represent bulk. 
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equilibrium orientations that atoms or groups of atoms can have. The two energy minima 

associated with each of these orientations are separated by an energy barrier that must be 

overcome by phonon-assisted tunneling in order for the atoms to shift from one orientation to the 

other. The separation in energy between the two minima is different for every group of atoms 

because of local strains and the local configuration of the atoms around the group. Each of these 

two-level systems (TLS) for which the tunneling barrier is not too large results in a Schottky 

anomaly in the low temperature heat capacity1 

 
𝐶𝐶𝑆𝑆𝑆𝑆ℎ = 𝑛𝑛𝑆𝑆𝑆𝑆ℎ(𝜃𝜃)𝑘𝑘 �

𝜃𝜃
𝑑𝑑
�
2 𝑒𝑒𝜃𝜃 𝑘𝑘�

�1 + 𝑒𝑒𝜃𝜃 𝑘𝑘� �
2 

(4-1) 

where θ is the energy separation of the two states with units of K (θ = ΔE/k), nSch(θ) is the moles 

of anomalies per mole of material for a given separation θ, and k is the Boltzmann constant. 

Because the number and energies of these tunneling systems is random, the distribution nSch(θ) 

can be assumed to be a constant value n(0), which makes the sum of all Schottky anomalies 

approximated by the integral3 

 
𝐶𝐶𝑙𝑙𝑓𝑓𝑛𝑛(𝑑𝑑) = � 𝑛𝑛𝑆𝑆𝑆𝑆ℎ(𝜃𝜃)𝑘𝑘 �
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∞
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(4-2) 

where n(0) is the number of contributing TLSs per mole of sample per unit energy. As seen in 

Eq. 4-2 the heat capacity contribution from these TLSs is linear with temperature.  

The original manuscript by Anderson, Halperin, and Varma3 outlining this theory 

provides no support for the use of a TLS believed to produce a Schottky anomaly or justification 

for a random distribution of energies produced by the TLSs. Several others have recognized this 

and have attempted to provide evidence for these properties while others have modified the 
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model to make the TLS and distribution more meaningful.11, 24, 50-51 A major flaw in this theory is 

this lack of understanding the source and distribution of the TLSs. 

To understand the distribution one must first understand the heat capacity that is 

produced by it. The linear heat capacity in metals exists up to high temperatures (O(1000 K)) but 

is generally undetectable due to the much larger contribution from phonons at temperatures any 

higher than about 15 K; however, the linear term in insulating materials does not extend up to 

high temperatures, and the extent to which the linear term is nonzero/non-negligible has been 

investigated by several groups. Anderson et al claimed that the linear term of glasses must exist 

up to about 10 K before vanishing.3 Investigations of BaCuO2 have shown that this contribution 

to the heat capacity remains linear until about 30 K where it begins to decrease until becoming 

negligible around 40 to 50 K.23, 44 Others investigating the heat capacity of Fe2P2O7 claim that 

the linear term begins to decrease between 15 – 20 K.34 McWhan’s study of several doped Al2O3 

compounds shows linearity until about 25 K above which the slope (γ) quickly decreases to 

zero.51 Data of TiO2 from Sandin show an excess heat capacity that increases approximately 

linearly until about 15 K then quickly drops to zero by about 20 K.52 Therefore, we will consider 

the shape of this excess heat capacity to be linear up to about 15 K at which point, it decreases 

until becoming negligible around 50 K. 

The broad range of insulating materials that have a linear heat capacity and the relatively 

similar cutoff temperature of these linear terms suggests that there exists a common underlying 

factor in all of these materials that produces the linear dependence in the low temperature heat 

capacity. 
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4.1.2 Lattice Vacancies 

 Lattice vacancies appear in all materials to some degree. At thermal equilibrium the 

concentration of vacancies can be estimated using the Boltzmann factor (for nvac ≪ N):2  

 𝑛𝑛𝑣𝑣𝑎𝑎𝑆𝑆 𝑁𝑁⁄ ≅ exp (−𝑑𝑑𝑣𝑣 𝑘𝑘𝑑𝑑⁄ ) (4-3) 

where nvac/N is the ratio of the number of lattice vacancies nvac to the number of atoms N, Ev is 

the energy required to remove an atom from the lattice site inside the crystal and place it on the 

surface, k is Boltzmann’s constant, and T is the temperature of the crystal or the temperature at 

which the crystal was calcined if it was suddenly cooled (thereby freezing in vacancies). For a 

typical Ev (about 1 eV) and calcination temperature (about 1000 K), Eq. 4-3 yields a 

concentration of lattice vacancies on the order of 10-5 moles of vacancies per mole of atoms. 

Lattice vacancies are generally determined using redox titrations or thermogravimetric 

analysis (TGA),53-59 but for nanomaterials and materials with very few vacancies, less 

conventional methods are required such as EXAFS,60-61 XANES,61 other X-ray techniques,53, 61 

Raman spectroscopy,60-61 high resolution TEM,61 EELS,62 XEDS,63 STEM,64 neutron 

diffraction,53, 59 and a plethora of esoteric techniques.65-73 Each of these methods is limited by 

experimental error, resolution, or applicability that constrain what samples can be tested and the 

amount of useful information that can be obtained (hence the large number of specialized 

techniques). The detection limit for most of these techniques is around parts per thousand or 

nvac/N ≈ 10-3, making these techniques only suitable for highly nonstoichiometric samples. Table 

4-2 lists lattice vacancy concentrations of a wide range of materials as measured from these 

techniques.57-62, 64-74 

When a lattice vacancy is present in a crystal, the atomic structure around the vacancy 

takes on one of two possible conformations: dimer or puckered.74-77 Each of these conformations 
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Table 4-2: Lattice Vacancy Concentrations for Several Materials (units are moles of 
vacancy per mole of formula unit) 

Sample nvac Sample nvac 
C doped TiO2

65 1.12 × 10-3 CeO2 (5 nm)60 6.01 × 10-3 
C doped TiO2

65 0.0176 CeO2 (10 nm)60 2.4 × 10-3 
TiO2 as prepared65 9.41 × 10-4 CeO2 (10 nm)66 2.0 × 10-3 
TiO2 oxidized65

 2.01 × 10-5 CeO2 (15 nm)68 2.4 × 10-4 
Fe doped TiO2

61 6.27 × 10-3 CeO2 (20 nm)60 1.2 × 10-4 
Cr doped SrTiO3

67 6.6 × 10-4 CeO2 (30 nm)60 2.4 × 10-5 
LaSrCoOx

64 0.25 CeO2 (65 nm)60 1.2 × 10-5 
Sr2MgMoO(6-δ)

58 0.05 Fe3O4
73 4.9 × 10-3 

Ba0.5Sr0.5Co0.8Fe0.2O(3-δ)
59 0.661 Fe3O4 (10 nm)70 0.036 

Ba0.5Sr0.5Co0.8Fe0.2O(3-δ)
59 0.807 Fe3O4 (n)* 0.1250 

Ce0.9Gd0.1O1.95
69 0.13 CuO71 6.2 × 10-4 

La0.67Ca0.33MnO(3-y)
62 0.065 CuO57 9.8 × 10-4 

MgO·3.5Al2O3
72 0.072 CuO (n)* 0.0109 

Co3O4* 9.5 × 10-3 Cu2O57 7.3 × 10-4 
Co3O4 (n)* 0.1230 SiO2

74 ~ 3 × 10-4 
CoO (n)* 0.1639 Al2O3 (n)* 4.7 × 10-3 

*this study 

 

has an energy minimum separated by an energy barrier. These two energy levels would result in 

a Schottky anomaly in the low temperature heat capacity (Eq. 4-1) with an energy separation θ 

equal to the difference between the two levels. Surface configurations, which are somewhat 

similar to vacancies due to their similar coordinations and strain, have been shown to have 

similar two-level systems that produce Schottky anomalies.78-81 

The energies of the dimer and puckered configurations of amorphous SiO2 have been 

investigated by Boero et al using first principles calculations approximating the two levels to be 

separated by an energy difference of about 0.25 eV.75 Skuja reviewed several articles on 

spectroscopic methods used to investigate energies associated with vacancies and showed that a 

spectrum of energy levels up to 0.1 eV arises from vacancies in a typical solid.82 Rigid unit 

modes of SiO4 tetrahedra have two-level systems similar to lattice vacancies and have a range of 
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possible energies up to around 500 GHz or about 2 meV.83 Di Valentin et al. investigated 

tunneling related to rotations of surface atoms and found tunneling barriers between about 10 and 

20 meV.79 Gryaznov et al. discovered lattice vacancy energy levels with energies around 20 meV 

different from the lattice.84 Smith investigated librational frequencies covering the range of 30 

peV to 33.5 meV.80 Strong librational frequencies around oxygen vacancies in perovskites have 

been found to have energies of about 90 – 120 cm-1 (11 – 15 meV), and a broad spectrum of 

peaks below 90 cm-1 have been attributed to thermally induced disorder, which essentially 

consists of lattice vacancies as Eq. 4-3 shows.85 From all these investigations, we conclude that 

energies associated with lattice vacancies have a broad distribution of possible states, likely 

caused by differences in the lattice surrounding each vacancy, and have an average maximum of 

about 20 meV.  

From the information presented above, it can be seen that a single lattice vacancy results 

in a two-level system that is capable of producing a Schottky anomaly in the low temperature 

heat capacity. Multiple vacancies have a random distribution of energy differences that would 

yield a distribution of Schottky anomalies. The cutoff of the energies from the TLSs would also 

produce a cutoff (albeit gradual) in the sum of the Schottky anomalies produced from the 

vacancies. We will show how the energies associated with TLSs are responsible for the linear 

term and its cutoff temperature and matches what has been observed experimentally. 

 Theory and Correlations  

4.2.1 Distributions 

We first consider the distribution of energies associated with the TLSs from vacancies 

that determine nSch(θ) in Eq. 4-2. The distribution nSch(θ) used for Eq. 4-2 assumes that nSch is a 
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single value for all values of θ up to infinity, but we will examine several other possible and 

more meaningful distributions that correspond to the experimental data outlined above and that 

could produce a linear (or pseudo-linear) heat capacity with an appropriate ending temperature. 

All of the following distributions have been tailored so that nSch(θ) is negligible by about 150 K 

(or 13 meV). These distributions use θ with units of K rather than meV to be applicable to the 

Schottky heat capacity as given in Eq. 4-1. We note here that 1 meV = 11.6 K. 

Figure 4-2 shows several hypothetical distributions of nSch(θ). A simple Gaussian 

distribution with θmax centered at 30 K and a standard deviation of 40 K is shown in Figure 4-2a. 

In this distribution, nSch at θ = 30 K corresponds to the average energy produced by vacancies 

that is more probable than the others perhaps due to the homogeneous nature inside the bulk of 

the material. The other energies arise because of the vacancies’ proximity to grain boundaries, 

other vacancies, or the surface, which are generally less common than a homogeneous 

environment. This type of distribution might be suitable for large grain, crystalline materials. 

 

 

Figure 4-2: Possible Distributions of Energy Gaps, nSch(θ), of Lattice Vacancies. a) 
Gaussian (solid line), b) Skewed Gaussian (long dash line), c) Two Gaussians Summed 
(short dash line), d) Step (dash-dot-dash line). 
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A left skewed Gaussian that has an average θ = 85 K is shown in Figure 4-2b. The 

average here would again represent the vacancies in a homogeneous environment likely within 

the bulk of the material, but the skew would arise from a large concentration of vacancies near 

some similar inhomogeneous structure such as the surface. This distribution would likely apply 

to nanomaterials with a high surface to bulk ratio or materials with a high degree of disorder 

such as amorphous solids. 

Figure 4-2c shows the sum of two Gaussian distributions that are centered at 5 K and 75 

K with standard deviations of 28 K. These Gaussians would be similar to the one discussed for 

Figure 4-2a, but here we suppose the low energy Gaussian arises from vacancies near or on the 

surface where there is less strain, and the high energy Gaussian arises from the vacancies in the 

bulk of the material. This distribution may be more meaningful than the others because the center 

position, height, and width of each Gaussian can be varied as long as the sum has the same 

general shape. This allows for a different distribution for every sample that has a linear heat 

capacity and could therefore apply to any type of material.  

A step distribution with a cutoff of θ = 150 K (based on the experimental data outlined 

above) is shown in Figure 4-2d. This distribution is very similar to the constant value distribution 

used in Eq. 4-2 and assumes that the energies associated with the lattice vacancies are completely 

random and only exist below a particular energy, treating vacancies on the surface, in the bulk, 

and near defects or grain boundaries the same. The only variable factor in this distribution is the 

cutoff energy, which Anderson et al postulated to be related to the glass transition temperature 

on the order of 1000 K. Although this distribution simplifies calculations, it is unlikely that 

vacancies’ energies will be completely random because bulk and surface energetics are so 
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different,86 and a meaningful distribution must not ignore surface energies since many of the 

materials with linear terms are nanoparticles (see Table 4-1). 

4.2.2 Resultant Heat Capacity 

When these distributions are used in Eq. 4-2, the resultant heat capacity as determined by 

numerical integration is approximately linear up to about 15 K and then gradually drops towards 

zero. Figure 4-3 shows the heat capacity curves (as C/T versus T in which a linear heat capacity 

will appear as a constant) that result from the distributions of Figure 4-2. The Gaussian 

distribution yields a heat capacity that deviates the most from linearity (up to about 15 %) as can 

be seen in Figure 4-3a. The heat capacity derived from the skewed Gaussian distribution, seen in 

Figure 4-3b, results in a heat capacity with less than a 5 % deviation from linearity below 15 K. 

The distribution created by summing two Gaussian results in a heat capacity that deviates from 

linearity by less than 0.8 % (see Figure 4-3c), and the step distribution results in a heat capacity 

that deviates from linearity by about 0.05 % below 10 K but increases to 0.3 % by 15 K (see 

Figure 4-3d).  For temperatures much less than the cutoff temperature, the step distribution 

produces the same linear heat capacity result of Eq. 4-2. All of these distributions resemble the 

energies typically produced from lattice vacancies and result in a heat capacity function that 

resembles what has been observed in many insulating materials, but the sum of two Gaussian 

distributions appears to be the most meaningful and has a high degree of linearity. 

The distributions discussed above are just a few of the possible distributions that result in 

a linear heat capacity similar to what has been reported in the literature.3, 23, 34, 44, 51-52 The actual 

distributions likely vary from the distributions presented here, but these distributions demonstrate 

the general shape that nSch(θ) must have. Low temperature heat capacity data can have an 

uncertainty of about 2 %, and fits can have an uncertainty on the order of 1 %; therefore, the 
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Figure 4-3: Heat Capacities Generated from the Distribution of Figure 4-2. a) Gaussian, b) 
Skewed Gaussian, c) Two Gaussians Summed, and d) Step. Plots are of C/T; therefore, a 
linear heat capacity will be a constant in these plots. 

 

nonlinearity of these derived heat capacities would likely be buried in the error of the data or fit. 

These results show that lattice vacancies do indeed produce a linear (or pseudo-linear) 

contribution to the low temperature heat capacity. 

4.2.3 Quantification of Vacancies from γ 

Because each Schottky anomaly is a result of a lattice vacancy, the sum of all Schottky 

anomalies will give a measure of the total number of vacancies nvac in a given sample. Finding 

nvac is simply done by integrating the distribution nSch(θ) over all θ. The height or normalization 

of the distribution will be manifest in the slope or linear term γ of the resultant heat capacity. We 

have calculated linear terms from typical vacancy concentrations of nvac =  10-5 to 1 vacancies 

per formula unit (see Table 4-2). Each distribution (see Figure 4-2) was normalized to these 

values, and the linear term was determined by averaging the resultant heat capacity divided by 
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temperature (C/T) from 0.5-15 K. These values were then used to determine constants of 

proportionality for each distribution by fitting to a line with zero intercept. The proportionalities 

are in the form γcalc = c × nvac, and values of c were found to be 157, 151, 115, and 91 mJ⋅mol-

1⋅K-2 for the Gaussian, skewed Gaussian, two-Gaussian, and step distributions, respectively. 

These calculations have an estimated uncertainty of about 6 % based on the heat capacity data, 

the fit, and the distribution’s linearity, but with better data and fits an uncertainty of about 2% 

would be reasonable.  

