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ABSTRACT 

Analyses of mRNA Cleavage by RelE and the Role of tRNA Methyltransferase TrmD 

 Using Bacterial Ribosome Profiling 

 

Jae Yeon Hwang 

Department of Chemistry and Biochemistry, BYU 

Doctor of Philosophy 

 

Protein synthesis is a fundamental and ultimate process in living cells. Cells possess 

sophisticated machineries and continuously carry out complex processes. Monitoring protein 

synthesis in living cells not only inform us about the mechanism of translation but also deepen 

our insights about all aspects of life. Understanding the structure and mechanism of the ribosome 

and its associated factors helped us enlarge our knowledge on protein synthesis. 

Recently, with the dramatic advances of high-throughput sequencing and bioinformatics, 

a new technique called ribosome profiling emerged. By retrieving mRNA fragments protected by 

translating ribosomes, ribosome profiling reveals global ribosome occupancy along mRNAs in 

living cells, which can inform us with the identity and quantity of proteins being made. Easily 

adapted to other organisms, ribosome profiling technique is expanding its application in 

revealing various cellular activities as well as the knowledge on protein synthesis.  

Here, we report the mechanism of translating mRNA cleavage by endoribonuclease RelE 

in vivo. RelE is an endoribonuclease that is induced during nutrient deficiency stress and 

specifically cleaves translating mRNAs upon binding to the ribosomal A site. Overexpression of 

RelE in living cells causes growth arrest by inhibiting global translation. We monitored RelE 

activity in vivo upon overexpression using ribosome profiling. The data show that RelE actively 

cuts translating mRNAs whenever the ribosomal A site is accessible, resulting in truncated 

mRNAs. RelE causes the ribosome complexes to accumulate near the 5’ end of genes as the 

process of ribosome rescue, translation, and cleavage by RelE repeats. RelE cleavage specific 

sub-codon level ribosome profiling data also represent reading frame in Escherichia coli and 

sequence specificity of RelE cleavage in vivo. 

We report another ribosome profiling study on a methyltransferase TrmD in E. coli. 

TrmD is known to methylate G37 (the residue at 3’ side of anticodon) of some tRNAs and be 

responsible for codon-anticodon interaction. We constructed a TrmD depletion E. coli strain, 

whose deletion results in lethality of cells. Resulting depletion of m1G37 in the strain leads to 

growth arrest. Lack of m1G37 of some tRNAs whose codons start with C showed frequent 

frameshift when translating the gene message in vitro. By using ribosome profiling, we 

successfully observed significant difference on translation process when codons interact with 

anticodons of tRNAs lacking m1G37. The data reveal slow translation rate or pauses on the 

tRNAs when missing the appropriate methylation, which corresponds to the previous 

biochemical data in vitro. 

 

Keywords: RelE, endoribonuclease, TrmD, methyltransferase, ribosome profiling, m1G37  
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1 INTRODUCTION 

1.1 Bacterial Translation 

Ribosomes read the genetic information in mRNA and facilitate peptide-bond formation 

to make proteins from single amino acids. Escherichia coli ribosomes are composed of two 

subunits termed 50S and 30S because of their sedimentation coefficients. The larger 50S subunit 

is itself composed of two ribosomal RNAs (23S and 5S) and 34 ribosomal proteins; the active 

site that links amino acids together is found within the large subunit. The smaller 30S subunit 

contains the 16S ribosomal RNA (rRNA) and 21 proteins and plays the dominant role in 

decoding the genetic information in mRNA. The two subunits combine to make 70S ribosome 

complexes that are active in translation.  

Peptide synthesis occurs in the ribosome in a very sophisticated way with the help of key 

adaptor molecules known as transfer RNAs (tRNAs). tRNAs are first charged with activated 

amino acids to form aminoacyl-tRNAs (aa-tRNAs). There are 20 different aminoacyl-tRNA 

synthetases (aaRSs) in E. coli1. Each aaRS activates the correct amino acid with ATP and then 

links the amino acid to its cognate tRNA by an ester bond between the carboxyl group of the 

amino acid and the 3’-terminal adenosine of the tRNA. The aa-tRNAs then enter the ribosome, 

and when bound to their cognate codons, deliver the appropriate amino acid for the ribosome to 

incorporate into the growing polypeptide chain. The ribosome has three sites for tRNA binding: 

the aminoacyl-tRNA or A site, where the correct aa-tRNA is selected, the peptidyl-tRNA or P 
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site, where the growing nascent chain is attached, and the exit or E site, through which 

uncharged tRNAs pass as they are released from the ribosome. The protein synthesis process is 

complex and continuous but it can be conveniently broken down into four discrete steps: 

initiation, elongation, termination and ribosome recycling2. 

1.1.1 Initiation 

At least in most cases, free 50S and 30S ribosomal subunits assemble into 70S complexes 

at start codons to initiate protein synthesis. Initiation factor 1 (IF1) binds to the A site of the 30S 

subunit and promotes dissociation of the 30S and 50S subunits. Initiation factor 3 (IF3) binds to 

the E site of the 30S subunit and further prevents premature association with the 50S subunit3. 

The 30S subunit bound with IFs interacts with the purine-rich region known as the Shine-

Dalgarno (SD) sequence on mRNA that is complementary to the 3’-end of the 16S rRNA4. The 

pyrimidine-rich region of 16S rRNA, or the anti-Shine-Dalgarno (aSD) sequence, binds to the 

SD sequence roughly 7 nt upstream from the start codon5. This interaction positions the start 

codon of the mRNA at the P site of the 30S subunit. In bacteria, start codons are predominantly 

AUG although GUG is also sometimes used. The fact that ribosomes can be recruited to many 

internal sites within a polycistronic mRNA differentiates bacterial translation from eukaryotic 

translation, where ribosomes are recruited by proteins that bind the 5’-cap and then scan and 

initiate at the first start codon in mRNAs that are, as a rule, monocistronic6. 

Guanosine 5’-triphosphate (GTP)-bound initiation factor 2 (IF2) recognizes the initiator 

tRNA, N-formyl-methionyl-tRNAfMet (fMet-tRNAfMet)3, 7. IF2 binds in the A site of the 30S 

subunit and places the initiator tRNA in the P site of the 30S subunit. Binding of initiator tRNA 

to the start codon at the P site causes conformational changes of the 30S subunit that lead to 

release of IF3. With the release of IF3, the 50S subunit can bind to the 30S subunit, inducing 
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GTP hydrolysis by IF2. At that point, IF1 and GDP-bound IF2 are released from the 30S subunit, 

leaving behind an active 70S initiation complex. With initiator tRNA at its P site and an empty A 

site, the complex is ready for elongation.  

1.1.2 Elongation Cycle 

At the start of the elongation cycle, the 70S initiation complex with initiator tRNA bound 

to its P site accepts the next aa-tRNA into its empty A site8. aa-tRNAs are delivered to the 

ribosome by the abundant GTPase, elongation factor-Tu (EF-Tu)9. Upon GTP binding to EF-Tu, 

EF-Tu arranges its three domains in a compact structure allowing them to bind aa-tRNA10. When 

the ternary complex (EF-Tu, GTP, and aa-tRNA) binds to the A site, it is rejected if the 

anticodon of the tRNA does not match the codon in the A site8, 11. This process repeats until the 

cognate tRNA comes in8, 11-12. Upon binding of the cognate tRNA in the A site, the correct 

codon-anticodon base pairing causes conformational changes in the ribosome8. rRNA residues 

surrounding the base pairs stabilize tRNA binding to the A site8, 12. 

Conformational changes in the A site upon binding of the correct aa-tRNA result in a 

distortion of the tRNA, triggering GTP hydrolysis by EF-Tu10-11. As the GTP of EF-Tu is 

hydrolyzed and the γ-phosphate is released, the structure of the EF-Tu is rearranged and releases 

the tRNA, and EF-Tu dissociates from the A site10, 13.  

GTP hydrolysis occurs faster with cognate tRNAs than with near- or non-cognate tRNAs; 

this kinetic difference is one basis for selectivity for the correct tRNA14. Following GTP 

hydrolysis, the aminoacyl end of the A-site tRNA swings into the peptidyl-transferase site of the 

50S subunit, a movement known as accommodation15. Cognate tRNAs are accommodated more 

quickly than near- or non-cognate tRNAs, as second kinetic selection or proofreading step14-15.  
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RNA nucleotides in the peptidyl-transferase center bring the two amino acids together to 

form a peptide bond15. There are two RNA elements in the 50S subunit called the A loop and P 

loop that have highly conserved sequences and interact with the 3’-ends of aa-tRNAs positioned 

at A site and P site15. Once the C-terminus of growing peptide and the amino group of the A-site 

bound aa-tRNA are positioned correctly, peptide bond formation occurs intrinsically by a 

nucleophilic displacement, perhaps involving side chains on the tRNAs themselves but not the 

rRNA nucleotides in the active site2, 15.  

For translation to continue, the ribosome must move to the next codon on the mRNA. 

Following peptide-bond formation, the deacylated tRNA is at the ‘P/E’ hybrid state and the 

peptidyl-tRNA with two amino acids is at the ‘A/P’ hybrid state15-16. The tRNAs need to be 

resolved to a new classical state with the deacylated tRNA completely in the E site and the 

peptidyl-tRNA positioned at the P site15. This process is called translocation and is catalyzed by 

elongation factor G (EF-G), a ribosome-activated GTPase. Hydrolysis of GTP by EF-G helps the 

30S subunit move to the right position for the next codon at A site, maintaining reading frame by 

moving exactly three nucleotides on mRNA17. The uncharged tRNA at the E site is released from 

the ribosome and another aa-tRNA enters the A site2, 15. This cycle repeats until a stop codon 

(UAG, UAA, or UGA) appears at the A site. Translocation is thought to be relatively fast 

compared to decoding, and bacterial peptides are formed in the ribosome at a rate of about 20 

amino acid residues per second2, 15.  

1.1.3 Termination 

When the ribosome reaches a stop codon, protein synthesis is terminated. Stop codons are 

recognized by two release factors, RF1 and RF218. By mimicking tRNA structurally, these 

factors bind in the A site and interact directly with mRNA19. RF1 recognizes the UAA and UAG 
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stop codons and RF2 recognizes the UAA and UGA stop codons20. Release factors hydrolyze the 

ester bond on peptidyl-tRNA and release the newly synthesized peptide chain from the ribosome, 

leaving uncharged tRNA in the P site2, 20. Both RF1 and RF2 contain a highly conserved 

tripeptide motif (GGQ motif) that is responsible for the catalysis of peptide release from the 

peptidyl-tRNA at P site20-21. Following hydrolysis of peptidyl tRNA, RF3, a GTPase found in 

some but not all bacteria, catalyzes the release of RF1 or RF2 at the end of the termination 

process. GTP hydrolysis then promotes the dissociation of RF320-22.  

1.1.4 Ribosome Recycling 

After termination, ribosomes need to be dissociated for efficient initiation at another start 

codon to begin. Ribosome recycling factor (RRF) and EF-G dissociate the ribosome into 

subunits, releasing mRNA and tRNAs from the ribosome upon GTP hydrolysis2. The structure of 

RRF mimics tRNA in the A site2, 23. When the ribosome dissociates, IF1 replaces the deacylated 

tRNA and the mRNA is released. All translational components are now free for another round of 

translation23. 

