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ABSTRACT 

Improving Cotton Agronomics with 
Diverse Genomic Technologies 

Aaron Robert Sharp 
Department of Plant and Wildlife Sciences, BYU 

Master of Science 

Agronomic outcomes are the product of a plant’s genotype and its environment. Genomic 
technologies allow farmers and researchers new avenues to explore the genetic component of 
agriculture. These technologies can also enhance understanding of environmental effects. With a 
growing world population, a wide variety of tools will be necessary to increase the agronomic 
productivity.  

Here I use massively parallel, deep sequencing of RNA (RNA-Seq) to measure changes 
in cotton gene expression levels in response to a change in the plant’s surroundings caused by 
conservation tillage. Conservation tillage is an environmentally friendly, agricultural practice 
characterized by little or no inversion of the soil prior to planting. In addition to changes in 
cotton gene expression and biological pathway activity, I assay the transcriptional activity of 
microbial symbiotes living in and around the cotton roots. I found a large degree of similarity 
between cotton individuals in different treatments. However, under conventional disk tillage I 
did find significantly greater activity of cotton phosphatase and sulfate transport genes, as well as 
greater abundance of the microbes Candidatus Burkholderia brachynathoides and Arthrobacter 
species L77. 

This study also includes the use of high-throughput physical mapping of DNA to 
examine the genomic structure of a wild cotton species, Gossypium raimondii, which is closely 
related to the economically significant crop species Gossypium hirsutum. This technology 
characterizes genomic regions by assembling large input DNA molecules labeled at restriction 
enzyme recognition sites. I created an efficient algorithm and generated 812 whole-genome 
assemblies from two datasets. The best of these assemblies allowed us to detect 3,806 potential 
misassemblies in the current release of the G. raimondii genome sequence assembly. 

Keywords: cotton, agriculture, conservation tillage, RNA-Seq, subgenome expression bias, 
BioNano physical mapping, genome sequence assembly 
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Chapter 1: Sequencing, conservation tillage, and the rhizosphere 

Introduction 

Massively parallel sequencing of RNA 

In the last decade, the cost of DNA sequencing has fallen dramatically (Wetterstrand, 2015), 

accelerating genomic insights into organismal biology and evolution. Massively parallel 

sequencing technology (sequencing or MPS) can provide several types of biological insight. It 

can be used to elucidate the coding sequences and regulatory elements of genes (Anderson et al., 

1981; Fleischmann et al., 1995; Myers et al., 2000). It can be used to discover genomic 

polymorphisms, which in turn can help researchers predict changes in molecular pathways. In 

association and linkage studies, causal variants for genetic disorders and phenotypically 

significant genomic regions for desirable agronomic traits can be discovered. With some 

additional bench work, sequencing technology can be used to discover changes in methylation 

patterns (Lister & Ecker, 2009), locations of DNA binding elements (Mardis, 2007), and even 

the relative localization of chromosomes in the cell (Lieberman-Aiden et al., 2009). Another 

specialized application of sequencing called RNA-Seq uses MPS to count and assign RNA 

fragments to known genes. From these counts, one can infer gene expression levels and their 

changes in response to environmental stimuli (Garber, Grabherr, Guttman, & Trapnell, 2011). 

Conservation tillage 

Increasing demands for agricultural productivity have prompted a closer look at the impact of 

traditional agricultural practices on cropland yields and sustainability. Conventional disk tillage 

(DT) plays an important role in modern agriculture, but it comes with certain environmental 

consequences, such as high fuel usage, and increased soil erosion. An alternative to DT is 
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conservation tillage (CT), either low- or no-tillage practices. Conservation tillage reduces fossil 

fuel consumption by cultivation machinery, and decreases erosion and runoff through improved 

soil structure and conservation of crop residues on the soil surface (Soane et al., 2012). The use 

of CT has increased in recent years because of these benefits, as well as its potential to improve 

soil load bearing capacity (Soane et al., 2012), increase soil organic matter content and decrease 

soil CO2 emissions (Novak, Bauer, & Hunt, 2007). It should be noted, however, that a potential 

negative environmental consequence of CT is the increased need for herbicide usage. 

Conservation tillage has generally been shown to have variable effects in different soils, crops, 

and environments. For example, flat fields derive less benefit from soil conservation than hilly 

fields do, where erosion and runoff are more significant problems (Sojka, Karlen, & Busscher, 

1991). The focus of our study is mostly flat, loamy fine sands typical of the lower Coastal Plain 

region in the United States. The crop of interest for our study is Gossypium hirsutum L., upland 

cotton. Out conservation tillage site was established over thirty years prior to data collection 

(Hunt, Matheny, & Wollum, 1985; Sojka et al., 1991). 

Preservation of the native soil structure can improve cropland productivity and sustainability, 

since non-compacted soil facilitates water infiltration, root penetration, and nutrient retention 

(Lachnicht, Hendrix, Potter, Coleman, & Crossley, 2004). For example, thirty years of data 

collected from CT and DT soybean fields indicated that soils under CT management had more 

stable soil macroporosity and higher levels of organic carbon than soils managed with DT (So, 

Grabski, & Desborough, 2009). Additionally, cambisol soil in CT fields has been found to 

contain higher concentrations of available phosphorous and organic material than DT fields 

(Horacek, Kolar, Cechova, & Hrebeckova, 2008). 
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Recent work in CT acknowledges the advantages of reduced need for fossil fuel consumption, 

manual labor, machine maintenance, and irrigation. However, it also notes some flaws in CT. 

Crops grown under CT may require more nitrogen fertilizer (Yin & Main, 2015). Although CT 

reduces surface runoff, the improved penetrance of soil under CT may lead to increased 

subsurface runoff (Potter, Bosch, & Strickland, 2015). 

