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ABSTRACT
We consider a scalar objective minimization problem over the solu-
tion set of another optimization problem. This problem is known as a
simple bilevel optimization problem and has drawn a significant atten-
tion in the last few years. Our inner problem consists of minimizing
the sum of smooth and non-smooth functions while the outer one is
theminimizationof a smooth convex function.We first formulate and
give strong convergence analysis of an inertial algorithm for fixed-
point problemof a non-expansive operator in an infinite dimensional
Hilbert space. Thenwe convert the simple bilevel optimization prob-
lem to a fixed-point problem of a non-expansive operator in finite
dimensional space and design the corresponding algorithm and
establish its convergence. Our numerical experiments show that the
proposed method in this paper outperforms the currently known
best algorithm to solve the class of bilevel optimization problem
considered.
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1. Introduction

Our main aim in this paper is to solve a scalar objective minimization problem over the
solution set of another optimization problem; i.e. precisely, the problem

min h(x) s.t. x ∈ X∗ ⊆ R
n, (1)

where h : Rn → R is assumed to be strongly convex and differentiable, while X∗ is the
non-empty set of minimizers of the classical convex composite optimization problem

minϕ(x) := f (x) + g(x), (2)

where f : Rn → R is continuously differentiable and g, an extended real-valued function
on Rn, which can be non-smooth. Problem (1)–(2) was labelled in [13] as simple bilevel
optimization problem, as opposed to the more general version of the problem (see, e.g.
[12]), where the follower’s problem (2) is parametric, with the parameter representing the
variable controlled by the leader, which is in turn different from the one under the control
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of the follower. For more details on the vocabulary and connections of problem (1)–(2) to
the standard bilevel optimization problem, see Section 2.1.

A common approach to solve problem (1)–(2) consists of the Tikhonov-type regular-
ization [31] (indirect method), based on solving the following regularized problem

minϕλ(x) := ϕ(x) + λh(x) (3)

for some λ > 0. Note that problem (1)–(2) can be traced back to the work by Mangasar-
ian and Meyer [22] in the process of developing efficient algorithms for large scale linear
programs. The model emerged in turn as a refinement of the regularization technique
introduced by Tikhonov and Arsenin [31]. The underlying idea in the related papers by
Mangasarian and his co-authors is called finite-perturbation property, which consists of
finding a parameter λ̄ (Tikhonov perturbation parameter) such that for all λ ∈ [0, λ̄],

arg min
x∈X∗ h(x) = arg min

x∈Rn
ϕλ(x). (4)

This property, initially proven in [22] when the lower-level problem is a linear program,
was later extended in [18] to the case where it is a general convex optimization problem.

To the best of our knowledge, the development of solution algorithms specifically tai-
lored to optimization problems of the form (1)–(2) can be traced back to the work byCabot
[11], where a proximal point method is proposed to solve the problem and its extension to
a simple hierarchical optimization problem with finitely many levels. In contrary to the
latter paper, where the approximation scheme is only implicit thus making the method
not easy to numerically implement, Solodov [29] proposed an explicit and more tractable
proximal pointmethod for problem (1)–(2). Since then, various proximal point algorithms
have been developed to solve the problems under different types of frameworks, see, e.g.
[9,23,28] and references therein.

Motivated by the results in [7], Sabach and Shtern [28] recently proposed the follow-
ing scheme (with x0 ∈ Rn as starting point), called Bilevel Gradient Sequential Averaging
Method (abbreviated as BiG-SAM), to solve problem (1)–(2):

sn = proxλg(xn−1 − λ∇f (xn−1))

zn = xn−1 − γ∇h(xn−1)

xn = αnzn + (1 − αn)sn, n ≥ 1

(5)

with λ ∈ (0, 1/Lf ], γ ∈ (0, 2/(Lh + σ)], where Lf and Lh are the Lipschitz constants for the
gradients of f and h, and {αn} satisfying the conditions assumed in [33]. Sabach and Shtern
[28] obtained a non-asymptotic O(1/n) global rate of convergence in terms of the inner
objective function values and showed that BiG-SAM (5) appears simpler and cheaper than
themethod proposed in [7]. The numerical example in [28] also showed that BiG-SAM (5)
outperforms the method in [7] for solving problem (1)–(2). The algorithm in [28] seems
to be the most efficient method developed so far for convex simple bilevel optimization
problems.

Inspired by recent results on inertial extrapolation type algorithms for solving optimiza-
tion problem (see, e.g. [1,6,8,24] and references therein), our aim in this paper is to solve
problems (1)–(2) by introducing an inertial extrapolation step to BiG-SAM (5) (which we
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shall call iBiG-SAM). The strategy is to provide an equivalent fixed-point formulation to
this bilevel optimization problems and then establish the global convergence of the pro-
posed method under reasonable assumptions. The proposed method can be considered as
an initial version of the iterative method for solving fixed point problem of non-expansive
mapping studied in [33]. Numerical experiments show that the new proposed method
outperforms the BiG-SAM (5) introduced in [28].

For the remainder of the paper, first note that there is a striking similarity between the
exact penalization model (3) and a corresponding partial penalization approach based
on the partial calmness concept [35] often used to solve the general bilevel optimization
problem. Both approaches seem to have originated from completely different sources and
their development also seems to be occurring independently from each other till now. In
Section 2.1, we clarify this similarity and discuss some strong relationships between the
two problem classes. In Section 2.2, we recall some basic definitions and results that will
play an important role in the paper. The proposedmethod and its convergence analysis are
presented in Section 3. Some numerical experiments are given in Section 4. We conclude
the paper with some final remarks in Section 5.

