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ABSTRACT
In this paper, we study the auxiliary problems that appear in p-order
tensor methods for unconstrainedminimization of convex functions
with ν-Hölder continuous pth derivatives. This type of auxiliary prob-
lems corresponds to the minimization of a (p + ν)-order regulariza-
tion of the pth-order Taylor approximation of the objective. For the
case p = 3, we consider the use of Gradient Methods with Bregman
distance. When the regularization parameter is sufficiently large, we
prove that the referred methods take at mostO(log(ε−1)) iterations
to find either a suitable approximate stationary point of the tensor
model or an ε-approximate stationary point of the original objective
function.
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1. Introduction

1.1. Motivation

In [19], a cubic regularization of Newton’s method (CNM) was proposed for convex and
nonconvex minimization of functions with Lipschitz continuous Hessian. At each itera-
tion of CNM, a trial point is computed by minimizing a third-order regularization of the
second-order Taylor approximation of the objective function around the current iterate.
When the objective f is convex, it was shown that CNM takes at mostO(ε−1/2) iterations
to generate x̄ such that f (x̄) − f∗ ≤ ε, where f∗ is the optimal value of f. An accelerated
version of CNM was proposed in [16] with an improved complexity bound of O(ε−1/3).
In the sequel, accelerated p-order tensor methods with complexity of O(ε−1/(p+1)) were
proposed by Baes [1], generalizing the accelerated CNM. However, each iteration of these
tensor methods require the exact minimization of a potentially nonconvex model, namely,
a (p + 1)-order regularization of the pth-order Taylor approximation of the objective.
Since the global minimization of general nonconvex multivariate polynomials is com-
putationally out of reach, the contribution in [1] remained restricted to the theoretical
field.
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Recently, two important works have pointed new ways towards practical tensor meth-
ods. In the context of nonconvex optimization, Birgin et al. [3] presented a p-order tensor
method that can find x̄ with ‖∇f (x̄)‖∗ ≤ ε in at most O(ε−(p+1)/p) iterations, general-
izing the bound of O(ε−3/2) proved in [19] for the CNM (case p = 2). The method is
based on the same regularized models used in [1] but allows the trial points to be approx-
imate stationary points of the tensor models. On the other hand, in the context of convex
optimization, Nesterov [17] proved that regularized tensor models are convex if the cor-
responding regularization parameter is sufficiently large. This makes possible the iterative
solution of tensor auxiliary problems by efficient methods from Convex Optimization.

The tensor methods in [17] make explicit use of the Lipschitz constant of the higher-
order derivative of the objective and also require the exact solution of the convex auxiliary
problems. In [10,11], we proposed adaptive tensor methods for unconstrained mini-
mization of convex functions with ν-Hölder continuous pth derivatives. These methods
generalize the regularized Newton methods presented in [8,9] for p = 2 and allow inexact
solution of the auxiliary problems as in [3].

In this paper, we investigate the use of Gradient Methods with Bregman distance to
approximately solve the auxiliary problems in third-order tensor methods. When the reg-
ularization parameter is sufficiently large, we prove that these schemes applied to the
corresponding tensor model take at mostO(log(ε−1)) iterations to find either an approx-
imate stationary point of the model (in the sense of [3]) or an ε-approximate stationary
point of the original objective function.

1.2. Contents

The paper is organized as follows. In Section 2, we state the general problem. In Section 3,
we establish convexity and smoothness properties of regularized third-order tensor mod-
els. In Section 4, we consider a Bregman Gradient Method for the approximate solution
of smooth third-order tensor auxiliary problems. In Section 4, we consider possibly nons-
mooth auxiliary problem that arise in composite convex optimization. General complexity
results for Bregman Gradient Methods are provided in the Appendix.

1.3. Notations and generalities

In what follows, we denote by E a finite-dimensional real vector space, and by E
∗ its dual

space, composed by linear functionals on E. The value of function s ∈ E
∗ at point x ∈ E

is denoted by 〈s, x〉. Given a self-adjoint positive definite operator B : E → E
∗ (notation

B 
 0), we can endow these spaces with conjugate Euclidean norms:

‖x‖ = 〈Bx, x〉1/2, x ∈ E, ‖s‖∗ = 〈s,B−1s〉1/2, s ∈ E
∗.

For a smooth function f : dom f → R with convex and open domain dom f ⊂ E, denote
by ∇f (x) its gradient, and by ∇2f (x) its Hessian evaluated at point x ∈ dom f . Note that
∇f (x) ∈ E

∗ and ∇2f (x)h ∈ E
∗ for x ∈ dom f and h ∈ E.

For any integer p ≥ 1, denote by

Dpf (x)[h1, . . . , hp]
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the directional derivative of function f at x along directions hi ∈ E, i = 1, . . . , p. In
particular, for any x ∈ dom f and h1, h2 ∈ E we have

Df (x)[h1] = 〈∇f (x), h1〉 and D2f (x)[h1, h2] = 〈∇2f (x)h1, h2〉.
If h1 = · · · = hp = h ∈ E, we denoteDpf (x)[h1, . . . , hp] asDpf (x)[h]p.With this notation,
the pth-order Taylor approximation of function f at x ∈ dom f can be written as follows:

f (x + h) = �x,p(x + h) + o(‖h‖p), x + h ∈ dom f , (1)

where

�x,p(y) ≡ f (x) +
p∑

i=1

1
i!
Dif (x)[y − x]i, y ∈ E. (2)

Since Dpf (x)[·] is a symmetric p-linear form, its norm is defined as:

‖Dpf (x)‖ = max
h1,...,hp

{∣∣Dpf (x)[h1, . . . , hp]
∣∣ : ‖hi‖ ≤ 1, i = 1, . . . , p

}
.

It can be shown that (see, e.g. Appendix 1 in [18])

‖Dpf (x)‖ = max
h

{∣∣Dpf (x)[h]p
∣∣ : ‖h‖ ≤ 1

}
.

Similarly, since Dpf (x)[·, . . . , ·] − Dpf (y)[·, . . . , ·] is also a symmetric p-linear form for
fixed x, y ∈ dom f , it follows that

‖Dpf (x) − Dpf (y)‖ = max
h

{∣∣Dpf (x)[h]p − Dpf (y)[h]p
∣∣ : ‖h‖ ≤ 1

}
.

2. Problem statement

Let f : E → R be a p-times differentiable convex function with ν-Hölder continuous pth
derivatives, that is,

‖Dpf (x) − Dpf (y)‖ ≤ Hf ,p(ν)‖x − y‖ν , ∀ x, y ∈ E, (3)

for some ν ∈ [0, 1]. Given x ∈ E, let us consider the following minimization problem:

min
y∈E

�
(ν)
x,p,H(y) ≡ �x,p(y) + H

p!
‖y − x‖p+ν , (4)

where�x,p(·) is defined in (2) andH>0. Problems of the form (4) appear as auxiliary prob-
lems in p-order tensor methods for convex and nonconvex unconstrained optimization
(see, e.g. [3,5,10,11,15]). In these methods, only approximate stationary points of�(ν)

x,p,H(·)
are required [3]. Specifically, it is enough to find x+ such that

�
(ν)
x,p,H(x+) ≤ f (x), (5)

and

‖∇�
(ν)
x,p,H(x+)‖∗ ≤ θ‖x+ − x‖p+ν−1, (6)

where θ > 0. The next lemma gives a sufficient condition for (6) to be satisfied.
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Lemma 2.1: Let x ∈ E, H, θ > 0 and δ ∈ (0, 1). If

‖∇f (x+)‖∗ ≥ δ and ‖∇�
(ν)
x,p,H(x+)‖∗ ≤ min

{
1
2
,

θ(p − 1)!
2[Hf ,p(ν) + H(p + ν)]

}
δ, (7)

then x+ satisfies (6).

