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ARTICLE

Risk-based life cycle cost analysis using a two-level multi-objective genetic
algorithm
Yamur K. Al-Douri , Hussan Al-Chalabi and Jan Lundberg

Division of Operation and Maintenance Engineering, Luleå University of Technology, Luleå, Sweden

ABSTRACT
The aim of this study has been to develop a two-level multi-objective genetic algorithm (MOGA) to
optimize risk-based LCC analysis to find the optimal maintenance replacement time for road tunnel
ventilation fans. Level 1 uses a MOGA based on a financial risk model to provide different risk
percentages, while level 2 uses a MOGA based on an LCC model to estimate the optimal fan
replacement time. Our method is compared with the approach of using a risk-based LCC model.
The results are promising, showing that the risk-based LCC offers the possibility of significantly
reducing the maintenance costs of the ventilation system by optimising the replacement schedule
by considering the risk costs. The risk-based LCC can be used with repairable components, making
it applicable, useful and implementable within Swedish Transport Administration (Trafikverket). In
this study, MOGA operators have selected the cost of maintenance and risk data through the
previous levels using different ways to provide different possible solutions. A drawback of the
MOGA based on a risk-based LCC model with regard to its estimation is that a late replacement
period over 20-year period might increase the maintenance cost. Therefore, the MOGA does not
provide a good solution for a risk-based LCC.
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1. Introduction

The importance of structural maintenance is widely
recognized nowadays. To establish a rational mainte-
nance programme, it is important to develop a cost
decision-support system for the maintenance of exist-
ing infrastructures (Furuta et al. 2004). ‘Life cycle cost’
(LCC) is a useful concept in reducing the overall cost
and achieving an appropriate allocation of resources
(Frangopol and Furuta 2001). The optimization of the
LCC consists of minimizing the expected total cost,
which includes the costs for planning, purchase,
operation and maintenance (i.e. corrective and pre-
ventive maintenance), and liquidation. The cost of
corrective maintenance is the cost of the performed
action, while the cost of preventive maintenance is
the cost of the planned maintenance (Nilsson and
Bertling 2007). The optimal strategy obtained by LCC
optimization can differ according to the different
reliability levels (Furuta et al. 2004).

‘A LCC analysis that does not include risk analysis is
incomplete at the best and can be incorrect and mis-
leading at worst’ (Craig 1998). LCC analysis combined
with risk analysis provides different decision scenarios

and the different consequences of these decisions.
Some of these analyses might not be applicable
because of different operational and environmental
situations (Markeset and Kumar 2001). However, the
goal is to estimate and compare the likelihood of
success or failure for all the optimizations of the LCC
with the different levels of reliability. Reliability can be
defined as the probability that the system can per-
form continuously and without failure over a period
of time when operated under stated conditions.

LCC for tunnel fans system is an important case
study because 121 fans that needs to be mainly oper-
ated for reducing the pollution and getting fresh air
within the tunnel. Tunnel fans are designed for venti-
lation and smoke control in tunnels. The jet fans use
the impulse principle to move air through the tunnels
in a longitudinal direction. These fans required main-
tenance and replacement to keep operated. The
maintenance cost is high if does not consider on the
proper time. In addition, the failure in fans might
increase the cost risks and the total risk in the tunnel.
Therefore, LCC is necessary to find the optimal repla-
cement time to keep the service of fans.
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Traditional LCC calculation methods are able to
compare different available solutions that are influ-
enced by various cost parameters (Hinow and
Mevissen 2011). A multi-objective genetic algorithm
(MOGA) provides the possibility of obtaining several
optimal solutions that have different LCC values. In
fact, real-world systems are often nonlinear (Hansen,
McDonald, and Nelson 1999). The MOGA is often
compatible with nonlinear systems and uses
a particular optimization from the principle of natural
selection of the optimal solution on a wide range of
LCC populations (Hatzakis and Wallace 2006).

The GA is a well-established method which helps in
solving complex and nonlinear problems that often lead
to cases where the search space shows a curvy land-
scape with numerous local minima. The MOGA is
designed to find the best LCC value through an LCC
model that is based on the selected cost values to
compute the LCC. The calculation of the LCC model is
influenced by the cost values that have been selected
using the GA operations. In addition, the MOGA can
evaluate the model error by comparing different
scenarios.