2. General context andmathematical tools

2.1. Standard bilevel optimization

In this subsection, we provide a discussion to place the simple bilevel optimization intro-
duced above in a general context of bilevel optimization. To proceed, we consider a simple
optimistic version of the latter class of problem,which aligns suitablywith problem (1)–(2),
i.e.

min
x,y

h(x, y) s.t. y ∈ S(x), (6)

where h : Rn × Rm → R represents the upper level objective function and the set-valued
mapping S defines the set of optimal solutions of the lower level problem

min
y

ϕ(x, y) (7)

(ϕ : Rn × Rm → R) for any fixed upper level variable x. Obviously, problem (1)–(2) is a
special case of problem (6)–(7), where the optimal solution of the leader is simply picked
among the optimal solutions of the lower level problem,which in turn are obtainedwithout
any influence from the leader as it is the case in the latter problem.

On the other hand problem (6)–(7) can be equivalently written as the following
optimization problem over an efficient set

min
x,y

h(x, y) s.t. (x, y) ∈ E
(
R
n × R

m, ϕ̄, �
)
, (8)

where E(Rn × Rm, ϕ̄, �) denotes the efficient set (i.e. optimal solution set) of the prob-
lem of minimizing a multiobjective function ϕ̄ (based on ϕ (7)) over Rn × Rm w.r.t. a
certain order relation �; for examples of choices of the latter function and corresponding
order relations, see the papers [16,19]. For more details on the relationship between prob-
lems (6)–(7) and (8), see [27]. Obviously, an optimization problem over an efficient set is a
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generalization of the simple bilevel optimization problem (1)–(2), and has been extensively
investigated since the seminal work by Philip [26]; see [34] for a literature review on the
topic.

One common approach to transform problem (6)–(7) into a single-level optimization
problem is the so-called lower-level optimal value function (LLVF) reformulation

min
x,y

h(x, y) s.t. ϕ(x, y) ≤ ϕ∗(x), (9)

where the function ϕ∗(x) = min
y

ϕ(x, y) represents the optimal value function of the lower

level problem (7). Recall that this reformulation is an underlying feature in the devel-
opment of the link (4) between the simple bilevel optimization problem (1)–(2) and
the penalized problem (3) as outlined in the corresponding publications; see, e.g. [18].
However, we instead want to point out here an interesting similarity between the finite
termination property (4) and the partial calmness concept [35] commonly used in the con-
text of standard bilevel optimization. To highlight this, let (x̄, ȳ) be a local optimal solution
of (1)–(2). The problem is partially calm at (x̄, ȳ) if and only if there exists λ > 0 such that
(x̄, ȳ) is also a local optimal solution of the penalized problem

min
x,y

h(x, y) + λ
(
ϕ(x, y) − ϕ∗(x)

)
. (10)

The partial calmness concept does not automatically hold for the simple bilevel opti-
mization problem (1)–(2). To see this, consider the example of convex simple bilevel
optimization problem of minimizing (x − 1)2 subject to x ∈ argmin y2. It is clear that 0
is the only optimal solution of this problem. But for the corresponding penalized prob-
lem (10) to minimize (x − 1)2 + λx2, we can easily check that the optimal solution is the
number x(λ) := 1/(1 + λ) for all λ > 0. Clearly, x(λ) 	= 0 for all λ > 0.

It is also important to note that, possibly unlike the finite termination property (4), the
partial calmness concept was introduced as a qualification condition to derive necessary
optimality conditions for problem (9); see [15,35] for some papers where this concept is
used, and also the papers [14,17] for new results on simple bilevel optimization problems
from the perspective of standard bilevel optimization.

2.2. Basic mathematical tools

We state the following well-known lemmas which will be used in our convergence analysis
in the sequel. In the following H is an arbitrary Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖.

We use the symbol ‘an → a’ to denote ‘an converges strongly to a’ while ‘an ⇀ a’ is
used to denote ‘an converges weakly to a’. Recall that in finite dimensional spaceRn, strong
convergence coincides with weak convergence.

Lemma 2.1: The following well-known results hold in H:

(i) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2, ∀x, y ∈ H;
(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H;
(iii) ‖tx + sy‖2 = t(t + s)‖x‖2 + s(t + s)‖y‖2 − st‖x − y‖2, ∀x, y ∈ H, s, t ∈ R.
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Lemma 2.2 (see, e.g. [32]): Let {an} and {γn} be sequences of non-negative real numbers,
{αn} a sequence in (0, 1) and {σn} a sequence in R satisfying the following relation:

an+1 ≤ (1 − αn)an + σn + γn, n ≥ 1.

Assume
∑

γn < ∞. Then the following results hold:

(i) If σn ≤ αnM for some M ≥ 0, then {an} is a bounded sequence.
(ii) If

∑
αn = ∞ and lim sup σn/αn ≤ 0, then lim an = 0.

We state the formal definition of some classes of operators that play an essential role in
our analysis in the sequel.

Definition 2.3: An operator T : H → H is called

(a) non-expansive if and only if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ H;
(b) averaged if and only if it can be written as the average of the identity mapping I and

a non-expansive operator, i.e. T := (1 − β)I + βS with β ∈ (0, 1) and S : H → H
being a non-expansive operator. More precisely, we say that T is β-averaged;

(c) firmly non-expansive if and only if 2T−I is non-expansive, or equivalently,

〈Tx − Ty, x − y〉 ≥ ‖Tx − Ty‖2, ∀x, y ∈ H.

