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REVIEW

Emerging trends of advanced sensor based instruments for meat,
poultry and fish quality– a review

John Lewis Zinia Zaukuua , George Bazarb, Zoltan Gillaya, and Zoltan Kovacsa

aDepartment of Physics and Control, Faculty of Food Science, Szent Istv�an University, Budapest, Hungary; bDepartment of Nutritional
Science and Production Technology, Kaposv�ar University, Kaposv�ar, Hungary

ABSTRACT
Meat and fish chemical composition and sensory attributes are markers of quality that require
innovative assessment methods as existing ones are rather technical, laborious, and expensive.
Emerging trends of advanced technology instruments have been lauded in the pharmaceutical,
cosmetic and food industries for their high sensitivity, customizability, rapidness and affordability.
Common among these, are the electronic tongue (e-tongue) and electronic nose (e-nose) but
their use for meat and fish quality, remains scanty and scattered. This paper aims to systematically
discuss the developing trends, principles and the recent use of e-tongue and e-nose for quality
measurements in fish and meat. From over 90 research papers, it was observed that an arsenal
of chemometric tools have been pivotal in applying these instruments for rapid quantitative,
qualitative and predictive analysis of some physical properties, chemical properties, storability and
the authentication of meat and fish. Both instruments require no reagent (waste free analytical
procedure) and have been lauded for precision and�accuracy but e-nose may be better suited for
meat and fish assessments. Unlike the e-tongue, e-nose requires no liquid sample preparation and
portable versions are promising for rapid remote analysis of meat and fish samples that can save
cost on transferring carcass to laboratories.
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Introduction

The meat and fish industry in recent times have been regarded
as one of the largest sections of the food industry with a soar-
ing demand. Meat and fish are considered as staples in certain
countries but they are also essential for human survival and
consumed for both pleasure and nutrition; a good source of
protein, vitamins and minerals (Henchion et al. 2014).

Fish, the inclusive term for aquatic animals. With the con-
tinuous development of living standards and the relative
change of dietary structure, there is a rising and persistent
increase in demand for safe and good quality meat and fish.
The value chain for meat and fish is highly variable, difficult to
control and requires constant measures to guarantee quality
control. Quality assurance and control are major tasks in pro-
duction and processing of meat and meat products and is often
related to sensory analysis. Important meat quality parameters
are not limited but the most important ones to the consumer
include compositional quality (lean to fat ratio, protein, pH)
and the palatability factors such as visual appearance, smell,
firmness, juiciness, tenderness, and flavor (Haddi et al. 2015).

Chemical procedures and instrumental methods used for
monitoring such parameters include the Kjeldahl method
(for crude protein), Soxhlet Extraction Method (for crude

fat), pH meter (acidity/alkalinity), colorimeter (for color)
(Pugliese and Sirtori 2012). Some of these methods are
however, tedious, destructive, time consuming and in some
cases expensive and often do not give a complete overview
of meat quality. Another trend in the food industry for qual-
ity assurance is the adoption of sensory evaluations using
trained panelist. Sensory analysis is a well-established
method for determining the sensorial qualities of food based
on the receptors in human organs (consumer perception),
but it can also be time consuming and subjective or biased
(dependent on the panelist results). Details about recent
designs and implementation of sensory evaluations have
been discussed by Yu, Low, and Zhou (2018).

Assessing food quality is complex because it translates
into assessing all the molecular composition of the food
based on biological receptors. Receptors in engineering can
be said to be equivalent with sensors except that sensors are
man-made and can be modified to suit whatever purpose
they are desired for. Gaining grounds in the field of sensors
are the acoustic, chemical, electronic, optical mechanical and
thermal sensors etc (Stroble, Stone, and Watkins 2009) but
this review focuses on the electronic sensors, specifically the
tongue (e-tongue) and the electronic nose (e-nose). Thus,
for the context of this review electronic sensor devices refers
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to the e-tongue and e-nose. Currently, these devices have
gained fame in the pharmaceutical, cosmetics, environmental
control, engineering (petroleum), agriculture and beverage
industries but their applications for meat processing and
quality management is not clearly defined. The amount of
meat the world eats is expected to rise by over 55 per cent
in the next 20 years (Woodvine 2009), thus, stringent meth-
ods are required for quality control. It is against this back-
drop that this review aims to assess and discuss the recent
applications of electronic sensor devices in the meat and fish
industry, their future prospects and their pros and cons.

Meat classification

Animal food sources can be classified under three main
groups: as meat, poultry, or fish (McWilliams 2012). For
meat scientist, this grouping depends on a number of factors
such as the concentration of myoglobin in the flesh, the
lipid profile of the carcass and the general physiology of the
animal flesh during after slaughtering (Keeton and Dikeman
2017). Red meat in the broad sense, may refer to red fleshed
carcass, among which the most patronized are pork, lamb/
mutton, beef, and veal. Red meat has been credited with
good levels of biological protein, minerals (iron, iron,
thiamin, riboflavin, zinc) and vitamins (B6 and B12)
(Wyness 2016). They however (allegedly), contribute to
heart diseases, a controversial subject under discussion and
debate in the food industry. Poultry meat is the general
term used to represent chicken, geese, turkey, duck and
other fowls and their products. Poultry is often recom-
mended for athletes because it is ideal for maintaining
good cholesterol levels due to their high contents of polyun-
saturated fatty acids (Farrel 2008). They are however poor
in fiber, complex carbohydrates, nor vitamin C (Woodvine
2009). Fish is the inclusive term used to refer to aquatic ani-
mals. They are abundant in iodine, vitamin D, calcium,
poly-unsaturated and mono-unsaturated fatty acids like
Omega 3 and Omega 6 fatty acids (Keeton and Dikeman
2017) and is sometimes classified under white meat.

The use of concise lexicons in meat and fish classification
is essential for accuracy in scientific studies. The classifica-
tion of meat and fish discussed above (red meat, poultry
and fish) will be used in this study.

Electronic sensors

According to Thevenot et al. (1999), “a biosensor is an inde-
pendently integrated receptor transducer device, which is cap-
able of providing selective quantitative or semi-quantitative
analytical information using a biological recognition element”.
Other types of sensors exist and can be constituted from
diverse components to serve specific purposes. Essentially,
sensors are meant to be incorporated into analytical instru-
ments to provide rapid, real-time, accurate and reliable data
about various samples understudy. Advanced research and
technological developments over the past decade, have led
to the development and optimization of biosensors. There
have been improvements in the sensitivity, selectivity, and
multiplexing capacity of modern biosensors (Perumal and
Hashim 2014). Ideally, they now have the potential to respond
continuously and reversibly without necessarily damaging the
sample. Several types of biosensors exist depending on the
basic components (Cesar Paix~ao and Subrayal 2017): the bio-
logical signaling method or the type of signal transduction.
The major types can be seen in Figure 1 but the focus of this
review is on the ones that employ the electrochemical mech-
anism of signal transduction because of their potentials for
reliable evaluations in meat and fish.