Liu & Frangopol (Liu and Frangopol 2005) formu-
lated the life cycle maintenance planning of deteriorat-
ing bridges as a multi-objective optimization problem.
These authors used a MOGA as a search engine to
locate automatically an optimal maintenance solution
that would minimize the LCC for a large pool of differ-
ent maintenance scenarios. The results of Monte Carlo
simulation have shown uncertainties associated with
the deterioration and maintenance processes that may
have important effects on estimating the life cycle
maintenance cost. In addition, the approach of (Liu
and Frangopol 2005) might not be efficient for long-
term performance estimation.

Elbehairy et al. (Elbehairy et al. 2006) applied GAs
and a shuffled frog leaping algorithm to an LCC
model of bridge deck repairs to optimize mainte-
nance and repair decisions. Ten trial runs with differ-
ent numbers of bridges were experimented with to
evaluate the performance of both types of algorithms.
The algorithms proposed by these authors show
a stable handling of their research problem. The ben-
efits of the bridge deck management system are illu-
strated along with various strategies to improve the
optimization performance. However, the issue is to
determine the set of parameters that optimize the
performance and improve the total performance.

Caputo et al. (Caputo, Pelagagge, and Palumbo
2011) presented a computer-aided methodology for
the economic optimization of industrial plant safety.
Their methodology is implemented by resorting to
a GA to minimize the total safety-related cost, the
operating expenses of the adopted safety measures,
and the expected monetary loss from accidents. The
authors’ model is deterministic, which can be consid-
ered as a limitation given the fact that determination
of the costs and accident probabilities is difficult. In
addition, the economic scenario parameters, such as
the discount rate, capital recovery factor and equip-
ment life, are also of a stochastic nature. Accordingly,
the authors’ model needs to be extended in the fra-
mework of a stochastic optimization problem.

Nývlt et al. (Nývlt, Prívara, and Ferkl 2011) introduced
the concept of risk analysis in the field of risk manage-
ment and employs popular methods in aeronautics
and aircraft industry. These authors proposed probabil-
istic risk assessment (PRA) to enable the minimization
of building and refurbishing costs to preserve
a satisfactory safety level. Their proposed analysis
method was able to cut off almost 67% of the originally
calculated costs. The advantage of the method devel-
oped by Nývlt et al. (Nývlt, Prívara, and Ferkl 2011) is
the accurateness of the results and the method’s suit-
ability for data with a high level of uncertainty; any lack
of relevant statistical data is taken into account. The
drawback is the ‘free’ structure of the method, which
means that it is a framework rather than a guideline
and each application has to be treated very carefully.

The aim of the present study has been to develop
a two-level MOGA (MOGA) to optimize risk-based LCC
analysis in order to find the optimal maintenance
replacement time for fans used in road tunnels.
Level 1 uses a MOGA based on a financial risk model
to provide different risk percentages, while level 2
uses a MOGA based on an LCC model to estimate
the optimal replacement time for the ventilation sys-
tem. Level 1 of the MOGA was applied to the risk cost
data for four populations to provide variant probabil-
ities of risk percentages for 15 generations. Level 2 of
the MOGA was applied to the cost data objects and
the different generations of risk cost data of the first
level for four populations to estimate the optimal
replacement time. Our method is compared with the
approach of using a risk-based LCC analysis model.
Risk-based LCC model has combined the financial risk
as an important input with LCC model inputs.
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2. Data collection

The cost data concern tunnel fans installed in
Stockholm in Sweden. The data had been collected
over ten years from 2005 to 2015 by Swedish
Transport Administration (Trafikverket) and were
stored in the MAXIMO computerized maintenance
management system (CMMS). In this CMMS, the cost
data are recorded based on calendar time for the
maintenance of the tunnel fans. Every work order
contains corrective maintenance data, a component
description, the reporting date, a problem descrip-
tion, and a description of the actions performed.
Also included are the repair time used and the labour,
material and tool cost of each work order.

In this study, we considered the two cost objects of
labour and materials based on the work order input
into the CMMS for the ten-year period mentioned
above. The tool cost data were not selected because
97% of those data were missing and they could not be
used for forecasting. The selected data were clus-
tered, filtered and imputed for the present study
using a MOGA based on a fuzzy c-means algorithm
(Aldouri, Al-Chalabi, and Zhang 2018). This stage is
used to evaluate the data and fix the problems within
each cost parameter. MOGA provides the possibility
to cluster the data into proper parts and isolate the
data problems for fixing the missing and outliers
problems.