The rhizosphere 

The rhizosphere, is a region of cropland soil characterized by root secretions and soil biota. Soil 

biota activity can play an important role in plant health and crop yield through symbiosis and 

nutrient sequestration. Analysis of biota communities in both DT and CT fields has shown that 

microbial and mycorrhizal activity is higher in CT systems, for example, in increased soluble 

carbon accumulation in the soil (S. Zhang, Li, Lu, Zhang, & Liang, 2013). This study suggests 

that the rhizosphere is significantly influenced by tillage management practice. 

Both soil characteristics and the rhizosphere can have an impact on plant health and yield. For 

example, gene transcription level changes were observed in Gossypium hirsutum in response to 

soil structure (loose or compact) (Klueva et al., 2000) and hydration level (Bowman et al., 2013). 

Other studies have shown that soil quality has a strong influence on crop yield (Lachnicht et al., 

2004). As for the rhizosphere, Zea mays roots showed increased expression of enzymes involved 

in the recruitment and infection process of a beneficial fungus following soil inoculation of the 

fungal symbiont (Fries, Pacovsky, & Safir, 1996). It has also been suggested that due to microbe 

activity, crops in CT fields are expected to resist environmental and nutrient stresses better than 

crops grown under DT (Carpenter-Boggs, Stahl, Lindstrom, & Schumacher, 2003). Therefore the 

impact of tillage practice on crop plants is likely very substantial, both through soil 

characteristics, and through microbial activity in the rhizosphere. Recent work particularly 
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focusing on the rhizosphere under CT found an increase in actinomycetes, mycorrhizae fungi, 

and total organic carbon under CT (Mbuthia et al., 2015). 

In this study, we examined the effect of conservation tillage on gene expression levels in cotton 

and its associated microbial community using RNA-Seq. To do so, we exposed several 

individuals of a single cotton genotype to fields where either DT or CT have been practiced 

continuously for 30 years. 

Methods 

Field trial and sample collection 

Our research site at the Pee Dee Research and Education Center near Florence, South Carolina is 

located on a Norfolk loamy sand soil (an acrisol or fine-loamy, siliceous, thermic paleudult). 

Eight plots make up a long term research site where surface-disked (conventional tillage, DT) 

and non-disked (conservation tillage, CT) treatments were first established in 1978 (Novak et al., 

2007). The plots were seeded with a single genotype of Gossypium hirsutum, cv. Siokra-L23, on 

May 10, 2013. On July 9, 2013, sixteen individuals were selected randomly, two from a single 

row in each of the eight plots. They were excavated, and a single lateral root from each plant was 

flash frozen in liquid nitrogen and placed on dry ice. All samples were collected within one hour.  

RNA was extracted from washed, homogenized root tissue using the SpectrumTM Plant Total 

RNA Kit (SIGMA-ALDRICH, USA), according to manufacturer’s instructions, and prepared as 

single-end libraries using a TruSeq Kit (Illumina, USA). Sequencing was performed on an 

Illumina HiSeq 2000 (USA) at Oregon State University’s Center for Genome Research and 

BioComputing. The data have been uploaded to the NCBI short read archive. Reads for CT-

treated plants can be found using accession numbers SRR3225337, and SRR3225340-
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SRR3225346. Reads for DT-treated plants can be found using accessions numbers SRR3225348-

SRR3225355. 

Differentially expressed genes 

Raw data were trimmed using trimmomatic v0.35 (Bolger, Lohse, & Usadel, 2014). Illumina 

TruSeq2-SE adapters sequences were removed. Any leading and trailing bases with phred 

quality scores below five, and any six-bp regions with average scores below thirty, were trimmed 

from the ends of reads. Reads shorter than forty-bp after trimming were discarded. The trimmed 

reads were aligned to the G. hirsutum reference genome v1.1 (T. Zhang et al., 2015) using 

Tophat2 v2.0.7 (Johns Hopkins University, USA) with default parameters, except that the option 

--no-coverage-search was used in order to skip estimation of transcript isoform abundance. 

Samtools (Li et al., 2009) allowed us to count the number of reads per replicate per annotated 

gene. Read counts per gene were normalized by replicate as proportions of total trimmed reads 

using R version 3.1.0 (R Core Team, 2015). R was also used to calculate Pearson correlation 

coefficients between replicates, and perform complete-linkage clustering of replicates based on 

Euclidean distances. We used the R package EdgeR v3.4.2, which creates a generalized linear 

model to perform a principle component analysis using the 500 most informative genes, and to 

detect differentially expressed genes that were statistically significant (Robinson, McCarthy, & 

Smyth, 2010; Robinson & Oshlack, 2010). We used false discovery rate (Benjamini & 

Hochberg, 1995) to measure statistical significance, with a threshold designed to detect less than 

one false positive out of all the genes assayed. We also excluded genes with fold-changes 

between treatments that were less than two. Significant genes were BLASTed against the NCBI 

non-redundant (nr) protein database using BLASTX (Camacho et al., 2009) with default 

parameters, including a maximum of 100 hits. This version of BLAST searches for similarity 
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between a nucleotide sequence and known proteins by first translating the query in all six 

possible reading frames.  

Reads that did not align to the G. hirsutum genome were pooled from all replicates and 

assembled into a putative microtranscriptome using Trinity release 2014-07-17 (Grabherr et al., 

2011). All assembled transcripts were mapped back to the G. hirsutum genome using Tophat2 as 

before. All transcripts with significant matches to the G. hirsutum genome and all transcripts 

shorter than 500 bp were removed. To quantify the abundance of transcripts per replicate, 

trimmed reads were mapped back to the assembled trasncriptome using Tophat2 as before, and 

counted using Samtools. Correlation between replicates at the microtranscriptome level and 

detection of significant differentially abundant taxa were calculated as above, except that read 

counts per microbial transcript were normalized by the total non-hirsutum reads per replicate. 

Significantly different transcripts were BLASTed against representative genomes of NCBI’s 

Microbial database (Chen, Ye, Zhang, & Xu, 2015; Morgulis et al., 2008). Transcripts with no 

hits were not analyzed further, and transcripts with 100 hits were discarded as ambiguous or 

chimeric assemblies. 