1.1.5 Ribosome Rescue 

In bacteria, the translation and transcription of genes are coupled. Since genomic DNA is 

not separated from the cytoplasm by a nuclear membrane like it is in eukaryotic cells, the whole 

process of gene expression happens simultaneously and is faster than it is in eukaryotic cells. As 

soon as an mRNA begins to be synthesized, translation can begin. This can lead to problems 

when ribosomes translate messages that are defective as when RNA polymerase prematurely 

terminates prior to reaching the stop codon in the message. Other defective RNAs come from 
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mutations, chemical damage, and the endonucleolytic cleavage that is part of normal mRNA 

decay pathways24. 

Truncated mRNAs are deleterious to the cell for at least two reasons: they cause 

ribosomes to stall at the 3’-end of the message and produce incomplete or premature proteins 

which might be harmful to the cell. When ribosomes reach the 3’-end of a truncated mRNA, RFs 

cannot be recruited, since there is no stop codon, and the ribosome-mRNA complex is stably 

maintained25. In the cell, stalled ribosomes can affect the global protein synthesis if not rescued.  

Bacterial cells have three mechanisms that can resolve stalled ribosomes. One involves a 

small, stable RNA known as tmRNA and the other two involve proteins that are alternative 

rescue factors, ArfA and ArfB25. tmRNA rescues the stalled ribosome by acting both as a tRNA 

and an mRNA25-26. tmRNA-mediated ribosome rescue not only dissociates the stalled ribosome 

for recycling but also tags the incomplete nascent peptide for degradation. ArfA is a small 

protein that can bind to the A site and recruit RF2, hydrolyzing the nascent peptide and leading 

to recycling27. ArfB has a GGQ domain in its structure as RFs do and facilitates the termination 

of protein synthesis. Among these three mechanisms, tmRNA is the best characterized28. 

The sophisticated structure of tmRNA makes it act as both tRNA and mRNA. In E. coli, 

tmRNA is 363 nt long. It contains an tRNA-like domain (TLD) and an mRNA-like domain with 

its own small open reading frame (ORF)29. The TLD contains 3’-terminal CCA residues like 

tRNAs do and has a G3-U357 wobble base pair, which alanyl-tRNA synthetase recognizes and 

charges with alanine at its 3’-end. With several helices and pseudoknots in its structure, tmRNA 

is relatively stable against degradation by nucleases. Its partner protein, SmpB, further stabilizes 

tmRNA29-30. The structure of the TLD allows EF-Tu to bind Ala-tmRNA just like other tRNAs 

do. The GTP-bound EF-Tu-tmRNA-SmpB complex enters the A site of stalled ribosomes and 
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undergoes peptidyl transfer following GTP hydrolysis by EF-Tu30. After the growing peptide is 

attached to tmRNA, the mRNA-like domain of tmRNA serves as a transcript for the ribosome to 

continue translation. The ORF encodes the ANDENYALAA peptide and a stop codon at the 

end31. Because the ribosome switches templates, ribosome rescue by tmRNA is referred to as 

trans-translation32. The 11 amino acids added by tmRNA target the aborted nascent peptide for 

degradation. The ClpXP protease system recognizes the hydrophobic C-terminal residues of the 

tagged peptide and degrades it31.  

While tmRNA and SmpB are found in all bacterial genomes, the ArfA backup system 

found in some bacteria also facilitate ribosome rescue. It is proposed that ArfA, previously 

known as YhdL, binds to the ribosomal A site and recruits RF2. Then, RF2 hydrolyzes the 

peptidyl-tRNA and releases translation complex. It is not known, however, how ArfA recognizes 

the 3’-end of non-stop mRNA and how it recruits RF2. The deletion of tmRNA and ArfA 

together are lethal whereas a single deletion of either is viable, which suggests a mutual role of 

the two mechanisms in ribosome rescue26. 

ArfB, previously known as YaeJ, also rescues stalled ribosomes. In E. coli ArfB is a 

small basic protein with 140 amino acids. As a homolog of RFs, ArfB contains the conserved 

GGQ motif for hydrolysis of peptidyl-tRNA28. Instead of having a specific sequence for 

interacting with stop codons, ArfB has a positively charged C-terminal tail that interacts with the 

mRNA channel, selectively binding ribosomes with little or no mRNA downstream of the A-site 

codon. This is reminiscent of the C-terminal tail of the SmpB protein that provides selectivity for 

the tmRNA rescue system28.  
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1.2 Ribosome Profiling 

Insight into protein synthesis can shed light on many aspects of biology; in particular, it is 

a powerful way to monitor gene expression levels in vivo. Previously, researchers have achieved 

the goal by monitoring transcriptional changes with microarrays or RNAseq. Another approach, 

proteomics based on mass spectrometry (MS), reveals the identity and quantity of proteins in the 

cell. However, it is difficult to accurately quantify proteins with low abundance or instability. In 

addition, MS focuses on the steady-state levels of proteins in the cell rather than the rate of 

protein synthesis. While steady-state levels are very informative in determining the level of 

protein activity, they are less helpful in understanding the mechanism of protein synthesis or the 

translational control of gene expression33. 

Polysome profiling is another method used to monitor protein synthesis in vivo34. This 

technique is based on the fact that the number of translating ribosomes bound to mRNAs can tell 

us the translational status of that transcript. Ribosome-bound mRNAs are collected by 

ultracentrifugation of cell lysates over sucrose gradients. The identity of heavily translated 

mRNAs is determined and compared to the background of total mRNA using microarrays or 

RNAseq34. Polysome profiling allowed researchers to move from monitoring transcription levels 

to monitoring translation levels34. However, the approach has some difficulties in separating 

messages depending on the number of ribosome bound to them. Sucrose gradient fraction 

collection does not resolve clearly complexes heavier than disomes. The many fractions per 

sample (based on the number of ribosomes bound to mRNAs) makes it a lot of work to do the 

following analyses. More importantly, the data generated from polysome profiling cannot give 

the exact position of ribosomes on mRNAs; rather, they only give some idea of ribosome 

abundance on certain mRNAs. 
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To get better information on translation in vivo, Ingolia and Weissman developed a 

powerful new technique called ribosome profiling or Ribo-seq35. Simply stated, ribosome 

profiling improved polysome profiling by isolating short fragments of mRNA corresponding to 

ribosome footprints, revealing the exact positions of ribosomes on mRNAs. Ribosome profiling 

provides a genome-wide snapshot of ribosome occupancy on mRNA templates, telling us which 

proteins are being made and to what extent35. 

The development of ribosome profiling was made possible by advances in sequencing 

technology. Ribosome profiling involves deep sequencing millions of ribosome-protected short 

mRNA fragments. With the completion of the human genome project, significant improvements 

were made in high-throughput DNA sequencing, making the sequencing of hundreds of millions 

of short reads economically viable. Methods for preparing cDNA libraries have been well 

developed, including RNA ligation methods and techniques for multiplexing a number of 

libraries for more efficient and cost effective sample preparation. Another improvement came 

from easily accessible databases from bioinformatics. Annotated whole genomes provide the 

standard against which sequencing reads can be mapped or aligned. In addition, bioinformatics 

has provided many algorithms for processing and analysis of the data generated from high-

throughput sequencing. Together, these technologies and methods make possible the ribosome 

profiling technique that is increasing our understanding of gene regulation and particularly the 

protein synthesis process. 

1.2.1 The Ribosome Profiling Procedure 

To collect ribosome-protected mRNA fragments for deep sequencing, grown cells are 

effectively captured by flash freezing using liquid nitrogen. For lysis, cells are pulverized 

mechanically in liquid nitrogen in the presence of lysis buffer containing drugs that arrest 
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ribosomes on mRNA complexes. The pulverized lysate is thawed and centrifuged to pellet cell 

debris. The lysate is then subject to digestion using a nuclease to degrade naked mRNA, leaving 

only ribosome-protected mRNA fragments. Ribosome complexes are isolated on sucrose 

gradients by ultracentrifugation; digestion with the nuclease has reduced the polysomes to single 

monosomes. Ribosome-protected mRNA fragments are released from the monosomes by 

treatment with phenol and chloroform followed by RNA precipitation. At this point, the purified 

RNAs contains rRNA and tRNA fragments as well as mRNA fragments.  

To purify ribosome footprints away from other RNA fragments, the total RNA is run on a 

denaturing acrylamide gel for size selection. RNA corresponding to the size that best represents 

the footprint of the ribosome are collected. Generally, we isolate mRNA fragments on the gel 

that are between 10 to 40 nt in length. The strategy to sequence these mRNA fragments is to 

make a cDNA library. First, a defined RNA linker that contains a primer binding sequence is 

attached at the 3’-end of each mRNA fragment by ligation with T4 RNA ligase. Linker-ligated 

fragments are then gel-purified. rRNA fragments are selectively subtracted by hybridization with 

oligonucleotides complementary to rRNA. Then, the purified mRNA fragments are reverse 

transcribed to yield cDNAs and these single-stranded cDNAs are circularized by ligation, 

amplified by a few cycles of PCR, and submitted for 50 bp, single end, Illumina sequencing. 

1.2.2 Analysis of Ribosome Profiling Data 

Data analysis involves processing the raw sequencing data into genome-wide maps of 

ribosome occupancy and then further analysis for specific needs. High-throughput sequencing is 

performed on several samples per lane in a single experiment (a strategy known as 

‘multiplexing’). Each library is synthesized with a characteristic sequence (usually 6 nt) termed a 

‘barcode’ that distinguishes that library from the others during data analysis. In the first step of 
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data processing, raw sequences are de-multiplexed by sorting them out according to their 

barcode sequences. In addition, reads are filtered based on the quality of data as quantified in 

Phred quality scores, which is a measure of the quality of the identification of the nucleobases, 

and ambiguous or suspicious reads are excluded. After filtering, the reads are trimmed to remove 

the constant 3’-linker sequence, leaving only the ribosome footprints. Next, any reads that map 

to tRNA and rRNA genes are discarded before mapping reads to annotated genomic DNA. Final 

ribosome occupancy data are represented as densities along the genome sequence; these maps of 

ribosome occupancy are used for additional analysis using our own computing scripts, which are 

written mainly using a computer programming language Python.  

1.2.3 Power of Ribosome Profiling to Study Protein Synthesis 

Although ribosome profiling has mainly been used to monitor gene expression under two 

or more conditions, using ribosome occupancy to report on protein levels, the method has 

tremendous potential to shed light on the mechanism of protein synthesis in vivo. There have 

been many insights obtained using ribosome profiling since the method was first introduced by 

Ingolia and Weissman in 2009. In that first report, several millions of sequencing reads of 

ribosome-protected mRNAs were obtained in yeast Saccharomyces cerevisiae. 28-nt long reads 

yielded the best information about the position of the ribosome, suggesting that the nuclease 

digested completely to the 5’- and 3’-boundaries of the ribosome35. Sequencing reads that 

aligned to ORFs revealed ribosome positions on mRNAs with nearly single-nucleotide precision 

and showed a strong 3-nt periodicity, providing a means of monitoring the ribosome’s reading 

frame35. Genome-wide measurements of ribosome occupancy also generated estimates of the 

levels of protein synthesis, which were found to be better predictors of protein abundance by MS 

than were measurements of mRNA levels.  

https://en.wikipedia.org/wiki/Nucleobase
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In a later paper by Ingolia and Weissman, the ribosome profiling technique was adapted 

to mammalian cells36. Using the drug harringtonine, which specifically inhibits elongating 

ribosomes near the start codon (but not at later sites in the ORF), new translation was inhibited in 

cells36. Following the addition of harringtonine, ribosomes were allowed to run off for various 

time periods to generate a series of snapshots and reveal a moving picture of translation in vivo36. 

Ribosome footprints successfully revealed a progressive depletion of ribosomes from the 5’- to 

the 3’-end along mRNAs as the run-off time increased after harringtonine treatment36. The data 

showed that ribosomes translate at a rate of 5.6 amino acids per second, consistent with previous 

biochemical observations.  

