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ABSTRACT 

Microbial Community Response to Fumigation in Potato Soils 

Trevor Blake Smart 
Department of Plant and Wildlife Sciences, BYU 

Master of Science 

Soil microorganisms have a variety of beneficial and deleterious effects on plants, 
impacting such processes as plant growth, soil nutrient cycling, crop yield, disease resistance and 
tolerance to an array of biotic and abiotic stressors. The disruption of soil microbial community 
structures, particularly when beneficial soil biota are altered, has been shown to reduce crop 
yield and leave plants susceptible to disease. Long-term disruption of microbial communities 
may occur with repeated fumigation, being the application of gaseous pesticides, in agricultural 
soils. For this reason, we characterized bacterial, fungal, oomycete and nematode populations in 
paired fumigated and nonfumigated potato fields located in Idaho, Oregon, Washington and 
Minnesota. Samples were taken at three distinct timepoints: one before a fall fumigation event 
and two others at important stages in potato production, row closure and vine death. Soil biota 
populations were assessed by targeting the 16S, 18S and ITS1 gene regions. FunGuild, a 
database capable of guild and trophic assignment of fungal lineages, was used to sort fungal 
OTUs in different trophic modes. Fungal analyses indicated an increase in relative abundances of 
saprotrophic fungal populations and a decrease in pathotrophic fungal populations, both during 
row closure. Principally, the fungal genera of Humicola and Mortierella were responsible for the 
increase of saprotrophs while Alternaria decreased the most for pathotrophs. Other fungi 
occupying multiple trophic modes, such as Fusarium, also decreased during row closure. We 
found that fumigation treatments, in combination with various pesticide and fertilizer 
applications, alter both alpha- and beta- bacterial soil diversity although certain treatments, i.e. 
chloropicrin, may alter bacterial populations more than other treatment types such as metam-
sodium. Nematode populations were likewise distinct at each location with soils from Boardman, 
OR, Minidoka, ID and Pine Point, MN with these having higher levels of nematodes associated 
with better soil health, i.e. Dorylaimidae. Conversely, nematodes associated with plant 
pathogenesis were found in higher relative abundances at Minidoka, ID and Quincy, WA. In this 
study, we characterize the populations of bacteria, fungi, oomycetes and nematodes with an 
emphasis on fungal taxa. We found that relative abundances of fungal trophic modes vary 
temporally. Additionally, we catalogue several other high abundance taxa with seasonal 
differential abundances whose functional capacity in potatoes remain uncharacterized. 

Keywords: DNA extraction, soil microbiome, soil biota, fumigation, trophic modes 
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Microbial Community Response to Fumigation in Potato Soils 

Trevor Blake Smart, Brad Geary, Byron Adams and John Chaston 
Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 

Potato Grant Info 

INTRODUCTION 

In 2016, 44.1 billion pounds of potatoes, Solanum tuberosum, were produced in the 

United States of America, valued at a total of $3.06 billion dollars (USDA, 2017). But despite 

the considerable market value for potatoes, the input costs for producing 44.1 billion pounds of 

potatoes is high, with one of the largest expenses being pesticide application. But even with 

large-scale application of pesticides, market loss due to diseases can still be high. For instance, a 

2001 survey conducted by Guenthner showed that despite potato growers applying an estimated 

$77.1 million dollars of fungicides, specifically to control the late-blight pathogen Phytophthora 

infestans, $210.7 million dollars’ worth of potatoes were still lost to the selfsame pathogen 

(Guenthner et al., 2001). Notably, Guenthner’s estimate solely assessed the economic impact of 

late-blight, excluding prominent potato diseases like common scab, early blight, dry rot and 

black dot, among others. 

Yearly, growers’ monetary input of fumigants, herbicides and other pesticides to potato 

fields eclipses hundreds of millions of dollars. While no nationwide statistic of fumigant weight 

applied exists, it is telling that Washington state alone accounted for 6.6 million pounds of 1,3-

dichloropropene and 11.6 million pounds of Vapam®, both being fumigants with broad biocidal 

activity affecting target and non-target soil biota alike (Tu, 1993, Macalady et al., 1998). But 

despite the widespread use of fumigation and other pesticide application methods in potato 

production, acreage affected by soilborne pathogens appears to be increasing, with some growers 
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reporting up to a 50% increase in their acreage affected by soilborne pathogens over the past 

decade (Personal communication, Noah Rozensweig). This indicates that although fumigation 

and other forms of pesticide application are effective for interim maintenance of pathogen 

populations, long-term application may be disadvantageous in controlling soilborne pathogenesis 

in S. tuberosum. In part, this could be because chemical applications alter to the at-large soil 

microbiome which, being the soil microbiome, has been demonstrated to play a pivotal role in 

plant defense, nutrient cycling and other plant services (Berendsen et al., 2012, Lakshmanan et 

al., 2014). 

Several proposed hypotheses offer explanations as to how and why long-term heavy 

fumigation may affect the soil microbiome in a way that it is detrimental to plant health. One 

such proposal, central to the disease rate narrative of amplified disease risk, is that some 

fumigated fields that have increased disease incidence rates may be a consequence of unbalanced 

or diminished soil microbial populations (Garbeva, 2005, Mendes et al., 2011). Justifications for 

this explanation include a) that the removal of anti-pathogenic microflora from the environment 

protects pathogens from predation, b) that reductions in beneficial microorganisms concedes 

previously filled habitat niches to pathogens and c) that repeated fumigant applications select for 

fumigant-degrading bacterial populations who, in turn, diminish the effectiveness of applied 

fumigants (VanderZaag, 2010, Penton et al., 2014, Gómez Expósito et al., 2017). 

Long-term increased pathogen potential is but one example of how fumigant-disturbed 

soil microbial populations may affect potato plants. As an example, fumigation has been shown 

to reduce microbial biomass or change microbial populations to levels affecting carbon and 

nitrogen cycles (Yamamoto et al., 2008). In some cases, these alterations of  microbial 

populations resulted in lower marketable yield crops and stunted growth patterns (Hiltunen et al., 
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2017). The affected populations typically include nitrogen-fixing bacteria, many of which have 

populations that are slow to re-establish, resulting in populations more vulnerable to fumigation 

(Li et al., 2017). Conversely, many soil biota have shown resistance to broad-spectrum 

fumigants, such as actinomycetes with Vapam®, which results in a disproportionally high 

actinomycete population compared to vulnerable soil microorganism populations (Sinha et al., 

1979). 

Nitrogen fixation and pathogen protection are but two traits microflora may confer on 

their hosts. Other important services include increased rates of plant growth and crop yield, 

improved soil nutrient cycling and and tolerance to an array of biotic and abiotic stressors (Ortíz-

Castro et al., 2009, Busby et al., 2017). Some of these microbial ecosystem services are general, 

indicating a level of non-transferability between soils, and are attributable to factors such as 

microbial beta- and alpha-diversity, clade, or total microbial biomass (Weller et al., 2002). Each 

of these factors may be changed or reduced by fumigation or other methods of pesticide 

applications (Collins et al., 2006). 

At other times, beneficial plant-microbe interactions may be specific, meaning 

attributable to an individual organism or select group of microorganisms, and these may be 

transferable between soils (Weller et al., 2002). For instance, in the case of potato disease 

resistance, specific isolated strains of nonpathogenic Streptomyces spp. have been shown to be 

effective biocontrols of common scab, both in terms of incidence and severity, albeit dependent 

on environmental conditions and cultivar type (Weller et al., 2002, Wanner et al., 2014). Of 

importance, when considering the potential of specific bacterial inoculants to promote plant 

growth or other functions, the microbe must be considered in a host-specific manner. Simply 

because Streptomyces spp. reduces common scab in one population of potatoes does not mean it 
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will serve a similar function in other plant species or even other potato cultivars (Wanner et al., 

2014). In fact, non-host-specific microbial interactions may incur negative plant responses 

(Wanner et al., 2014). 

These host-specific and non-host-specific plant-microbial relationships may indicate a 

tight, co-evolutionary relationship between plant and microbe. These could be at an individual, 

specific plant-microbe level or show a relationship between higher or lower proportions of a 

clade according to the plant (Johnston-Monje & Raizada, 2011, Kinkel et al., 2011). When 

considering how a plant might select for distinct microbial populations, it has been shown that 

plant have unique exudate profiles. The exudates, in microcosm analyses, preferentially enrich 

specific microbes (Doornbos et al., 2012). In potatoes, studies have found that certain potato 

cultivars have distinct exudate profiles which may partially explain why, even at a cultivar level, 

different potato cultivars have unique microbial populations, independent of location (İnceoğlu et 

al., 2012). 

The function of root exudates is not only to attract specific microbes but is also produce 

to antimicrobial defense exudates (Doornbos et al., 2012). These roots exudates protect against 

pathogenic fungi, oomycetes, bacteria, viruses and nematodes. Though all these types of 

pathogens affect S. tuberosum, fungi and oomycetes are the principal perpetuators of wide-scale 

crop loss. The most prominent fungal and oomycete pathogen species that infect potato plants 

includes Pythium ultimum, Alternaria solani, Phytophthora infestans, Spongospora subterranea, 

Helminthosporium solani, Verticillium dahliae and Rhizoctonia solani. Each of these are soil-

borne plant pathogens reside in low abundances in soils until the proper environmental 

conditions are met. In some instances, pathogens of S. tuberosum, such as root lesion nematodes, 
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stubby root nematodes and fungus Rhizoctonia solani, act complementarily to aggravate disease 

(Björsell et al., 2017). 

For these reasons, we aim to characterize the soil microbial communities of S. tuberosum 

in agricultural soils and assess interactions between plant and soil biota. We do so with a special 

interest in understanding how fumigant-disturbed soils may stimulate divergence or exacerbate 

existing differences in the composition of soil fungal and bacterial communities as well as other 

soil biota. Furthermore, we assess communities across of temporal gradient, focusing on three 

important stages within potato agriculture: prefumigation, the timepoint before a fall fumigation 

event; row closure, when the canopy of potato plants in adjacent rows overlap; and vine death, 

when photosynthesis, plant growth and carbohydrate transfer from leaves to tuber declines as the 

plant safeguards its resources from pathogens. Our primary research aims are to 1) profile soil 

biota composition of potato fields under traditional and organic management practices under 

field conditions, 2) profile these communities across different potato growing regions, 3) 

compare the effects of treatment on soil biota community composition and 4) track temporal 

changes in soil biota communities. We hope that our findings will enable us to better understand 

potato soil microbe-plant interactions, an essential aspect for furthering sustainable, healthy 

potato production under various agricultural management systems. 
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METHODS 

Sampling design 

Soil cores were collected from fumigated and non-fumigated potato fields located in four 

different states: Washington, Oregon, Idaho and Minnesota. Fumigated fields were managed 

with either a combination or individual treatment of chloropicrin, Vapam® or Telone II. Two 

fields were selected in Washington and Oregon; one field was fumigated and the other non-

fumigated. Three Minnesota fields were collected, two being fumigated and one being non-

fumigated. In Idaho, four fields were selected, representing two different growing seasons with 

each growing season having a fumigated and non-fumigated field. The total number of fields 

sampled was eleven. 