Electrochemical devices mainly monitor the current at a
fixed or programed modulated voltage (amperometry/pulse
voltammetry) or the voltage at zero current (potentiometry),
or assess conductivity or impedance changes. Optical devices
on the other hand, employ varying principles such as the
effect of biological structures on light absorption, fluores-
cence, refractive index, or other optical parameters (Tothill
and Turner 2015). Impedance is the total electrical resistance
to the flow of an alternating current being passed through
a given medium. Typically, impedance decreases while
conductivity and capacitance increases during measurement
(Lee, Kim, and Kim 2009). Voltammetric devices rely on the
relationship between the current and the applied potential.
There are often two main approaches, firstly to measure
the current response as a function of applied potential and
secondly, to monitor the potential response as a function
of applied current (Cesar Paix~ao and Subrayal 2017). This
review focuses on the electronic tongue (potentiometric and
voltammetric) and the electronic nose because, their sensor
specificity and selectivity give them superior advantages for

Figure 1. Main types of biosensors. Concepts were adapted from Perumal and Hashim (2014).
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research and technical purposes. Figure 2 shows the general
advantages of the instruments that could be explored for red
meat, poultry and fish quality control. Application of sen-
sor-based instruments involves more than one variable thus
multivariate analyses is required to interpret such results.

Common multivariate methods associated with
sensor-based instruments

Multivariate analysis is simply a simultaneous observation
and analysis of more than one outcome variable. This is
contrary to univariate and bivariate analysis which involves
just one and two outcomes respectively. The data captured
from sensor-based instruments can be explored using differ-
ent pattern recognition and multivariate statistical methods
(Figure 3) of which, the principal component analysis (PCA)
statistical method is the most common for data visualization
purposes. PCA is favorable because it is a way of identifying
patterns in data and it expresses the data in such a way that
it highlights their differences and similarities. It is an outlier
sensitive statistical method that reduces the amount of data
to a smaller number of newly derived variables which repre-
sent the original data adequately (Shlens 2005). Detailed
concepts of PCA application have been reported by Joliffe
and Morgan (1992).

In classification, KNN can be used for speedy evaluations
as it does not require training with the data, however, data
standardization and normalization is a requirement. KNN is
not recommend for large datasets or data sets with high
dimensions. The Support vector machine (SVM) may be a
better option when working with high dimensions but is
very sensitive to outliers and noisy data and sometimes
underperforms when large datasets are involved (Granato
et al. 2018). Artificial neural networking (ANN) has also
been acknowledged for the ability to deliver an output even
when incomplete information was used during training. The

reliability of its performance heavily depends on how
important the missing values are (Medina et al. 2019).

For quantitative purposes, latent variables of PCA may be
applied in principal component regression (PCR) models.
PCR is optimized to describe the largest amount of variation
of the sensor data, not taking into account the reference
variable that we calibrate on. In contrast, partial least
squares (PLS) regression generates the new latent variables
by optimizing the model for describing the largest amount
of variance of both the measured sensor data and reference
values. These can ultimately be used to build strong models
that can predict certain parameters based on the variables
being investigated. According to Sim~oes Da Costa,
Delgadillo, and Rudnitskaya (2014), there are two main opti-
mization parameters when using the partial least squares
(PLS) approach: Root Mean Square Error (RMSE) and the
adjusted R2. The adjusted R2 is a R2 corrected for the num-
ber of explanatory terms in the model and thus, penalizes
models with high number of parameters. While R2 usually
increases when a new term is added to the model, the
adjusted R2 increases only if the added term improves the
model more than would be expected. This property is par-
ticularly useful when comparing performance of multivariate
analysis. The data set largely influences modeling and pre-
diction (Wang, Xu, and Yu 2017). Detailed explanations of
these methods have been reported by Palit et al. (2010). The
purpose of statistical methods is to calibrate the signal
responses of the electronic sensors and permit fitting of the
multidimensional output of the sensor set (Wei et al. 2018).
Adequate data processing is an essential step when using
biosensor instruments for reliable results.

The electronic tongue

Food quality assurance is a domain dominated by conven-
tional methods and chemical analysis to assure consumer

Figure 2. Advantages of the electronic tongue (e-tongue) and the electronic nose (e-nose).
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safety. Some of these methods however, are slow and require
relatively sophisticated processes, making their implementa-
tion at industrial level rather limited as they are not suitable
for rapid monitoring. In addition to their cost issues, they
also require highly skilled operators and time-consuming
processes (Gil et al. 2011). With this gap, was the need to
explore alternative but equally advanced rapid analytical
instruments capable of performing similar tasks with better
sensitivities. Several trials and studies led to the development
of such instruments one of which, is commonly referred to
as the electronic tongue (e-tongue). Earlier versions of this
instrument were designed with biosensors that employed
electrochemical transducers to function, hence the name
“The electronic tongue”. Several models of chemical sensors
(based on taste patterns) have also been used to design the
electronic tongue’s sensor array: electrochemical (potentio-
metric, voltammetric, amperometric, impedimetric, conduc-
timetric), optical, mass, and enzymatic biosensors (Valle,
Mimendia, and Gutie 2010). Ideally, the e-tongue can be
defined as an advanced analytical instrument made up of an
array of sensors and pattern recognition technologies cap-
able of performing quantitative and qualitative analysis
(Winquist 2008). Figure 4 shows the general sequential
application of the e-tongue. The e-tongue has been
appraised and acknowledged in food industries for liquid
food analysis but its applications for meat and fish quality
remains scanty. A full discussion about the different archi-
tectures of e-tongue have been reported by Banerjee et al.
(2016) but the most frequently used are the Potentiometric
and Voltammetric e-tongue.

The potentiometric e-tongue versus the voltammetric
e-tongue

Potentiometry represents a direct application of the Nernst
equation through the measurement of potentials of non-
polarized electrodes lacking current flow (Magdalena and
Wardencki, 2015). In voltammetry, a potential is applied on
the working electrode, the measurement of the resulting

current between the working electrode and the reference
electrode is evaluated (Winquist 2008).

Arguably, potentiometric e-tongues are more famous but
voltammetric e-tongues are more adaptable with more
resistance to electrical imbalances and have better signal to
noise ratio (Campos et al. 2012). The voltammetric e-
tongues are however, limited to redox-active substances
(Escuder-Gilabert and Peris 2010) and are sometimes associ-
ated with low detection limits. Detailed principles about the
diverse types of e-tongue have been reported (Tuczek 2010).
The potentiometric e-tongue has gained fame in the area of
quality assurance. It is made up of an array of nonselective
chemical sensors (Figure 5) with partial specificity to differ-
ent constituents in solution. Signals from the sensors are
transduced by a pattern recognition technology with a
potential to recognize quantitative and qualitative composi-
tions of simple and complex solutions (Ciosek and
Wr�oblewski 2011).

