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ABSTRACT
We usedMonte Carlo simulations to assess the performance of three
bootstrap procedures for use with multilevel data (the parametric
bootstrap, the residuals bootstrap, and the nonparametric boot-
strap) for estimating the sampling variation of three measures of
cluster variation and heterogeneity when using a multilevel logis-
tic regression model: the variance of the distribution of the random
effects, the variance partition coefficient (equivalent here to the intr-
aclass correlation coefficient), and the median odds ratio. We also
described a novel parametric bootstrap procedure to estimate the
standard errors of the predicted cluster-specific random effects. Our
results suggest that theparametric and residuals bootstrap should, in
general, be used to estimate the sampling variation of key measures
of cluster variation and heterogeneity. The performance of the novel
parametric bootstrap procedure for estimating the standard errors
of predicted cluster-specific random effects tended to exceed that of
the model-based estimates.
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1. Introduction

Multilevel models (mixed-effects models, random-effects models and hierarchical mod-
els) are increasingly being used across a wide range of disciplines. These models allow for
analysis of data that have a multilevel or hierarchical structure (e.g. patients nested within
hospitals or students nested within schools). Longitudinal data are also clustered (e.g.
repeated measures nested within subjects). A primary use of these models is to estimate
the association between subject outcomes (e.g. death within 30 days of hospital admis-
sion) and characteristics of the subject (e.g. age, sex and socioeconomic status) or cluster
(e.g. size and type of hospital or geographic location). These models allow for estimation
of standard errors of estimated regression coefficients that account for the lack of indepen-
dence induced by the clustering of subjects. They also allow one to quantify heterogeneity
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in mean subject outcomes across clusters and to predict cluster effects on subject
outcomes.

Historically, the focus ofmany applied analysts when usingmultilevel logistic regression
models was exclusively on the odds ratio, which is a measure of association. More recently,
there has been a growing interest in additionally reporting and interpreting measures of
cluster variation and heterogeneity. Three important measures of cluster variation and
heterogeneity (hereafter referred to as cluster variation) are: (i) the variance of the cluster-
specific random effects, henceforth referred to as the cluster variance; (ii) the variance
partition coefficient (VPC) also often referred to as the intraclass correlation coefficient
(ICC); (iii) the median odds ratio (MOR). The VPC denotes the proportion of variation in
the outcome that is due to systematic between-cluster differences [1,2]. TheMORwas first
proposed by Larsen et al. [3] for quantifying the magnitude of the effect of clustering (i.e.
the cluster variance) as an odds ratio when using a multilevel logistic regression model. If
one were to repeatedly sample at random two subjects with the same covariate values from
different clusters, then theMOR is themedian odds ratio between the subject at higher risk
of the outcome and the subject at the lower risk of the outcome (where differences in risk
are entirely due to differing cluster-specific random-effect values). The use of measures of
cluster variation was subsequently popularized by a series of editorials and articles in the
epidemiological literature [4–11].

There is often interest in testing whether the cluster variance is statistically significantly
different from zero (and whether the VPC is different from zero and the MOR different
from unity). This can be tested using either a modified Wald test or a modified likelihood
ratio test (where the modification relates to testing on the boundary of the feasible param-
eter space; the cluster variance must be positive), with the latter being preferable [12]. The
American Statistical Association, however, has recently suggested that researchers not draw
conclusions solely based on tests of statistical significance [13]. Accordingly, it is impor-
tant to be able to construct confidence intervals for measures of cluster variation. Since the
sampling distribution of the cluster variance is often non-symmetric, normal theory-based
confidence intervals can have poor performance [2]. Furthermore, methods for construct-
ing confidence intervals for the VPC and the MOR have not been adequately described.
There is a need to explore robust methods to construct confidence intervals for these three
measures of cluster variation.

Multilevel regression models are increasingly being used in provider profiling to
compare patient outcomes across healthcare providers or to compare student perfor-
mance across schools [14–17]. When used for these purposes, the predicted cluster-
specific random effects permit the quantification of the degree to which subject out-
comes at one cluster (e.g. a hospital or school) differ, on average, from those at an
average cluster, holding all covariates constant. With provider profiling, it is therefore
important to be able to estimate and communicate the uncertainty in the predicted
cluster-specific random effects, as these predictions are often used to hold providers
to account, to provide information to support patient choice and to aid other types of
decision-making. Presenting a confidence interval for each predicted cluster-specific ran-
dom effect permits identification of those clusters that have performance that differs
significantly from that of an average cluster and is an effective way of communicating
the general lack of precision with which such effects are often estimated in empirical
applications.
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The bootstrap is a commonly used statistical procedure for estimating uncertainty and
variability in estimated statistics [18]. There is a small literature on the use of bootstrap
methods with multilevel data [19–25]. There are two limitations to the existing literature.
First, the focus is almost exclusively on the multilevel linear regression model for use with
continuous outcomes. One exception is an article that used bootstrap methods to develop
a score test for testing whether the variance component was different from zero in general-
ized linear mixed models [25] (while not the focus of the article, another article provides a
brief appendix discussing bootstrap approaches for generalized linear mixedmodels [26]).
In biomedical research, binary or dichotomous outcomes are common [27]. Second, the
focus of most of these articles was primarily on estimating variability in estimated regres-
sion coefficients and not onmeasures of cluster variation or in the predicted cluster-specific
random effects. In particular, there is no research into whether the use of the bootstrap can
result in improved estimates of the standard errors and confidence intervals of predicted
cluster-specific random effects.

The objective of the current paper is to examine the use of the bootstrap with the mul-
tilevel logistic regression model. We focus on the use of the bootstrap for (i) estimating
the sampling variability of measures of cluster variation (the cluster variance, the VPC
and the MOR) and of the predicted cluster-specific random effects; (ii) constructing con-
fidence intervals for these quantities. The paper is structured as follows: In Section 2, we
first describe the parametric, residuals and nonparametric bootstrap procedures for use
with multilevel data. We then propose a modified parametric bootstrap for making infer-
ences about predicted cluster-specific random effects. In Section 3, we describe a series
of Monte Carlo simulations designed to evaluate the performance of these procedures. In
Section 4, we report the results of these simulations. In Section 5, we present a case study
illustrating the application of these procedures to examine variation in patient mortality
after hospitalization for acute myocardial infarction. Finally, in Section 6, we summarize
our findings, place them in the context of the literature and make recommendations to
researchers seeking to apply the multilevel bootstrap in their own work.