In each field, soil core sampling consisted of ten sites per field, with each sample site 

spaced at minimum distances of 100 meters apart. Five subsamples were taken at each sample 

site. Each subsample was taken with a soil probe (2.5 cm diameter) at a depth of 10 cm. 

Subsamples were then combined into one sample to convey a more accurate spatial 

representation of microbial diversity at each site. To measure microbial change temporally, 

sampling events occurred prior to fumigation, at row closure, and vine death representing 30 

samples per growing season. Following sample collection, all soil samples were stored on ice, 

promptly shipped to Brigham Young University, homogenized, and stored in a -20 C freezer 

until further processing. 
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DNA Extraction 

Soil biota DNA was extracted using the MoBio PowerSoil® DNA Isolation Kit (Qiagen, 

Hilden, Germany) following standard kit protocols with slight modifications as recommended by 

Lindhal (Lindahl et al., 2013). Samples were homogenized with a Vortex-Genie 2 Mixer 

(Scientific Industries, Bohemia, NY, USA) at a setting of 10 for 15 minutes. Templates were 

quantified with an ND1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, 

USA) and then concentrated to 30 ng/µl. 

 

Sequencing 

Three separate amplicon libraries were generated to assess different populations: general 

eukaryotes, bacteria and fungi. 

To assess general eukaryote populations, we targeted the V9 hypervariable region of the 

nuclear 18S rRNA region (Figure 1). Amplicon libraries were created using primers 1391F (5’-

GTACACACCGCCGTC-3’) and EukBr (5’-TGATCCCTTCTGCAGGTTCACCTAC-3’) with 

primer EukBr containing a unique, 12-bp multiplex identifier (Amaral-Zettler et al., 2009, 

Fadrosh et al., 2014). Each primer contained either a forward or reverse Illumina adapter, primer 

pad and primer linker (Table 1). Multiplex identifiers were selected as recommended by Earth 

Microbiome Project (http://www.earthmicrobiome.org). Thermocycler conditions followed 

parameters consistent with Earth Microbiome Project’s 18S Illumina amplicon protocol with 

slight modifications to optimize conditions for a different PCR master mix, Invitrogen™ 

AccuPrime™ Pfx SuperMix (ThermoFisher Scientific, Waltham, MA, USA). Initial denaturation 

was set at 94°C for 3 min, followed by 35 cycles of denaturation at 94°C for 45 seconds, 
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annealing at 55.6°C for 60 seconds, and elongation at 72°C for 90 seconds. A final elongation 

step was set for 72°C for 10 minutes and all samples were held at 4°C. 

In bacteria, the V4 hypervariable region of the 16S rRNA gene (Figure 1) was targeted 

using primers 16Sf (5’-GTGCCAGCMGCCGCGGTAA-3’) and 16Sr (5’-

GGACTACHVGGGTWTCTAAT-3’). Both primers, 16Sf and 16Sr, contained a series of 

repeating 8-bp barcodes which, in combination, facilitated a dual-indexed Illumina sequencing 

approach (Caporaso et al., 2012, Kozich et al., 2013). A forward or reverse Illumina primer, 

linker region and primer pad were also included on both 16Sf and 16Sr. Invitrogen™ 

AccuPrime™ Pfx SuperMix was likewise used for the generation of 16S amplicons. 

Thermocycler conditions were the same as the general eukaryote approach except that no 

modification was made to the annealing temperature. Initial denaturation was 94°C for 3 min, 

followed by 35 cycles of denaturation at 94°C for 45 seconds, annealing at 55°C for 60 seconds, 

and elongation at 72°C for 90 seconds. A final elongation step was set for 72°C for 10 minutes 

and all samples were held at 4°C. 

For molecular identification of fungal lineages, the nuclear internal transcribed spacer 1 

(ITS1) region was amplified in a two-step PCR approach (Figure 1). Initial PCR amplification 

utilized an oligo containing the forward primer ITS1F_KYO1 (5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-NNNXXX-

CTHGGTCATTTAGAGGAASTAA-3’) with 3-mer, 4-mer, 5-mer or 6-mer Ns and the forward 

Illumina sequencing primer fused to the 5’ end. The reverse oligo consisted of primer 

ITS2_KYO2 (5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-NNNXXX-

TTYRCTRCGTTCTTCATC-3’), 3-mer, 4-mer, 5-mer or 6-mer Ns, and the reverse Illumina 

sequencing primer (Toju et al., 2016). PCR amplification was performed with Accuprime Pfx 
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SuperMix with the following parameters: initial denaturation at 94°C for 2 min, 35 cycles at 

98°C for 10 sec, 50°C for 30 sec, 68°C for 50 sec, with a final extension of 68°C for 5 min and a 

final holding temperature of 4°C. A final PCR was utilized to ligate Illumina adapters and 

barcodes. A second PCR process utilized forward fusion Illumina primer consisting of the P5 

Illumina adaptor, an 8-mer barcode, and the 5’ end of the sequencing adaptor (5’-

AATGATACGGCGACCACCGAGATCTACAC-XXXXXXXX-TCGTCGGCAGCGTC-3’). 

The reverse fusion Illumina primer consisted of the P7 Illumina adaptor, an 8-mer barcode, and 

the 5’ end of the sequence adapter (5’-CAAGCAGAAGACGGCATACGAGAT-XXXXXXXX-

GTCTCGTGGGCTCGG). The PCR parameters were as follows: initial denaturation at 94°C for 

2 min, 8 cycles at 98°C for 10 sec, 50°C for 30 sec, 68°C for 50 sec, with a final extension of 

68°C for 5 min and a final holding temperature of 4°C. 

Following amplification of either library, normalization of amplicons occurred using 

SequalPrep™ Normalization Plate (96) Kit (Invitrogen, Carlsbad, CA, USA). All multiplexed 

samples will be pooled and have their concentration quantitated on a Qubit™ 2.0 Fluorometer 

(ThermoFisher Scientific, Waltham, MA, USA). Following quantitation, all Idaho V4 16S rDNA 

samples, save for prefumigation samples from Acequia, ID, and Washington and Acequia, ID 

eukaryote all samples were shipped to Michigan State University where they underwent further 

quality control. At Michigan State University, all samples were tested for size distribution, size 

confirmation and PCR artefacts using the Agilent 2100 Bioanalyzer (Agilent Technologies, 

Santa Clara, CA, USA). Library quantification using Kapa PCR was utilized prior to sequencing 

(Kapa Biosystems, Wilmington, MA, USA). Paired-end sequencing (2x250) was carried out on 

the Illumina MiSeq sequencer at Michigan State University (Illumina Biotechnology, San Diego, 

CA, USA). Equivalent sequence prep procedures were performed at the Brigham Young 
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University sequencing center on the Illumina HiSeq 2500 platform (2x250) as (Illumina 

Biotechnology, San Diego, CA, USA). To increase sequencing efficiency, samples with high 

levels of primer dimers had primer dimers removed via PippinPrep (Sage Science, Beverly, MA, 

USA). 

 

Data Analysis 

Illumina sequence reads were demultiplexed according to Illumina protocol at the 

Brigham Young University sequencing center. Following demultiplexing, sequence reads were 

analyzed within QIIME (v. 1.9.1), an open-source software package capable of target 

metagenomic microbial community analysis. Prior to introducing reads into QIIME, we removed 

primers and barcodes with a custom, in-house script. Then, within QIIME, we joined paired-end 

reads by using fastq-join with default parameters (Aronesty, 2011). Fastq-join output was then 

demultiplexed and checked for chimeras using the vsearch pipeline (Rognes et al., 2016). Within 

vsearch, the option called ––non_chimeras_retention was changed from its default condition to 

intersection. By doing so, sequences flagged as chimeric by either of vsearch’s de novo or 

reference-based approaches were removed. Following chimera checking, all demultiplexed 

sequences were clustered into operational taxonomic units (OTUs) but by different methods. 

16S,18S and ITS1 reads were clustered by applying a 97% similarity threshold under default 

parameters with uclust (Edgar, 2010). For 16S rRNA reads, representative OTUs were assigned 

taxonomy by means of uclust with reference sequences retrieved from the SILVA 128 database 

(Quast et al., 2013). Unlike the 16S rRNA regions, the ITS1 fungal and 18S eukaryote reads 

were taxonomy OTUs via RDP assignment with 0.50 confidence. The dynamic fungal UNITE 

database was used for ITS1 fungal reads and the SILVA 128 database was used for 18S reads 
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(Kõljalg et al., 2005, Wang et al., 2007, Yilmaz et al., 2014). Because fungal primers 

ITS1F_KYO1 and ITS2_KYO2 amplify oomycetes, an existing, modified oomycete database 

was merged with the UNITE database to allow for taxonomic identification of oomycetes 

(Sapkota & Nicolaisen, 2015). Phylogenetic trees were constructed by FastTree 2.1.3 (Price et 

al., 2009) for 16S and 18S OTUs. Because the fungal ITS1 region is a poor chronometer, no 

phylogenetic trees were generated for fungal ITS1 dataset. 

All taxonomy files, OTU tables and tree files generated in QIIME were input to R (Team, 

2014). RStudio was used as a graphical user interface (Team, 2015). In R, we used the PhyloSeq 

package to combine the input files into a single object and to rarefy all samples (McMurdie & 

Holmes, 2013). Because PippinPrep expunged Ascomycetes from fungal samples, we removed 

all fungal ITS1 samples that had PippinPrep performed on them which consisted of samples from 

Boardman, OR and Quincy, WA. Samples from these locations were not included in fungal 

analyses. Fungal, eukaryote and bacterial data were treated as separate samples with each of 

these being rarefied according to their ability to capture diversity. This was estimated by 

generating alpha rarefaction plots in R. We generated nDMS plots in R, choosing nMDS as a 

multidimensional scaling method due to its ability to handle sparse datasets and its ability to 

calculate with non-Euclidean distances. 