The type of materials required for the sensing units
remains of utmost importance, particularly if a high per-
formance is desired. This is because, although e-tongues do
not require special interactions with the analyte, the sensing-
unit is still required to respond electrically to small changes
in the liquid under analysis. More so, depending on the
method of detection, a level of electrical conductivity and/or
electroactivity may be required (Tuczek 2010).

One of the first class of materials used for e-tongues were
lipid membranes, in an attempt to mimic the materials of
the human tongue (lipid bilayers provides the framework
for a cell membrane). Chalcogenide glasses in electrochem-
ical measurements have also been explored and presented
main advantages such as the ease of electrode preparation
and cross selectivity (Rudnitskaya et al. 2017). Also gaining
grounds, are the ion sensitive field effect transistors (ISFET),
novel integrated devices in the micro electrochemical lab.
These are very similar to the metal oxide semiconductor
field effect transistor (MOSFET) but their sensitive area rep-
resents a transistor gate and incorporates the means of
transduction from an ion concentration to a voltage (Rita

Figure 3. Main multivariate data analysis methods involved in the application of electronic sensors; MLR (Multiple linear regression), PCR (Principal component
regression), PLSR (Partial least squares regression), ANN (Artificial neural network), LDA (Linear discriminant analysis), PLS-DA (Partial Least Squares Discriminant
Analysis), KNN (k-nearest neighbor’s algorithm), SVM (support vector machine), PCA (Principal component analysis), K-means (clustering). Concepts were adapted
from Palit et al. (2010), Granato et al. (2018) and Medina et al. (2019).
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et al. 2017). Detailed reviews about e-tongue sensors have
been published (Podrazka et al. 2017)

Challenges and progress associated with e-tongue
application for red meat, poultry and fish
quality control

Accurate signal transfer from e-tongue sensors is crucial for
using the instrument but issues of signal drift have remained
a challenge. Sensor drift refers to the changes in sensor sen-
sitivity over time and may be as result to aging (for biosen-
sors) or poisoning. Sensors, are also susceptible to diverse
environment conditions such as oxidation and temperature
fluctuations that weaken their sensitivity (Holmin et al.
2001). They can also be prone to adsorbing certain compo-
nents after signal acquisition that can interfere with the

surface interactions of sensors in subsequent analysis. Pre-
conditioning and post-conditioning of sensors after analysis
are among the recommend methods for boosting sensor
strength but mathematical approaches in the form of che-
mometrics are also being explored (Rudnitskaya 2018), in
combination with good calibration routines.

Also, samples in liquid can be freely analyzed using the
e-tongue but those in solid form may require transforma-
tions that preferably should not affect the biochemical com-
ponents of the sample. Before analyzing meat, poultry or
fish for instance, certain protocols are needed to transform
the samples into liquid state but without any major alter-
ation or change in the chemical composition. This has so far
been a challenge in the meat and fish industries but recently,
several approaches have been explored.

Reported sample preparation methods for analysis of
meat and fish with e-tongue
A major advantage of e-tongue analysis is that it is rapid
and does not require reagents, therefore issues of waste
management are limited. In this regard certain extraction
techniques have been explored and have proved to
be effective.

In the extraction and ultrafiltration of beef according to
Zhang et al. (2012), de-ionized water of temperature 100˚C
was used to homogenize the meat. The homogenized meat
was then filtered using a Whatman paper (54 membranes
pore size), and centrifuged at 11,000 g for 20min. The
supernatant was then collected for e-tongue analysis. It is
important to note that the temperature of 100˚C used in
this extraction procedure has the potential to alter the state
of certain meat components and as such needs to be opti-
mized. Liu et al. (2017) and Tian et al. (2018) used the
method to preprocess chicken for e-tongue analysis.

Gil et al. (2007) also used the extraction and ultrafiltra-
tion method for studies on fish but with a slight modifica-
tion. The fish fillet was gutted and preserved in sample
containers at 4˚C for 7 days before analysis. Inosine 50-
monophophate (IMP), inosine (Ino), hypoxanthine (Hx) and
potentiometric values (silver and gold electrodes) were

Figure 4. Sequential application of the e-tongue.

Figure 5. Reference electrode and Partially selective sensors of the Alpha
Astree potentiometric electronic tongue.
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determined in each sample every day with the e-tongue.
Extraction and ultrafiltration was also used by Han et al.
(2015) to preprocess crucian fish and by Garc�ıa et al. (2017)
to preprocess cod fish for e-tongue analysis.

Generally, the extraction and ultrafiltration method are
the most effective in terms of cost and reliable results. Other
types of extraction procedures also exist but remain unex-
plored for e-tongue analyses. They have nonetheless proved
useful with other analytical instruments.

Unexplored methods of meat and fish sample preparation
for e-tongue analysis
Microwave-assisted extraction (MAE) and accelerated solv-
ent extraction (ASE) used by Tan et al. (2019) for polycyclic
aromatic hydrocarbons evaluation in fish with GC-MS (gas
chromatography- mass spectrometry) and by Ojemaye and
Petrik (2019) to determine conjugated or metabolic active
compounds in fish with LC-MS (liquid chromatography).

Pressurized liquid extraction used by Chu and Metcalfe
(2007) to determine Pharmaceutically active compounds in
three varieties of fish.

QuEChERS (Quick, Easy, Cheap, Effective, Rugged and
Safe) method used by Ragnar, Christiansen, and Deribe
(2011) to determine organic pollutants in fish with GC-MS.

These extraction methods have proved effective in the
respective studies and the nature of their extract (less dense
liquid extract) implies that; they could be adopted for e-
tongue analysis but it is important to consider the following
factors first:

� It is essential to factor in the cost and the technicalities
associated with these extraction methods. For instance,
ASE increases diffusion and solubility rate but involves a
rather complex cleanup protocol.

� The final volume of the extract is crucial in determining
the required sample size and dilution factors that would
be used. More studies need to be conducted to develop
an ideal protocol through a cost-benefit analysis.

� It is important to note that some food products such as
wines have a reported dilution level of 50% (So�os et al.
2015) for the best qualitative and quantitative measure-
ments with the e-tongue. There is however no standard
dilution level in regards to meat and fish and as such,
could be explored.

Applications of e-tongue red meat, poultry and
fish quality

In detecting substances undetectable by their natural coun-
terparts, the e-tongue has exhibited acceptable correlations
with organoleptic results of human panelists and have
showed better sensitivity than the human tongue (Campbell
et al. 2012). According to Valle, Mimendia, and Gutie
(2010) six major categories exist for e-tongue meat analysis:
process monitoring, freshness evaluation and shelf-life inves-
tigation, authenticity assessment, foodstuff recognition,
quantitative analysis, and other quality control studies.