4.2.4 Comparison to Experimental Data  

To test the results of this model against actual data, we have measured the linear terms 

and vacancy concentrations of Co3O4, Co3O4 (n), CoO (n), Fe3O4 (n), CuO (n), and Al2O3 (n) 

which are part of separate, ongoing projects in our laboratory. The samples were found to have 

no chemical or phase impurities, and all characterization and thermodynamic data will be 

reported elsewhere.  

The low temperature heat capacities of Fe3O4 (n), CoO (n), and Al2O3 (n) and the 

experimental details have been published previously.19-20, 41 The other samples’ heat capacities 

were measured on a Quantum Design Physical Properties Measurement System (PPMS) from 

1.8 – 300 K following the method of Shi et al.87 Approximately 30 mg of each sample were 

mixed with copper stips (Alpha Aesar mass fraction purity 0.9995) to provide better thermal 

contact and put into copper cups that were pressed into pellets. Addenda measurements were 

performed that measured the heat capacity of the calorimeter and the grease used to attach the 

sample. After each addenda measurement, the sample was attached to the PPMS puck, and the 

heat capacity was measured. The system automatically corrects for the heat capacities of the 
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calorimeter and grease, and the heat capacity of the copper was corrected for using data from 

Stevens and Boerio-Goates.88 Data measured on the PPMS using this method have an estimated 

uncertainty of ± 0.02∙Cp° for 2 < T/K < 10 and ± 0.01∙Cp° for 10 < T/K < 300.87 The data below 10 

K were fit to a theoretical function of the form 

 𝐶𝐶(𝑑𝑑) = � 𝐵𝐵𝑓𝑓𝑑𝑑𝑓𝑓 + 𝛾𝛾𝑑𝑑
𝑓𝑓=3,5,7

 (4-4) 

where the summation term represents the contribution from lattice vibrations, and the linear term 

is related to lattice vacancies. The fits having the same number of lattice terms but no linear 

contribution resulted in %RMS values of 7.16, 18.1, and 13.2 for Co3O4, Co3O4 (n), and CuO 

(n), respectively, whereas the fits including the linear term resulted in %RMS values of 0.82, 

1.80, and 1.18. The values of γ obtained from the fits were 2.138, 14.111, and 0.489 mJ⋅mol-1⋅K-2 

for Co3O4, Co3O4 (n), and CuO (n), respectively (see Table 4-1), and the approximated 

uncertainty in these values is 2.5 % based on the heat capacity data and the fitting error. 

The vacancy concentrations of Co3O4, Co3O4 (n), CoO (n), and Fe3O4 (n) were measured 

using a thermogravimetric reduction technique. Approximately 20 mg of each sample were 

placed in Pt crucibles which were inserted into a Mettler Toledo TGA/DSC 1 equipped with an 

automated GC 200 gas controller. To remove any surface-bound water the samples were heated 

to 400 °C in He and cooled back to room temperature. The reduction gas was 10 % H2 in He 

with a flow rate of 100 mL·min-1, and the samples were heated at a rate of 3 °C·min-1 to 900 °C. 

Reduction occurred abruptly at about 300 °C for the cobalt oxides and at about 400 for the iron 

oxide and resulted in mass losses of 26.5310 %, 25.9726 %, 18.50 %, and 28.50 % 

corresponding to stoichiometries of Co3O3.9905, Co3O3.8770 (n), CoO0.8361 (n), and Fe2.8750O4 (n) 

respectively, yielding vacancy concentrations of nvac = 0.0095, 0.1230, 0.1639, and 0.1250. The 

approximated uncertainty of these values is 15 %. 
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The vacancy concentration of CuO (n) was determined by performing Rietveld 

refinement on powder X-ray diffraction (XRD) data collected at 100 K. CuO powder was packed 

into a polyimide capillary with an inner diameter of 0.012 mm, and XRD data were collected in 

transmission mode using a MACH3 four circle single crystal diffractometer coupled to a Bruker 

Apex II CCD detector with a Bruker-Nonius FR591 rotating anode X-ray source producing Cu 

Kα radiation (λ = 1.5418 Å). Data were collected between 2° – 133° 2θ by performing a series of 

8 overlapping phi 360 scans. The Bruker XRD2 program was used to merge the images and 

integrate the intensity of the diffraction rings. Rietveld refinement was performed using the 

PANalytical Highscore Plus software. The details of the analysis will be published elsewhere, 

but from the refinement, copper atoms were found to be slightly deficient yielding Cu0.9891O or 

nvac = 0.0109 having an approximate uncertainty of 10 %. 

The vacancy concentration of Al2O3 (n) was determined using Eq. 4-3 and the value of Ev 

(0.18 eV) from Tanaka et al.89 Although the Al2O3 (n) samples used to determine γ were calcined 

at 973 K, we can assume that T ≈ 300 K because the samples were cooled slowly to room 

temperature after calcination but were cooled quickly from room temperature to perform heat 

capacity measurements.41 Using these values in Eq. 4-3 and accounting for the five atoms per 

formula unit gives an nvac of 0.0047 moles of vacancies per mole of Al2O3 (n). The estimated 

uncertainty of nvac determined using this method is 50 %. 

All these values of γ and nvac are plotted in Figure 4-4 along with the proportionalities 

derived herein. The plot shows how γ increases as nvac increases. The error bars represent the 

uncertainties discussed above for each value of nvac, and the uncertainty in γ of 2.5 % is smaller 

than the size of the symbols. The deviations of the ratio of the actual values of γ and nvac (c = 

γ/nvac) from our calculations are 40 % (using the Gaussian distribution) for Al2O3, 30 % (using 
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the Gaussian distribution) for Co3O4, 100 % (using the step distribution) for CuO (n), 6.3 % 

(using 2-Gaussian distributions) for Co3O4 (n), 230 % (using the step distribution) for Fe3O4 (n), 

150 % (using the step distribution) for CoO (n).  

 

 

Figure 4-4: γ vs nvac of Several Samples. From left to right: Al2O3 (n), Co3O4, CuO (n), 
Co3O4 (n), Fe3O4 (n), and CoO (n). Also shown are the lines derived from the four 
distributions of Schottky anomalies with the slopes (units of mJ⋅mol-1⋅K-2) shown in 
parenthesis in the legend. 

 

The experimental values of γ and nvac differ from our theoretical values by at most a 

factor of two or three and as little as a few percent. When all the uncertainties are taken into 

account, these calculations show qualitative agreement as well as quantitative agreement 

providing further evidence that the linear term of insulating materials does indeed stem from 

lattice vacancies. As further evidence supporting our claims, we note that the differences 

between the measured and calculated values of γ from nvac are similar despite the method used to 

determine nvac. 
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4.2.5 Trends in γ and nvac  

As a final note, we recognize several trends emphasizing our conclusions. All values of γ 

found in Table 4-1 lie between 0.01 mJ⋅mol-1⋅K-2 and 100 mJ⋅mol-1⋅K-2, and values of nvac in 

Table 4-2 lie between 10-5 and 1, which is the same range of values we would expect when 

applying our calculations to γ. Values of γ for nano phase TiO2, CoO, Co3O4, α-Fe2O3, CuO, 

SnO2, and ZnO are all larger than the bulk phase values of γ.  Values of nvac from Table 4-2 also 

increase as particle size decreases for CeO2 and Fe3O4. The Co doped ZnO and Al doped TiO2 

systems have γ much greater than what would be expected for a simple CoO/ZnO or Al2O3/TiO2 

mixture, and values of nvac for TiO2 are also larger when dopants are present. Mitchell has also 

shown that the concentration of defects increases with increasing dopant concentrations.72  

 Conclusion 

We have shown that the linear term, which is often necessary to fit the low temperature 

heat capacity data for nonmetallic materials, is related to the number of lattice vacancies. We 

have created several distributions of nSch(θ) that have similar energy cutoffs to experimental data 

from the literature and are physically meaningful. The vacancy energies associated with these 

distributions are assumed to result in small Schottky anomalies due to a puckering of the lattice. 

These distributions have been shown to produce a linear heat capacity similar to what has been 

observed for these kinds of materials. We have measured values of γ and nvac of several samples 

and compared those to our theoretical values. These values show qualitative and quantitative 

agreement with our model, and linear terms and lattice vacancy concentrations have been shown 

to have many similar trends providing further evidence for our arguments. This manuscript 

provides meaningful evidence supporting the claim that the linear term in insulating materials 

results from lattice vacancies.   
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5 EXPERIMENTAL HEAT CAPACITIES, EXCESS ENTROPIES, AND 

MAGNETIC PROPERTIES OF BULK AND NANO FE3O4-CO3O4 AND FE3O4-

MN3O4 SPINEL SOLID SOLUTIONS 

 Introduction 

 Metal oxides with the spinel structure are important in many areas of research and 

technology, with applications in magnetism, semiconductors, electrochemistry, geology, 

metallurgy, catalysis, fuel cells, water splitting, and others.1-8 Not only are these materials 

significant in terms of technology, but the intrinsic, underlying physical features of these 

materials tend to be unusual and often lead to new discoveries in basic science.9 

The common occurrence and thermodynamic stability of spinels are related to the large 

variety of cations with different valences that can be accommodated.  Normal spinels of the 2-3 

charge type, such as Co3O4 and Mn3O4, have the formula A2+(B3+)2O4 where the A2+ cations 

occupy tetrahedral sites, and the B3+ cations occupy octahedral sites. Inverse 2-3 spinels, such as 

Fe3O4, fill the tetrahedral sites with B3+ cations, and the octahedral sites are occupied (usually 

approximately randomly) by the remaining B3+ and A2+ cations. This investigation targets the 

spinels Co3O4, Mn3O4, Fe3O4, and their solid solutions, with a focus on the effect of structural 

differences on entropies of mixing as determined by our new heat capacity measurements as well 

as the work of others.10-19 
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5.1.1 Magnetic Properties 

Co3O4, as a cubic normal spinel, has Co2+ ions on tetrahedral sites and Co3+ ions on 

octahedral sites. The tetrahedrally coordinated Co2+ cations have seven electrons in the high-spin 

𝑒𝑒𝑔𝑔4𝑡𝑡2𝑔𝑔3  configuration, and the octahedrally coordinated Co3+ cations are diamagnetic due to the six 

electrons having a 𝑡𝑡2𝑔𝑔6  low-spin configuration.3 The magnetic character of Co3O4 arises from 

super-exchange interactions between the Co2+ ions through either A–O–A or A–O–B–O–A 

interactions.3, 20 Planes of ferromagnetically ordered spins stack such that the spins align 

antiparallel from plane to plane giving rise to what is called Type-A or Type-II 

antiferromagnetism.21-22 The temperature at which the spins transition from the ordered 

antiferromagnetic state to the disordered paramagnetic state (known as the Néel temperature TN) 

is  generally agreed to be 30 K for bulk Co3O4,4, 20, 23-24 though it has been reported to be as high 

as 40 K.20, 25 TN is known to be related to particle size,26 and has been reported to adopt values as 

low as 15 K for 4 nm Co3O4 particles.4, 9, 20, 27-28 

Mn3O4 is a tetragonal normal spinel that transforms to a cubic structure above about 1445 

K.29-30 The tetrahedral Mn2+ ions have five electrons in an 𝑒𝑒𝑔𝑔2𝑡𝑡2𝑔𝑔3  high-spin configuration, and the 

octahedral Mn3+ ions have four electrons in a Jahn-Teller distorted 𝑡𝑡2𝑔𝑔3 𝑒𝑒𝑔𝑔1  high-spin 

configuration resulting in a total of nine unpaired spins.31 Because both the Mn2+ and Mn3+ ions 

have unpaired spins, the magnetic character of Mn3O4 has several unique features. The 

paramagnetic material becomes ferrimagnetic below its Curie temperature TC (analogous to TN) 

of about 43 K6-7, 30-33 but exists in a magnetically incommensurate phase from 33 to 39 K.6-7, 31 

Mn3O4 nanoparticles, however, do not exhibit the incommensurate phase, and similar to Co3O4, 

nanoparticles of Mn3O4 have a lower TC due to size effects.6 
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Fe3O4 is a cubic inverse spinel having tetrahedral sites occupied by Fe3+ and octahedral 

sites that are approximately randomly occupied by the remaining Fe3+ and Fe2+. It is 

ferrimagnetic up to a TC of about 860 K,34-35 but it also has a Verwey transition in which it 

converts from an insulator to a metal below about 118 K (depending on oxygen 

stoichiometry).34-36 The ferrimagnetism arises from antiferromagnetic coupling between 

tetrahedral Fe3+ ions having an 𝑒𝑒𝑔𝑔2𝑡𝑡2𝑔𝑔3 configuration with octahedral Fe3+ ions having a 𝑡𝑡2𝑔𝑔3 𝑒𝑒𝑔𝑔2 

configuration, while the octahedral Fe2+ ions are diamagnetic with a 𝑡𝑡2𝑔𝑔6  configuration.34 

5.1.2 Solid Solutions 

Given that these materials differ in structure and cation site and valence preference, the 

solid solutions (1-x)Fe3O4-xCo3O4 and (1-x)Fe3O4-xMn3O4 have interesting features analogous to 

those of high-entropy alloys, such as NiFeCrCo, in which antiferromagnetic Cr atoms must 

disperse throughout the matrix of ferromagnetic Ni, Fe, and Co atoms and thus create a “high-

entropy” state.37 In spinels, cation distributions vary with temperature and composition. Co3+ and 

Mn3+ strongly prefer octahedral sites, while the site preference of Fe3+ and the divalent ions is 

weaker;38 furthermore, these solid solutions gradually shift from a cubic normal spinel to a cubic 

inverse spinel for the Co-Fe solid solutions and from a tetragonal normal spinel to a cubic 

inverse spinel for the Mn-Fe system. The mixing behavior of these spinels has been the focus of 

many investigations; nevertheless, detailed understanding of the energies and entropies of mixing 

and their microscopic sources, especially in nanocrystalline systems, is still needed.  

The present investigation focuses on the excess entropy of mixing, which must be 

distinguished from the residual or “configurational” (used interchangeably herein) entropy of 

mixing. The former reflects changes in vibrational, magnetic, and electronic behavior, while the 
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latter arises from the positional disorder of cations on a given set of sites (in this case the 

octahedral and tetrahedral sublattices in the spinel structure). 

The excess (non-configurational) entropies can be derived from heat capacity data. The 

deviations of the solid solution heat capacities from a linear combination of the end-member heat 

capacities result in an excess entropy.39-41 Excess entropies of mixing have been observed in 

polymers,42-44 alloys,45-47 minerals,48-58 and nanoparticles.59 Despite the significance and 

occurrence of these mixing effects, much of the literature ignores their presence, primarily 

because of the lack of accurate heat capacity data for the solid solutions.  

The present investigation follows a companion study on these same materials in which 

the enthalpies of mixing were measured by high-temperature oxide melt solution calorimetry, 

configurational entropies of mixing were calculated from models  of cation  and valence 

distributions, and the results were corroborated  with Gibbs energy data found in the literature.38 

The companion study treated excess entropies of mixing as negligible and found that enthalpies 

of mixing are independent of particle size for a solid solution having roughly constant surface 

area.  

This study uses newly measured heat capacity data, which are not influenced by 

configurational entropies, to determine the excess entropy of mixing for the bulk and nano spinel 

solid solutions (1-x)Fe3O4-xCo3O4 and (1-x)Fe3O4-xMn3O4. We show that the excess entropy of 

mixing is positive and can be comparable to the configurational entropy of mixing and that it 

differs for bulk and nanophase materials.  We interpret the excess entropies of mixing in terms of 

vibrational and magnetic behavior. Our findings are supported by analyses of the magnetic 

transitions obtained from the heat capacity data. 
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 Experimental Methods 

5.2.1 Synthesis and Characterization 

Solid solutions of (1-x)Fe3O4–xM3O4 (M: Co, or Mn) where x = 0.2, 0.33, 0.5, 0.67, 0.8, 

and 1.0 were synthesized via a chemical co-precipitation method. Stoichiometric amounts of 

Co(NO3)2·6H2O or MnCl2·4H2O were dissolved in distilled water with Fe(NO3)3·9H2O and 

stirred for 10 min to prepare a transparent, aqueous stock solution of pH 0.5. The precipitating 

agent, 0.5 M NaOH, was added dropwise to the stock solution while stirring until a pH of 12 was 

reached. The solution was then heated (while stirring) at 100 °C for 2 h followed by heating at 

150 °C for 1 h. The resulting black gel was washed with distilled water several times, dried at 

110 °C overnight, and then calcined at 250 °C for 2 h. Nanocrystalline Co3O4 and Mn3O4 were 

prepared by the solvent deficient method developed by Woodfield et al.60 All of the bulk phase 

samples were prepared by calcining the corresponding nanocrystalline phase in a vacuum 

furnace at elevated temperatures for 24 h. The samples were the same as used for our prior 

studies of heats of formation.38  

Powder X-ray diffraction (XRD) patterns were recorded using a Panalytical X’Pert Pro 

X-ray diffractometer using a Cu Kα radiation source (λ = 0.15418 nm). Data were recorded from 

2θ = 10-90° at a scanning rate of 0.01°·s-1.  