Alternatively, T is said to be firmly non-expansive if and only if it can be expressed
as T := 1

2 (I + S), where S : H → H is non-expansive.

We can see from above that firmly non-expansive operators (in particular, projections)
are 1

2 -averaged.

Lemma2.4 ([20]): Let T : H → H be a non-expansive operator. Let {xn} be a sequence inH
and x be a point in H. Suppose that xn ⇀ x as n → ∞ and that xn − Txn → 0 as n → ∞.
Then, x ∈ F(T), where F(T) is the set of fixed points of T.

Next, we provide some relevant properties of averaged operators.

Proposition 2.5 (see, e.g. [10]): For given operators S, T, and V defined from H to H, the
following statements are satisfied:

(a) If T = (1 − α)S + αV for someα ∈ (0, 1) and if S is averaged andV is non-expansive,
then the operator T is averaged.

(b) The operator T is firmly non-expansive if and only if the complement I−T is also firmly
non-expansive.

(c) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is firmly non-expansive and V is
non-expansive, then T is averaged.

(d) The composite of finitely many averaged operators is averaged. That is, if for each i =
1, . . . ,N, the operator Ti is averaged, then so is the composite operator T1 . . .TN. In
particular, if T1 is α1-averaged and T2 is α2-averaged, where α1,α2 ∈ (0, 1), then the
composite T1T2 is α-averaged, where α = α1 + α2 − α1α2.
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Finally, for the last proposition of this section, we recall the definition of monotonicity
of nonlinear operators.

Definition 2.6: Given a nonlinear operatorAwith domainD(A) inH and β , ν are positive
constants. Then A is called

(a) monotone on D(A) if 〈Ax − Ay, x − y〉 ≥ 0 for all x, y ∈ D(A);
(b) β-strongly monotone if 〈Ax − Ay, x − y〉 ≥ β‖x − y‖2 for all x, y ∈ D(A);
(c) ν-inverse strongly monotone (ν-ism, for short) if 〈Ax − Ay, x − y〉 ≥ ν‖Ax − Ay‖2

for all x, y ∈ D(A).

The following proposition gathers some useful results on the relationship between
averaged operators and inverse strongly monotone operators.

Proposition 2.7 ([10]): If T : H → H is an operator, then the following statements hold:

(a) T is non-expansive if and only if the complement I−T is 1
2 -ism;

(b) If T is ν-ism, then for γ > 0, γT is ν/γ -ism;
(c) T is averaged if and only if the complement I−T is ν-ism for some ν > 1/2. Indeed,

for α ∈ (0, 1), T is α-averaged if and only if I−T is 1/2α-ism.

3. The algorithm and convergence analysis

This section is dedicated to the algorithmic formulation and analysis of the convex bilevel
optimization problem (1)–(2). To this end, we first propose an inertial version of the vis-
cosity approximation method for approximating fixed points of a non-expansive operator
in an infinite dimensional real Hilbert space, a result which has its own interest. More pre-
cisely, let T : H → H be a non-expansive operator. We are interested in finding a fixed
point of T, i.e. x∗ ∈ H such that x∗ = Tx∗. Combining inertial extrapolation with viscosity
techniques, we introduce a new iterative scheme that converges strongly to a fixed point of
T in Algorithm 1.

Assumption 3.1: Suppose {αn}∞n=1 is a sequence in (0,1) and {εn}∞n=1 is a positive sequence
satisfying the following conditions:

(a) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.
(b) εn = o(αn), i.e. limn→∞(εn/αn) = 0 (e.g. εn = 1/(n + 1)2,αn = 1/(n + 1)).

Remark 3.2: Observe that from Assumption 3.1 and Algorithm 1 we have that

lim
n→∞ θn‖xn − xn−1‖ = 0 and lim

n→∞
θn

αn
‖xn − xn−1‖ = 0.
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Algorithm 1 Inertial Viscosity Method
Step 0: Choose sequences {αn}∞n=1 and {εn}∞n=1 such that the conditions in Assumption
3.1 hold. Select arbitrary points x0, x1 ∈ H, β ∈ (0, 1) and α ≥ 3. Set n := 1.
Step 1: Given the iterates xn−1 and xn (with n ≥ 1), choose θn such that we have 0 ≤
θn ≤ θ̄n with θ̄n defined by

θ̄n :=
⎧⎨
⎩
min

{
n−1

n+α−1 ,
εn

‖xn−xn−1‖
}

if xn 	= xn−1,
n−1

n+α−1 otherwise.
(11)

Step 2: Proceed with the following computations{
yn = xn + θn(xn − xn−1),
xn+1 = αnS(yn) + (1 − αn)(1 − β)yn + β(1 − αn)Tyn, n ≥ 1,

(12)

Also note that Step 1 in our Algorithm 1 is easily implemented in numerical computa-
tion since the value of ‖xn − xn−1‖ is a priori known before choosing θn.

