
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=goms20

Optimization Methods and Software

ISSN: 1055-6788 (Print) 1029-4937 (Online) Journal homepage: https://www.tandfonline.com/loi/goms20

On solving the densest k-subgraph problem on
large graphs

Renata Sotirov

To cite this article: Renata Sotirov (2019): On solving the densest k-subgraph problem on large
graphs, Optimization Methods and Software, DOI: 10.1080/10556788.2019.1595620

To link to this article: https://doi.org/10.1080/10556788.2019.1595620

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 25 Mar 2019.

Submit your article to this journal

Article views: 703

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=goms20
https://www.tandfonline.com/loi/goms20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2019.1595620
https://doi.org/10.1080/10556788.2019.1595620
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2019.1595620
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2019.1595620
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2019.1595620&domain=pdf&date_stamp=2019-03-25
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2019.1595620&domain=pdf&date_stamp=2019-03-25

OPTIMIZATION METHODS & SOFTWARE
https://doi.org/10.1080/10556788.2019.1595620

On solving the densest k-subgraph problem on large graphs

Renata Sotirov

Department of Econometrics and OR, Tilburg University, Tilburg, Netherlands

ABSTRACT
The densest k-subgraph problem is the problemof finding a k-vertex
subgraph of a graph with the maximum number of edges. In order
to solve large instances of the densest k-subgraph problem, we
introduce two algorithms that are based on the random coordinate
descent approach. Although it is common use to update atmost two
randomcoordinates simultaneously in each iterationof analgorithm,
our algorithms may simultaneously update many coordinates. We
show the benefit of updating more than two coordinates simultane-
ously for solving the densest k-subgraph problem, and solve large
problem instances with up to 215 vertices.

ARTICLE HISTORY
Received 4 June 2018
Accepted 12 March 2019

KEYWORDS
Densest k-subgraph
problem; random coordinate
descent algorithm; large
graphs

2010MATHEMATICS
SUBJECT
CLASSIFICATIONS
90C06; 90C30; 90C26

1. Introduction

The densest k-subgraph (DkS) problem is the problem of finding a subgraph of the given
graph with exactly k vertices such that the number of edges in the subgraph is maximal.
The densest k-subgraph problem is known in the literature under various names, includ-
ing the heaviest unweighted subgraph problem [35], the k-cluster problem [15], or the
k-cardinality subgraph problem [14]. The densest k-subgraph problem can be seen as a spe-
cial case of themaximum k-dispersion problem [47]. Themaximum k-dispersion problem
is the problem of finding k vertices in a graph that maximize a function of the distances
between the chosen vertices. The DkS problem can also be seen as a special case of the
heaviest k-subgraph problem, which is the problem of finding a subgraph with k vertices
that maximizes the sum of the edge weights in the subgraph.

The DkS problem is known to be NP-hard. In [21] it is proven that the problem is NP-
hard for graphs whosemaximumdegree is equal to three. The densest k-subgraph problem
is NP-hard even for very restricted classes of graphs, such as bipartite and chordal graphs
[15], or planar graphs [30]. However, it is trivial on trees. The DkS problem is solvable in
polynomial time on graphs whosemaximum degree is equal to two, as well as on cographs,
split graphs, and k-trees, see [15].

There are many applications of the problem. The densest k-subgraph problem plays a
role in analysing web graphs and different social networks. Namely, one of the main chal-
lenges for web search engines is the detection of link spams, see Henzinger et al. [28]. Link
spams are websites that are linked to each other in order to manipulate the search engine

CONTACT Renata Sotirov r.sotirov@uvt.nl

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in anymedium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2019.1595620&domain=pdf&date_stamp=2019-03-23
mailto:r.sotirov@uvt.nl
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 R. SOTIROV

rankings. Many of the dense subgraphs in web graphs are link spams. Gibson et al. [23]
propose an algorithm that extracts dense subgraphs in huge graphs in order to identify
link spams. Angel et al. [5] analyse social networks to identify real-time stories by search-
ing for dense subgraphs of the given size. The heaviest k-subgraph problem can be used
to create interest groups of people. For example, when organizing an opening party where
participants should be as similar as possible, or to analyse political vote data, see [50]. The
heaviest k-subgraphmay be used to find teams of employees with the highest collaborative
compatibility, see [22].

We next list problems that are related to the DkS problem. The following two versions
of the densest k-subgraph problem are introduced in [4]: the densest at-least-k-subgraph
problem and the densest at-most-k-subgraph problem. The densest at-least-k-subgraph
(resp. the densest at-most-k-subgraph) problem is the problem of finding an induced sub-
graph of highest average degree with at least (resp. at most) k vertices. Andersen and
Chellapilla [4] present an efficient 1/3-approximation algorithm for the densest at-least-
k-subgraph problem. There are no efficient approximation algorithms for the densest
at-most-k-subgraph problem. The problem of finding a subgraph of maximum node
weights with exactly k edges is considered in [25]. The sparsest k-subgraph problem finds
the subgraph with k vertices and the minimum number of edges, see [11].

Outline and main results. This paper is structured as follows. Section 2 presents an inte-
ger programming formulation of the problem and lists various solving approaches from
the literature. In Section 3 we provide an overview of recently introduced methods for
solving large scale optimization problems. We present two new algorithms for solving the
DkS problem in Section 4. Our algorithms are applied to the relaxation of the DkS prob-
lem, see (6) Our first algorithm considers a quadratic optimization subproblemwith linear
constraints, and the second one a linear programming optimization subproblem. Themain
difference between the here presented algorithms and those in the literature is that we allow
updating more than two random coordinates simultaneously in each iteration of our algo-
rithms.We show here that for an appropriate number of simultaneous updates, our second
algorithm converges to an integer solution vector (!). This convergence is not proven with
theoretical convergence analysis, but only empirically observed.

Our extensive numerical results show that we find densest subgraphs in large graphs in
short time, see Section 5. For example, we find a densest subgraph with 25 vertices in a
graph with 23,133 vertices and 93,497 edges in less than 4min. Since the densest subgraph
is a clique in this case, we know that we found an optimal subgraph. Exact approaches for
finding densest k-subgraphs can not cope with graphs that have more than 160 vertices.
On the other hand, the best heuristic approaches are tested on random instances with at
most 3000 vertices. We test our algorithms on real-world data and on randomly generated
data with up to 32,768 vertices.

2. The problem formulation and solution approaches

The densest k-subgraph problem can be formulated as a quadratic optimization problem
with binary variables. Let G = (V ,E) be an undirected graph with vertex set V, |V| = n,
and edge set E, |E| = m. Let k be a positive integer between 3 and n−2, and xi a binary
variable that obtains value one if vertex i is in the densest k-subgraph and zero otherwise.
We denote by A the adjacency matrix of G.

OPTIMIZATION METHODS & SOFTWARE 3

The densest k-subgraph problem can be formulated as follows:

max xTAx

s.t.
n∑

i=1
xi = k

xi ∈ {0, 1}, ∀ i ∈ {1, . . . , n}.