Proof: From (3), it follows that

‖∇f (y) − ∇�x,p(y)‖∗ ≤ Hf ,p(ν)

(p − 1)!
‖y − x‖p+ν−1, ∀ y ∈ E. (8)

Combining (7) and (8) we obtain

δ ≤ ‖∇f (x+)‖∗ ≤ ‖∇f (x+) − ∇�x,p(x+)‖∗ + ‖∇�x,p(x+) − ∇�
(ν)
x,p,H(x+)‖∗

+ ‖∇�
(ν)
x,p,H(x+)‖∗

≤ Hf ,p(ν)

(p − 1)!
‖x+ − x‖p+ν−1 + H(p + ν)

p!
‖x+ − x‖p+ν−1 + δ

2

≤ Hf ,p(ν) + H(p + ν)

(p − 1)!
‖x+ − x‖p+ν−1 + δ

2
.

Thus,

δ

2
≤
(Hf ,p + H(p + ν)

(p − 1)!

)
‖x+ − x‖p+ν−1,

which gives [
θ(p − 1)!

2[Hf ,p(ν) + H(p + ν)]

]
δ ≤ θ‖x+ − x‖p+ν−1. (9)

Finally, (6) follows directly from the second inequality in (7) and (9). �

In view of Lemma 2.1, x+ satisfying (5)–(6) can be computed by any monotone opti-
mization scheme that drives the gradient of the objective to zero. It is worth mentioning
that the lemma above does not require the convexity of f. Therefore, a slight modification
of it also applies to the tensormodels in [3,5,15]. Our goal in the next sections is to describe
iterative schemes to solve (4) with p = 3, and also provide iteration-complexity bounds for
reducing the norm of the gradient below the threshold specified in the second inequality
in (7).

3. Gradient method for smooth third-order tensor models

3.1. Convexity and relative smoothness properties

The next lemma gives a sufficient condition for function �
(ν)
x,p,H(·) to be convex.
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Lemma 3.1: Let p ≥ 2. Then, for any x, y ∈ E we have

∇2f (y) � ∇2�x,p(y) + Hf ,p(ν)

(p − 2)!
‖y − x‖p+ν−2B. (10)

Moreover, if H ≥ (p − 1)Hf ,p(ν), then function �
(ν)
x,p,H(·) is convex for any x ∈ E.

Proof: See Lemma 5.1 in [10]. �

In order to exploit additional properties of�(ν)
x,p,H(·), let us focus on the case p = 3. Note

that

�x,3(y) = f (x) + 〈∇f (x), y − x〉 + 1
2
〈∇2f (x)(y − x), (y − x)〉 + 1

6
D3f (x)[y − x]3, (11)

and

�
(ν)
x,3,H(y) = �x,3(y) + H

6
‖y − x‖3+ν . (12)

The next auxiliary result gives bounds on the third-order derivatives of f. Its proof is an
adaptation of the proof of Lemma 3 in [17].

Lemma 3.2: For any x, y ∈ E and τ > 0 we have

− 1
τ

∇2f (x) − τ νHf ,3(ν)‖y − x‖1+νB � D3f (x)[y − x]

� 1
τ

∇2f (x) + τ νHf ,3(ν)‖y − x‖1+νB. (13)

Proof: Given u, y ∈ E, by Lemma 3.1 (for p = 3) and the convexity of f, we have:

0 ≤ 〈∇2f (y)u, u〉 ≤ 〈∇2�x,3(y)u, u〉 + Hf ,3(ν)‖y − x‖1+ν‖u‖2

= 〈(∇2f (x) + D3f (x)[y − x])u, u〉 + Hf ,3(ν)‖y − x‖1+ν‖u‖2.

Thus, replacing y by ȳ = x + τ(y − x), we obtain

0 ≤ 〈∇2f (ȳ)u, u〉
≤ 〈∇2f (x)u, u〉 + τ 〈D3f (x)[y − x]u, u〉 + τ 1+νHf ,3(ν)‖y − x‖1+ν‖u‖2

=⇒ −τ 〈D3f (x)[y − x]u, u〉 ≤ 〈∇2f (x)u, u〉 + τ 1+νHf ,3(ν)‖y − x‖1+ν‖u‖2.

Then, dividing this inequality by −τ , it follows that

〈D3f (x)[y − x]u, u〉 ≥ − 1
τ

〈∇2f (x)u, u〉 − −τ νHf ,3(ν)‖y − x‖1+ν‖u‖2. (14)

Since u is arbitrary, this gives the first inequality in (13). The second inequality in (13) can
be obtained by replacing y−x by −(y − x) in (14). �
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Now, using Lemma 3.2, we can prove relative smoothness properties1 [14] of �(ν)
x,3,H(·).

Theorem 3.3: Let τH = [(3 + ν)H/6Hf ,3(ν)]1/(1+ν) and

ρx(y) ≡ 1
2
〈∇2f (x)(y − x), y − x〉 + 1

3 + ν
‖y − x‖3+ν . (15)

Then, the following assertions hold:

(a) Function �
(ν)
x,3,H(·) is LH-smooth relative to ρx(·) for

LH = max
{

τH + 1
τH

, τ ν
H(τH + 1)Hf ,3(ν)

}
. (16)

(b) If τH ≥ 1, then function �
(ν)
x,3,H(·) is μH-strongly convex relative to ρx(·) for

μH = min
{

τH − 1
τH

, τ ν
H(τH − 1)Hf ,3(ν)

}
. (17)

Proof: In view of (12) and (13), we have

∇2�
(ν)
x,3,H(y) = ∇2f (x) + D3f (x)[y − x] + ∇2

(
H
6

‖y − x‖3+ν

)

�
(

τH + 1
τH

)
∇2f (x) + τ ν

HHf ,3(ν)‖y − x‖1+νB + ∇2
(
H
6

‖y − x‖3+ν

)

�
(

τH + 1
τH

)
∇2f (x) + τ ν

HHf ,3(ν)∇2
(

1
3 + ν

‖y − x‖3+ν

)

+ (3 + ν)H
6

∇2
(

1
3 + ν

‖y − x‖3+ν

)

=
(

τH + 1
τH

)
∇2f (x) + τ ν

H(τH + 1)Hf ,3(ν)∇2
(

1
3 + ν

‖y − x‖3+ν

)

� max
{

τH + 1
τH

, τ ν
H(τH + 1)Hf ,3(ν)

}[
∇2f (x) + ∇2

(
1

3 + ν
‖y − x‖3+ν

)]

= LH∇2ρx(y).

Since ρx(·) is convex, by Proposition 1.1 in [14] we conclude that �
(ν)
x,3,H(·) is LH-smooth

relative to ρx(·). This proves (a).
Now, suppose that τH ≥ 1. In this case, by (12) and (13) we have

∇2�
(ν)
x,3,H(y) = ∇2f (x) + D3f (x)[y − x] + ∇2

(
H
6

‖y − x‖3+ν

)

�
(

τH − 1
τH

)
∇2f (x) − τ ν

HHf ,3(ν)‖y − x‖1+νB
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+ (3 + ν)H
6

∇2
(

1
3 + ν

‖y − x‖3+ν

)

�
(

τH − 1
τH

)
∇2f (x) − τ ν

HHf ,3(ν)∇2
(

1
3 + ν

‖y − x‖3+ν

)

+ (3 + ν)H
6

(
1

3 + ν
‖y − x‖3+ν

)

=
(

τH − 1
τH

)
∇2f (x) + τ ν

H(τH − 1)Hf ,3(ν)∇2
(

1
3 + ν

‖y − x‖3+ν

)

� min
{

τH − 1
τH

, τ ν
H(τH − 1)Hf ,3(ν)

}[
∇2f (x) + ∇2

(
1

3 + ν
‖y − x‖3+ν

)]

= μH∇2ρx(y).