In addition to their work on measuring rates of translation with harringtonine, Ingolia and 

Weissman also detected sites where ribosome occupancy was strongly enriched due to pausing 

during elongation. Programmed nascent chain-mediated pauses were observed on the Sec61b and 

Xbp1 genes36. More generally, the PPE/D motif was shown to be associated with internal pauses, 

consistent with the slow translation of polyproline stretches. Finally, they also found that 

ribosome footprints revealed many alternate ORFs, upstream of canonical ORFs on the same 

mRNA, many non-canonical translational start sites (especially at the CUG codon), and evidence 

for translation of putative long, non-coding RNAs (lncRNA)36. 

High-precision ribosome footprints obtained by ribosome profiling make it possible to 

detect programmed frameshift sites. Coupled with a computational method for detecting 

transitions between reading frames, ribosome profiling data obtained from human cells revealed 

where the same genomic segment is translated in more than one reading frame37. The 3-nt 

periodicity of ribosome occupancy shifts if the ribosome has moved into a different reading 

frame during translation. Ribosome profiling data is a powerful tool for searching for alternative 
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coding regions in endogenous genes and perhaps in the future in viruses and other mobile genetic 

elements rich in such phenomena.  

Ribosome profiling in Drosophila melanogaster expanded our understanding of ribosome 

readthrough, in which the ribosome continues to translate past a stop codon. Previous studies 

have shown that this can occur in a regulated fashion. However, it was very difficult to detect 

readthrough; only a small fraction of ribosomes keeps translating, extending proteins past their 

predicted C-termini. The presence of ribosome occupancy after stop codons successfully showed 

that readthrough is far more than previously predicted in D. melanogaster38.  

Ribosome profiling helped to clarify the enzymatic activity of Dom34, a yeast protein 

essential for releasing stalled ribosomes39. Dom34 is a homolog of eukaryotic release factor 1 

(eRF1) though it lacks a canonical GGQ motif required for peptide release as well as the codon 

recognition motif required for interacting with stop codons. Given these differences and its role 

in rescuing stalled ribosomes, Guydosh and Green used ribosome profiling to identify specific 

targets of Dom34, comparing wild type and dom34 knock-out strains of yeast39. Stalled 

ribosomes are stabilized by the lack of Dom34; there are higher levels of ribosome occupancy on 

certain mRNAs at stalling sites in the dom34 knock-out strain. The fragments protected by 

stalled ribosomes tend to be shorter (15-18 nt) than normal reads. This is because Dom34 

preferentially rescues stalled ribosome at the end of truncated mRNAs, meaning that the mRNA 

bound to the ribosome is roughly 10 nt shorter at the 3’-end. Furthermore, they found that 

Dom34 rescues ribosomes that are found in 3’ untranslated regions (UTRs) of mRNAs39. The 

codon-independent rescue mechanism of Dom34 nicely supports the previously known 

biochemistry of Dom34, which lacks conserved codon recognition motif39. 
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Ribosome profiling has become a powerful way to understand complex cellular processes 

in living cells including protein synthesis. By monitoring protein synthesis in real time, ribosome 

profiling has clarified previous biochemical observations and given ample insights on many 

aspects. Since 2009, the technique is being more broadly adapted to study various organisms and 

the data analysis methods are improving immensely.  

1.2.4 Bacterial Ribosome Profiling: Promises and Obstacles 

Ribosome profiling has also employed to study bacterial translation. The relatively small 

genome of bacteria and less complex gene regulation would suggest that it should be equally 

powerful in bacteria as in yeast, where it was first developed. However, there have been several 

hurdles to its application in bacteria. The first is that RNase I, the nuclease used to digest naked 

mRNA in the yeast protocol, is inhibited by E. coli ribosomes, preventing its use. RNase I 

exhibits very little sequence specificity in cleavage and degrades RNA cleanly to the boundaries 

of the ribosome, meaning that the 28 nt fragments observed in yeast yield single-nucleotide 

resolution and information about the reading frame of the ribosome40. In contrast, all published 

bacterial ribosome profiling studies use micrococcal nuclease (MNase), an enzyme with 

pronounced sequence specificity40-41. The distribution of fragments generated by MNase is very 

broad, with most reads roughly 15 – 35 nt in length, and no 3 nt periodicity or reading frame is 

evident. Rather than assigning ribosome occupancy to the 5’-end of reads as was done originally 

in yeast, Li and Weissman used a center-assignment strategy in which partial occupancy was 

distributed over the length of the entire read, further blurring the position of the ribosome on the 

message41. The use of MNase in bacterial ribosome profiling has interfered with an accurate 

determination of the ribosomes position, interfering with analyses of ribosome pausing. In spite 
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of these limitations, there have been many advances in understanding bacterial translation using 

ribosome profiling, and there have been on-going improvements on the technique itself.  

The first ribosome profiling paper using E. coli was reported in 2011 by the Weissman 

and Bukau groups in a study of the interaction of the nascent peptide chaperone trigger factor 

(TF)40. The authors selectively purified ribosomes bound to TF by cross-linking the nascent 

peptide to TF to stabilize transient interactions followed by immunoprecipitation with anti-TF 

antibodies. Ribosome footprints from TF-bound and non-TF-bound ribosomes were then 

obtained following the regular ribosome profiling procedure40. It turns out that trigger factor 

binds about 120 codons downstream from the translational start site, contradicting previous 

models that TF interacts as soon as the peptide comes out from the exit tunnel of the 50S subunit 

in vitro. Selective ribosome profiling in E. coli by cross-linking the chaperone TF with the newly 

synthesized polypeptide revealed valuable information of the kinetics of protein synthesis in 

vivo. 

Another early ribosome profiling study in E. coli claimed that the main source of pausing 

during elongation in bacteria is Shine-Dalgarno-like sequences within open reading frames41. SD 

motifs accounted for 70% of strong pauses in their dataset—sites where ribosome occupancy 

were enriched more than 10-fold over the gene average. The authors concluded that elongation is 

retarded by transient base pairing between SD motifs within ORFs and the aSD sequence in 16S 

rRNA41. However, Mohammad et al. contradicted the finding with improved footprint 

resolution42. The precision of the ribosome position is significantly improved by assigning 

ribosome occupancy using the 3’-end of sequencing reads (3’-assignment) rather than 

distributing occupancy over the whole read (center-assignment)42. This simple adjustment seems 

to better position the ribosome occupancy along its mRNA transcript on all of known E. coli 
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footprint data so far, lining up the peaks seen at start and stop codons as well as programmed 

pauses like the one observed in the SecM protein. It seems that MNase does a better job in 

cleaving mRNAs up to the boundary of the ribosome at the 3’-end site of the bound mRNA, 

resulting in more tight cleavage at the 3’ end but relaxed cleavage at the 5’ end of ribosome-

protected mRNAs42.  

With the higher resolution obtained by 3’-end assignment it became clear that the signal 

observed by Li and Weissman could be split into two separate signals due to two distinct 

phenomena: first, ribosomes pause with Gly codons in the E site, perhaps due to the nature of the 

inhibitor in the lysis buffer used to arrest translation. Second, the bona fide SD pauses arise from 

preferential enrichment of long RNA fragments from the population of ribosome footprints. It 

turns out that mRNAs that interact with the aSD in 16S rRNA are protected from digestion at the 

5’-end and so are longer on average than reads lacking SD motifs. By failing to isolate the entire 

population of ribosome-protected mRNA fragments, Li and Weissman had artificially enriched 

for SD containing reads, observing pausing that is not necessarily there in vivo.  

Ribosome profiling data can be used to quantify the absolute levels of protein synthesis 

genome-wide. In bacteria, many protein complexes are made of components synthesized from a 

single operon. In the operon encoding ATP synthase, for example, eight proteins are encoded on 

a single polycistronic RNA. The components are incorporated into the complex with various 

stoichiometries: 1:10:2:1:3:1:3:143. Li and Weissman showed that bacteria optimize expression 

of such complexes by proportional expression, matching the level of expression to the amount 

required for complex formation43. This avoids wasteful synthesis of extra protein that would 

need to be degraded and raises very interesting questions about how these differences in 

translational efficiency are generated.  
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1.3 The Endoribonuclease RelE 

In 1983, a mechanism that ensures stable maintenance of plasmids in E. coli was 

reported44. When a strain of E. coli cell carrying the F plasmid loses it while dividing, the cell 

without the plasmid is not viable44. Only the cells carrying the F plasmid are viable and 

continued to divide44. This is because a segment of the F plasmid plays an important role in 

maintaining the plasmid in the cell44. This segment, designated ccd (coupled cell division)44, is 

composed of two parts: one (ccdB) that expresses an inhibitor of DNA gyrase45 and another 

(ccdA) that expresses a protein that inactivates CcdB through forming a protein-protein 

interaction44, 45b, 46. When cells inherit the F plasmid, both CcdA and CcdB are expressed and 

form complexes that do no harm to the cell44, 46. However, if cells loose the plasmid after 

division, the unstable CcdA46 gets degraded rapidly, leaving excess CcdB. Once freed, CcdB 

becomes active and arrests cell growth, leading to death upon further division45b, 47. With this 

mechanism, the plasmid ensures that it is replicated and passed on to all the viable daughter 

cells45b, 47. In this context, the mechanism is called post-segregational killing (PSK)45b, 48 and the 

protein module is sometimes called as addiction module49. Later, many such protein pairs were 

found on the E. coli chromosome and named as toxin-antitoxin (TA) pairs, since one has 

cytotoxic activity and the other antagonizes its pair48. 

RelE is a toxin widely found in bacteria and archaea48. As an endoribonuclease, RelE is 

known to selectively cleave translating mRNAs by binding to the ribosomal A site and inducing 

global translational inhibition50. RelE activity is induced under nutritional depletion and is 

closely related to prokaryotic cell survival and pathogenicity including general stress responses 

and persister formation50b. RelE is one of the most studied toxins, but its activity and mechanism 

are still not well understood.  
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Pedersen et al. showed codon-specific mRNA cleavage by RelE in their in vitro kinetic 

assays50a. They observed that UAG and UAA among stop codons and CAG and UCG among 

sense codons were the most rapidly cleaved by RelE at the ribosomal A site, normally between 

the second and third bases50a. Neubauer et al. solved the structure of 70S ribosomes bound to 

RelE; their data partly explain why RelE cleaves mRNA in a codon specific manner and 

suggested a general acid-base catalytic mechanism51. They proposed that purines are favored for 

the second and third base of A-site codon for better stacking with residues from RelE and 16S 

ribosomal RNA in facilitating RelE activity51.  

Hurley et al., however, observed different RelE cleavage patterns in vivo52. They found 

that RelE cut mRNAs at several sites frequently and efficiently within the first 100 codons of 

coding regions, and rarely cut mRNAs at sites near the 3’ end52. They did not see any preference 

for CAG or UCG sense codons or any statistically significant sequence preferences. Moreover, 

they noticed that some cleavages occurred after the third base of A-site codon while most 

cleavages occurred between the second and third as previously known. They argued that their 

observance is more consistent with the fact that RelE causes rapid and comprehensive mRNA 

degradation and concomitant growth arrest52. 

Recently, we found in our work that RelE has some advantages for use as a nuclease in 

the ribosome profiling protocol. When added to cell lysates, purified RelE can cleave translating 

mRNAs at ribosomal A site and provides better information on ribosome position and reading 

frame than does MNase digestion. However, the sequence preference of RelE activity is 

problematic and requires further refinement and computational adjustment in analyzing data. 