(1)

In the sequel, we list approaches that are used for solving the DkS. Billionnet [8] derived
four different mixed-integer linear programming formulations for the heaviest k-subgraph
problem, and three differentmixed-integer linear programming formulations for the dens-
est k-subgraph problem. Numerical results in [8] show that the quality of a formulation
is related to the density of an instance. In [9], the authors solve instances of the densest
k-subgraph problemby reformulating the non-convex quadratic problem (1) into an equiv-
alent problem with a convex objective function. Such reformulation requires solving an
associated semidefinite programming problem. The reformulated problem is then solved
by using a branch-and-bound algorithm. This approach is tested on random graphs with
at most 100 vertices. Numerical results show that the proposed convexification approach
improves efficiency of the branch and bound algorithm. However, solving the related
semidefinite program may be costly.

Malick and Roupin [40] solve instances of theDkS problem to optimality using semidef-
inite programming. Namely, they solve a semidefinite programming problem in each node
of a branch and bound tree. The largest solved instances of the DkS has 120 vertices. Kris-
lock et al. [37] report solving hard instances of the DkS problem with up to 160 vertices by
using a semidefinite branch and bound algorithm. Semidefinite programming relaxations
are also used in the design of approximation algorithms for the DkS, see e.g. [20,53]. One
can find an overview of SDP relaxations for the densest k-subgraph problem in [48]. The
above mentioned results show that it is extremely difficult to find a densest k-subgraph in
a graph that has more than 160 vertices by using exact approaches.

A number of recent results have focused on recovering planted k-subgraphs by using
convex relaxation techniques, see e.g. [1,2]. Ames and Vavasis [2] show that the maximum
clique in a graph consisting of a single large clique can be identified from the minimum
nuclear norm solution of a particular system of linear inequalities. Ames [1] establishes
analogous recovery guarantees for a convex relaxation of the planted clique problem that
is robust to noise. For a survey on the topic see Li et al. [39].

In 2001, Feige et al. [19] provide an approximation algorithm for the DkS problem with
approximation ratio of nδ−ε for some small ε. In [7], it is presented an approximation
algorithm that for every ε > 0 approximates the DkS problem within a ratio of n1/4+ε in
nO(1/ε) time. The most recent results on the superpolynomial approximation algorithms
for the DkS one can find in [12]. In [32], Khot proves that there does not exist a polyno-
mial time approximation scheme (PTAS) for the densest k-subgraph problem in general
graphs. However, there exist polynomial time approximation schemes for a few special
problem cases. Arora et al. [6] provide a PTAS for the DkS problem on dense instances.
Nonner [45] drives a PTAS for interval graphs.

Different heuristic methods are tested for solving the densest k-subgraph problem. Kin-
caid [33] uses simulated annealing and tabu search heuristics to solve theDkS problem.His

4 R. SOTIROV

results show that the tabu search algorithm performs better than the simulated annealing
algorithm for solving the densest k-subgraph problem. In [41], Macambira implements
tabu search heuristics for the heaviest k-subgraph problem. Although the tabu search
algorithm from [41] does not perform diversification, it outperforms the greedy random-
ized adaptive search procedure. A variable neighborhood search (VNS) heuristics for the
heaviest subgraph problem and graphs up to 3000 vertices is implemented by Brimberg et
al. [13]. Their results show that the VNS outperforms the tabu search heuristic and multi-
start local search heuristics in solving theDkS. TheVNS performs extremely well on sparse
graphs. Running times needed to find the best solutions for instances with 3000 vertices is
about 425 s. A heuristic based on a two-step filtering approach is used to extract dense web
communities in Dourisboure et al. [16].

3. Overview of methods for large scale optimization

Nesterov [42] introduced constrained and unconstrained versions of an efficient method
for solving convex huge-scale optimization problems. Followed by that paper, appeared
different versions of coordinate descent methods for large scale convex optimization,
see e.g. [43,44,49]. In this paper, we propose two variants of the random coordinate
descent method to solve the DkS. In this section we provide a brief overview of algo-
rithms from the literature, and describe those that are relevant to our work in more
details.

The random coordinate descent method (RCDM) from [42], is a method for solving
unconstrained problems with convex objective. The RCDM performs in every iteration
of the algorithm a random coordinate index selection by using a random counter. The
random counter generates numbers according to a distribution that is based on the coordi-
natewise Lipschitz constants. The uniform coordinate descent method (UCDM) from [42]
is developed for solving constrained problems with convex objective. The method uses the
uniform distribution to determine random coordinates. In the UCDM, each coordinate
update is based on a solution of an optimization subproblem. The optimization subprob-
lem considers constraints of the original problem, and takes care that the new point is in
the vicinity of the previous one. The methods introduced in [42] turn to be efficient for
solving huge scale convex optimization problems.

There exist several extensions of the random coordinate descent method and uniform
coordinate descent method from [42]. For example, the random block coordinate descent
method for linearly constrained optimization by Necoara et al. [44]. This method is intro-
duced for solving problems with a separable convex objective function and one linear
constraint. Richtárik and Takáč [49] extend results from [42] to composite optimization. In
particular, they introduce randomized block-coordinate descent methods for minimizing
composite functions. Another recently developedmethod for solving large-scale optimiza-
tion problems is a subgradientmethod byNesterov [43]. The approach from [43] is suitable
for optimization problems with sparse subgradients. The above mentioned methods are
tested on large or huge scale convex problems such as the Google’s PageRank problem,
the PageRank problem, image processing, estimation in sensor networks or distributed
control, l1-regularized least squares problems.

On the other hand, there are very few results on solving large-scale non-convex prob-
lems. Patrascu and Necoara [46] derive random coordinate descent algorithms for large

OPTIMIZATION METHODS & SOFTWARE 5

scale structured non-convex optimization problems, and test them on sparse instances of
the eigenvalue complementarity problem.

Before we outline theUCDM from [42] and the 2-random coordinate descent algorithm
from [46], we introduce the notation. Consider the space R

N , and its decomposition
on n subspaces where N =∑n

i=1 ni. We denote a block decomposition of N × N iden-
tity matrix by IN = (U1, . . . ,Un) ∈ RN×N , where Ui ∈ R

N×ni (i = 1, . . . , n). Thus, for
x = (x(1), . . . , x(n)) ∈ R

N we have

x =
n∑
i=1

Uix(i), (2)

where x(i) ∈ R
ni for i = 1, . . . , n. Note that similar notation is used in the related literature,

see e.g. [42].
Let us now describe the UCDM from [42]. Consider a function f (x) that is con-

vex and differentiable on a closed convex set Q ⊆ R
N . Assume that the gradient of f is

coordinatewise Lipschitz continuous with constants Li (i = 1, . . . , n) where

‖∇if (x+ Uihi)−∇if (x)‖ ≤ Li‖hi‖ hi ∈ R
ni , i = 1, . . . , n, x ∈ R

N , (3)

∇if (x) denotes the partial gradient of f (x) in x(i), i.e.