Fungal functional and guild identity was predicted using FunGuild (Nguyen et al., 2016). 

Following guild assignment, differential abundances of fungal taxa were tested across different 

combinations of sites, seasons, treatments and other factors using the R package ANCOM 

(Weiss et al., 2017). Adonis values were calculated with the R package vegan (Oksanen et al., 

2007) with false discovery rates being controlled using FDR correction with a p-value of 0.05. 
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Soil Analysis 

Assessment of physiochemical soil properties at the BYU Environmental Soil Analytical 

Lab (Brigham Young University, Provo, UT, USA). Characteristics known to affect soil 

microorganism populations such micro- and macronutrient availability, texture analysis and 

organic matter was performed. Organic matter was assessed using the Walkley and Black 

method (Walkley & Black, 1934). Electrical conductivity was measured from a saturated paste 

of the soil using the RC-16C Conductivity Bridge (Beckman Instruments, Brea, CA, USA) and 

the pH was estimated using the same paste (Page et al., 1982). Ca++, Mg++ and Na+ were also 

assessed from the paste by running a dilution of the sample extract with an interference chemical 

through an AAnalyst 200 (PerkinElmer, Waltham, MA, USA.). Particles sizes, i.e. texture 

analysis, was performed by measuring percent salt, silt and clay with a hydrometer-based method 

(Day, 1965). Potassium was also analyzed on the AAanlyst 200 according to methods outlined 

by Schoenau (Schoenau & Karamanos, 1993). Phosphorus was assessed by the traditional Olsen 

methods (Olsen, 1954). 
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RESULTS 

Fungi 

In total, 653,310 fungal reads, representing 126 samples with each sample being rarefied 

to 5,185 reads, were submitted into the R workflow (Figure 2). Fungal samples were removed if 

they were below 5,185 sequence reads or if they underwent PippinPrep at the BYU sequencing 

center because the PippinPrep protocol selected against Ascomycetes before their being 

submitted to sequencing. Effectively, this removed all fungal samples from Boardman, OR and 

Quincy, WA, save for several samples from Washington, but left all Idaho and Minnesota 

samples intact. For the remaining samples, NMDS analysis of fungal β-diversity revealed 

distinct fungal profiles at all locations (all p-values < 0.05). This was even the case for paired 

fields in which, at every timepoint, the populations of the fungi formed unique clusters with 

NMDS analysis (Figure 3). When comparing alpha diversity metrics, samples from Wadena, MN 

and Pine Point, MN had higher observed values of OTUs as well as higher Chao1 and ACE 

estimates. 

Importantly, when initially using the unedited UNITE database for taxonomic 

assignment, 43.38% of reads registered as the fungal class Basidiomycota were unassigned 

(Table 2). Additionally, order, family, genus and species percentages of unassigned 

basidiomycete sequences were 63.17%, 63.19%, 63.54% and 64.36%. For ascomycetes, these 

percentages of unassigned reads were 4.96%, 20.2%, 24.21%, 25.63% and 52.4%. We then 

blasted high abundance unassigned basidiomycetes reads on NCBI and found that most 

unassigned basidiomycete reads matched with the oomycetes Phytophthora and Pythium. We 

then appended an oomycete database to the existing UNITE database and re-classified the 
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taxonomy of reads. Upon doing so, we found that unassigned reads for Basidiomycota was 

reduced to 2.52%, 2.89%, 2.94%, 3.34% and 7.3%. For Ascomycota, these numbers were 5.79%, 

6.86%, 12.37%, 13.92% and 26.37% (Table 2). When comparing the percentage of OTUs that 

changed, from class to species levels, Ascomycota changed -2.87%, -2.35%, -2.17%, -1.91% and 

-0.84% (Table 3). For Basidiomycota, raw percentage changes in OTU assignment were 1.79%, 

3.03%, 2.86%, 3.11% and 1.45%. The comparatively small change in OTU assignment, relative 

to percent changes in read assignment, indicates that misclassified OTUs were typically in high 

abundance and were not included within the fungal divisions of Ascomycota or Basidiomycota. 

 

FunGuild assignment 

FunGuild was used to assign functional ecological guilds and trophic modes to all fungal 

and oomycete genera. Of 1951 reported OTUs, 681 of those OTUs were assigned a trophic mode 

in the FunGuild output. Trophic modes assigned consisted of pathotroph, saprotroph, 

symbiotroph or a combination of the three. Running PERMANOVA analyses across different 

sampling timepoints revealed pathotroph populations were lowest during row closure when 

compared to prefumigation and vine death (p < 0.05). At the same time, saprotroph populations 

were highest during row closure as compared to prefumigation and vine death (p < 0.05). 

ANCOM, which is used to evaluate differential taxon relative abundances of microorganisms, in 

our case OTUs, across different assigned variables, revealed that the principal saprotroph 

responsible for the increase in saprotroph genera during row closure were Humicola and 

Schizothecium (Table 4). When assessing levels of pathotrophs, populations of Alternaria and 

Fusarium where mainly responsible for higher populations of pathotrophs during prefumigation 

and vine death. 
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We also ran ANCOMs comparing all fields and we did so considering each paired field 

as two distinct fields. In total, when considering every combination of locations, ANCOM 

calculated significant W scores for 89 different fungal OTUs (Figure 7). Common potato 

pathogenic fungal genera which were called as differentially abundant in ANCOM were 

Alternia, Cadophora, Colletotrichum, Fusarium and Verticillium, each being assigned significant 

W-scores greater than 100. ANCOM results showed that paired field sites had few differentially 

abundant OTUs that were assigned a trophic mode. Most differences, as would be expected 

based off our fungal NMDS plots, were between different locations. 

 

Eukaryote community and diversity 

In total, 5,147,769 Eukaryote 18S reads were obtained from the QIIME workflow. Each 

sample was rarefied to a depth 20,000 reads. Samples comprising less than 20,000 reads were 

removed. Within each sampling location the seasonal variation of  β-diversity and treatment 

effects on β-diversity were measured. The two seasons sampled, Spring 2016 and Fall 2016, 

were significantly different (p < 0.001). When comparing the effect of treatment at each 

sampling time point there was likewise a significant difference with each p-value below 0.001. 

Not enough data was received for the North Dakota or Oregon samples to draw reasonable 

conclusions on β-diversity. The Earth Microbiome Project primers had deep enough taxonomic 

resolution to identify several prominent oomycete genera, of which common potato pathogens 

Pythium and Phytophthora infestans were included. Each of these genera had corresponding 

OTUs that significantly differed across all sampling locations. Of all states, Washington had the 

highest rates of Phytophthora (p < 0.05). 
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Nematode community and diversity 

Nematode communities were assessed using 18S rRNA assigned OTUs. Initially, 18S-

generated OTUs were rarefied to 20,000 reads and then subset to only contain nematode-

assigned OTUs. No further rarefaction or editing of the reads was undertaken because we 

considered the differences in the number of nematode reads amongst total V9 rarefied reads to be 

significant as it indicated that those nematodes occupied either a smaller or greater percentage of 

the total eukaryotes in a sample. In total, 77,843 nematode reads were recovered with a total of 

305 OTUs. Alpha rarefaction curves indicated that we had sufficient depth to capture sufficient 

alpha diversity (Figure 2). 

Although most analysis was done at an order level, there was one species hit that we 

found particularly interesting: Heterodera schachtii. We find this interesting because H. 

schachtii is a pathogen of sugar beet, which was only reported in the crop history for Acequia 

and Minidoka, ID. Predictably, the OTU representing H. schachtii was only present in Acequia 

and Minidoka, ID. H. schachtii, initially identified in QIIME as Globodera pallida, was 

identified with a blast search on NCBI. In total, 20 G. pallida-assigned query sequences were 

blasted in NCBI resulting in a 100% match with H. schachtii, as well as H. glycines and trifolii, 

but only a 92% match with G. pallida. H. schachtii was only found in our Acequia, ID samples. 

Nematode distribution and relative abundances were of special interest because of their 

role in nutrient cycling, potato plant pathogenesis and microbivory. Overall, samples were 

dominated by the orders Tylenchida or Rhabiditis (Figure 9). However, when compared to other 

locations, Tylenchida and Rhabditida in Pine Point samples were offset by populations of 

Dorylaimida, Areaolaimida, Monhysterida and Mononchida. Higher populations of Araeolamida 

and Monhysterida may be reflective of the conventional practices used by the Minnesota farmers 
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which may be connected to the fact that Araeolamida and Monhysterida are free-living and do 

not overwinter. Of all samples, Minidoka, ID consistently had the highest rates of Tylenchida, 

which is commonly associated with pathogenesis (Figure 9). 

Population trends were not consistent for nematodes at different field locations. For 

samples at our Acequia, ID location, prefumigation samples had a significantly higher population 

of Tylenchida (p < 0.05) than during row closure and vine death. Also, at Acequia, ID, 

populations of Tylenchida increase from row closure to vine death. The same trend is seen for 

the Vapam®-fumigated at Wadena, MN. This same trend, however, does not appear to be 

statistically significant (p > 0.05) at Boardman, OR, Minidoka, ID or Pine Point, MN. When 

considering populations of Dorylaimida, their populations were lowest Quincy, WA and 

Wadena, MN. 

 

Bacteria 

In total, 15,600,301 bacterial 16S reads were obtained from the QIIME workflow. Each 

sample was rarefied to a depth 10,248 reads. Samples comprised of less than 10,248 reads were 

removed. Overall, across all sites, 6316 OTUs showed significant differences across all sampling 

locations although many of these OTUs were unassigned. When considering overall diversity, 

each sampling location had unique eukaryote profiles (p < 0.001). 

Bacterial β-diversity estimates were affected by many factors. The strongest factor was 

that of location. Across all sites, each population was unique (p < 0.05) with, predictably, 

Western and Midwest samples having closer clusters (Figure 4). Both Idaho sites, Minidoka and 

Acequia, were comprised of similar bacterial populations but were distinct from Quincy, WA 
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and Boardman, OR field sites (p < 0.05). The two Minnesota sites, Pine Point and Wadena, were 

also statistically different from each other (p < 0.05). 

Although location was the dominant factor in determining soil microbial composition, 

barcode bias, as introduced by the second Schloss barcode, was a strong factor as well. The 

barcode bias may have been caused sequence artefacts to be introduced into the sequences. 