The amounts of surface-bound water on the samples were determined by 

thermogravimetric analysis (TGA) using a Netzsch STA-409 PC. Prior to the TGA 

measurements, the samples were dried in a vacuum oven (p = 16.2 kPa) at 373 K for about 6 h to 

remove all loosely bound water that might have adsorbed from the atmosphere and that would 

otherwise be removed during heat capacity measurements under high vacuum. TGA 

measurements were carried out in a platinum crucible heated from 293 K to 1173 K (1373 K for 
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bulk Mn-Fe samples) in a helium atmosphere at 5 K·min−1. A buoyancy correction was made by 

measuring an empty platinum crucible under the same conditions and subtracting this from the 

measured data. Measurements were repeated twice and show good reproducibility, and the water 

contents were determined from the average of the resulting TGA weight loss curves. 

5.2.2 Heat Capacity Calorimetry 

Heat capacities were measured from 1.9 to 300 K using a Quantum Design Physical 

Property Measurement System (PPMS), which uses a thermal relaxation technique. The samples 

were dried at 373 K in vacuo for several hours and subsequently stored in an argon atmosphere 

to prevent re-adsorption of water from the atmosphere. In the argon atmosphere, 10-14 mg of 

each sample were mixed with high purity (mass fraction 0.9995) copper strips (to provide better 

thermal conductivity) and put into copper cups that were pressed into disks approximately 3 mm 

in diameter and 1 mm in height following the method of Shi et al.61 Addenda measurements 

were performed before each measurement that determined the heat capacity of the calorimeter 

and the Apiezon N grease used to attach the sample. After each addenda measurement, the 

sample was attached to the PPMS puck, and the heat capacity was measured. The system 

automatically corrects for the heat capacities of the calorimeter and grease, and the heat capacity 

of the copper contribution was subtracted using data from Stevens and Boerio-Goates.62 Data 

measured on the PPMS using this method have an estimated uncertainty of ± 0.02∙Cp° for 2 < T/K 

< 10 and ± 0.01∙Cp° for 10 < T/K < 300.61 Details of the measured samples are given in Table 5-1 

below. 
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Table 5-1: Properties of Samples for Heat Capacity Measurements in the PPMS (water 
content in moles; mass in mg) 

 Formula Water Content Sample Mass Copper Mass 

bu
lk

 

Co0.6Fe2.4O4 – 27.07 23.88 
CoFe2O4 – 30.48 24.30 
Co1.5Fe1.5O4 – 26.91 25.05 
Co2FeO4 – 32.58 23.84 
Co2.4Fe0.6O4 – 21.21 21.79 
Co3O4 – 29.52 22.30 

na
no

 

Co0.6Fe2.4O4 1.512 17.41 22.85 
CoFe2O4 0.973 16.39 20.06 
Co1.5Fe1.5O4 1.460 16.26 19.67 
Co2FeO4 1.056 12.01 22.05 
Co2.4Fe0.6O4 0.479 13.36 24.26 
Co3O4 0.530 15.08 23.05 

bu
l k MnFe2O4 – 23.86 22.21 

Mn3O4 – 12.61 18.98 

na
no

 

Mn0.6Fe2.4O4 1.134 13.23 21.27 
MnFe2O4 0.892 15.51 22.05 
Mn1.5Fe1.5O4 0.674 17.37 20.74 
Mn2FeO4 0.516 18.36 21.42 
Mn2.4Fe0.6O4 0.887 9.11 20.35 
Mn3O4 0.480 15.54 20.87 

 

 Results/Discussion 

5.3.1 Characterization 

 The XRD data for all samples are shown in Figure 5-1 below. These data show that all 

samples are highly crystalline and phase pure. The progression of lattice parameters is apparent 

as the peaks gradually shift to higher 2θ values as Fe3O4 concentration increases. The gradual 

shift from the tetragonal phase of Mn3O4 towards the cubic Fe3O4 phase can also be seen. 
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Figure 5-1: XRD Data of All Samples Showing Phase Purity and Progression of Peaks as 
Cation Concentrations Change. Data have been scaled and offset for clarity. red – M3O4; 
orange – M2.4Fe0.6O4; yellow – M2FeO4; green – M1.5Fe1.5O4; blue – MFe2O4; purple – 
M0.6Fe2.4O4 (M: Co or Mn). Bottom lines in each graph represent the XRD patterns of 
standard materials. a) bulk Co-Fe, b) nano Co-Fe, c) bulk Mn-Fe, d) nano Mn-Fe. 

 

 The TGA-DSC data presented in Figure 5-2 show that the bulk Co-Fe spinels are reduced 

by about 1050 K, and the nano Co-Fe spinels reduce at about 850 K for x < 0.67 and at about 

1050 K for x > 0.67. Bulk Mn3O4 did not reduce even by 1350 K, but bulk MnFe2O4 appears to 

begin reduction around 850 K. The nano Mn-Fe samples show no obvious step-like reduction in 

the TGA curves, but the DSC curves for x < 0.5 show exothermic peaks at about 850 K. The 

water content of all bulk samples was taken to be negligible, and the water contents of the 
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nanocrystalline samples (given in Table 5-1) were taken at the inflection points before reduction 

at about 750 K.  

 

 

Figure 5-2: TGA-DSC Data of All Samples Showing Mass Loss Due to Water Desorption 
and Reduction. Only one run of each sample is shown for clarity. The left axis gives the 
percent mass and is represented with solid lines. The right axis gives the DSC data and is 
represented with dashed lines. The solid black line corresponds to 0 μV·mg-1 for the DSC 
axis. red – M3O4; orange – M2.4Fe0.6O4; yellow – M2FeO4; green – M1.5Fe1.5O4; blue – 
MFe2O4; purple – M0.6Fe2.4O4 (M: Co or Mn). a) bulk Co-Fe, b) nano Co-Fe, c) bulk Mn-
Fe, d) nano Mn-Fe. 

 

5.3.2 Heat Capacity General Analysis 

The measured heat capacity data are shown in Figure 5-3. 
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Figure 5-3: Raw Heat Capacity Data of All Spinel Samples. red circles – M3O4; orange 
triangles – M2.4Fe0.6O4; yellow inverted triangles – M2FeO4; green squares – M1.5Fe1.5O4; 
blue diamonds – MFe2O4; purple hexagons – M0.6Fe2.4O4 (M: Co or Mn).  a) bulk Co-Fe, b) 
nano Co-Fe, c) bulk Mn-Fe, d) nano Mn-Fe. The data have been offset for clarity. 

 

5.3.2.1 Water Correction 

Heat capacity data of the nanoparticle samples were corrected for water contributions by 

subtracting the heat capacity of water using various water models. Figure 5-4 shows several of 

the various models that have been developed and published in the literature.63-68 These data were 

smoothed by fitting to a sum of Debye and Einstein functions (also shown in Figure 5-4).65-66 
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Figure 5-4: Water Models Used for Subtracting Water from Spinel Nanoparticles. Smooth 
fits to the data are also shown. maroon circles – hexagonal ice;67 red squares – zeolitic ice;68 
orange triangles – TiO2 anatase (inner) ice;66-67 yellow inverted triangles – TiO2 anatase 
(outer) ice;66-67 green diamonds – TiO2 rutile (inner) ice;65, 67 blue circles – TiO2 rutile 
(outer) ice;65, 67 purple squares – SnO2 cassiterite (inner) ice;63 magenta triangles – SnO2 
cassiterite (outer) ice.63 

 

 Surface-bound water affects the stabilization of nanoparticles and nanoporous materials.8, 

63-75 Treating the surface water on metal oxides as hexagonal ice has proven to be a poor model 

because its heat capacity remains relatively large at low temperatures; thus, when the spinel data 

were corrected for water using the hexagonal ice model, the resultant anhydrous spinel heat 

capacity data became negative. Instead, we chose to use the model of inner-bound layers of 

water on TiO2 anatase nanoparticles.66-67 This is a reasonable choice for this investigation 

because the spinel samples have been dried under vacuum, which would remove any loosely-

bound outer water and leave only inner layer water that is strongly bound to the surface. Using 

surface water data of TiO2 anatase is also a reasonable choice since the surface enthalpy of TiO2 

anatase (0.74 J·m-2)76 is very similar to the surface enthalpies of these samples (0.62-0.83 J·m-2) 

38 and the surface energy is highly correlated to the adsorbed water thermodynamics.70 
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All calculations involving nanoparticle data use the water corrected data shown in Figure 

5-5 below. The heat capacity data of nano Fe3O4 used in this investigation were adapted from 

Snow et al.17 by correcting their data for water using this same model. 

 

 

Figure 5-5: Heat Capacity Data of Nanoparticle Samples after Water Correction. red 
circles – M3O4; orange triangles – M2.4Fe0.6O4; yellow inverted triangles – M2FeO4; green 
squares – M1.5Fe1.5O4; blue diamonds – MFe2O4; purple hexagons – M0.6Fe2.4O4 (M: Co or 
Mn).  a) Co-Fe, b) Mn-Fe. The data have been offset for clarity. 

5.3.2.2 Heat Capacity Data Fitting 

The heat capacity data of all samples were fit to theoretical functions that provide 

information on the various contributions to the heat capacity. The best fits for each temperature 

range were determined from the percent root mean square deviation (% RMS) and a plot of the 
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deviation of each point from the fitting function. Fits that were physically meaningful (no 

negative heat capacities), had the lowest % RMS, and had random deviations were selected as 

the best fits.  

The heat capacity data below 10 K were fit to the sum of theoretical functions: 

 𝐶𝐶𝑙𝑙𝑜𝑜𝑓𝑓 𝑘𝑘 = 𝐴𝐴𝑛𝑛ℎ𝑑𝑑−2 + 𝛾𝛾𝑑𝑑 + 𝐵𝐵𝑓𝑓𝑓𝑓𝑑𝑑3 2⁄ + 𝐵𝐵3𝑑𝑑3 + 𝐵𝐵5𝑑𝑑5 + 𝐵𝐵7𝑑𝑑7 + 𝐵𝐵9𝑑𝑑9

+ 𝐵𝐵𝑔𝑔𝑎𝑎𝑝𝑝𝑑𝑑𝑛𝑛𝑒𝑒−𝛿𝛿 𝑘𝑘⁄ + 𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝑅𝑅 �
𝜃𝜃
𝑑𝑑
�
2 𝑒𝑒𝜃𝜃 𝑘𝑘⁄

(1 − 𝑒𝑒𝜃𝜃 𝑘𝑘⁄ )2 

(5-1) 

where the Anh term represents contributions due to a nuclear hyperfine structure77, the γ term 

represents the contribution from lattice vacancies or other defects,78 the Bfm term represents ferro- 

or ferrimagnetic contributions, the B3, B5, B7, and B9 terms represent the harmonic-lattice 

expansion,79 the “gapped” Bgap term represents magnetic contributions (the type of magnetism 

given by n) that have a gap δ in the density of states (DOS) due to anisotropy,21-22, 80-81 and the 

nSch term represents a Schottky contribution arising from a two-level system with energy 

separation θ.82 We note that the magnetic contribution in antiferromagnetic samples also has a T3 

dependence making it indistinguishable from the phonons. Fits had a maximum of six 

parameters; thus, not all parameters were necessary for all samples. 

 Data of samples that do not exhibit a magnetic transition in the mid temperature range (6 

– 50 K) were fit with polynomials to provide sufficient overlap with the low temperature and 

high temperature fits and have the general form: 

 𝐶𝐶𝑓𝑓𝑓𝑓𝑚𝑚 𝑘𝑘 = � 𝐴𝐴𝑛𝑛𝑑𝑑𝑛𝑛
𝑛𝑛=0,1,2…6

 (5-2) 

Although these fits do not provide information on the underlying physical contributions, they are  

often necessary to fit data through inflection points. 
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The high temperature data (T > 30 K) were fit to a linear combination of Debye and 

Einstein functions that provides information on the lattice heat capacity: 

 𝐶𝐶ℎ𝑓𝑓𝑔𝑔ℎ 𝑘𝑘 = 𝑚𝑚 · 𝐷𝐷(Θ𝐷𝐷/𝑑𝑑) + 𝑛𝑛1 · 𝑑𝑑(Θ𝐸𝐸,1/𝑑𝑑) + 𝑛𝑛2 · 𝑑𝑑(Θ𝐸𝐸,2/𝑑𝑑) (5-3) 

where D(ΘD / T), E(ΘE,1 / T), and E(ΘE,2 / T) are Debye and Einstein functions; m, n1, n2, ΘD, 

ΘE,1, and ΘE,2 are all adjustable parameters; and (m + n1 + n2) should be approximately equal to 

the number of atoms in the formula unit.83 Samples that had a transition in this region were fit at 

temperatures above the transitions, starting at about 70 K, with one Debye and one Einstein 

function, but the samples that had no transitions were fit above about 30 K with one Debye and 

two Einstein functions. 

5.3.3 Transitions 

The heat capacities of the magnetic transitions were determined by subtracting the lattice 

contribution from the total heat capacity and are shown in Figure 5-6. These data were fit with a 

cubic spline function that was used to generate enthalpies and entropies of the transitions. These 

values, as well as the Néel (antiferromagnetic ordering) and Curie (ferromagnetic ordering) 

temperatures, are given in Table 5-2.  

The Néel temperature TN of bulk Co3O4 is most commonly reported to be 29.9 K from a 

variety of measurements,20, 23-24 which corresponds well with our values of TN = 30.0 K. The 

higher TN observed for bulk Co2.4Fe0.6O4 and Co2FeO4 (about 50 K) is attributed to enhancement 

of the magnetic coupling with increasing Fe concentration as has been observed for Mn-Fe spinel 

solid solutions.32 Tristan et al. observed frustration in Co(Al1-xCox)2O4 spinels as the amount of 

Al3+ in octahedral sites increased.24 The Al3+ ions hindered the antiferromagnetic coupling across 

the next-nearest-neighbor A–O–B–O–A exchange interaction and thus decreased TN by about 10 

K. Our results suggest that the Fe3+ ions in Co2.4Fe0.6O4 and Co2FeO4 have the opposite effect on  
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Figure 5-6: Heat Capacities of the Magnetic Transitions. red circles – M3O4; orange 
triangles – M2.4Fe0.6O4; yellow inverted triangles – M2FeO4; green squares – M1.5Fe1.5O4; 
blue diamonds – MFe2O4; purple hexagons – M0.6Fe2.4O4 (M: Co or Mn).  a) bulk Co-Fe, b) 
nano Co-Fe, c) bulk Mn-Fe, d) nano Mn-Fe. 

 

the long-range antiferromagnetic ordering and increase the coupling across the A–O–B–O–A 

system and therefore increase TN by about 20 K.  

The significant decrease in TN for Co1.5Fe1.5O4 and Co0.6Fe2.4O4 to 2.52 and 2.00 K from 

30-50 K (as well as the absence of any transition for CoFe2O4) suggests that the Fe cations 

become detrimental to the coupling at larger concentrations and produce strong spin frustration 

to the point that a spin-glass state is achieved.24 This reversal in effect of the Fe cations is likely 

related to the type and site of the mixing Fe cations. Because Fe3O4 is ferrimagnetic (as opposed 
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to the antiferromagnetic Co3O4), the coupling between the Fe2+/3+ cations for x < 0.67 dominates 

and disrupts the Co2+–Co2+ nearest-neighbor and next-nearest-neighbor interactions.  