This work will be described in Chapter 2. 
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1.4 tRNA Methylations and TrmD 

TrmD is a bacterial-specific S-adenosyl-methionine (AdoMet)-dependent tRNA methyl 

transferase. Methylation of tRNA can affect the accuracy of protein synthesis and the 

maintenance of reading frame. The N1-methylguanine at position 37 (m1G37)-tRNA product of 

TrmD improves the accuracy of protein synthesis on the ribosome. m1G37-tRNA reduces +1 

frameshift (+1FS) errors at slippery mRNA sequences and decoding errors of uridine-5-

oxyacetic acid at position 34 (cmo5U34), a wobble modification that frequently accompanies 

m1G37 in natural tRNAs53. Loss of TrmD leads to accumulation of +1FS errors leading to pre-

mature termination of protein synthesis at out of frame stop codons. trmD is an essential gene in 

E. coli and many bacteria and its biochemical mechanism is very different from eukaryotic tRNA 

methyltransferases, leading to interest in TrmD as a drug target50b, 54. We sought to achieve a 

cellular-level understanding of how inactivation of TrmD reduces synthesis of proteins to 

determine the reasons for its essentiality. In Chapter 3, we report ribosome profiling studies to 

observe defects in translation and identify genes whose expression is altered in TrmD deficient 

cells.  
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2 MRNA CLEAVAGE BY RELE 

2.1 Introduction 

Bacteria face enormous selective pressure from their physical and chemical environment 

and from competing micro-organisms. In response to this pressure, bacteria have evolved 

mechanisms to rapidly regulate gene expression in response to reduction in the levels of 

available nutrients, for example, or in response to antibiotics released by other organisms. 

Another strategy bacteria use to deal with these stresses is to maintain a small fraction of the 

population in a dormant state that survives environmental insults and then resumes growth when 

conditions improve55. This strategy plays an important role in antibiotic resistance because 

dormant cells (known as persisters) are not killed, even at high antibiotic concentrations. 

Shutting down protein synthesis is an essential step for both of these strategies55; for example, 

regulating gene expression in response to nutrient starvation via the classical stringent response 

and maintaining persister cells in a dormant state as a bet-hedging strategy56.  

The relE gene plays a role in stress-response pathways by blocking translation50b. The 

gene was originally discovered in genetic screens involving nutrient starvation and was named 

for its effect in the stringent response. During amino acid starvation, the concentration of 

uncharged tRNAs increases; as these tRNAs bind to the ribosome, they activate the synthesis of 

guanosine tetraphosphate (ppGpp) by the RelA protein57. Through its interactions with RNA 

polymerase, ppGpp leads to stringent inhibition of rRNA synthesis57. E. coli mutants in which 
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RelE is more highly expressed quickly shut down translation upon amino acid depletion, 

stopping the consumption of amino acids and rapidly lowering ppGpp to its pre-starvation levels, 

allowing rRNA synthesis to resume after a brief delay58. The synthesis of rRNA during amino 

acid starvation is characteristic of the ‘relaxed’ phenotype observed in mutants of genes in 

stringent response pathway, hence the name RelE59. 

In addition to its role in gene expression, RelE is also a member of the type II toxin-

antitoxin family implicated in persister-cell formation59a. Overexpression of the RelE toxin 

causes a reversible inhibition of cell growth resembling the dormant state characteristic of 

persister cells59a. Growth resumes when RelE is neutralized by overexpression of its binding 

partner, the RelB anti-toxin. Under rich conditions, RelB is expressed at a slightly higher level, 

masking RelE activity, but under stress conditions, Lon protease degrades enough of the more 

labile RelB anti-toxin to induce RelE activity60. Even under rich conditions, stochastic activation 

of RelE and similar toxins is thought to be responsible for inducing a persister-like state in a 

small fraction of cells in culture61.  

Like at least ten members of the type II toxin-antitoxin family in E. coli, RelE exerts its 

effects by cleaving mRNA and inducing translational arrest62. RelE binds in the ribosomal A site 

and cleaves the RNA after the second nucleotide in the A-site codon50a. It is an unusual 

endonuclease in the sense that it does not cleave RNA outside of this context50a; the ribosome 

provides an environment essential to its catalytic activity. A catalytic mechanism has been 

proposed based on the X-ray crystal structure of RelE in a 70S ribosome complex and follow-up 

kinetic studies51, 63. Initially, RelE was reported to be highly specific for a select codons (CAG, 

UCG, and the stop codon UAG) based on its in vitro kinetics50a, but more recent studies suggest 

that it has quite a broad specificity in vivo with only a modest sequence preference52. Analyses of 
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cleavage sites on a handful upon highly-expressed genes identified many cleavage sites with 

only a modest preference for cleavage before G50a, 52. Woychik and co-workers further made the 

puzzling observation that RelE cleaves primarily at the 5’-end of mRNAs, within about the first 

100 codons52; the mechanism underlying this polarity is unknown.  

Here we report a genome-wide characterization of protein synthesis in E. coli upon RelE 

overexpression. Unlike the elegant method of Woychik and co-workers, who adapted RNAseq to 

detect cleavage by the MazF toxin64, the ribosome profiling method we employed reports on the 

position of ribosomes, allowing us to observe RelE’s effect on translation. We find that ribosome 

density is strongly enriched at the 5’-end of genes and propose a model involving cycles of 

mRNA cleavage, rescue of stalled ribosomes, and initiation that explains the earlier observation 

of preferential RelE cleavage in the first 100 codons52. 

Furthermore, we find that RelE can be used to improve the resolution and power of 

ribosome profiling in bacteria. As originally developed in yeast, the protocol calls for digestion 

of naked mRNA with RNase I to generate ribosome footprints35. As RNase I is inhibited by E. 

coli ribosomes, bacterial ribosome profiling studies have used MNase instead. Unfortunately, 

MNase is sequence specific, creating strong sequence bias at both the 5’- and 3’-ends of the 

RNA fragments, enriching or suppressing specific RNA fragments depending on their nucleotide 

sequence. Additionally, MNase generates a broad distribution of the lengths of the ribosome 

footprints, unlike the tight 28 nt footprint observed in ribosome profiling studies in yeast42. This 

means that the position of the ribosome cannot be determined with sufficient precision to 

determine its reading frame42. Addition of purified RelE to cell lysates generates ribosome 

footprints that, for the first time, provide excellent information on the position and reading frame 

of the ribosome. 
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2.2 Results and Discussion 

2.2.1 Ribosomes are Enriched at the 5’-end of Genes in Cells Overexpressing RelE 

To study the effect of RelE on protein synthesis in vivo, we overexpressed RelE in wild-

type E. coli MG1655 cells and analyzed ribosome occupancy genome-wide using ribosome 

profiling. RelE expression from an araBAD promoter was induced for one hour beginning in 

early log phase. Given the high level of RelE expression (one-quarter of ribosome footprints map 

to the RelE mRNA) and the long induction period, we observed very pronounced effects on 

protein synthesis, presumably representing an equilibrium state in which RelE activity has 

exerted its effect and cell growth has slowed or halted. Although strong overexpression no doubt 

exaggerates the effects that we observe in comparison to activation of endogenous RelE by 

physiological stimuli, the resulting data provide a clear picture of the scope and specificity of this 

endonuclease and its effects on gene expression.  

The most striking effect of RelE overexpression is the dramatic enrichment of ribosome 

occupancy at the 5’-end of genes. In the model of the manX gene shown in Figure 1, for 

example, far more ribosome footprints map to the 5’-end of the gene than the 3’-end (red). In 

contrast, in the wild-type control (WT1, black), ribosome occupancy is distributed more or less 

similarly across the manX gene. These observations hold true genome wide. In a plot of average 

ribosome occupancy of about 1000 genes over 1000 nt long that were aligned at the start codon, 

ribosome coverage remains fairly constant in the wild-type control, whereas in the RelE1 data 

ribosomes are highly enriched in the first 400 nt and depleted after the first 400 nt. (Note that the 

vertical spread in the RelE1 data arises from the reading frame, as will be discussed below). In 

addition, a very strong peak of ribosome density is observed at the start codon in the RelE1 data. 

These data show that as a result of RelE activity, ribosomes accumulate at the 5’-end of genes 
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and are depleted at the 3’-end. This suggests that the number of ribosomes completing the 

synthesis of full-length proteins is strongly reduced, consistent with RelE’s known function of 

inhibiting protein synthesis and arresting cell growth. 

Given that RelE is an endonuclease that cleaves mRNA inside the ribosomal active 

site50a, we also looked at steady-state levels of mRNA in RNAseq libraries prepared from the 

WT1 and RelE1 samples. Here again, we see enriched RNA density at the 5’-end of the manX 

 

Figure 1 Average ribosome occupancy 

Ribo-seq (left) and RNAseq (right) reads at the manXYZ operon (top). Average ribosome occupancy at 

about 1000 genes aligned at their start codons (bottom). 
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gene when RelE is overexpressed (Figure 1, top right, blue), whereas the coverage is relatively 

uniform in the wild-type control (grey). When the RNAseq from many genes is averaged 

together, a modest two-fold increase in density at the 5’-end is observed in the RelE1 data 

(Figure 1, bottom, blue). These findings are consistent with the ribosome profiling data in 

showing a 5’ to 3’ polarity. 

Finally, a careful inspection of gene expression across polycistronic transcripts suggests 

that ribosome density decays not only across single genes but across operons as well. The 

manXYZ operon, for example, is expressed as a single transcription unit from a single promoter, 

a fact supported by equal levels of RNA density for the three genes in the WT1 RNAseq dataset 

(Figure 1, top right). Translation of all three genes is also observed in the WT1 Ribo-seq data 

(top left, black). In contrast, lower levels of RNA and far lower levels of ribosome footprints are 

observed for the downstream manY and manZ genes compared with manX.  

To quantify this effect, we compared the levels of about 2500 genes in the RelE1 and 

WT1 samples; these ratios are shown separated by the position of the gene within its operon 

(Figure 2). The transcriptome of E. coli is remarkably complex: many operons overlap and often 

multiple promoters regulate subsets of genes within an operon. To define single transcription 

units, we started with roughly 4,000 annotated operons in the RegulonDB database and excluded 

those in which the genes varied in RNAseq density by more than five-fold (using RNAseq data 

from the WT1 sample). Like the manX gene, which has three-fold more ribosome footprints in 

the RelE1 sample than in the WT1 sample, most genes that are at the first position in an operon 

or are monocistronic have more ribosome footprints in the RelE1 sample. In contrast, genes that 

lie downstream on the operon have fewer ribosome footprints. The manZ gene has two-fold 
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fewer reads in the RelE1 sample 

than in the WT1 sample (Figure 

1). The distribution for genes at 

the first position versus genes in 

the fifth position or further 

downstream is statistically 

significant (Mann-Whitney P-

value of 8.4 x 10-22). These 

differences are also observed at 

the RNA level, although 

perhaps to a lesser extent. In 

summary, our data indicate that 

upon RelE overexpression, ribosomes are enriched not only at the 5’-end of the units of 

translation (open reading frames) but at the 5’-end of units of transcription (polycistronic 

mRNAs).  