Subgenome bias 

We also detected G. hirsutum genes with subgenome specific expression biases. To do this, we 

aligned trimmed reads to the G. raimondii reference genome (Paterson et al., 2012) using the 

SNP tolerant short read aligner, GSNAP v. 2015-07-23 (Wu & Nacu, 2010). We categorized 

aligned reads to either the At or Dt subgenome using PolyCat v. 1.8 (Page, Gingle, & Udall, 

2013). Categorized reads were assigned to annotated G. raimondii genes under the assumption 

that head G. raimondii gene, and counts were normalized as proportions of total trimmed reads 

per replicate. EdgeR was used again to detect genes with significantly more At biased reads than 
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Dt biased reads, or vice versa. The significance threshold for this comparison was set at an FDR 

of 0.5. 

Results 

A total of 19,578.2 Megabase-pairs (Mbp) were sequenced. After trimming, 14,6178.0 Mbp were 

left in the dataset. Of these, 13,137.3 Mb aligned to the G. hirsutum genome (Figure 1). There 

was not a significant difference between replicates in the proportion of reads that were of cotton 

origin (Figure 1). The similarity between treatments in these metrics is expected, as substantial 

deviations would most likely only be caused by technical error during RNA extraction, 

amplification, or sequencing. 

 

Figure 1: Distributions of RNA-Seq data under conventional disk tillage (DT) and conservation tillage (CT): (A) proportion of 
trimmed reads aligning to the Gossypium hirsutum reference genome in eight replicates per treatment (n=16). (B) Average 
amount of RNA per replicate sequenced, retained after trimming, successfully aligned to the G. hirstutum reference genome, and 
successfully aligned to the microtranscriptome assembly. Error bars represent standard deviation across replicates. 

Cotton transcriptome 

At the global level, the treatment showed little effect on the cotton transcriptome. Pearson 

correlation coefficients between replicates of DT ranged from 0.5 to almost 1.0. Correlation was 

A. B. 
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much stronger within CT; however, correlations between replicates of opposite treatments were 

also high (Figure 2A). Clustering did not separate replicates by treatment (Figure 2B), and a 

principle component analysis shows similarity between replicates even between treatments 

(Figure 2C).  

Despite the high degree of similarity, we detected seven genes with a fold change between 

treatments greater than two and an FDR value lower than 1.48e-5, which was calculated as one 

divided by the 70,478, the number of annotated G. hirsutum genes. All of these genes were more 

abundant under DT. Of these seven significant genes, three were on chromosome D5 

(Gh_D05G0219, Gh_D05G0357, and Gh_D05G1276), and there was one each on chromosomes 

D11 (Gh_D11G0018), A2 (Gh_A02G1207), A5 (Gh_A05G0155), and A11 (Gh_A11G0020). 

All seven genes had 100 significant BLAST hits, which were manually examined to determine 

the function of the significant genes (Table 1).  

Table 1: Significant differentially-expressed cotton genes with functions 

Genes Protein function 
Gh_A11G00201, Gh_D11G00181 Purple acid phosphatase 
Gh_D05G1276 Inorganic pyrophosphatase 
Gh_A05G01552, Gh_D05G02192 Sulfate transporter 
Gh_A01207, Gh_D05G0357 Unknown 
1 – Likely homoeolog pair 
2 – Likely homoeolog pair 

 

Our subgenome bias analysis indicated that 12,772 genes showed statistically significant 

subgenome expression bias (FDR<0.5), of which about half, 6,378, showed greater abundance of 

A-subgenome transcripts. 
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Figure 2: Considerably similarity between replicates in different tillage treatments, conventional disk (DT) or conservation tillage 
(CT), at the cotton transcriptome (A-C) and microtranscriptome (D-F) level. (A, D) Distribution of Pearson correlation 
coefficients between pairs of replicates in the same plot (columns 1 and 2, 4 comparisons per column), in the same treatment 
(columns 3 and 4, 28 comparisons per column), and in different treatments (column 5, 64 comparisons). (B, E) Replicate 
similarity clusters and gene expression levels. The bar designates replicates from DT (blue) or CT (green). Darker green in the 
heatmap denotes higher expression levels. The numbers following the treatment label describe the plot and sample number of 
each replicate. (C, F) Principal component analysis of replicates based on the 500 most informative genes. 
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Microtranscriptome 

The microtranscriptome was assembled from 1,480.5 Mbp into 8,284 microbial transcripts (total 

length=2.5 Mbp; max length=3,551 bp, N50=293 bp). Only 133 transcripts aligned back to the 

G. hirsutum reference genome, and these ranged from 201 to 484 bp long. After filtering these 

and other transcripts shorter than 500 bp, we were left with 620 microbial transcripts. As we saw 

in the cotton transcriptome, there was considerable similarity between replicates of opposing 

treatments (Figure 2D-F). 

Twenty-two transcripts were significantly more abundant under DT. Eleven (50.0%) of these had 

no significant BLAST hits and seven (31.8%) had 100 hits, and so they were excluded. The 

remaining four (18.2%) transcripts had between 8 and 22 hits, and for these we filtered out all 

but the most significant hit per transcript. Two matched the taxon Candidatur Burkholderia 

brachynathoides, and two matched Arthrobacter species (sp.) L77. 

Discussion 

Cotton transcriptome 

Overall, there only a few significant differences between cotton individuals grown under DT and 

CT. The variation we did see between replicates did not appear to be driven exclusively by 

tillage. This agrees with a recent meta-analysis of CT studies, which found that many crops 

experience yield loss during the first few years of CT, but cotton was one of the few crops that 

did not (Pittelkow et al., 2015). Our results also suggest that gene expression variability was 

greater in individuals under DT than under CT. This may imply that CT reduces the impact of 

spatial variation. 