∇if (x) = UT
i ∇f (x) ∈ R

ni , x ∈ R
N ,

and ‖ · ‖ denotes the Euclidean norm.
Now, the constrained optimization problem considered in [42] is:

min
x∈Q

f (x),

where Q =⊗n
i=1 Qi and the sets Qi ⊆ R

ni (i = 1, . . . , n) are closed and convex. The ith
(i = 1, . . . , n) constrained coordinate update from [42] is:

Vi(x) = x+ UT
i (u(i)(x)− x(i)), (4)

where and u(i)(x) is the solution of the following optimization subproblem:

u(i)(x) = arg min
u(i)∈Qi

[
〈∇if (x), u(i) − x(i)〉 + Li

2
‖u(i) − x(i)‖2

]
. (5)

Here 〈·, ·〉denotes a vector product. The uniformcoordinate descentmethod [42] chooses a
randomnumber i from the discrete uniformdistribution andupdates x(i) in every iteration.
In particular, see Algorithm 1.

The improvement in each step of the UCDM is as follows:

f (x)− f (Vi(x)) ≥ Li
2
‖u(i)(x)− x(i)‖2.

Patrascu and Necoara [46] introduce random coordinate descent algorithms for large-
scale structured non-convex optimization problems. They consider unconstrained and

6 R. SOTIROV

Algorithm 1 Algorithm UCDM [42]
Require: A feasible initial solution x0.

k← 0
loop

Choose randomly ik by uniform distribution on {1, . . . , n}.
Update xk+1 = Vik(xk), by using (4) and (5).
k← k+ 1

end loop

linearly constrained problems with a non-convex and composite objective function. In
particular, in [46] it is considered the following linearly constrained optimization problem:

min
x∈RN

g(x)+ ł(x)

s.t. aTx = b,

where a ∈ R
N is a non-zero vector, b ∈ R, g is a smooth function, and ł is a convex,

separable, non-smooth function. Further, the function g has 2-block coordinate Lipshitz
continuous gradient, i.e. there exist constants Lij > 0 such that

‖∇ij g(x+ Uihi + Ujhj)−∇ij g(x)‖ ≤ Lij‖hij‖
for all hij = [hTi , h

T
j]

T ∈ R
ni+nj , x ∈ R

N and i, j = 1, . . . , n. For given a feasible initial point
x0, that is aTx0 = b, the 2-random coordinate descent algorithm from [46] is presented as
Algorithm 2.

Algorithm 2 Algorithm 2-RCD [46]
Require: A feasible initial solution x0.

k← 0
loop

Choose randomly 2 block coordinates (ik, jk) with probability pik,jk .
Update xk+1 = xk + Uikdik + Ujkdjk .
k← k+ 1

end loop

Here, directions dik,jk = [dTik , d
T
jk]

T are obtained from the following optimization sub-
problem

dik,jk = argmin
hik ,jk

g(xk)+ 〈∇ik,jk g(xk), hik,jk〉 +
Lik,jk
2
||hik,jk ||2 + ł(xk + hik,jk)

s.t. aTikhik + aTjkhjk = 0.

In [46], the authors prove asymptotic convergence of the sequence generated by 2-RCD
to stationary points. The authors suggest updating only two block coordinates simulta-
neously in each iteration of the algorithm. Thus, the 2-RCD algorithm updates only two

OPTIMIZATION METHODS & SOFTWARE 7

coordinates simultaneously when n=N i.e. for the scalar case. In the following section
we consider updating more than two coordinates in each iteration of our algorithms. Our
numerical results show that updating more than two (block) coordinates simultaneously
results with a very efficient algorithm.

4. Two new algorithms for solving the DkS

We present here two new algorithms for solving large instances of the DkS. The algorithms
are tailored for solving the relaxation of the DkS, but can be adjusted for solving any non-
convex problem with a linear constraint. Our algorithms can be seen as extensions of the
UCDM and the 2-RCD algorithms, see Section 3. While our first algorithm converges to
a real feasible point, our second algorithm provides an integer feasible point in most of
the cases, see Section 5. A version of the here presented second algorithm was studied in a
master thesis by van der Doef [52].

Let us first consider the following relaxation of (1):

max xTAx

s.t.
n∑

i=1
xi = k

0 ≤ xi ≤ 1, ∀i ∈ {1, . . . ,N}.

(6)

Recall that the constrained coordinate update in the UCDM algorithm considers one
block coordinate, while the coordinate update in the 2-RCD algorithm updates two block
coordinates in each iteration. To solve the DkS we update several coordinates simultane-
ously, in each iteration of our algorithms.

We set f (x) = xTAx and suppose that n=N, see (2). In each step of our coordinate
descent algorithms we update q ≥ 2 coordinates. Let Ji, |Ji| = q, be the set of random
coordinates that are updated simultaneously in step i. Then, our q-random coordinate
constrained update in ith iteration is as follows:

Wi(x)j =
{
uij(x) if j ∈ Ji
xj otherwise

j = 1, . . . , n, (7)

where ui(x) ∈ R
q is the solution of a concave optimization subproblem. In particular,

ui(x) = argmaxui
∑
j∈Ji
∇jf (x)(uij − xj)−

∑
j∈Ji

Lj
2

(uij − xj)2

s.t.
∑
j∈Ji

uij = k−
∑
j/∈Ji

xj

0 ≤ uij ≤ 1 ∀j ∈ Ji.

(8)

Here, Lj is defined as in (3). Note that the q-random coordinate constrained update in ith
iteration can be also written as:

Wi(x) = x+
∑
j∈Ji

UT
j (uij(x)− xj).

8 R. SOTIROV

It is a well known result that convex quadratic problems are polynomially solvable, see
[36]. Kozlov et al. [36] reportedO(n4L) algorithm for convex quadratic problems, where n
is the number of variables and L is the size of the problem. Later papers present algorithms
that have complexities of O(n3L) arithmetic operations, see e.g. [26,34].

Now, we are ready to show our first algorithm. For a fixed q (2 ≤ q ≤ n) the q-random
coordinate constrained algorithm q-RCC1 is presented as Algorithm 3.

Algorithm 3 Algorithm q-RCC1
Require: A feasible initial solution x0.

k← 0
loop

Determine Jk: choose q coordinates randomly by uniform distribution on {1, . . . , n}.
Update xk+1 =Wk(xk) by using (7) and (8).
k← k+ 1

end loop

Note that one can solve (8) efficiently with a convex quadratic programming solver.
Since the optimization problem (6) is non-convex, the algorithm q-RCC1 can stuck in

a local optimum. Therefore, we also allow restarting of the algorithm from a new feasible
starting point. The algorithm q-RCC1 uses several stopping criteria. For details on restart-
ing and stopping criteria, see Section 5. Numerical results show that q-RCC1 converges to
a local optimum of the relaxation problem (6). However, we are interested in solving the
integer programming problem (1). Therefore, the subproblem of our next algorithm con-
siders only a linear approximation of the non-convex objective function. In particular, our
second algorithm solves the following subproblem in order to find a q-random coordinate
constrained update in ith iteration:

ui(x) = argmaxui
∑
j∈Ji
∇jf (x)(uij − xj)

s.t.
∑
j∈Ji

uij = k−
∑
j/∈Ji

xj

0 ≤ uij ≤ 1 ∀j ∈ Ji.