From Table 1, the e-tongue has successfully been used to
investigate diverse quality parameters in red meat: pork,
beef, goat and lamb. The potentiometric e-tongue was used
to assess freshness (Feng et al. 2018), flavor and shelf-life of
beef (Zhang et al. 2015). It has also been used to monitor
storage of pork loin stored for over 10 days and to discrim-
inate between goat, beef and lamb meat in the fight against
food fraud. Different types of meat, irradiated at varying lev-
els using an electron beam accelerator resulted in higher 2-
thiobarbituric acid reactive substances (TBARS) than the
non-irradiated counterpart regardless of animal species, but
beef was the most susceptible to oxidation (Feng et al.
2017). Based on this, further studies was performed by Feng
et al. (2018) to determine the changes of taste profiles under
different irradiation doses using the electronic tongue

The voltammetric e-tongue, based on carbon modified by
bisphthalocyanines and polypyrrole doped with various dop-
ants was used for the detection and quantification of putres-
cine and ammonia in beef (Apetrei and Apetrei 2016).
Biogenic amines are formed in foods with rich protein con-
tents because of the hydrolysis processes associated with
amino-acids decarboxylation. The formation of biogenic
amines is a drawback in the meat industry that is facilitated
by the action of microorganisms in foods with a rich protein
content.

E-tongue has also been used as a correlative technique
with e-nose to classify goat, sheep and beef meat (Haddi
et al. 2015)

Generally, the potentiometric e-tongue (with Ag/AgCl
reference electrode) was the most frequently used. This may
be attributed to its partially selective sensors, easy mainten-
ance and less technical requirements.

Applications of e-tongue for poultry quality

From this review, there was a paucity of information with
regards to the application of e-tongue for chicken, turkey or
duck freshness. There were however studies of processed
duck and chicken with the e-tongue as shown in Table 2.

Taste patterns from sugar-based chicken seasonings were
investigated and predicted with the e-tongue (Tian et al.
2018). The e-tongue could discriminate fructose, glucose,
sucrose and umami taste profiles in the chicken samples.
Sugar is an important flavor enhancer that can compensate
for saltiness and spicy taste. Studies with the e-tongue have
also been reported for monitoring the effect of different
cooking methods in meat. Changes in the taste profile of
Dezhou-braised chicken during frying was assessed by Liu
et al. (2017). Frying showed little influence on umami taste
but greatly influenced saltiness and bitterness when meas-
ured with the e-tongue.

Similar conclusions were made for duck meat cured with
salt (2%, w/w), sodium nitrite (0.01%, w/w), sodium eryth-
orbate and brine solution (Zhao Shuangjuan et al. 2018).
According to their study, e-tongue confirmed that the differ-
ent treatments led to the increase of free amino acids, oligo-
peptides and inosine monophosphate. The dry-cure
processing technique have been reported to produce umami
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related taste compounds such as free amino acids and oligo-
peptides (Vidal et al. 2019). E-tongue has also been used a
correlative technique with computer vision to characterize
chicken meat qualities (Rita et al. 2017).

Applications of e-tongue for fish quality

Fish freshness is a relatively complex concept, which
includes different microbiological, physicochemical and
biochemical attributes. It is therefore of essence to carefully
consider the robustness of any method or instruments that
can be used to evaluate these parameters. Table 3 shows the
recent applications of the potentiometric and voltammetric
e-tongue for quality assurance in fish.

The potentiometric e-tongue could determine changes
in volatile compounds and predict freshness of tilapia (Shi
et al. 2018) stored at temperatures of 0 to 10 �C. It was used
to validate sensory results of grass carp fish by discriminat-
ing grass carp fishes stored at on different says for 15 days
(Pattarapon et al. 2018). The voltammetric e-tongue could
also discriminate cod fish freshness and predict microbial
spoilage of the fish (Ruiz-Rico et al. 2013). This is important
for rapid prediction of tilapia spoilage. Total viable count
(TVC) on fish was also determine and predicted with
the potentiometric e-tongue (Han et al. 2015). TVC is
a microbiological representation of the presence of microbes
in a product. E-tongue can be used as a correlative tech-
nique for rapid monitoring or prediction of fish freshness
and quality. Generally, the potentiometric e-tongue has been
used to investigate fish quality more than the voltammetric
e-tongue. E-tongue has been used a correlative technique
with the electronic eye to characterize fish sauce (Nakano
et al. 2018) and with the electronic nose to monitor tilapia
freshness (Shi et al. 2018).

The future of e-tongue for red meat, poultry and
fish analysis

Application of the e-tongue in the meat industry is a wel-
come advantage because numerous samples can be analyzed
at a shorter period compared to other analytical methods
that are expensive and time-consuming. In addition, sensors
can be specifically developed for special sensitivities to
certain meat components of interest especially in the
application of the voltammetric e-tongue. Reagents are not
required; therefore, issues of waste management are very
limited and makes them cost effective. Experiments can also
be conducted with small sample sizes for quantification and
qualification purposes with low sophistication. The have also
been recognized for precision and accuracy when used
as a correlative technique with other analytical instruments.
On the other hand, the sensor drift in the e-tongue is an
existing concern because it can influence the experimental
results (Wojnowski et al. 2017) but several interventions
have been established to reduce its excessive effects on data.
They include good experimental design and mathematical
approaches that involve multivariate data analysis.
Multivariate statistics applies optimal mathematical and
statistical methods to process data. Figure 6 shows a quick
overview of e-tongue application for meat and fish quality.
More focus is required for longevity of the sensors and
transforming the meat and fish products into liquid state for
e-tongue analysis.

The electronic nose (E-nose)

Smell is an important parameter and indicator of freshness
in the food industry. The freshness of food degrades due
to environmental factors and spoilage from biochemical
reactions during storage (Pennacchia, Ercolini, and Villani
2011). The main ingredients of food like protein, fat and

Table 2. Some recent trends of e-tongue application in poultry.

Objective of study Data Analysis Type of E-tongue Main Findings Reference Implication

Evaluate changes in the
taste of Dezhou-braised
chicken during
processing through the
direct analysis of the
taste compounds

ANOVA Potentiometric Ag/AgCl
reference electrode

Preprocessing of chicken
by frying showed little
influence on umami
taste but greatly
influenced saltiness
and bitterness

(Liu et al. 2017) E-tongue is capable of
sensing the effect of
frying on chicken taste
patterns and can be
useful in chicken
processing industries

Taste contribution of
brown sugar in chicken
seasoning using taste
compounds, sensory
evaluation, and
electronic tongue

ANOVA, DA, PLS Potentiometric Ag/AgCl
reference electrode

E-tongue could predict
fructose, glucose,
sucrose and umami in
chicken with a
high accuracy

(H. X. Tian et al. 2018) E-tongue can be used to
monitor the effects of
flavoring compounds
in chicken

Monitor the influence of
cooking methods on
the chemical
compounds associated
with umami taste in
duck breast meat