2. Themultilevel bootstrap for multilevel logistic regressionmodels

We assume that the reader is familiar with multilevel logistic regression [28] and the stan-
dard or conventional bootstrap [18]. Carpenter et al., van der Leeden et al. and Goldstein
describe the use of the bootstrap with multilevel linear regression models [20–22,24]. We
make appropriate modifications to two of the described procedures so as to be applicable
to the multilevel logistic regression model. We also describe a new parametric bootstrap
procedure to make inferences about the predicted cluster-specific random effects.

Let Yij be a binary outcome variable denoting the occurrence of an event (Yij = 1) or
its non-occurrence (Yij = 0), for the ith subject in the jth cluster and let Xij denote a vec-
tor of covariates for this subject. This vector may include both subject- and cluster-level
covariates and any cross-level interactions. LetK denote the number of clusters.We assume
that the following random-intercept logistic regression model has been fit: logit(pij =
Pr(Yij = 1)) = α0 + α0j + Xijβ , where the cluster-specific random effect α0j is assumed
to be normally distributed with zero mean and constant variance, α0j ∼ N(0, τ 2). We use
the term ‘cluster variance’ to refer to the variance of the cluster-specific random effects (τ 2).
Thus, the cluster variance is estimated directly.
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In the current study, we fit all models by maximum likelihood estimation (adaptative
quadrature with 7 quadrature points) in the R software using the glmer function of the
lme4 package.

Post-estimation we can calculate the VPC. We use the latent variable formulation
of the VPC, in which VPC = τ 2

τ 2+π2/3 [1,2]. The MOR is defined MOR = exp(
√
2τ̂ 2 ×

�−1(0.75)), where� denotes the cumulative distribution function of the standard normal
distribution [3,9,28].

Post-estimation, we assign values to the cluster-specific random effects via empirical
Bayes prediction. An important feature of empirical Bayes prediction is that the predicted
values are shrunk towards the overall average as an increasing function of their unrelia-
bility. Essentially, the predicted values for small clusters are shrunk more than those for
large clusters, reflecting the greater role of chance variability in determining the average
outcomes observed in small clusters. The variance of these empirical Bayes predictions
is therefore smaller than the estimated cluster variance for the population (τ 2). We will
revisit this feature of empirical Bayes predictions when describing one of the bootstrap
procedures.

We describe three different bootstrap procedures for use with multilevel logistic regres-
sion models: (i) the parametric bootstrap; (ii) the residuals bootstrap and (iii) the non-
parametric bootstrap. In each case, the reported parameter estimates and model predic-
tions are those obtained from fitting the above model to the original data. However, the
standard errors and 95% confidence intervals are obtained from the bootstrap procedures.
After describing the three bootstrap procedures, we describe why they cannot be used to
make inferences about predicted cluster-specific random effects and so we describe a new
parametric bootstrap procedure for this purpose.

2.1. The parametric bootstrap

For each of the K clusters, a new simulated cluster-specific random effect is drawn
from the estimated parametric distribution of the cluster-specific random effects: αbs

0j ∼
N(0, τ̂ 2), j = 1, . . . ,K. For each subject in each cluster, a new value for the linear predic-
tor is computed using this simulated cluster-specific random effect, the estimated average
intercept and the estimated vector of regression coefficients: logit(pbsij ) = α̂0 + αbs

0j + Xijβ̂ .
A new binary outcome is then simulated for each subject from a Bernoulli distribution:
Ybs
ij ∼ Be(pbsij ). A random effects logistic regression is then fit to the new data consist-

ing of (Ybs
ij ,Xij). These data consist of the observed covariates and the new simulated

binary outcome. The quantities of interest (e.g. the cluster variance, the VPC, the MOR
or the predicted random effects) are then calculated in the usual way. This process is
repeatedB times. The empirical standard deviation of the quantity of interest is determined
across the B bootstrap replicates. This is an estimate the standard error of the quantity of
interest.

2.2. The residuals bootstrap

The parametric bootstrap described in the previous section assumed the random effects
to be normally distributed with zero mean and constant variance. The residuals bootstrap
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relaxes this parametric assumption. The residuals bootstrap begins with the set of K pre-
dicted cluster-specific random effects obtained from fitting the model to the original data:
{α̂0j : j = 1, . . . , K} . The predicted cluster-specific random effects are then centred around
their sample mean (this is achieved by subtracting the average of the cluster-specific ran-
dom effects from each cluster-specific random effect). Recall that the predicted random
effects exhibit shrinkage. We therefore ‘reflate’ the predicted random effects so that their
empirical variance is equal to the estimated cluster variance derived from the fitted model
[21,22]. We do this by multiplying the predicted random effects by the square root of
the ratio of the estimated cluster variance to the empirical variance of the K predicted
random effects. For each of the K clusters, a new cluster-specific random effect is drawn
with replacement from this modified set of predicted cluster-specific random effects. The
process then proceeds identically as in the parametric bootstrap.

2.3. The nonparametric bootstrap

Goldstein described a nonparametric bootstrap in which a bootstrap sample of clusters
is selected from the original data [22]. Once a cluster has been selected, all of the sub-
jects in that cluster are included in the bootstrap analytic sample. Clusters are drawn with
replacement. When a cluster is drawn multiple times in a given bootstrap sample, these
replicate clusters are given different cluster identifiers to distinguish them in the fitted
model. Once a bootstrap sample has been selected, the procedure proceeds in an identical
fashion to the two previous procedures. While van der Leeden et al. refer to this procedure
as the cases bootstrap [20], we use the terminology of Goldstein [22] and refer to it as the
nonparametric bootstrap.

Davison and Hinkley describe two different versions of the nonparametric bootstrap
for multilevel data [19]. The first version, which is identical to that described above, draws
a bootstrap sample of clusters and then selects all of the subjects contained in those clus-
ters. The second version draws a bootstrap sample of clusters and then selects a bootstrap
sample of the subjects contained in those clusters. They suggest that the former approach
is preferable to the latter procedure, as it ‘more closely mimics the variation properties of
the data’ (p. 101). Goldstein similarly favours the former approach when describing a non-
parametric multilevel bootstrap [22]. Thus, we do not consider the latter approach further
in this article.