Because of barcode biases, we amended several default parameters within the QIIME pipeline to 

reduce bias. Such alterations of the QIIME pipeline included a) setting stricter parameters for 

determining whether a sequence read was chimeric and b) removing sequence reads if they were 

flagged as chimeric in during either de novo or reference-based chimera checking. Furthermore, 

low abundance reads, from singletons to tripletons, were removed within R. We justify the 

removal of low abundance reads from our dataset because low abundance microorganisms 

typically play a less prominent role in the soil ecosystems as well as the likelihood of low 

abundance reads being spurious. 

In addition to the second barcode and location, treatment effect also influenced soil 

bacterial composition, albeit situationally. It was only at one site, Pine Point, MN, that all paired 

fields differed in the bacterial populations each season. During prefumigation at Pine Point, 

populations of Spartobacteria were proportionally high and these populations decreased during 

row closure and vine death in both the chloropicrin-treated and nonfumigated fields (Figure 6). 

During row closure, the chloropicrin-treated field had high populations of Thermolephilia and 

Acitnobacteria while classes categorized as “other” were the lowest of any other site. 

Seasonal variation in the relative abundances of bacteria also limited to select sites. 

Neither of the Idaho sites, Minidoka or Acequia, experienced seasonal variation in the bacterial 

composition. Only Wadena, MN and Pine Point, MN sites were considered to be significant. 
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Bacterial populations 

At a phylum level, community relative abundances across all samples were 

predominately Proteobacteria (28.78%), Acidobacteria (20.49%), Actinobacteria (11.93%), 

Bacteroidetes (10.40%), Chloroflexi (7.20%), Verrucomicrobia (5.30%), Gemmatimonadetes 

(4.28%), Planctomycetes (3.77%), Firmicutes (3.52%) and Nitrospirae (1.03%). The most 

abundant classes of bacteria were Alphaproteobacteria (13.90%), Blastocatellia (7.21%), 

Sphingobacteriia (7.18%), Actinobacteria (6.96%), Betaproteobacteria (6.96%), 

Gammaproteobacteria (6.03%), Deltaproteobacteria (3.78%), Thermoleophilia (3.46%), 

Spartobacteria (3.33%) and Bacilli (3.19%). 

DISCUSSION 

Taxonomic assignment of fungi with the UNITE database 

The fungal UNITE database is the current standard in metagenomics for assessing fungal 

lineages based on the internal transcriber spacer region. The database, however, only contains 

fungal identifiers and does not include closely related lineages such as oomycetes. Oomycetes 

are commonly classified as lower fungi but occupy a distinct taxonomic lineage from fungi 

despite being oomycetes, often having a comparable functional role in ecosystems as fungi. 

Despite their different taxonomic ranks, fungal-specific primers targeting the ITS1 region have 

been shown to amplify both oomycetes and true fungi. The results of this, as is the case with our 

data, is that both oomycete and fungal ITS1 sequences are input into the sequence process and 

their sequences are, in return, intermingled with fungal-amplified reads. 
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We found that this combination of fungal and oomycete reads, when only using the 

UNITE database for taxonomic assignment, heavily affects taxonomic assignment in the QIIME 

pipeline by mis-assigning taxa, leaving OTUs unassigned and by yielding poor taxonomic 

assignment, particularly within the fungal phylum Basidiomycota. Within the phylum 

Basidiomycota, before adding oomycetes to the UNITE database, 43.48% of all reads at a class 

level were unassigned with that number rising to 63.17% at an order level (Table 2). However, 

with the addition of oomycetes to the UNITE database, the percentage of unassigned 

basidiomycetes at the class and order level decreased to 2.52% and 2.89%, roughly a difference 

of 40.96% and 60.28% for each. For Ascomycetes, there was an increase in unassigned reads at a 

class level. However, order, family and genus-level classification assignments of Ascomycetes 

experienced a roughly two-fold increase (Table 2). It should be noted that despite the increase in 

assigned reads, there was not a similar trend for the percentage of OTUs that were given an 

assignment. For instance, Ascomycota had more unassigned OTUs after the incorporation of the 

oomycetes to the UNITE database, whereas basidiomycetes had a slight increase in the 

percentage of their OTUs assigned (Table 3). This indicates that the majority of OTUs that were 

either previously unassigned or received deeper taxonomic identification had higher prevalence 

within the ecosystem. 

This finding is important because most studies that use the UNITE database do not 

append other ITS lineages of closely related to fungi to the UNITE database. Because oomycetes 

are common throughout soil samples, particularly in agricultural fields, we searched studies 

focusing on ITS analysis of fungi in agricultural soils which used the UNITE database. Of the 

five studies we investigated which use the same combination of primers and were also 

conducting with soils, no amendment to account for any non-fungal lineages was made with the 
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UNITE database. Of the 20 studies we considered that solely used the UNITE database, none of 

these accounted for non-fungal lineages in their data analysis unless non-fungal, off-target 

lineages were removed with NCBI BLAST searches, which was not reported in any study. 

Speculatively, for these studies, it is possible that they lost taxonomic assignment depth for 

ascomycetes and basidiomycetes, mis-assigned taxonomy to a number of OTUs, and failed to 

classify organisms such as oomycetes which play an important functional role similar to fungi in 

their target ecosystems. We suggest that target metagenomics analyses focused on using the ITS 

region, particularly with soil analyses, must incorporate closely related lineages to fungi so that 

they increase depth of taxonomic assignment, have more accurate taxonomic assignment, and 

that they identify other functionally important organisms which may be sequenced even if so-

called “fungal specific” primers are used. 

Finally, it should be noted that, for taxonomic assignment, the Wang classifier method, 

which is also known as the rdp method and which is the primary assignment method used in the 

mothur pipeline, was used and that similar trends may not be seen for other common QIIME 

taxonomic assignment methods such as blast, uclust, rtax or other methods. 

 

FunGuild assignment of taxa 

We measured changes in FunGuild-assigned genera over a temporal gradient during 

prefumigation, row closure and vine death (Table 4). Across all seasons we found that 

saprotrophs had their highest relative abundances during row closure (p < 0.05) which coincides 

with lower relative abundances of pathotrophs at same timepoint (p < 0.05). Saprotrophic genera 

with increased relative abundances during row closure included Humicola and Mortierella 

(Figure 8). An increase in genus Humicola is intriguing because Humicola has been found to 
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confer disease resistance against Alternaria and Phytophthora (Ko et al., 2011). Humicola and 

Schizothecium have also been found to be common in other potato molecular analyses and had 

higher populations in potato soils considered to be healthy (Lu et al., 2013). Though relatively 

little is known about the function of genus Mortiella within the rhizosphere, the fungus is 

associated with disease-suppressiveness and growth patterns (Bonito et al., 2016). Mortierella, a 

fungus with a broad saprotrophic range, is known to have anti-pathogenic properties towards 

bacterial potato scab pathogens, being various Streptomyces spp., especially under low pH 

conditions (Tagawa et al., 2010). However, it has also been found that Mortierella has indirect 

negative effects on plant growth by inhibiting plant growth (Hong-wei et al., 2012, Qin et al., 

2017). In some studies, Mortierella has been found to be the predominant genus in potato soils 

(Qin et al., 2017). Mortierella is consistently associated with disease-suppressive soils towards 

different fungi, bacteria and nematodes (Giné et al., 2016, Gómez Expósito et al., 2017). In soil 

of vanilla orchids, hyper-suppressive soils to pathogen to Fusarium wilt disease was associated 

with high relative abundances of Mortiella spp., with some soils having a relative abundance of 

37% (Xiong et al., 2017). 

Lower relative abundances of pathotrophic fungi during row closure comes as no 

surprise. This is because the earliest reports of disease in potato fields typically comes shortly 

after row closure. This is because the potato foliage creates a canopy, protected from the sun, 

suitable for pathogenic expansion, especially when coupled with increased temperature. 

Pathotrophic fungi with lower relative abundances were Fusarium and Alternaria. Populations of 

Fusarium have been reported to be lower in ridge planting management in potato agricultural 

soils (Qin et al., 2017). Although Fusarium is responsible for dry rot in S. tuberosum it should be 

noted that most Fusarium lineages are not pathogenic. As recognized by FunGuild, Fusarium is 
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listed as both a pathotroph and saprotroph. It should be noted that there were several high 

abundance fungal genera that were not characterized by the FunGuild database. These include 

the genera Fusicolla, Guehomyces and Nectria. 

 

Bacteria 

Bacterial populations were found to be influenced by season. Although our variable 

season was influential, we predict that a stronger influence on the bacterial populations, acting as 

a confounding variable, was the influence of the vegetative stage of the plant. The reason we 

hypothesize this is support by a recent analysis performed by Pfeiffer et al, 2017. In Pfeiffer’s 

study, he evaluated the rhizosphere microflora of Solanum tuberosum in its center of origin, the 

Central Andean Highlands, under varying environmental conditions of which include, different 

soil characteristics, climatic conditions, elevation and agricultural practices (Pfeiffer et al., 

2017). Under these circumstances, Pfeiffer investigated the taxonomic composition and core 

microbiome which revealed vegetation stage as the most important indicator of the microbial 

composition. In his study, three vegetation stages were sampled which were emergence, 

flowering and senescence. In our study, none of our timepoints coincided with Pfeiffer’s 

sampling schedule as our timepoints had more to do with important timepoints in agricultural 

management and not with plant development. Furthermore, although sampled the soil before 

fumigation, a time when there will be no potato planted, only two of our sampling points were 

when the potato was planted. Thus, our two timepoints are not enough to draw any reasonable 

conclusion from this. 

An explanation as to why some treatment effects may be different would be the drastic 

differences in fumigation approaches, pesticides applied, the amount and rate of pesticide 
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application and more. Before proceeding further, it should be noted that only at one site, 

Acequia, Idaho, can the data be accurately assumed. This is because the sampling efforts of the 

local farmers and researchers did not follow directions as instructed. Only the Acequia, Idaho 

site did this. For this site, we found that there was a p-value < 0.05. During the first timepoint, 

prefumigation 2015, there was no difference between the paired fumigated and non-fumigated 

potato fields. This is important because it allows for differences in populations to be attributed to 

the treatment itself. In an important note, the same field site contained different fungal 

populations to begin with. This means, for the fungi, that no direct comparison for field 

treatments can be made. 

 

Bacterial populations 

We were not surprised to find a high relative abundance of the genus Devosia within our 

samples as Devosia has been identified in potatoes in other metagenomic analyses (Barnett et al., 

2015). This, likely, bodes well for our potato samples and yields because Devosia is associated 

with nitrogen-fixation. 