(9)

Thus, to obtain the q-random coordinate constrained update from (9), we need to solve
a linear programming problem. In 1979, Khachiyan [31] proved that linear programming
is polynomially solvable. Karamarker’s well known projective algorithm, see [29], solves
linear programs in O(n4L) operations, where n is the number of variables in a standard-
formproblemwith integer data of bit sizeL.Many subsequent papers have reportedO(n3L)
algorithms for linear programming. Anstreicher [3] shows that the complexity to solve
linear programming problems can be reduced to O([n3/ ln n]L).

Our q-random coordinate constrained algorithm q-RCC2 for a fixed q (2 ≤ q ≤ n) is
given as Algorithm 4.

Our numerical results show that the algorithm q-RCC2 converges to an integer point
for sufficiently large q. Once the algorithm finds an integer point, all points in successive
iterations are also integer. Moreover, the successive integer vectors might be in the vicinity

OPTIMIZATION METHODS & SOFTWARE 9

Algorithm 4 Algorithm q-RCC2
Require: A feasible initial solution x0.

k← 0
loop

Determine Jk: choose q coordinates randomly by uniform distribution on {1, . . . , n}.
xk+1 =Wk(xk) by using (7) and (9).
k← k+ 1

end loop

of the first found integer solution. Therefore, the q-RCC2 algorithm could end up again
in the first found integer solution. To prevent cycling, we stop the q-RCC2 algorithm once
the first integer solution is found, or we restart the algorithm from a new feasible point.

5. Numerical results

In this section we present numerical results on solving the DkS problem by using our two
algorithms, i.e. q-RCC1 and q-RCC2. Numerical results are performed on an Intel Xeon,
E5-1620, 3.70GHz with 32GB memory. To compute (8) (resp. (9) we use Cplex 12.6 QP
(resp. Cplex 12.6 LP) solver.

We test our algorithms on random graphs and several graphs from the literature. In
particular, we consider the following graphs:

(1) The Erdös-Rényi graph: Each edge in a graph is generated independently of other
edges with probability p ∈ (0, 1]. For any given p, a graph formulated in the described
way is known as the Erdös–Rényi random graph Gp(n). The Erdös-Rényi graph was
introduced by Erdös and Rényi in 1959, see [17,18].

(2) The Erdös-Rényi graph with a planted subgraph: In the Erdös–Rényi random
graph Gp(n) we plant a complete subgraph with k vertices. We denote the resulted
graph by Pkp(n). Random graphs with planted subgraphs are used also in Tsourakakis
et al. [51]. We compare our results with their heuristic results.

(3) Instances for the DkS from the literature:
• We consider instances that are available from the following webpage: http://cedric.

cnam.fr/∼ lamberta/Library/k-cluster.html. Those instances are used as test
instances for the densest k-subgraph problem in [8–10,37]. The sizes of instances
are n=40,80,100,120,140,160, and densities d = 25, 50, 75%. For a given number
of vertices n and a density d an unweighted graph is randomly generated. In all
above mentioned papers, the parameter k has following values: n/2, n/4 and 3n/4.
Therefore, we also use the same values for k in our experiments.

• Brimberg et al. [13] generated test instances for the heaviest k-subgraph problem.
One can download those instances from the following page http://www.mi.sanu.ac.
rs/∼nenad/hsp/. There are 177 instances in total, for details see [13].

(4) Real-world data: We consider data from the following two different sources.
• We test our algorithms on several graphs from 10th DIMACS Implementa-

tion Challenge - Graph Partitioning and Graph Clustering. In particular, we
consider Jazz graph and Email graph. These two graphs are derived from two

10 R. SOTIROV

different networks and then symmetrized, as explained on the DIMACS webpage:
https://www.cc.gatech.edu/dimacs10/archive/clustering.shtml

• We take graphs from the following webpage: snap.stanford.edu. In particular, we
use undirected graphs from the collaboration networks database. A collaboration
network represents scientific collaborations between authors of papers in a specific
field. A graph from the database is represented by an adjacency matrix whose ele-
ment on position (i, j) equals one if author i co-authored a paper with author j.
The largest here considered graph from the snap.stanford.edu database has 23,133
vertices.

We present below settings of our algorithms:

• We tested two different types of initial feasible points. The first type of an initial point is a
randompoint inwhich all coordinates have values between zero and one, and all sumup
to k. The second type of an initial point is the vector whose all coordinates equal to k/n.
Our numerical results show that the quality of a solution computed by our algorithms
does not depend on a starting point. Therefore, our algorithms start with a randomly
generated feasible point unless indicated differently. Namely, it is costly to use the first
type of the starting point when n > 213, and therefore we use the second type of initial
point for larger n.

• We implement several stopping criteria. Both algorithms q-RCC1 and q-RCC2 stop
after a pre-specified number of iterations is reached, unless any other stoping criteria
is satisfied. We list the remaining stoping criteria below.
− Stop when the first integer solution is found. Our tests show that after the first inte-

ger solution is found, q-RCC2might cycle i.e. end up in the same integer point after
a certain number of iterations. This happens since the algorithm computes integer
points the vicinity of the first found integer solution. Our tests show that it is better
to stop the algorithm when the first integer solution is found, instead of letting it
run till eventually cycling appears and then stop. Namely, the latter requires more
computational effort, but does not necessarily result in a significant improvement
of the objective value. On the other hand, q-RCC1 does not converge to an integer
solution, in general. However, for large q the algorithm q-RCC1 might also pro-
vide an integer solution. In the case that q-RCC1 finds an integer point, we stop the
algorithm.

− Stop q-RCC1 if the difference in two consecutive objective values is less than a
pre-specified tolerance. We use here ε = 1e−7 as the tolerance. This criteria is not
implemented in q-RCC2 since the algorithm tends to find faster an integer value
than to satisfy this criterion.

• Restarting of the algorithms. We sometimes perform restarting of the algorithms q-
RCC1 and q-RCC2 for a given number of times and after one of the stopping criteria
from above is reached. In each new run, we restart the algorithm by using one of the pre-
viously described starting points. It is going to be clear from the context if we performed
restarting of the algorithm.

It might happen that in an iteration of our algorithm, the objective value decreases
and then in the next iterations keeps improving. This happens since the objective is

OPTIMIZATION METHODS & SOFTWARE 11

non-convex. Extensive test shows that there is no harm in accepting non-improvingmoves,
since the algorithms recover fast. We tested our algorithms also when only improving
moves are accepted, and concluded that there is no benefit of doing this.

Let us now present computational results. We test our two algorithms on various
instances, and present lower bounds for the problem (6) obtained from the limit point
returned by the algorithms.

Tests on the Erdös-Rényi graphs.
We first show performance of our algorithms on G0.5(210) for different number of

simultaneous updates q and different number of iterations.
Table 1 presents bounds computed by the algorithm q-RCC1 for one graph only with

1024 vertices and k=30. Here, we do not restart q-RCC1. The initial point in all runs have
coordinates k/n with objective value 622.54. The table reads as follows. In the first row we
specify q. Rows indicated by bnd. provide bounds that are computed in seconds, given in
the first row below that one. Finally, rows indicated by iter. specify the number of iterations
needed to compute bounds listed in the two rows above that one.