Thus, by Proposition 1.1 in [14], we conclude that �(ν)
x,3,H(·) is μH-strongly convex relative

to ρx(·), and this proves (b). �

Remark 3.1: Note that

∇2
(

1
3 + ν

‖y − x‖3+ν

)
= (1 + ν)‖y − x‖ν−1B(y − x)(y − x)TB + ‖y − x‖1+νB.

Consequently, for all y ∈ E, we have

‖∇2ρx(y)‖ ≤ ‖∇2f (x)‖ + (2 + ν)‖y − x‖1+ν , (18)

where ‖A‖ = max‖h‖=1 ‖Ah‖, for any matrix A. Moreover, by Lemma 5 in [7], it follows
that ρx(·) is uniformly convex of degree 3 + ν with parameter 2−(1+ν).

The next lemma establishes an upper bound for the Hessians of function ρx(·) when
H ≥ Hf ,p(ν).

Lemma 3.4: Given x ∈ E and H ≥ Hf ,3(ν), let

LH(x) =
{
z ∈ E : �(ν)

x,3,H(z) ≤ f (x)
}
.

Suppose that f has a global minimizer x∗ and that

x ∈ F(x0) ≡ {z ∈ E : f (z) ≤ f (x0)
}
,

with

sup
y∈F(x0)

‖y − x∗‖ ≤ R0 < +∞, (19)

and R0 ≥ 1. Then,

sup
{‖∇2ρx(y)‖ : y ∈ co (LH(x))

} ≤ ‖∇2f (x)‖ + 12R20 ≡ Nx, (20)

where co(X) denotes the convex hull of the set X.
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Proof: If y ∈ LH(x), then

�
(ν)
x,3,H(y) ≤ f (x) ≤ f (x0). (21)

Since H ≥ Hf ,3(ν), it follows from (3) that

f (y) ≤ �
(ν)
x,3,H(y). (22)

Combining (21) and (22), we conclude that y ∈ F(x0) and, by (19), we obtain

‖y − x‖ ≤ ‖y − x∗‖ + ‖x∗ − x‖ ≤ 2R0. (23)

Now, let y ∈ co(LH(x)). Then, there exists λ ∈ [0, 1] and y1, y2 ∈ LH(x) such that
y = (1 − λ)y1 + λy2. Consequently, using (23), we get

‖y − x‖ ≤ (1 − λ)‖y1 − x‖ + λ‖y2 − x‖ ≤ 2R0. (24)

Finally, by (18) and (24), we conclude that (20) holds. �

Even when H < Hf ,p(ν) and x /∈ F(x0), we can bound the Hessians of ρx(·) on
co(LH(x)). For that, we need first to establish the coercivity of �(ν)

x,3,H(·) when ν �= 0.

Lemma 3.5: Let x ∈ E, H>0 and ν �= 0. Then, the following statements are true:

(a) Given A > 0, if

‖y − x‖ > max

{[
6(A − f (x))

H

]1/3
,
[
6‖∇f (x)‖∗

H

]1/2
,

3‖∇2f (x)‖
H

,
[
3 + ‖D3f (x)‖

H

]1/ν}
, (25)

then �
(ν)
x,3,H(y) > A.

(b) �
(ν)
x,3,H(·) is coercive.

Proof: First, by the definition of �x,3,H(·) and the Cauchy-Schwarz inequality, we obtain

�
(ν)
x,3,H(y) ≥ f (x) − ‖∇f (x)‖∗‖y − x‖ − 1

2
‖∇2f (x)‖‖y − x‖2

− 1
6
‖D3f (x)‖‖y − x‖3 + H

6
‖y − x‖3+ν .

Thus, to ensure �
(ν)
x,3,H(y) > A, it is enough to have

H
6

‖y − x‖3+ν > (A − f (x)) + ‖∇f (x)‖∗‖y − x‖ + 1
2
‖∇2f (x)‖‖y − x‖2

+ 1
6
‖D3f (x)‖‖y − x‖3,
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which is equivalent to

‖y − x‖ν >
6(A − f (x))
H‖y − x‖3 + 6‖∇f (x)‖∗

H‖y − x‖2 + 3‖∇2f (x)‖
H‖y − x‖ + ‖D3f (x)‖

H
. (26)

Note that, if (25) holds, then (26) holds. Therefore,

(25) =⇒ (26) =⇒ �
(ν)
x,3,H(y) > A.

This proves statement (a).
Finally, given A>0, if

‖y‖ > ‖x‖ + max

{[
6(A − f (x))

H

]1/3
,
[
6‖∇f (x)‖∗

H

]1/2
,
3‖∇2f (x)‖

H
,

[
3 + ‖D3f (x)‖

H

]1/ν}
,

then, by (a), we have �
(ν)
x,3,H(y) > A. Since A>0 is arbitrary, we conclude that

lim
‖y‖→+∞

�
(ν)
x,3,H(y) = +∞.

This proves statement (b). �

As a corollary of Lemma 3.5, we can establish the following upper bound for ‖y − x‖
whenever y belongs to the convex hull of a suitable sublevel set of �x,3,H(·).

Lemma 3.6: Given x ∈ E, H>0 and ν �= 0, let

LH(x) =
{
z ∈ E : �(ν)

x,3,H(z) ≤ f (x)
}
. (27)

Then,

‖y − x‖ ≤ max

{
1,
[
6‖∇f (x)‖∗

H

]1/2
,
3‖∇2f (x)‖

H
,
[
3 + ‖D3f (x)‖

H

]1/ν}

≡ Dx,H , (28)

for all y ∈ co(LH(x)). Consequently,

sup
{‖∇2ρx(y)‖ : y ∈ co (LH(x))

} ≤ ‖∇2f (x)‖ + (2 + ν)D2
x,H ≡ N̂x,H . (29)
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Proof: By Lemma 3.5(a) with A = f (x), we have the implication

‖y − x‖ > max

{[
6‖∇f (x)‖∗

H

]1/2
,
3‖∇2f (x)‖

H
,
[
3 + ‖D3f (x)‖

H

]1/ν}

=⇒ �
(ν)
x,3,H(y) > f (x),

whose contrapositive is

�
(ν)
x,3,H(y) ≤ f (x) =⇒ ‖y − x‖

≤ max

{[
6‖∇f (x)‖∗

H

]1/2
,
3‖∇2f (x)‖

H
,
[
3 + ‖D3f (x)‖

H

]1/ν}
.

Thus, if y ∈ LH(x), then the bound (28) holds for y. Consequently, as in the proof of
Lemma 3.4, we obtain

‖y − x‖ ≤ Dx,H , ∀ y ∈ co (LH(x)) . (30)

Finally, (29) follows by (18), Dx,H ≥ 1 and (30). �

3.2. Gradientmethod and its efficiency

Let us consider the problem

min
y∈E

�
(ν)
x,3,H(y) (31)

By Theorem 3.3, Remark 3.1 and Lemma 3.6, it follows that:

• �
(ν)
x,3,H(·) is LH-smooth;

• ρx(·) is uniformly convex of degree 3 + ν with parameter 2−(1+ν);
• ρx(·) is twice differentiable and ‖∇2ρx(y)‖ is bounded on co(LH(x)).