There are a few differences between the nonparametric bootstrap and the parametric or
residuals bootstrap that merit highlighting. An advantage to the parametric and residuals
bootstrap procedures is that each bootstrap sample will be of the same size as the original
sample. However, with the nonparametric bootstrap, the size of the bootstrap samples will
vary somewhat across bootstrap replicates, especially when there are few clusters and these
clusters vary in size. However, Goldstein suggests that for moderate or large sample sizes,
the effect of this variability will be minimal. A second difference is that both the paramet-
ric and residuals bootstrap assume that the covariates are fixed. Thus, in each bootstrap
sample, the distribution of baseline covariates is identical to that in the original sample.
Only the binary outcomesmay differ fromwhat was observed in the original sample. How-
ever, with the nonparametric bootstrap procedure, the distribution of baseline covariates
may vary across bootstrap samples. The former approaches may therefore be conceptually
more appealing in a designed experiment in which the distribution of covariates is under
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the control of the investigator. The latter may be conceptually more appealing in obser-
vational studies comparing variation in outcomes for patients hospitalized with a given
medical condition or for students in schools. These are both settings in which one can
think of the observed sample as a random sample from a larger population of clusters in
which there is inherent variability in cluster size (i.e. the patients in a given hospital can be
viewed as one possible realization of the patients who could have been treated at the given
hospital).

2.4. A parametric bootstrap procedure for inferences about predicted
cluster-specific random effects

The three bootstrap procedures described above can be used to make inferences about
estimated model parameters (e.g. the regression coefficients and the cluster variance) and
quantities derived directly from these parameters (e.g. VPC and MOR). However, these
bootstrap procedures cannot be used to make inferences about the predicted cluster-
specific random effects. When using the parametric bootstrap, one draws a new cluster-
specific random effect from the estimated normal distribution with mean zero and whose
variance is equal to the cluster variance. Thus, for a given cluster in the original data, the
mean of the B simulated cluster-specific random effects will be zero and will not be an esti-
mator for the original predicted cluster-specific random effect. A similar problem would
occur with the residuals bootstrap. With the nonparametric bootstrap another problem
arises. Since one selects a random sample of clusters, in a given bootstrap sample, some
clusters will be represented multiple times while others will not be selected at all. Thus, in
the bootstrap sample, there is no longer a correspondence between the sampled clusters
and the original clusters.

We describe a modified parametric bootstrap for making inferences about predicted
cluster-specific random effects (alternatively, for estimating the posterior mean of the ran-
dom effects conditional on the observed data). From the fitted model, we obtain α̂0j and
se(α̂0j), which denote the predicted random effect and its estimated standard error for the
jth cluster (the standard error was obtained from the model-based estimation procedure).
Then for each cluster, in the kth bootstrap replicate, we simulate a cluster-specific random
effect: α

bs(k)
0j ∼ N(α̂0j, se(α̂0j)

2). Having simulated a cluster-specific random effect from
this cluster-specific normal distribution, we then inflate these simulated cluster-specific
random effects so that their sample variance is equal to the cluster variance obtained
from the model fitted to the original sample. This inflation process is identical to how
the predicted cluster-specific random effects were inflated when using the residuals boot-
strap. Once the inflated simulated cluster-specific random effects have been obtained, the
procedure then proceeds in a fashion identical to the parametric and residuals bootstrap.

2.5. Bootstrap confidence intervals

While there are large number of procedures for constructing bootstrap confidence inter-
vals [18,19], we limit our discussion to two popular approaches: normal-theory-based
confidence intervals and bootstrap percentile intervals.

The normal-theory approach uses the standard deviation of the statistic or quantity of
interest across the B bootstrap samples as the bootstrap estimate of the standard error of
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the statistic or quantity of interest. The corresponding 95% normal theory bootstrap confi-
dence interval is then β̂ ± 1.96seBS(β̂), where β̂ denotes the estimated statistic or quantity
of interest from the original sample, while seBS(β̂) denotes the bootstrap estimate of the
standard error of the statistic or quantity of interest (i.e. the standard deviation of the
statistic or quantity of interest across the B bootstrap samples).

Bootstrap percentile intervals are based on the empirical distribution of the statistic or
quantity of interest across the B bootstrap samples. The upper and lower limits of a 95%
bootstrap percentile interval for the statistic of interest are the 2.5th and 97.5th percentiles
of this empirical distribution.

The first approach requires the assumption that the sampling distribution of the statistic
of interest is normal, while the second approach does not make any parametric assump-
tions. However, the first approach may require substantially fewer bootstrap replicates (B)
than the second approach. It has been suggested that standard deviations can be estimated
with relatively few bootstrap replicates (B ≤ 200), while estimating of percentiles requires
substantially more bootstrap replicates (B ≥ 1000) [18] (future research may be required
to examine whether these guidelines are applicable to the multilevel bootstrap). We would
not recommend the normal theory approach for constructing confidence intervals for the
cluster variance, the VPC and the MOR as their sampling distributions are likely to be
skewed and therefore non-normal.

3. Monte Carlo simulations – design

We designed a series of Monte Carlo simulations to compare the performance of the three
bootstrap procedures described in Section 2 to estimate the sampling variability of the
multilevel logistic regression model parameters and associated statistics. We also exam-
ined the performance of the modified parametric bootstrap for making inferences about
the predicted cluster-specific random effects. Our focus is on the random-intercept logis-
tic regression model. Earlier studies focused on the use of the bootstrap to estimate the
sampling variability of the regression coefficients and cluster variance in the multilevel lin-
ear model. In contrast, our primary focus is on estimating the sampling variance of four
different quantities of interest in the multilevel logistic regression model: (i) the cluster
variance (τ 2); (ii) the VPC; (iii) theMOR and (iv) the cluster-specific random effects (α0j).
Our focus is on these four quantities as they are of key importance when studying varia-
tion in outcomes across clusters. We used one set of simulations to examine the use of the
bootstrap to make inferences about the first three quantities and a second set of simula-
tions to examine inferences about the fourth quantity. For completeness, we also evaluate
the performance of bootstrap procedures for making inferences about the regression
coefficients.

