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ABSTRACT
Machine learning algorithms such as Random Forest (RF) are being
increasingly applied on traditionally geographical topics such as
population estimation. Even though RF is a well performing and gen-
eralizable algorithm, the vast majority of its implementations is still
‘aspatial’ and may not address spatial heterogenous processes. At
the same time, remote sensing (RS) data which are commonly used
to model population can be highly spatially heterogeneous. From
this scope, we present a novel geographical implementation of RF,
named Geographical Random Forest (GRF) as both a predictive and
exploratory tool to model population as a function of RS covariates.
GRF is a disaggregation of RF into geographical space in the form of
local sub-models. From the first empirical results, we conclude that
GRF can be more predictive when an appropriate spatial scale is
selected to model the data, with reduced residual autocorrelation
and lower Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE) values. Finally, and of equal importance, GRF can be used as
an effective exploratory tool to visualize the relationship between
dependent and independent variables, highlighting interesting local
variations and allowing for a better understanding of the processes
that may be causing the observed spatial heterogeneity.
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Introduction

Sub-Saharan Africa (SSA) is undergoing a major shift in its population dynamics. Since
the past few decades, the urbanization rates across the region have been constantly
increasing and by 2050, about 50% of its population is estimated to be living in cities
(UN Desa 2018). The consequences of this rapid and extreme urbanization are almost
certainly to lead in changes in socio-economic conditions both in rural and urban areas
(Laros and Jones 2014). In order to adequately address the United Nations Sustainable
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Development Goals in SSA, a basic preparatory task is to efficiently map and estimate
population dynamics to facilitate appropriate resource allocation and evidence-based pol-
icy making and planning. Therefore, the importance of developing and improving highly
accurate and low-cost methods for population prediction is more important than ever.

Several techniques exist for estimating population in various spatial and temporal
scales (Wu et al. 2005). One of the most cost-effective and accurate ways to model popu-
lation distribution has been through statistical models employing satellite remote-sensing
(RS) information. With appropriate processing, RS imagery can be translated into spatially
thematic layers that act as surrogates for predicting population counts. Such examples are
land cover (LC) and land-use (LU) classification maps, vegetation indices and nightlights,
among others (Amaral et al. 2006; Liu et al. 2006; Wu and Murray 2007; Lo 2008; Stevens
et al. 2015). In SSA, RS-derived population estimates have been particularly beneficial due
to the scarcity of reference datasets both in urban and rural regions (Linard et al. 2013).
Most of these products, attempt to establish non-linear dependencies between the RS
covariates and population counts, with recent techniques invoking machine learning (ML)
methods as the underlying models, due to their excellent performance and generalization
capabilities (Stevens et al. 2015). However, geographical concepts that combine ML and
population modelling are still falling behind.

On the one hand, RS data have an explicit spatial nature which can be effectively
described by two factors: i) spatial dependency and ii) spatial heterogeneity (spatial non-
stationarity). Using regression or classification methods that do not take under consider-
ation the spatial structure of data can be inadequate when it comes to the inferences
drawn or the predictive prowess of these models. On the other hand, ML models,
although highly predictive due to their data-mining, flexible and non-linear nature, are
not usually calibrated to model geographical relationships, essentially being ‘aspatial’ algo-
rithms. The latter might be problematic given the peculiarities spatial data entail, mainly
due to the effect of spatial heterogeneity which suggests that the true underlying relation-
ship among dependent and independent variables can be spatially varying. A traditional
ML model can have difficulties to deal with that phenomenon as it would produce a sin-
gle output which is drawn from the whole extent of the study area, using all available
data points. Our hypothesis is fortified by the fact that models based on RS-derived data
such as LC classifications have been shown to have an intrinsic spatially heterogenous
component which is left unaccounted for (Foody 2003; Georganos et al. 2017a). It would
be only reasonable to hypothesize that the relationship between LC and population is spa-
tially varying in an urban context (i.e. due to differences in land use). So far, few studies
have attempted to account for spatial heterogeneity when modelling population as a func-
tion of geographical data (Lo 2008; Cockx and Canters 2015). With respect to ML algo-
rithms, Hengl et al. (2018) proposed a framework to model spatial data with Random
Forest (RF) by using distance maps of spatial covariates as an additional input and the
results showed improvements against a purely ‘aspatial’ model. Nonetheless, their novel
approach may be more intended for spatiotemporal interpolation in the face of spatial
dependency and less oriented to draw inferences regarding potential spatial heterogeneity.