Theorem 3.3: Let H be a real Hilbert space and T : H → H a non-expansive operator such
that F(T) 	= ∅. Let S be a contraction mapping with constant η ∈ [0, 1). Let Assumption 3.1
hold. Then the sequence {xn} generated by Algorithm 1 converges strongly z, which is the
unique solution of the variational inequality

〈(I − S)z, x − z〉 ≥ 0, ∀x ∈ F(T). (13)

Proof: From (12), for any z ∈ F(T), we have

‖xn+1 − z‖ ≤ αn‖S(yn) − z‖ + (1 − αn)(1 − β)‖yn − z‖ + β(1 − αn)‖Tyn − z‖
≤ αn

(‖S(yn) − S(z)‖ + ‖S(z) − z‖) + (1 − αn)‖yn − z‖
≤ αn‖S(z) − z‖ + (1 − αn(1 − η))‖yn − z‖
≤ αn‖S(z) − z‖ + (1 − αn(1 − η))(‖xn − z‖ + θn‖xn − xn−1‖)
= (1 − αn(1 − η))‖xn − z‖ + (1 − αn(1 − η))θn‖xn − xn−1‖

+ αn‖S(z) − z‖

= (1 − αn(1 − η))‖xn − z‖ + αn

(
(1 − αn(1 − η))

θn

αn
‖xn − xn−1‖

+ ‖S(z) − z‖
)
. (14)

Observe that supn≥1(1 − αn(1 − η))(θn/αn)‖xn − xn−1‖ exists by Remark 3.2 and take

M := max

{
‖S(z) − z‖, sup

n≥1
(1 − αn(1 − η))

θn

αn
‖xn − xn−1‖

}
.
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Then (14) becomes

‖xn+1 − z‖ ≤ (1 − αn(1 − η))‖xn − z‖ + αnM.

By Lemma 2.2, we get that {xn} is bounded. As a consequence, {yn} is also bounded.
Observing that

‖yn − z‖2 = ‖xn − z‖2 + 2θn〈xn − xn−1, xn − z〉 + θ2n‖xn − xn−1‖2. (15)

From Lemma 2.1 (i) it holds

2〈xn − xn−1, xn − z〉 = −‖xn−1 − z‖2 + ‖xn − z‖2 + ‖xn − xn−1‖2. (16)

Substituting (16) into (15), we obtain

‖yn − z‖2 = ‖xn − z‖2 + θn(−‖xn−1 − z‖2 + ‖xn − z‖2 + ‖xn − xn−1‖2)
+ θ2n‖xn − xn−1‖2

= ‖xn − z‖2 + θn(‖xn − z‖2 − ‖xn−1 − z‖2)
+ θn(1 + θn)‖xn − xn−1‖2

≤ ‖xn − z‖2 + θn(‖xn − z‖2 − ‖xn−1 − z‖2)
+ 2θn‖xn − xn−1‖2, (17)

where the last inequality follows from the fact that θn ∈ [0, 1). Using Lemma 2.1 (ii) and
(iii) and the fact that T is non-expansive, we obtain from (12) that

‖xn+1 − z‖2 = ‖αn(S(yn) − z) + (1 − αn)(1 − β)(yn − z) + β(1 − αn)(Tyn − z)‖2

≤ ‖(1 − αn)(1 − β)(yn − z) + β(1 − αn)(Tyn − z)‖2
+ 2〈αn(S(yn) − z), xn+1 − z〉

= (1 − αn)
2(1 − β)‖yn − z‖2 + β(1 − αn)

2‖Tyn − z‖2

− β(1 − β)(1 − αn)
2‖yn − Tyn‖2 + 2αn〈S(yn) − z, xn+1 − z〉

≤ (1 − αn)
2(1 − β)‖yn − z‖2 + β(1 − αn)

2‖yn − z‖2

− β(1 − β)(1 − αn)
2‖yn − Tyn‖2 + 2αn〈S(yn) − z, xn+1 − z〉

= (1 − αn)
2‖yn − z‖2 − β(1 − β)(1 − αn)

2‖yn − Tyn‖2
+ 2αn〈S(yn) − z, xn+1 − z〉. (18)

Combining (17) and (18), we get

‖xn+1 − z‖2 ≤ (1 − αn)
2‖xn − z‖2 − β(1 − β)(1 − αn)

2‖yn − Tyn‖2

+ θn(1 − αn)
2(‖xn − z‖2 − ‖xn−1 − z‖2)

+ 2θn(1 − αn)
2‖xn − xn−1‖2

+ 2αn
〈
S(yn) − z, xn+1 − z

〉
. (19)
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Setting 
n := ‖xn − z‖2 for all n ≥ 1, it follows from (19) that


n+1 ≤ (1 − αn)
2
n − β(1 − β)(1 − αn)

2‖yn − Tyn‖2 + θn(1 − αn)
2(
n − 
n−1)

+ 2θn(1 − αn)
2‖xn − xn−1‖2 + 2αn〈S(yn) − z, xn+1 − z〉. (20)

We consider two cases for the rest of the proof.
Case 1: Suppose there exists a natural number n0 such that 
n+1 ≤ 
n for all n ≥ n0.

Therefore, limn→∞ 
n exists. From (20), we have

β(1 − β)(1 − αn)
2‖yn − Tyn‖2

≤ (
n − 
n+1) + θn(1 − αn)
2(
n − 
n−1)

+ 2θn(1 − αn)
2‖xn − xn−1‖2 + 2αn〈S(yn) − z, xn+1 − z〉. (21)

Using Assumption 3.1 and Remark 3.2 (noting that limn→∞ θn‖xn − xn−1‖ = 0 and {xn},
{yn} are bounded), we have

lim
n→∞ β(1 − β)(1 − αn)

2‖yn − Tyn‖ = 0.

Observe that lim inf
n→∞ β(1 − β)(1 − αn)

2 = lim
n→∞β(1 − β)(1 − αn)

2 = β(1 − β) > 0 and
this immediately implies that

lim
n→∞ ‖Tyn − yn‖ = 0.

Since {xn} is bounded, take a subsequence {xnk} of {xn} such that xnk ⇀ p ∈ H and

lim sup
n→∞

〈S(z) − z, xn − z〉 = lim
k→∞

〈S(z) − z, xnk − z〉

= 〈S(z) − z, p − z〉. (22)

From yn = xn + θn(xn − xn−1), we get

‖yn − xn‖ = θn‖xn − xn−1‖ → 0.