3.1. Data generating process

We simulated data for Nsubjects nested within each of Ncluster clusters (for a total sample
size of Nsubjects × Ncluster). For each of the Ncluster clusters, we simulated a cluster-specific
random effect: α0j ∼ N(0, τ 2). For each of the Nsubjects × Ncluster subjects we simulated a
baseline covariate from a standard normal distribution: xij ∼ N(0, 1). For each subject, a
linear predictor was computed as: LPij = α0 + α0j + α1xij, where α0 = −0.25 and α1 = 1
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(these denote the fixed effects in the model). A binary outcome was generated for each
subject from a Bernoulli distribution with parameter pij = exp(LPij)/(exp(LPij) + 1).

3.2. Statistical analyses

In the simulated dataset, we fit a random-intercept logistic regression model using the
adaptiveGauss-Hermite approximation to the log-likelihoodwith seven quadrature points.
We extracted and calculated the following quantities from the fitted model: (i) the esti-
mated cluster variance (τ̂ 2); (ii) the estimated VPC; (iii) the estimated MOR; (iv) the
estimated fixed intercept (α0) and its model-based standard error; (v) the estimated fixed
slope (α1) and its model-based standard error. We delay discussion of the predicted clus-
ter random effects until Section 3.5, as these will require a separate set of Monte Carlo
simulations.

We drew B = 2000 bootstrap samples from the simulated dataset. The statistical anal-
yses described in the previous paragraph were conducted in each of the B bootstrap
samples. Let τ̂ 2bs(k)denote the estimated cluster variance in the kth bootstrap sample. Let
VPCbs(k)and MORbs(k)denote the estimated VPC and MOR in the kth bootstrap sample,
respectively. Let αbs(k)

0 and α
bs(k)
1 denote the estimated fixed intercept and fixed slope in the

kth bootstrap sample, respectively.We computed the standard deviation of τ̂ 2bs(k), VPC
bs(k),

MORbs(k), αbs(k)
0 , and α

bs(k)
1 across the B bootstrap samples. These are the bootstrap esti-

mates of the standard deviation of the sampling distribution of the quantity of interest. This
process was conducted three times, once for each of the three bootstrap procedures.

We constructed 95% confidence intervals for each of the quantities of interest. For the
cluster variance, VPC, and the MOR, we constructed bootstrap percentile intervals using
each of the three bootstrap procedures. For the two fixed effects we constructed model-
based 95% confidence intervals using the estimated standard errors of the fixed effects
obtained from the fitted model in the original simulated sample. Then, for each bootstrap
procedure we constructed two bootstrap confidence intervals: (i) using normal-theory
methods and the bootstrap estimate of the standard error of the fixed effects; (ii) using
bootstrap percentile intervals.

3.3. Summarizing the results of the simulations

The procedure described in Section 3.1 (simulating the data) and Section 3.2 (applying
the bootstrap to a simulated dataset) was repeated 200 times. Thus, we simulated 200
datasets and in each of these 200 datasets, we drew 2000 bootstrap samples using each of
the three bootstrap procedures. This process was computationally intensive, as it involved
fitting 1,200,200 multilevel logistic regression models for each scenario (200 in the main
simulated datasets+ (200 × 2,000 × 3) in the bootstrap samples).

The true variability of the sampling distribution of each of the quantities of interest
(τ 2, VPC, MOR, α0 and α1) was determined by computing the standard deviation of the
estimated quantities across the 200 simulated datasets. These standard deviations reflect
the true sampling variability of the quantities of interest.

For each of these quantities of interest, we obtained a bootstrap estimate of the standard
error of that quantity in each of the 200 simulated datasets (as described in Section 3.2).
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We computed the mean of the estimated bootstrap standard error across the 200 simu-
lated datasets. We then computed the ratio of the mean estimated standard deviation of
the sampling distribution to the true standard deviation of the sampling distribution of the
quantity of interest. If this ratio is equal to one, then the bootstrap estimate of the sampling
variability is accurately estimating the variation of the sampling distribution. If this ratio is
greater than one, then the bootstrap estimate of the sampling variability is biased upwards
(the bootstrapped standard errors are too large), and if it is less than one, the bootstrap esti-
mate of the sampling variability is biased downwards (the bootstrapped standard errors are
too small).

For each quantity and each confidence interval, we computed the proportion of esti-
mated 95% confidence intervals that contained the true value of the quantity. Due to our
use of 200 simulation replicates, an empirical coverage rate that was less than 0.920 or
that was greater than 0.980 was judged to be statistically significantly different from the
advertised rate of 0.95.

3.4. Factors in the design of the simulations

We used a full-factorial design in which the following three factors were allowed to vary:
(i) the number of subjects per cluster (Nsubjects); (ii) the number of clusters (Nclusters); (iii)
the cluster variance (τ 2). The number of subjects per cluster took two values: 10 and 20.
The number of clusters took three values: 25, 50 and 100. The cluster variance took four
values: 0.033, 0.173, 0.366 and 0.822 (these correspond to VPCs of 0.01, 0.05, 0.10 and
0.20, respectively and to MORs of 1.19, 1.49, 1.78 and 2.37, respectively). We thus consid-
ered 24 different scenarios (which involved fitting a total of 28,804,800 multilevel logistic
regression models). The simulations were conducted using the R statistical programming
language (version 3.5.1).

3.5. Simulations to examine the performance of themodified parametric
bootstrap formaking inferences about predicted cluster-specific random effects

We conducted a set of simulations to compare the performance of the modified paramet-
ric bootstrap procedure to make inferences about the Ncluster predicted cluster-specific
random effects and their standard errors (α̂0j and se(α̂0j)).