However, the current data is only for ten years and
we need to forecast the data for 30 years for better
LCC optimizing. Data forecasting was performed

using a MOGA based on the autoregressive integrated
moving average (ARIMA). MOGA offers a huge possi-
bility for accurate forecasting and evaluates forecast-
ing using different models (Al-Douri, Hamodi, and
Lundberg 2018). It is important to mention that all
the cost data used in this study concern real costs
without any adjustment for inflation. Due to company
regulations, all the cost data have been encoded and
are expressed as currency units (cu).

The operating cost data of the fans were generated
for each month, based on the energy price, the fans’
working hours, and the fans’ power. Table 1 gives
a sample of the generated operating cost data from
April 2005 to December 2015. The data were generated
based on information from experts at Trafikverket
involved in this study. The information which they
provided is the following (Al-Chalabi 2018):

● fans’ power: 25–80 kW,
● fans’ operating time per day: 6–8 hours,
● fixed energy price: 2.88 Swedish crowns (SEK)/
kWh.

The failure data used in this study were collected for
the ten-year period in question using the CMMS as
the source of those data. In the CMMS, the failure data
are recorded based on the calendar time of the work
order. The time to failure (TTF) was estimated based
on the reporting times for corrective maintenance
stated in the work orders. The labour and material
costs considered were those reported for each work
order for corrective maintenance. Failure cost data

Table 1. Sample of generated operating cost (OC) data (Al-Chalabi 2018).
Fan number Fan’s power (kW) Working hours (h) Energy price (SEK/kWh) Operating cost/fan.day (SEK)

1 70 7.9 2.88 1593
2 75 6 2.88 1295
3 32 7.5 2.88 695
4 75 7.6 2.88 1654
5 60 7.7 2.88 1332
6 30 6.2 2.88 539
7 40 6.8 2.88 790
8 55 6.52 2.88 1034
9 78 7.56 2.88 1700

No. of days OC/day (SEK) Months-year No. of months OC/month (SEK)

1 128621 Apr-05 1 3856485
2 129322 Maj-05 2 3931435
3 129725 Jun-05 3 3855434
4 120832 Jul-05 4 3793487
5 132193 Aug-05 5 3870663
6 134786 Sep-05 6 3846868
7 122774 Okt-05 7 3828002
8 131767 Nov-05 8 3839732
9 13307 Dec-05 9 3822851

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 3



were forecasted for 20 and 30 years using a MOGA
based on the ARIMA model (Al-Douri, Hamodi, and
Lundberg 2018).

3. Risk-based life cycle cost (LCC) model

In the present study, it was tested and validated the
failure data, testing them for trends using the Laplace
trend test and for serial correlation (Ansell & Phillips,
1994). When these tests are used, depending on the
results, the classical statistical techniques for reliability
modelling may be an appropriate approach (Ascher
2008; Ghosh and Majumdar 2011; Modarres 2016). The
Kolmogorov–Smirnov (K-S) test is traditionally used for
the selection and validation of probability distribution
models (Louit, Pascual, and Jardine 2009). For the relia-
bility modelling of repairable systems, the basic metho-
dology involves analysing the failure data and
identifying the failure data with significant conse-
quences. The TTF data are tested concerning the
assumption that they are independent and identically
distributed (iid). If the assumption that the data are iid is
not valid, then classical statistical techniques for reliabil-
ity analysis may not be appropriate. Therefore, a non-
stationary model such as the non-homogeneous
Poisson process (NHPP) must be fitted. The proportion-
ality constant of the NHPP is assumed to be uncertain
due to the lack of knowledge about the true expected
number of defects initiation (Barabady and Kumar 2008;
Kuniewski, van der Weide, and van Noortwijk 2009).

Since maintenance cost limitations invariably
exist, risk assessment needs to be integrated in
the LCC to create a useful and complementary
decision making tool (Stewart 2001). Risk assess-
ment clearly defines the reliability and provides
a measure of the cost-effectiveness, since reliability
is the probability of failures that will necessitate
maintenance. The initial stage of risk assessment is
to estimate the reliability through fitting the proper
distribution. Note that reliability is not simply the
probability of failure. The risk of failure or damage
entails direct repair and maintenance costs. The risk
of disruption of functional use is very real and,
therefore, one must aim to eliminate this risk as
much as is practicable, but the risk of failure also
causes problems and these problems entail costs.
However, a more meaningful risk assessment mea-
sure is the expected cost of failure, defined in
Equation (1) (Furuta et al. 2004; Stewart 2001).