Since xnk ⇀ p, we have ynk ⇀ p. Lemma 2.4 then guarantees that p ∈ F(T). Furthermore,
we have from (13) and (24) that

lim sup
n→∞

〈S(z) − z, xn − z〉 ≤ 0. (23)

From the contraction of S and (17), we can write

2αn〈S(yn) − z, xn+1 − z〉 = 2αn〈S(yn) − S(z) + S(z) − z, xn+1 − z〉
≤ 2αnη‖yn − z‖‖xn+1 − z‖ + 2αn〈S(z) − z, xn+1 − z〉
≤ αnη(‖yn − z‖2 + ‖xn+1 − z‖2) + 2αn〈S(z) − z, xn+1 − z〉
≤ αnη(
n + θn(
n − 
n−1) + 2θn‖xn − xn−1‖2)

+ 2αn〈S(z) − z, xn+1 − z〉 + αnη‖xn+1 − z‖2.
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Therefore from (20) it holds


n+1 ≤ (1 − αn)
2
n + θn(1 − αn)

2(
n − 
n−1)

+ 2θn(1 − αn)
2‖xn − xn−1‖2 + 2αn〈S(yn) − z, xn+1 − z〉

≤ ((1 − αn)
2 + αnη)
n + θn((1 − αn)

2 + αnη)(
n − 
n−1)

+ 2θn((1 − αn)
2 + αnη)‖xn − xn−1‖2 + 2αn〈S(z) − z, xn+1 − z〉

+ αnη‖xn+1 − z‖2

≤ ((1 − αn)
2 + αnη)
n + θn((1 − αn)

2 + αnη)‖xn − xn−1‖(
√


n +
√


n−1)

+ 2θn((1 − αn)
2 + αnη)‖xn − xn−1‖2 + 2αn〈S(z) − z, xn+1 − z〉

+ αnη‖xn+1 − z‖2

= ((1 − αn)
2 + αnη)
n + θn‖xn − xn−1‖M2 + αnη‖xn+1 − z‖2

+ 2αn〈S(z) − z, xn+1 − z〉, (24)

where

M2 := sup
n≥1

(
(1 − αn)

2 + αnη)(
√


n +
√


n−1) + 2((1 − αn)
2 + αnη)‖xn − xn−1‖

)
.

Therefore


n+1 ≤ (1 − αn)
2 + αnη

1 − αnη

n + θn‖xn − xn−1‖M2

1 − αnη

+ 2
αn

1 − αnη
〈S(z) − z, xn+1 − z〉

=
(
1 − 2(1 − η)αn

1 − αnη

)

n + θn‖xn − xn−1‖M2

1 − αnη

+ 2
αn

1 − αnη
〈S(z) − z, xn+1 − z〉 + α2

n
1 − αnη


n

≤
(
1 − 2(1 − η)αn

1 − αnη

)

n

+ 2(1 − η)αn

1 − αnη

{
θn‖xn − xn−1‖M2

2(1 − η)αn
+ αn
n0

2(1 − η)
+ 1

1 − η
〈S(z) − z, xn+1 − z〉

}

= (1 − δn)
n + δnσn, ∀n ≥ n0, (25)

where δn := 2(1 − η)αn/1 − αnη and

σn := θn‖xn − xn−1‖M2

2(1 − η)αn
+ αn
n0

2(1 − η)
+ 1

1 − η
〈S(z) − z, xn+1 − z〉.

Let us verify conditions in Lemma 2.2 (ii). Since

∑
δn =

∑ 2(1 − η)αn

1 − αnη
≥

∑
2(1 − η)αn = ∞,
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we have
∑

δn = ∞. Furthermore, using Remark 3.2, Assumption 3.1 (a) and (23) we
obtain lim sup σn = 0. Now we can apply Lemma 2.2 (ii) and Assumption 3.1 in (25) to
get 
n = ‖xn − z‖ → 0 and thus xn → z as n → ∞.

Case 2: Assume that there is no n0 ∈ N such that {
n}∞n=n0 is monotonically decreasing.
Let τ : N → N be a mapping defined for all n ≥ n0 (for some n0 large enough) by

τ(n) := max
{
k ∈ N : k ≤ n,
k ≤ 
k+1

}
,

i.e. τ(n) is the largest number k in {1, . . . , n} such that 
k increases at k = τ(n); note that,
in view of Case 2, this τ(n) is well-defined for all sufficiently large n. Clearly, τ is a non-
decreasing sequence [21] such that τ(n) → ∞ as n → ∞ and

0 ≤ 
τ(n) ≤ 
τ(n)+1, ∀n ≥ n0.

Using similar techniques as in (21), it is easy to show that

lim
n→∞ ‖Tyτ(n) − yτ(n)‖ = lim

n→∞ ‖yτ(n) − xτ(n)‖ = lim
n→∞ ‖Tyτ(n) − xτ(n)‖ = 0.