To address these issues, we develop a spatial calibration of RF, named Geographical
Random Forest (GRF). GRF is loosely based on the concept of spatially varying coefficient
models (Fotheringham et al. 2003, 2017) where a global process becomes a decomposition
of several local sub-models and can be used as a predictive and/or explanatory tool. We
apply GRF on a population census dataset at the neighbourhood scale in Dakar, Senegal
and use an LC classification product coming from very-high-resolution (VHR) satellite
imagery to train the model and compare our method with the traditional RF
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implementation. Furthermore, we investigate the effects of geographic scale, as well as the
unique outputs of GRF such as spatialized variable importance. Section 2 describes the
principles of RF and GRF, along with the datasets used. Section 3 presents the results
while we discuss limitations and further prospects in Section 4.

Material and methods

Study area

Dakar is the capital of Senegal, located in the westernmost part of the African continent.
The climate is typically Sahelian with a humid season extending over the summer months
and until November and a longer, dry season in the rest of the year. According to the lat-
est data, the city of Dakar has roughly 1.14 million inhabitants, while the extended,
metropolitan region of Dakar (including peri-urban areas) contains about 3 million resi-
dents (Agence Nationale de la Statistique et de la D�emographie 2013). Dakar is a major
economic center and has been undergoing rapid urbanization in the last decades. This
has led to increasing health and socio-economic inequalities and the growth/creation of
informal/deprived settlements in the region (Borderon 2013). Since population informa-
tion at a fine scale are very rare for several SSA cities, we selected Dakar as a case study
because of the existence of detailed population information as well as a whole set of ancil-
lary information that are available for the city such as very-high-resolution LC and
LU maps.

Dataset

As the dependent variable, we use the population density of the recent 2013 census at the
neighbourhood level provided by the National Agency for Statistics and Demography of
Senegal (Agence Nationale de la Statistique et de la D�emographie 2013). The national cen-
sus database provides population data with three residential conditions: present, absent
and visitors. The latter are not part of the household in which they are counted and were
excluded in the population calculation to avoid double counting. The neighbourhood is
the smallest administrative (level 5) unit in Dakar. The total number of training units is
1319 (clipped to match the extent of the RS datasets) while each one of them belongs to
one of the 52 administrative communes of Dakar (Figure 1). Due to the highly skewed
distribution of the population density, we use a log transformation as frequently done in
population prediction studies (Linard et al. 2013; Stevens et al. 2015). We extract inde-
pendent variables from an open access LC classification of Dakar derived from a 2015
VHR Pleiades (0.5 meter) satellite imagery based on the extent of the population map
(Grippa and Georganos 2018; Figure 1c). The LC map has been recently used as reference
in recent population, land-use and urban climate studies in Dakar (Grippa et al. 2018,
2019; Brousse et al. 2019) due to its high quality, scoring 89.5% on overall map accuracy
and 94% on the F-score for the buildings class. Finally, we operate under the assumption
that the 2-year temporal gap between the Pleiades imagery and the census is negligible.

Afterwards, we selected four approaches to model population as a function of RS cova-
riates, i) using all available LC classes and geographic coordinates simultaneously
(LC_XY), ii) using only LC classes (LC), iii) using the three built-up LC classes and geo-
graphic coordinates (3BU_XY) and iv) using only the three built-up classes (3BU; Table
1). Including geographical coordinates as explanatory features aims to account for poten-
tial spatial dependency as shown recently and is recommended as a good practice when

GEOCARTO INTERNATIONAL 3



Figure 1. (a) Location map of Dakar within the African continent, (b) Population density at the neighbourhood
administrative level in Dakar, Senegal. The independent variable used in the models was the logarithmic transform-
ation of the population density values due to the skewness of the distribution. (c) Land cover map of Dakar at a
0.5m resolution.
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working with spatial data (Hengl et al. 2018). For each neighbourhood, we extracted the
proportions of the LC classes. As an illustrative example, Figure 2 visualizes the propor-
tions of three land cover classes (low elevated buildings, trees and inland water). Finally,
for evaluating the results of our methods we sample 5 communal units (168 neighbour-
hoods) which correspond to roughly 10% of the total spatial units while the rest of the
data are used for training. The rationale for sampling communal units instead of neigh-
bourhoods is to maintain spatial independency of the out-of-sample validation set and
ensure unbiased conclusions.