Ect ¼
XM

i¼1
RfiCfi (1)

where Ect is the expected risk cost over t monthly time
scale 0; . . . ; tf g, Rfi is the failure monthly rate, which is
the rate of the interval times of two regular repairable
failures. Cfi is the failure cost (labour and material cost)
associated with the occurrence of each limit over the
number of failures M. The risk costs were forecasted
using a GA based on the ARIMA model for 20 years.
The failure rate was increased manually stepwise by 1%
to be in total a value ranging from 1% to 250% risk to
study the variation of the risk percentage and the asso-
ciation with the LCC. The stepwise by 1% is modifying
the original failure rate values through multiplying with
the required risk percentage over the original risk per-
centage then multiple the result failure rate with the
cost. Then, the risk cost integrated in the optimization
model was used to find the minimum cost against the
system benefits.

Since the optimal value of the costs is required to
obtain the optimal replacement time (ORT), the follow-
ing optimization model was developed to find the
replacement time (RT) that minimizes the total cost
value (TCvalue), as shown in the Equations below. The
term ‘total cost value’ is defined as the summation of
the fan’s purchase price (PP), operating cost (OC), main-
tenance cost (MC) and resale value St over a long
period, with replacements occurring at intervals of
n periods (Al-Chalabi et al. 2014; Eschenbach 2003).

MC ¼ CMþ PM (2)

CM ¼ SPc þ LCc (3)

PM ¼ SPp þ LCp (4)

St ¼ BV1 � 1� Drð Þtt ¼ 1; 2; 3; . . . ; 240ðmonthsÞ (5)

where the following notation is used:
MC: maintenance cost (cu)
CM: corrective maintenance cost (cu)
PM: preventive maintenance cost (cu)
SPc: material cost for corrective maintenance (cu)
LCc: labour cost for corrective maintenance (cu)
SPp: material cost for preventive maintenance (cu)
LCp: labour cost for preventive maintenance (cu)
St: resale value (cu)
BV1: booking value on first day of operation (cu)
Dr: depreciation rate
t: fan’s lifetime (months).
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The depreciation rate, which allows for full depre-
ciation by the end of the planned lifetime of the fan, is
modelled by Equation (6) (Al-Chalabi et al. 2014;
Luderer, Nollau, and Vetters 2009).

Dr ¼ 1� SV
BV1

� �1
T

(6)

where SV is the scrap value (cu) and T represents the
planned lifetime of the fans, which was 240 months in
the case study. The fans were assumed to reach their
scrap value after ten years.

The next step is to calculate the total ownership
cost over each operating month. In this study, the
optimal lifetime of the ventilation system was defined
as the fan age that minimizes the fan’s total owner-
ship cost. The total ownership cost (TOC) over the
period t is denoted by TOCt; t ¼ 1; 2; 3; . . . ; n, where
n is the number of operating months. By definition,

TOCt ¼ PP þ
XRT

t¼1
MCt þ OCtð Þ

h i
� S tð Þ; (7)

where PP is the purchase price (cu) and MCt and OCt
are the maintenance and operating costs for the t
months, respectively. The reason for using the total
ownership cost is to determine the optimal replace-
ment time that minimizes the total ownership cost
over the fan’s planned time horizon. We assume that
the replacement fans have the same performance and
cost as the existing fans (i.e. identical system). The
number of replacement cycles during the planned
time horizon is modelled as

M ¼ Planned lifetime
Replacemnt time

� �
¼ T

RT

� �
(8)

The optimal replacement time is the value of RT that
minimizes the total ownership cost value, as shown in
Equation (9) (Al-Chalabi et al. 2014).

TOCvalue ¼ PP þ
XRT

t¼1
ðMCt þ OCt þ EctÞ � St

h i

� M

1þ rð Þ t
12

(9)

where the following notation is used:
TOCvalue: total ownership cost value (cu)
RT: replacement time (months) {1, . . ., t}
r: interest rate
M: number of fan replacements.