All computations in Table 1 terminated after the algorithm performed a pre-specified
number of iterations. The results in Table 1 show that the quality of bounds improve and
corresponding computational times increase alongwith the number of iterations. The table
also shows that for q=2 there is a small improvement in the bound even after 10,000
iterations. Note also that for large number of updates i.e. q=750 there is no significant
improvement in the bound value when the number of iterations increases. Table 1 also
indicates that a good strategy for computing bounds is to take q that is between 10% and
20% of the number of vertices in the graph.

Table 2 presents bounds computed by q-RCC2 for the same graph used in Table 1. Since
the algorithm q-RCC2 with q>2 terminates in most of the cases due to the stopping crite-
ria ‘the first integer solution is found’, we present results obtained by averaging 20 bounds
computed after 20 times restarting the algorithm with the same starting point. We present

Table 1. q-RCC1 for G0.5(1024): bounds, running times (s) and iterations.

q 2 50 100 200 500 750

bnd. 623.12 653.15 686.54 738.260 808.38 816.86
time 1.01 1.02 1.28 2.20 4.77 7.51
iter. 500 500 500 500 500 500
bnd. 623.67 682.96 741.23 795.44 825.81 837.91
time 1.95 2.10 2.56 9.56 9.56 15.18
iter. 1000 1000 1000 1000 1000 1000
bnd. 628.12 799.33 824.27 831.99 836.96 833.33
time 9.54 10.33 13.32 23.66 49.27 77.55
iter. 5000 5000 5000 5000 5000 5000
bnd. 634.59 819.93 837.06 842.81 837.99 840.83
time 16.55 21.02 27.35 48.50 102.74 154.94
iter. 10,000 10,000 10,000 10,000 10,000 10,000

Table 2. q-RCC2 for G0.5(1024): bounds, running times (s) and iterations.

q 2 50 100 200 500 750

bnd. 636.15 825.23 828.66 824.20 790.70 731.30
time 0.643 1.12 1.07 0.64 0.26 0.20
iter. 500 492.05 255.70 70.90 13.9 6.85

12 R. SOTIROV

average of 20 runs for each q. The initial point in all runs is the vector with coordinates k/n.
Table 2 shows that the average of 20 bounds is the best for 100 simultaneous updates. Note
that for q ≥ 200 the computational time significantly drops, but the quality of bounds dete-
riorate. Among all computed bounds the best integer value is 840. That value is obtained
for q=50 and for q=100.
Tests on graphs with planted subgraphs.
We plant complete subgraphs in random graphs because we know the optimal value of the
problem. This enables us to evaluate the performance of our algorithms. Note that heuristic
approaches [13,51] report results for graphs with up to 3000 vertices.

Table 3 summarizes outcomes of our two algorithms on graphs with planted subgraphs
and 4096 vertices. In particular, we consider the Erdös-Rényi graphs G0.3(212) whose
planted complete subgraphs have 100 vertices. Note that the optimal value of the densest
100-subgraph problem on the described graph is 9,900 with high probability. We run each
algorithm with different q on 30 different P1000.3 (4096) graphs. In particular, we run 1000
iterations of q-RCC1 and 1000 iterations of q-RCC2 for each q ∈ {2, 400, 800, 2000} and
each graph. In the row denoted by q-RCC1 (resp. q-RCC2) we list the best obtained bound
among 30 values for the given q, as well as the computational time in seconds needed to
compute that bound.

An interesting result is that the algorithm q-RCC1 with q=2000 computes the value
9899.99 for 28 different graphs. Coordinates of the solution vectors in those 28 cases differ
at most for 1e–5 from the value 0 or 1. If we let run q-RCC1 with q=2000 for 10,000
iterations the best obtained result is 9899.99996. Here, values of coordinates in the solution
vector are within an error of 1e–6 from 0 or 1. It takes 1215 s to perform 10,000 iterations.

The algorithm q-RCC2 finds the value 9900 in 11, 8 and 13 cases for q=400, q=800,
q=2000, respectively. Table 3 reports the shortest computational time required to com-
pute 9900 by q-RCC2 among all computations. The longest time needed to obtain 9900 by
q-RCC2 and q=800 (resp. q=2000) is 35.03 s (resp. 72.64 s). Finally, q-RCC2 computes
the weakest bound for q=2000. The results in Table 3 show that the algorithm q-RCC2
performs better than q-RCC1 for all q. However, q-RCC2 can stop fast in a weak bound.
On the other hand, q-RCC1 improves slowly and steadily.

Let us now consider a similar experiment as the previous one, see Table 4. In particular,
in the Erdös–Rényi graphG0.3(212)we plant a complete subgraph with 800 vertices, which
results in P8000.3 (4096). Note that the optimal value of the densest 800-subgraph problem
on the described graph is 639,200 with high probability. We run 1000 iterations of each of

Table 3. Bounds and running times (s) for P1000.3 (4096).

q 2 400 800 2000

q-RCC1 6185.23 (2.08) 6908.02 (24.63) 9872.83 (46.30) 9899.99 (121.53)
q-RCC2 6240.01 (0.43) 9900 (5.83) 9900 (2.42) 9900 (1.26)

Table 4. Bounds and running times (s) for P8000.3 (4096).

q 2 400 800 2000

q-RCC1 215,748.73 (1.97) 639,199.99 (25.05) 639,199.99 (46.48) 639,199.99 (121.07)
q-RCC2 228,805.97 (0.46) 639,200 (2.61) 639,200 (2.33) 639,200 (0.91)

OPTIMIZATION METHODS & SOFTWARE 13

the algorithms for 30 different graphs and for q=2,400,800,2000. The algorithm q-RCC2
finds the value 639,200 in 28, 28 and 27 cases for q=400, q=800, q=2000, respectively.
The results in Table 4 indicate that the algorithm q-RCC2 finds faster and more frequently
cliques with 800 vertices than cliques with 100 vertices.

Finally, in a similar experiment with 2000-planted subgraph problem, the optimal value
is computed by q-RCC2 in 23, 28 and 27 cases for q=400, q=800, q=2000, respectively.

We did also extensive tests on G0.2(213) with planted cliques on 500 vertices, i.e.
P5000.3 (213). It is interesting to note that for those graphs and 800 simultaneous updates,
q-RCC2 always finds the planted subgraph between 10 and 55 s.

Finally, we experiment with random graphs as in [51]. We plant a complete graph with
30 vertices in Gp(3000) with p ∈ {0.008, 0.1, 0.5}. The algorithm q-RCC2 with q=100
finds the clique within 6 s in P300.008(3000). The algorithm q-RCC2 with q=150 finds the
clique within 50 s in P300.01(3000). There are no computational times reported in [51]. How-
ever, in [51], the authors report that all considered algorithms find the clique in a graph
G0.008(3000), and only one algorithm can find the clique inG0.01(3000). On the other hand,
no algorithms from [51] could find the clique inG0.5(3000).We also couldn’t find the clique
in G0.5(3000), even after several restarting of the algorithm.