The few differentially expressed cotton genes for which we were able to determine function were 

related to phosphatase activity and sulfate transport. All of these were more active under DT. 
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Phosphate is a major nutrient for plants, and modern agriculture relies on extensive use of 

external phosphate, generally mined as Rock Pi (Smit, Bindraban, Schröder, Conijn, & Van der 

Meer, 2009). Although it is not clear from the current analysis whether in the increased activity 

in purple acid phosphatase and inorganic pyrophosphatase is in response to a higher 

concentration of plant-available phosphate in DT soils, or phosphate starvation, the observation 

that conservation tillage has some impact on cotton’s ability to utilize phosphate is worth 

additional consideration. Sulfate is another plant nutrient. Although uptake and metabolism of 

sulfate is affected by phytohormones (Koprivova & Kopriva, 2016), the observation that no other 

phytohomrone-controlled genes show significant differential expression implies that tillage has 

some impact on the availability of sulfate in the soil. Again, whether CT increases or decreases 

plant-available sulfate is unclear from this study. However, the relationship, once elucidated, 

would be agriculturally significant.  

It is interesting to note that the pair of genes corresponding to purple acid phosphatases are likely 

homoelogs, since they are located in approximately the same position of homoeologous 

chromosomes and share a common BLAST hit with a single G. raimondii gene. The pair of 

genes assigned the function of sulfate transporter are also likely homoeologs. This implies that, 

at least in some cases, homoeologous genes retain similar control elements and patterns of 

expression. 

Others have also explored the preferential expression of one homoeoallele in certain cotton genes 

(Rambani, Page, & Udall, 2014). At the same significance level they used, our study found a 

substantially higher number of biased genes (12,772 in our study vs. 2,686 or 3,146 in theirs). 

However, both studies observed a roughly equal proportions of At and Dt biased genes (6,378 

and 6,394 in our study). One possible reason for this difference is that we did not first filter out 
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genes that were not expressed at high levels in all replicates. Another possible reason is that they 

used cotton flower petals, rather than root tissue. Finally, it is possible that we detected more 

genes because we had a larger number of replicates (n=16 in our study, n=3 in theirs), and 

therefore greater power to detect subtle but consistent differences. 

Microtranscriptome 

The most common microorganisms in our dataset were Candidatus Burkholderia 

brachynathoides and Arthrobacter sp. L77. Both of these showed greater abundance, or at least 

greater transcriptional activity, under DT.  

Burkholderia brachynathoides is a known leaf endosymbiont that colonizes members of the 

Rubiaceae group (Lemaire, Lachenaud, Persson, Smets, & Dessein, 2012). Cotton is not part of 

that clade, so it seems unlikely that that particular microbe would colonize cotton roots in this 

case. It is possible that the transcript BLAST matched with brachyanthoides is actually derived 

from a similar but distinct cotton root endosymbiont. Another possible explanation is that leaves 

and other residue from a previous crop, which were incorporated into the soil by DT, have a 

lasting impact on microbial soil communities.  

Another member of the Arthrobacter genus, Arthrobacter sp. Strain AK-YN10, has been 

reported in Indian agricultural soils, where it degrades the herbicide atrazine (Sagarkar et al., 

2014). Given the very uncertain relationship between these Strain AK-YN10 and the microbe we 

detected, sp. L77, it is only speculation to state that increased abundance or activity of atrazine-

utilizing bacteria indicate a greater degree of residual herbicide in DT fields. 

Perhaps the clearest insight from our microtranscriptome analysis, one that is already well 

known, is that short RNA reads are ineffective for unambiguous de novo transcript 

reconstruction. The presence of several transcripts with a large number of BLAST hits may be 
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indicative of chimeric assemblies, a problem that might be exacerbated by widely conserved 

regions in microbial genomes. 
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Chapter 2: Physical DNA mapping 

Introduction 

High-throughput physical mapping 

High-throughput physical mapping on the recently developed Irys® platform produced by 

BioNano Genomics (USA) not sequencing. Rather, this technology labels sparse sequence 

landmarks, namely restriction endonuclease recognition sites, to characterize much longer input 

molecules (for a size comparison, see Figure 3). Molecules characterized this way can be 

assembled into representations of contiguous genomic regions (contigs), and used to scaffold 

sequence contigs generated with MPS, or for direct comparison and structural variant (SV) 

detection (Hongzhi Cao et al., 2014; Hastie et al., 2013). This approach is reminiscent of the 

FingerPrint Contigs approach to bacterial artificial chromosome characterization (Soderlund, 

Longden, & Mott, 1997) and resembles optical mapping developed by David Schwartz (1993). 

 
Figure 3: Comparison of DNA fragment lengths characterized by different technologies. Illumina, PacBIO, OpGen, and BioNano 
are company names. MinION is a sequencing platform produced by Oxford NANOPORE Technologies. MPS, massively parallel 
sequencing; kbp, kilobase-pairs. 

Data collection 

The process for data collection in the Irys system begins with a high molecular weight (HMW) 

DNA extraction, typically facilitated by embedding unlysed nuclei in agarose gel to protect DNA 

from shearing (M. Zhang et al., 2012). The purified DNA is subjected to enzymatic single-strand 

nicking at restriction endonuclease recognition sites after which a modified ligation-repair 
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process is used to incorporate fluorescent nucleotide analogs near the site of the nick. Single 

molecules are then loaded using an electric current into nanoscopic channels (Han Cao et al., 

2002), which confine them in a linear conformation while they are imaged using a high-powered 

microscope (Lam et al., 2012). 

As with any single molecule technology, there is considerable noise in the raw data. For 

example, distances measured between fluorescent labels might not accurately reflect 

distributions of restriction endonuclease recognition motifs in the genome, because to non-

uniform behavior of fluorophore, because of stretching of the DNA duplex, and because of 

camera resolution limits. Some recognition motifs might not be labeled, and some labels may 

occur at locations other than restriction motifs because of enzyme inefficiency and single-strand 

nicks existing in damaged DNA (Valouev, Schwartz, Zhou, & Waterman, 2006). Obtaining high 

quality data from plants is particularly difficult because of natural contaminants such as 

polyphenols, polysaccharides, and proteinase inhibitors (Varma, Padh, & Shrivastava, 2007). 