We propose the following model for enrichment of ribosomes at the 5’-end of genes upon 

RelE expression. As RelE begins to accumulate in the cell, it enters the A site of ribosomes and 

cleaves mRNA, preventing further cycles of elongation. Stalled ribosomes are rescued by 

tmRNA-SmpB or by the backup system comprised of the ArfA protein and RF2. Several 

biochemical studies have shown that tmRNA reacts particularly well with ribosomes following 

the loss of mRNA downstream of the A site upon RelE cleavage65. Both the tmRNA and ArfA 

systems release the nascent peptide from the stalled ribosome and promote recycling of the 

subunits. The free subunits are then free to assemble on another transcript at the start codon and 

 

Figure 2 Ribosome enrichment at 5’-end genes of operon 

Ribosome occupancy (red) and RNAseq density (blue) are 

enriched in genes at the 5’-end of operons upon RelE 

overexpression.  
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begin elongation again. If RelE cleaves the initiation complex, a strong start codon peak is 

observed. If a few cycles of elongation take place before cleavage of the mRNA, ribosomes 

move into the coding sequence away from the start codon. In this manner, cycles of mRNA 

cleavage, ribosome rescue, and initiation could enrich for ribosomes at the 5’-end of genes. 

It is possible that RNA decay mechanisms contribute to this effect as well. Following 

cleavage by RelE, the 3’-end of the upstream RNA fragment is protected from degradation by 

exonucleases by the stalled ribosome. The higher ribosome density on the upstream fragment 

could also prevent degradation by endonucleases such as RNase E. In addition, the upstream 

fragment has a 5’-triphosphate which is stabilizing. In contrast, the downstream fragment may be 

less able to recruit ribosomes and will have a 5’-monophosphate that helps to recruit RNase E 

promoting further endonucleolytic cleavage and RNA decay.  

In support of this model, we note that in a previous study of RelE cleavage in highly 

expressed genes using primer extension, cleavage sites were over-represented at the 5’-end of 

genes, although no explanation for this observation was provided. This observation is related but 

subtly different from ours: we observed enrichment of ribosomes at the 5’-end of genes, and they 

observed high levels of RelE cleavage at the 5’-end of genes. The reloading of ribosomes at start 

codons followed by a few rounds of elongation prior to additional cleavage events could tie these 

observations together: RelE is targeted to the 5’-end of genes because that is where the 

ribosomes accumulate over time.  

As further evidence of the importance of rescuing stalled ribosomes, we note that some of 

the rescue machinery is strongly upregulated in the RelE1 sample. Steady-state levels of the 

backup rescue factor ArfA are 15-fold higher at the RNA level in the RelE1 sample. The levels 

of synthesis of the ArfA protein are more than 80-fold increased. ArfA expression is regulated by 
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tmRNA in an elegant feedback mechanism: the transcript is cleaved by RNase III within the 

open reading frame, leading to ribosome stalling and production of a truncated protein product. 

tmRNA rescues these ribosomes stalled during ArfA synthesis and tags the truncated product for 

proteolysis. If the capacity of tmRNA is exceeded, ArfA begins to accumulate through a poorly 

understood drop-off mechanism. The fact that ArfA is strongly upregulated in cells treated with 

RelE indicates that the tmRNA system is overwhelmed and that cells are responding for the need 

for more ribosome rescue activity by strongly upregulating ArfA expression. Taken together, our 

findings support a model in which mRNA cleavage by RelE, ribosome recycling, and initiation 

enrich ribosome occupancy at the 5’-end of genes.   

2.2.2 RelE Predominantly Cleaves mRNA after the Second Nucleotide in Empty A sites 

The ribosome profiling data obtained from cells overexpressing the RelE endonuclease 

provide information about cleavage sites genome-wide. In a sense, this information is indirect; 

we measure ribosome footprints and not the products of RelE cleavage themselves. In preparing 

 

Figure 3 Average ribosome density at start- and stop-codon 

Average ribosome density at start (left) and stop codons (right) for Ribo-seq data from wild-type 

cells or cells overexpressing RelE. 
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the footprints, another nuclease (MNase) is used to digest mRNA unprotected by ribosomes. 

Although the MNase treatment could potentially interfere with our ability to detect RelE 

cleavage events, we find that for the majority (if not all) of the footprints, the 3’-end is generated 

by RelE cleavage and not MNase. Perhaps this is due to the high concentration of RelE in the 

cell over the hour-long induction period.  

The fact that most ribosome footprints are generated by RelE is clearly evident in the 

position of the peak at the start codon in plots of average ribosome occupancy (Figure 3, left). 

During initiation, the AUG start codon is positioned in the ribosomal P site. In the WT1 control 

sample, MNase digests mRNA back to the 3’-boundary of the ribosome, 15 nt downstream of the 

first nucleotide of the start codon (black). Although the start codon peak at +15 is small in the 

WT1 sample, its position matches what we previously observed in many bacterial profiling 

libraries generated with MNase. The position of the ribosome is most accurately and precisely 

determined from the 3’-end of footprints in bacterial ribosome profiling; plots of ribosome 

density reflect the 3’-end of sequencing reads. Furthermore, this position is consistent with the 

distances observed in toeprinting assays in which reverse transcriptase is blocked by the 3’-

boundary of the ribosome and arrests 15-16 nt downstream of the first nucleotide in the P site 

codon66. In contrast, the start codon peak in the RelE1 data is four nt downstream of the first 

nucleotide of the start codon (red). In other words, the mRNA is cleaved between the second and 

third nucleotide in the A-site codon within initiation complexes. The fact that the signal is far 

higher at +4 than at +15 means that most if not all of the ribosome footprints are cleaved by RelE 

at their 3’-ends. 

The same phenomenon is observed at peaks at stop codons in plots of average ribosome 

occupancy (Figure 3, right). During termination, the stop codons UAG, UGA, or UAA are 
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positioned in the ribosomal A site. In the WT1 sample, MNase digests back to the 3’-boundary 

of the ribosome, 12 nt downstream of the first nucleotide in the stop codon (black). In contrast, 

RelE cleaves after the second nt in the stop codon (red) in the A site. Together, the data at start 

and stop peaks show that RelE cleaves predominantly after the second nucleotide in the A-site 

codon and that most ribosome footprints were generated by RelE cleavage at their 3’-ends. This 

pattern of cleavage is consistent with previous enzymatic, structural, and primer extension 

studies of RelE activity. 

In examining the peaks at other well-characterized ribosome pausing sites, we observed 

that the ribosomal A site must be empty for RelE cleavage to occur. The SecM and TnaC 

polypeptides interact with the ribosome to inhibit their own synthesis in response to specific 

cellular signals67. The ribosome stalls at the RAGP sequence in SecM, for example, with the Gly 

codon in the P site and unreactive Pro-tRNA bound in the A site67a. A strong peak 15 nt 

downstream of the Gly codon in the WT1 sample corresponds to this well-understood pausing 

event when the samples are treated only with MNase (Figure 4, left). In the RelE1 data, the 

expected peak after the second nucleotide in the Pro codon is not observed; instead, the strongest 

 

 

Figure 4 Ribo-seq data at nascent peptide-mediated stalling sites 

SecM (left) and TnaC (right). 
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peak overlaps with the one observed in the WT1 sample 15 nt downstream of the Gly codon. 

This suggests that RelE is unable to cleave the Pro codon in the A site in stalled SecM 

complexes, presumably due to the Pro-tRNA trapped and blocking RelE entry. Similarly, 

ribosome stalling at the C-terminus of the TnaC peptide (Figure 4, right) is observed in the WT1 

data with a strong peak 15 nt downstream of the final residue, Pro67b. In the RelE1 data, a peak is 

expected in the stop codon positioned in the A site, but none is observed, only the same peak 

observed in the WT1 data. RelE is probably blocked by trapped release factor 2 that is recruited 

but cannot complete hydrolysis of the nascent peptide. These findings suggest that RelE is 

capable of competing with aminoacyl-tRNA and release factors for access to the A site during 

normal elongation and termination, but that factors that are trapped long-term during 

programmed ribosomal arrest block RelE activity. 

2.2.3 in vitro Digestion with RelE Reveals the Reading Frame 

It has been impossible to detect reading frame in ribosome profiling studies in bacteria 

and the MNase enzyme is at least partly to blame, leaving one or more nucleotides undigested at 

the 3’-boundary of the ribosome. Given the precision with which RelE cleaves after the second 

nucleotide in the A site when expressed in vivo, we hypothesized that RelE might prove to be a 

useful tool in ribosome profiling, generating more reliable 3’-ends and improving the resolution 

at which the position of the ribosome can be determined. We purified RelE and added it to cell 

lysates under our regular digestion conditions in vitro; MNase was included at the regular 

concentrations to digest mRNA to the 5’-boundary of the ribosome. Ribosome footprints 10 – 40 

nt in length were then cloned and sequenced following our usual protocol. 



32 

 

Comparison of profiling libraries obtained by expression of RelE in vivo (RelE1, Figure 

1) with those obtained by in vitro RelE digestion (RelE2, Figure 5) reveals many similarities but 

also an important difference. The activity of RelE in vitro can be seen in plots of average 

ribosome occupancy across many genes aligned at start codons. A strong start codon peak in the 

RelE-treated sample (RelE2) is found at the +4 and not the +15 site (Figure 5). Furthermore, like 

the RelE1 data in Figure 1, the vertical spread in the RelE2 signal is substantially larger than that 

observed in a library prepared from the same biological sample using only MNase (WT2), 

indicative of 3’-periodicity reflecting reading frame. On the other hand, we do not observe the 

marked decay of ribosome density at the 3’-end of genes that we observe when RelE is 

overexpressed in vivo (see the data from the RelE1 library in Figure 1). This is because 

translation is blocked in the cell lysate; elongation is arrested by chloramphenicol and initiation 

is probably inhibited by dilution of the necessary factors and exhaustion of GTP. This is further 

 

Figure 5 Average ribosome occupancy for a wild-type sample 

RNA was digested in vitro with MNase alone (black) or with purified RelE protein (red). 
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evidence that the accumulation of ribosome occupancy at the 5’-end of genes in vivo is due to the 

dynamics of cleavage, rescue, and initiation and not RelE activity per se. 

Returning to the question of reading frame, we calculated the average ribosome density at 

all three sub-codon positions in open reading frames throughout the genome. The library 

prepared with MNase (WT2) shows slightly higher density at the first nucleotide (40%) than the 

other two nucleotides (30% each, Figure 6, top left). Given that this effect is lacking in footprints 

mapping to 3’-

untranslated regions (3’-

UTRs) (where the reading 

frame is defined as the 

same as the preceding 

ORF), it may be tempting 

to attribute this 3 nt 

periodicity to the 

ribosome’s reading frame 

(bottom left). We found, 

however, that RNAseq 

libraries prepared by 

digestion of total RNA by 

low concentrations of 

MNase yielded the same 

result—ribosome occupancy is enriched at the first sub-codon position in ORFs but not in 3’-

UTRs. The sequence specificity of MNase coupled with the nucleotide bias in ORFs explain this 

 

Figure 6 Ribo-seq and RNAseq density at each position 

Ribosome density within codons in coding sequences (top) or 3’-

untranslated regions (bottom). Right: sequence bias in the genome 

in the CDS or 3’-UTR. 
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observation. MNase cleaves preferentially before A and T which are enriched at position two in 

codons in ORFs but not 3’-UTRs (Figure 6, right). Cleavage before position two makes the 3’-

end of footprints align with the first sub-codon position. Given that ribosome occupancy is 

assigned using the 3’-end of footprints, ribosome density appears higher at the first position 

(40%) than the other two (30% each). 

In contrast, the libraries prepared by RelE digestion in vitro show the strongest density at 

sub-codon position two (Figure 6, top left), corresponding to cleavage before the third nucleotide 

in the A site codon, as observed at both start and stop codons in average ribosome density plots 

(Figures 3 and 4). Roughly 60% of footprints map to the second sub-codon position; 30% map to 

position three while only about 10% map to position one. The large difference between the 

density at the first two positions explains the large vertical spread in the RelE2 data observed in 

Figure 5 and provides the first reliable information about ribosome reading frame in bacterial 

ribosome profiling data. Footprints from the 3’-UTR show no evidence of reading frame, 

consistent with the expectation that ribosomes found there are not synthesizing protein or 

moving in 3 nt steps (Figure 6, bottom left).  