Tests on instances from the literature.
We consider instances from http://cedric.cnam.fr/∼ lamberta/Library/k-cluster.html.

Those instances are also used as test instances for the DkS in [8–10,37], see also
http://www-lipn.univ-paris13.fr/BiqCrunch/results. We summarize the outcome of our
computational experiments below.

For each instance with n=40, any given density and any k=10,20,30, our algorithm q-
RCC2 finds an optimal solution within 0.1 s. In q-RCC1we implement additional stopping
criteria, that is to stop the algorithm when the objective value differs from the optimal
objective value for less than 0.0001. The algorithm q-RCC1 provides such bounds within
2 s. We allow 1000 iterations per round in both algorithms. Solutions are mostly found in
the first round of the algorithms. We test both algorithms for q=4 and q=8 and notice
similar performance of the algorithms for both values of q.

For each instance with n=80, any given density and any k=20,40,60, the algorithm
16-RCC2 finds an optimal solution within 0.2 s, while 8-RCC2 needs at most 0.4 s. The
algorithm 16-RCC1 performs better than 8-RCC1 and requires at most 13 s to obtain a
bound that is close to the optimal solution. In most of the cases, 16-RCC1 finds an optimal
solution in less than 4 s. Here, we use the same additional stopping criteria as for instances
with 40 vertices. We allow 2000 iterations per round.

For each instance with n=100, any given densities, and any k=25,50,75 the algorithm
10-RCC2 finds an optimal solution in less than 1 s. There are several instances for which
the algorithm runs up to 3 s. We set 3000 for the maximal number of iterations in one
round. This enables 20-RCC1 to converge to an optimal solution of a given instance in at
most 16 s.

For instances with n=120,140,160 we tested only the algorithm q-RCC2. We
take for q the value that is equal to 20% of the number of vertices in the given
instance, and allow 3000 iterations per round. For most of the instances q-RCC2
finds optimal solutions within 4 s. For the instances kcluster160-050-40-1.dat,
kcluster160-050-40-5.dat,kcluster160-075-40-2.dat andkcluster
160-075-80-4.dat we needed to change the value of q in order to find optimal

14 R. SOTIROV

solutions. In particular, we set q to be 15% of the number of vertices and found optimal
solutions within 25 s.

Brimberg et al. [13] provide extensive computational experiments on solving the heavi-
est k-subgraph problem by using several heuristic approaches. In particular, they compare
performances of the following heuristics: two greedy constructive heuristics (drop and
add), two versions of variable neighbourhood search (VNS) heuristics (basic VNS and
skewed VNS), two tabu search heuristics (TS1 and TS2) and two multi-start heuristics
(MLS1 andMLS2). The results in [13] show thatVNSheuristic preforms the best over other
heuristics. On the other hand TS1 has the worst performance among tested approaches.

Here, we test the algorithm q-RCC2 on the same set of instances as in [13]. We compare
our results with the VNS and TS1 heuristics that use random initial starting points, see
Table 3 in [13]. In Table 5 we report the average $ deviation

% deviation = best value− rcc2
best value

· 100,

where ‘best value’ denotes the best known solution reported in [13], and ‘rcc2’ denotes our
bound. We also report average running time obtained by q-RCC2, see the last column in
Table 5. To solve instances we set q=100 and alow restarting the algorithm 100 times. For
instance with 1000 nodes we set 7000 for the maximum number of iterations per round,
while for instances with 3000 nodes we set 10,000 iterations per round.

The results in Table 5 show that our algorithm is performing better than TS1 and worse
thanVNS. Note that the average% deviation of our algorithm is within 2%. The algorithms
from [13] are specialized for solving the heaviest k-subgraph problem,while we use the best
settings for the DkS.
Tests on real-world graphs.
Jazz graph represents jazz musicians network related to n=198 musicians, see [24].
There are m=2742 edges in the graph, which represent the network of jazz musicians.
It is known that this graph contains a clique with 30 vertices, see [51]. The algorithm q-
RCC2 with q=30 finds the clique after 2 times restarting the algorithm, which takes in
total 0.07 s. If we use q=10, then the algorithm finds the optimal clique after 10 times
restarting the algorithm. For q=2 the algorithm q-RCC2 fails to find a clique even after
restarting the algorithm 100 times.

Table 5. Summary results for all three types of the heaviest k-subgraph problem.

Type n k
% deviation
q-RCC2 VNS TS1 time q-RCC2

I sparse 1000 300 0.90 0.15 1.64 113.05
I sparse 1000 400 0.55 0.10 0.99 103.64
I sparse 1000 500 0.24 0.03 0.55 89.90
I dense 1000 300 0.24 0.04 0.49 112.91
I dense 1000 400 0.08 0.03 0.40 90.15
I dense 1000 500 0.03 0.00 0.20 131.65
II sparse 3000 900 1.09 0.05 1.52 161.18
II sparse 3000 1200 0.59 0.03 1.02 238.37
II sparse 3000 1500 0.30 0.00 0.57 197.37
III sparse 1000 300 1.95 0.07 5.19 140.47
III sparse 1000 400 1.25 0.04 2.36 104.16
III sparse 1000 500 0.77 0.02 1.40 157.43

OPTIMIZATION METHODS & SOFTWARE 15

Email graph represents email network of n=1133 members of the Univeristy Rovira
i Virgili (Tarragona), see [27]. There arem=5451 edges in the graph. From [51] we know
that email graph has a clique with 12 vertices. Our algorithm q-RCC2 with q=40 finds the
clique in 6 s (!).

Our final set of experiments consider graphs from the collaboration networks database.
CA-GrQc collaboration network from [38] covers scientific collaborations between
authors of papers that are submitted to General Relativity and Quantum Cosmology cat-
egory. The data covers papers in the period of 124 months i.e. from January 1993 to April
2003. The adjacency matrix of the graph has 5242 vertices and 14,496 edges. We are not
aware of an optimal value for the densest k-subgraph problem on CA-GrQc. Therefore,
we present our results for different k, see Table 6. In the row denoted by CA-GrQc we list
for each k the best computed objective value and the corresponding computational time
in seconds. All results are obtained using the same settings: 200 simultaneous updates and
3000 iterations per round. Note that for k=10,20,30,40 we find the optimal cliques. In all
those cases we needed to restart the algorithm at most 4 times. For k=50 we could not
find a clique, and the best solution found is equal to 2146.

Further we provide similar experiments for CA-HepTh collaboration network, see [38].
This network covers scientific collaborations between authors of papers submitted to High
Energy Physics – Theory category. The adjacency matrix of this graph is of order 9877.
There are 25,998 edges in this network.We set q=1000 and look for the densest k-subgraph
in the graph. Again, we are not aware of an optimal value for the densest k-subgraph prob-
lem on CA-GrQc. Our computational results are given in Table 6. We find cliques for
k=10,20,30.

CA-HepPh collaboration network considers scientific collaborations between authors
of papers that are submitted to High Energy Physics – Phenomenology category, see [38].
The data covers papers in the period of 124 months, i.e. from January 1993 to April 2003.
The resulted graph has 12,008 vertices and 118,521 edges. The results for the densest k-
subgraph problem on CA-HepPh for k=10,20,40,50 are given in Table 6. It is remarkable
that we can found cliques with 10, 20, 30, 40 and 50 vertices in short time. We use here
q=1000.