 

Table 5-2: Néel and Curie Temperatures, Entropies, and Enthalpies of the Magnetic 
Transitions 

 Sample TN,C / 
K 

∆𝑜𝑜𝑘𝑘𝑆𝑆𝑓𝑓𝑡𝑡𝑎𝑎𝑛𝑛𝑓𝑓𝑜𝑜  / 
J·mol-1·K-1 

∆𝑜𝑜𝑘𝑘𝑑𝑑𝑓𝑓𝑡𝑡𝑎𝑎𝑛𝑛𝑓𝑓𝑜𝑜  / 
J·mol-1 

bu
lk

 

Co0.6Fe2.4O4 2.00 0.008075 0.02062 
Co1.5Fe1.5O4 2.52 0.01316 0.05615 
Co2FeO4 49.8 1.099 44.77 
Co2.4Fe0.6O4 49.3 1.721 55.03 
Co3O4 30.0 8.828 245.8 

na
no

 Co2FeO4 28.3 3.911 97.07 
Co2.4Fe0.6O4 28.1 4.651 115.3 
Co3O4 28.1 8.390 214.3 

bu
lk

 MnFe2O4 38.0 3.294 100.1 
Mn3O4 42.2 15.49 557.7 

na
no

 

Mn0.6Fe2.4O4 40.1 2.499 76.98 
MnFe2O4 39.4 2.491 75.75 
Mn1.5Fe1.5O4 39.8 4.343 124.5 
Mn2FeO4 32.1 3.715 92.21 
Mn2.4Fe0.6O4 40.9 8.064 254.2 
Mn3O4 39.9 13.78 426.0 

 

Figure 5-6 shows that the nano Co-Fe spinels all have TN near 28 K, the peaks are broader 

than their bulk counterparts, and a shoulder is observed at about 45 K. The decrease in TN is 

commonly observed for nanoparticles in which the size of the particle begins to be comparable to 

the size of the magnetic domains.4, 9, 20, 26-28 The broadening of the peaks is also common for 

nanomaterials and is likely caused by clusters of the parent Co3O4 and Fe3O4 phases being 

randomly distributed in the volume of the nanoparticles.24 These properties suggest that the 

mixing of the magnetically active cations in the nanoparticles is not random. The shoulder at 45 

K could arise from phase impurities, but the lack of evidence of such impurities in the XRD data 
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suggests this is not likely, at least at levels of more than 2-3 %,. We believe this shoulder arises 

from enhancement effects of the Fe cations in a small percentage of the magnetic domains 

causing an increase in the transition temperature as seen in the bulk Co2.4Fe0.6O4 and Co2FeO4. 

This explanation would also suggest that the distribution of cations in each sublattice of the 

nanoparticle solid solutions is not random.  

Bulk Mn3O4 has a sharp transition at 42.2 K due to ferrimagnetic ordering as is observed 

in the literature.6-7, 30-33 The small shoulder at about 39 K has been related to an incommensurate 

magnetic transition, but the commensurate transition at about 33 K that has been reported in the 

literature is not observed.6-7, 31 Bulk MnFe2O4, however, has a broad and weak transition at a 

slightly lower temperature, 38.0 K. Naito et al. have shown that bulk MnFe2O4 has a Curie 

temperature TC of about 600 K;33 therefore, we suspect that this small peak is an artifact arising 

from the lattice heat capacity subtraction.  

The nano Mn-Fe samples all have a TC of about 40 K except for the nano-Mn2FeO4 

sample, which seems to have a TC of 32.1 (this difference is possibly a result of errors in 

subtracting the water or lattice contributions). As with the nano Co-Fe samples, we attribute the 

slightly lower TC to size.4, 6, 9, 20, 26-28 The broadening of these peaks can also be attributed to 

randomly dispersed clusters of magnetic domains as seen in the nano Co-Fe spinels.6, 24 As 

mentioned for the bulk Mn-Fe solid solutions, the transitions observed in our samples at about 40 

K and for these compositions have not been observed in the literature.32-33 The peaks in our nano 

Mn-Fe solid solutions at the same temperature (regardless of composition) might suggest Mn3O4 

impurities, but the concentrations of these impurities would have to be significant and should 

therefore be visible in the XRD data where no such impurities are observed. We believe that 

these transitions are caused by clustering of the ions on an atomic scale thereby leaving domains 
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of Mn ions that have a similar magnetic structure to that of pure Mn3O4 but that have the 

physical structure of the Mn-Fe solid solutions. In other words, the coherence length of any such 

clustered domains is too small to give rise to distinct powder XRD peaks.   

Based on the spin states of these materials (S = 3/5 for Co3O4 and S = 9/2 for Mn3O4) and 

assuming a completely ordered state below the transition temperature and a completely 

disordered state above the transition temperature, the excess entropies of transition of Co3O4 and 

Mn3O4 would be 11.5 and 19.1 J·mol-1·K-1, respectively.23, 31 Our results are roughly 25 % lower 

than these theoretical values which could indicate some residual short-range order in the high-

temperature phase. This discrepancy could also be partially caused by errors introduced when 

subtracting the lattice heat capacity.  

Our entropy for bulk Co3O4 of 8.8 J·mol-1·K-1 at about 72 K (where the transition heat 

capacity becomes zero) is in good agreement with the entropy obtained by Khriplovich et al. of 

9.2 J·mol-1·K-1,23 and our value for bulk Mn3O4 of 15.5 J·mol-1·K-1  at 70 K is in fair agreement 

with that of Chhor et al.31 (note that their published entropy of 11.5 J·mol-1·K-1 was taken at TC 

rather than 70 K as in the present study; the entropy of our sample at TC is 11.47 J·mol-1·K-1 

which agrees well with the literature).  

5.3.4 Standard Enthalpies, Entropies and Excess Entropies of Mixing 

Thermodynamic data were calculated from the fits of the heat capacity data that have 

been corrected for water. The lattice enthalpies and entropies were determined from the low, 

mid, and high-temperature fits for samples without a transition and from the high temperature 

fits (Eq. 5-3) extrapolated to 0 K for samples that do have a transition. Figure 5-7 shows the 

standard molar entropies and enthalpies of all samples at 298.15 K as a function of 

𝑥𝑥𝐹𝐹3𝑂𝑂4(𝑀𝑀:𝐶𝐶𝑜𝑜,𝑀𝑀𝑛𝑛). 
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Figure 5-7: Standard Molar Entropies (a) and Enthalpies (b) at 298.15 K Determined from 
Water-corrected Heat Capacity Data. Circled points are from Naito et al.33 

 

 As previously mentioned, configurational entropies cannot be measured from heat 

capacity data and will therefore not be discussed in any detail herein. For details regarding this 

entropic contribution, the reader is referred to the work of Sahu et al.38 , though some results will 

be repeated here graphically for comparison purposes. These values will be referred to herein as 

the configurational entropy of mixing ΔmixSconf and are included in Table 5-3.84 It is important to 

remember that these configurational entropies of mixing are based on maximum configurational  

entropies at each composition resulting from random distributions on each sublattice of the ions 

calculated from the assumed cation and valence distributions. 
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The excess (non-configurational) entropies of mixing for all spinel solid solutions 

investigated herein have been determined as deviations of the solid solution entropies from a 

linear combination of the entropies of the two pure end-members as has been done in our 

companion study.38 These values include both the vibrational and magnetic entropy 

contributions. Figure 5-8 and Table 5-3 show these values as well as ΔmixSconf and the total 

entropy of mixing ΔmixStotal obtained by summing all contributions;   

 

 

Figure 5-8: Excess Entropies of Mixing (green inverted triangles) of All Materials 
Investigated Herein as well as Configurational Entropies of Mixing (blue triangles) 
Obtained from Sahu et al.38 and Total Entropies of Mixing (red circles) a) bulk Co-Fe, b) 
nano Co-Fe, c) bulk Mn-Fe (circled points were generated from the data of Naito et al.33), 
d) nano Mn-Fe. 
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Table 5-3: Excess Entropies of Mixing of (1-x)Fe3O4–xM3O4 (M: Co or Mn) 

Sample 𝑥𝑥𝐹𝐹𝑠𝑠𝑂𝑂4  ∆𝑓𝑓𝑓𝑓𝑥𝑥𝑆𝑆𝐶𝐶𝑜𝑜 𝑏𝑏𝑏𝑏𝑙𝑙𝑘𝑘
𝐸𝐸  ∆𝑓𝑓𝑓𝑓𝑥𝑥𝑆𝑆𝐶𝐶𝑜𝑜 𝑛𝑛𝑎𝑎𝑛𝑛𝑜𝑜

𝐸𝐸  ∆𝑓𝑓𝑓𝑓𝑥𝑥𝑆𝑆𝐹𝐹𝑛𝑛 𝑏𝑏𝑏𝑏𝑙𝑙𝑘𝑘
 𝐸𝐸  ∆𝑓𝑓𝑓𝑓𝑥𝑥𝑆𝑆𝐹𝐹𝑛𝑛 𝑛𝑛𝑎𝑎𝑛𝑛𝑜𝑜

𝐸𝐸  ∆𝑓𝑓𝑓𝑓𝑥𝑥𝑆𝑆𝑆𝑆𝑜𝑜𝑛𝑛𝑓𝑓  
Fe3O4 0  0 0 0 0 0  
M0.6Fe2.4O4 0.2  -7.306 28.79 – 34.21 12.25  
MFe2O4 0.33  -0.2036 20.34 0.7128 15.45 8.153  
M1.5Fe1.5O4 0.5  2.453 27.36 -5.197a 11.66 17.43  
M2FeO4 0.67  6.936 5.145 -3.668a 8.897 19.25  
M2.4Fe0.6O4 0.8  6.744 7.445 – 3.067 15.19  
M3O4 1  0 0 0 0 0  
avalues obtained from data of Naito et al.33 

 

 As can be seen in Figure 5-8, the excess non-configurational entropies of mixing are all 

positive and can be significant when compared to the configurational entropies of mixing. The 

magnitudes of the excess entropies of mixing in the bulk Co-Fe spinel solid solutions are 60, 2.5, 

14, 36 and 44 % of the corresponding configurational entropies of mixing for 𝑥𝑥𝐹𝐹3𝑂𝑂4 = 0.2, 0.33, 

0.5, 0.67, and 0.8, respectively. Similarly, the magnitudes of the ΔmixSE of the bulk Mn-Fe spinels 

correspond to 8.7, 30, and 19 % of ΔmixSconf for 𝑥𝑥𝐹𝐹3𝑂𝑂4 = 0.33, 0.5, and 0.67, respectively. The 

excess entropies of mixing of the nanocrystalline samples are significantly greater than those of 

their bulk counterparts. For nano Co-Fe spinels they represent 235, 249, 157, 27, and 49 % of the 

configurational entropies for 𝑥𝑥𝐹𝐹3𝑂𝑂4 = 0.2, 0.33, 0.5, 0.67, and 0.8, respectively, and for nano Mn-

Fe spinels they represent 279, 189, 67, 46, and 20 of the configurational values for 𝑥𝑥𝐹𝐹3𝑂𝑂4 = 0.2, 

0.33, 0.5, 0.67, and 0.8, respectively. These values indicate that although the non-configurational 

mixing effects are present in both bulk and nano samples, they are much more pronounced in the 

nanoparticles. 

 These values of ΔmixSE indicate that changes in lattice and magnetic behavior on an 

atomic scale must be taken into account when considering the thermodynamics of mixing. 

Excess entropies have been attributed to short-range order, vibrational effects, and electron-
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exchange interactions.38, 44, 48, 50, 53, 56-57, 85-86 In a recent study on the mixing in Al-doped TiO2 

nanoparticles, we showed that short-range order effects and a glass-like state were correlated 

with an excess entropy of mixing;59 however, short-range ordering typically causes negative 

excess configurational entropies, which would not be measured by heat capacities.  

Excess entropies with similar magnitudes to those determined in the present investigation 

have been related to the added vibrational freedom a small ion might have on a particular site 

relative to a larger ion on the same site.56 Although the ions in these spinels are all similar in 

size, they differ in charge (2+ and 3+), and this may affect the strength of metal-oxygen bonds 

and therefore the vibrational heat capacity. Figure 5-9 shows that the contribution from lattice 

vibrations dominate the excess non-configurational entropies of nanoparticle samples; whereas, 

the bulk samples have competing and even dominating magnetic contributions for several 

concentrations. We note that the excess entropy of mixing values for the nanoparticle systems 

have substantially more uncertainty than those of the bulk systems because of the water 

correction. The errors associated with this correction could produce an artificially large positive 

excess entropy.  

These systems evolve from a cubic normal spinel to a cubic inverse spinel for the Co-Fe 

solid solutions and from a tetragonal normal spinel to a cubic inverse spinel for the Mn-Fe 

system. The structural change as a function of composition is correlated to the vibrational 

character. Mn3O4 has a characteristic Jahn-Teller distorted structure and the degree of long-range 

(crystallographic) distortion diminishes and eventually disappears as Fe or Co is substituted; 

however, local distortions around Mn3+ may persist into the cubic phase. All these factors may 

affect the vibrational density of states. The nanoparticles have larger excess entropies; therefore, 



138 
 

the vibrational disorder appears to be greater in nanoparticles. This result correlates well with 

investigations on the vibrational character of bulk and nano materials.75 

 

 

Figure 5-9: Vibrational ΔmixSvib (red triangles) and Magnetic ΔmixSmag (blue inverted 
triangles) Entropy of Mixing Contributions. a) bulk Co-Fe, b) nano Co-Fe, c) bulk Mn-Fe 
(circled points were generated from the data of Naito et al.33), d) nano Mn-Fe. 

 

 A final observation from the data in Figures 5-8 and 5-9 is the asymmetry of the excess 

entropies of mixing in the nanoparticle samples, which has been observed elsewhere.86 The 

excess entropies greatly surpass the configurational entropies for higher Fe concentrations, while 

these values represent a much smaller percentage of the configurational entropies for low Fe 

concentrations. This gives rise to the conclusion that, along with a shift in structure, such as 
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tetragonal to cubic for Mn-Fe spinels, the contribution to the excess entropy from the 

redistribution of oxidation states is also significant and will affect bond lengths, cation 

distributions, and lattice vibrations.    

 Conclusions 

The large, positive excess non-configurational entropies of mixing arise both from shifts 

in magnetic transitions and from lattice vibrational effects. The arguments related to magnetic 

behavior suggest some clustering into domains, particularly those that may resemble Mn3O4. 

Any such clustering will lead to nonrandom distributions of cations on each sublattice and thus 

diminish the configurational entropy from that of ideal mixing (maximum randomness) on each 

sublattice. Such clustering may be temperature dependent. Our previous work 38 used measured 

enthalpies of mixing at 298 K and configurational entropies calculated assuming maximum 

randomness on each sublattice for the proposed cation distribution to compare with free energies 

of mixing measured at or above 1000 K. The results, without using any non-configurational 

excess entropy terms, were reasonably concordant. The present heat capacity measurements 

suggest large non-configurational excess entropies of mixing at 298 K and may suggest smaller 

than random configurational entropies because of possible domain formation; however, 

additional phase transitions, decrease of clustering, and changes in vibrational properties 

between room temperature and the temperature of free energy measurements may well affect the 

heat capacities and entropies in that temperature range. In the absence of accurate heat capacity 

data between 298 and 1000-1300 K, it is premature to try to model the entropies of mixing at 

high temperature; nevertheless, the current work shows that differences in magnetic and 

vibrational properties across these complex solid solutions can lead to significant non-
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configurational excess entropies of mixing, which may persist to higher temperature and must be 

considered and quantified. 
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6 DETERMINING THE LOCATION AND ROLE OF AL IN AL-MODIFIED TIO2 

NANOPARTICLES USING LOW-TEMPERATURE HEAT CAPACITY, 

ELECTRON ENERGY-LOSS SPECTROSCOPY, AND X-RAY DIFFRACTION 

 Introduction 

TiO2 nanoparticles are widely used in industry as catalysts, catalyst supports, components 

of solar cells, and even household products1-6. Dopants are often incorporated to improve 

structural and thermal stability, catalytic activity and selectivity, photoresponse, and other 

desirable chemical and physical properties7-12. Al is a common dopant added to TiO2 

nanoparticles to control the thermal stability, surface area, and porosity of the nanostructure; 

however, the role the Al dopant has in stabilizing the structure is unclear, as is often the case 

with doped materials. Understanding the role that the Al dopant has on TiO2 nanoparticles is 

necessary to produce particles with optimized properties. 

A fundamental knowledge of dopant functionality requires that its location in the lattice 

be known. Although often difficult, determining the location of the dopant in a material has been 

made more feasible with several techniques such as sophisticated X-ray diffraction (XRD) and 

electron microscopy techniques. Unfortunately, these techniques often have poor detection limits 

which has led to contradictory conclusions using similar data. For example, the absence of 

separate aluminum oxide peaks in the XRD data of Al doped TiO2 suggests that the Al dopant is 
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interstitially13 or substitutionally14-16 incorporated into the TiO2 lattice, yet several investigations 

report that Al is found on the surface or between TiO2 nanoparticles in an Al2O3 phase17-19.  