Lab procedures should aim to minimize these contaminants; however, protocols for this new 

technology are limited. Part of my work was to explore best practices in the lab for improved 

data quality. 

Physical map assembly 

Input mapping data are assembled into genome map, which is a set of consensus contigs, each 

representing a unique genomic interval. That pattern of distances between observed labels gives 

each contig a unique fingerprint by which it can be identified. 

In order to recreate accurate genomic contigs, algorithms that assemble molecule data must 

compensate for noise inherent in physical mapping data. In order to detect true overlaps, 

assembly algorithms use inexact length matching and model probabilities of both missed and 
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erroneous labels. In order to prevent spurious overlaps, assembly algorithms use a significance 

threshold or p-value, requiring label-pattern matches between molecules to be so similar that 

they are unlikely results of chance. Depending on genome size and complexity, restriction 

endonuclease recognition site patterns may be similar at multiple loci. An algorithm’s ability to 

mitigate input noise relies in large part on user-provided input parameters that describe the error 

profile of the input dataset (Valouev, Li, et al., 2006; Valouev, Schwartz, et al., 2006). Therefore, 

accurate assembly requires that a user select reasonable input parameters. 

There are methods for empirical estimation of reasonable input parameters. However, most of 

them rely on significant existing genomic resources. For example, BNG provides software that 

maps a random subset of input data to a reference genome sequence assembly, and selects input 

parameters that maximize the number of molecules that align, as well as the goodness of fit for 

those alignments. When a reference assembly is not available, one potential alternative is to 

select input parameters by trial and error. Using a variety of input parameter combinations yields 

a variety of assemblies, from which an optimal solution might be chosen. Part of my work was to 

develop software that would make this approach computationally feasible. 

Methods 

Data collection 

We selected the species Gossypium raimondii because it is the closest living relatives to one of 

the subgenome progenitors of the agriculturally significant allopolyploid cotton, G. hirsutum 

(Brubaker, Paterson, & Wendel, 1999). It also has a high quality reference genome sequence 

assembly that was created using MPS, as well as a genetic maps and a traditional, BAC-based 

physical map (Paterson et al., 2012). 
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We collected two separate datasets. For the first (dataset1), ~10g young leaf tissue from several 

G. raimondii plants was flash frozen in liquid nitrogen and shipped on dry ice to Kansas State 

University, a Certified Service Provider for physical mapping with BNG technology. They 

performed HMW DNA extraction according to a proprietary protocol that includes physical 

disruption of the cell wall with a mortar and pestle, polyphenol isolation with PVP (SIGMA-

ALDRITCH, USA) and Percoll (GE Healthcare Life Sciences, USA), plastid contaminant 

removal using Triton X-100 (SIGMA-ALDRITCH, USA), protein digestion with proteinase K 

(NEB, USA), and embedding of unlysed nuclei in agarose gel to prevent DNA shearing (M. 

Zhang et al., 2012). Purified DNA molecules were subjected to single-strand nicking at sites 

recognized by two modified restriction endonucleases, Nt.BspQ1 (6 ul) and Nt.BbvCl (4ul) 

(NEB, USA), simultaneously. The second dataset (dataset2) was collected in our own lab. 

Approximately 2g young leaf tissue was harvested from a single, mature G. raimondii individual 

for DNA extraction. Mapping data were collected as above with a few modifications. Unfrozen 

tissue was fixed in formaldehyde and immediately homogenized using a Qiagen TissueRuptor 

(Qiagen, Belguim). Multiple wash steps with Triton X-100 removed mitochondria and plastids 

until centrifuged pellets were not visibly green. Additional SDS was used during protein 

digestion with proteinase K. High molecular weight DNA was digested with 8ul of Nt.BspQ1 

only. Additional differences between datasets outlined in Table 2. For both datasets, restriction 

endonuclease recognition sites were labeled with fluorescent nucleotide analogs provided by 

BNG, which were incorporated by Taq polymerase (NEB, USA). The DNA backbone was 

stained with a non-specific, intercalating dye, provided by BNG. Labeled, stained DNA 

molecules were linearized by physical constriction in nanoscopic channels on an Irys Chip v2.0 
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(BioNano Genomics, USA), immobilized with an electric current, and imaged automatically with 

a high-powered microscope and high-resolution camera using the Irys system. 

Table 2: Improved lab methods 

Dataset1 Target application Dataset2 

Liquid nitrogen 
Fix cells to protect DNA 
and halt nucleases Formaldehyde 

Mortar and pestle Rupture cell walls Qiagen TissueRuptor 
Centrifugation Remove cellular debris Micrometer filters 
Single Triton X-100 
wash 

Remove plastid 
contaminants Multiple Triton X-100 washes 

Mix with paintbrush 
Homogenize nuclei 
suspension 

Mix with paintbrush and with 
non-stick pipett tip 

Float in two separate 
Percoll gradients Isolate nuclei 

Float in a single Percoll 
gradient 

Proteinase K alone Digest proteins Proteinase K with more SDS 
RNAse Digest RNA RNAse 
Embed unlysed nuclei in 
agarose plugs 

Maintain long DNA 
molecules 

Embed unlysed nuclei in 
agarose plugs 

Cut with two restriction 
enzymes simultaneously Nick recognition sites 

Cut with a single restriction 
enzyme 

Incorporate fluorescent 
analogues with Taq 
polymerase Label recognition sites 

Incorporate fluorescent 
analogues with Taq 
polymerase 

Run in nanochannels on 
Irys machine Image molecules 

Run in nanochannels on Irys 
machine 

 