Furthermore, using the boundedness of {xn}, {yn} and Assumption 3.1, we get

‖xτ(n)+1 − xτ(n)‖ ≤ ατ(n)‖S
(
yτ(n)

)
− xτ(n)‖ + (1 − ατ(n))‖yτ(n) − xτ(n)‖

+ (1 − ατ(n))‖Tyτ(n) − xτ(n)‖ −→ 0 as n → ∞. (26)

Since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)}, still denoted by {xτ(n)},
which converges weakly to some p ∈ F(T). Similarly, as in Case 1 above, we can show that
we have lim sup

n→∞
〈S(z) − z, xτ(n)+1 − z〉 ≤ 0. Following (25), we obtain


τ(n)+1 = (1 − δτ(n))
τ(n) + δτ(n)στ(n), (27)

which implies that ‖xτ(n) − z‖2 ≤ στ(n) while noting that 
τ(n) ≤ 
τ(n)+1 and ατ(n) > 0
hold. This leads to lim sup

n→∞
‖xτ(n) − z‖2 ≤ 0. Thus, we have

lim
n→∞ ‖xτ(n) − z‖ = lim

n→∞ 
τ(n) = 0,

which in turn implies lim
n→∞‖xτ(n)+1 − z‖ = 0. Furthermore, forn ≥ n0, it is easy to see that


n ≤ 
τ(n)+1 (observe that τ(n) ≤ n for n ≥ n0 and consider the three cases: τ(n) = n,
τ(n) = n − 1 and τ(n) < n − 1. For the first and second cases, it is obvious that 
n ≤

τ(n)+1 for n ≥ n0. For the third case τ(n) ≤ n − 2, we have from the definition of τ(n)
and for any integer n ≥ n0 that 
j ≥ 
j+1 for τ(n) + 1 ≤ j ≤ n − 1. Thus, 
τ(n)+1 ≥

τ(n)+2 ≥ · · · ≥ 
n−1 ≥ 
n). As a consequence, we obtain for all sufficiently large n that
0 ≤ 
n ≤ 
τ(n)+1. Hence lim

n→∞
n = 0. Therefore, {xn} converges to z. �

We are now in position to state the inertial Bilevel Gradient Sequential Averaging
Method (iBiG-SAM) for bilevel optimization problem (1)–(2) and present its convergence
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analysis. We first state the assumptions that will be needed throughout the rest of this
paper.

Assumption 3.4: Considering problem (1)–(2), let the following hold:

(a) f : Rn → R is convex and continuously differentiable such that its gradient is
Lipschitz continuous with constant Lf .

(b) g : Rn → (−∞,∞] is proper, lower semicontinous and convex.
(c) h : Rn → R is strongly convex with parameter σ > 0 and continuously differen-

tiable such that its gradient is Lipschitz continuous with constant Lh.
(d) The set X∗ of all optimal solutions of problem (2) is non-empty.

Assumption 3.5: Suppose {αn}∞n=1 is a sequence in (0,1) and {εn}∞n=1 is a positive sequence
satisfying the following conditions:

(a) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.
(b) εn = o(αn), i.e. limn→∞(εn/αn) = 0.
(c) λ ∈ (0, (2/Lf )) and γ ∈ (0, (2/Lh + σ)].

Remark 3.6: Note that the stepsize λ in Assumption (c) above is chosen in a larger inter-
val than that of [28]. Also, our Assumption (a) is weaker than Assumption C of [28]
since {αn}∞n=1 is not required in our Assumption (a) to satisfy limn→∞(αn+1/αn) = 1
as assumed in Assumption C of [28]. Take, for example, αn = 1/

√
n, when n is odd and

αn = 1/n, when n is even. We see that {αn} satisfies Assumption (a) but αn+1/αn 	→ 1.

We next give a precise statement of our inertial Bilevel Gradient Sequential Averaging
Method (iBiG-SAM) as follows.

Algorithm 2 iBiG-SAM
Step 0: Choose sequences {αn}∞n=1 and {εn}∞n=1 such that the conditions in Assumption
3.1 hold. Select arbitrary points x0, x1 ∈ Rn and α ≥ 3. Set n := 1.
Step 1: Given the iterates xn−1 and xn (with n ≥ 1), choose θn such that we have 0 ≤
θn ≤ θ̄n with θ̄n defined by

θ̄n :=
⎧⎨
⎩
min

{
n−1

n+α−1 ,
εn

‖xn−xn−1‖
}

if xn 	= xn−1,
n−1

n+α−1 otherwise.
(28)

Step 2: Proceed with the following computations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = xn + θn(xn − xn−1),
sn = proxλg(yn − λ∇f (yn)),
zn = yn − γ∇h(yn),
xn+1 = αnzn + (1 − αn)sn, n ≥ 1.

(29)
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We are now in the position to discuss the convergence of iBIG-SAM. Let us define

Tλ := proxλg(I − λ∇f ). (30)

The next lemma shows that the prox-gradmapping Tλ is averaged. This is an improvement
over Lemma 1(i) of [28].

Lemma 3.7: The prox-grad mapping Tλ (30) is (2 + λLf )/4-averaged for all λ ∈ (0, 2/Lf ).

Proof: Observe that the Lipschitz condition on ∇f implies that ∇f is 1/Lf -ism (see
[3]), which then implies that λ∇f is 1/λLf -ism. Hence, by Proposition 2.7(c), I − λ∇f
is (λLf /2)-averaged. Since proxλf is firmly non-expansive and hence 1/2-averaged, we
see from Proposition 2.5(d) that the composite proxλg(I − λ∇f ) is (2 + λLf )/4-averaged
for λ ∈ (0, 2/Lf ). Hence we have that, Tλ = proxλg(I − λ∇f ) is (2 + λLf )/4-averaged.
Therefore, we can write

Tλ = proxλg(I − λ∇f ) =
(2 − λLf

4

)
I +

(2 + λLf
4

)
T (31)

= (1 − β)I + βT, (32)

where β := 2+λLf
4 ∈ [a, b] ⊂ (1/2, 1) and T is a non-expansive mapping. �

Lemma 1(ii) of [28] showed the equivalence between the fixed points of prox-gradmap-
ping Tλ (30) and optimal solutions of problem (2). That is, x ∈ X∗ if and only if x = Tλx.
This equivalence will be needed in our convergence analysis in this paper.