Heat capacity, a bulk measurement, is often quite useful for identifying and quantifying 

concentrations of impurities and the average properties of a material20. The heat capacity of a 

material is a measure of all the energy states (vibrational, electronic, magnetic, etc.) at a given 

temperature, and its dependence on temperature can be modeled with theoretical functions for 

each contribution20-22. We have recently shown that a linear dependence in the low-temperature 

(T < 10 K) heat capacity data for insulators can be directly proportional to lattice vacancy 

concentrations23. We have also shown that many samples that have short-range correlations such 

as AlOx polyheda have excess low-energy modes with a gap in the density of states (DOS) that is 

also manifest in the low-temperature heat capacity data24. Entropy values can be derived from 

heat capacity data and can give information about mixing effects. These three characteristics can 

provide important structural information on Al doped TiO2 nanoparticles. 

We have recently investigated the structure of Al doped TiO2 nanoparticles (focusing on 

22 mol% Al doped TiO2) using XRD, X-ray absorption near edge structure (XANES), extended 

X-ray absorption fine structure (EXAFS), transmission electron microscopy (TEM), 27Al magic-

angle spinning nuclear magnetic resonance (27Al MAS-NMR), and N2 sorption isotherms using 

the Brunauer-Emmett-Teller (BET) method25. The analysis also included a preliminary heat 

capacity investigation using the linear term of the low-temperature data fitting, which at that time 

was only believed to be related to lattice vacancies. We have since shown that the linear term is 

indeed directly proportional to lattice vacancy concentrations and have improved the heat 

capacity data analysis using our recently developed linear term23 and gapped term24 models.  
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This work supplements our previous work25 by giving a more detailed and accurate 

analysis of the heat capacities of these Al doped TiO2 nanoparticles. Specifically, our 

investigation provides greater insight on the location of the Al dopant having concentrations of 

5-50 mol% Al, demonstrates a new method for determining the location of a dopant, and 

introduces a new use for low-temperature heat capacity analysis. The linear terms and gapped 

terms generated from the low-temperature heat capacity data and the entropies at 298.15 K 

indicate that the Al is located in the TiO2 lattice and creates a more stable structure than pure 

TiO2. Electron energy-loss spectroscopy (EELS) and XRD, using a better radiation source than 

previously used, were also performed to support the conclusions drawn from the heat capacity 

analysis.  

 Experimental 

6.2.1 Sample Preparation 

Ten samples of Al doped TiO2 were prepared following a general solvent deficient 

method taking two different routes: dry-rinse-calcine (DRC) and dry-calcine-rinse (DCR), the 

details of which can be found elsewhere25-27. For the pure TiO2, TiCl4 was mixed with 

NH4HCO3, and for Al-modified TiO2, Al(NO3)3·9H2O was added to the mixture of TiCl4 and 

NH4HCO3. Water was added to produce a slurry which was then dried in air at 100°C. DRC 

samples were then rinsed with distilled water and calcined at 400°C for three hours in air. DCR 

samples were first calcined under the same conditions and then rinsed. These two synthesis 

methods produce materials with quite different pore properties such as size and shape. Samples 

from each method consisted of pure TiO2, 5 mol%, 14 mol%, 22 mol% and 50 mol% Al-

modified TiO2, where mol% indicates the percent of Al3+ ions relative to all metal cations.  
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6.2.2 Sample Characterization 

The samples were previously characterized by powder XRD, XANES, EXAFS, TEM, 

27Al MAS-NMR, and N2 sorption isotherms using the BET method25. XRD results of pure and 

22 mol% Al indicate these samples have no detectable Al2O3 phase. Particles sizes determined 

from XRD range from 2-7 nm. XANES gives the Ti coordination of both pure TiO2 samples and 

22 mol% Al DCR to be 6-coordinate Ti, while 22 mol% Al DRC shows the presence of 5-

coordinate Ti. The 27Al NMR results reveal primarily 6-coordinate Al for both pure TiO2 

samples and a mixture of 6-, 5-, and 4-coordinate Al for both 22 mol% Al samples25. Water 

contents have been determined by thermogravimetric analysis (TGA) and range from 0.20-0.50 

and 0.26-0.59 mol H2O per mol TiO2 for DCR and DRC, respectively. A summary of the pore 

properties of these materials is given in Table 6-1, and further details on the sample 

characterization can be found in our previously published papers on these Al-doped TiO2 

samples25-26. 

 

Table 6-1: Summary of the Pore Properties of All Samples Including Surface Area (SA), 
Pore Volume (PV), and Pore Diameter (PD)25 

 mol% Al formula SA (m2/g) PV (cm3/g) PD (nm) 

D
C

R
 

0 TiO2·0.20H2O 124 0.30 7.8 
5 Ti0.95Al0.05O1.975·0.45H2O 138 0.25 3.8 
14 Ti0.86Al0.14O1.93·0.28H2O 172 0.35 7.4 
22 Ti0.78Al0.22O1.89·0.28H2O 184 0.34 6.3 
50 Ti0.50Al0.50O1.75·0.50H2O 307 0.37 4.3 

D
R

C
 

0 TiO2·0.26H2O 164 0.24 4.7 
5 Ti0.95Al0.05O1.975·0.57H2O 375 0.33 4.0 
14 Ti0.86Al0.14O1.93·0.59H2O 490 0.77 5.7 
22 Ti0.78Al0.22O1.89·0.49H2O 471 0.44 4.4 
50 Ti0.50Al0.50O1.75·0.44H2O 349 0.34 4.4 
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6.2.3 Heat Capacities 

Heat capacities were measured from 1.9 to 300 K using a Quantum Design Physical 

Property Measurement System (PPMS), which uses a thermal relaxation technique. Prior to 

measurement, the powder samples were dried in vacuo at 100° C for about 6 hrs and stored in an 

argon atmosphere to prevent readsorption of water from the atmosphere. In the argon 

atmosphere, 10-14 mg of each sample were mixed with copper strips (Alpha Aesar mass fraction 

purity 0.9995) and put into copper cups that were pressed into disks approximately 3 mm in 

diameter and 1 mm in height following the method of Shi et al28. Addenda measurements were 

performed before each measurement that determined the heat capacity of the calorimeter and the 

Apiezon N grease used to attach the sample. After each addenda measurement, the sample was 

attached to the PPMS puck, and the heat capacity was measured. The system automatically 

corrects for the heat capacities of the calorimeter and grease, and the heat capacity of the copper 

contribution was corrected using data from Stevens and Boerio-Goates29. Data measured on the 

PPMS using this method have an estimated uncertainty of ± 0.02∙Cp° for 2 < T/K < 10 and ± 

0.01∙Cp° for 10 < T/K < 30028.  

6.2.4 Electron Energy-Loss Spectroscopy 

EELS was performed for pure and Al doped TiO2 samples as well as an Al2O3 sample 

used as a reference30. Data were collected using a Tecnai F20 analytical S/TEM with an incident 

beam energy of 200 keV equipped with a Gatan parallel-collection spectrometer. Scanning TEM 

(STEM) and high-resolution TEM (HRTEM) images were taken of the sampling areas used to 

collect the EELS data. Figure 6-1a shows an HRTEM image of 50 mol% Al DCR (slightly out of 

focus to produce Fresnel contrast) in which diffraction fringes can be seen for several particles, 
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and Figure 6-1b shows a STEM image of 14 mol% Al DRC in which planes of atoms are 

distinguishable for several particles.  

 

 

Figure 6-1: TEM Images Showing EELS Data Sampling Region of (a) 50 mol% Al TiO2 
DCR Nanoparticles (HRTEM) and (b) 14 mol% Al TiO2 DRC Nanoparticles (STEM).   

 

EELS data were collected in parallel imaging mode with several energy-loss ranges and 

over several regions of space. Resolution of the EELS spectrometer, as determined by the full 

width of the zero-loss peak (ZLP) at half maximum, was found to be about 0.8 eV. We note that 

the spectrometer experienced some issues that appear in the center of some of the spectra as an 

abrupt shift in the intensity, but this is merely an artifact and is not related to any peaks. 

6.2.5 X-Ray Diffraction 

Powder XRD data of all samples were collected at 100 K and in transmission mode using 

a MACH3 four circle single crystal diffractometer coupled to a Bruker Apex II CCD detector 

with a Bruker-Nonius FR591 rotating anode X-ray source producing Cu Kα radiation (λ = 1.5418 

Å). The samples were prepared for the XRD measurements by packing the powders into 

polyimide capillaries with an inner diameter of 0.305 mm. Data were collected between 2° – 

133° 2θ by performing a series of 8 overlapping phi 360 scans. The Bruker XRD2 program was 

used to merge the images and integrate the intensity of the diffraction rings.  
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 Results/Discussion 

6.3.1 Heat Capacity Fitting Analysis 

The experimental heat capacity data are shown graphically in Figure 6-2. The data were 

fit to functions that provide information on the contributions. The best fits for each temperature 

range are determined from the percent root mean square deviation (%RMS) and a plot of the 

deviation of each point from the fitting function. Fits that were physically meaningful (no 

negative contributions), had the lowest %RMS, and had random deviations were selected as the 

best fits.  

 

 

Figure 6-2: Molar Heat Capacity Data from 1.9-300 K Measured on a Quantum Design 
PPMS of Pure and Al Doped TiO2 Nanoparticles. (a) DCR. (b) DRC. 
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High temperature data (T > 30 K) were fit to a sum of Debye and Einstein functions that 

provide information on the lattice heat capacity 

 𝐶𝐶ℎ𝑓𝑓𝑔𝑔ℎ 𝑘𝑘 = 𝑚𝑚 · 𝐷𝐷(Θ𝐷𝐷/𝑑𝑑) + 𝑛𝑛1 · 𝑑𝑑(Θ𝐸𝐸,1/𝑑𝑑) + 𝑛𝑛2 · 𝑑𝑑(Θ𝐸𝐸,2/𝑑𝑑) (6-1) 

where D(ΘD / T), E(ΘE,1 / T), and E(ΘE,2 / T) are Debye and Einstein functions22, 31; m, n1, n2, ΘD, 

ΘE,1, and ΘE,2 are all adjustable parameters; and (m + n1 + n2) should be approximately equal to 

the number of atoms in the formula unit32. Generally one Debye and one Einstein function are 

sufficient to fit high temperature data, but for these samples such a fit was only valid above about 

100 K. To fit a larger range, the extra Einstein function was needed. 

 Data in the mid temperature range (from 6 – 50 K) were fit with polynomials to provide 

sufficient overlap with the low temperature and high temperature fits having the form: 

 𝐶𝐶𝑓𝑓𝑓𝑓𝑚𝑚 𝑘𝑘 = � 𝐴𝐴𝑛𝑛𝑑𝑑𝑛𝑛
𝑛𝑛=0,1,2…6

 (6-2) 

Although these fits do not provide information on the underlying physical contributions, they are 

often necessary to fit data through inflection points. 

The heat capacity data below 10 K (shown in Figure 6-3 as C/T versus T) were fit to the 

sum of theoretical functions: 

 𝐶𝐶𝑙𝑙𝑜𝑜𝑓𝑓 𝑘𝑘 = 𝛾𝛾𝑑𝑑 + 𝐵𝐵3𝑑𝑑3 + 𝐵𝐵5𝑑𝑑5 + 𝐵𝐵7𝑑𝑑7 + 𝐵𝐵𝑔𝑔𝑎𝑎𝑝𝑝𝑑𝑑2𝑒𝑒−𝛿𝛿 2𝑘𝑘⁄  (6-3) 

where the γ term represents the contribution from lattice vacancies23, the B3, B5, and B7 terms 

represent the harmonic-lattice expansion33, and the “gapped” Bgap term represents phonon 

contributions from low-energy modes with a gap in the vibrational DOS 24. The contributions 

related to vacancies and low energy modes can be used to identify where the Al dopant is located 

in the TiO2. 
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Figure 6-3: Low-temperature Heat Capacity Data from 1.9-10 K of Pure and Al Doped 
TiO2 Nanoparticles Plotted as C/T versus T. (a) DCR. (b) DRC. 

 

Fits having various combinations of the parameters given in Eq. 6-3 were used until the 

best combination of parameters was found as determined by the fit with a low %RMS and a 

random deviation. The fits of all samples were significantly better when the linear term was 

included. Only five samples showed improvement in the fit quality (lower %RMS and random 

deviation) when the gapped term was included: 5 mol% DCR, 5 mol% DRC, 14 mol% DCR, 14 

mol% DRC, and 22 mol% DRC. We note that the linear terms were not affected by the addition 

of the gapped terms; therefore, the analysis of the linear terms remains valid for all fits whether 

the gapped term was used or not.  
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6.3.1.1 Analysis of Linear Terms 

The linear term γ in the low-temperature heat capacity fitting is directly proportional to 

the concentration of lattice vacancies in insulators23; therefore, any trends in γ will be indicative 

of trends in vacancy concentrations. The linear terms of all samples are plotted as a function of 

mol% Al in Figure 6-4. Also included in Figure 6-4 are the linear terms that are expected for a 

mechanical mixture of TiO2 and Al2O3. The value for pure TiO2 is taken as the average of the 

two pure TiO2 samples investigated here, and the value for Al2O3 is taken as the average of 

several γ-Al2O3 samples we have published elsewhere30.  

 

 

Figure 6-4: Linear Terms from Fits of the Low-temperature Heat Capacity Data of Pure 
and Al Doped TiO2 Nanoparticles Plotted as a Function of mol% Al. The line represents 
values that would be expected for a mechanical mixture of TiO2 and Al2O3 based on γ of 
pure TiO2 and the average of several γ values of Al2O3 published elsewhere.30 DCR are blue 
triangles; DRC are green inverted triangles. 

 

As seen in Figure 6-4, the trends for both synthesis routes are very similar. Upon addition 

of 5 mol% Al, the linear term, and therefore the concentration of lattice vacancies, increases 

much more than what would be expected for a mechanical mixture. The increase from 5-14 

mol% Al is not as large as the increase from 0-5 mol% Al but is still greater than the increase for 
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a mechanical mixture. The increase from 14-22 mol% Al is again larger than the mechanical 

mixture but lower than the increase from 5-14 mol% Al. The values of γ for the DCR samples 

from 22-50 mol% Al then increase with approximately the same slope as from 14-22 mol% Al, 

but the value of the 50 mol% Al DRC sample actually decreases from 22 mol% Al. 

The significant increase in vacancy concentration with the addition of Al3+ indicates that 

separate phases of TiO2 and Al2O3 are not being formed but that Al3+ must be affecting the TiO2 

lattice. We interpret this to suggest that Al3+ enters the TiO2 lattice causing an increase in 

vacancies due to the charge difference between the Al3+ and Ti4+ ions. The increase from 0-14 

mol% Al is approximately linear and reflects the increase in vacancy concentration below the 

saturation point. At lower concentrations, the Al3+ ions enter disperse sites in the TiO2 lattice and 

behave similar to Ti4+.  

After the saturation point is passed, at about 14 mol% Al, γ increases linearly but with a 

different slope than before the saturation point. This saturation point is consistent with work on 

Fe3+ doped TiO2 in which it was shown that TiO2 accommodated as much as 10 mol% Fe3+ 

before the TiO2 structure broke down11. The linear increase in γ from 14-50 mol% Al for the 

DCR samples suggests that a highly disordered TiAlOx phase forms in proportion to the amount 

of Al3+ dopant. The decrease in γ from 22-50 mol% Al for the DRC sample suggests that the 

lattice is becoming more ordered in this range, which could be indicative of the formation of 

Al2O3. Therefore, the disorder increases from 0-14 mol% Al due to charge mismatch between 

Al3+ and Ti4+ and continues to increase from 14-50 mol% Al (except for 50 mol% Al DRC which 

appears to form some Al2O3) but with less magnitude due to the formation of a highly disordered 

secondary phase.  
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These measured values of γ approximately correspond to vacancy concentrations between 

2.3 × 10-3 (pure TiO2 DRC) and 6.0 × 10-3 (50 mol% Al DCR) vacancies per formula unit23, 

which are similar to values reported elsewhere (9.41 × 10-4 for pure TiO2 8, and 6.27 × 10-3 for 

Fe3+ doped TiO2 11); therefore, vacancies increase by 3.7 × 10-3 upon the addition of 50 mol% Al 

for the DCR sample.  