2.2.4 RelE Prefers to Cleave after C and before G 

By analyzing the 3’-ends of ribosome footprints, we are able to observe the specificity of 

the MNase and RelE enzymes. As others have shown, MNase preferentially cleaves before the 

nucleotides A and T; in our data we observe that A and T are strongly enriched downstream of 

the cleavage site, both +1 nt and to a lesser extent +2 nt as well (Figure 7, left). In contrast, A 

and T are underrepresented upstream of the cleavage site, both −1 nt and to a lesser extent −2 nt. 

The sequence preferences of RelE are very different from those of MNase: C is preferred at the 

−1 position while G is selected against (Figure 7, right). Following the cleavage site, G is 
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strongly preferred and C is selected against. There appears to be a slight avoidance of A and T at 

both positions. These tendencies hold true whether RelE digestion occurs in vitro or in vivo. In 

contrast with what we observed with MNase, the sequence two or more nucleotides away from 

cleavage site exert a small effect. 

Although initial reports of RelE activity described the endonuclease as highly specific for 

a few codons, additional studies revealed a more relaxed specificity. The preference for G after 

the cleavage site was anticipated by the kinetic studies of Ehrenberg and co-workers, who found 

that kcat/KM values for RelE cleavage were markedly higher for codons ending in G50a. The 

presence of G at the third position of the codon had the strongest effect in explaining their kinetic 

data. Woychik and co-workers also reported a strong preference for cleavage before G in five 

highly expressed genes in E. coli52. Finally, the X-ray crystal structure of RelE bound in the A 

 

Figure 7 Sequence bias at the 3’-end of ribosome footprints 

Different cleavage patterns due to cleavage activity by RelE both in vivo and in vitro. All samples 

were also digested with MNase in vitro. 
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site of 70S ribosomes offers a possible explanation of this preference: the G in the third position 

of the A site codon stacks on the base of C1054, a conserved 16S rRNA nucleotide in the 

decoding center. The structure suggests that direct contact of RelE residues with the G nucleotide 

are also possible.  

In contrast to the good agreement of our data with these earlier studies regarding the 

specificity of the downstream nucleotide at the cleavage site, our observations of a marked 

preference upstream of the cleavage site are unexpected. There is little evidence in the literature 

of a strong bias for C and against G at the −1 position, raising the possibility that this effect is an 

artifact of ribosome 

profiling, arising from 

biases in cloning 

ribosome footprints. 

We find, however, 

that RNAseq libraries 

show no such bias 

when fragments were 

prepared by alkaline 

hydrolysis and then cloned and sequenced exactly as the profiling libraries. This finding rules out 

the possibility that the preference for C is the result of cloning bias and strongly implicates RelE 

cleavage itself as the cause, given that the method of RNA digestion is the only difference 

between the two protocols.  

 

Figure 8 Sequence bias at the 3’-end of RNA fragments 

 in two libraries. The fragmentation was done by alkaline hydrolysis. 
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2.2.5 The Specificity of RelE Interferes with Analyses of Ribosome Pausing 

Although the generation of ribosome 

footprints with RelE allows us to determine 

the ribosome position and reading frame 

with high resolution, the use of RelE incurs 

certain disadvantages as well. Both MNase 

and RelE are sequence-specific nucleases, a 

property that creates bias at the ends of 

ribosome footprints. As shown in Figure 9 

(top), plots of average ribosome occupancy 

at sense codons are noisy when the 3’-end of 

the reads line up with the codon of interest 

(that is, the distance from the codon is close 

to zero). This noise arises from enrichment 

of certain sequences at the 3’-end of reads at 

the specific nucleotides in the codon being 

averaged. For example, there is a strong 

peak at 0 in the GTA codon (green) because 

cleavage after G and before T is optimal 

given the specificity of MNase. In contrast, 

there is a strong peak at 1 for the CCA 

codon (blue) because cleavage after position 

2 is preferred. Although the sequence bias at 

 

Figure 9 The ribosome occupancy on codons 

Top: Average ribosome occupancy at all 61 

sense codons. The position corresponding to 

the codon in the A, P, or E site is indicated. 

Middle: The same plot with data from the RelE 

in vitro digest. Bottom: the differences in pause 

score at all 61 sense codons between ribosome 

profiling libraries. 
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the 3’-end of reads skews the data, in practice this noise can be ignored because the noise that 

this creates is at the 3’-boundary of the ribosome, far away from functional sites such as the A, P, 

and E sites for tRNA-binding. When the 3’-end of reads are 15 nt downstream of codons of 

interest, positioning the CCA and GTA codons in the P site, for example, noise from cloning bias 

does not interfere. 

In contrast, the pronounced sequence specificity of RelE creates noise that obscures the 

signal right at functional sites in the ribosome. Because RelE cleaves mRNA in the ribosomal A 

site, the noise generated by bias at the 3’-end exactly overlaps the A site, making it difficult to 

draw conclusions about the dwell time of ribosomes on specific codons during elongation or 

termination (Figure 9, middle). We computed pause scores for three ribosome profiling libraries; 

two biological replicates in which the footprints were generated by MNase (WT2 and WT3) and 

the third library from the same biological sample as the WT2 library but using both RelE and 

MNase (RelE2). We observed relatively small differences in the pause scores between the WT2 

and WT3 libraries, in spite of the fact that they were derived from independent biological 

samples (Figure 9, bottom). This holds true for all three tRNA-binding sites. There were 

significant differences, however, between the levels of pausing in the WT2 and RelE2 data, even 

though they were derived from the same biological sample. The differences were more 

pronounced in the A site than the P or E sites. We conclude that in vitro digestion by RelE 

introduces noise that complicates the analysis of ribosome pausing and argue that the MNase 

data are more likely to represent an accurate view of pausing in vivo given that the cloning bias 

in the MNase libraries is farther away from the sites of interest. 
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2.2.6 Refined RelE-Derived Ribosome Density Better Reflects Reading Frame 

The sequence specificity of RelE alters the pattern of cleavage in predictable ways; by 

taking this into account, we can obtain even better information regarding reading frame. Looking 

in more detail at average ribosome occupancy at sense codons positioned in the A site, we find 

that most codons are cleaved after the second nucleotide, as expected from the analyses of start 

and stop codons above. In Figure 10 (left), the ribosome occupancy has been shifted such that the 

A-site codon starts at zero; the peak at 1 observed in most codons (grey) corresponds to cleavage 

after the second nucleotide. A subset of codons has higher density at position 2 corresponding to 

cleavage after the third nucleotide in the codon (Figure 10, red): all of these codons end in C. 

Given the specificity depicted in Figure 7, where cleavage after C is preferred and cleavage 

before C is strongly inhibited, it makes sense that NNC codons are cleaved after the third 

position, between the A site codon and the codon downstream. To compensate for this cleavage 

bias, we shifted the ribosome density at all NNC codons from the third nucleotide to the second. 

This improved the signal at the second position from about 60% to about 80%, with 10% 

remaining at position one and 10% at position three (Figure 10, right). This suggests that two-

 

Figure 10 Correction for better reading frame 

Left: average ribosome occupancy on all sense codons, shifted from Figure 9 so that the A site 

codon starts at zero. Right: reading frame when the reads on NNC are shifted from position 3 to 

position 2. 
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thirds of reads that align to the third sub-codon position arise from NNC codons. Given what we 

know about sequence specificity a more sophisticated algorithm could be employed in the future 

to realign ribosome density to optimize reading frame. 

Even by simply shifting density on NNC codons from the third to second position, 

reading frame is significantly improved. With this level of resolution, frameshifting events can 

be detected in bacterial ribosome profiling data, as can be seen in analysis of the programmed 

frameshift on the prfB gene encoding RF268. When RF2 levels are limiting, ribosomes pause at a 

stop codon at the 28th codon in the gene and then shift into the +1 frame. Following the 

frameshift, ribosomes complete the synthesis of the RF2 protein which is encoded in the new 

reading frame. When we split the ribosome occupancy signal into three components, with reads 

that map to the first, second, or third sub-codon position, this frameshifting behavior is evident in 

models of the prfB gene. Upstream of the frameshift site, the majority of ribosome footprints are 

cleaved after the second sub-codon position, as expected. But downstream of the frameshifting 

event, most footprints are cleaved after the third position, consistent with a +1 frameshift. Very 

few reads map to the first sub-codon position, either before or after the frameshift site. 

 

Figure 11 Programmed frameshifting at the prfB gene 

Left: ribosome occupancy split into three component parts, by sub-codon position. Given RelE’s 

preference for cleaving after the second nt, the blue data represent in-frame translation upstream of 

the frameshift site and the red data represent in-frame translation downstream (in the +1 frame). 
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Quantitation of the reading frame upstream and downstream of the programmed frameshift site 

further supports this conclusion. Going forward, the high degree of three nucleotide periodicity 

arising from translational reading frame can be used to search for other programmed 

frameshifting sites in bacteria, as has been done in human ribosome profiling studies37 . 

2.2.7 Concluding Thoughts 

Our ribosome profiling analyses of RelE activity in vivo reveal dynamic cycles of 

cleavage, ribosome rescue, and initiation that enrich ribosomes at the 5’-end of genes. Although 

it was previously known that RelE-cleaved mRNAs are good targets for the tmRNA rescue 

system, our data highlight the importance of the tmRNA and ArfA systems in the cellular 

response to and recovery from RelE activity. How cells exit the dormant state with high RelE 

activity is not yet clear, but it seems likely that ribosome rescue is essential for this to occur. 

Antibiotics are beginning to be developed to target the tmRNA rescue pathway, raising the 

possibility of targeting persister cells due to their reliance on toxins to cleave mRNA and block 

translation.  

The use of RelE as a nuclease for ribosome profiling suffers from the same problem of 

sequence specificity as the enzyme normally used, MNase. This makes the enzyme less than 

ideal for generating libraries where careful measurement of ribosome pausing is the goal. 

However, RelE cleaves the 3’-end of fragments more precisely, allowing us to observe the 

ribosome’s reading frame for the first time in bacteria.  

In the future, it may be possible to generate ribosome profiling libraries using RelE alone. 

In our in vitro digests, we also added MNase to cleave the mRNA back to the 5’-end of the 

ribosome generating a ribosome footprint. With RelE alone, cleavage would only occur in the A 

site, generating fragments that are far longer than the 10 – 40 mer ribosome footprints that we 
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work with now. In theory, these fragments could be cloned without size selection. The distance 

between ribosomes on messages could then be determined by sequencing both ends using 50 bp 

paired Illumina sequencing. This might give insights into ribosome stacking at strong pausing 

sequences and a picture of ribosome distribution on single messages, since the sequence between 

two ribosomes would remain intact. 

2.3 Materials and Methods 

2.3.1 Bacterial Strains and Growth Conditions 

E. coli K-12 strain MG1655 was used as a wild-type strain. The RelE overexpression 

strain was constructed by transformation with a plasmid, pJC203, which contains an araBAD 

promoter. Cell cultures were grown at 37°C in either LB media or MOPS media supplemented 

with 1% glucose, all 20 amino acids, and other nutrients (Teknova) and RelE overexpression was 

induced by adding arabinose (final 0.2%) at an O.D600 of 0.2-0.3. Cell cultures were grown 

further either for 1h or 20 min before harvesting. 