Thismeans that�(ν)
x,3,H(·) and ρx(·) satisfy assumptionsH1–H3 inAppendix. Therefore,

we can applyAlgorithmA (see page 17) to solve (31). The Bregman distance corresponding
to ρx(·) is

βρx(u, v) = ρx(v) − ρx(u) − 〈∇ρx(u), v − u〉. (32)

Thus, Algorithm A applied to (31) can be rewritten as follows.
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Algorithm 1. Algorithm A applied to (31)
Step 0. Choose L0 > 0. Set y0 = x and k: = 0.
Step 1. Set i: = 0.
Step 1.1. Compute y+

k,i = argminz∈E{〈∇�
(ν)
x,3,H(yk), z − yk〉 + 2iLkβρx(yk, z)}.

Step 1.2. If

�
(ν)
x,3,H(y+

k,i) ≤ �
(ν)
x,3,H(yk) + 〈∇�

(ν)
x,3,H(yk), y+

k,i − yk〉 + 2iLkβρx(yk, y
+
k,i),

set ik := i and go to Step 2. Otherwise, set i: = i+ 1 and go to Step 1.1.
Step 2. Set yk+1 = y+

k,ik
and Lk+1 = 2ik−1Lk.

Step 3. Set k: = k+ 1 and go to Step 1.

WhenH is sufficiently large, the next theorem establishes that Algorithm 1 takes atmost
O(log(ε−1)) iterations to find an ε-stationary point of �(ν)

x,3,H(·).

Theorem 3.7: Suppose that f has a global minimizer x∗ and that x ∈ F(x0) with

sup
y∈F(x0)

‖y − x∗‖ ≤ R0 < +∞, R0 ≥ 1. (33)

Denote MH = max{2L0, 4LH}, with LH defined in (16) and

Nx = ‖∇2f (x)‖ + 12R20. (34)

Let {yk}k≥0 be a sequence generated by Algorithm 1. If H > [6/(3 + ν)]Hf ,3(ν) and
‖∇�

(ν)
x,3,H(yT+1)‖∗ > ε for a given ε ∈ (0, 1), then

T ≤
[
log2

(
MH

MH − μH

)]−1 [
Cx,H + (3 + ν)

]
log2(ε

−1), (35)

where

Cx,H = log2

(
4(3 + ν)M2+ν

H N3
xμH

2−(1+ν)

)
. (36)

Proof: Since H > [6/(3 + ν)]Hf ,3(ν), it follows from Theorem 3.3 that �
(ν)
x,3,H(·) is

LH-smooth and μH-strongly convex relative to ρx(·), with μH > 1. Moreover, by
Remark 3.1 and Lemma 3.4, function ρx(·) is twice differentiable, uniformly convex of
degree 3 + ν with parameter 2−(1+ν) and satisfies

sup
{‖∇2ρx(y)‖ : y ∈ co (LH(x))

} ≤ Nx.

Thus,�(ν)
x,3,H(·) and ρx(·) satisfy assumptionsH1-H4 inAppendix with L = LH , q = 3 + ν,

σq = 2−(1+ν), N = Nx and μ = μH . Consequently, by Corollary A.6, we must have

T ≤
[
log2

(
MH

MH − μH

)]−1 [
C̃x,H + (3 + ν)

]
log2(ε

−1), (37)



12 G.N. GRAPIGLIA AND YU. NESTEROV

where

C̃x,H = log2

(
2(3 + ν)M2+ν

H NxμHβρx(x, S(x))
2−(1+ν)

)
. (38)

with S(x) ∈ argminy∈E �
(ν)
x,3,H(y). Clearly, S(x) ∈ LH(x). Thus, if follows from (32), (14),

R0 ≥ 1 and (34) that

βρx(x, S(x)) = ρx(S(x))

= 1
2
〈∇2f (x)(S(x) − x), S(x) − x〉 + 1

3 + ν
‖S(x) − x‖3+ν

≤ 1
2
‖∇2f (x)‖‖S(x) − x‖2 + 1

3 + ν
‖S(x) − x‖3+ν

≤ 1
2
[‖∇2f (x)‖ + ‖S(x) − x‖1+ν

] ‖S(x) − x‖2

≤ 1
2
[‖∇2f (x)‖ + (2R0)1+ν

]
(2R0)2

≤ 2
[‖∇2f (x)‖ + 4R1+ν

0
]
R20

≤ 2N2
x . (39)

Finally, combining (37)–(39), we obtain (35)–(36). �

Remark 3.2: If x /∈ F(x0), by Lemma3.6we also haveT ≤ O(log2(ε
−1))withNx replaced

by N̂x,H in (36), as long as ν �= 0. In both cases, it is worth mentioning that the potentially
‘bad’ constants Nx and N̂x,H are inside the log2(·) in (36).

When H ≤ [6/(3 + ν)]Hf ,3(ν), problem (31) may be nonconvex. Even in this case, we
can establish complexity bounds for Algorithm 1 if ν �= 0.

Theorem3.8: Given ε ∈ (0, 1), let {yk}k≥0 be a sequence generated by Algorithm 1 such that

‖∇�
(ν)
x,3,H(yk)‖∗ > ε for k = 0, . . . ,T. (40)

Then, the following statements are true:

(a) If H < [6/(3 + ν)]Hf ,3(ν), then

T ≤
[
N̂3+ν
x,H (3 + ν)M2+ν

H Fx
2−(1+ν)

]
ε−(3+ν),

where N̂x,H is defined in (29) and

Fx = Dx,H

[
‖∇f (x)‖∗ + 1

2
‖∇2f (x)‖Dx,H + ‖D3f (x)‖D2

x,H

]
,

with Dx,H given in (28).
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(b) If H = [6/(3 + ν)]Hf ,3(ν), then

T ≤ 3
[
MHN̂x,H

](3+ν)/2
[

(3 + ν)N̂2
x,H

2−(2+ν)

]1/2
ε−(3+ν)/2

Proof: Combining Theorem 3.3(a), Remark 3.1, Lemma 3.6 and (40) with Theorem A.2,
we obtain

T ≤
⎡
⎣ N̂3+ν

x,H (3 + ν)M2+ν
H

(
f (x) − �

(ν)
x,3,H(S(x))

)
2−(1+ν)

⎤
⎦ ε−(3+ν), (41)

with S(x) ∈ argminy∈E �
(ν)
x,3,H(y). Since S(x) ∈ LH(x), it follows from (19) that

f (x) − �
(ν)
x,3,H(S(x)) = 〈∇f (x), x − S(x)〉 + 1

2
〈∇2f (x)(S(x) − x), S(x) − x〉

− 1
6
D3f (x)[S(x) − x]3 − H

6
‖S(x) − x‖3+ν

≤ ‖∇f (x)‖∗‖S(x) − x‖ + 1
2
‖∇2f (x)‖‖S(x) − x‖2

+ ‖D3f (x)‖‖S(x) − x‖3

≤ Dx,H

[
‖∇f (x)‖∗ + 1

2
‖∇2f (x)‖Dx,H + ‖D3f (x)‖D2

x,H

]

= Fx. (42)

Thus, from (41) and (42) we see that statement (a) is true.
Now, suppose that H = [6/(3 + ν)]Hf ,3(ν). Then, by Theorem 3.3(b) functions

�
(ν)
x,3,H(·) and ρx(·) satisfy assumption H4 in Appendix with μ = 0. Consequently, by (40)

and Corollary A.5 we have

T ≤ 3
[
MHN̂x,H

](3+ν)/2
[
(3 + ν)βρx(x, S(x))

2−(1+ν)

]1/2
ε−(3+ν)/2. (43)

As in the proof of Theorem 3.7, by (29) we have

βρx(x, S(x)) ≤ 1
2
N̂2
x,H . (44)

Thus, combining (43) and (44), we see that statement (b) is also true. �

In view of Lemma 2.1 and Theorem 3.7, if H > [6/(3 + ν)]Hf ,3(ν), then Algorithm 1
takes at most O(log2(ε