In Minnesota soil samples, Spartobacteria were found in higher abundances than in non-

Minnesota soils. Spartobacteria are typically abundant in soils however relatively little is known 

of their function. Spartobacteria, however, have been found to persist off of plant 

polysaccharides and recently have been found to colonize the roots and rhizosphere of rice 

(Hernández et al., 2015). 
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Treatment effects on bacteria 

It is interesting to note that bacterial populations responded differently to the treatments 

which does indicate varying levels of effectiveness. For the Acequia, ID bacterial populations it 

was determined that fumigation had no meaningful effects on their population (p > 0.05).  The 

overriding variable in this situation was season which may, as will be discussed, be more 

correlated with the fact that one sampling timepoint had no plant in the soil and then the other 

two timepoints represent different life stages of the plant. 

Overall, our results show either diminutive or no changes in bacterial populations at each 

site according the treatments of, individual or in combination with each other, Vapam®, Telone 

II, and chloropicrin. Each of these fumigants, previously, have been previously demonstrated to 

have severe and immediate changes to soil microbial populations. An explanation for the lack of 

change in bacterial populations may be found in a paper by Kato (Kato et al., 2015). In this 

paper, in a controlled environment, Kato surveys changes in bacterial population in response to 

fumigation during time intervals for a period of 24 weeks. During this 24-week period Kato 

found that despite rapid initial change following treatment, bacterial populations appeared almost 

normal after the 24-week period. One explanation for our results is that our sampling window 

was long enough that bacterial populations had sufficient time to stabilize post-treatment. 

Another could be a failure of our experimentation; however, this explanation seems unlikely 

because of statistical trends we see in our eukaryote and fungal data (i.e. clustering by location, 

season, treatment and other factors). This seems to indicate that our experimental methods were 

procedurally consistent and sound. 
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Fungal populations 

Fungal richness and phylogenetic diversity for fungi is higher in lower temperatures and 

higher moisture content (Pellissier et al., 2014). One of the more revealing results from our 

analyses was that no fungal population at any field site, whether paired or cross-state, save in 

Acequia, Idaho, was the same. When bacterial populations at Minidoka, ID were the same, the 

fungal populations in the same fields were different. There are many potential explanations as to 

why this phenomenon would occur. The simplest explanation might be that fungi are less 

globally distributed than bacteria. Thus, even random, small-scale regional differences could 

account for initial fungal population differences. Another explanation might be that plant 

recruitment or repulsion of soil microbiota via root exudation may be stronger for bacteria than 

fungi. Thus, plant selection for individual or populations of fungi may be weak when compared 

to plant recruitment of specific bacterial lineages and populations. 

 

FunGuild assignment of Acermonium 

In order to estimate the functional diversity of our samples, we used a program called 

FunGuild which uses taxonomic data to parse OTUs into predetermined ecological guilds 

(Nguyen et al., 2016). From FunGuild, we were able to separate out OTUs into three different 

trophic modes (pathogen, saprotroph and symbiotroph), assign a guild and a confidence ranking 

to the possibility of that rank, information on growth morphology and, when possible, a trait. Our 

data shows that row closure coincides with the highest rates of saprotrophs. This is noteworthy 

because saprotrophs, along with arbuscular mycorrhizal fungi, have been shown to play a role in 

the nitrogen cycle for plants (Hodge & Fitter, 2010, Jin et al., 2012). 



27 
 

The presence of one fungal genera, Acremonium spp., is especially interesting because of 

its role in mycoparasitism. Recently, Acremonium strictum was found to have a close association 

with Helminthosporium solani, which is the causal agent of silver scurf in potatoes (Rivera-

Varas et al., 2007). It has been found that A. strictum inhibits the growth of H. solani. In either 

case, the high abundance of Acremonium in the soils may indicate that it is the presence of a 

mycoparasite which keeps in check the populations of other fungal pathogens. 

 

Nematodes 

The economic impact of yield reduction from nematodes is a global issue. In the United 

Kingdom, potato cyst nematodes, Globodera rostochiensis and G. pallida, are responsible for an 

estimated $70 million lost per annum {Nicol, 2011 #345} and a decrease of 9% in production 

(DEFRA 2010). In the United States, a 1999 study revealed that 5-10 percent of land where 

potatoes were grown in Washington was lost due to phytopathogenic nematodes despite almost 

75 percent of all land being treated with a nematicides (Koenning et al., 1999). Total global crop 

losses due to phytonematodes have been estimated to be as high as $80 billion which is likely a 

higher figure today (Handoo, 1998). 

Detection of phytonematode infection remains challenging because symptoms, such as 

cysts and lesions, may appear belowground in the root or tuber without any above-ground 

symptoms save reduced growth. Some innocuous symptoms such as nutrient and water uptake, 

which leave no apparent symptoms, may be entirely overlooked (Nicol et al., 2011). In some 

cases, nematodes will spur secondary pathogenesis which is when nematodal infection facilitates 

fungal or bacterial infestation (Powell, 1971). Because symptoms are difficult to track, accurate 

crop estimations or yield loss from nematodes is hard to determine. The most prominent potato 



28 
 

nematode pathogens are potato cyst nematodes (PCNs), being of the order Tylenchida with two 

main species-Globodera rostochiensis and G. pallida. Potato cyst nematodes have been known 

to decrease yields as much as 50 percent (Nicol et al., 2011). The best way to control PCNs is by 

growing PCN-resistant potato varieties (Nicol et al., 2011). 

Other nematode species that are pathogenic and a concern to growers include: 

Pratylenchus brachyurus, P. penetrans, Ditylenchus destructor, Meloidogyne incognita, 

Belonolaimus longicaudatus, Paratrichodorus and Trichodorus species. Typically, most 

nematode potato pathogens are in the order of Tylenchida. Overall, Tylenchida had the second 

highest relative abundance of all nematodes just behind Rhabditida. In our Minidoka, ID 

samples, percentages of Tylenchida comprised the highest average relative abundance of 

nematodes with a relative abundance of near 40% across all seasons (Table 5). Correlated with 

this, at Minidoka, ID sites, there were significantly lower populations of Rhabditida with average 

to high levels of Dorylaimida. No disease information was reported from growers in Minidoka, 

ID during this time. 

Populations of Rhabditida were especially high at the Quincy, WA, Wadena, MN and 

Acequia, ID locations while there were lower relative abundances at Minidoka, ID. Populations 

of Rhabditida were significantly lower during prefumigation at Pine Point, MN when compared 

to row closure and vine death (p < 0.05). As some Rhabditida species are microbivores, 

especially bacterial-feeding, the Rhabditida in our soil samples may directly act on the soil 

microbiome (Parfitt et al., 2005). In fact, high proportions of bacterial-feeding nematodes, when 

compared to the total nematode population may affect soil biological activity and net nitrogen 

mineralization (Parfitt et al., 2005). 
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Implications for crop management. 

Some factors possibly influencing bacterial relative abundances in our study include 

differences in fumigant applications, the fumigant itself, time of application, rate, soil 

temperature, and soil moisture (Table 6). Each of these variables will affect how microbial 

populations respond to treatment and how they vary in effectiveness (Hamm et al., 2003). For 

example, fumigation with metam sodium (MS) has been shown to have more severe effects on 

fungal populations than the common fumigant 1,3-dichloropropene (Hamm et al., 2003). At the 

same time, though MS is effective against fungi, if nematodes are an issue, treatment with MS 

alone will likely be insufficient for controlling disease and increasing yields (Ingham et al., 

2000, Ingham et al., 2000). As each growing region of potato faces its own unique 

environmental and disease challenges, it is likely that the farmers and collaborators selected 

treatments specific to their growing region or the history of their fields. Unique challenges to 

different growing regions make the idea of a universal best fumigation treatment difficulty at 

best and makes drawing conclusions of treatments, even if they are the exact same treatments, 

across growing regions difficult to assess. 

Though populations of bacteria were relatively consistent throughout all sampling 

locations, the samples at Pine Point and Wadena, MN displayed higher levels of Spartobacteria 

and Thermoleophilia. The role that these classes play in the soil ecosystem is relatively 

unknown; however, they are commonly found in the rhizosphere and they associate with plant 

root chemoattractants. As both Spartobacteria and Thermoleophilia have been found to be 

associated with potato roots, along with other agricultural crops, their plant interactions should 

be explored in greater depth (Bergmann et al., 2011, vAN OvERbEEk, 2013). Currently, we are 

unsure why these populations were higher in the Minnesota samples, and as to why they were 
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highest at prefumigation before having their relative populations diminish, but more should be 

explored to understand their role and, if beneficial, to maintain their population levels. 

We also show that fungal populations vary considerably from site to site, more so than 

bacteria. We were surprised that samples from Minidoka and Acequia, ID were so different when 

comparing the distances between the sites (~5 miles). Furthermore, no paired fields for fungi 

were clustered wholly together despite being adjacent to each other. This uniqueness should 

indicate to growers that even close to or adjacent fields may need to be treated individually for 

the fungal populations. Furthermore, we show that relative abundances of fungi associated with 

pathogenic trophic modes are lowest during, or at least preceding, row closure. Typically, after 

row closure is when fungal pathogenesis is first seen in the potato growing year. If there were 

high amounts of a certain pathogen, for example Alternaria solani which causes early blight in 

potatoes, then that pathogen should have a high relative abundance at this timepoint. In our 

circumstance, no farmers reported incidences of disease that would indicate an outbreak of a 

fungal pathogen. Neither does our data indicate this as such either. 

REVIEW OF LITERATURE 

Global population estimates predict a human population of 9 billion by the year 2050, 

necessitating increased food production via improved yield efficiency or more land for 

agriculture (Godfray et al., 2010, Tilman et al., 2011). Lamentably, various stressors such as 

climate change, rising disease rates and soil exhaustion challenge growers to maintain, let alone 

improve yields, while available land becomes scarcer, or previously arable land succumb to soil 
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exhaustion. In many regards, total available cultivatable land can be thought of as a non-

renewable, limiting resource to food production. This makes sustainable agriculture acutely 

important in the long-term for feeding the burgeoning human population. 

One important component of sustainable agriculture is the soil microbiome which plays a 

role in plant health, disease tolerance, nutrient cycling and abiotic stressor tolerance. 

Unfortunately, our understanding of plant-soil-microbial interactions, both in terms of function 

and identity, remains inadequate. Plant-soil-microbial interactions are important in sustainable 

agriculture because they influence plant growth, nutrient cycling, phenology, disease resistance 

and plant tolerance to an array of abiotic stressors (Ortíz-Castro et al., 2009, Wagner et al., 2014, 

Busby et al., 2017). As climate change, anthropogenic disruption and other stressors continue to 

exacerbate problems concomitant to sustainable agriculture, beneficial soil microbes may be able 

to dampen or render null the stressors through a variety of means. 