2.3.2 Preparation of Ribo-seq and RNAseq Libraries 

Ribo-seq libraries were generated as described previously66 with some modifications. 

Ribosome-protected fragments were size-selected between 20 – 40 nt in length initially, but 10 – 

40 nt in the latter libraries in an attempt to include short fragments generated by RelE cleavage 

activity. For the library digested by RelE in vitro, 1 nmol of purified RelE was also added when 

25 AU of RNA in the lysate was digested with 3000 U of MNase (Roche) for 1 h at 25 °C. 
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RNAseq libraries were also size-selected between 10 – 40 nt in length in the latter 

preparation to reveal 3’-end sequences, which was not available due to longer reads size 

selection with the length between 40 – 60 nt. 

2.3.3 Data Analysis 

Data analysis obtained from Illumina sequencing were described previously66.  
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3 THE ROLE OF TRNA METHYLTRANSFERASE TRMD 

This work was a collaboration with Isao Masuda of Ya-Ming Hou’s lab at Thomas 

Jefferson University. Dr. Masuda created and characterized the TrmD depletion system and his 

work is described here for completeness. My contribution was to assist him in optimizing the 

growth conditions, generate the ribosome profiling libraries, and analyze and interpret the 

profiling sequencing data. 

3.1 Introduction 

tRNAs are adaptor molecules that deliver amino acids to the ribosome for protein 

synthesis. To ensure the fidelity of translation, each tRNA must carry its cognate amino acid and 

decode mRNA using the correct match between its anticodon and the codon in mRNA. tRNAs 

undergo numerous chemical modifications after their transcription; an average E. coli tRNA 

contains 77 nucleotides and have about 8 of them modified. These modifications play an 

important role in the fidelity of both aminoacylation and decoding.  

Most tRNA modifications are located near the anticodon69. One of the purposes of 

modification is to fine tune the anticodon so that a single tRNA can read multiple, degenerate 

codons. There are 47 different tRNAs produced from 86 genes in E. coli; these tRNAs are able to 

decode all 61 sense codons. tRNA modifications promote this flexibility in codon recognition 

while at the same time maintaining fidelity. This is a difficult but critical balance to achieve: the 



45 

 

tRNAs must be allowed a certain amount of broadening of specificity but only under the right 

circumstances.  

tRNA modifications also play a critical role in maintaining the reading frame during 

translation46. One particularly important enzyme for preventing frameshifting is TrmD, a 

bacterial enzyme responsible for methylation of N1 of G37 of several tRNAs70. Unlike the case 

with other modifications, deficiency of m1G37 leads to cell death in many bacteria including E. 

coli70b, 71. TrmD is very different structurally and mechanistically from its eukaryotic homolog, 

Trm572. Studying E. coli TrmD can give us a framework for understanding methyltransferases, 

the role of modifying enzymes in tRNA stability and activity, and insight into a promising 

antibiotic target. Here we report our efforts to understand the role of TrmD in living cells using 

ribosome profiling. 

3.1.1 tRNA Synthesis and Post-Transcriptional Modifications 

In E. coli, tRNAs are transcribed as long precursors73. Various RNases process the 

precursor tRNAs (pre-tRNAs) to mature, functional tRNAs by cutting excess residues at the 5’- 

and 3’-ends74. For most pre-tRNAs, RNase E removes nucleotides at the 3’-end by an 

endonucleolytic cleavage, leaving only a short 3’-trailer75. Then, RNase P interacts with the CCA 

motif and removes nucleotides at the 5’-end of the pre-tRNA with a single endonucleolytic 

cleavage; this creates the mature 5’-end of the tRNA. Finally, exonucleases such as RNase T, 

PH, II, and D further trim the remaining 3’-trailer nucleotides up to the mature CCA motif at the 

3’-end of the tRNA73. 

All tRNAs have L-shaped tertiary structures formed by base pairing and coaxial stacking 

of the helices. Each tRNA is slightly different but shares common secondary structural 

features76. When depicted in two-dimensions, tRNA have a cloverleaf structure consisting of an 
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acceptor stem, D (dihydrouridine) loop, anticodon loop, and T loop. The acceptor stem contains 

the conserved 3’-terminal CCA motif where the amino acid is covalently linked77. The structure 

of the anticodon loop presents the anticodon in a way that allows it to form the correct base pairs 

during decoding77. The other structures contribute to interactions with the translation machinery, 

including the ribosome, aminoacyl-tRNA synthetases (aaRSs), and EF-Tu. 

Following transcription, tRNAs are modified at several sites to enhance their cellular 

functions, promoting their structure and stability, optimizing translational fidelity and accuracy, 

and maintaining the correct reading frame. The first modification identified was pseudouridine 

(Ψ), as the fifth nucleotide, which is an isomer of uridine78. Ψ is present in the T loop that is 

recognized by aaRS’s and EF-Tu. Likewise, the dihydrouridine modification is found in the D 

loop79. With two extra hydrogens added to its pyrimidine ring, dihydrouridine is no longer planar 

or aromatic, disturbing base stacking, and destabilizes the structure, conferring flexibility79.  

Most critical modifications of tRNA, however, occur in the anticodon loop. The first two 

positions in a given codon base pair (in classical Watson-Crick fashion) with the second and 

third positions of the anticodon, nucleotides 35 and 36 in the tRNA. The third nucleotide in the 

codon in the ‘wobble’ position, however, can participate in a number of different pairing 

geometries in its interaction with position 34 of the tRNA. Modification of position 34 can 

broaden base pairing80: deaminating A34 to inosine, for example, in tRNAArg in bacteria allows 

for pairing with A, C, and U at the wobble position. Alternatively, modifications of U34 to 5-

methoxycarbonyl-methyl-2-thouridine (mcm5s2U34) and the 5-methylation of cytosine 34 

(m5C34) allow a single tRNA isoacceptor to read multiple codons81. The modifications promote 

accurate codon-anticodon interactions, optimizing translation of the genetic code. 
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tRNA modifications also play a critical role in maintaining the reading frame of 

translation80, 82. In most cases, frameshifting is far more detrimental than other decoding errors. 

Missense errors that replace one amino acid for another often have little or no effect on the 

stability or activity of the protein product. On the other hand, most shifts in reading frame lead to 

pre-mature termination at a stop codon in the new reading frame, yielding truncated and inactive 

polypeptides. Pseudouridine and 2-thiouridylation (s2U34) play roles in frame maintenance in 

addition to their other functions78a, 83. One of the best characterized modifications involved in 

frame maintenance is the methylation of G37, just downstream of the anticodon. 

3.2 The TrmD Methyltransferase 

The m1G37 modification involves a very ancient 

pathway; proteins catalyzing G37 methylation are found in 

all three domains of life84. m1G37 is found in most tRNAs 

that read codons starting with C. It is thought that 

methylation of G37 may block base pairing between this 

nucleotide and the mRNA that would promote decoding of a 

quadruplet instead of a triplet (Figure 12)84. Codons starting with C are read by tRNAs with G36; 

the combination of G36 and unmethylated G37 is thought to be problematic. Other mechanisms 

involving structural changes in the tRNA or faulty translocation on the ribosome may also play a 

role.  

There are many enzymes that facilitate tRNA methylation. Some enzymes add methyl 

groups to carbon or nitrogen atoms in the bases, while others methylate oxygens in the ribose 

sugars. In general, methyltransferases catalyze the transfer of a methyl group (CH3) from the 

donor to a substrate molecule. In most cases, the methyl donor is S-adenosyl-L-methionine 

 

Figure 12 1-methyl-Guanosine 
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(AdoMet)85. AdoMet-dependent methylation often involves SN2 substitution reactions in which 

the substrate attacks on the reactive methyl group in AdoMet, yielding a single stereoisomeric 

product.  

In bacteria, methylation of G37 is accomplished by the TrmD enzyme, which is 

composed of 255 amino acids (28.4 kD) and acts as a homodimer. The active site is formed by 

residues from each of the monomers86. The structure contains a unique trefoil knot deep within 

each of the homodimers whose function is not fully understood. When AdoMet binds to the 

structure, it causes conformational changes. The adenosine moiety of AdoMet is surrounded by a 

loop and AdoMet is in a bent conformation85. 

It has been proposed that the TrmD homodimer requires the anticodon loop of tRNA to 

be precisely positioned near AdoMet for the methylation of G37 since bound AdoMet is located 

in a deep, seemingly inaccessible pocket near the center of TrmD85. The conserved 

phenylalanine residue is proposed to provide critical stacking interactions required for the final 

positioning of G3786. It has been proposed that an aspartate of TrmD acts as a general base while 

other conserved residues provide G37 specificity for the reaction allowing methylation of the N1 

position of G via a deprotonation, followed by the transfer of the methyl group of AdoMet85. 

TrmD binds to tRNAs non-specifically searching for its recognition element, the 

dinucleotide G36-G3786. Once TrmD recognizes the two consecutive G residues at the 3’ end of 

the anticodon, AdoMet-dependent methylation occurs86. tRNA is positioned in the cleft and, if 

the identity element G36pG37 is present, G36pG37 might be ‘flipped’ into the dual pocket 

catalytic center for subsequent methylation by bound AdoMet85-86. If a G is not found at position 

36, then a stable complex of G37 near AdoMet cannot form and catalysis does not proceed86. 
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The bacterial TrmD enzyme is substantially different from its eukaryotic homolog, Trm5, 

raising the possibility of targeting TrmD with antibiotics87. The two enzymes show no detectable 

similarity in sequence or structure. While TrmD is an obligate dimer, Trm5 is a monomer88. 

TrmD binds AdoMet with the rare trefoil knot, Trm5 binds AdoMet in the open space of a 

dinucleotide-fold. As noted above, TrmD binds AdoMet in a bent conformation, where the 

adenosine and methionine moieties are bent toward each other by 90° whereas Trm5 binds 

AdoMet in the more common straight conformation, with an 180° angle between the two 

moieties86, 89. The fact that these enzymes have different active site geometries and both bind 

small molecules makes them attractive drug targets, and pharmaceutical companies are working 

on developing small molecule inhibitors of TrmD84. Loss of TrmD activity is lethal in E. coli; 

this is unusual for tRNA modification enzymes, most of which can be deleted with little or no 

detectable phenotype. Although increased levels of frameshifting are observed when TrmD and 

m1G37 are lost, it is not entirely clear what the mechanism of cell death is. To obtain a better 

understanding of protein synthesis in living cells upon depletion of G37 methylation, we 

performed ribosome profiling.  

3.3 Results 

3.3.1 Achieving Regulation of TrmD, an Essential Protein  

An inducible TrmD-depletion E. coli strain was constructed to observe defects in 

translation and identify genes whose expression is altered when m1G37 of tRNA is depleted in 

cells. Since m1G37 is an essential modification of several tRNAs and deletion of trmD is lethal, 

we constructed a strain in which TrmD can be conditionally depleted, starting with the G78 

strain90. In G78, proteolysis of certain target proteins can be regulated by controlling the 
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expression of the peptide recognition protein, ClpX, which binds to hydrophobic C-terminal 

peptide tags, and Clp, a protease. The ClpXP complex degrades proteins tagged by tmRNA as 

well as many other proteins with C-termini recognized by the complex91. In the G78 strain, the 

ClpXP genes are regulated by an arabinose inducible promoter, allowing us to regulate its 

expression by changing media conditions90. We also express TrmD from a constitutive promoter 

with the tmRNA tag translationally fused to its C terminus; this effectively targets the protein for 

degradation when ClpXP is expressed upon induction with arabinose. 