Lemma 3.8 ([28]): Suppose that Assumption 3.4 (c) holds. Then, the mapping Sγ , defined
by Sγ := I − γ∇h, is a contraction for all γ ∈ (0, 2/(Lh + σ)]. That is,

‖Sγ (x) − Sγ (y)‖ ≤ η‖x − y‖, ∀x, y ∈ R
n.

Here, I represents the identity operator and η := √
1 − 2γ σLh/(σ + Lh).

By the statements of Lemma 3.7 and Lemma 3.8, we can re-write (29) as

yn = xn + θn(xn − xn−1),

xn+1 = αnSγ (yn) + (1 − αn)(1 − β)yn + β(1 − αn)Tyn, n ≥ 1,
(33)

where T is a non-expansive mapping, Sγ is a contraction mapping and β := (2 + λLf )/4.
Before we proceed with the main result of this section, we first show that the iterative

sequence generated by our algorithm is bounded.

Lemma 3.9: Let Assumptions 3.4 and 3.5 be satisfied. Then the sequence {xn} generated by
Algorithm 1 is bounded.

Proof: First observe that x ∈ X∗ if and only if x ∈ F(Tλ) = F(T). Using the same argu-
ments in the earlier part of the proof of Theorem 3.3 replacing S in Theorem 3.3 with Sγ ,
we obtain the desired result that {xn} generated by Algorithm 2 is bounded. �
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Theorem 3.10: Let Assumptions 3.4 and 3.5 hold. Then the sequence {xn} generated by
Algorithm 2 converges to a point z ∈ X∗ satisfying

〈∇h(z), x − z〉 ≥ 0 ∀x ∈ X∗ (34)

and therefore, z = zmn, where zmn is the unique optimal solution of problem (1).

Proof: Follows fromTheorem 3.3, while replacing S in Theorem3.3with Sγ in Lemma 3.8.
�

Remark 3.11: Suppose that Assumption 3.4(c) is replaced with the following milder
condition: ‘h : Rn → R is strongly convex with parameter σ > 0 and Lh-Lipschitz con-
tinuous’. Then the step involving zn in Algorithm 2 can be replaced by

zn = yn − γ∇Mγ h(yn)

= yn − γ
1
γ

(yn − proxγ h(yn))

= proxγ h(yn),

whereMγ h is the Moreau envelop of h, defined by

Mγ h(x) := min
u∈Rn

{
h(u) + 1

2γ
‖u − x‖2

}
,

which is continuously differentiable (see [5]) with ∇Mγ h(x) = (1/γ )(x − proxγ h(x)) and
global convergence is still obtained as in Theorem 3.10 using Lemma 6 of [28].

We give some brief comments on the non-asymptoticO(1/n2) convergence rate of some
estimates obtained in Theorem 3.10.

Remark 3.12: Observe that for Algorithm 2, we have θn‖xn − xn−1‖ ≤ εn for all n ≥ 1.
If we choose εn := c/n2, where c>0, then θn‖xn − xn−1‖ ≤ c/n2 for all n ≥ 1. Thus,
θn‖xn − xn−1‖ = O(1/n2) and consequently

‖yn − xn‖ = θn‖xn − xn−1‖ = O(1/n2).

Full details on the convergence rate of the result in Theorem 3.10 is left for further careful
investigation in a separate work.

4. Numerical results

For numerical implementation of our proposed method in Section 3 we consider the
inverse problems tested in [28] and give numerical comparison with the proposed
Algorithm2 (iBiG-SAM) and that of BiG-SAMmethod in [28]. The codes are implemented
inMatlab.We perform all computations on a windows desktop with an Intel(R) Core(TM)
i7-2600 CPU at 3.4GHz and 8.00GB ofmemory.We take αn = 2κ/n(1 − β)with κ = 0.1,
which is the best choice for BiG-SAM considered in [28] and β ∈ [0, 1) defined as in (32)
and θn = θ̄n as in (28) with α = 3 and εn = αn/n0.01 for iBiG-SAM.
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Example 4.1: Following [28], the inner objective function is taking as

ϕ(x) := 1
2
‖Ax − b‖2 + δX(x),

where δX is the indicator function over the non-negative orthant X := {x ∈ Rn : x ≥ 0}.
Furthermore, we take the outer objective function as

h(x) := 1
2
xTQx, (35)

whereQ is a positive definite matrix. It is clear that Lf = ‖AtA‖ and Lh = ‖Q‖. We choose
λ = 1/Lf and γ = 2/(Lh + σ).

Following [6], we consider three inverse problems, i.e. Baart, Foxgood, and Phillips [28].
These test problems are well known as important Fredholm integral equations of the first
kind of the following form

∫ b

a
K(s, t)f (t) dt = g(s) c ≤ s ≤ d,

where the right-hand side g and the kernel K are given and where f is the unknown
solution. In Baart problem [2], g(s) := 2sins/s and the kernel K(s, t) := exp(scost) and
integration intervals s ∈ [0,π/2] and t ∈ [0,π]. Foxgood is a severely ill-posed test prob-
lem with both integration intervals equal to [0, 1], with kernel K and right-hand side g
given by

K(s, t) = (s2 + t2)1/2, g(s) = 1
2

(
(1 + s2)3/2 − s3

)
,

and with the solution f = t [4, p. 665]. Phillips is the ‘famous’ Fredholm integral equation
of the first kind studied by D. L. Phillips [25]. Define the function

φ(x) = 1 + cos
(πx

3

)
|x| < 3

0 |x| ≥ 3.