Population modelling

Random forest
RF is an aggregation of several Classification and Regression Trees (CARTs) (Breiman
2001). They were developed to combat important limitations of using a single CART such
as overfitting. Breiman (2001) suggested that by combining the predictions of several
independent CARTs and adding bagging in the process the generalization of the model
would be superior, which is often the case. In the traditional RF formulation, each deci-
sion tree is randomly created by sampling roughly two-thirds of the training data with
replacement while the other third is kept out of training (training data bagging).
Moreover, while building each tree, only a random subset of features is selected at each
decision node (feature bagging). In the end, the majority vote (classification) or the aver-
age predictions of all trees (regression) is used to create the final output – the forest. At
the same time, the third of the data that is kept out on each tree can be used for comput-
ing a performance evaluation metric, the Out of Bag (OOB) error estimate (Breiman
2001). By using the OOB error, the importance of the independent variables can be
assessed. The most popular way to do so is by using the increase in the Mean Squared
Error (iMSE). In detail, the values of each feature are randomly permuted and the OOB
error iMSE is computed. We compare that value with the original model performance
before the permutation and hence, if a variable is very important, we expect a large
increase in the OOB error and vice versa. The salient parameters of the RF are the num-
ber of trees to grow and the number of randomly selected independent variables on each
split during the development of each tree. The former is set as high as computationally
efficient with most RS applications ranging between 200 and 500 while the latter is deter-
mined through minimization of the OOB error (Pal 2005).

Geographical random forest
RF is still a global and ‘aspatial’ concept that might not address spatial heterogeneity. As
such, we extend RF as a disaggregation consisting of several local sub-models. The

Table 1. Independent variables and models used in the analysis.

Variable LC_XY LC 3BU_XY 3BU

Low elevated built-up (<5 m) � � � �
Medium elevated built-up (5–10 m) � � � �
High elevated built-up (>10 m) � � � �
Bare ground � �
Low vegetation � �
High vegetation � �
Shadows � �
Inland water � �
XY coordinates � �

GEOCARTO INTERNATIONAL 5



principle idea is similar to that of GWR (Fotheringham et al. 2003), in which we move to
local computation rather than global one. This means that for each location i, a local RF
is computed but only including a n number of nearby observations. Essentially, this leads
to the calculation of an RF in each training data point, with its own performance,

Figure 2. Examples of independent variables used in the study. Proportions of (a) low elevated built up (<5 meters),
(b) high vegetation and (c) inland water.
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predictive power and feature importance. In that way, we increase the flexibility of RF to
be calibrated locally rather than globally. To describe the difference between the two
methods, we use a simplistic version of a regression equation:

Yi ¼ axi þ e; i ¼ 1 : n (1)

where Yi is the value of the dependent variable for the ith observation and axi is the non-
linear prediction of RF based on a set of x independent variables, with e being an error
term. The above equation is formed by using all the data at the same time, disregarding
their spatial distribution. In GRF, we extend Equation (1):

Yi ¼ a ui; við Þxi þ e; i ¼ 1 : n (2)

where a(ui, vi)x is the prediction of an RF model calibrated on location i, and (ui, vi) are
the coordinates. A sub-model is built for each data location, considering only nearby
observations. The area that the sub-model operates in is called the neighbourhood (or
kernel), and the maximum distance between a data point and its kernel is called the
bandwidth (Brunsdon et al. 1998). There are two usual types of kernels, ‘adaptive’ and
‘fixed’ (Kalogirou 2015). In the former, the neighbourhood is defined by n nearest neigh-
bours and in the latter, by a circle whose radius is the bandwidth (Brunsdon et al. 1998;
Fotheringham et al. 2003). In this study, we employ an adaptive kernel and we investigate
results with several numbers of n. Using an adaptive kernel is advantageous when sam-
pling density is different across space – which is the case in our dataset, as the census
units can vary dramatically in size. For predicting, we fuse the global and local estimates
using a weight parameter (a). Fusing the predictions allows us to extract the locally het-
erogeneous signal (low bias) from the local sub-model and merging it to that of a global
model which uses more data (low variance). The weight parameter can be user defined
and for the scopes of this study we experimented with three settings i) a¼ 0.25 which
implies less weighting for the local model in favour of the global one, ii) a¼ 0.50 which
means equal weighting for the local and global models and iii) a¼ 0.75 which implies a
favourable weighting for the local model. To predict on new spatial locations, the closest
available GRF model is used. To implement the GRF and RF analyses, we used the
recently developed R package ‘SpatialML’ (Kalogirou and Georganos 2018).