4. Two-level system of multi-objective genetic
algorithms

In this study, a two-level MOGA has been developed, as
shown in Figure 1. The GA consists of the following: (1)
a MOGA based on a risk model to provide a variation of
risk percentages and (2) a MOGA based on an LCC
model to estimate the optimal replacement time for
tunnel fans. Both levels were applied on forecasted
cost data and risk cost data for 20 years. Level 1 of the
MOGA was applied to the risk cost data for four popula-
tions to provide variant probabilities of risk percentages
for 15 generations. Level 2 of the MOGA was applied to
the cost data objects (i.e. the maintenance cost, initial
cost, operation cost, and second-hand value) and the
different generations of risk cost data of the first level for
four populations to estimate the optimal replacement
time. The first and second levels use a cross-validation
technique to validate the optimization and estimate the
system accurateness. Using two levels allows us to
reduce the computational cost (Thomassey and
Happiette 2007), while reaching an effective and reason-
able solution (Ding, Cheng, and He 2007).

4.1. Level one: MOGA based on a risk model

The proposed MOGA method uses a particular opti-
mization from the principle of natural selection of the
optimal solution on a wide range of forecasting popu-
lations. The MOGA creates populations of chromo-
somes as possible answers to estimate the optimum
forecasting (Hatzakis and Wallace 2006). In the litera-
ture, it is reported that the GA is robust, generic and
easily adaptable because it can be broken down into
the following steps: initialization, evaluation, selec-
tion, crossover, mutation, update and completion.
The evaluation (fitness function) creates the basis
for a new population of chromosomes. The new
population is formed using specific genetic operators,
such as crossover and mutation (Cordón et al. 2001;
Shi et al. 2013). The fitness function is derived from
a risk cost estimation model.

The MOGA is a technique that can be used to
provide variant probabilities of cost risk percentages
for 15 generations. Fifteen generations are enough for
these data because the curves of the fitness functions
are repeated after fifteen generations. The GA pro-
vides non-linear solutions to complex non-linear pro-
blems that often lead to cases where the search space
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shows curvy local minima. In addition, the GA offers
the possibility of obtaining solutions that have differ-
ent reliability levels. The first level utilises a MOGA
based on a risk model. The process is as follows:
a random number of failure cost data are selected
based on encoding in each of the four implementa-
tions, and the modified random cost data are gener-
ated 15 times. The following steps explain the use of
the MOGA for risk cost data.

Step 1: Initial population
A longitudinal study of the risk cost object (Zrisk) is

used to provide the risk percentage variation using the
MOGA.

Step 2: First GA generation and selection
The first generation is performed by randomly

selecting 80% of the risk objects to ensure that the

model includes all the possible patterns up to the
edge of the modelling domain.

Step 3: Encoding
Random values, either ones or zeros, are generated

for each selected cost data object. Encoding is the
process of transforming from the phenotype to the
genotype space before proceeding with MOGA
operators and finding the local optima.

Step 4: Fitness function
The risk of failure or damage entails direct repair

and maintenance costs. The fitness function is based
on the risk model in Equation (1).

Step 5: Crossover and mutation
In this study, a one-point crossover with a fixed

crossover probability has been used. This probability
decreases the bias of the results over different

Multi-objective GA based on a risk model
80% training 

data

Optimize the minimum risk costs

Minimum risk cost data

L
e

v
e

l 
o

n
e

Multi-objective GA based on an LCC model

Optimizing

L
e

v
e

l 
t
w

o

Population (Pi)

Optimizing

Cost data for 15 generations

Optimal replacement time

Encoding

Encoding

Cost data for 20 years

Clustered, filtered, forecasted data

Figure 1. Two-level system of MOGAs.
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generations caused by the huge data values. For
chromosomes of length l, a crossover point is gener-
ated in the range [1, 1/2 l] and [1/2 l, l]. The values of
objects are connected and should be exchanged to
produce two new offspring. We select two points to
create more value ranges and find the best fit.

Randomly ten percent of the selected chromo-
somes undergo mutation with the arrival of new
chromosomes. For the risk cost object values, we
swap two opposite data values. The purpose of this
small mutation percentage is to keep the risk average
changes steady over different generations.

Step 6: New generation
The new generation repeats steps 3 to 5 continu-

ously for 15 generations. The selected fifteen genera-
tions are used individually for the second level to
validate the forecasting accuracy for each object and
population. This step yields fully correlated data for
the next step.