These soil microbes, notably bacterial or fungal, remain largely undefined in terms of 

identity and function. This is, largely, due to the inordinate quantity of soil microbial taxa as well 

as growth mediums inadequate for the culturing diverse microbial taxa (Blackwell, 2011). 

However, with the advent of next generation sequencing, the identity and functional capacity of 

soil microorganisms and plant-soil-microbial profiles have begun to be rapidly characterized, 

principally in cash crops. 

 

Microbial diversity and total microbial biomass are associated with disease-suppressive soils 

Rhizospheric microorganisms are vital at every chapter of a plant’s life. They may be 

involved in such processes as promotion of seed germination, sustained plant nutrition and root 
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nodule formation (Berner et al., 1999, Kondorosi et al., 2013). Indeed, these microbes, both 

endophytically and ectophytically, are intimately involved in an elaborate soil-plant ecosystem. 

Consequently, it should come as no surprise that microorganisms may also play a key role in 

plant defense mechanisms against pathogens. This microorganism-plant defense system may be a 

result of a co-evolutionary process (Cook et al., 1995) indicating that microbial-plant interactions 

play a part in natural selection. This might mean that plant domestication, the removal of the 

plant from pre-agricultural soils and cultivation practices may expose the plant to a variety of 

plant pests, particularly soil pathogens (Wissuwa et al., 2009, Pérez-Jaramillo et al., 2016). 

Our knowledge of the mechanisms by which rhizospheric microorganisms are involved 

in plant defenses is incomplete. After all, the rhizosphere is a complex network of macro and 

micronutrients, microecosystems, soil biota and more. Even when exclusively considering soil 

biota, the bulk of organisms remain uncharacterized by both identity and function (Wissuwa et 

al., 2009). However, one variable which has been demonstrated to be a valid indicator for 

disease-suppression is soil microbial diversity. 

Evidence of microbial diversity’s influence on disease-suppression is validated by 

diversity gradient analyses. In one such study, wheat roots were inoculated with diluted, 

undiluted, and gnotobiotic suspensions of wheat rhizosphere inocula (Matos et al., 2005). Wheat 

plants were incubated for a fixed time and inoculated with uniform cell suspensions of 

Pseudomonas aeruginosa, an opportunistic pathogen. One-week post-inoculation, wheat roots 

were sampled for colony forming units of P. Aeruginosa. A strong inverse relation between P. 

aeruginosa and the dilution gradient was observed, indicating that microbial diversity may 

indicate disease-suppression in soils (Matos et al., 2005). Protocol for creating an operable 

diversity gradient in this manner, as well as further supporting evidence of results, have been 
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confirmed by sequencing diluted microbial communities (Franklin & Mills, 2006) (van Elsas et 

al., 2012, Vivant et al., 2013, Yan et al., 2015). It should be noted that these studies generally 

only observe colonization and infection by a single pathogen rather than a suite of pathogens, as 

would occur in natural ecosystems. 

The importance of these diversity gradient analyses is to isolate, as far as they can, 

diversity as the major factor in disease suppression. As these gradations are artificially made it 

could be that field experiments, which cannot limit as many confounding factors to microbial 

diversity, may yield different results. Though natural ecosystem studies of microbial diversity 

and disease-suppressiveness are largely limited to correlation, an overwhelming body of 

literature substantiates findings from artificial diversity gradient analyses. 

Though microbial diversity has been shown in both artificial and natural ecosystem 

settings, there are many other factors that must be considered when assessing disease-

suppressiveness. In a review by Janvier, Janvier listed approximately 23 abiotic, 6 quantitative 

microbial, 7 diversity and structure of microbial community, and 6 microbial activity parameters, 

that have been shown to have either positive or negative correlations with disease-

suppressiveness (Janvier et al., 2007). Since 2007, it is likely that more parameters have been 

established. This is especially so for soil microbiota which play a vital role in disease-

suppression (Mendes et al., 2011, Berendsen et al., 2012, Chaparro et al., 2012, Mendes et al., 

2013). In many ways, rhizosphere microbiota act as a blockade against invading plant pathogens 

through various mechanisms. 

While microbial diversity receives the most attention as a source of soil disease-

suppressiveness, total microbial biomass is also an indicator of general soil suppressiveness. One 

hypothesis as to why microbial biomass is indicative of disease-suppressiveness is that resource 
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competition eliminates the resources necessary for pathogen expansion. A common practice 

which increases rhizospheric microbial biomass is the application of organic amendments 

(Janvier et al., 2007). Though correlation between high soil microbial diversity with total 

disease-suppressiveness has been shown, mechanisms by which this happens are still being 

hypothesized (Brussaard et al., 2007). 

One hypothesized mechanism by which high microbial diversity drives disease-

suppressiveness was characterized by Mendes when showed that plants recruit beneficial soil 

microbes to counter soilborne pathogens (Mendes et al., 2011). These soil microorganisms in 

this study include γ-Proteobacteria and Pseudomonadaceae which work by producing chlorinated 

lipopeptide encoded by NRPS genes. Although, individual genera, such as the two above, have 

been shown to have an individually suppressive nature, there are other genera that are not active 

except with the proper consortia of microorganisms (Garbeva et al., 2011). This was evidenced 

in 2011 when Garbeva found that Pseudomonas fluorescens Pf0-1 was significantly more 

antagonistic in the presence of Gram-negative bacteria as compared to Gram-positive bacteria. 

When Gram-positive bacteria were present, with or without Gram-negative bacteria, 

Pseudomonas fluorescens Pf0-1 produced a weaker yet more universally inhibiting antibiotic. 

This antibiotic was not transcribed when just Gram-negative bacteria were present. 

 

Mechanisms of microbiotal antagonistic effects on pathogens 

One reason that the soil biota of potatoes is important to understand is because plant-

associated bacteria and fungi have antagonistic potential to pathogens such as bacteria, fungus, 

and nematodes (Krechel et al., 2002). Methods of antagonism fit neatly in two general 

categories: general suppression, which involves a suite of microorganisms, and specific 
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suppression, which involves a definite group or individual microorganism suppressing an explicit 

set of pathogens (Janvier et al., 2007). Examples of specific suppression abound while an 

understanding of general suppression is not. 

There are many different mechanisms reported by which soil microbes may confer 

resistance to pathogens. One mechanism, reported by Pieterse, involves root-associated 

mutualists such as Pseudomonas, Bacillus, and Trichoderma that sensitize the plant immune 

system without direct activation of the immune system. Thus the plant exists in a heightened 

sense of awareness against pathogens but does not produce costly defenses (Pieterse et al., 

2014). 

It is important to note that just because a biocontrol agent has been shown to provide 

resistance to a plant does not mean that it will under all conditions. In a recent study conducted 

by Jonathan Cray, he found that varying environmental conditions allow a biocontrol (Bacillus 

sp. JC12GB43) to either inhibit a pathogen (i.e. fusarium or phytophthora) or to promote 

pathogenic growth (Cray et al., 2016). Cray then concludes that studies looking at biocontrols 

such as Bacillus sp. JC12GB43 should be at least a year long to ensure analyses under diverse 

environmental conditions. 

Monocultivation is a common practice among potato growers. Though inherent dangers 

of monocultivation are well documented (i.e. Irish potato famine), an increasing body of 

literature validates the hypothesis that prolonged monoculture can convert disease-conducive 

soils to disease-suppressive soils (Cook et al., 1995). Early observations of the association 

between prolonged monocultivation and disease-suppressiveness in potatoes appeared in 

Washington and Michigan where common scab, caused by pathogenic Streptomyces scabies, 

was near absent (Shipton, Liu 1995). The role of biological organisms was determined to be the 
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driving force of this suppression since monoculture soils conferred take-all resistance in 

polyculture soils whereas polyculture soils conferred no resistance to monoculture soils. 

The identification of specific microbes associated with soil disease-suppression has 

already been discussed. A further discussion of this should be how these microbes cause 

suppression. Of these, non-pathogenic Streptomyces spp. was the most important indicator of 

suppression. 

 

Studies demonstrating association of soil biota with disease suppressive soils 

Soil is a mixture of minerals, organic matter, gases, liquids, and biota. Any one of these 

soil components can affect general soil disease suppressiveness. We, however, are most 

interested in the ability of soil biota to affect disease suppressiveness. Several experiments have 

been conducted that show the influence of soil biota on soil disease suppressiveness. One way 

this has been demonstrated is by removing, both fully and partially, biota from soils by way of 

pasteurization (Haas & Défago, 2005, Mendes et al., 2011). Pasteurization at incremental 

degrees demonstrates incremental disease conducive effects when inoculated post-pasteurization. 

Another way this has been shown is by testing soils with similar physical-chemical traits from 

the interior of a disease-suppressive field and soil from the margins of the field (Mendes et al., 

2011). Although soil properties are roughly the same there is a large difference in 

suppressiveness. When no fungal pathogen was present these fields showed no difference in 

suppressive or conducive traits. Another way that scientists have tested for microbial influence in 

disease suppression is by gamma irradiation. When soil was gamma-irradiated previously 

disease-suppressive soils lost these traits (Mendes et al., 2011). 
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Soil microbial studies focusing on Solanum tuberosum 

Overbeek studied the effects of plant growth on bacterial communities (Effects of plant 

genotype and growth stage on the structure of bacterial communities associated with potato). 

There are five stages of potato growth: sprout development, vegetative growth, tuber initiation, 

tuber bulking and maturation. They looked at “total bacteria, actinobacterial and Pseudomonas 

communities in bulk and rhizospehere soils and endospheres.” Communities were assessed by 

group-specific primers. Plant growth stage strongly affected plant-associated communities. Plant 

growth stage overwhelmed any effect of plant genotype on the bacterial communities associated 

with potato. They found the genotype and growth stage affected the bacterial composition of 

potato-associated soils. This was assessed by both cultivation-dependent and cultivation-

independent means. Plant growth stage was the biggest factor. It occurred in all cultivars tested. 

Plant health associated bacteria such as Pseudomonas and Actinobacteria were also affected-

similarly to that of the total bacteria metric. 

 

Fumigation alters soil biota α- and β-diversity 

When fumigants are used on soils, they cause changes in the general soil microbial 

community. These changes in microbial community composition have impacts on the functional 

diversity and overall soil health. The change in diversity could be due to unequal proliferation of 

soil microbes or even the complete elimination of microbes upon soil treatment. 