The Irys Chip v2.0 contains two arrays of channels divided into flow cells. The first dataset 

consisted of multiple, individually labeled DNA aliquots and 19 total flow cell runs over 5 chips, 

each at about 20-cycles per flow cell run. The second dataset required only a single labeled 

aliquot and was run on both flow cells of a single Irys chip for four, 30-cycle runs. Software 

provided by BNG converted raw images into digital molecule representations. Data were filtered 

to remove labels with low ratios of label to background intensities. The threshold was 

determined dynamically by IrysView®, based on the distribution of background intensities in 

that flow cell run. All data were filtered to remove molecules shorter than 150 kbp.  
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Physical map assembly 

Because assembly is highly sensitive to input parameters, we attempted multiple assemblies with 

different input parameter combinations. In order to empirically estimate parameters using the 

reference genome, we ran a molecule quality report (dataset1), and AutoNoise (dataset2), both of 

which are software packages provided by BNG. We also used OMWare (Sharp & Udall, 2016) 

on both datasets to efficiently run a large number of assemblies with a wide variety of input 

parameter values. 

The user interface provided by BNG allows the user to specify a number of input parameters that 

are known to affect map assembly algorithms (see Mendelowitz & Pop, 2014; Valouev, 

Schwartz, et al., 2006). A significance threshold for accepting pairwise molecule alignments is 

an assumption about genome complexity, which frequently, but not necessarily, scales with 

genome size. It is an indication of how probable a match between two molecules is expected to 

occur because of random chance instead of a common genomic locus. The false positive label 

rate explains the frequency of observed labels found at locations other than the expected 

restriction endonuclease recognition sites. The false negative rate describes the proportion of 

restriction sites that do not have observed labels, due to enzyme inefficiency. It is an assumption 

of the BNG assembly algorithm that false positive labels and false negatives are distributed 

randomly throughout the genome. Minimum molecule length and minimum labels per molecule 

are not assumptions about the data error profile, or the genomic complexity. Rather, they 

represent a compromise between the number of molecules included and the reliability of each 

molecules, where longer, more label-dense molecules are more reliable. Although OMWare does 

not test their effect, the BNG user interface also includes multiple parameters to describe 

variance in observed distances between labels compared to actual restriction endonuclease 



 20  

recognition site distributions, as well as options relevant to the assembly refinement processes 

(see Valouev, Zhang, Schwartz, & Waterman, 2006). Although all of these parameters do not 

apply uniformly to all of the steps in the assembly process, the user interface only allows a single 

designation for each.  

We designed and wrote Python code that would facilitate automatic assembly using a variety of 

values for those input parameters. This approach is similar to that used by Kansas State 

University in their program Irys-scaffolding (Shelton et al., 2015), except that it does not 

perform assembly refinement steps, and it breaks each assembly into its component parts in order 

to reduce the computational resources required. We ran OMWare twice to generate a total of 910 

unrefined, de novo assemblies, 405 for each of our G. raimondii datasets, each time with a 

different combination of the input parameters shown in Table 3.  

Table 3: Input parameter values tested with OMWare 

Parameter 

Overlap 
significance 
threshold 

False positive 
labels per 
100 kbp 

Proportion 
restriction sites 
unlabeled 

Min. 
molecule 
length (kbp) 

Min. 
labels per 
molecule 

Values 1.11E-04 0.5 0.15 100 6 
 1.11E-06 1.5 0.3 150 8 
 1.11E-08 2.5 0.45 180 10 
 1.11E-10     
 1.11E-12     

 

We assessed the quality of the assemblies based on their contiguity and their internal 

consistency. We also used the reference genome to assess their accuracy. Assemblies were 

scored for total length, contig N50 length, and length of longest contig for contiguity. Internal 

consistency was divided into two metrics, the average number of overlapping molecules in which 

each label is observed, and the proportion of input molecules excluded from the assembly as 

singletons. Finally, we measured accuracy by comparing our assemblies to a highly contiguous 

reference genome sequence, using software provided by BNG. We report the weighted average 
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confidence score, where confidence is the negative, 10-base logarithm of the p-value of an 

alignment.  

Comparison to the reference genome 

Once an optimal assembly was chosen, we compared it to the G. raimondii reference genome. To 

do so, we first converted reference sequence information into a physical map format by detecting 

restriction motifs in silico with software called Knickers (v.1.5.3) provided by BNG. Our initial 

comparison with BNG software allowed only a single, best match for each physical map contig. 

This helps assess map assembly quality and estimate error parameters for the next comparison. 

The second comparison allowed for multiple consecutive “match groups,” on a single mapping 

contig. Portions of contigs that fall between significant matching groups are called as structural 

variants (SVs) or misassembles. We also ran HybridScaffold (v3659), with and without 

conservative filtering rules, in an attempt to join sequence scaffolds into collinear superscaffolds 

based on physical map evidence. 

To assess the nature of disagreements between the reference genome sequence assembly and our 

BNG physical map assembly, we first filtered out discrepancies that could be explained with 

known shortcomings of the technologies that produced them. Partial matches, SVs, and mapping 

contigs that overlapped were filtered out if they matched near a genetic map join or putative 

collapsed repeat, or if the mapping contigs had low coverage regions. False positives were 

filtered if they fell within a gap, or could be explained as a single nucleotide variant. For each 

false positive, the sequence regions spanning 150 base-pairs on either side of the label was 

searched for seven consecutive N’s, or any seven-base sequence that was one nucleotide off from 

the motif recognized by Nt.BspQI. False positives and false negatives were also filtered if they 



22 

fell within 300 bp of another label. Disagreements between the MPS and BNG genome 

representations remaining after filtering will make good targets for additional follow up. 

Results

Data collection 

Dataset qualities were assessed using the metrics yield per cycle, proportion of expected label 

density observed, molecule N50, and fluorescence (signal to noise ratio, SNR) of both labels and 

molecule backbones. 