Ultimately, GRF can be used for two aims: i) improve predictions over a traditional RF
and ii) extract spatially differentiated inferences of model parameters. For the former, the
improvement in performance is a function of appropriate bandwidth selection and the
degree of spatial heterogeneity in the data. For the latter, it can be used as an easily
applied tool to explore the local structure of the data and enhance our understanding of
how geographical processes operate on them. Since the sub-models are calibrated locally,
the outputs of GRF can be fully visualized as maps that illustrate the spatial interaction
among variables but also highlighting areas of interest that are not possible to detect
through global models.

Model evaluation
To evaluate the accuracy of the models we employ two established and robust error meas-
urement metrics, Root Mean Squared Error (RMSE; Equation (3)) and Mean Absolute
Error (MAE; Equation (4)):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

yi�xið Þ2

n

vuuut
(3)
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MAE ¼
Pn

i¼1 yi�xi
n

(4)

where xi is the observed variable, yi is the predicted value, and n is the sample size.
Another way to assess the quality of a model applied on geographical data is that degree

of residual spatial autocorrelation (RSA). A high degree of RSA violates spatial regression
assumptions concerning the independence of observations. To investigate this, we employ
the commonly used Moran’s I Index (MI) (Moran 1948; Anselin 2010; Equation (5)) to
assess the level of residual autocorrelation in incrementally increasing distance ranges.

MI ¼ n
P

i

P
j wijzizj

M
Pn
i¼1

z2i

; (5)

where n is the number of data points, zi ¼ xi � x; x is the mean value of x, M ¼Pn
i¼1

Pn
j¼1 wij and wij is the element of the matrix of spatial proximity M, which depicts

the degree of spatial association between the points i and j (Kalogirou and Hatzichristos
2007). The MI value range is between �1 and 1 with values larger than 0 implying posi-
tive spatial autocorrelation. Finally, the methodological workflow is briefly summarized in
the flowchart of Figure 3.

Results

Measuring the effect of geographic scale and weight parameter

An important facet of investigation is the scale effects on the performance of GRF. To do
so, we compare the MAE and RMSE against GRF’s with bandwidths of different n (num-
ber of nearest observations) and different weight parameters. In Figures 4 and 5, we

Figure 3. Flowchart depicting the methodological framework.
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Figure 4. RMSE of GRF with incrementing bandwidth (number of nearest neighbours) using proportions of (a) all LC
classes and geographical coordinates as explanatory factors, (b) all LC classes, (c) 3 types of built-up and geographical
coordinates and (d) 3 types of built-up as input. The last point in each graph represents the global RF model.

Figure 5. MAE of GRF with incrementing bandwidth (number of nearest neighbours) using proportions of (a) all LC
classes and geographical coordinates as explanatory factors, (b) all LC classes, (c) 3 types of built-up and geographical
coordinates and (d) 3 types of built-up as input. The last point in each graph represents the global RF model.

GEOCARTO INTERNATIONAL 9



present the results for RMSE and MAE, respectively. As shown in the figures, it is evident
that there is a pattern in the distribution of RMSE and MAE as a function of the band-
width and weight parameter specified, irrespective of the model used.

In all four modelling designs, it appears that weighting the local predictions too heavily
(a¼ 0.75) is suboptimal in terms of accuracy and in most cases, even a global RF model
would perform similarly or better. On the contrary, when using moderate or lighter
weights for the fusion (a¼ 0.50 and 0.25) the GRF may produce better predictions, espe-
cially in a certain range of bandwidths. In particular, the bandwidth range between 100
and 400 systematically exhibits the lowest RMSE and MAE values in all four approaches.
Weight values of 0.25 for the LC and LC_XY models and 0.25–0.50 for the 3BU and
3BU_XU approaches are the most optimal choices in terms of minimizing RMSE and
MAE and consistently predict better than a global RF. Finally, defining a GRF with small
bandwidths (<200) appears to create unstable models with very high MAE and
RMSE values.