These simulations were similar to those described above, with one modification. This
modification was due to the fact that the predicted cluster-specific random effects are not,
in themselves, parameters. Thus, rather than generate a set of Ncluster random effects within
each of the 200 replicates for a given scenario (as was done in the simulations described
above), we generated Ncluster random effects that were then fixed across the 500 replicates
for a given scenario (i.e. the cluster-specific random effects for a given cluster did not vary
across simulation replicates). To do otherwise, and simulate the cluster-specific random
effects within each iteration of the simulation, would result in the mean cluster-specific
random effect for each observed cluster being zero across the simulation iterations. While
this modification may appear atypical, such an approach has previously been used when
examining the effect of misspecification of the distribution of the random effects when
making inferences about cluster-specific random effects [29].
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The multilevel logistic regression model fit in each of the 500 simulated datasets pro-
vided predicted values for the cluster-specific random effects and their associated standard
errors (α̂0j and se(α̂0j)).We examined the degree towhich themodel-based standard errors
(se(α̂0j)) accurately estimated the standard deviation of the sampling distribution of the
predicted random effects (α0j). We did the following for each cluster: (i) computed the
standard deviation of each predicted cluster random effect (α̂0j) across the 500 simulated
datasets (i.e. the true sampling variability due to sampling different individuals in each
dataset); (ii) computed the mean estimated model-based standard error (se(α̂0j)) of each
predicted cluster random effect across the 500 datasets (i.e. the model-based estimate of
the sampling variability) and (iii) computed the ratio of the quantity obtained in (ii) to that
obtained in (i). If this ratio is equal to one, then the estimatedmodel-based standard error is
accurately estimating the standard deviation of the sampling distribution of the predicted
cluster random effect. If this ratio is greater than one, then the model-based estimate of
the sampling variability is biased upwards (the model-based standard error is too large),
and if it is less than one, the model-based estimate of the sampling variability is biased
downwards (the model-based standard error is too large).

We then repeated this process using the modified parametric bootstrap estimate of
the standard error of the predicted cluster-specific random effect. For a given simulation
replicate, we had B = 2000 bootstrap replicates. We used the standard deviation of each
predicted cluster random effect α

bs(k)
0j (k = 1, . . . , 2000) as the bootstrap estimate of the

standard error for each cluster.
Note that examining the sampling variability of the random effects was done separately

for each of the Ncluster random effects. When conducting this procedure for the predicted
cluster-specific random effects, we obtained Ncluster ratios, one for each of the predicted
cluster-specific random effects. We summarized each distribution of Ncluster ratios using
the minimum, 25th percentile, median, 75th percentile and the maximum.

Within each bootstrap replicate for each simulation replicate, we constructed confi-
dence intervals for the predicted cluster-specific random effects and determined whether
the estimated confidence intervals contained the true cluster-specific random effects that
had been generated prior to any of the simulation replicates. For a given cluster, we com-
puted the proportion of confidence intervals across all bootstrap and simulation replicates
that contained the true value of the cluster-specific random effect. This was the empiri-
cal coverage rate of the bootstrap confidence interval. We thus obtained Ncluster empirical
coverage rates, one for each of the Ncluster clusters. For each simulation replicate, we con-
structed three sets of 95% confidence intervals for each cluster-specific random effect:
(i) normal-theory-based confidence intervals using the model-based standard errors for
the predicted cluster-specific random effects; (ii) bootstrap confidence intervals using
normal-theorymethods and the bootstrap estimates of the standard errors of the predicted
cluster-specific random effects and (iii) bootstrap percentile intervals.

We examined a total of 28 different scenarios.We examined the 24 scenarios considered
above in the primary set of simulations. We also examined four additional scenarios in
which the number of clusters and number of subjects per cluster were equal to 25 and 100,
respectively, and the cluster variance was the same as the four values in the primary set of
simulations. The rationale for this extra set of four scenarios was to examine the quality of
inferences about cluster-specific performance in settings with low numbers of clusters, but
large cluster sizes (i.e. hospitals).
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For this second set of simulations we used 500 simulation replicates for each scenario
and 2000 bootstrap samples per simulation replicate (we were able to use 500 simulation
replicates as only one bootstrap procedure was being examined in this set of simulations).
This second set of simulations was also computationally intensive, as it involved fitting
1,000,500multilevel logistic regressionmodels for one scenario (500 in themain simulated
datasets+ (500 × 2000) in the bootstrap samples). Across the 28 scenarios, this entailed
fitting 28,014,000 multilevel logistic regression models (for a total of 56,818,800 multilevel
logistic regression models across the two sets of simulations).

4. Monte Carlo simulations – results

4.1. Inferences onmeasures of variance and heterogeneity

The ratio of the mean bootstrap estimate of the standard error of the sampling distribution
of the given quantity to the empirical standard deviation of the sampling distribution of
the estimated quantity is reported in Figure 1 (cluster variance, τ 2), Figure 2 (VPC) and
Figure 3 (MOR). Each figure is a dot chart, with 24 horizontal lines, one for each of the 24
scenarios in the Monte Carlo simulations. The first scenario (reported on the top horizon-
tal line of the dot chart), for example, is labelled ‘100 & 20 & 0.2’ to indicate that in this
scenario there are 100 clusters, 20 subjects per cluster, and a VPC of 0.2 (corresponding
to a cluster variance of 0.822). The other scenarios are labelled in a similar fashion. On
each horizontal line are three plotting symbols, one depicting the estimated ratio for each
of the three bootstrap procedures. On each figure, we have superimposed a vertical line
denoting a ratio of one. When the ratio is equal to one, then the standard deviation of the
bootstrap estimates accurately estimates the empirical standard deviation of the sampling
distribution of the quantity of interest. When the ratio is less than one than the bootstrap
standard error underestimates the true sampling variability and when the ratio is greater
than one the bootstrap standard error overestimates the true sampling variability. Note that
the same scale for the horizontal axis is used for all three figures.

Figure 1 shows that when estimating the standard deviation of the sampling distribution
of the cluster variance (τ 2), the ratio of the mean bootstrap estimate of the standard devi-
ation to the empirical standard deviation of the sampling distribution ranged from 0.89 to
1.21 for the parametric bootstrap (squares), with a median of 0.99 across the 24 scenarios.
The standard deviation of the ratio across the 24 scenarios was 0.082. For the residuals
bootstrap (circles), the corresponding range was 0.89–1.21, with a median of 0.99. The
standard deviation of the ratio across the 24 scenarios was again 0.082. For the nonpara-
metric bootstrap (triangles), the corresponding rangewas 0.83–1.04, with amedian of 0.95.
The standard deviation of the ratio across the 24 scenarios was 0.054.