−1)) iterations to generate x+ such that either ‖∇f (x+)‖∗ ≤ ε

or (5)–(6) holds for p = 3. In contrast, by Theorem 3.8, if H = [6/(3 + ν)]Hf ,3(ν) or
H < [6/(3 + ν)]Hf ,3(ν), this iteration complexity bound is increased toO(ε−(3+ν)/2) and
O(ε−(3+ν)), respectively, in the case ν �= 0.
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4. Auxiliary problems in composite minimization

For third-order tensor methods designed to composite minimization [10,12], the auxiliary
problems take the form:

min
y∈E

�̃
(ν)
x,3,H(y) ≡ �

(ν)
x,3,H(y) + ϕ(y), (45)

where�
(ν)
x,3,H(·) is defined by (4),H ≥ (p − 1)Hf ,3(ν) and ϕ : E → R ∪ {+∞} is a sim-

ple closed convex function whose effective domain has nonempty relative interior. In this
case, we are interested in finding an approximate solution x+ for (45) such that2

�̃
(ν)
x,3,H(x+) ≤ f (x) + ϕ(x) ≡ f̃ (x), (46)

and

‖∇�
(ν)
x,3,H(x+) + gϕ(x+)‖∗ ≤ θ‖x+ − x‖2+ν , (47)

for some gϕ(x+) ∈ ∂ϕ(x+). For general p ≥ 2, we have the following generalization of
Lemma 2.1.

Lemma 4.1: Let x ∈ E, H, θ > 0 and δ ∈ (0, 1). Given gϕ(x+) ∈ ∂ϕ(x+), if

‖∇f (x+) + gϕ(x+)‖∗ ≥ δ, (48)

and

‖∇�
(ν)
x,p,H(x+) + gϕ(x+)‖∗ ≤ min

{
1
2
,

θ(p − 1)!
2
[
Hf ,p(ν) + H(p + ν)

]
}

δ, (49)

then x+ satisfies (47).

Proof: It follows as in the proof of Lemma 2.1. �

Suppose that H ≥ 2Hf ,3(ν). Then, in view of the relative smoothness properties of
�

(ν)
x,3,H(·) established in Section 3.1, we can apply Algorithm B (see page 25) to solve (45):

Algorithm 2. Algorithm B applied to (45)
Step 0. Set y0 = x and k: = 0.
Step 1. Compute yk+1 = argminz∈E{〈∇�x,3,H(yk), z − yk〉 + 2LHβρx(yk, z) +

ϕ(z).
Step 2. Set k: = k+ 1 and go to Step 1.
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The next theorem establishes that Algorithm 2 takes at mostO(log2(ε
−1)) iterations to

generate x+ such that

‖∇�
(ν)
x,3,H(x+) + gϕ(x+)‖∗ ≤ ε,

with gϕ(x+) ∈ ∂ϕ(x+).

Theorem 4.2: Suppose that f̃ = f + ϕ has a global minimizer x∗ and that

x ∈ F̃(x0) ≡
{
z ∈ E : f̃ (z) ≤ f̃ (x0)

}
,

with

sup
y∈F̃(x0)

‖y − x∗‖ ≤ R0 < +∞, R0 ≥ 1.

Assume that H ≥ 2Hf ,3(ν) and let {yk}k≥0 be a sequence generated by Algorithm 2. Then,
for all k ≥ 1, we have

gϕ(yk) ≡ 2LH
[∇ρx(yk−1) − ∇ρx(yk)

]− ∇�
(ν)
x,3,H(yk−1) ∈ ∂ϕ(yk). (50)

Moreover, if

‖∇�
(ν)
x,3,H(yT+1) + gϕ(yT+1)‖∗ > ε (51)

for a given ε ∈ (0, 1), then

T ≤
[
log2

(
2LH

2LH − μH

)]−1 [
Kx,H + (3 + ν)

]
log2(ε

−1), (52)

where

Kx,H = log2

(
4(3 + ν)(2LH)2+νN3

xμH

2−(1+ν)

)
(53)

with Nx given in (34).

Proof: By Lemma A.8 and ri(domϕ) �= ∅, we have

u(yk) ≡ gϕ(yk) + ∇�
(ν)
x,3,H(yk) ∈ ∂�̃

(ν)
x,3,H(yk) =

{
∇�

(ν)
x,3,H(yk)

}
+ ∂ϕ(yk).

Thus, gϕ(yk) = u(yk) − ∇�
(ν)
x,3,H(yk) ∈ ∂ϕ(yk), and so (50) holds. Moreover, by (51), we

have

‖u(yT+1)‖∗ > ε.

Then, the bound (52) on T follows directly from Corollary A.10. �



16 G.N. GRAPIGLIA AND YU. NESTEROV

In view of Theorem 4.2, if H ≥ 2Hf ,3(ν), Algorithm 2 takes at mostO(log2(ε
−1)) iter-

ations to generate x+ such that either ‖∇f (x+) + gϕ(x+)‖∗ ≤ ε or (48)–(49) holds, for
gϕ(x+) ∈ ∂ϕ(x+) defined in (50).

5. Conclusion

In this paper, we studied the auxiliary problems that appear in non-universal adaptive p-
order tensor methods for unconstrained minimization of convex functions with Hölder
continuous pth derivatives [10,11]. For p = 3, we consider the use of Gradient Methods
with Bregman Distance. When the regularization parameter is sufficiently large, we prove
that Bregman Gradient Methods applied to the corresponding tensor model takes at most
O(log(ε−1)) iterations to find either a suitable approximate stationary point of the tensor
model or an ε-approximate stationary point of the original objective function. The authors
believe this work is a step towards implementable third-order tensor methods for con-
vex optimization. Future research includes the development of methods for the auxiliary
problems in universal tensor methods and numerical experimentation.

Notes

1. See also [2] for a version of relative smoothness without strong convexity.
2. See, e.g. Section 5 in [10].
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Appendix. Adaptive Bregman proximal gradient method

A.1 Smoothminimization

Consider the following optimization problem

min
y∈E

g(y), (A1)

where g : E → R is L-smooth relative to a convex and smooth function d(·), that is, for all x, y ∈ E,

g(x) ≤ g(y) + 〈∇g(y), x − y〉 + Lβd(y, x), (A2)

with

βd(y, x) := d(x) − d(y) − 〈∇d(y), x − y〉 (A3)
being the Bregman distance corresponding to d(·). We assume that g(·) has at least one global
minimizer y∗ ∈ E. We do not assume the convexity of g(·) yet.

We shall consider the following adaptive version of the Proximal Gradient Scheme proposed
in [14]:

Algorithm A. Adaptive Proximal Gradient Method
Step 0. Choose y0 ∈ E, L0 > 0 and set k: = 0.
Step 1. Set i: = 0.
Step 1.1. Compute

y+
k,i = argmin

x∈E

{〈∇g(yk), x − yk〉 + 2iLkβd(yk, x)
}
. (A4)

Step 1.2. If

g(y+
k,i) ≤ g(yk) + 〈∇g(yk), y+

k,i − yk〉 + 2iLkβd(yk, y+
k,i), (A5)

set ik := i and go to Step 2. Otherwise, set i: = i+ 1 and go to Step 1.1.
Step 2. Set yk+1 = y+

k,ik
and Lk+1 = 2ik−1Lk.

Step 3. Set k: = k+ 1 and go to Step 1.

Let us assume that:

(H1) g(·) is L-smooth relative to d(·).
(H2) d(·) is twice differentiable and uniformly convex of degree q, with parameter σq > 0.
(H3) There exists a constant N > 0 such that

sup
{‖∇2d(y)‖ : y ∈ co

(L(y0)
)} ≤ N,

where L(y0) = {y ∈ E : g(y) ≤ g(y0)}.