The dopant ions have been proposed to interact with TiO2 by entering either the naturally 

occurring vacancies in TiO2 referred to as interstitial sites13 or by entering the Ti4+ sites though 

substitution14-16. If Al3+ enters the TiO2 lattice in Ti4+ sites, oxygen vacancies will be created to 

compensate for the charge difference between Al3+ and Ti4+; likewise, if Al3+ enters interstitial 

sites, Ti4+ vacancies or a combination of Ti4+ and O2- vacancies will increase to compensate for 

the extra positive charge. In the former case, the substitution of two Al3+ ions for two Ti4+ ions 

will create a net charge of -2 that must be compensated for by removing an O2- (making an 

Al:vacancy ratio of 2:1), but in the latter case, four Al3+ ion will create either three Ti4+ vacancies 

(4:3) or six TiO2+ vacancies (twelve total vacancies yielding the ratio 1:3); therefore, Al3+ 

entering interstitial sites will create more lattice vacancies than if they enter Ti4+ sites. The 

situation becomes further complicated if we no longer assume that Ti has only a +4 charge or if 

we consider the possibility that the dopant ions could enter both sites.  

The smallest increase in lattice vacancies from these hypothetical values occurs for 

substitution, which creates one mole of O2- vacancies for every two moles of Al3+ added. This is 

orders of magnitude larger than the actual increase in vacancies determined from the heat 

capacity data (3.7 × 10-3) suggesting that most vacancies do not behave as defects that contribute 

to the heat capacity; therefore, the addition of Al dopant appears to create small regions of some 
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hybrid TiAlOx structure void of short-range defects but that lacks long-range order similar to a 

glass, which is confirmed with the other experiments discussed herein. 

6.3.1.2 Analysis of Gapped Terms 

The gapped terms derived from the low-temperature heat capacity data are related to 

excess low-energy modes with a gap in the DOS caused by short-range correlations typically 

associated with long-chain polymers or loosely bound polyhedra such as those found in glasses 

and zeolites24. The dimensionality of the physical feature causing the contribution is reflected in 

the exponent of T in the gapped term.  

The presence of the gapped terms in the heat capacity fitting of the five samples 

mentioned above suggests that at low dopant concentrations, regions of short-range order are 

created within the TiO2 lattice. At higher concentrations (22-50 mol% Al DCR and 50 mol% Al 

DRC), long-range order in the lattice is restored. This suggests that at low concentrations the 

dopant Al3+ ions enter the TiO2 lattice and form very small regions of a TiAlOx structure having 

primarily TiO2-like character, but as the dopant concentration increases beyond about 22 mol% 

Al, these regions become sufficiently large that short-range correlations that cause the gapped 

term no longer exist. These conclusions are similar to those of a recent investigation on the 

perovskite Sr3Ru2O7 in which the magnetic long-range order was disrupted as Mn dopant was 

added34.  

The two-dimensional character of these gapped terms in the 5, 14, and 22 (DRC) mol% 

Al samples suggests that these regions of TiAlOx structure must be planar, but we know from 

other measurements that the Al3+ ions are not concentrated on the surface25. We believe that 

these 2D regions are created during particle growth as follows: very small TiO2 clusters initially 

form; clusters near regions of concentrated Al3+ (a byproduct of the solvent-deficient synthesis26-
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27) react with the ions, which create small monolayer island-like structures; TiO2 continues to 

grow, eventually growing over the Al monolayer as a tree grows over a wound or a sign nailed to 

its trunk; this creates a highly disordered TiAlOx region while retaining most of the bulk 

properties of TiO2 as observed in these samples by the EELS and XRD experiments discussed 

herein and our other experiments reported elsewhere25. The absence of the gapped terms for 

samples with more dopant suggests that the TiAlOx features in these particles are more Al2O3-

like such that their vibrations can be treated as traditional Debye modes. 

6.3.2 Thermodynamic Results 

The low, mid, and high temperature fitting functions were used to generate smooth heat 

capacity data 𝐶𝐶𝑓𝑓,𝑝𝑝
∘  and thermodynamic functions ∆𝑜𝑜𝑘𝑘𝑆𝑆𝑓𝑓∘  and ∆0𝑘𝑘𝑑𝑑𝑓𝑓∘  at selected temperatures from 

0 – 300 K. Water contributions were subtracted from the thermodynamic values at T = 298.15 K 

using thermodynamic data of water bound to the surface of TiO2 nanoparticles as we have done 

previously35-37.  

The entropies are indicative of stability and could aid in understanding the structural and 

stabilization effects of the Al dopant. The entropy of mixing is particularly useful for 

determining the site of the Al because a solid solution is expected to have an excess entropy 

related to mixing on an atomic scale. This excess entropy of mixing is given as  

 ∆𝑆𝑆𝑓𝑓𝑓𝑓𝑥𝑥 = −𝑅𝑅[𝛸𝛸𝑎𝑎 ln(𝛸𝛸𝑎𝑎) + 𝛸𝛸𝑏𝑏 ln(𝛸𝛸𝑏𝑏)] (6-4) 

where R is the gas constant, Xa is the mole fraction of substance a, and Xb is the mole fraction of 

substance b38-40. The entropy of a mechanical mixture of two solid powders, such as TiO2 and 

Al2O3, is just a weighted sum of the entropies of the respective pure substances, but the entropy 

of a solid solution will be the entropy of the mechanical mixture plus the entropy of mixing (Eq. 

6-4). Because the metal cations do not enter O2- anion sites, we can treat the constituents of Eq. 
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6-4 as TiO2 and AlO1.5 equivalents and assume that mixing occurs on an oxide scale rather than 

an atomic scale39-40. 

 

 

Figure 6-5: Entropies of All Samples after having been Corrected for Water-loss Using the 
Inner-water Model of ref. 37. Also shown are theoretical values of entropies expected for a 
mechanical mixture (solid line) and a solid solution (dashed line) of these compounds. DCR 
are blue triangles; DRC are green inverted triangles. 

 

Figure 6-5 compares the entropies obtained from this investigation with those expected 

for mechanical mixtures and solid solutions of the cations in the forms TiO2 and AlO1.5. Entropy 

values of pure TiO2 anatase and AlO1.5 are taken as 49.8 J·mol-1K-1 41 and 25.5 J·mol-1K-1 (half 

the value of Al2O3)42, respectively. As can be seen, the entropy data of all samples more closely 

resemble those of the solid solutions, which include the entropy of mixing. The DRC data have 

slightly higher entropy values than the DCR counterparts, which we attribute to errors when 

correcting for water. We estimate the average uncertainty in these values to be about 5 %, but we 

note that the uncertainties of samples with either a large amount of water or Al dopant are 

greater. Therefore, entropies provide greater evidence that Al is entering the TiO2 lattice to form 

a solid solution. 
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6.3.3 Electron Energy-Loss Spectroscopy Results 

EELS data were collected over several regions of interest for these samples. Figures 6-6, 

6-7, and 6-8 show the low-loss data (below 55 eV), the energy-loss near-edge structure (ELNES) 

data around the Al L edge (70 – 130 eV), and the ELNES data around the Ti L and O K edges 

(440 – 545 eV), respectively. Data around the Al K (about 1500 eV) edge were also acquired but 

are not shown since the signal to noise or signal to background ratios were usually too small to 

obtain any interpretable data. We also note that the Ti L1 edge at about 565 eV (data also not 

shown) was only observed for pure TiO2 suggesting a strong interaction with the Al. 

6.3.3.1 Low-loss Region 

The low-loss data (see Figure 6-6) contain the ZLP, the plasmon peak, transitions 

involving valence electrons, and even the Ti M edge at about 47 eV. The ZLP of each spectrum 

was used to calibrate the spectrum to correct energy losses. Low-loss peaks at about 6, 11, 25, 

38, and 47 eV are common for TiO2, while Al2O3 typically has only one low-loss peak at about 

25 eV43.  

Figures 6-6a and 6-6b show low-loss data for all DCR and DRC samples, respectively, 

that have all been scaled and offset for clarity. Also shown are the data of pure Al2O3 as a 

reference30. Dashed vertical lines have been inserted into the figures to aid in showing the shift 

or disappearance of several peaks. These figures show that as the dopant concentration increases 

from 0 mol% Al (bottom spectrum) to pure Al2O3 (top spectrum), the Ti inter/intraband 

transitions at about 6, 12, and 38 eV become less pronounced. By 50 mol% Al the material 

appears to be more like Al2O3 than TiO2, having only faint traces of these transitions. The peak 

at about 25 eV (likely caused by plasmons in both TiO2 and Al2O3) in DCR samples also shows a 

distinct shift towards lower energies. Only the plasmon peak at 25 eV and the Ti M peak remain 
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Figure 6-6: EELS Low-loss Data (below 55 eV) of All Samples as well as Data of an Al2O3 
Standard Showing Progression of Peaks as Al Concentration Increases. Curves represent, 
starting from the bottom, TiO2 (red), Ti0.95Al0.05O1.975 (orange), Ti0.86Al0.14O1.93 (green), 
Ti0.78Al0.22O1.89 (blue), Ti0.5Al0.5O1.75 (purple), and Al2O3 (black). Data have been scaled and 
offset for clarity. (a) DCR and (b) DRC. 

 

by 50 mol% Al, but the Ti M peak is very different from that of pure TiO2 as can be seen by the 

shift of this peak towards lower energies.  

These changes suggest that the dopant is changing the electronic and structural character 

of the TiO2 nanoparticles as would be expected for a solid solution. A mixture of TiO2 and Al2O3 

phases would not show any disappearance or shifts in peaks but rather a sum of all TiO2 and 

Al2O3 peaks having the same energies as their parent materials. Because these particles have an 

average diameter of about 5 nm, approximately one third of the atoms are on the surface. 
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Forming a TiO2/Al2O3 core/shell structure for such small particles could induce the shifts in the 

electronic structure discussed herein, but these surface effects would not likely have such a 

substantial impact on electronic structure of the remaining two-thirds of the atoms. 

6.3.3.2 ELNES Analysis of the Al L Edge 

The Al L2,3 and L1 ELNES edges arise from electronic transitions involving core 

electrons and are centered at about 80, 95, and 120 eV43-45. Figure 6-7 shows the data collected 

around these edges. The Al L edge positions and shapes of the Al2O3 standard correspond well 

with literature data published elsewhere43-45. At low dopant concentrations, Al is not observed 

(see Figure 6-7) suggesting that it is very disperse as would be expected for a solid solution of 5-

14 mol% Al in TiO2. In both 22 mol% Al samples and 50 mol% Al DCR, Al is observed as 

broad peaks quite different from the Al L edge of pure Al2O3 but somewhat similar to highly 

disordered Al at interfaces44-45. In 50 mol% Al DRC, the Al L edge appears very similar to that 

of Al2O3 suggesting that the atomic character immediately surrounding the Al atoms appears 

Al2O3-like. 

6.3.3.3 ELNES Analysis of the Ti L and O K Edges 

The Ti L2,3 and O K ELNES edges are centered at about 460 and 535 eV, respectively43, 

46. The shape and position of these edges is indicative of the density of unoccupied electronic 

states immediately surrounding the atom undergoing the transition; therefore, the same type of 

atom usually produces very different edge shapes and onsets for different materials (such as the 

O K edge in TiO2 versus Al2O3). The Ti L2,3 edge is typically observed as four narrow peaks 

known as “white lines”, while the O K edge of TiO2 is seen as a doublet peak at about 530 eV 

followed by a broad and low intensity peak centered at about 540 eV (see the bottom spectra in 
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Figure 6-7: EELS Data around the Al L Edge (70-130 eV) of All Samples as well as Data of 
an Al2O3 Standard Showing Progression of Peaks as Al Concentration Increases. Curves 
represent, starting from the bottom, TiO2 (red), Ti0.95Al0.05O1.975 (orange), Ti0.86Al0.14O1.93 
(green), Ti0.78Al0.22O1.89 (blue), Ti0.5Al0.5O1.75 (purple), and Al2O3 (black). Data have been 
scaled and offset for clarity. (a) DCR and (b) DRC 

 

Figure 6-8). The O K edge of Al2O3 abruptly increases to a high intensity at about 535 eV and 

abruptly decreases back down to the baseline at about 545 eV (see the top spectra in Figure 6-8).  

Figures 6-8a and 6-8b show the Ti L2,3 and O K edges of all DCR and DRC samples, 

respectively, that have all been scaled and offset for clarity. As can be seen in the figures, the Ti 

L2,3 edge has only two discernable peaks for all samples even though the spectrometer has 

sufficient resolution to distinguish all four peaks; therefore, the peak broadening that merges the 

four peaks into two must be related to the samples. Figure 6-8 shows how the O K edge shifts 
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from having primarily TiO2 character to having mostly Al2O3 character. As mentioned above, a 

mixture of TiO2 and Al2O3 phases would have a sum of both types of peaks, but here we see a 

shift in the electronic structure surrounding O towards a more Al2O3-like environment. This 

suggests that at low concentrations the Al dopant enters the TiO2 lattice without having much of 

an effect on the TiO2 electronic character, but as the dopant concentration increases it 

significantly alters the TiO2 such that the sort-range electronic character of O more closely 

resembles Al2O3. Further evidence for this is the ratio of the Ti L2,3 and TiO2-like O K edges. As 

the Al concentration increases, this ratio becomes much greater as a result of Ti being 

surrounded by Al2O3-like O atoms. The broadening of the Ti L2,3 edge also suggests a change in 

the electronic energy levels of the Ti as would be expected for a change in environment. We note 

that Ti3+ would appear as a shoulder on the high-energy tail of the Ti L2,3 edge, but the lack of 

any significant intensity in this region likely shows that these samples contain primarily Ti4+. 

6.3.4 X-Ray Diffraction Results 

Figure 6-9 shows the XRD data of all samples including reference data of TiO2 anatase 

and γ-Al2O3 standards47-48. Figure 6-9a shows how DCR samples retain a primarily TiO2-like 

lattice at all concentrations of Al dopant. The only changes that occur to these spectra as dopant 

is added is that the peak to background ratio becomes smaller, and the peaks become broader to 

the point of merging even. The 50 mol% Al sample shows very subtle increases in intensity 

above the background at about 45° and 67°, which correspond to the two most prominent peaks 

in γ-Al2O3. Figure 6-9b shows that DRC samples are also primarily TiO2-like at all 

concentrations of Al, but the peak to background ratio is significantly lower for these samples. 

The peaks are also much broader such that by 50 mol% Al several peaks are no longer 

distinguishable from the background. Slight increases in intensity are also observed in 50 mol%  
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Figure 6-8: EELS Data around the Ti L2,3 and O K Edges (440-545 eV) of All Samples as 
well as Data of an Al2O3 Standard Showing Progression of Peaks as Al Concentration 
Increases. Curves represent, starting from the bottom, TiO2 (red), Ti0.95Al0.05O1.975 
(orange), Ti0.86Al0.14O1.93 (green), Ti0.78Al0.22O1.89 (blue), Ti0.5Al0.5O1.75 (purple), and Al2O3 
(black). Data have been scaled and offset for clarity. (a) DCR and (b) DRC 

 

Al DRC at about 45° and 67°. A Rietveld refinement would be useful to identify the presence 

any γ-Al2O3 contribution, but the breadth of the peaks and high background at higher dopant 

concentrations makes such an analysis unfeasible. 

These results suggest that the long-range ordering of these particles remains primarily 

TiO2-like for both synthesis routes and at all concentrations. The absence of any defined γ-Al2O3 

peaks suggests that Al enters the TiO2 lattice and does not form any significant amount of γ-

Al2O3 particles large enough to diffract X-rays. The increase in the background intensity and the 
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Figure 6-9: XRD Data of All Samples from 2θ = 20°-125° as well as Data of TiO2 Anatase 
and γ-Al2O3 Standards Showing Progression of Peaks as Al Concentration Increases. 
Curves represent, starting from the bottom, γ-Al2O3 standard (grey), TiO2 anatase 
standard (black), pure TiO2 (red), Ti0.95Al0.05O1.975 (orange), Ti0.86Al0.14O1.93 (green), 
Ti0.78Al0.22O1.89 (blue), and Ti0.5Al0.5O1.75 (purple). Data have been offset for clarity. (a) DCR 
and (b) DRC 

 

broadening of all peaks as Al concentration increases indicates that the materials are losing long 

range order as a result of the lattice gradually shifting from TiO2-like to Al2O3-like. The DRC 

samples appear to lose the long range order quite readily (by 14 mol% Al); whereas, the DCR 

samples retain their long range order to a much greater extent.  
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 Conclusions 

Vacancy concentrations determined from the linear terms of the low-temperature heat 

capacity fitting suggest that the Al dopant enters the TiO2 lattice and creates excess O2- vacancies 

due to charge differences between Al3+ and Ti4+. The 2D gapped terms found in the low-

temperature heat capacity data fitting have been attributed to planar regions of a highly 

disordered TiAlOx structure within the TiO2 lattice that cause glass-like short-range order while 

lacking any long-range structure. A theory on the origins of these 2D features has been presented 

suggesting that these features are created within the TiO2 nanoparticles during particle growth. 