In dataset1, we collected a total of 217.28 Gigabase-pairs (Gbp) of physical map data over nine, 

two-flow-cell runs of BNG’s Irys machine. This is enough data for ~241x coverage of the similar 

to 900 Mbp G. raimondii genome. The weighted average across datasets of the molecule N50 

length was 165.37 kbp. The expected label density using Nt.BspQ1 and Nt.BbvCl 

simultaneously was 12.6 labels per 100 kbp. Our observed label density was consistently lower 

than the expected (max 11.3 labels per 100 kbp, weighted average 9.2). 

In our second dataset, collecting sufficient coverage required a single BNG chip, and a total of 

two flow cells. Individuals flow cells were run for 120 cycles. Dataset2 includes 230.49 Gbp of 

data (~256x coverage) with an N50 of 209.8 kbp. The average observed label density is 6.1 out 

of the expected 7.5 labels per 100 kbp. The quality improved in dataset2 (Figure 4). 

Physical map assembly 

Using OMWare, we generated a total of 810 unrefined assemblies, 405 for each dataset. Using 

IrysView we generated two refined assemblies, one for each dataset.  
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Figure 4: Differences in quality distributions between dataset1 and dataset2. Dataset1 (red) included 18 flow cell runs. Dataset2 
(yellow) included 8 flow cell runs. Flow cell runs are divided into 20-30 scans, each of which begins when an electric current 
pulls a new aliquot of labeled DNA into the nanochannels. The expected label density for dataset1 was 12.6 labels per 100 
kilobase-pair (kbp). The expected label density for dataset2 was 7.5 labels per 100 kbp. 
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Contiguity and internal consistency varied widely between assemblies, and were predominantly 

controlled by two input parameters, minimum molecule length and significance threshold. The 

maximum total length of any assembly was about 1.78 Gbp, which is much larger than the 

expected genome size. However, assembly refinement generally reduces the total assembly 

length (Table 4). The shortest assembly covered only 78 Mbp. Contig N50 lengths ranged from 

252 to 1,821 kbp, and the maximum length of any single contig was 15.24 Mbp. In every 

assembly generated using dataset1, a large proportion of input molecules, from 0.90 to 0.993, 

were excluded as singletons. A smaller but still substantial proportion was excluded from 

dataset2, from 0.65 to 0.90. Across parameter combinations, the average number of molecules in 

which each label was observed fell between five and fourteen (Figure 5 and Figure 6). 

The accuracy of assembled contigs also varied, and appeared to correspond very little with 

measures of contiguity or internal consistency. The lowest average confidence score of any 

assembly was 20.0, and the highest was 39.1. There were no outliers in confidence. The 

confidence scores are more responsive to changes in false positive label rates, false negative 

label rates, and minimum labels per molecule than metrics of contiguity appear to be (Figure 5 

and Figure 6). For dataset1, the highest accuracy obtained using OMWare was greater than the 

unrefined accuracy from the molecule quality report. However, for dataset2, AutoNoise 

generated an assembly with considerably higher quality than OMWare (Table 4). 
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Figure 5: OMWare created 405 assemblies of dataset1 (left) and 405 of dataset2 (right). Contiguity or internal consistency are 
depicted on the y-axis (Gbp, Gigabase-pairs; kbp, kilobase-pairs; Mbp, Megabase-pairs; Max., maximum; avg., average; prop., 
propotion; mols., molecules). Accuracy is measured as confidence values ranging from 20 to 40, and is depicted with the color of 
each data point. The x-axis describes the combination of some of the input parameters used. False positives (False pos.) are one 
of 0.5 (lightest orange), 1.5, or 2.5 (darkest orange) false labels per 100 kbp. False negatives (False neg.) are one of 15 (lightest 
green), 30, or 45 (darkest green) percent of restriction motifs unlabeled. Minimum labels per molecule (Min. labels) are one of 6 
(lightest purple), 8, or 10 (darkest purple). 
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Table 4: Refined vs. unrefined assemblies from dataset1 and dataset2 

Dataset Dataset1 Dataset1 Dataset1 Dataset2 Dataset2 Dataset2 
Refined? No No Yes No No Yes 
Error 
estimation 
method OMWare MQR MQR OMWare AutoNoise AutoNoise 
Number of 
contigs 3,217 1,012 779 3,758 2,196 410 
Total length 
(Mbp) 1,015.2 286.4 207.0 1,753.7 1,384.6 800.8 
N50 (Kbp) 339.3 284.0 272.4 531.5 1,111.9 2,751.1 
Average 
confidence  
(-log10(Pval)) 27.8 23.2 31.16 39.1 108.5 285.7 

Comparison to the reference genome 

The best assembly was created using dataset2 and AutoNoise. Initial comparison with the 

reference genome showed considerable agreement. The weighted average confidence (-log10(p-

value)) of matches between map contigs and sequence scaffolds was 286. Out of 410 contigs, 

402 (98.0%) found at least one significant match. Significant matches do not usually cover the 

entire contig; however, the median proportion of a contig length that was included within a 

significant match was 0.9998. The mean proportion was 0.9476, and there were 46 matches 

(11.4%) where the proportion of contig length within the match was lower than 0.9.  

Our comparison also called 782 SVs, of which 752 (96.2%) were insertions or deletions, 14 

(1.8%) were translocations, and 16 (2.0%) were inversions. We further categorized these SVs, 

determining that 61 (7.8%) did not have high enough coverage to be confident, and 26 (3.3%) of 

them were likely to be part of a collapsed repeat. 
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Figure 6: Certain input parameters have a greater impact on assembly contiguity and internal consistency, but not necessarily 
accuracy. The y-axis and data-point colors have the same meaning as in Figure 5. The x-axis describes some of the assembly 
input parameter combinations. Overlap significance threshold (P-value) is one of 1.11E-4 (lightest orange), 1.11E-6, 1.11E-8, 
1.11E-10, or 1.11E-12 (darkest orange). Minimum molecule length (Min. len.) is one of 100 kbp (lightest red), 150 kbp, or 180 
kbp (darkest red). 
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HybridScaffold suggested no changes to the sequence assembly when it was run with strict 

filtering parameters. The more lenient run, however, recommended combining sequence 

scaffolds one and six, both of which are long pseudomolecules, into a single 108 Mbp 

superscaffold. This merge would likely be inaccurate. 