For each bootstrap procedure, we used a linear model to regress the absolute devia-
tion of the 24 ratios from unity on the three factors in the simulation (number of clusters,
number of subjects per cluster and cluster variance). Each of these factors was treated as
a categorical variable in the linear model. For the parametric bootstrap, only the clus-
ter variance was associated with variation in the absolute deviation of the variance ratio
from unity (p = .01). The number of clusters (p = .54) and number of subjects per cluster
(p = .47) were not associated with variation in this deviation. The absolute deviation of
the ratio from unity decreased by between 0.08 and 0.09 when the VPC was 0.05, 0.10 or
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Figure 1. Ratio of mean bootstrap estimate of standard deviation to the empirical standard deviation
of sampling distribution: τ 2.
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Figure 2. Ratio of mean bootstrap estimate of standard deviation to the empirical standard deviation
of sampling distribution: VPC.
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Figure 3. Ratio of mean bootstrap estimate of standard deviation to the empirical standard deviation
of sampling distribution: MOR.
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0.20 compared to when the VPC was equal to 0.01. Thus, the ratio was further from unity
when the VPC was equal to 0.01 compared to larger values of VPC. Similar results were
obtainedwhen a linearmodel was used for the results of the simulations when the residuals
bootstrap procedure was used. For the nonparametric bootstrap, both the number of clus-
ters (p = .02) and the cluster variance (p = .02) were associated with the variation in the
absolute deviation of the ratio fromunity.When the number of clusters was equal to 50, the
absolute deviation of the ratio from unity decreased by 0.05 compared to when the number
of clusters was equal to 25.When the VPCwas equal to 0.10 or 0.20, the absolute deviation
of the ratio from unity decreased by 0.05 or 0.06 compared to when the VPC was equal
to 0.01.

Figure 2 shows that when estimating the standard deviation of the sampling distribu-
tion of the VPC, the ratio of the mean bootstrap estimate of the standard deviation to the
empirical standard deviation of the sampling distribution ranged from 0.88 to 1.17 for the
parametric bootstrap, with amedian of 0.98 across the 24 scenarios. The standard deviation
of the ratio across the 24 scenarios was 0.079. For the residuals bootstrap, the correspond-
ing range was 0.88–1.17, with a median of 0.97. The standard deviation of the ratio across
the 24 scenarios was 0.081. For the nonparametric bootstrap, the corresponding range was
0.80–1.03, with amedian of 0.93. The standard deviation of the ratio across the 24 scenarios
was 0.057.

The general patterning of the ratios for the VPC in Figure 2 largely mimic those for
the cluster variance shown in Figure 1. The similarity in the patterning of the ratios for
the cluster variance and VPC is perhaps expected given that the latter is a deterministic
function of the former, VPC = τ 2

τ 2+π2/3 .
Figure 3 shows that when estimating the standard deviation of the sampling distribu-

tion of the MOR, the ratio of the mean bootstrap estimate of the standard deviation to
the empirical standard deviation of the sampling distribution ranged from 0.91 to 1.10
for the parametric bootstrap, with a median of 1.00 across the 24 scenarios. The standard
deviation of the ratio across the 24 scenarios was 0.050. For the residuals bootstrap, the
corresponding range was 0.91–1.10, with a median of 0.99. The standard deviation of the
ratio across the 24 scenarios was 0.051. For the nonparametric bootstrap, the correspond-
ing range was 0.76–1.07, with a median of 0.95. The standard deviation of the ratio across
the 24 scenarios was 0.079.

The general patterning of the ratios for the MOR, shared many similarities with the
above two sets of results; again this is perhaps expected given that the MOR is also a
deterministic function of the cluster variance, MOR = exp(

√
2τ̂ 2 × �−1(0.75)).

In summarizing the first set of simulations, in general, the parametric and residuals
bootstrap should be preferred over the nonparametric bootstrap. The median ratio for
the former two bootstrap procedures was always closer to unity than was the ratio for the
nonparametric bootstrap procedure.

Empirical coverage rates of estimated 95% confidence intervals are reported in Figure 4.
Note that since we use only bootstrap percentile interval for these quantities, and because
the VPC and MOR are derived directly from the cluster variance, then empirical coverage
rates for confidence intervals for these three quantities are identical.Wehave superimposed
three vertical lines on this figure. Themiddle solid vertical line denotes the advertised cov-
erage rate of 0.95. The outer two dashed vertical lines denote coverage rates of 0.92 and
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0.98, such that empirical coverage rates between these two quantities are not statistically
significantly different from the advertised rate (based on a standard normal -theory test).
When the cluster variance was low (VPC = 0.01), the empirical coverage rate from the
nonparametric bootstrap tended to diverge from those of the other two bootstrap proce-
dures (which had coverage rates very similar to one another).When the number of clusters
was low (K = 25), all three bootstrap procedures tended to result in confidence intervals
with suboptimal coverage rates. In general, the nonparametric bootstrap resulted in confi-
dence intervals with empirical coverage rates that were lower than those for the other two
bootstrap procedures. Results were inconsistent as to which of the parametric and residuals
bootstrap was to be preferred, with differences between the two often being negligible.

4.2. Inferences for fixed effects

As inferences on fixed effects were of secondary interest, these results are reported in
Appendix A in the online supplemental material.

4.3. Inferences on predicted cluster-specific random effects

The performance of the modified parametric bootstrap procedure for estimating the
standard errors of predicted cluster-specific random effects is reported in Figure 5. We
compared two procedures for estimating these standard errors: (i) model-based estimates
of the standard errors of the predicted random effects derived from the fitted random
effects logistic regression model and (ii) the modified parametric bootstrap. The results
are presented using a dot chart with one row per scenario. On each row and for each of
the two estimation procedures are five plotting symbols, representing the minimum (solid
square), 25th percentile (solid circle),median (solid triangle), 75th percentile (upside down
hollow triangle), and maximum (hollow square with diagonal cross) of the Ncluster ratios
comparing the mean estimated standard error to the empirical standard deviation of the
sampling distribution of the random effects across the Ncluster random effects (the results
for each estimation procedure have been jittered vertically so as to not obscure each other).