The next lemma gives a global upper bound on Lk and a lower bound on the functional decrease
in successive iterations.

Lemma A.1: Suppose that H1 holds and let {yk}k≥0 be a sequence generated by Algorithm A. Then,
for all k,

Lk ≤ max {L0, 2L} , (A6)
and

g(yk) − g(yk+1) ≥ 2Lk+1βd(yk+1, yk). (A7)
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Proof: Let us prove by induction that (A6) is true. It is obvious for k = 0.Assume that (A6) is true for
some k ≥ 0. Then, it follows from H1 and (A2) that 2ikLk cannot be bigger than 4L, since otherwise
the line search procedure should have stopped earlier. Thus,

Lk+1 = max
{
L0, 2ik−1Lk

} ≤ max {L0, 2L} ,
that is, (A6) also holds for k+ 1, which concludes the induction argument.

Now, let us prove (A7). In view of (A4), we have

∇g(yk) + 2ikLk
(∇d(yk+1) − ∇d(yk)

) = 0,

which gives
〈∇g(yk), yk+1 − yk〉 = −2ikLk〈∇d(yk+1) − ∇d(yk), yk+1 − yk〉. (A8)

Then, combining (A5) and (A8), we get

g(yk+1) ≤ g(yk) − 2ikLk〈∇d(yk+1) − ∇d(yk), yk+1 − yk〉 + 2ikLkβd(yk, yk+1)

= g(yk) − 2ikLk〈∇d(yk+1) − ∇d(yk), yk+1 − yk〉
+ 2ikLk

[
d(yk+1) − d(yk) − 〈∇d(yk), yk+1 − yk〉

]
= g(yk) − 2ikLk

[
d(yk) − d(yk+1) − 〈∇d(yk+1), yk − yk+1〉

]
= g(yk) − 2ikLkβd(yk+1, yk),

that is
g(yk) − g(yk+1) ≥ 2ikLkβd(yk+1, yk). (A9)

Finally, since Lk+1 = 2ik−1Lk, (A7) follows directly from (A9). �

Theorem A.2: Suppose thatH1–H3 hold. Then, for all k ≥ 0 we have

g(yk) − g(yk+1) ≥ σq

q[max {2L0, 4L}]q−1Nq ‖∇g(yk)‖q∗, (A10)

where σq and N are specified inH2 andH3, respectively. Moreover, for all T ≥ 1,

min
0≤k≤T−1

‖∇g(yk)‖∗ ≤ N
[
q [max {2L0, 4L}]q−1 (g(y0) − g(y∗))

σq

]1/q ( 1
T

)1/q
. (A11)

Consequently, if
‖∇g(yk)‖∗ > ε, for k = 0, . . . ,T − 1, (A12)

for a given ε > 0, we have

T ≤
[
Nqq [max {2L0, 4L}]q−1 (g(y0) − g(y∗))

σq

]
ε−q. (A13)

Proof: By H2, d(·) is uniformly convex of degree q with parameter σq > 0. Therefore,

βd(yk+1, yk) ≥ σq

q
‖yk+1 − yk‖q.

In this case, by (A7) we obtain

g(yk) − g(yk+1) ≥ 2Lk+1σq

q
‖yk+1 − yk‖q. (A14)

By the definition of yk+1, this point satisfies the following first-order optimality condition:

∇g(yk) + 2ikLk
(∇d(yk+1) − ∇d(yk)

) = 0. (A15)

In view of H3, it follows from the mean value theorem that ∇d is N-Lipschitz continuous on
co(L(y0)). From (A14), we see that {g(yk)}k≥0 is nonincreasing, and so {yk} ⊂ L(y0). Combining
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these facts, we get

‖∇d(yk+1) − ∇d(yk)‖∗ ≤ N‖yk+1 − yk‖, ∀ k. (A16)
Then, it follows from (A15), (A16) and (A6) that

‖∇g(yk)‖∗ ≤ 2ikLk‖∇d(yk+1) − ∇d(yk)‖∗ ≤ (2ikLk)N‖yk+1 − yk‖.
Thus,

‖yk+1 − yk‖ ≥ 1
2Lk+1N

‖∇g(yk)‖∗. (A17)

Combining (A14), (A17) and (A6), we obtain

g(yk) − g(yk+1) ≥ 2Lk+1σq

q
‖yk+1 − yk‖q

≥ 2Lk+1σq

q
1

(2Lk+1)qNq ‖∇g(yk)‖q∗

= σq

q(2Lk+1)q−1Nq ‖∇g(yk)‖q∗

≥ σq

q [2max {L0, 2L}]q−1 Nq ‖∇g(yk)‖q∗,

which gives (A10). Summing up inequalities (A10) for k = 0, . . . ,T − 1, we get

g(y0) − g(y∗) ≥ g(y0) − g(yT)

=
T−1∑
k=0

g(yk) − g(yk+1)

≥
T−1∑
k=0

σq

q [2max {L0, 2L}]q−1 Nq ‖∇g(yk)‖q

≥ T
σq

q [2max {L0, 2L}]q−1 Nq

(
min

0≤k≤T−1
‖∇g(yk)‖∗

)q
,

which gives (A11). Finally, (A13) follows directly from (A11) and (A12). �

Now, let us consider the following additional assumption:

(H4) g(·) is μ-strongly convex relative to d(·).

Lemma A.3 (Three-Point Property): Let φ(·) and d(·) be convex functions and let βd(·, ·) be the
Bregman distance from d(·). Given y ∈ E, let

y+ = argmin
x∈E

{
φ(x) + βd(y, x)

}
.

Then,

φ(x) + βd(y, x) ≥ φ(y+) + βd(y, y+) + βd(y+, x), ∀ x ∈ E. (A18)

Proof: See [6,13,20]. �

The next theorem establishes sublinear and linear convergence rates for Algorithm A.
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Theorem A.4: Suppose that H1, H2 and H4 hold and let {yk}k≥0 be a sequence generated by
Algorithm A. Then,

g(yk) − g(y∗) ≤ μβd(y0, y∗)(
1 + μ

max{2L0,4L}−μ

)k − 1
≤ (max {2L0, 4L} − μ) βd(y0, y∗)

k
, (A19)

where, in the case μ = 0, the middle expression is defined in the limit as μ → 0+.

Proof: By H1 and Lemma A.1, it follows that {yk}k≥0 is well-defined. Let us denote Mk = 2ikLk.
Then, for all k ≥ 1, it follows from (A5) that

g(yk) ≤ g(yk−1) + 〈∇g(yk−1), yk − yk−1〉 + Mkβd(yk−1, yk). (A20)

In order to get an upper bound for the inner product in (A20), let us apply Lemma A.3 with h = d
and

φ(x) = 1
Mk

〈∇g(yk−1), x − yk−1〉.
In this case, y+ = yk and, for y = yk−1, we obtain

φ(x) + βd(yk−1, x) ≥ φ(yk) + βd(yk−1, yk) + βd(yk, x), ∀ x ∈ E,

that is

〈∇g(yk−1), x − yk−1〉 + Mkβd(yk−1, x) ≥ 〈∇g(yk−1), yk − yk−1〉 + Mkβd(yk−1, yk) + Mkβd(yk, x).