In a study by Mowlick in 2010, microbial communities in spinach fields were compared 

before and after being treated with chloropicrin, disinfected through traditional biological soil 

management practices, or not being treated whatsoever (Mowlick et al., 2013). Largely, soils 

recovered their original populations but without members of some major phyla such as 
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Acidobacteria, Bacteroidetes, and Planctomycetes (Mowlick et al., 2013). This suggests that 

these microbes may be highly-susceptible members of the soil community. Similarly, reports 

show certain organisms, such as gram-positive bacteria, are more resistant to fumigation (Ibekwe 

et al., 2001). 

A weakness of Mowlick’s study is that it only analyzes changes in the microbial 

community after a single fumigation event. Other studies, however, have looked at the effect of 

repeated applications. It has been found that repeated applications of chemical fumigants leads to 

an accelerated loss in microbial diversity after each application (Gamliel and Dotan, 2009). 

It should be noted that fumigation will not eliminate all pathogens in the soil. In fact, 

certain soil microbes are more likely to survive. For instance, it has been reported that certain 

gram-positive bacteria preferentially survive in Chloropicrin-treated soils (Mowlick et al., 2013). 

Some of these survivors included thermophilic or acidophilic bacteria groups which 

demonstrated an ability to adapt to how the fumigant altered the soil profile. This was found 

previously by Ibekwe who demonstrated that certain Bacilli species had higher survival rates 

than other Bacilli post-fumigation (Ibekwe et al., 2001). Similar as to how particular microbes 

have higher survival or recovery rates in fumigated soils, it has also been shown that some 

microbes have greater fumigation susceptibility. For instance, Tanaka found in 2003 that 

Chloropicrin-treated soils had drastically decreased levels of nitrate-oxidizing and ammonium-

oxidizing bacteria (Tanaka et al., 2003). 
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Variation in potato cultivar and disease susceptibility 

Our study does not take cultivar into account but is aware of this variable. In a 2011 

article by Genet, which tracked disease susceptibility in 133 cultivars and 18 breeding lines it 

was found that resistance to powdery scab had large variation among different potato cultivars 

(Genet et al., 2007). Arbitrarily, cultivars had a range of lesions present, varying from very few 

to high abundance. Future studies should keep this a point of interest as cultivar type affects 

disease-suppressiveness. High variation was likewise reported Maldonado which compared just 

two cultivars (Hernandez Maldonado et al., 2013). 

There are many potential reasons as to why cultivar type is important in disease-

suppressiveness. Perhaps the biggest thing to consider is that the study of disease-suppression in 

soil cannot be thought of in an isolated system. There are many interactions between the plant 

and the soil biota in the rhizosphere. It has long been documented that hormones in plants may 

stimulate mechanisms in soil microbiota. Perhaps, different cultivars have or lack the production 

of certain hormones that are able to stimulate either disease-specific or disease-general 

suppressiveness qualities in soil biota. The plants themselves may also lack mechanisms in 

themselves at just a plant level to defend against disease. 

Thus, effects of microbial diversity and total biomass on crops should be studied at both a 

genus, species, and cultivar level. This is especially so if a GIS-based model is to be employed 

for potato growers because different cultivars will have different disease thresholds. Garbeva 

tells us that plant type and soil type are the main two drivers for determining the microbial 

community structure (Garbeva et al., 2004). Thus, different cultivars having different disease 

susceptibility makes sense. 
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But what plant constituents indicate disease susceptibility is unsure. In a recent study by 

Abo-Elyousr he found positive correlations between cultivar type with high calcium, potassium, 

and (Abo-Elyousr). Although all known papers are in agreement with high calcium, most papers 

disagree with the relationship between high potassium and disease susceptibility (Davis J.R., 

Krištůfek, 1976). It is not only which microbes are present but it may also be the abundance of a 

specific microbe which is present that is affected by cultivar type (Weinert et al., 2011). 

Other aspects of core soil microbiota and their influence: α- and β-diversity 

α- Diversity is shown to increase the decomposition rate of organic substrates for soil 

saprophytic fungi (Setälä & McLean, 2004). However, the higher level of species abundance 

does not necessarily correlate with maximal decomposition rates. In artificial systems, Setälä 

incorporated six diversity treatments (1, 3, 6, 12, 24 or 43 taxa) had different levels of 

decomposition rates. Setälä found that the maximal decomposition rate was found with 6 taxa, 

above even that of 12, 24 or 43 taxa (Setälä & McLean, 2004). Thus, as we look at our 

experiment, sheer abundance of taxa cannot be used as a measure of soil productivity. At the 

same time, low alpha diversity metrics will likely indicate low soil productivity. 

Core microbiomes are unique, often at a genotype or cultivar level, and, lesser-so, to clades 

Evident from target and functional metagenomic analyses is, because of a shared 

evolutionary history between plant and soil microbiome, that core soil microbiomes are unique to 

individual plant taxa, even down to the cultivar level. Although many plant-soil-microbial 

interactions and soil microbiome characteristics are shared across diverse plant taxa, because of 
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similar soil profiles, environment and plant-species relatedness, unique microbes or ratios of soil 

microbial taxa may forecast unique functions of which include disease resistance, especially to 

plant-specific pathogens, drought tolerance and nutrient cycling. 

In 2011, Weinert, using PhyloChips as a method to characterize potato microbial 

communities, found that (Weinert et al., 2011). In Weinert’s study, there were three different 

cultivars which were grown in a randomized field study at two distant sites in Southern 

Germany. Of 2432 detected OTUs, 9% of them were found to be unique to a specific potato 

cultivar. Though this does not represent a substantive number, these OTUs may play a vital role 

in the unique function of the potato plant (Weinert et al., 2011). As specific cultivars may be 

more or less resistant to a specific pathogen it could be that a unique relationship with a co-

evolved endophyte or relation through exudation may be the source of the resistance. 

Common potato pathogens 

Pathogen induced potato diseases are affiliated with five major groups: bacterial, fungal, 

oomycete-derived, viral, and nematode parasitic. Of these five groups, this study focuses on 

bacterial, fungal, oomycete and nematode parasitic pathogens because their DNA is readily 

extracted. Because of similarities with fungi, oomycetes will be included in the previously 

mentioned category. The level of pathogenicity is determined by three main constituents: 

inoculum density, pathogenic capacity and soil factors which alter the previous two components 

(Janvier et al., 2007). 

Major bacterial potato pathogen genera include Ralstonia, Erwinia, Pseudomonas, 

Clavibacter, Candidatis, and Streptomyces. Within each genus there are pathogenic and 
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nonpathogenic species or strains. For instance, within genus Streptomyces, Streptomyces scabies 

RB3II is known to cause common scab; a disease characterized by brown, corky lesions with 

none to limited above-ground symptoms (Lerat, 2009). However, unlike S. scabies RB3II, other 

Streptomyces spp. strains are capable of conferring resistance against pathogens, even S. scabies 

RB3II itself (Liu et al., 1996). When nonpathogenic Streptomyces spp. are used as biocontrols in 

potato fields they may, dependent on environmental conditions and cultivar type, reduce the 

incidence and severity of common scab (Wanner et al., 2014). 

Over 500 Streptomyces species have been discovered with several demonstrating 

pathogenicity to potatoes: Streptomyces scabies, Streptomyces acidiscabies, and Streptomyces 

turgidiscabies (Barrera et al., 2013). Each species has similar morphology which renders culture-

based identification methods impractical except when screened for bioactivity-a time consuming 

and laborsome process. However, sequencing segments of the 16S rRNA sub-unit, in 

combination with other genetic regions may allow for discrimination of certain Streptomyces 

spp., whether pathogenic or nonpathogenic. It should be noted that sequencing a solitary DNA 

region will not wield enough resolving power to assure the identity of various Streptomyces. At a 

minimum, several different DNA regions should be used. Thus, the presence of Streptomyces 

spp. in a sample, if determined by culture-based methods or via single gene sequencing, does not 

validate its pathogenicity. The same principle is legitimate for other potato bacterial pathogens. 

Like bacteria, ribosomal subunit and internal transcribed spacer region genetic analyses 

for fungal and oomycete potato pathogens provides insufficient resolving power to assume 

pathogen presence or absence. Thus, using the 18S rRNA sub-unit for fungi, even in 

combination with ITS1 or ITS2, is not an appropriate method for identifying fungal pathogens. 
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This method, however, is slightly more appropriate for making inferences to populations because 

of using a longer sequence region and less genetic diversity 

Major genera of fungal potato pathogens include Colletotrichum, Alternaria, Cercospora, 

Sclerotium, Fusarium, Botrytis, Phytophthora, Pythium, Spongospora, Rhizoctonia, 

Helminthosporium, Verticillium, and Sclerotinia. in silico sequence alignment of these fungal 

genera, whether the ITS1 or V9 hypervariable region, using ClustalW in Geneious confirmed the 

ability of the V9 hypervariable region to distinguish between said genera (Thompson et al., 

2002, Kearse et al., 2012). Species-level discrimination of fungi, in silico, was not inherent for 

the fungal V9 hypervariable region but was discriminatory for ITS1. The same trends were seen 

with the alignment of oomycetes, being Phytophthora and Pythium. 

A good example of a fungal pathogen is Verticillium dahliae. Verticillium dahliae, a 

causal agent of Verticillium wilt-also known as potato early dying syndrome-in potatoes, is a 

fungal plant pathogen of phylum Ascomycota. A filamentous fungus, V. dahlia is a soil-borne 

contaminant whose symptoms may first be observed in the lower leaves of potatoes. The process 

of infection for V. dahliae begins with colonization of the potato stem base, thence extending to 

the apices. In greenhouse studies, V. dahliae was detected in stem bases 2 weeks post-inoculation 

and in the apices 4 weeks post-inoculation (Bae et al., 2007). Although similar functionally but 

distant phylogenetically, oomycetes are common potato pathogens. The most commonly treated 

oomycete potato pathogen is Phytophthora infestans which causes late blight (Guenthner et al., 

1999). 

Major genera of nematodes that are pathogenic to potato are Globodera, Pratylenchus, 

Ditylenchus, Meloidogyne, Belonolaimus, Paratrichodorus, and Trichodorus. Each genus is 

classified as a potato cyst nematode, root-knot nematode, root-lesion nematode, potato rot 
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nematode, stubby-root nematode, as well as other ectoparasitic types (Bird). Pratylenchus 

penetrans, a root lesion nematode, is especially interesting because it’s co-occurrence with V. 

dahliae to incur potato early dying syndrome. P. penetrans does this by creating a primary lesion 

in the potato which allows for a secondary invasion by V. dahliae (Davis, 2014). 