To construct the TrmD-depeletion strain, the trmD gene, which is expressed with another 

three genes on an operon, is modified at its 3’-end to contain a peptide tag (Figure 13). This tag 

contains a sequence that targets it for degradation by ClpXP (YALAA) as well as His6 and 

FLAG epitopes (Figure 

13)90. This is called the 

degron strain (with the 

Deg-tag); the control 

strain also contains the 

epitope tags but not the 

YALAA degradation 

signal (the Cont-tag). 

The trmD mutations 

were first established by 

λ red recombination in 

E. coli strain SM140590. Then, the trmD alleles with the added degradation tag or control tag are 

 

Figure 13 TrmD depletion strain construction 
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verified by PCR, and then the alleles were transduced using P1 phage in the G78 strain in which 

ClpXP can be regulated, generating the trmD-deg and trmD-cont strains (Figure 13).   

The two strains were tested by growing on agar plates (Figure 14, top). When cells were 

plated on media containing glucose, both strains formed colonies (data not shown). However, 

when cells were grown on the plate with 0.2% 

arabinose added, there were significant 

differences in colony formation. The degron 

strain (trmD-deg) formed fewer colonies than 

the control strain, suggesting that the tagged 

TrmD was successfully depleted upon ClpXP 

overexpression, arresting cell growth. In 

addition, steady state levels of TrmD were 

visualized by western blot (Figure 14, bottom). Cells were first grown in LB media (with trace 

amount of glucose) to suppress ClpXP expression. Upon induction with arabinose (final 

concentration of 0.2%), the cells were collected and subjected to western blot assay with various 

time points.  The western blot shows that TrmD levels drop significantly in the cell between 30 – 

40 min after ClpXP overexpression.  

Having confirmed that colonies fail to grow when TrmD is depleted, and that the 

depletion kinetics are fairly rapid, growth curves were obtained to determine the optimal time 

after induction for harvesting the cultures for ribosome profiling. Surprisingly, however, the 

growth curves of degron and control strains did not show much differences (data not shown). We 

hypothesized that the slow decay of residual methylated tRNAs, produced prior to TrmD 

 

Figure 14 TrmD depletion 

Cell growths on plate (Top) and western 

blot for tagged proteins (Bottom). 
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depletion, left enough tRNA for the cells to continue to function and grow relatively normally 

over short time frame. 

By diluting the 

culture twice back to an 

OD600 of 0.1, we found that 

differences in growth rates 

between the degron and 

control strains could be 

observed after about 4 h of 

induction of the ClpXP 

protease (Figure 15). 

Without the dilutions, the 

cultures reached saturation 

at nearly the same rates. 

With the dilutions, 

however, differences could 

be observed when the cultures were still growing in exponential phase. It was important not to 

reach saturation because starvation for certain amino acids ensues during stationary phase, 

creating a signal of pausing at those codons in the ribosome profiling data that would interfere 

with our analyses of the effects of depletion of trmD (Figure 15).  

We then monitored the level of m1G37 over the 4 h induction time course. A 14-nt long 

primer complementary to tRNALeu/CAG was used for extension by reverse transcriptase (Figure 

16, left). Methylation blocks extension, generating a 15 nt product. In the absence of methylation 

  

Figure 15 Growth measurements upon TrmD depletion 

Cell growth in LB media. At Time 0, exponentially growing cells 

were diluted in fresh media with 0.2% arabinose for ClpXP 

induction. Additional dilutions of cell culture media to fresh media 

after 1h and 2h. 
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at G37, a 53 nt product is generated. In the degron strain, a gradual depletion m1G37 methylated 

tRNA was observed (Figure 16, right). At the same time, newly synthesized tRNA is 

unmethylated, as evidenced by the gradual accumulation of the 53 nt product over time in the 

degron strain (Figure 16, right). No unmethylated tRNA was evident in the control strain.  

3.3.2 Depletion of m1G37 of tRNA Causes Pauses on CCG, CCA, and CGG Codons 

Ribosome profiling libraries were generated from cultures of the control and degron 

strains after 4 h of induction. We analyzed the data for pauses at specific codons that are read by 

tRNAs normally containing m1G37. To detect pauses, we averaged the ribosome occupancy 

surrounding instances of the 61 sense codons. Plots of average ribosome occupancy for the 

control strain, for example, show very strong pauses when Ser codons are found in the ribosomal 

A, P, and E sites (Figure 17). In these plots (Figure 17 and 18), the signal at 0 corresponds to the 

 

Figure 16 Effect of TrmD depletion on tRNA 

Primer extension assay using tRNAs as templates for verifying methylation depletion on tRNA. 
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codon is positioned in the P site, in the A site at -3, and in the E site at +3. (Note that the noise 

between -10 and -20 corresponds to sequence bias at the 3’-end of the reads and can be ignored). 

The Ser codons TCG, TCC, TCT, and TCA have the strong signals in the control strain, shown 

in color (Figure 17). Strong pauses on serine codons are a signature of growth in LB media that 

is frequently observed in E. coli ribosome profiling. Presumably this occurs because levels of Ser 

within the cell are limiting for protein synthesis.  

In the degron strain (Figure 18), on the other hand, the usual Ser pauses are not observed 

and other pauses have become rate limiting. Ribosome occupancy is strongly enriched at CCG, 

CCA, and CGG codons. This result, seemingly representing the effect of depletion of tRNAs 

containing m1G37, makes sense because all three of these codons are decoded by tRNAs with 

m1G37. Perhaps ribosomes pause at these codons because the concentration of tRNA is reduced 

or because unmethylated tRNA behaves poorly in decoding or translocation. 

 

Figure 17 Ribosome occupancy on codons in control strain 

High level of ribosome occupancy on some codons (colored) compared to other codons (grey). 
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What is surprising is that only these three codons have strong pauses in the profiling data 

from the degron strain, when seven or perhaps nine codons are predicted to be decoded by 

tRNAs containing m1G37. Table 1 lists the codons that start with C and are decoded by tRNA 

isoacceptors that are candidate substrates of TrmD. Note that the CAN codons encoding His and 

Gln are not shown in the table; the corresponding tRNAs contain A37 rather than G37 and are 

therefore not substrates of TrmD; pauses are not observed on these codons. The same thing is 

true for three of the CGN Arg codons: no pauses are observed for the CGU, CGC, and CGA, 

codons that are decoded by a tRNA containing an ICG anticodon with A37 and not G37 and so 

not a TrmD substrate. In contrast, the CGG Arg codon whose cognate tRNA has m1G37 

modification shows very strong pauses, as noted above. This is perhaps the simplest case. 

 

Figure 18 Ribosome occupancy on codons in degron strain 

High level of ribosome occupancy on some codons (colored) compared to other codons 

(grey). 
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Surprisingly, the CUN leucine codons do not show pausing, even though they are read by 

tRNAs thought to contain m1G37. There is some controversy in the literature over whether E. 

coli tRNALeu/GAG (green) is actually methylated; this tRNA decodes the CUC and CUU codons. 

Further work will be required to ascertain the methylation status of G37 of this tRNA, but our 

data may argue against it. Another possibility is that because both the GAG and CAG anticodon 

isoacceptors for tRNALeu have pseudouridine at position 38, they may be able to perform correct 

base pairing even when m1G37 is depleted. Only these two tRNAs have pseudouridine at 

position 38 among the isoacceptors in Table 1.  

The pausing on Pro codons is likewise surprising. All three tRNAPro isoacceptors are 

bona fide substrates for TrmD; why are strong pauses observed only at CCG and CCA? One 

thought is that the GGG 

isoacceptor that reads the 

other two codons (CCC and 

CCU) can maintain some 

activity even in the absence 

of methylation. The 

possibilities for 

frameshifting are increased 

dramatically with this 

isoacceptor (which has the 

four nt anticodon GGGG in 

the absence of methylation). Perhaps pausing on the CCC and CCU codons leads to rapid 

frameshifting so that strong pauses are not observed.  

 Codon Anti-codon 

Leucine 

CUC 

GAGm1G37 

 

CUA  

CUG 
CAGm1G37 

CUU 

Proline 

CCU 
GGGm1G37 

UGGm1G37 
CCC 

CCA  

CCG CGGm1G37 

Arginine 

CGU 

ICG 

 

CGC  

CGA  

CGG  CCGm1G37 

 

Table 1 Codons and their anti-codons with modifications 

Codons with most ribosome occupancy (red) and isoacceptors with 

m1G37 modification. 
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3.4 Materials and Methods 

3.4.1 Strains and Construction 

The figure 13 shows the scheme of constructing the trmD-deg and trmD-cont cells. First, 

the degron- and control-tag followed by tetracycline marker were amplified from plasmids 

created by Carr et al, provided by Dr. Sean Moore90. 

The primers contain homologous extensions at 5' ends to the trmD-flanking regions 

(Forward: CGGAACACGCACAACAGCAACATAAACATGATGGGATGGCGGGTGGCTCC 

GACTACAAGG, Reverse: ATAATTTAATCTCTTATCCTGGGTAAACTGATATCTCGGGG 

GCTTAGGTCGAGGTGGCCC). 

PCR products were electroporated into E. coli recombinogenic strain SM140590 and 

homologous recombination was confirmed by colony-PCR using primers targeting 5'-terminal 

and 3'-flanking regions of trmD (Forward: ATGTGGATTGGCATAATTAGCCTGTTT 

CC, Reverse: GAATTCCGGTTACGAATAGCGATAACCACGCC). 

trmD-deg SM1405 and trmD-cont SM1405 were used as a donor for P1 phage lysate 

preparation, and the tagged chromosomal trmD loci were transferred by P1 transduction to the 

recipient E. coli strain G78, in which the chromosomal clpX gene is knocked out. After 

tetracycline marker selection, genotype was confirmed again by colony-PCR. 

As described90, trmD-deg G78 strain was then transformed with a library of pClpPX 

which contains random mutations at the promoter region of the clpPX genes, and transformant 

clones were screened out to pick up the one with highest efficiency of degradation, as proven 

also by the rapid degradation at protein level. This specific plasmid clone that confers high 

degradation efficiency was extracted from trmD-deg G78 and was transformed into trmD-cont 

G78 strain. This pair of trmD-cont G78 and trmD-deg G78 is used for all the experiments. 
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3.4.2 Cell Growth and Preparation of Ribo-seq Libraries 

Each cell from degron- and control-strain was grown in LB media supplemented with 

0.2% glucose, 0.2% glycerol and an appropriated antibiotic at 37° C for overnight. The next day, 

fresh 10-mL LB media supplemented with 0.002% glucose, 5 mM serine and an appropriate 

antibiotic were inoculated with overnight cell culture media with 100-fold dilution, followed by 

incubation for 1.5-2 h shaking at 37° C. 

By measuring the O.D600 to reach up to 0.3-0.4, cell cultures were diluted aiming O.D600 

≈ 0.1 in fresh 300 mL LB media supplemented with 0.2% arabinose, 5 mM serine and an 

appropriate antibiotic, followed by incubation for 1 h shaking at 37° C. Then, by measuring the 

O.D600, cell cultures were further diluted in 300-mL LB media supplemented with 0.2% 

arabinose, 5 mM serine and an appropriate antibiotic and this was repeated once more after 

another hour. Finally, when the O.D600 reached up to 0.3, cells were harvested by filtering cell 

culture using 49 µM filter paper and the cell pellet was flash frozen in liquid nitrogen. 

Ribo-seq libraries were generated as described previously66 with some modifications. 

Ribosome-protected fragments were size-selected between 10 – 40 nt. Cell lysates were digested 

with 3000 U of MNase (Roche) for 1 h at 25 °C. 

3.4.3 Data Analysis 

Data analysis obtained from Illumina sequencing were described previously66.  
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