CA-AstroPh collaboration network covers scientific collaborations between authors of
papers submitted to Astro Physics category, see [38]. The data covers papers in the period
from January 1993 to April 2003. The adjacency matrix of the graph has 18,772 rows and
118,521 edges. We take here q=1000. Our computational results show that for larger q the
computations are too expensive. We find cliques for each k in less than 13min.

Finally, we consider CA-CondMat collaboration network. This collaboration network
considers scientific collaborations between 23,133 authors whose papers are submitted to
CondenseMatter category. The resulted adjacencymatrix has 93,497 edges. The data cover
papers in the period from January 1993 to April 2003. In CA-CondMat we found a clique

Table 6. Results obtained by q-RCC2 for different k.

k 10 20 30 40 50

CA-GrQc 90 (0.3) 380 (0.4) 870 (0.6) 1560 (5.9) 2146 (9.1)
CA-HepTh 90 (35.4) 380 (48.2) 870 (152.5) 1048 (176.7) 1166 (396.2)
CA-HepPh 90 (212.0) 380 (370.9) 870 (410.1) 1560 (74.8) 2450 (38.6)
CA-AstroPh 90 (369.5) 380 (180.6) 870 (529.5) 1560 (447.5) 2450 (748.4)

16 R. SOTIROV

with 10 vertices in 159 s, and a clique with 25 vertices in 211 s. To find densest subgraphs
we set q=1300.

6. Conclusion

There are many studies on random coordinate descent algorithms for convex problems,
but a very few results on solving non-convex large scale problems. In this paper we
present two algorithms for solving large scale non-convex problems with one linear con-
straint. We exploit our algorithms to solve large scale instances of the densest k-subgraph
problem.

The main difference between our algorithms and those in the literature is that we allow
updating more than two random coordinates simultaneously in each iteration of the algo-
rithms. Our numerical results demonstrate significant improvement in bounds for larger
than two simultaneous updates of the algorithms, see Tables 1–4. The q-RCC2 algorithm
performs better than q-RCC1, and for an appropriate q it converges to an integer solution
of the problem. Note that the q-RCC2 algorithm considers a linear approximation of the
non-convex objective function.

Our numerical results verify the efficiency of the here introduced approach. For
instance, we are able to find densest k-subgraphs in real world graphs with up to 23,133
vertices in a few minutes. Our numerical results in Section 5 can be used as a benchmark
for solving the densest k-subgraph problem on large graphs.

Acknowledgements

The authorwould like to thank Pavel Dvurechensky for useful discussions on the random coordinate
descent approaches. The authorwould also like to thank two anonymous referees for suggestions that
led to an improvement of this paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] B.P. Ames, Guaranteed recovery of planted cliques and dense subgraphs by convex relaxation,
J. Optim. Theory Appl. 167(2) (2015), pp. 653–675.

[2] B.P. Ames and S.A. Vavasis, Nuclear norm minimization for the planted clique and biclique
problems, Math. Program. 129 (2011), pp. 69–89.

[3] K.M. Anstreicher, Linear programming in O([n3/ ln n]L) operations, SIAM J. Optim. 9(4)
(1999), pp. 803–812.

[4] R. Andersen and K. Chellapilla, Finding dense subgraphs with size bounds, in WAW’09: Pro-
ceedings of the 6th International Workshop on Algorithms and Models for the Web-Graph, K.
Avrachenkov, D. Donato, and N. Litvak, eds., Barcelona, Spain, February 12–13, 2009, 25–37,
Springer, Heidelberg, Berlin, 2009.

[5] A.Angel,N. Sarkas, K.Koudas, andD. Srivastava,Dense subgraphmaintenance under streaming
edge weight updates for real-time story identification, Proc. VLDB Endowment 5(6) (2012), pp.
574–585.

[6] S. Arora, D. Karger, and M. Karpinski, Polynomial time approximation schemes for dense
instances of NP-hard problems, J. Comput. Syst. Sci. 58(1) (1999), pp. 193–210.

OPTIMIZATION METHODS & SOFTWARE 17

[7] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan, Detecting high log-
densities: An O(n1/4) approximation for densest k-subgraph, in STOC ’10: Proceedings of the
Forty-second ACM Symposium on Theory of Computing, M. Mitzenmacher and L.J. Schul-
man, eds., Cambridge, MA, USA, June 6–8, 2010, ACM, New York, NY, USA, 2010, pp.
201–210).

[8] A. Billionnet, Different formulations for solving the heaviest k-subgraph problem, INFOR: Inf.
Syst. Oper. Res. 43(3) (2005), pp. 171–186.

[9] A. Billionnet, S. Elloumi, and M.C. Plateau, Improving the performance of standard solvers for
quadratic 0–1 programs by a tight convex reformulation: The QCRmethod, Discrete Appl. Math.
157(6) (2009), pp. 1185–1197.

[10] A. Billionnet, S. Elloumi, A. Lambert, and A. Wiegele, Using a conic bundle method to accel-
erate both phases of a quadratic convex reformulation, INFORMS J. Comput. 29(2) (2017), pp.
318–331.

[11] M. Bougeret, N. Bousquet, R. Giroudeau, and R. Watrigant, Parameterized complexity of the
sparsest k-subgraph problem in chordal graphs, in SOFSEM 2014: Theory and Practice of Com-
puter Science: 40th International Conference on Current Trends in Theory and Practice of
Computer Science, V. Geffert, B. Preneel, B. Rovan, Jú. Štuller, and A.M. Tjoa, eds., Smokovec,
Slovakia, January 26–29, 2014, Springer, Switzerland, 2014, pp. 150–161.

[12] N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis, and V.Th. Paschos, Exact and superpoly-
nomial approximation algorithms for the densest k-subgraph problem, EJOR 262 (2017), pp.
894–903.

[13] J. Brimberg, N. Mladenović, D. Urošević, and E. Ngai, Variable neighborhood search for the
heaviest k-subgraph, Comput. Oper. Res. 36(11) (2009), pp. 2885–2891.

[14] M. Bruglieri, M. Ehrgott, H.W. Hamacher, and F. Maffioli, An annotated bibliography of com-
binatorial optimization problems with fixed cardinality constraints, Discrete Appl. Math. 154(9)
(2006), pp. 1344–1357.

[15] D.G. Corneil and Y. Perl,Clustering and domination in perfect graphs, Discrete Appl.Math. 9(1)
(1984), pp. 27–39.

[16] Y. Dourisboure, F. Geraci, andM. Pellegrini, Extraction and classification of dense communities
in the web, inWWW ’07: Proceedings of the 16th International Conference onWorld Wide Web,
C. Williamson, M.E. Zurko, P. Patel-Schneider, and P. Shenoy, eds., Banff, Alberta, Canada,
May 8–12, 2007, ACM, New York, NY, USA, 2007, pp. 461–470.

[17] P. Erdös and A. Rényi, On random graphs, Publ. Math. 6 (1959), pp. 290–297.
[18] P. Erdös and R. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci.

