
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=goms20

Optimization Methods and Software

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/goms20

Extended formulations of lower-truncated
transversal polymatroids

Hiroshi Imai , Keiko Imai & Hidefumi Hiraishi

To cite this article: Hiroshi Imai , Keiko Imai & Hidefumi Hiraishi (2020): Extended formulations
of lower-truncated transversal polymatroids, Optimization Methods and Software, DOI:
10.1080/10556788.2020.1769619

To link to this article:  https://doi.org/10.1080/10556788.2020.1769619

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 02 Jul 2020.

Submit your article to this journal 

Article views: 154

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=goms20
https://www.tandfonline.com/loi/goms20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2020.1769619
https://doi.org/10.1080/10556788.2020.1769619
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2020.1769619
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2020.1769619
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2020.1769619&domain=pdf&date_stamp=2020-07-02
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2020.1769619&domain=pdf&date_stamp=2020-07-02


OPTIMIZATION METHODS & SOFTWARE
https://doi.org/10.1080/10556788.2020.1769619

Extended formulations of lower-truncated transversal
polymatroids

Hiroshi Imaia, Keiko Imaib and Hidefumi Hiraishia

aDepartment of Computer Science, The University of Tokyo, Bunkyo-ku, Japan; bDepartment of Information
and System Engineering, Chuo University, Tokyo, Japan

ABSTRACT
Extended formulations of (k, l)-sparsity matroids defined on graphs
with n vertices and m edges are investigated by Iwata et al.
[Extended formulations for sparsity matroids, Math. Program. 158
(2016), pp. 565–574]. This note interprets results on (k, l)-lower-
truncated transversal polymatroids by the first author in 1983,
from the viewpoint of extended formulations, and shows the same
O(mn) bound when k ≥ l and a better bound O(m2) when k< l.
A unified polymatroidal approach is given to derive more general
understanding.
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1. Introduction

A polytope Pmay be expressed as the projection of a polytopeQwith less facets in higher-
dimensional space. The extension complexity xc(P) of P is the minimum number of facets
of such polytopes. For polymatroids, any linear optimization over them can be solved
efficiently by a greedy algorithm, while a certain matroid has exponential extension com-
plexity, as shown by Rothvoß [11] (see also Rothvoß [12] for graph matchings). This poses
a problem of investigating a nice class of matroids with polynomial extension complexity.

Martin [9] firstly shows a class of matroids with polynomial extended formulations by
reformulating problems with new auxiliary variables as follows. The base polytope of a
graphic matroid, for a graph G′ = (V ,E) with vertex set V and edge set E, is shown to
have an extended formulation of size O(|V|3) (O(|V||E|) as pointed out in [2]). The base
polytope of a transversal matroids on U, over a bipartite graph G = (U,W;A) with left
vertex set U, right vertex set W and edge set A ⊆ U × W, is shown to have an extended
formulation of size O(|U||W|). Iwata et al. [8] show the base polytope of a (k, l)-sparsity
matroid on G′ has extension complexity of O(|V||E|) when k ≥ l, and O(|V|2|E|) when
k< l by devising randomized communication protocols as an extension of the protocol in
Faenza et al. [2]. For bipartitematchings, the Birkhoffpolytope on perfectmatchings gives a
polynomial-size extended formulation directly [3], which directly implies the above result
of transversal matroids.
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This note discusses a general framework to regard the sparsity matroid results as special
cases from the viewpoint of lower-truncated polymatroids and their derivatives, including
(k, l)-lower-truncated transversal matroids, which are defined and algorithmically inves-
tigated by Imai [6] (see also [7] and also [10] for polymatroidal treatments on bipartite
graphs). First we bound the extension complexity of lower truncation of a general poly-
matroid. For a (k, l)-lower-truncated transversal polymatroid over U on bipartite graph
G = (U,W;A) with integer parameters k, l, we show that the extension complexity of its
base polytope isO(|U||A|) in general andO(|W||A|)when k ≥ l. When applied to a (k, l)-
sparsitymatroid, the bounds are the same for k ≥ l, while our bound is better than [8]when
k< l. Moreover, our approach explicitly describes extended formulations of these bounds,
which may be directly used for linear optimization. These bounds are given in a technical
report [5], and this note focuses on the direct descriptions of extended formulations in this
general framework.

2. Extension complexity of polymatroids

For a polytope P, another polytope Q in the same or higher dimensional space is called an
extension of P if P is derived as a linear projection ofQ. The extended complexity xc(P) of
P is the minimum number of facets of any extension of P.