PCA ANOVA, Duncan’s
multiple
comparison tests

Potentiometric Ag/AgCl
reference electrode

Duck breast cooked by
dry curing with salt
(2%, w/w), sodium
nitrite (0.01%, w/w)
and sodium
erythorbate could be
discriminated from
duck breast cook by
wet curing (marinating
under brine solution)

(Zhao Shuangjuan
et al. 2018)

Different cooking methods
influences meat
structure. The e-tongue
provides a rapid means
to determine such
changes in duck meat

Keys: E-tongue: PCA: principal component analysis, PLS: partial least squares regression, ANOVA: analysis of variance, DA: discriminant analysis.
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carbohydrates will be decomposed by enzymes and bacteria,
producing odor. The presence of these bacteria is the deter-
mining factor in shelf- life evaluation, since changes in
aroma profile often precedes changes in product’s appear-
ance: discoloration, sliminess and softness (Papadopoulou
et al. 2013). Spoilage/freshness is a sensory quality and is
usually detected by examining for off-odors and discolor-
ation (Gliszczy 2017). Metabolites such as trimethylamine,
aldehydes, ketones and esters, as well as other low molecular
weight compounds responsible for off-flavors and sensory
product rejections are produced (Zhang et al. 2017).

Sensory analysis is often cumbersome and expensive,
especially when it is performed by highly-trained specialists,
who cannot work for extended periods of time due to olfac-
tory fatigue. The meat and fish production and processing
industry is in need of novel approaches for the classification
and spoilage evaluation of its products (Wojnowski et al.
2017). They require an instrument that would provide a
rapid result both at the processing plants and at retail level
as the quality evaluation of meat products is necessary in
order to ensure the consumer’s safety. Consumption of
spoiled meat or fish can lead to serious health hazards such
as nausea, vomiting, and diarrhea. This and consumer

perception of smell in several food products has resulted in
a steady interest in the electronic nose (e-nose), an advanced
technology with better sensitivity to the human nose for the
determination of odor. A single, volatile molecular com-
pound may commonly have referred to as an odorant (e.g.,
geosmin, pentadecalactone, ethyl acetate, or dimethysulfide),
whereas volatile compounds perceived by an organism (usu-
ally a complex mixture of many odorants: e.g. caramel,
apple, lavender, and chocolate) are defined as an odor. In
some reports the device has been referred to as, the ‘gas sen-
sor array’ or ‘multisensorial system’ instead but nonetheless,
it can detect and recognize items on the basis of their odor
signature with the help of electrochemical sensors and an
appropriate pattern classification algorithm (Tarassenko and
Denham 2006).

Development of the e-nose technique is however empha-
sized by the continuous emergence of novel types of sensors.
In early applications, where classical chemical sensors were
used, it was difficult to analyze complex matrices like food
products (Wojnowski et al. 2017). These difficulties were
often attributed to insufficient stability of measurement, the
need for frequent calibration and high-power consumption.
Another challenge was the miniaturization of electronic

Table 3. Some recent trends of e-tongue application for fish quality.

Objective of study Data Analysis Type of E-tongue Main Findings Reference Implication

Explore the potential of e-
tongue with PCA-
RBFNNs to quantify
freshness in tilapia
fillets during storage at
different temperatures

RBFNNs, ANOVA, PCA Potentiometric Ag/AgCl
reference electrode

E-tongue acquired and
described changes in
volatile compounds and
dissolved chemicals
present in the
stored samples

(Shi et al. 2018) With PCA-RBFNNs, e-
tongue can be used to
predict changes in the
freshness/spoilage of
tilapia fillets stored at
temperatures ranging
from 0 to 10 �C

Assess changes in Grass
carp (fish) during
vacuum and non-
vacuum storage using
the e-tongue and
sensory panel

PCA, ANOVA Potentiometric Ag/AgCl
reference electrode

E-tongue was able to
distinguish between
different freshness
states in a 15-day row
and confirmed sensory
panel results

(Pattarapon et al. 2018) E-tongue can be used to
validate sensory results
if conditions of storage
are not altered

Evaluate the use of a pulse
voltammetry-based
electronic tongue in the
shelf-life assessment of
cod in cold storage

PCA, PLS Pulse voltammetry. The
pulse pattern is
designed based on
the chemical
composition of
the sample

Voltammetric tongue was
able to discriminate
between fresh (days 0
and 1) and spoiled fish
(from fourth day
of study

(Ruiz-Rico et al. 2013) Physico-chemical and
microbial parameters of
cod spoilage is feasible
with the e-tongue. The
study could be
extended with more
diverse species and
conditions of storage

Investigate possible flavor
peptides that contribute
to the taste of
Takifugu obscurus

PCA Potentiometric Ag/AgCl
reference electrode

Octapeptide, Tyr-Gly-Gly-
Thr-Pro-Pro-Phe-Val
(associated with
Umami) was in
considerable abundance
in the flesh of T.
obscurus muscle

(M. Zhang et al. 2012) E-tongue can determine
protein and peptide in
fish. The study could
be extended

Investigate the evolution
of sea bream fish stored
throughout a period of
time using Au (gold)
and Ag (silver) wire-
based e-tongue for
the analysis

ANN, PCA Potentiometric Ag/AgCl
reference electrode

Redox potential of certain
metallic electrodes
shows a continuous
variation when in
contact with fillets or
minced fish (gilthead
sea bream)

(Gil et al. 2007) Simple measurement of
the variation of Au and
Ag potentials could be
used for the assessment
of fish degradation. Fish
freshness can
be predicted

Determination of total
viable count (TVC) in
crucian carp fish
during storage

PCA, PLS, SVR Potentiometric Ag/AgCl
reference electrode

With chemometrics, e-
tongue could determine
and predict TVC in
crucian carp fish stored
at 4 �C

(Han et al. 2015) E-tongue could be used as
a correlative technique
to study fish
preservation and
shelf-life

Keys: E-tongue: Electronic tongue ANN: artificial neural network, PCA: principal component analysis, PLS: partial least squares regression, ANOVA: analysis
of variance, RBFNNs: Radial basis function neural networks, SVR: support vector regression.
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noses, with an integration with consumer electronics in
mind (Rateni, Dario, and Cavallo 2017). Focus is also placed
on the development of units intended for real-time monitor-
ing of odors.

Principle of operation for the E-nose

The value of all sensing systems is to convert various types
of sensory information from exposure (visual, auditory,
mechanical, chemical) into information encoded by the bio-
logical system of neurons (circuits) in the brain or through
electronic circuits of the biomimetic system (Chaudhary and
Gupta 2009). In the brain, this transformation usually takes
the form of a transduction (conversion) of sensory informa-
tion into tones of neuronal impulses initiated in the bio-
logical circuits of a neural pathway (Persaud and Dodd
1982). In engineered devices, this takes place as interpret-
ation of odorant signals into electrical charges existing
within analytical computer circuits. For electronic odor
detectors, the needed information upon exposure, is the
vapor phase molecules emitted from odorous substances
that have been volatilized to a degree dependent on their
vapor pressures (Jiang, Chen, and Liu 2014). In essence, the
odorant encoding task is to convert the chemical and phys-
ical information about these gas phase molecules (structure,
charge, size, molecular weight, polarity, solubility, volatility,
concentration, and so on) with the help of advanced tech-
nologies onto computer systems (Persaud and Dodd 1982).