Notably, there are differences in the results, not only within each modelling approach
but also among them (i.e. 3BU vs LC). Using only the built-up classes and geographical
coordinates (3BU_XY) produced the most accurate global and local models (Table 2).
Interestingly, the gap in performance between GRF and RF was highest when training
with the 3BU_XY input. Considering all different parameters and inputs, the best perform-
ing method was that of the 3BU_XY GRF, with a weight parameter of 0.25, and a band-
width of 400 (RMSE ¼ 0.606, MAE ¼ 0.421) with its global counterpart (3BU_XY RF)
underperforming (RMSE ¼ 0.650, MAE ¼ 0.453). In all cases, the differences between the
predictions of the best performing GRFs and RFs were significant using a paired t-test
(p< 0.05). Finally, in all cases but the first (LC_XY), the optimal bandwidths minimizing
RMSE and MAE were the same or very similar (bandwidth ¼ 350–400; Table 2).

Residual spatial autocorrelation

High RSA is a typical phenomenon when a model has not been specified correctly, usually
by missing important explanatory variables or by failing to account for spatial dependency
or heterogeneity. In this example, we investigate the degree of RSA by calculating MI at
incrementing spatial scales for RF and GRF on the validation dataset. We investigate RSA
in the predictions of the two best performing models (3BU_XY and LC_XY). Irrespective
of the type of modelling approach, GRF residuals systematically exhibit lower MI values
(Figure 6). In both cases, RSA usually weakens as we increase the distance lags. Notably,
RSA is considerably lower when only built-up classes are used, which complements the
results of RMSE and MAE above.

Visualising GRF

GRF can also be used as a purely exploratory tool rather than a predictive one. GRF is a
local decomposition of the RF and hence, the results can be mapped. Using the whole

Table 2. RMSE and MAE of the most accurate GRF against the global model.

Model RMSE bandwidth GRF RMSE Global RMSE MAE bandwidth GRF MAE Global MAE Weight

LC_XY 150 0.648 0.671 400 0.467 0.489 0.25
LC 350 0.656 0.673 400 0.478 0.503
3BU_XY 400 0.606 0.650 400 0.421 0.453
3BU 300 0.677 0.723 350 0.514 0.557
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dataset without training/testing splits (for better visualization) and a bandwidth of 400
neighbours, the distribution of the performance of the local models is illustrated (Figure
7). The local models are stronger (pseudo-R2 > 0.6) in the peri-urban zones (Rufisque)
while they become less accurate (pseudo-R2 < 0.5) in the dense and small-sized adminis-
trative neighborhoods of western Pikine and the large, industrial areas of southeast Dakar.
The latter suggests that in these regions, additional variables should be included to further
improve the performance of the models. Moreover, the spatial variation of the importance
of each independent variable can also be illustrated (Figure 8), which is presented in the

Figure 6. Moran’s I Index for GRF AND RF at incrementing spatial lags with two different training inputs. (a) LC_XY
and (b) 3BU_XY.

Figure 7. Pseudo-local coefficient of determination of GRF. Higher values indicate better performance while low
values may imply missing variables or inadequate input data.
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form of in iMSE. Notably, there is a strong degree of spatial interaction between each pre-
dictor while the importance of each predictor varies dramatically through space.
Interestingly, all three built-up variables seem to be less important in Pikine. Moreover,
the two vegetation types (low and high vegetation) appear to be strongly more predictive
over the city of Dakar and less important on the extending metropolitan region. Similarly,
the rest of the predictive variables formulate unique spatial patterns.

Figure 8. Examples of local feature importance of independent variables by using the iMSE. Higher values imply
increased importance. (a) Low elevated built-up, (b) medium elevated built-up, (c) high elevated built-up, (d) high
vegetation, (e) low vegetation, (f) inland water, (g) bare ground and (h) shadow.
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Computational performance

The current GRF implementation is single-thread only. In Figure 9, the computational
time against different bandwidths is illustrated. GRF models calibrated with small num-
bers of neighbours are relatively fast but without a doubt, the local implementation can
be significantly more computationally tedious than a global RF. In the current dataset,
using all covariates (LC_XY) and specifying 400 neighbours, GRF required 6.29minutes
to run while RF only 2.3 seconds.

Discussion

GRF as a predictive and exploratory tool

The first empirical results from the application of GRF are encouraging on its use as both
a predictive and exploratory tool. We demonstrate that by selecting an appropriate geo-
graphic scale to analyse the data, GRF can outperform a globally specified RF with more
accurate predictions and lower RSA. This geographic scale can be described as the oper-
ational scale of the relationship which includes just enough data points to capture the
inherent localities while at the same time rejecting/reducing unnecessary training data
that come from locations afar, that might be considered as noise to the model (Propastin
2009; Gao et al. 2012). On the contrary, using bandwidths defined with a very small num-
ber of neighbours can provide discouraging results. This can be explained by the use of
very few training data points to calibrate the local models in an appropriate manner.
Finally, including the geographical coordinates as features appears to be a good practice
when using ML algorithms with spatial data, confirming prior research (Hengl et al.
2018). Since RF is a decision tree (DT) algorithm, using explicitly spatial features such as
coordinates can enforce a degree of spatial interaction in the development of the trees
and -at least partly- address spatial non-stationarity.