The excess entropies attributed to entropy of mixing also suggest the Al is entering the TiO2 

lattice. EELS data show that the short-range character of the atoms gradually shifts from TiO2-

like to Al2O3-like as seen by several changes in the Al, Ti, and O electronic structures as the 

concentration of Al dopant increases. The XRD analysis shows that the long-range order of all 

particles remains primarily TiO2-like, though at higher dopant concentrations, the particles 

become significantly more amorphous. We believe that this increase in amorphicity is caused by 

the short-range reordering of the lattice towards an Al2O3-like structure around regions of 

TiAlOx while maintaining a long range TiO2-like character. These experiments combined with 

our previous knowledge25 show that the Al dopant forms a highly defective short-range structure 

within the TiO2 lattice that appears more Al2O3-like at higher dopant concentrations. 

Our previous investigation, focused primarily on 22 mol% Al doped TiO2, reported that 

these small particles were more stable when doped with Al because the Al either forms a shell on 

the TiO2 particles or incorporates Al into the TiO2 lattice. We emphasized differences in the 

particles based on the synthesis route, and these differences also appear in the present 

investigation. The gapped term analysis suggests that the character of the DRC samples begins to 
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deviate from that of the DCR samples at 22 mol% Al; the linear term analysis and the EELS data 

suggest that the 50 mol% Al DRC and DCR samples are substantially different, specifically, the 

DRC sample appears to have more Al2O3-like short-range character. XRD data show that DRC 

samples are affected much more by the addition of Al, which causes the samples to become 

highly amorphous, while DCR samples become only slightly more amorphous. From the current 

results, we postulate that the reversal of the calcine and rinse steps does not affect the location or 

function of the dopant but significantly affects the grain growth of these doped particles observed 

most notably in the XRD results. 

The conclusions from our previous work about the exact position and role of the dopant 

were rather nebulous as they were drawn, to a great extent, from our preliminary heat capacity 

interpretations, but we can now state with greater certainty that Al enters the TiO2 lattice for all 

samples. The role that the dopant has on stabilizing the particles could be related to the lack of 

long-range order created by Al entering the TiO2 lattice and forming a hybrid TiO2/Al2O3 lattice 

especially at higher concentrations of Al. This investigation using the linear and gapped terms of 

low-temperature heat capacity fits to provide insight on dopant sites has never been performed 

previously, and the results are similar to those obtained from the more conventional methods 

presented herein. 
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7 EXTENDED TEMPERATURE REGIONS OF MULTIFERROICITY IN 

NANOSCALE CUO 

 Introduction 

Cupric oxide, CuO (tenorite), has been extensively studied due to its significance in basic 

science as well as technological applications. CuO has unique structural and magnetic 

properties,1-3 and it is closely related to high-temperature superconducting cuprates such as 

YBa2Cu3O7-x.4 In terms of applications, it has use in catalysis,5 photovoltaics,6-8 batteries,9 and 

potential uses in spintronic devices.10-12 

CuO is unique for a 3d transition-metal monoxide having a C2/c monoclinic structure 

instead of the rocksalt structure common to the other 3d transition-metal oxides.13-14 The Cu 

atom is surrounded by four O atoms in a square planar configuration which can be viewed as 

edge shared ribbon chains of CuO2 or as two zigzag Cu–O chains running along the [101] and 

[101�] directions (see Figure 7-1).10, 15 These chains are what make CuO important in cuprate 

superconductor research since the cuprate superconductors also have CuO2 chains.4, 10, 16-18  

The magnetic behavior of CuO is also unique relative to the other 3d transition-metal 

monoxides which all behave as 3D antiferromagnets; whereas, CuO exhibits various forms of 

magnetism within different temperature ranges..19-20 Heat capacity measurements on bulk CuO 

performed by many groups2-4, 18, 21-28 show two distinct magnetic transitions at about 213 and 230 

K. The peak at 213 K has been attributed to a transition from a 3D commensurate 
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Figure 7-1: Structure of CuO Showing a) Edge-shared Ribbon Chains of CuO2 (from Wu 
et al.15 with permission) and b) Zigzag Chains along the [101] (yellow lines) and [𝟏𝟏𝟏𝟏𝟏𝟏�] 
(green lines) Directions (from Kimura et al.10 with permission). 

 

antiferromagnetic state below 213 K (AF1) to a 3D incommensurate state above 213 K (AF2). 

The peak at 230 K has been attributed to a transition from the AF2 state to a 1D 

antiferromagnetic state above 230 K. Heat capacity measurements have not previously been 

performed on nanoscale CuO. 

Magnetic susceptibility data of bulk1, 3-4, 10-12, 24, 29-30 and nanoscale31-33 CuO are similar to 

each other and show neither a cusp at the temperatures of the transitions observed in heat 

capacity data nor typical Curry-Weiss behavior; instead, a broad maximum at about 540 K and a 

minimum at about 150 K are observed. The only evidence of any transitions in the range of 213-

230 K from susceptibility data is a subtle change in slope.3-4, 10, 33  

Neutron experiments have provided more details about the magnetic character of bulk 

CuO in the various temperature regions and show that the incommensurate AF2 state occurs 

because of competing ferromagnetic and antiferromagnetic interactions.11, 16-17, 29, 34-36 Figure 7-2 

shows the orientation of the spins in the commensurate AF1 and incommensurate AF2 states.10 

The direction of the easy axis is along b,19, 36 and the strongest antiferromagnetic ordering occurs 
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along the [101�] chains because of the large Cu–O–Cu angle (146°).16-17 Superexchange 

interactions along the other directions are very weak (either ferromagnetically or 

antiferromagnetically) due to the smaller bond angles (less than 109°).17, 37 In the AF1 state the 

spins align parallel to b with a wave propagation vector of qcm = (0.5,0,-0.5), and in the AF2 

state, the wave propagation vector is qicm = (0.506,0,-0.483) having a helical spin structure such 

that the Cu2+ moments nearly circle in a plane.12 To the best of our knowledge, no neutron 

experiments have investigated the magnetic character of nanoscale CuO. 

 

 

Figure 7-2: Magnetic Structure of the a) AF1 (commensurate) and b) AF2 
(incommensurate) Phases (from Kimura et al.10 with permission). 

 

As seen from magnetization measurements, the susceptibility continues to increase above 

the Néel temperature TN2 of 230 K, which would be atypical behavior for paramagnetism.38 

Superparamagnetism and a spin-glass state from surface spins have been ruled out as the cause 

for this observed behavior.32 Neutron experiments have failed to detect paramagnetism in bulk 

CuO even at temperatures as high 550 K35 but have shown that antiferromagnetism persists 

above TN2 in a 1D form.2-4, 16-17, 39 This is thought to occur through the very large superexchange 

interactions along the [101�] direction having an exchange constant in the range of 35-73 meV, 
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which is much larger than exchange constants of other ionic antiferromagnets (typically less than 

10 meV).17, 31, 37, 39  

More recently, multiferroic behavior, which is the coexistence of magnetism and 

ferroelectricity, has been discovered within the AF2 state of bulk CuO.10 Due to the competing 

interactions involved in spiral-phase-induced ferroelectricity, multiferroicity is typically only 

observed below about 40 K making it inaccessible to practical technological applications.10-11 

The relatively high temperature of multiferroicity in CuO (230 K) has spurred many recent 

investigations.10-12, 19-20 Because CuO is a core component of many high-temperature 

superconductors, understanding the origins of its multiferroic behavior could lead to a greater 

understanding of superconductivity and even drive the discovery or creation of superconductors 

with higher critical temperatures than current materials. The high-temperature multiferroic 

behavior of CuO could also be used in sensors, memory devices, and magnetoelectric devices.40  

All of the physical properties discussed above have been extensively investigated for bulk 

CuO, but there have been minimal investigations of nanoscale CuO.31-33, 41-43 This paper will 

present heat capacity, susceptibility, and temperature dependent XRD data on nanoscale CuO 

that has not been reported previously in the literature thus providing an extensive investigation 

on the magnetic and structural properties of CuO nanoparticles. We will show that structural 

features common to nanoparticles are responsible for extending the magnetic and ferroelectric 

temperature ranges by creating stronger ferromagnetic and antiferromagnetic competition 

through increased exchange interactions along the various directions.  
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 Experimental 

7.2.1 Synthesis and Characterization 

CuO nanoparticles were prepared using a solvent deficient method developed by 

Woodfield et al.44 in which 53 g of Cu(NO3)2·2.5H2O, 38 g of NH4HCO3, and 10 mL of H2O 

were ground together in a mortar and pestle for approximately 1 min. The formed precursor was 

rinsed with about 0.5 L of distilled H2O and then calcined in air at 250 °C for 1 h. 

Transmission electron microscopy (TEM) imaging was carried out using several 

techniques (see Figure 7-3). The bright field image (Figure 7-3a) shows ellipsoidal crystallites 

that are highly agglomerated into much larger particles. The high-resolution image (Figure 7-3b) 

shows that the sample is highly crystalline as lattice fringes are abundantly observed. This figure 

also shows the presence of a secondary CuO particle size of about 5 nm, though these particles 

represent only a small fraction of the sample. Diffraction techniques were also used, and the 

absence of any pronounced amorphous background intensity in the acquired diffraction pattern 

(Figure 7-3c) shows the high degree of crystallinity. The hollow cone dark field image (Figure 7-

3d) shows that the particles are about 20 nm in diameter, though the slightly ellipsoidal shape 

introduces uncertainty to this value. 

The amount of surface-adsorbed water was determined by thermogravimetric analysis 

(TGA) using a Netzsch STA-409 PC. Prior to the TGA measurements, the sample was dried in a 

vacuum oven (p = 16.2 kPa) at 100 °C for about 3 h to remove all loosely bound physisorbed 

water that would be removed during the heat capacity measurements under high vacuum. The 

TGA measurements were performed under a helium atmosphere with temperatures of 20-900 °C 

using a heating rate of 3 °C min−1. A buoyancy correction was made by measuring the empty 

crucible under the same conditions and subtracting this from the measured data. The weight loss 
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Figure 7-3: TEM Images and Diffraction Patterns of CuO Nanoparticles. a) bright field, b) 
high-resolution, c) diffraction pattern, d) hollow cone dark field. 

 

at the inflection point of about 500 °C (see Figure 7-4) was attributed to the desorption of 

chemisorbed water, and the amount of water was determined to be 0.050 ± 0.004 moles of H2O 

per mole of CuO. The TGA-DSC data presented in Figure 7-4 show that nanoscale CuO is 

reduced at about 800 °C.  
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Figure 7-4: TGA-DSC Data of CuO Nanoparticles Showing Mass-loss Due to Water 
Desorption up to about 500 °C and Reduction above about 800 °C. The left axis gives the 
percent mass and is represented with solid lines. The right axis gives the DSC data and is 
represented with dashed lines. The solid black line corresponds to 0 μV·mg-1 for the DSC 
axis. red – run 1; blue – run 2. 

7.2.2 Magnetometry 

 Magnetization curves from 5-400 K were acquired on a Quantum Design Physical 

Property Measurement System (PPMS) using the vibrating sample magnetometer (VSM) option. 

The sample was cooled in zero field to about 5 K, and the magnetic moment as a function of 

temperature was measured in various external field strengths: 0, 50, 100, 1,000, 10,000, and 

50,000 Oe. Susceptibility was determined from the relationship 𝜒𝜒 = (µ/2.84)2/𝑑𝑑. 

7.2.3 X-ray Diffraction 

Phase purity was confirmed with X-ray diffraction (XRD) using a PANalytical X’Pert 

Pro X-ray diffractometer with a Cu Kα radiation source (λ = 0.15418 nm) operating at 45 kV and 

40 mA. Data were recorded over a 2θ range of 20-125° with a scanning rate of 0.01°·s-1. Only 

monoclinic CuO was observed; however, a Reitveld refinement of this data reveals that 

significant lattice vacancies are present.45 Particle size was determined to be about 16 nm using 
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the Scherrer formula, which is slightly smaller than the sizes obtained from the TEM images, but 

since the XRD data analyze significantly more particles than the TEM imaging, we will consider 

the particles to be 16 nm in diameter. 

XRD data were also acquired at various temperatures from 90-700 K in order to 

determine the lattice parameters as a function of temperature. Data above room temperature were 

collected on the PANalytical X’Pert Pro powder X-ray diffractometer using an Anton Paar HTK 

1200N heating stage. Data were collected every 25 K from 300-700 K using the same parameters 

as described above. 

To measure the XRD data below room temperature, we used a single crystal (SC) Bruker 

diffractometer equipped with a cold finger as described previously.45 In brief, the powder sample 

was uniformly compacted into a polyamide capillary having an inner diameter of 0.012 mm, and 

the ends of the capillary were sealed with clay due to its amorphicity. The sample was mounted 

on the SC-XRD, and data were collected at temperatures from 90-295 K over 2θ scanning angles 

of 20-130°. Data were collected about every 25 K below 195 K and about every 15 K from 195-

295 K. 

7.2.4 Heat Capacity Calorimetry 

Heat capacities were measured from 2-400 K using the Quantum Design PPMS. To 

prepare the sample for measurement, about 9 mg of the dried sample mixed with high purity 

copper (mass fraction 0.9995) were pressed into a small disk.46 Correction measurements were 

performed before each sample measurement to account for the Apiezon N grease used for 

mounting the sample at low temperatures (below 300 K) and the Apiezon H grease used for 

mounting the sample at high temperatures (above about 250 K). After each of these correction 

measurements the sample was attached to the PPMS puck, and the heat capacity was measured. 
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The heat capacity of the copper contribution was subtracted using data from Stevens and Boerio-

Goates.47 These data have an estimated uncertainty of ± 0.02∙Cp° for 2 < T/K < 10 and ± 0.01∙Cp° 

for 10 < T/K < 300.46  

 Results/Discussion 

7.3.1 Magnetization 

Magnetic susceptibility measurements were performed on the nanoscale CuO sample at 

various external field strengths and are shown in Figure 7-5. The data show a minimum at about 

100-150 K, a sharp up-turn as temperature decreases towards 0 K, and an increase towards an 

apparent maximum above 400 K. Several small features are observed at various temperatures, 

but we believe these are due to noise in the data.  

 

 

Figure 7-5: ZFC Gram Susceptibility of Nanoscale CuO as Determined from VSM 
Measurements. Data were taken under various external magnetic fields: red – 0 Oe; orange 
– 50 Oe; yellow – 100 Oe; green – 1,000 Oe; blue – 10,000 Oe; purple – 50,000 Oe. Note the 
log scale on the inset. 
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Although this data does not follow the traditional Curie-Weiss behavior, these trends and 

features have been observed several times before for both bulk and nanoscale CuO, and Figure 7-

6 shows our measured susceptibility data (at 100 Oe scaled by a factor of 5) relative to literature 

data for bulk1, 3-4, 11, 29 and nanoscale31 CuO. We note that the susceptibility data of our nanoscale 

CuO collected in fields of 100 Oe or less are significantly lower in magnitude than the literature 

data of bulk and nanoscale CuO; conversely, our data collected in fields of 1,000 Oe or more are 

significantly higher in magnitude. Perhaps this discrepancy is due to the use of VSM as opposed 

to other magnetization techniques. Additionally, the up-turn at low temperatures in our data is 

much more prominent and larger in magnitude compared to the literature data as well. Other than 

the difference in magnitude of the susceptibility and the large up-turn at low temperatures, our 

data have the same general trends as the literature. 

 

 

Figure 7-6: Comparison of the Susceptibility Data of Nanoscale CuO Presented Herein (100 
Oe data scaled by a factor of 5) to Data Obtained from Various Literature Studies of Bulk 
and Nanoscale CuO.1, 3-4, 11, 29, 31 

 

The low-temperature upturn in our susceptibility data is similar to that of other bulk and 

nanoscale CuO samples and has been attributed to small particle size1 and non-ideal 
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stoichiometry such as oxygen vacancies,30 though the underlying cause of the up-turn from both 

size and stoichiometry effects is the same: paramagnetic sites on the particle surface or around 

vacancies. The larger up-turn in our sample is likely caused by the presence of both of these 

sources of paramagnetic centers (small particle size and non-ideal stoichiometry) in our 

nanoscale CuO sample. A large concentration of paramagnetic sites would also explain why the 

magnitude of the antiferromagnetic susceptibility tends to be lower than the literature.  