The e-nose is a scientific tool equipped with an array of
gas sensors and an artificial intelligence algorithm system
capable of discriminating such volatiles. A comprehensive
review on the history of the electronic nose was discussed

by Loutfi et al. (2015). E-nose sensors may also be developed
from tin oxide films impregnated with different precious
metals or from chemically modified metalloporphyrins. The
degree to which polymer, tin oxide, or metalloporphyrin-
based sensors interact with odorant compounds depend on
their relative affinity for the vapor compound, which is also
dependent on solvation, polarity, charge affinity, and other
chemical and physical properties of the sensing materials
(Tarassenko and Denham 2006). In most e-nose systems,
the component materials are mainly of hydrocarbon
polymers chosen from catalogs of commercially available
polymeric materials or purposely synthesized for detecting
specified vapor (Cesar Paix~ao and Subrayal 2017). Figure 7
shows the major sensor types in e-nose systems and their
respective advantages. E-nose gas sensors consist of sensing
layers for interacting with oxidizing or reducing gases.
Changes in the sensing layers as a result of resistance leads
to an increase or decrease in charge carrier concentration
with the gas to be detected (Timsorn et al. 2016)

According to Smolander and Ahvenainen (2006), the
semiconductor of metal oxides is one of the most acknowl-
edged e-nose sensors with a low cost, long life, high sensitiv-
ity, simple circuit requirement and has been used to assess
meat and fish freshness. They absorb chemical molecules in
gas phase and convert them into electrical signals. Sanaeifar
et al. (2017) gave detailed reports about the advantages and
disadvantages of different types of detectors in the e-nose.
It is also worth mentioning that, the exact mechanisms
that impart the sensitivity to different odorant vapors are
not certainly understood to the degree that one can clearly
predict how a particular material will respond to a particular
odorant vapor (Cesar Paix~ao and Subrayal 2017).

Figure 6. Summary of e-tongue applications for red meat, poultry and fish quality and challenges that need to be addressed.
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Challenges and progress associated with e-nose
application for red meat, poultry and fish
quality control

The e-nose has been pivotal in the mimicking of the human
nose functions. This is an outcome that has been widely
exploited by researchers in the food industries, often for pre-
liminary quality control purposes. The prevalence of patho-
genic microbes in food products is a significant problem for
food preservation and storage (GeRbicki and Szulczy�nski
2018). Microbiological methods have often been used to
monitor these conditions, but recent applications of the e-
nose to detect gaseous compounds emitted by specific micro-
organisms so as to detect their presence has been successful.

There have however been concerns about the sensitivity
of e-nose gas sensors. Some sensors for instance, have vary-
ing sensitivities for different types of gases (Berna 2010).
The sensitivity of the emitted gas has been reported to
dependent on the type of gas sensor being used, it’s sensing
range, recovery time and specificity. Some sensors are also
reportedly more sensitive to oxidizing compounds (Wilson
and Baietto 2011).

When investigating diverse forms of adulteration, accur-
ate homogenization of the samples under study is crucial
and is a major factor in the outcome of the experiment. In
e-nose analysis, headspace generation time increases the
concentration of volatile compounds from the sample and is
often encouraged when using the e-nose. The speed at
which the volatile compounds are brought to the e-nose sen-
sor chamber should be taken into consideration in its appli-
cation as it influences the signal strength (Gonz�alez-Mart�ın
et al. 2000).

In addition, the design of most e-nose’s often makes it
possible to be used in open environments with varying
environmental conditions such as humidity, temperature
and the presence of diverse gases. Although most e-noses
are capable of working under such conditions, their effect-
iveness can be influenced.

According to Schaller, Bosset, and Escher (1998), a good
sensor “should have highest sensitivity to the target group of
chemical compound(s) intended for detection and with a
threshold of detection similar to that of the human nose (10-
12 g mL-1)”. It is therefore crucial to have an idea about the
kind of gas to be expected from the food item investigated in
order to select an appropriate gas sensor for optimum sensi-
tivity. It is also important that the selected gas sensor should
have a relatively low sensitivity to variable environmental
conditions. Wojnowski et al. (2019) developed electrochemical
sensors with good longevity (up to 10 years lifespan) and
could withstand changes in relative humidity but the complex
headspace of meat samples limits their qualitative and quanti-
tative applications in meat. Comprehensive details (design,
applications, advantages and disadvantages) about major types
of e-nose gas sensors and their sensitivities to odors, have
been reported by Berna (2010).

Applications of e-nose for red meat quality

Table 4 shows the trend of e-nose application for red meat
quality. E-nose based on metal oxide sensors was effectively
applied for rapid prediction of ochratoxin A-producing
strains and Penicillium strains during the seasoning process
of dry-cured pork meat products (Lippolis et al. 2016).

The e-nose has been established as a faster approach for
discrimination compared to the traditional microbial plating
which often takes several hours or days to get results, but
there is a paucity of information in correlating specific
aroma compounds of spoiled meat to the presence of a spe-
cific microbial species. This suggests that, although the e-
nose could be used for quick preliminary analysis of meat
spoilage, microbial plating may still be required for details
about the microbes’ present. This makes the e-nose a viable
tool for corelative analysis.

In meat authentication, mutton was blended with pork at
adulteration levels of 0%, 20%, 40%, 60%, 80% and 100%
and sealed with plastic, in a beaker for a headspace

Figure 7. Gas sensors capable of sensing diverse types of gases, concepts were adapted from (Baldwin et al. 2011; Sanaeifar et al. 2017; Berna 2010).
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generation time of 30min (Tian, Wang, and Cui 2013). It
has been reported that some sensors have no reaction to the
fresh beef but have intense reaction to the decayed beef
(Najam et al. 2012). This is acceptable as the smell of a fresh
product is often less intense compared to when it
is decayed.

Haddi et al. (2015) evaluated the performance of an e-
nose and e-tongue system for the distinction of beef, goat
and sheep among a mixed variety of meat. It was proven
that PCA analysis of the e-nose data could not differentiate
correctly between the 3rd and 6th day of storage of beef,
goat and sheep meats but e-tongue results showed a good

separation between storage days for the three types of meats.
This is particularly relevant because e-nose is believed to be
better suited for solid samples than the e-tongue. It is also
an indication that, although all the gases go into the head
space, not all changes can be detected. Nonetheless, the e-
nose was still successful in discriminating red meat coming
from different animal origins.