4.2. Level two: MOGA based on an LCC model

In this level, MOGA based on an LCC model is imple-
mented as an optimization technique that can be
used to estimate an accurate LCC model to find the
optimal replacement time. This MOGA is implemen-
ted four different times using a cross-validation ran-
domization technique. The process is as follows:
a random number of cost data are selected based
on encoding in each of the four implementations
and the modified random cost data are generated
15 times. Fifteen generations are enough for these
data because the curves of the fitness functions are
repeated after fifteen generations. The modifications
are used to find the optimal forecasting cost data. The
following steps explain the use of the MOGA.

Step 1: Initial population
A longitudinal study of each cost object (Zrisk; ZMC ,

ZOC , ZPP, ZSH) is used to optimize the LCC using the
MOGA.

Step 2: First GA generation and selection
The first generation is performed by randomly

selecting 80% of the cost objects to ensure that the
model includes all the possible patterns up to the
edge of the modelling domain. The selected data
are used to calculate the fan’s maintenance cost
(MC), operation cost (OC), purchase price (PP),
and second-hand value (SH).

Step 3: Encoding
Random values, either ones or zeros, are generated

for each selected cost data object. Encoding is the
process of transforming from the phenotype to the
genotype space before proceeding with MOGA
operators and finding the local optima.

Step 4: Fitness function
The fitness function is based on the ORT model for

time series forecasting of cost data objects individu-
ally as seen in Equation (9).

The fifth and sixth step of the MOGA are described
in the section above dealing with the first level.

5. Results and discussions

5.1. Risk-based LCC model results

The reliability assessment of the collected data for
the repairable ventilation system led to a better
understanding of the failure patterns that influ-
enced the decision-making process concerning the
planning of the maintenance activities of the plant.
The validation of the assumption that the data were
independent and identically distributed (iid)
showed a trend in the failure data. The NHPP had
to be fitted because the classical statistical techni-
ques of reliability analysis were not appropriate in
our case study. Then, the expected ROCOF (rate of
occurrence of failures) was used as an intensity
function to estimate the failure rate of the TTF
data. For repairable systems, the failure rate esti-
mated using the ROCOF shows variant values over
time. This rate was used to estimate the risk cost
over time.

To approximate a large variety of distributions in
large data samples, the normal distribution is fitted
on accumulated TTF data. Figure 2 shows the fitting
estimation of the normal distribution on the TTF data
with some statistical results. The normal distribution
can give the shape of the reliability against the failure
rate of the repairable system over a ten-year time scale.

Figure 3 shows the estimation of the risk costs
without accumulative and illustrates that they
increased over the period from month 30 to 50.
The risk costs increased during this period due to
the total fan replacement, which required labour
and fan replacement costs. The fail description of
the highest peak that one of the fans has an elec-
tricity problem, which required to be replaced. After
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this period, the risk costs decreased steadily
because the system is repairable and Trafikverket
provided better maintenance and service since
they understood the system better.

The LCC optimization was tested for different risk
percentages from 1% to 250%. The risk percentage
affects the risk cost calculation and then the LCC
optimization. The relation between the risk and the
LCC is exponential. Figure 4 shows the LCC optimiza-
tion including a risk of 2% and gives the minimum

cost for this risk percentage. The minimum TOCvalue
achieved in practice was between month 97 and 117.
In our terminology, this replacement time range can
be termed the optimal replacement time range.
Finding the optimal replacement time range is an
important result of our study as it can help users (in
this case Trafikverket) in their planning. Trafikverket
has the flexibility of being able to make replacements
within an optimal replacement time range of
20 months.

Figure 2. Normal distribution of cumulative TTF.

Figure 3. Risk cost estimation.
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There is no fixed date or age within the pro-
posed minimum TOCvalue range at which the total
cost is at a minimum, but a decision to replace the
system before or after this optimal replacement
time range will incur greater costs. The use of
a lower replacement age (i.e. less than 97 months)
will incur higher costs because of the high invest-
ment cost. Meanwhile, if the lifetime of the system
exceeds the upper limit of the proposed TOC
range, the losses will increase for the following
two reasons.

● The cost of operation and maintenance increases
when the operating time increases because of
fan degradation.

● A fan’s resale value will decrease each month of
operation until it reaches its scrap value at the
end of its planned lifetime (i.e. 240 months).

Figure 5 shows the LCC optimization including a risk
of 250% and illustrates how increasing risk percen-
tages affect the LCC optimization. The minimum
TOCvalue achieved in practice was between month
110 and 130, which still gives an optimal replacement
time range of 20 months. The TOCvalue trend shows
a different behaviour from that shown in Figure 4,
especially over the period lasting from month 25–35.
In this case, the LCC optimization does not reflect the
proper replacement time range. In addition, Figure 5
shows the significance of risk analysis for the LCC

Figure 4. ORT of 121 fans as one system with a 2% risk cost.