This gives the upper bound

〈∇g(yk−1), yk − yk−1〉 ≤ 〈∇g(yk−1), x − yk−1〉 + Mkβd(yk−1, x)

− Mkβd(yk−1, yk) − Mkβd(yk, x). (A21)

Combining (A20) and (A21), we obtain

g(yk) ≤ g(yk−1) + 〈∇g(yk−1), x − yk−1〉 + Mkβd(yk−1, x) − Mkβd(yk, x). (A22)

By (A4), we have

g(x) ≥ g(yk−1) + 〈∇g(yk−1), x − yk−1〉 + μβd(yk−1, x),

and so

〈∇g(yk−1), x − yk−1〉 ≤ g(x) − g(yk−1) − μβd(yk−1, x). (A23)
Now, using inequality (A23) in (A22), it follows that

g(yk) ≤ g(x) + (Mk − μ)βd(yk−1, x) − Mkβd(yk, x).

Substituting x = y∗, we get

g(yk) ≤ g(y∗) + (Mk − μ)βd(yk−1, y∗) − Mkβd(yk, y∗). (A24)

Since βd(yk−1, y∗) ≥ 0 and μ ≥ 0, it follows that

0 ≤ g(yk) − g(y∗) ≤ (Mk − μ)βd(yk−1, y∗) − Mkβd(yk, y∗)

≤ Mk
[
βd(yk−1, y∗) − βd(yk, y∗)

]
and so

βd(yk−1, y∗) − βd(yk, y∗) ≥ 0. (A25)
Moreover, by Lemma A.1 we have

Mk = 2ikLk = 2(2ik−1Lk) ≤ 2Lk+1 ≤ max {2L0, 4L} . (A26)
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DenoteM = max{2L0, 4L}. In view of (A24)–(A26), we obtain

g(yk) ≤ g(y∗) + (Mk − μ)βd(yk−1, y∗) − Mkβd(yk, y∗)

= g(y∗) + Mk
[
βd(yk−1, y∗) − βd(yk, y∗)

]− μβd(yk−1, y∗)

≤ g(y∗) + M
[
βd(yk−1, y∗) − βd(yk, y∗)

]− μβd(yk−1, y∗)

= g(y∗) + (M̃ − μ)βd(yk−1, y∗) − Mβd(yk, y∗). (A27)

Now, as in the proof of Theorem 3.1 in [14], we can show by induction that, for all k ≥ 1,

k∑
i=1

(
M

M − μ

)i
g(yi) ≤

k∑
i=1

(
M

M − μ

)i
g(y∗) + Mβd(y0, y∗) −

(
M

M − μ

)k
Mβd(yk, y∗). (A28)

Since {g(yk)} is nonincreasing and βd(yk, y∗) is nonnegative, it follows from (A28) that⎡
⎣ k∑

i=1

(
M̃

M − μ

)i⎤⎦ (g(yk) − g(y∗)) ≤ Mβd(y0, y∗), ∀ k ≥ 1.

Thus, denoting

Ck = 1∑k
i=1

(
M

M−μ

)i
we get

g(yk) − g(y∗) ≤ CkMβd(y0, y∗), ∀ k ≥ 1. (A29)
If μ = 0, it follows that Ck = 1/k and so (A29) becomes

g(yk) − g(y∗) ≤ M
k

βd(y0, y∗). (A30)

On the other hand, if μ > 0 we have

k∑
i=1

(
M

M − μ

)i
=

(
M

M−μ

) [(
M

M−μ

)k − 1
]

(
M

M−μ

)
− 1

=
M
[(

1 + μ
M−μ

)k − 1
]

μ

which gives

Ck = μ

M
[(

1 + μ
M−μ

)k − 1
] . (A31)

In this case, combining (A29) and (A31) we obtain

g(yk) − g(y∗) ≤ μβd(y0, y∗)[(
1 + μ

M−μ

)k − 1
] . (A32)

Thus, (A19) follows from (A30), (A32) andM = max{2L0, 4L}. �

Corollary A.5: Suppose that H1–H3 hold and let {yk}k≥0 be a sequence generated by Algorithm A.
Additionally, assume thatH4 holds with μ = 0. If T = 3s for some s ≥ 1, then

min
0≤k≤T−1

‖∇g(yk)‖∗ ≤ MN
[
qβd(y0, y∗)

σq

]1/q ( 3
T

)2/q
, (A33)

where M = max{2L0, 4L}. Consequently, if
‖∇g(yk)‖∗ > ε for k = 0, . . . ,T − 1, (A34)
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for a given ε > 0, then

T ≤ 3 [max {2L0, 4L}N]q/2
[
qβd(y0, y∗)

σq

]1/2
ε−q/2. (A35)

Proof: By Theorem A.4, we have

g(yi) − g(y∗) ≤ Mβd(y0, y∗)
i

, ∀ i ≥ 1.

Since T = 3s, in particular, it follows that

Mβd(y0, y∗)
2s

≥ g(y2s) − g(y∗)

= g(yT) − g(y∗) +
T−1∑
k=2s

[
g(yk) − g(yk+1)

]

≥ s
σq

qMq−1Nq

(
min

0≤k≤T−1
‖∇g(yk)‖∗

)q
.

Therefore, (
min

0≤k≤T−1
‖∇g(yk)‖∗

)q
≤
[
q(MN)qβd(y0, y∗)

σq

]
1
s2

which gives (A33). Finally, (A35) follows directly from (A24) and (A34). �

Corollary A.6: Suppose that H1–H3 hold and let {yk}k≥0 be a sequence generated by Algorithm A.
Additionally, assume that H4 holds with μ > 0. Then, for all T ≥ [log2(1 + μ/(M − μ))]−1, with
M = max{2L0, 4L}, we have

‖∇g(yT)‖∗ ≤
[
2qMq−1Nμβd(y0, y∗)

σq

]1/q ( 1
1 + μ

M−μ

)T/q

(A36)

Consequently, if ‖∇g(yT)‖∗ > ε, for a given ε ∈ (0, 1), then

T ≤
[
log2

(
max {2L0, 4L}

max {2L0, 4L} − μ

)]−1 [
C + q

]
log2(ε

−1), (A37)

where

C = log2

(
2qmax {2L0, 4L}q−1 Nμβd(y0, y∗)

σq

)
. (A38)

Proof: By Theorems A.2 and A.4, for all k ≥ 1 we have
σq

qMq−1Nq ‖∇g(yk)‖q∗ ≤ g(yk) − g(y∗)

≤ μβd(y0, y∗)[(
1 + μ

M−μ

)k − 1
]

In particular, it follows that

‖∇g(yT)‖q∗ ≤ qMq−1Nqμβd(y0, y∗)

σq

[(
1 + μ

M−μ

)T − 1
] (A39)
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Since T ≥ [log2(1 + μ/(M − μ))]−1 we have

(
1 + μ

M − μ

)T
− 1 ≥ 1

2

(
1 + μ

M − μ

)T
. (A40)

Thus, combining (A39) and (A40), it follows that

‖∇g(yT)‖q∗ ≤ 2qMq−1Nqμβd(y0, y∗)

σq

(
1 + μ

M−μ

)T ,

which gives (A36). Finally, (A37) follows directly from (A36), ‖g(yT)‖∗ > ε and ε ∈ (0, 1). �

In summary, if g(·) is L-smooth relative to a convex function d(·) which is uniformly convex
of degree q, then Algorithm A takes at most O(δ−q) iterations to generate a point yk such that
‖∇g(yk)‖ ≤ δ. If g(·) is also μ-strongly convex relative to d(·) with μ = 0, then this complexity
bound is reduced to O(δ−q/2). Moreover, if μ > 0, the complexity bound is further improved to
O(log(δ−1)).