Edmonds introduced a polymatroid as a polytope in his seminal paper [1] by using the
lower truncation from its beginning, and we use his terminology below in this section
to pay respect to the paper. A set function ρ : 2E → R is a β0-function if it satisfies
the following: (1) ρ(X) ≥ 0 for ∅ �= X ⊆ E, (2) ρ(Y) ≤ ρ(X) for Y ⊆ X ⊆ E (mono-
tonicity), (3) ρ(X) + ρ(Y) ≥ ρ(X ∪ Y) + ρ(X ∩ Y) for X,Y ⊆ E (submodularity). Then,
a polytope

P(ρ) = {x ∈ R
E | x ≥ 0, x(X) ≤ ρ(X) (∅ �= X ⊆ E)}

is a polymatroid, where x(X) = ∑
e∈X x(e).

For this polymatroid P(ρ), consider l satisfying 0 ≤ l ≤ min{ ρ({e}) | e ∈ E }. Then,
ρ′ : 2E → Rdefined byρ′(X) = ρ(X) − l (X ⊆ E), (E, ρ′) is aβ0-function, which defines a
polymatroid P(ρ′). This polymatroid is called an l-lower-truncated polymatroid obtained
from (E, ρ), simply a lower-truncated polymatroid. The membership problem for P(ρ ′)
can be characterized by using P(ρ) as follows, where χe ∈ R

E for e ∈ E is a unit vector on
the underlying set (E here) with χe(e) = 1 and others 0.

Lemma 2.1: x ∈ P(ρ′) iff x + lχe ∈ P(ρ) for each e ∈ E.

Proof: Suppose x ∈ P(ρ′). For each nonempty X ⊆ E, we have x(X) ≤ ρ ′(X) = ρ(X) − l,
and hence (x + lχe)(X) ≤ x(X) + l ≤ ρ(X), which implies x + lχe ∈ P(ρ).

Conversely, if x + lχe ∈ P(ρ) for e ∈ E, then, for X with e ∈ X ⊆ E, we have x(X) + l ≤
ρ(X). This holds for each e ∈ E, and the lemma follows. �

This is an extension of Theorem 2.1 in [6], whose variant is Lemma 3.4 in this note.

Theorem 2.2: xc(P(ρ′)) ≤ |E| · xc(P(ρ)).
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Proof: Suppose that P(ρ) can be represented as {x | Fx + Gy = h, y ≥ 0}, where F, G
are some matrices, h is some vector, x ∈ R

E, y ∈ R
d with d = xc(P(ρ)). Then, P(ρ′)

can be expressed by {x | Fx + Gy(e) = h − F · lχe, y(e) ≥ 0 (e ∈ E)}, with introducing
independent y(e) for each e ∈ E. In the expression, the total number of inequalities is
d|E|. �

Deletion/contraction of an element and truncation with respect to some vector a ∈ R
d

for polymatroid P(ρ) are simpler operations than lower truncations, and yield polyma-
troids whose extention complexity is O(xc(P(ρ)) + |E|).

3. Network flow and lower-truncated transversal polymatroids

Let Ñ = (Ṽ , Ã; S, t; c̃) be a networkwith a vertex set Ṽ , a directed edge set Ã, a set of sources
S ⊂ Ṽ , a unique sink t ∈ Ṽ − S, and a capacity c̃ ∈ R

Ã where c̃(a)(≥ 0) is a capacity of a ∈
Ã. For f ∈ R

Ã, we define ∂+f ∈ R
Ṽ by ∂+f (v) = −∑

e=(u,v)∈Ã f (e) + ∑
e=(v,w)∈Ã f (e) for

v ∈ Ṽ . The restriction of ∂+f to a subdomain X(⊆ Ṽ) is denoted by ∂+f |X . f ∈ R
Ã is a

flow if 0 ≤ f (a) ≤ c̃(a) (a ∈ Ã), ∂+f |V−(S∪{t}) = 0 and ∂+f |S ≥ 0.
A cut function c̃ : 2Ṽ−{t} → R is defined by c̃(Y) = ∑

e=(u,w)∈Ã, u∈Y , w∈Ṽ−Y c̃(e) for
Y ⊆ Ṽ − {t}. γÑ : 2S → R is defined to be γÑ(X) = min{̃c(Y) | Y ⊆ Ṽ − {t}, Y ∩ S = X}
for X ⊆ S. (S, γÑ) is a polymatroid and the following is well known.

Lemma 3.1: For x ∈ R
S, x ∈ P(γÑ) iff there is a flow f with x = ∂+f |S. Hence xc(P(γÑ)) ≤

2|Ã| + |S|.

Let G = (U,W;A) be a bipartite graph with left vertex set U, right vertex set W and
directed edge set A ⊆ U × W where edges are directed from U to W. By adding a new
vertex t with new directed edges {(w, t) | w ∈ W} and setting a capacity c on the new
directed edge set A′, we derive a network N = (U ∪ W ∪ {t},A′;U, t; c) and we denote
the integer-valued set function over 2U for network N by γN , as γÑ is defined for Ñ.