Figure 5. ORT of 121 fans as one system with a 250% risk cost.
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optimization and how an erroneous estimation of the
optimal replacement time can lead to an improper
maintenance decision.

LCC analysis without risk analysis might lead to
improper decisions due to a lack of knowledge of
the failure consequences. Therefore, risk analysis
should be an integral part of estimating the LCC.

5.2. Results of the two-level system of MOGAs

5.2.1. Results for level 1: MOGA based on risk cost
analysis
In this part of the study, it was tested four populations
individually using the MOGA based on the risk model
to provide, for the next level, a variation of risk cost
percentages based on the TTF data without any exter-
nal effect (i.e. by adding 1% to the values to change
the percentage). The risk cost percentages for each
population obtained with 15 different generations
were then used as an input for each generation at
the next level. Figure 6 shows the minimum risk cost
for the four populations over the different genera-
tions. The minimum risk cost is given for the different
populations taken together. The period between
month 11 and 31 shows high-risk costs, which is
reasonable due to the maintenance effort required
during this time. After month 31, the risk cost over
the selected months decreases steadily until month
61, as shown in Figure 6. In month 61, the failure cost
is increased due to a replacement, after which the
operation is stable for the remaining time.

5.2.2. Results for level 2: MOGA based on an LCC
model
The outcome from the first level, specifically for each
generation for each population, indicates the LCC opti-
mization for each cost and risk object. For each gen-
eration, the MOGA based on an LCC model with a risk
analysis model was used to find the minimum main-
tenance cost through 15 different generations. These
generations over different populations offer the possi-
bility of finding an accurate LCC optimization through
comparing the behaviour of the different models and
revealing which optimal replacement period is appro-
priate. For different populations, there are different
optimizations of the LCC for the different risk costs.

The data selected by the GA operators for calculat-
ing the LCC optimization affect the TOCvalue. Figure 7
shows the best and minimum TOCvalue of the selected
period of time over different variant populations and
generations. The minimum TOCvalue that could be
achieved in practice was between month 201 and
221 and was found in the second generation. In this
case, the GA operators had selected and operated the
cost of maintenance and risk data through the previous
levels 1 and 2 using different ways to provide different
possible solutions. These possible solutions have differ-
ent variations in the cost values. The variation of the
TOCvalue in Figure 7 is extremely increased compared
with that of the previous TOCvalue. This result exposes
a drawback in the estimation using the GA, namely that
a late replacement period over a 20-year period might
increase the maintenance cost.

Figure 6. Risk cost analysis of 121 fans as one system.
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Figure 8 shows the trend of the TOCvalue for the
fourth population and, specifically, for the fifth gen-
eration, and the TOCvalue here are very high compared
with those shown in Figure 7. In Figure 8 one can
observe that the minimum TOCvalue that could be
achieved in practice was between month 109 and
130 and was found in the second generation. The
advantage of using different populations with differ-
ent selected data is that thereby one obtains a better
understanding of the optimal replacement time and
can make reliable maintenance decisions.

The results of the two-level system of MOGAs do
not show that risk cost analysis plays a significant role
in LCC analysis. The MOGA does not help our model,

even with wide variances, in optimizing the LCC of the
ventilation system. The expected replacement estima-
tion has a bias in the cost values and ORT, which
would not lead to proper and efficient maintenance
decisions.

6. Conclusions

In this study, it has been concluded that the MOGA
model based on a risk-based LCC model has draw-
backs when used to estimate the optimal replace-
ment time for the fans of the ventilation system. The
results have revealed uncertainties associated with
estimating the optimal replacement time which may

Figure 7. ORT of 121 fans as one system for the optimal result.

Figure 8. Example of worst ORT of 121 fans as one system.
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have significant effects on estimating the system per-
formance profiles and the life cycle maintenance cost.

However, the MOGA model does not achieve
a better estimation of the optimal replacement time,
while risk-based LCC analysis provides a reasonable
estimation of that time. In addition, LCC analysis com-
bined with risk analysis leads to proper maintenance
decisions due to increased knowledge of the failure
consequences. Therefore, risk analysis should be per-
formed as an integral part of calculating the LCC.
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