Then the kernel K, the solution f, and the right-hand side g are given by:

K(s, t) = φ(s − t)

f (t) = φ(t)

g(s) = (6 − |s|)
(
1 + 1

2
cos

(πs
3

))
+ 9

2π
sin

(
π |s|
3

)
,

with both integration intervals are [−6, 6].
In our experiment, the data A,b,x are the results from the discretization of the

test problems Baart,Foxgood, and Phillips. For each of these problems, we generated
the corresponding 1000 by 1000 exact linear system of the form Ax=b, by applying
the relevant function (baart, foxgood, and phillips) from the regularization tools (see
http://www.imm.dtu.dk/pcha/Regutools/). We then performed the simulation by adding
normally distributed noise with zero mean to the right-hand-side vector b, with deviation
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Table 1. Averaged over 100 runs for each problem in Example 4.1.

iBiG-SAM BiG-SAM

Problem Number of iterations Time (s) Number of iterations Time (s)

Baart 119.15 1.7253 145.67 2.1089
Foxgood 122.04 1.7861 149.78 2.1885
Phillips 120.77 1.7463 148.18 2.1397

Figure 1. Distance to optimal solution vs. CPU time for problems Baart (left) and Foxgood (right) with
n= 100.

ρ = 0.01. The matrix Q is defined by Q = LL′ + I, where L is generated by the function
get-l(1,000,1) from the regularization tools and approximates the first-derivative operator.

Following [28], we use the stopping condition (ϕ(xn) − ϕ∗)/ϕ∗ ≤ 10−2 for both meth-
ods, where ϕ∗ is the optimal value of the inner problem computed in advance by BiG-SAM
with 1000 iterations. In Table 1 we present the averaged number of iterations and time (out
of 100 runs) until the algorithms reach the stopping criterion. It can be seen that iBiG-SAM
outperforms BiG-SAM (on averaged about 20%) in all problems tested.

In Figure 1, we compare the behaviour of iBiG-SAM wih BiG-SAM for Baart and
Foxgood problems when n=100.

Example 4.2: We now look at the case when g is not an indicator function. In this case,
the methods proposed in [6,18,29] cannot be applied. We still give a comparison of our
method with BiG-SAM (5). The inner objective function is taking here as

ϕ(x) := 1
2
‖Ax − b‖22 + μ‖x‖1,

whereA ∈ Rm×n is a givenmatrix, b is a given vector andμ a positive scalar. This is LASSO
(Least Absolute selection and Shrinkage Operator) [30] in compressed sensing. The prox-
imal map with g(x) = μ‖x‖1 is given as proxg(x) = argminu μ‖x‖1 + 1

2‖u − x‖22, which
is separable in indices. Thus, for x ∈ Rn,

proxg(x) =
(
proxμ|.|1(x1), . . . , proxμ|.|1(xn)

)
= (β1, . . . ,βn) ,

where βk = sgn(xk)max{|xk| − μ, 0} for k = 1, 2, . . . , n. As in Example 4.1, we take the
outer objective function as in (35) with Q similarly being a positive definite matrix. We
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Table 2. Averaged over 100 runs for each problem in Example 4.2.

iBiG-SAM BiG-SAM

Parameters Iterations Time (s) Iterations Time (s)

α = 3,m = 100, n = 500 43.32 0.0498 60.43 0.0697
α = 4,m = 200, n = 500 12.25 0.017 18.65 0.0252
α = 5,m = 500, n = 1000 12.31 0.124 18.07 0.1793

Figure 2. Distance to optimal solution vs. CPU timewhenm= 100,n= 500 (left) andm= 500,n= 1000
(right).

take μ = 0.5, and the data b is generated as Ax + δe, where A and e are random matrices
whose elements are normally distributed with zero mean and variance 1, and δ = 0.01,
and x is a generated sparse vector. The stopping condition is ‖xn − x∗‖ ≤ ε with ε = 10−3

and x∗ computed in advance by BiG-SAM with 1000 iterations. In Table 2 we present the
averaged number of iterations and time (out of 100 runs) until the algorithms reach the
stopping criterion for different choices of α ≥ 3 in different dimensional spaces. Again
iBiG-SAM outperforms BiG-SAM in all simulations.

In Figure 2, we compare the behaviour of BiG-SAM wih iBiG-SAM for different
parameters α. It seems that iBiG-SAMwith α = 3 takes advantage over other values tested.

Interested readers can download the codes used for the experiments above via the fol-
lowing link (under iBIG-SAM), in order to proceed with their own tests on other scenarios
of Examples 4.1 and 4.2 or to use corresponding adjustments for calculations on new
examples: http://www.southampton.ac.uk/abz1e14/solvers.html

5. Concluding remarks

The paper has introduced and proved the global convergence of an inertial extrapolation-
type method for solving simple convex bilevel optimization problems in finite dimen-
sional Euclidean spaces. Note that our scheme is not restricted to solving simple convex
bilevel optimization problems but can be applied to a general fixed point problem for
non-expansive operators in infinite dimensional Hilbert spaces. Based on the numerical
experiments conducted, we have shown that our method outperforms the known best
algorithm recently proposed in [28] to solve problems of the form (1)–(2). Our next project
in this subject area is to derive the convergence rate of the method proposed in this paper.
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