In addition to SVs and suggested joins, the final assembly also had a 2,648 false positive labels 

(0.12 labels per 100 kbp), and 1,681 false negative labels (1.3% of reference restriction 

endonuclease recognition motifs). A total of 49,082 labels were found in both genome 

representations (Table 5). 

Table 5: Disagreements between MPS and BNG genome representations 

Disagreement type Partial 
matches 

Overlapping 
contigs 

SVs False 
positives 

False 
negatives 

Prior to filtering 46 24 782 2,648 1,681 
Low coverage regions 13 2 61 - - 
Collapsed repeat 10 2 26 - - 
Genetic map join 23 0 0 - - 
FP in gap - - - 367 - 
FP by SNV - - - 536 - 
FP/FN too close to 
another label 

- - - 153 173 

After filtering 0 20 695 1,592 1,508 

Discussion 

Data collection and physical map assembly 

There was a substantial improvement in data quality in dataset2. It is unclear if the lower signal 

to noise ratios represent an improvement, however, molecule lengths were much higher and label 

densities were much more uniform across flow cells in dataset2. This hints that consistent label 

densities may be more advantageous for assemblies than widely dispersed label densities, even if 

the latter are, on average, closer to the expected. There were some flow cell runs in dataset2 with 

higher yields than the average in dataset1, but the main factor in decreasing the number of chips 
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used for dataset2 was running each flow cell for 120 rather than 20 cycles. Our experience 

indicates that that using a single restriction endonuclease rather than a cocktail of enzymes 

improves data quality considerably. The higher expected label density in dataset1 might also 

have contributed to shorter molecule N50s.  

The data quality improvements in dataset2 are reflected in the assembly quality. OMWare 

assemblies using dataset2 vastly outperform dataset1 assemblies in metrics of contiguity and 

internal consistency. Interestingly, however, there some are assemblies of dataset2 data that have 

lower confidences than the lowest confidence of any dataset1 assembly. It is also interesting to 

note that the accuracies of the refined assemblies are, in general, a full order of magnitude higher 

than the highest of the unrefined assemblies. Additionally, while metrics of contiguity and 

internal consistency seem to respond most to minimum molecule length and overlap significance 

threshold in both datasets, in dataset2 these measures are more responsive to false positive label 

rate, false negative label rate, and minimum labels per molecule than dataset1 assemblies. Again, 

no metrics of internal consistency or contiguity seem to correspond to accuracy, except for 

perhaps total length. 

Comparison to the reference genome 

There was a substantial amount of agreement between the published reference genome sequence 

assembly and our best assembled genome map, dataset2 assembled using AutoNoise. A total of 

745 Mbp (98.9%) of the reference were covered by significant map matches, with a weighted 

average confidence of 285.7 and over 49,000 restriction endonuclease recognition sites were 

detected in both. Of 5,181 total disagreements between the two, 816 (15.7%) could be 

satisfactorily explained as low coverage regions (76, 1.5%, map is probably wrong), probable 

collapsed repeats (38, 0.7%, sequence is probably wrong), genetic map joins (23, 0.4%, sequence 



 30  

is almost certainly wrong), end variants (9, 0.2%, neither is wrong), gaps containing restriction 

sites (367, 7.1%, sequence is probably wrong), or labels actually within Irys’ detectable 

resolution limit (326, 6.3%, disagreement is likely artificial). Additionally, 536 (10.3%) 

disagreements are labels detected in the map that would also be present in the sequence genome 

if just one nucleotide were changed. These disagreements may represent natural variability 

between individuals. After filtering, 3,806 disagreements remain that merit additional follow up. 
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Conclusions 

Conservation tillage 

Conservation tillage is unlikely to have a substantial impact on cotton phenotype, and therefore 

the benefits of lower greenhouse gas emission, better soil infiltration, and reduced erosion make 

it a reasonable choice. However, the uncertain but statistically significant effect of conservation 

tillage on plant-available phosphate and sulfate are worth following up, as are the potential 

implications of incorporating leaf-derived microbes into the soil with disk tillage. 

Physical mapping 

The quality of data collected using the Irys platform may improve considerably in response to 

more thorough, homogenous blending, additional Triton X-100 washes, and digestion with a 

single restriction endonuclease. 

Selecting optimal input parameters with OMWare, at least for this dataset, yielded lower quality 

assemblies than the BNG software AutoNoise. Additionally, contiguity and internal consistency 

are unreliable indicators of accuracy in the absence of a reference genome. 

There are 3,806 discrepancies between the currently accepted G. raimondii reference genome 

sequence assembly and our best physical map constructed using Irys. These merit follow up and 

validation, for example, with BAC-end sequencing. Addtionally, 38 regions that are probable 

collapsed repeats might be corrected in the reference genome using physical map data alone. 

Agronomics 

Diverse genomic technologies allow researchers to explore crop genetics and molecular 

responses to the environment. Small but potentially meaningful insights into plant biology may 

drive increased agricultural productivity that will help to feed a growing world population. 
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List of Abbreviations 

BAC – Bacterial artificial chromosome 

BNG – BioNano Genomics 

CT – Conservation tillage 

DT – Conventional disk tillage 

FAO – Food and Agriculture Organization of the United Nations 

FDR – False Discovery Rate 

G. – Gossypium 

Gbp – Gigabase-pairs 

HMW – High molecular weight 

kbp – Kilobase-pairs 

Mbp – Megabase-pairs 

MPS – Massively parallel sequencing  

MQR – Molecule quality report 

NCBI – National Center for Biotechnology Information 

SNR – Signal to noise ratio 

Sp. – Species 

SV – Structural variant 
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