A.2 Compositeminimization

Consider now the composite minimization problem

min
y∈E

g̃(y) ≡ g(y) + ϕ(y), (A41)

where g : E → R is a twice-differentiable function satisfying H1 and H4 (on pages 17 and 20,
respectively), and ϕ : E → R ∪ {+∞} is a simple closed convex function whose effective domain
has nonempty relative interior. We assume that there exists at least one optimal solution y∗ ∈ E

for (A41). Moreover, for the sake of brevity, we suppose that the constant L in H1 is known. Thus,
to approximately solve (A41), we may use the following adaptation of Algorithm A:

Algorithm B. Proximal Gradient Method
Step 0. Choose y0 ∈ E and set k: = 0.
Step 1. Compute

yk+1 = argmin
x∈E

{〈∇g(yk), x − yk〉 + 2Lβd(yk, x) + ϕ(x)
}
. (A42)

Step 2. Set k: = k+ 1 and go to Step 1.

Algorithm B can be viewed as a particular instance of the NoLips Algorithm in [2]. The next
lemma gives a lower bound on the functional decrease in terms of the Bregman distance. It
corresponds to Lemma 4.1 in [4]. We give its proof here for completeness.

Lemma A.7: Suppose that H1 and H4 hold and let {yk}k≥0 be a sequence generated by Algorithm B.
Then, for all k ≥ 0,

g̃(yk) − g̃(yk+1) ≥ Lβd(yk, yk+1). (A43)
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Proof: In view of (A42), we have

〈∇g(yk), yk+1 − yk〉 + 2Lβd(yk, yk+1) + ϕ(yk+1) ≤ ϕ(yk).

Then,
〈∇g(yk), yk+1 − yk〉 ≤ −2Lβd(yk, yk+1) − ϕ(yk+1) + ϕ(yk). (A44)

Now, combining H1 and (A44), we obtain

g(yk+1) ≤ g(yk) + 〈∇g(yk), yk+1 − yk〉 + Lβd(yk, yk+1)

≤ g(yk) − 2Lβd(yk, yk+1) − ϕ(yk+1) + ϕ(yk) + Lβd(yk, yk+1).

Therefore,
g̃(yk+1) ≤ g̃(yk) − Lβd(yk, yk+1),

which gives (A43). �

The next lemma gives a lower bound on the functional decrease in terms of the norm of a certain
subgradient of g̃(·).
Lemma A.8: Suppose that H1–H4 hold and let {yk}k≥0 be generated by Algorithm B. Then, for all
k ≥ 0,

u(yk+1) ≡ ∇g(yk+1) − ∇g(yk) + 2L
[∇d(yk) − ∇d(yk+1)

] ∈ ∂ g̃(yk+1), (A45)
and

g̃(yk) − g̃(yk+1) ≥ σq

qLq−1(3N)q
‖u(yk+1)‖q∗, (A46)

where σq and N are specified inH2 andH3 (see page 18), respectively.

Proof: By H2 and Lemma A.7, for all k, we have

g̃(yk) − g̃(yk+1) ≥ Lβd(yk, yk+1) ≥ Lσq
q

‖yk − yk+1‖q. (A47)

By the definition of yk+1, this point satisfies the first-order optimality condition:

0 ∈ {∇g(yk) + 2L
[∇d(yk+1) − ∇d(yk)

]}+ ∂ϕ(yk+1).

Since ri(domϕ) �= ∅, it follows that (A45) is true.
On the other hand, by H1, H4 and Proposition 1.1 in [14], we have

0 � μ∇2d(y) � ∇2g(y) � L∇2d(y), ∀ y ∈ E.

Consequently,
‖∇2g(y)‖ ≤ L‖∇2d(y)‖, ∀ y ∈ E. (A48)

Thus, in view of H3 and (A48), it follows from themean value theorem that∇d and∇g are Lipschitz
continuous on co(L(y0))with constantsN and LN, respectively. From (A47), we see that {g̃(yk)}k≥0
is nonincreasing, and so {yk} ⊂ L(y0). Therefore,

‖u(yk+1)‖∗ ≤ ‖∇g(yk+1) − ∇g(yk)‖∗ + 2L‖∇d(yk) − ∇d(yk+1)‖∗
≤ (LN + 2LN) ‖yk − yk+1‖,

that is,

‖yk − yk+1‖ ≥ 1
3LN

‖u(yk+1)‖∗. (A49)

Combining (A46) and (A48), we obtain

g̃(yk) − g̃(yk+1) ≥ Lσq
q

1
(3LN)q

‖u(yk+1)‖q∗

= σq

qLq−1(3N)q
‖u(yk+1)‖q∗,

which is (A46). �
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Theorem A.9: Suppose that H1–H4 hold and let {yk}k≥0 be generated by Algorithm B. Then, for all
k ≥ 1, we have

g̃(yk) − g̃(y∗) ≤ μβd(y0, y∗)(
1 + μ

2L−μ

)k − 1
≤ (2L − μ) βd(y0, y∗)

k
, (A50)

where, in case μ = 0, the middle expression is defined by the limit as μ → 0+.

Proof: By H1, for all k ≥ 1, we have

g(yk) ≤ g(yk−1) + 〈∇g(yk−1), yk − yk−1〉 + Lβd(yk−1, yk). (A51)

To obtain an upper bound for the inner product in (A51), let us apply Lemma A.3 with h = d and

φ(x) = 1
2L
[〈∇g(yk−1), x − yk−1〉 + ϕ(x)

]
.

In this case, y+ = yk and, for y = yk−1 we have

φ(x) + βd(yk−1, x) ≥ φ(yk) + βd(yk−1, yk) + βd(yk, x), ∀ x ∈ E,

that is,

〈∇g(yk−1), x − yk−1〉 + ϕ(x) + 2Lβd(yk−1, x) ≥ 〈∇g(yk−1), yk − yk−1〉 + ϕ(yk)

+ 2Lβd(yk−1, yk) + 2Lβd(yk, x).

This gives the upper bound

〈∇g(yk−1), yk − yk−1〉 ≤ 〈∇g(yk−1), x − yk−1〉 + ϕ(x) + 2Lβd(yk−1, x)

− ϕ(yk) − 2Lβd(yk−1, yk) − 2Lβd(yk, x). (A52)

Combining (A51) and (A52), we obtain

g(yk) ≤ g(yk−1) + 〈∇g(yk−1), x − yk−1〉 + ϕ(x) + 2Lβd(yk−1, x)

− ϕ(yk) − 2Lβd(yk−1, yk) − 2Lβd(yk, x) + Lβd(yk−1, yk)

g̃(yk) ≤ g(yk−1) + 〈∇g(yk−1), x − yk−1〉 + ϕ(x) + 2Lβd(yk−1, x) − 2Lβd(yk, x). (A53)

Combining (A53) and (A23), we get

g̃(yk) ≤ g(yk−1) + g(x) − g(yk−1) − μβd(yk−1, x) + ϕ(x) + 2Lβd(yk−1, x) − 2Lβd(yk, x)

= g̃(x) + (2L − μ)βd(yk−1, x) − 2Lβd(yk, x).

Substituting x = y∗, it follows that

g̃(yk) ≤ g̃(y∗) + (M − μ)βd(yk−1, y∗) − Mβd(yk, y∗),

where M = 2L. Then, the rest of the proof follows exactly as in the proof of Theorem A.4 (from
inequality (A27)). �

Corollary A.10: Suppose that H1–H3 hold and let {yk}k≥0 be a sequence generated by Algorithm B.
Additionally, assume thatH4 holds with μ > 0 and let u(yk) ∈ ∂ g̃(yk) be defined in (A45) for k ≥ 1.
Given ε ∈ (0, 1), if ‖u(yT+1)‖∗ > ε, then

T ≤
[
log2

(
2L

2L − μ

)]−1 [
C + q

]
log2(ε

−1),

where

C = log2

(
2q(2L)q−1Nμβd(y0, y∗)

σq

)
.

Proof: By Lemma A.8 and Theorem A.9, it follows as in the proof of Corollary A.6. �
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