Applications of e-nose for poultry quality

Table 5 shows the trend of e-nose application for poultry
and white meat quality. Indirect determination of chicken

Table 4. Some recent trends of e-nose application for red meat quality.

Objective of study Gas Sensor Statistical approach Main Findings Reference Implication

Monitor warmed- over
flavor development in
cooked pork muscles,
cold-stored (at 4 �C for
0, 2 and 4 days)

8 MOS and 6 MOSFET ANOVA, PLS 8 MOS sensors
corresponded with
volatiles determined by
sensory and chemical
analysis as a function of
increasing cold storage.
6 MOSFET
corresponded with
volatiles of freshly
cooked meat
determined by sensory
analysis as a function of
decreasing time

(Tikk et al. 2008) MOS and MOSFET have
different sensitivities to
different states of
pork meat

Measurement of smell
signature from beef
and fish stored at room
temperature

8 MOSFET ANN, SVM KNN demonstrate that the k-
nearest neighbor
algorithm has the
highest accuracy

(Najam et al. 2012) The quality of the
analytical results is
largely dependent on
the type of statistical
approach used.

Monitoring beef freshness 8 MOSFET ANOVA The developed sensors
were sensitive to the
spoiled beef although
they do not respond to
the fresh beef

(Zhang et al. 2008) Some sensors have no
reaction to the fresh
beef but have intense
reaction to the
decayed beef

Distinguish flavor profiles
of Chinese spiced beef
in the cooking process

10 MOS-FET PCA, PLS, ANN 82 types of volatile
compounds were
discriminated in spiced
beef. There were
compositional variations
in volatile components
from four different
sampling time points

(Gong et al. 2017) E-nose can sense changes
in volatile compounds
as a results of cooking
conditions (heat
and time)

Classify Iberian breed
swine products on the
basis of their diet
(acorn, feedþ acorn,
feed) using adipose
tissue as samples

8 MOSFET LDA, SIMCA 96% prediction accuracy
(LDA) and 92%
classification accuracy
(SIMCA) with the signal
response of the e-nose

(Gonz�alez et al. 2000) Combination of the e-nose
and chemometric
treatment of the
signals, such as LDA
presented a satisfactory
level of classification

Potential use of E-nose for
detection of pork
adulteration in
minced mutton

10 MOS PCA, Step-LDA, PLSR E-nose was capable of
detecting mutton
adulteration in pork at
ranges 0%, 20%, 40%,
60%, 80% and 100%

(Tian, Wang, and
Cui 2013)

Rapid authentication of
mutton is possible,
especially for non-pork
consumers. Adulteration
levels below 20% could
be explored

Evaluate the performance
of an electronic nose
and tongue system for
the distinction among
meats from beef, goat
and sheep

6 heated MOS PCA, SVM PCA analysis of electronic
nose data could not
differentiate correctly
between the 3rd and
6th day of storage of
beef, goat and sheep
meats but was
successful in
discriminating red
meats coming from
different animal origin

(Haddi et al. 2015) Consumer protection with
e-nose is viable for
fraudulent labeling
detection if the study is
extended to other types
of meat

Key: E –nose: Electronic nose, MOSFET: metal oxide semiconductor field effect transistors, KNN: K-nearest neighbor, ANN: artificial neural network, PCA: principal
component analysis, PLS: partial least squares regression, ANOVA: analysis of variance, SVM: support vector machine.
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fat oxidation was performed with an e-nose equipped with
18 MOSFET gas sensors where, e-nose proved to be a viable
tool for predicting chicken fat oxidation. Chicken meat is
composed of high amounts fatty acids that are susceptible to
oxidative reactions that compromise the quality of the meat
(Henchion et al. 2014). E-nose provides a means for moni-
toring such deterioration.

Unmarinated broiler chicken cuts were stored differently
under modified atmosphere packaging and assessed for shelf-life
qualities with an e-nose equipped with MOSFET sensors.
Chicken breast stored under different temperatures for different
days were also accurately classified with the e-nose (Smolander
and Ahvenainen 2006). Some gas sensors were more sensitive
to reducing gases at varying temperatures of chicken storage.

E-nose could also predict biogenic amines in poultry with a
good accuracy. Biogenic amines are nonvolatile compounds
produced by interactions between decarboxylase- positive
microorganisms and free amino acids (Henchion et al. 2014). It
is therefore an indication of microbial presence and its index is
a good reference method for evaluating meat freshness based
on headspace analysis and fingerprinting with e-nose.

Egg freshness could also be predicted with 95% accuracy in
PLSR using a MOSFET equipped e-nose. Portable e-noses can
provide on-site monitoring of egg quality in poultry farms.

Applications of e-nose for fish quality

Table 6 shows the trend of e-nose application for fish qual-
ity. An 18 MOS sensor was used for an accelerated but

comprehensive chemotaxonomic discrimination of four spe-
cies of marine fish surimi. The sensors were located in three
different chambers controlled at different temperature
because the sensors of e-nose were temperature sensitive.
This is very essential for quality assurance of fish, particu-
larly for consumers with allergies or preference for different
types of fishes. The study was done in combination with
chemical analysis proving the efficacy of e-nose as vital com-
plimentary tool for the fish characterization.

Pattarapon et al. (2018) recently, demonstrated the cap-
ability of e-nose in discriminating different aromas from
grass carp fish after 14 days of storage in vacuum conditions.
In their study, sensor 1 (for aromatic compounds), sensor 2
(for sulfides, mercaptan, thioether), sensor 7 (for fatty
hydrocarbon derivatives), sensor 8 (helium), 10 (hydrocar-
bon), and sensor 12 (sulphide) proved to be very effective.
Vacuum packaging effectively extends the shelf-life of fishery
products by maintaining their odors and flavor, e-nose thus
can be very instrumental in its quality assurance process.

The future of e-nose for red meat, poultry and
fish analysis

There is a potential of the e-nose for rapid authentication
and quality assurance in meat and fish but the future pros-
pects (Figure 8) of the instruments’ application in this field
also needs to be addressed for consistency and reliability.
The semiconductor of metal oxide (MOS-FET) gas sensor
array was the most prevalent e-nose gas sensor. Small size,

Table 5. Some recent trends of e-nose application in poultry.