An alternate explanation for the large up-turn in our nanoscale CuO could be the presence 

of stronger ferromagnetic interactions, which yield a similar feature in the susceptibility to that 

observed in our susceptibility data in Figure 7-5. Small particle sizes and lattice vacancies have 

been shown to create a small ferromagnetic contribution in both bulk and nanoscale CuO.31-33 

The superexchange interactions along [101] and [010] are known to be weakly ferromagnetic;2 

therefore, the presence of ferromagnetism at low temperatures in nanoscale CuO would likely be 

caused by changes in Cu–O–Cu bond lengths and angles that enhance the exchange interactions 

in these directions. 

7.3.2 XRD Lattice Parameters 

 The XRD data of nanoscale CuO at temperatures from 90-700 K are shown in Figure 7-7. 

The high-temperature data (Figure 7-7a) show a weaker signal-to-noise ratio than the low-

temperature data (Figure 7-7b), but the instrumental broadening of the low-temperature data is 

more significant as seen by the broader peaks, which is caused by using transmitted X-rays as 

opposed to reflected X-rays. These data show that the sample is highly crystalline and phase pure 

over the entire temperature range. A subtle shift towards sharper and more defined peaks at 

higher temperatures suggests that the particles are becoming more crystalline or larger, which 

would reduce peak broadening from microstrain and size effects. 
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Figure 7-7: XRD Data of Nanoscale CuO at Various Temperatures from 90-700 K. a) high-
temperature data (300-700 K) collected on the powder diffractometer. b) low-temperature 
data (90-295 K) collected on the single-crystal diffractometer. Data (offset for clarity) 
increase in temperature from bottom to top as shown in the legends. 

 

 We have performed a Rietveld refinement on the data shown in Figure 7-7 to obtain 

lattice parameters at the various temperatures, which are shown in Figure 7-8, and we note that 

our data are in good agreement with the literature data collected at room temperature for bulk 

and nanoscale CuO.4, 11, 13-14 To the best of our knowledge, though, this is the first investigation 

to show the progression of lattice parameters as a function of temperature for either bulk or 

nanoscale CuO. Although there are no phase transitions in which lattice parameters change 
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abruptly, changes in the slope of the data at various temperatures are apparent. We also note that 

these changes occur at different temperatures for each of the different lattice parameters.  

 

 

Figure 7-8: XRD Lattice Parameters of Nanoscale CuO at Vvarious Temperatures from 
90-700 K as Determined from a Rietveld Refinement of the Data Shown in Figure 7-7. a) 
parameter a, b) parameter b, c) parameter c, d) parameter β. red triangles – low-
temperature data. blue inverted triangles – high-temperature data. Units are in Å. 
Literature data (green circles) taken from Asbrink and Norrby.13 

 

 The lowest temperature shift in lattice parameters occurs along the a axis at about 150 K. 

A shift in β occurs at about 170 K and in c at a slightly higher temperature of 195 K. The shift 

along the b axis occurs at the highest temperature of about 220 K. Other possible changes occur 
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at about 300 and 400 K though these changes in slope are much more ambiguous and appear to 

occur over a wider temperature range than the slope changes at lower temperatures. 

The changes in the a, b, and c lattice parameters at 150, 195, and 220 K, respectively, 

correspond to those of several other observed properties in bulk and nanoscale CuO. The shift in 

expansion of the a axis around 150 K appears to correspond to the minimum in magnetization. 

Charnaya et al. observed a decrease in TN1 to about 190 K in nanoscale CuO embedded in 

glass,42 which could be related to the shift in the c axis observed in this investigation. The change 

that occurs along b is also similar to the traditional TN2 observed at about 230 K. It is apparent 

that these shifts in lattice parameters and the corresponding structure are caused by the magnetic 

properties.  

The relationship between structure and magnetic properties in bulk CuO has been 

established previously.20, 48-50 Competition between ferromagnetic and antiferromagnetic 

interactions is known to cause structural distortions and even phase transitions;51 therefore, the 

presence of these distortions in the lattice parameters of nanoscale CuO suggests that 

ferromagnetic behavior is significant and competes with the antiferromagnetic behavior. The 

presence of this strong ferromagnetic-antiferromagnetic competition in nanoscale CuO would 

therefore be expected to be different from the competition in bulk CuO since smaller particles 

tend to have larger unit cells (for metal oxides) due to reduced electrostatic forces cause by 

surface dipoles,52-53 and these changes in the unit cell parameters affect the Cu–O–Cu bond 

angles that are highly correlated to the strength of the exchange interactions.17, 37 

7.3.3 Heat Capacity Analysis 

The measured heat capacity data are shown in Figure 7-9 for the low temperature and 

high temperature segments. Because the data of the two temperature segments were collected 
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using a different grease and addenda measurement, there was a slight offset of the high-

temperature data from the low-temperature data. To correct for this offset, the high-temperature 

data that tend to have greater uncertainty were scaled by 1 % to match the low temperature data. 

Although the data for the two segments were collected with a 55 K overlap range (250-305 K), 

the temperature at which the two segments aligned in terms of heat capacity and the first 

derivative of the heat capacity data  was taken as 295 K where deviations between the two sets of 

data were smallest. Data from the low-temperature segment above 295 K and from the high-

temperature segment below 295 K were not used. 

 

 

Figure 7-9: Raw Heat Capacity Data of CuO Nanoparticles. red circles – run 1 (low-
temperature data); blue triangles – run 2 (high-temperature data). 

 

 Figure 7-10 below shows how our heat capacity data of nanoscale CuO compare with 

data found in the literature for bulk CuO. Data are shown just around the observed TN1 and TN2 

bulk CuO transition temperatures since the literature data do not extend much higher in 

temperature. The somewhat noisy and diffuse data of Millar show a broad transition peaked at 

about 230 K.21 The data of Junod et al. are the most precise and show distinct and sharp  
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transitions at 215 K, 230 K, and 235 K, though the transition at 235 K is attributed to the silicone 

grease used to mount the sample.4 The data by Seehra et al. show two broad transitions that 

overlap having maxima at about 217 K and 230 K.3 In general, the literature data of bulk CuO 

show a distinct first-order transition at about 213 K and a broader transition at about 230 K.  

 

 

Figure 7-10: Heat Capacity Data of Nanoscale CuO from 180 to 320 K Compared to Data 
of Bulk CuO from the Literature. maroon triangles – Millar.21 red inverted triangles – Hu 
et al.22 orange circles – Seehra et al.3 yellow diamonds – Junod et al.4 green squares – 
Loram et al.2 blue hexagons – Ota et al.27 purple triangles – this study. 

 

 Our data, however, show very broad transitions at temperatures quite different from the 

bulk transitions. As can be seen in Figures 7-9 and 7-10, our data show four subtle transitions at 

about 210, 250, 300, and 330 K. To understand the heat capacity data and the transitions more 

fully, we analyzed the heat capacity data and subtracted the lattice heat capacity from the total 

heat capacity to reveal just the magnetic heat capacity. 
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7.3.3.1 Heat Capacity Data Fitting 

Prior to analysis of the heat capacity data, we first corrected for the amount of water 

present on the surface of the CuO nanoparticles as well as the difference between the measured 

Cp and the more theoretically important Cv. The correction from Cp to Cv is quite simple and 

involves the use of expansion parameters, which we have done using the values and methods 

others have used for bulk CuO, specifically, 𝐶𝐶𝑉𝑉 = 𝐶𝐶𝑝𝑝 − 𝐴𝐴𝐶𝐶𝑝𝑝2𝑑𝑑, where A equals 1.35 × 10-6 J·mol-

1 assuming a linear expansion coefficient at 300 K of 10-5 K-1.2, 4, 54 This correction resulted in a 

change of less than 1 % below 200 K and a maximum change of 2.6 % at 400 K. 

The correction for water tends to be much less straightforward. We have recently 

summarized and discussed various surface-adsorbed water heat capacity models that have been 

published in the literature.55 A recent investigation using neutron techniques derived the heat 

capacity of the CuO surface-adsorbed water.56 Although this water model might appear to be the 

best representation for the water on our CuO samples, that study involved a sample with ten 

times more water than ours suggesting that they measured mostly physisorbed water; whereas, 

we measured only chemisorbed water. Because of this, we chose to use the “inner TiO2” water 

model, which has proven to be applicable to several similar systems involving only chemisorbed 

water.55 

After these corrections, the low temperature (T < 10 K) heat capacity data were fit to 

several theoretical functions that provide information on the various contributions to the heat 

capacity. The best fitting function was determined from the percent root mean square deviation 

(%RMS) and a plot of the deviation of each point from the fitting function. The fit that was 

physically meaningful had the lowest %RMS, and had random deviations was selected as the 

best fit.  
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The heat capacity data below 10 K were fit to the sum of theoretical functions: 

 𝐶𝐶𝑙𝑙𝑜𝑜𝑓𝑓 𝑘𝑘 = 𝛾𝛾𝑑𝑑 + 𝐵𝐵3𝑑𝑑3 + 𝐵𝐵5𝑑𝑑5 (7-1) 

where the γ term represents the contribution from lattice vacancies45 or 1D antiferromagnetic 

spin waves,4 and the B3 and B5 terms represent the harmonic-lattice expansion.57 These low-

temperature fit parameters and their corresponding %RMS are given in Table 7-1. 

 

Table 7-1: Low-temperature (T < 10 K) Heat Capacity Fit Parameters 

γ / mJ·mol-1·K-2 0.489 
B3 / mJ·mol-1·K-4 0.102 
B5 / mJ·mol-1·K-6 -1.29E-4 

%RMS 3.26 
 

 Samples that are antiferromagnetic also have a T3 dependence; therefore, to distinguish 

between the lattice and antiferromagnetic T3, the Debye temperature, which can give the lattice 

contribution, must be known. The B3 coefficient shown in Table 7-1 is not significantly different 

from that derived from the bulk CuO Debye temperature of 390 K (0.07 mJ·mol-1·K-4) from 

Junod et al.4 The antiferromagnetic T3 term is typically ten to twenty times larger than the 

phonon T3 term;54 therefore, this B3 term does not appear to show any significant 

antiferromagnetic contribution below 10 K, which is similar to other low-temperature heat 

capacity investigations.4, 24  

7.3.3.2 Magnetic Transitions 

 The magnetic heat capacity transitions of our nanoscale CuO sample (with the water 

contribution subtracted) were determined by subtracting the lattice contribution from the total 

heat capacity, as has been done by Junod et al. and Loram et al., using the bulk CuO lattice data 
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determined from neutron experiments.2, 4 Figure 7-11 shows the magnetic heat capacity 

transitions of our nanoscale CuO as well as bulk CuO data from Junod et al.4 and Loram et al.2  

 

 

Figure 7-11: Magnetic Heat Capacity Transitions of Our Nanoscale CuO Sample from 125-
405 K in Comparison to the Magnetic Heat Capacity Transitions of Bulk CuO from the 
Literature. red triangles – Junod et al.;4 green inverted triangles – Loram et al.;2 blue 
circles – this study. 

 

As seen in Figure 7-11, the magnetic heat capacity data of our nanoscale CuO show four 

transitions, three of which occur at temperatures that are higher than the transitions reported by 

Junod et al. and Loram et al.2, 4 The transitions in our nanoscale CuO are much more visible after 

the lattice has been subtracted (compare to Figures 7-9 and 7-10). The high-temperature “tail” of 

the transition in the bulk CuO data of Junod et al. decreases with increasing temperature,4 but the 

tail in the bulk CuO data or Loram et al. levels off and appears to increase above about 300 K.2 

In our nanoscale CuO sample, the tail increases significantly above the fourth transition at about 

350 K. Loram et al. attributed this tail above TN2 to 1D magnetism since a large tail is a result of 

a lower dimensionality.4 
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Thermodynamic data at the transition temperatures were generated by fitting the data in 

Figure 7-11 with a cubic spline function and integrating. The entropies and enthalpies of the 

transitions as well as the transition peak temperatures are given in Table 7-2. The entropies of 

these transitions can be used to identify the dimensionality of the magnetic character since the 

entropy at TN2 is predicted to be about 0.3R ln 2 (1.73 J·mol-1·K-1) for a 1D magnetic system and 

about 0.12R ln 2 (0.69 J·mol-1·K-1) for a 2D system.2, 4 Because our entropies (> 0.5R ln 2) are 

significantly higher than either of these values and are closer to those of a 3D, spin ½ Heisenberg 

antiferromagnet,58 we believe that the competing ferromagnetic interactions are more significant 

for these nanoparticles and cause an increase in the entropy of the transitions.  

 

Table 7-2: Magnetic Transition Temperatures, Entropies, and Enthalpies 

T / 
K 

∆𝑜𝑜𝑘𝑘𝑆𝑆𝑓𝑓𝑡𝑡𝑎𝑎𝑛𝑛𝑓𝑓𝑜𝑜  / 
J·mol-1·K-1 

∆𝑜𝑜𝑘𝑘𝑑𝑑𝑓𝑓𝑡𝑡𝑎𝑎𝑛𝑛𝑓𝑓𝑜𝑜  / 
J·mol-1 

208.6 2.6 ± 0.5 270 ± 50 
251.9 3.1 ± 0.6 380 ± 80 
302.6 3.4 ± 0.7 460 ± 90 
335.9 3.6 ± 0.7 530 ± 100 

 

As seen in Table 7-2, the nanoscale CuO sample has peaks at 208.6, 251.9, 302.6, and 

335.9 K. Only the peak at 208.6 K resembles the transition between the AF1 and AF2 phases in 

in the bulk CuO phases. As such, the transition from incommensurate to 1D antiferromagnetism 

at 230 K is not observed, though it is reasonable to assume that this transition is manifest in the 

higher temperature transitions; however, neutron experiments on the magnetic properties at these 

temperatures is necessary to definitively determine the state of the magnetic order between the 

transitions. Although it has been shown that external magnetic fields do not induce changes in 

the temperature ranges of multiferroicity,11 Rocquefelte et al. have used density functional theory 
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and Monte Carlo calculations to show that at high pressures, the multiferroic state of CuO can 

extend from 230 K up to about 300 K.59 Because the higher pressures would affect the lattice 

parameters and cause this increase in the multiferroic temperature range, it is reasonable to 

suggest that our sample, having multiple lattice distortions, also has an extended range of 

multiferroicity or of the AF2 phase.  

The number of transitions observed in the heat capacity data of nanoscale CuO does not 

correspond to those determined for bulk CuO that report only two, although Villarreal et al. have 

reported that the transition at 230 K actually consists of two transitions very close in temperature 

making a total of three transitions.19 Competition between antiferromagnetic and ferromagnetic 

interactions in bulk CuO are known to cause the multiple transitions associated with the AF1 and 

AF2 states;29, 34, 37 therefore, it is reasonable to assume that changes in the degree of magnetic 

competition could induce changes in those transitions, and the non-cooperative shifts in lattice 

parameters could result in additional regions of ferroic order and therefore more transitions. 

 Conclusions 

From magnetization measurements it was shown that nanoscale CuO exhibits similar 

susceptibility to that of bulk with the most significant differences being the higher concentration 

of paramagnetic centers in the form of either surface sites or lattice vacancies as well as stronger 

ferromagnetic interactions. The XRD data revealed that the CuO lattice parameters do not 

increase smoothly with temperature but rather have several critical temperatures at which their 

slope changes significantly; furthermore, these changes in the lattice parameters occur at 

different temperatures for each of the different parameters. Because these temperatures are 

similar to known magnetic transitions, we have shown how each magnetic region is related to 

structural features along the different axes. Heat capacity data revealed that the traditional 
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transitions observed in bulk CuO are significantly altered in nanoscale CuO. The temperature 

ranges of the various magnetic and ferroelectric domains increase to higher temperatures, and 

new domains were observed. 

We have shown that structural features in the CuO lattice unique to nanoparticles can 

induce changes in the multiferroic AF2 state. Specifically, the structure of the lattice and the 

various Cu–O–Cu bond distances and angles are significant in forming competing ferromagnetic 

and antiferromagnetic interactions. This competition causes the multiferroicity to appear at 

different temperatures. From an applications viewpoint, this investigation shows that CuO 

nanoparticles could be a possible candidate for room temperature multiferroic devices. 
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