 

Effects of chloropicrin on soil biota 

The soil fumigant chloropicrin, CCl3NO2, was first registered as a broad-spectrum soil 

fumigant in the United States in 1975 (Webster et al., 2010). Since that time, chloropicrin’s use 

as a fungicide and nematacide has steadily increased as other pesticides, such as methyl bromide, 

have been phased out due to concerns with toxicity, high volatility, and ozone depletion. 

Chloropicrin, like methyl bromide, also has high volatility owing to high vapor pressure-32 mm 

Hg-leading to concerns of rapid degradation upon application in soils (Wilhelm et al., 1997). 

Several factors appear to be the main drivers of chloropicrin degradation in soils: soil 

temperature, soil moisture, and soil biota (Gan et al., 2000). Interestingly, of each of these 

factors, soil biota is the greatest contributor to degradation, accounting for an estimated 68 to 

92% of degradation (Gan et al., 2000). As reported by Castro, Pseudomonas sp. is the main 

microbe degrader which may wholly dechlorinate chloropicrin in as little as 1 hour (Castro et al., 

1983). Chloropicrin, of course, changes the microbial biomass and it also reduces species 

richness (Rokunuzzaman et al., 2016). 

Because Pseudomonas sp. are central to chloropicrin degradation we predict that recently 

chloropicrin-fumigated fields will have greater populations of Pseudomonas species. High 

populations of Pseudomonas in fumigated fields versus non-fumigated fields will confirm the 
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aforementioned phenomenon as well as validate our protocol. If Pseudomonas populations are 

not significantly higher in fumigated versus non-fumigated fields then either too much time 

existed between fumigation and sampling or fumigation was overall ineffective in reducing soil 

biota populations (Tsror Lahkim et al., 2000, Hamm et al., 2003, Mowlick et al., 2013). 

 

Effects of Vapam® on soil biota 

Another commonly used fumigant, Vapam® HL, also known as metam-sodium, 

C₂H₄NNaS₂, is effective in suppressing nematodes, bacteria, fungus, and other biota. In most 

soils, metam-sodium generates methylisothiocyanate (MITC) upon application (Di Primo et al., 

2003). When testing metam-sodium activity in soils, levels of MITC are used as the actual 

measurement. 

Unfortunately, the more that metam-sodium is applied to a field the more it experiences 

accelerated degradation, reducing the duration for which MITC maintains its toxicity (Di Primo 

et al., 2003). The leading hypothesis for accelerated degradation is that repeated metam-sodium 

application enriches populations of microbes capable of degrading MITC (Di Primo et al., 2003). 

Other potential mechanisms for accelerated degradation include increased enzymatic activity 

from degrading microbes and horizontal gene transfer of genes that function in biodegradation 

(Di Primo et al., 2003). 

As has been shown with both Vapam® HL and chloropicrin, there is a strong correlation 

between the number of applications and rate of fumigant degradation. This association predicts 

that increasing applications of fumigants will increase the rate of fumigant degradation; and by 

consequence, lead to inadequate pathogen control. Thus, if farmers augment the number of 
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fumigant applications they may be inadvertently accelerating degradation processes by virtue of 

increased biodegrading microorganism populations such as Pseudomonas sp. There is no 

established timeline for which suppression of accelerated degradation consequences may be 

reversed. 

 

Effects of Telone II on soil biota 

Telone II, a combination of 1,3-dichloropropene (C3H4Cl2) and 1,3,3-trichloropropene 

(C3H3Cl3) is an effective nematicide. Telone II prevents lesion nematodes, root knot nematodes, 

and potato cyst nematodes. Since nematodes produce a primary lesion that subsequently permits 

a secondary lesion and invasion of various fungi or bacteria, Telone II treatment may indirectly 

reduce co-infecting microorganisms such as Rhizoctonia solani and Verticillium dahliae (Botseas 

& Rowe, 1994). Telone II has been shown to affect the nitrogen cycle. Lower nitrate levels 

appear in Telone II treated soils as compared to non-treated soils (Tu, 1993). Some experiments 

have have decreased nitrate levels up to eight weeks post-fumigation (Marks et al., 1972). 

Similar to metam-sodium, Telone II rapidly degrades in soils in the presence of Pseudomonas 

spp. (Poelarends et al., 1998). Degradation of Telone II is also caused by hydrolysis of 1,3-

dichloropropene to 3-chloroallyl alcohol, an inactive ingredient (Ou, 1998). 
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FIGURES 

Figure 1. Binding sites for primers on the Prokaryotic and Eukaryotic rRNA operons 
Schematic of primer binding sites for the internal transcribed spacer region, 16S rRNA and 18S 
rRNA operons. Primers 515f and 806r correlate with bacterial-associated organisms. 
ITS1F_KYO1 and ITS2_KYO2 target both fungi and oomycetes. Euk_1391f and EukBr Earth 
Microbiome Project primers target eukaryotes generally. 
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Figure 2. Alpha rarefaction plots 
Alpha rarefaction plots for bacterial, fungal and nematode OTUs. A) Observed bacterial OTUs at a rarefaction of 10,248 reads B) 
Observed fungal OTUs are a rarefaction of 5,185 reads C) Observed nematode OTUs are a rarefaction of 200 reads and D) Observed 
nematode orders at a rarefaction of 50 reads 

Alpha Rarefaction Plots 
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Figure 3. NMDS plots for fungi 
NMDS plot (A) represents the differences in populations between all samples included in this analysis for fungi while plot (B) 
represents differences between samples in the Western and Midwest United States (West and East). NMDS plots (C) and (D) display 
population differences between the Minnesota samples. Plots (E), (F) and (G) depict differences in fungal populations at 
prefumigation, row closure and vine death at, from left to right, the Acequia, ID, Minidoka, ID and Pine Point, MN locations.

Fungi, NMDS Plots 
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Figure 4. Heatmap displaying ANCOM-calculated differentially abundant taxa which were 
assigned a trophic mode by FunGuild 

Differentially Abundant Trophic Mode Assigned Genera 
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Figure 5. Nematode barplot 
A barplot showing the percentage of OTU reads with their respective order at each pair of fields 
seasonally. The barplot is divided into six facets, representing the six locations. From left to 
right: Acequia, ID; Boardman, OR; Minidoka, ID; Pine Point, MN; Quincy, WA; Wadena, MN 
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Figure 6. NMDS plots displaying differences in bacterial populations 
NMDS plots displaying differences in bacterial populations. (A) Clustering for samples at all locations. (B) Differences in populations 
of Western and Midwest samples. (C) and (D) display differences between Acequia, ID and Boardman, OR as well as Acequia, ID 
and Quincy, WA. NMDS plots for seasonal variation of bacterial populations in (E) Acequia ID, (F) Minidoka, ID, (G), Pine Point, 
MN and (H) Wadena, MN. (I), NMDS plot for paired locations in Minidoka, ID and Acequia, ID. NMDS plot for second barcode for 
all samples (J).  
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Figure 7. Phylum level barplot displaying bacterial populations at all locations combined with sampling timepoint and treatment 
Phylum level barplot displaying bacterial populations across all timepoints at each field location. All samples were rarefied to 10,248 
reads, combined by their location, treatment and the season they were sampled. Samples were then graphed as a percentage of the total 
reads. 
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Figure 8. Class level barplot displaying bacterial populations at all locations combined with sampling timepoint and treatment 
Class level barplot displaying bacterial populations across all timepoints at each field location. All samples were rarefied to 10,248 
reads, combined by their location, treatment and the season they were sampled. Samples were then graphed as a percentage of the total 
reads
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Figure 9. Barplot, temporal variation of fungal trophic modes 
Temporal variation of different fungal trophic modes at prefumigation, row closure and vine 
death. Pathotroph relative abundances are lowest during row closure while, at the same time, 
saprotroph relative abundances are highest during row closure. 
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TABLES 

Table 1. Primers used, primer sequences, their target organisms and their citations 

Primer Sequence 5'-3' Specificity Reference 
515f GTGCCAGCMGCCGCGGTAA Bacteria (Caporaso, 2011) 

806r GGACTACHVGGGTWTCTAAT 

ITS1F_KYO1 CTHGGTCATTTAGAGGAASTAA Fungi (Toju, 2016) 

ITS2_KYO2 TTYRCTRCGTTCTTCATC 

Euk_1391f GTACACACCGCCCGTC Eukaryotes (Amaral-Zettler, 
2009) 

EukBr TGATCCTTCTGCAGGTTCACCTAC 
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Table 2. Unassigned reads before and after the addition of an oomycete data to the UNITE database 

% Unassigned reads, before 
oomycetes added 

% Unassigned reads, after oomycetes 
added 

Raw % change, before vs. after 
oomycetes added 

Ascomycota Basidiomycota Ascomycota Basidiomycota Ascomycota Basidiomycota 
Class 4.96% 43.48% 5.79% 2.52% -0.82% 40.96% 

Order 20.20% 63.17% 6.86% 2.89% 13.34% 60.28% 

Family 24.21% 63.19% 12.37% 2.94% 11.84% 60.26% 

Genus 25.63% 63.54% 13.92% 3.34% 11.71% 60.20% 

Species 52.40% 64.36% 26.37% 7.26% 26.03% 57.10% 

Table 3. Unassigned OTUs before and after the addition of an oomycete data to the UNITE database 

% Unassigned OTUs, before 
oomycetes added 

% Unassigned OTUs, after 
oomycetes added Raw % change (before - after) 

Ascomycota Basidiomycota Ascomycota Basidiomycota Ascomycota Basidiomycota 

Class 61.82% 13.27% 64.69% 11.48% -2.87% 1.79% 

Order 66.58% 25.07% 68.93% 22.04% -2.35% 3.03% 

Family 70.59% 27.11% 72.76% 24.25% -2.17% 2.86% 

Genus 72.76% 30.05% 74.68% 26.95% -1.91% 3.11% 

Species 77.89% 40.80% 78.73% 39.35% -0.84% 1.45% 
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Table 4. Percentages of reads during prefumigation, row closure and vine death for genera with an assignment of over 1,000 reads 
The total numbers of reads and the percentage of reads, taken at sampling timepoints prefumigation (Prefum), row closure (RC) and 
vine death (VD), that have been assigned both a genus and trophic mode. Sampling timepoints are a collection of all sampling 
locations. 
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Table 5. Nematode populations at an order level 
Fraction of nematodes, at an order level, of all V9 nematode reads within each location by sampling time and treatment 
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Table 6. Soil characteristics of all fields 
Soil characteristics of all fields. "-" denotes information currently unreported by growers 