5 (1960), pp. 17–61.
[19] U. Feige, G. Kortsarz, and D. Peleg, The dense k-subgraph problem, Algorithmica 29(3) (2001),

pp. 410–421.
[20] U. Feige and M. Langberg, Approximation algorithms for maximization problems arising in

graph partitioning, J. Algorithms 41 (2001), pp. 174–211.
[21] U. Feige and M. Seltser, On the densest k-subgraph problem, Technical Report CS97-16,

Weizmann Institute of Science, Rehovot, Israel, 1997.
[22] A. Gajewar and A. Das arma, Multi-skill collaborative teams based on densest subgraphs, in

Proceedings of the 2012 SIAM International Conference on Data Mining, J. Ghosh, H. Liu, I.
Davidson, C. Domeniconi, and C. Kamath, eds., Anaheim, CA, USA, April 26–28, SIAM,
Philadelphia, PA, USA, 2012, pp. 165–176.

[23] D. Gibson, R. Kumar, and A. Tomkins, Discovering large dense subgraphs in massive graphs, in
VLDB’05: Proceedings of the 31st International Conference on Very Large Data Bases, K. Bohm,
C.S. Jensen, L.M. Haas, M.L. Kersten, P.A. Larson, and B.C. Ooi, eds., August 30–September 2,
ACM, Trondheim, Norway, 2005, pp. 721–732.

[24] P. Gleiser and L. Danon,Community structure in jazz, Adv. Complex Syst. 6 (2003), pp. 565.573
[25] O. Goldschmidt and D.S. Hochbaum, k-edge subgraph problems, Discrete Appl. Math. 74(2)

(1997), pp. 159–169.
[26] D. Goldfarb and S. Liu, An O(n3L) primal interior point algorithm for convex quadratic

programming, Math. Program. 49 (1991), pp. 325–340.

18 R. SOTIROV

[27] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas, Self-similar community
structure in a network of human interactions, Phys. Rev. E 68 (2003), pp. 065103(R).

[28] M.R. Henzinger, R. Motwani, and C. Silverstein, Challenges in web search engines, IJCAI’03:
Proceedings of the 18th International Joint Conference on Artificial Intelligence, August 9–15,
Vol. 3, Morgan Kaufmann Publishers Inc., Acapulco, Mexico, 2003, pp. 1573–1579.

[29] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4
(1984), pp. 373–395.

[30] J.M. Keil and T.B. Brecht, The complexity of clustering in planar graphs, J. Combin. Math.
Combin. Comput. 9 (1991), pp. 155–159.

[31] L.G. Khachiyan, A polynomial algorithm in linear programming, Soviet Math. Dokl. 20 (1979),
pp. 191–194. (Dokl. Akad. Nauk SSSR244), 1093–1096.

[32] S. Khot, Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique, SIAM
J. Comput. 36(4) (2006), pp. 1025–1071.

[33] R.K. Kincaid, Good solutions to discrete noxious location problems via metaheuristics, Ann.
Oper. Res. 40(1) (1992), pp. 265–281.

[34] M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear
complementarity problems, Math. Program. 44 (1988), pp. 1–26.

[35] G. Kortsarz and D. Peleg, On choosing a dense subgraph, Proceedings of the 34th IEEE Sym-
posium on Foundations of Computer Science, November 3–5, Palo Alto, CA, USA, 1993, pp.
692–701.

[36] M.K. Kozlov, S.P. Tarasov, and L.G. Khachiyan, Polynomial solvability of convex quadratic pro-
gramming, Doklady Akademiia Nauk SSSR 248 (1979) (translated in Soviet Mathematics
Doklady, 20, 1108–111).

[37] N. Krislock, J. Malick, and F. Roupin,Computational results of a semidefinite branch-and-bound
algorithm for k-cluster, Comput. Oper. Res. 66 (2016), pp. 153–159.

[38] J. Leskovec, J. Kleinberg, and C. Faloutsos, Graph evolution: Densification and shrinking
diameters, ACM Trans. Knowledge Discovery Data (ACM TKDD) 1 (2007), pp. 1–41.

[39] X. Li, Y. Chen, and J. Xu, Convex relaxation methods for community detection, 2018. arXiv
preprint arXiv:1810.00315.

[40] J. Malick and F. Roupin, Solving k-cluster problems to optimality with semidefinite programming,
Math. Program. Ser. B 136 (2012), pp. 279–300.

[41] E.M. Macambira, An application of tabu search heuristic for the maximum edge-weighted
subgraph problem, Ann. Oper. Res. 117(1) (2002), pp. 175–190.

[42] Yu. Nesterov, Effciency of coordinate descent methods on huge-scale optimization problems,
SIAM. J. Optim. 22(2) (2012), pp. 341–362.

[43] Yu. Nesterov, Subgradient methods for huge-scale optimization problems, Math. Program.
146(1–2) (2014), pp. 275–297.

[44] I. Necoara, Yu Necoara, and F. Glineur, Random block coordinate descent methods for linearly
constrained optimization over networks, J. Optim. Theory. Appl. 173(1) (2017), pp. 227–254.

[45] T. Nonner, PTAS for densest k-subgraph in interval graphs, Algorithmica 74(1) (2016), pp.
528–539.

[46] A. Patrascu and I. Necoara, Efficient random coordinate descent algorithms for large-scale
structured nonconvex optimization, J. Global Optim. 61(1) (2015), pp. 19–46.

[47] S.S. Ravi, D.J. Rosenkrantz, and G.K. Tayi, Heuristic and special case algorithms for dispersion
problems, Oper. Res. 42(2) (1994), pp. 299–310.

[48] F. Rendl, Semidefinite relaxations for partitioning, assignment and ordering problems, Ann.Oper.
Res. 240 (2016), pp. 119–140.

[49] P. Richtárik andM. Takáč, Iteration complexity of randomized block-coordinate descent methods
for minimizing a composite function, Math. Program. 144(1-2) (2014), pp. 1–38.

[50] C. Tsourakakis, The k-clique densest subgraph problem, in Proceedings of the 24th International
Conference on World Wide Web, A. Gangemi, S. Leonardi, and A. Panconesi, eds., May 18–22,
ACM, Florence, Italy, 2015, pp. 1122–1132.

[51] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli, Denser than the densest sub-
graph: Extracting optimal quasi-cliques with quality guarantees, Proceedings of the 19th ACM

OPTIMIZATION METHODS & SOFTWARE 19

SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2014,
pp. 104–112.

[52] S. Van der Doef, Applying huge-scale coordinate descent methods to the densest k-subgraph
problem, Master thesis, Tilburg University, Tilburg, 2017.

[53] Y. Ye and J. Zhang, Approximation of dense-n/2 subgraph and the complement of min-bisection,
J. Global Optim. 25 (2003), pp. 55–73.

	1. Introduction
	2. The problem formulation and solution approaches
	3. Overview of methods for large scale optimization
	4. Two new algorithms for solving the DkS
	5. Numerical results
	6. Conclusion
	Acknowledgements
	Disclosure statement
	References