Acrossmany of the 28 scenarios (recall thatwe added four new scenarioswith 25 clusters
and 100 subjects per cluster), the use of the modified parametric bootstrap tended to result
in estimates of the standard errors of the predicted cluster-specific random effects that
were closer to the standard deviation of the empirical sampling distribution than were the
model-based estimates of standard errors. A notable exceptionwaswhenK = 25 and there
was N = 100 subjects per cluster and the VPC was at least 0.05.

Across the 28 scenarios, the median ratio of the mean model-based estimate of the
standard error to the standard deviation of the empirical sampling distribution across the
Ncluster random effects (solid triangles) ranged from 1.07 to 1.71, with a median of 1.30
(25th and 75th percentiles: 1.16 and 1.41). For the modified parametric bootstrap proce-
dure, the range of ratios was 1.05–1.42, with a median of 1.20 (25th and 75th percentiles:
1.10 and 1.27). In general, the bootstrap procedures had superior performance to that of the
model-based estimates of the standard errors of the cluster-specific random effects. These
findings suggest that, on average, the modified parametric bootstrap results in improved
estimates of the standard errors of the cluster-specific random effects compared to the
model-based estimates.
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Figure 4. Empirical coverage rates of 95% confidence intervals for τ 2/VPC/MOR.

In a given scenario, there are Ncluster cluster-specific random effects. Thus, there are
Ncluster empirical coverage rates for a given scenario and for a given estimation proce-
dure. Figure 6 depicts the median empirical coverage rate across the Ncluster random
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Figure 5. Ratio of mean estimated standard error to empirical standard deviation of sampling
distribution.

effects. Coverage of model-based confidence intervals, normal-theory parametric boot-
strap confidence intervals, and parametric bootstrap percentile intervals are reported
(unlike Figure 5, in which we report a five-number summary for each of the two estimation
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Figure 6. Coverage rates of 95% CIs for cluster-specific random effects.

methods, the use of threemethods for constructing confidence intervals resulted in a figure
that was too cluttered and difficult to interpret if a five-number summary was used).

The median empirical coverage rates of the model-based confidence intervals across
the Ncluster random effects ranged from 0.51 to 0.98, with a median of 0.92 (25th and 75th
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percentiles: 0.79 and 0.96). The median empirical coverage rates of the normal-theory
bootstrap confidence intervals across the Ncluster random effects ranged from 0.57–0.99,
with a median of 0.93 (25th and 75th percentiles: 0.76 and 0.97). The median empirical
coverage rates of the bootstrap percentile intervals across theNcluster randomeffects ranged
from 0.67 to 1.00, with a median of 0.96 (25th and 75th percentiles: 0.88 and 0.99).

In general, coverage rates were poor for the model-based confidence intervals when the
cluster variance was low (VPC = 0.01), and improved as the cluster variance increased.
Except when either the number of subjects per cluster was equal to 100 or both the number
of clusters and subjects per cluster were high (100 and 20, respectively), then the percentile
bootstrap had superior coverage compared to the model-based confidence intervals when
the cluster variance was low (VPC = 0.01). In all 28 scenarios, the median empirical cov-
erage rate for the parametric bootstrap percentile intervals was higher than the median
empirical coverage rate for the parametric bootstrap normal-theory confidence intervals.

5. Case study

The primary objective of the study was to evaluate the performance of difference boot-
strap procedures for use with the multilevel logistic regression model. To illustrate the
applications of these procedures using real data, a case study is described and reported
in Appendix B in the online supplemental material.

6. Discussion

We examined the performance of three different bootstrap procedures for estimating the
standard deviation of the sampling distribution of different estimated quantities in a ran-
dom effects logistic regressionmodel: the cluster variance the VPC, theMOR and the fixed
effects. We also proposed a new parametric bootstrap procedure for estimating the stan-
dard errors and 95% confidence intervals of the predicted cluster-specific random effects.
We summarize our findings and recommendations as follows: first, the parametric and
residuals bootstrap resulted in more accurate estimation of the sampling variance of the
cluster variance, the VPC and the MOR than did the nonparametric bootstrap. Second,
the three bootstrap procedures had approximately equivalent performance for estimating
standard errors of fixed effects. Third, the modified parametric bootstrap tended to result
in improved estimates of the standard errors of predicted cluster-specific random effects
when the number of clusters or number of subjects per cluster was not large.

Prior research on the multilevel bootstrap was restricted to settings with continuous
outcomes [19,20,21,22]. In biomedical research, binary or dichotomous outcomes are com-
mon. We have described three bootstrap procedures for use with the multilevel logistic
regression model. The use of these procedures allows for quantification of the uncertainty
in measures of cluster variation in subject outcomes. Furthermore, none of these prior
studies examined the use of bootstrap procedures for estimating the standard errors of
predicted cluster-specific random effects. In provider profiling there is often an interest in
creating confidence intervals around these quantities. The current paper describes a novel
bootstrap procedure for this purpose.

When using the residuals bootstrap with the multilevel linear model, Carpenter et al.
and Goldstein describe a procedure for reflating the set of predicted random effect values
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so that they have the correct variance [21,22]. We found that, in the context of the mul-
tilevel logistic regression model, the proposed inflation factor resulted in relatively good
performance. The residuals bootstrap had poor performance when the inflation factor was
omitted (results not shown).

Multilevel logistic regressionmodels are increasingly used to quantify variation and het-
erogeneity in outcomes across clusters [28].Measures such as the cluster variance, the VPC
and the MOR allow for a quantification of variance and heterogeneity. We demonstrated
that multilevel bootstrap procedures can be used to estimate the sampling variability of
these quantities. There is often interest in testingwhether the cluster variation is statistically
significantly different from zero. This can be tested using either a modified Wald test or a
modified likelihood ratio test, with the latter being preferable [12]. The use of the bootstrap
can be used to complement these tests. The American Statistical Association has recently
released a statement on the use and interpretation of p-values [13]. Among the many sug-
gestions are (i) not to base ‘conclusions solely onwhether an association or effect was found
to be ‘statistically significant’’ and (ii) ‘don’t conclude anything about scientific or practical
importance based on statistical significance (or lack thereof)’. Our examination of the use
of the bootstrapwithmultilevel data is in keepingwith the spirit of these recommendations.
Using the bootstrap to estimate the sampling variability of measures of variance and het-
erogeneity allows for an assessment of the precision with which these statistics or metrics
are estimated in a given analysis. Furthermore, the use of the bootstrap permits construc-
tion of confidence intervals around these quantities, which provide a richer interpretation
of the data than a simple reliance on statistical significance testing. Similarly, the use of the
bootstrap can be used to construct confidence intervals around cluster-specific predicted
random effects, freeing the analyst from a strict reliance on formally testing whether each
predicted random effect differs from zero.