In a bipartite graph G, define �(X) to be {w | (u,w) ∈ A, u ∈ X} (X ⊆ U). Hall’s
theorem states that X(⊆ U) is covered by a matching iff |Y| ≤ |�(Y)| for all Y ⊆ X. In the
networkN, we set the capacity c by c(e) = +∞ (e ∈ A) and c(e) = 1 (e = (w, t), w ∈ W),
then |�(X)| = γN(X) holds. (U, γN) is a transversal polymatroid, and its restriction by
1U is a transversal matroid over U in G. By applying Lemma 3.1 with eliminating some
redundant capacity constraints from the network structure, we have the following.

Lemma 3.2: xc(P(γN)) = |A| + |W|. For the transversal matroid over U of bipartite graph
G, its independence polytope has extension complexity of |A| + |U| + |W|.

For G = (U,W;A), let k, l be positive integers with d′k − l > 0, where d′ is the min-
imum degree of a vertex in U. Define γk,l : 2U → R by γk,l(X) = kγN(X) − l (X ⊆ U).
(U, γk.l) is a polymatroid, called a (k, l)-lower-truncated transversal polymatroid. This is
an integral polymatroid, and its truncation with respect to 1U is called a lower-truncated
transversal matroid [6]. We denote this matroid by M(G; k, l) (denoted simply by M(k, l)
in [6]). Note thatM(G; 1, 0) is a transversal matroid on U, as investigated above. Note that
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a class of transversal matroids includes both uniformmatroids and partitionmatroids, and
results below apply to those fundamental matroids.

Combining Theorem 2.2 and Lemma 3.2, we have the following.

Theorem 3.3: xc(P(γk,l)) ≤ |U|(|A| + |W|).

This theorem can also be obtained more or less directly by using Theorem 2.1 in
[6], which was used to solve greedy-type optimization problem for the lower-truncated
transversal polymatroids. When k ≥ l, this can be modified as in Theorem 2.5 in [6]
by using W instead of U in its bipartite structure. For the network N = (U ∪ W ∪
{t},A′;U, t; c), we replace c with a new capacity cw for w ∈ W defined by cw(e) = +∞
(e ∈ A), cw(e) = k (e = (w′, t), w′ ∈ W − {w}), and cw(e) = k − l (e = (w, t)).

Lemma 3.4 (Theorem 2.5 in [6]): For x ∈ R
U, x ∈ P(γk,l) iff there is a flow f with

x = ∂+f |S in network Nw = (U ∪ W ∪ {t},A′;U, t; cw) for each w ∈ W.

Using this lemma in this case, we may have a better upper bound.

Theorem 3.5: When k ≥ l, xc(P(γk,l)) ≤ |W|(|A| + |W|).

Summarizing these results for the lower-truncated transversal matroid, we have only to
add |U| inequalities of x ≤ 1U to the extended formulations.

Theorem3.6: For lower-truncated transversalmatroidM(G; k, l), its independence polytope
has extended complexity (1) |U|(|A| + |W| + 1) in general, and (2) |U| + |W|(|A| + |W|)
when k ≥ l.

4. Sparsity matroids

Consider a case of |�({u})| = 2 (u ∈ U) in the bipartite graph G. Let G′ = (V ,E) be an
undirected graph with vertex set V = W and edge set E = U. G′ can be regarded as a
graph obtained fromG by subdividing each edge e ofG′ by a vertex e ofG. The set V(X) of
vertices incident to edges in X ⊆ E inG′ is equal to �(X) inG. ForG′ and positive integers
k, l with 2k−l>0, {X | |Y| ≤ k|V(X)| − l (∅ �= Y ⊆ X)} is the set of independent sets of
a matroid, called (k, l)-sparsity matroid [13] or count matroid [4], which is isomorphic to
M(G; k, l) for G.M(G; 1, 1) is a graphic matroid of G′,M(G; k, k) is the union of k identical
graphic matroids ofG′, andM(G; 2, 3) is the rigidity matroid ofG′. Restating Theorem 3.6,
we have the following.

Theorem 4.1: For the independence polytope of a (k, l)-sparsity matroid of a graph G′ =
(V ,E), there is an extended formulation of size |E|(2|E| + |V| + 1) in general and that of
size |E| + |V|(2|E| + |V|) when k ≥ l.

Applying this theorem, we see that M(G; k, k) has extension complexity of O(|V||E|)
and M(G; 2, 3) has extension complexity of O(|E|2), which improves O(|V|2|E|) bound
in [8].
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5. Concluding remarks

In this note we expand a class of matroids whose polytope has a polynomial-size extension
formulation, basically utilizing bipartite and network structures underlying the class. This
extends to polymatroids and its lower-truncated ones defined by network flow. It would be
an interesting problem to investigate the extension complexity for linear matroids.
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