The results are in accordance with previous studies that have investigated spatial non-
stationarity in linear models and population prediction (Cockx and Canters 2015). Even
though RF is a highly flexible and non-linear algorithm, it is inevitably a model which

Figure 9. Computational burden of GRF.
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may not account for spatial heterogeneity. Moreover, it can be quite challenging to iden-
tify and address spatial heterogeneity in ML models as they are not based on strict para-
metric distributions such as generalized linear models. As a helping hand, GRF can
illustrate these effects in a very practical way along with a set of other information such
as the local performance of the independent variables. Nonetheless, this information
comes with an important limitation - increased computational complexity.

In this application, the results were very straightforward – the optimal performance of
GRF is a function of an appropriate bandwidth and weight parameter selection.
Nonetheless, according to different datasets the results may be different. For example, in
cases with very high degrees of spatial heterogeneity, weighting the local component more
could provide more robust estimates and vice-versa.

Future research prospects

As mentioned previously, the current implementation is single-thread and may cost con-
siderable time to compute the GRF. Nonetheless, this issue can be mitigated by paralleliz-
ing the procedure, a feasible task since the computation of local sub-models can be
happen simultaneously as they are independent. Additionally, GRF uses the randomForest
R package (Liaw, Wiener 2002) to implement GRF. Nonetheless, there exist other RF
implementations that are significantly faster such as the ranger R package and should be
explored. Moreover, ranger allows for setting weights for each observation and therefore a
more geographic weighting of the training data points can be applied. For example, as in
the latest GWR implementations (Fotheringham et al. 2015), training data points closer to
a specific spatial or temporal location can be weighted as more important than those fur-
ther away. Another topic we have to be cautious about is the use of GRF as a strictly pre-
dictive tool. As in GWR, tests that justify its use should be developed. One way to do so
is to investigate if there is enough spatial variation in the local feature importance of each
predictor to justify its use (Osborne et al. 2007).

An additional topic for future research relates to local parameter fine-tuning and local
feature selection. In the current implementation, GRF assumes a homogeneous paramet-
rization across each local sub-model. This is true for the parameters of RF such as the
number of trees and number of splits in each node but also for the number of predictors
used as input. A more sophisticated implementation would entail different parameter tun-
ing in each sub-model coupled with local feature selection. As shown in the results, pro-
viding only the least noisy features can reduce the error of the prediction and it would be
reasonable to hypothesize that a variable could be selected in a local context but not a
global one. One way to do this would be to apply simple and efficient feature selection
procedures before computing a local model with algorithms such as Variable Selection
Using Random Forest (VSURF; Genuer et al., 2015) and Recursive Feature Elimination
(RFE; Georganos et al., 2017b; Ma et al., 2017).

Finally, other ML algorithms should be evaluated for a geographical implementation.
Although this study uses the RF algorithm as an example, other ML algorithms such as
Support Vector Machines (SVM) and Boosting Regression Trees (BRT) might be better
candidates according to different datasets and requirements. For example, SVM is orders
of magnitude faster than regression trees and thus can be a solid alternative in the face of
limited computational power while BRT are very strong from a prediction perspective if
their parameters are fine-tuned well enough.
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Conclusions

In this study, we introduce a local version of the RF algorithm for geographical data,
named GRF. We introduce GRF for modelling population as a function of very-high-reso-
lution remotely sensed land cover data. The empirical results of this first application dem-
onstrate the twofold use of GRF for i) improving the accuracy of the predictions against a
traditional RF and ii) exploring and visualizing the spatial structure of RF as a decompos-
ition of local sub-models. For the former, identifying the appropriate spatial scale to
model the relationship between independent and dependent variables was the most
important factor to achieve better predictions. Moreover, a crucial component is to select
a suitable weight parameter when fusing the local and global estimates as the output of
GRF. With respect to the latter, GRF can be deployed as an easy to use tool for investigat-
ing spatial variations in model performance and feature importance, highlighting poten-
tially interesting variations that are constrained in the use of RF.
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