Multilevel analysis is also increasingly being used to identify providers (e.g. hospitals
or schools) that have performance that differs from that of average providers [17,30–32].
Such identification is frequently based on determination of whether confidence intervals
for predicted cluster-specific random effects exclude the null value. We have described a
modified parametric bootstrap procedure can be used to estimate the standard errors of
predicted cluster-specific random effects.While we described the use of themodified para-
metric bootstrap in the context of a multilevel logistic regression model, we anticipate that
it can also be used with the multilevel linear model.

In our second set of Monte Carlo simulations we found that the modified parametric
bootstrap tended to performwell for estimating the standard errors of the predicted cluster-
specific random effects. In our case study, we observed that the bootstrap estimates of the
standard errors of the predicted hospital-specific random effects tended to be substantially
smaller than themodel-based estimates of the standard errors. This sharp divergence from
the model-based standard errors in an applied setting suggests that the proposed modi-
fied parametric bootstrap for estimating the standard errors of predicted cluster-specific
random effects requires greater study before wider adoption.

Only a few previous studies have conducted Monte Carlo simulations to examine the
performance of bootstrap procedures with multilevel data. All these simulation studies
were limited to themultilevel linearmodel. Carpenter et al. compared the parametric boot-
strap with the residuals bootstrap for creating bootstrap percentile intervals for regression
coefficients and the cluster variance [21]. They simulated data so that the cluster-specific
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random effects had non-normal distributions. They observed that empirical coverage rates
were better for the residuals bootstrap than for the parametric bootstrap, with the greatest
improvement being observed for the variance components. They suggest that the residuals
bootstrap should be preferred over the parametric bootstrap. van der Leeden, Busing and
Meijer used Monte Carlo simulations to examine the performance of different bootstrap
procedures for use with the multilevel linear model [24]. As in Carpenter et al., they exam-
ined scenarios in which the residuals were severely skewed, as opposed to being normally
distributed. They examined four different bootstrap procedures: the parametric bootstrap,
the nonparametric bootstrap, and two versions of the residuals bootstrap. They suggest
that a version of the residuals bootstrap works well in settings in which the sample size is
relatively small and the residuals have a skewed distribution. Both of these studies simu-
lated data with non-normally distributed random effects. Verbeke and Lesaffre found that,
when using linear mixed effects models for longitudinal data, assuming that the random
effects were normally distributed when, in fact they were not, resulted in estimated fixed
effects and variance components that were consistent and normally distributed [33]. How-
ever, a correction was necessary to obtain correct estimates of the standard errors of the
estimated fixed effects and variance components.

The current study is subject to certain limitations. These limitations pertain to the use of
simulations to examine the performance of different bootstrap procedures. Simulations of
bootstrap procedures are extremely computationally intensive and time-consuming. The
first limitation is that we were only able to examine a limited number of scenarios. The cur-
rent study involved fitting a total of 56,818,800 multilevel logistic regression models across
the two sets of simulations. Increasing the number of scenarios was not feasible from a
computational perspective. Fitting these models became increasingly time-consuming as
the number of clusters or the number of subjects per cluster increased. A second limitation
pertains to the limited number of simulation replicates per scenario. Due to the compu-
tational intensity of the simulations, we restricted our design to 200 simulation replicates
per scenario. Accordingly, there may be non-negligible Monte Carlo error in the reported
results. However, due to the computational intensity of these simulations, increasing the
number of simulation replicates was not readily feasible. The third limitation relates to
the number of bootstrap replicates. The precision with which endpoints of bootstrap per-
centiles are estimated would likely increase were more bootstrap replicates used. However,
for computational reasons, it was not feasible to increase the number of bootstrap replicates
beyond 2000 replicates. However, the use of 2000 replicates has been suggested by differ-
ent sets of authors as reasonable when estimating bootstrap percentile intervals [18,19].
A fourth limitation was the restriction of our simulations to balanced settings in which all
the clusters had the same number of subjects. Time constraints on the simulations required
this restriction. However, we do not anticipate that imbalanced cluster sizes would result in
substantially different results. A fifth limitation was that we restricted our attention to sim-
ulation scenarios in which the random effects followed a normal distribution. It is possible
that the performance of the parametric bootstrap would diverge from that of the residuals
bootstrap if the random effects were not normally distributed. However, due to the compu-
tationally intensive nature of the simulations we were unable to examine this in the current
study. Earlier research on the multilevel logistic regression model found that estimation of
fixed effects was insensitive to misspecification of the distribution of the random effects
[29]. However, estimation of cluster-specific predicted random effects and corresponding
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confidence intervals was poor when the true distribution of random effects was very heavy
tailed. Future research should examine the performance of the multilevel bootstrap for
use with the multilevel logistic regression model in such scenarios. We hypothesize that
in the presence of non-normally distributed cluster-specific random effects, the perfor-
mance of the parametric bootstrap would diverge from that of the residuals bootstrap.
Given the similar performance of these two procedures in our settings, we suggest that
applied researchers consider preferentially use the residuals bootstrap, as we suspect that
it may be more robust to violations of the normality assumption. A sixth limitation is that
we have restricted our focus to random intercept models and have not considered random
slope models in which the regression slopes are allowed to vary randomly across clusters.
Again, due to the computational burden of the simulations, we were unable to include
random coefficient models in our current study.

In summary, bootstrap methods can be used with the multilevel logistic regression
model. These procedures permit quantification of the uncertainty in estimated measures
of variance and heterogeneity. In general, the parametric or residuals bootstrap should be
preferred over the nonparametric bootstrap. Bootstrapmethods can lead to improved esti-
mates of the standard errors of the predicted cluster-specific random effects compared to
the model-based estimates obtained from the fitted model.
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