Objective of study Gas sensor Statistical approach Main findings Reference Implication

Predict the freshness
of eggs

10 MOSFET ANOVA, PLS E-nose had a good
performance, reaching
95% accuracy in the
classification of patterns
with different
statistical approaches

(Dutta et al. 2003) The E-nose system presents
a more suitable
commercial application
for the continuous
monitoring of
egg freshness

Distinguish differently
stored modified
atmosphere packaged
unmarinated broiler
chicken cuts with an
e- nose

10 MOSFET PCA, PLS, ANN Carbon dioxide and
humidity sensor did not
show any clear
differences between the
samples during the shelf-
life study

(Smolander and
Ahvenainen 2006)

There is a potential to
develop smaller and
cheaper electronic nose
device specifically
designed for poultry
samples (with accurate
sensors) to save time
and money

Indirect determination of
chicken fat oxidation

18 MOS PCA, PLS free fatty acids showed
lower correlation with e-
nose but higher
correlations were found
for chemical parameters

(Song et al. 2013) E-nose is a viable tool for
predicting oxidation in
chicken fat

Classification of chicken
breast samples according
to their storage days and
temperatures

8 MOS (brief case
e-nose)

PCA, BPNN Chicken samples from all 5
storage days and could
be distinguished
according to their
temperature of storage

(Timsorn et al. 2016) Some gas sensors are more
sensitive to reducing
gases at varying
temperatures of chicken
storage. E-nose can be
used to monitor spoilage

Prediction of the biogenic
amines index of poultry

8 electrochemical
gas sensors

PCA, PLS, ANN, SVM Chicken spoilage as a result
of biogenic amines index
could be predicted with
a good accuracy using
multivariate analysis

(Wojnowski et al. 2019) Biogenic amines index is a
good reference method
for evaluating meat
freshness based on
headspace analysis and
fingerprinting with
e-nose

Key: E –nose: MOSFET: metal oxide semiconductor field effect transistors, Electronic nose, KNN: K-nearest neighbor, ANN: artificial neural network, PCA: principal
component analysis, PLS: partial least squares regression, ANOVA: analysis of variance, SVM: support vector machine, BPNN: back-propagation neural network.
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low power consumption, short response time, wide operat-
ing temperature and high efficiency are some of the advan-
tages presented by this sensor type. MOSFET gas sensors
offer excellent discrimination and lead the way for a new
generation of “smart sensors” with a great influence on the
future commercial markets for gas sensors. The e-nose poses
no harm to the user nor the food sample, nor for the

nature, thus, its application in the meat industry should
therefore be encouraged. Unlike the e-tongue, the e-nose
requires no sample transformation from solid to liquid state
and is better suited for sensing meat and fish volatile com-
pounds as observations can be made both in the liquid and
solid states. Quality control is of great importance within
the meat and fish industry and with these advantages of e-

Table 6. Some recent trends of e-nose application for fish quality.

Objective of study Gas sensor array Statistical approach Main Findings Reference Implication

Capabilities of
phthalocyanine
compounds and
platinum screen-printed
electrodes (SPE) to
detect biogenic amines
in fish

Modified screen-printed
sensors with a
platinum
contra electrode

PLS-DA Increase of the signals
associated to biogenic
amines was observed
with increasing storage
days allowing
quantitative estimation
of chemical parameters
such as the pH

(Rodr�ıguez-M�endez
et al. 2009)

Screen-printing technology
and miniaturized
electrodes are promising
for the mass-production
of low-cost and single-
use sensors, with
significant advantages
(higher sensibility)

Assess changes in Grass
carp (fish) during
vacuum and non-vacuum
storage using the
sensory panel

14 MOS PCA, ANOVA After 14 days of storage, e-
nose could still
distinguish different
odors during storage in
vacuum conditions

(Pattarapon et al. 2018) E-nose can be used to
validate sensory results if
conditions of storage are
not altered

Discrimination of anchovy,
horse mackerel and
whiting fish species

10 MOS sensors LDA, KNN The different fish species
could be discriminated in
LDA with an accuracy of
96.18% and 82.4 for KNN

(G€uney and
Atasoy 2015)

Specie identification is an
important factor in the
fish industry especially in
terms of consumer
preference, export and
income generation. E-
nose provides rapids
assuring its control

Assess the influence of
storage parameters
(humidity, mass of
sample, days of storage)
on fish freshness

11 polycrystalline tin
dioxide sensors

PCA, ANOVA Humidity did not influence
e-nose results but mass
of sample and surface
exposure to e-nose
sensors was crucial in
obtaining reliable results

(O’Connell et al. 2001) The findings provide
headway for
standardization of e-nose
analytical procedures.
This is crucial for
quality control

Key: E –nose: Electronic nose, KNN: K-nearest neighbor, ANN: artificial neural network, PCA: principal component analysis, PLS: partial least squares regression,
ANOVA: analysis of variance, SVM: support vector machine, BPNN: back-propagation neural network.

Figure 8. Summary of e-nose applications for red meat, poultry and fish quality and challenges that need to be addressed.
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nose, it would be possible to monitor meat and fish as raw
materials or throughout the processing chain. More studies
are however required for optimum sensitivity to the differ-
ent types of gases that can be emitted from the sample and
also the headspace waiting time per sample. Different statis-
tical approaches have been used for diverse studies in fish
and meat but PCA, LDA and PLSR were the most domin-
ant. According to Tian, Wang, and Cui (2013) stepwise dis-
criminant analysis (Step-LDA) is a very effective method for
the pretreatment of multidimensional signals of the e-nose.
Portable e-noses have been used for both meat and fish ana-
lysis (G€uney and Atasoy 2015; O’Connell et al. 2001;
Timsorn et al. 2016; Wojnowski et al. 2019) and, provides
potentials for in-situ analysis in commercial environments.

Conclusion

Electronic sensor devices are gaining prominence in qualita-
tive and quantitative evaluation of red meat, poultry and fish.
The electronic tongue and electronic nose have been used for
meat authentication, classification and shelf-life-storage.
Depending on the sensor installed in the device, the elec-
tronic tongue determines the classes of fat in meat and even
biogenic amines in fish. This means the device cannot just
perform sensory assessment but can be used for toxicological
purposes as well. This function could also be explored to
determine naturally occurring toxins in other foods. Among
the different types of e-tongue sensors, the ion sensitive field
effect transistors (ISFET), a subgroup of the potentiometric e-
tongues, appeared to be of emerging interest to researchers
for its cross-selectivity functions. The potentiometric e-tongue
in general also appeared to be the most frequently used but
the potential of the voltammetric e-tongue is not limited
(except in instances of redox experiments). Sensor variation
also proved essential in e-nose with MOSFET sensor type as
the most explored. The e-nose was effective in predicting
freshness and adulteration in pork. Contrary to popular
notion that adulteration is mainly focused on liquid and pow-
ders, it has recently reared its ugly head in the meat industry
as well. The rapid non-destructive nature of e-nose analysis
therefore puts it in the right position to control this canker.
In spite of the acknowledged potentials of the e-nose in this
review, developing specific sensors for specific meat/fish
attributes and assessing the factors that decrease their sensi-
tivity will undoubtedly improve performance for sensory and
quality control of meat/fish. Both devices have advantages of
no waste (no reagents), cost efficiency, high sensitivity and
compatibility with chemometric tools for reliable data analysis
and monitoring of meat and fish quality. The instruments
can also be used as correlative techniques with other analyt-
ical instruments for precision and accuracy. Further study
into the longevity of sensors is recommended.
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