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ABSTRACT 
 

Control of Alternaria solani Resistance to Boscalid,  
Fluopyram, and Chlorothalonil 

 
Andrew K Hollingshead 

Department of Plant and Wildlife Sciences 
Master of Environmental Science 

 
Alternaria solani, cause of early blight, threatens potato yields. Fungicide resistance has 

made control of early blight difficult and there are concerns that in-season fungicide use results 
in resistance to boscalid, fluopyram, and chlorothalonil. Concern of high levels of resistance to 
boscalid a group 7 fungicide may confer cross-resistance to fungicides of the same group such as 
fluopyram. From 2014 to 2015, A. solani isolates were collected from field plots treated with 
boscalid, fluopyram, and chlorothalonil to test resistance levels. Isolates were determined 
resistant if EC50 values were higher than 5 µg ml-1. Boscalid and chlorothalonil mean EC50 
values decreased two fold from 2014 to 2015, while fluopyram values increased two fold. A 
negative correlation between fluopyram and boscalid indicate no cross-resistance. Higher 
resistance levels to fluopyram (17.1 µg ml-1) were observed in the treatment C-14 where only 
fluopyram was applied in 2014. Treatments D-14 and D-15, only treated with chlorothalonil, had 
the highest mean EC50 values to chlorothalonil (2.3 and 1.1 µg ml-1, respectively). Field trials 
show fluopyram+chlorothalonil had lowest disease severity of 6.6 to 6.8%. Leaf residues of 
boscalid fluopyram, and chlorothalonil measured an average of 10.2, 4.9, and 55.0 ppm on leaves 
throughout the canopy. After 14 days average residues diminished to 0.74, 0.39, and 16.9 ppm 
for boscalid, fluopyram and chlorothalonil, respectively. Boscalid is not effective for early blight 
control because of high resistance; fluopyram resistance is increasing as treatments of fluopyram 
are applied; and chlorothalonil does not seem to be affected by continued fungicide application. 
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CHAPTER 1-Control of Alternaria solani Resistance to Boscalid, 

Fluopyram, and Chlorothalonil 

INTRODUCTION 

People of the United States consume potatoes (Solanum tuberosum L.) more than any 

other vegetable. The estimated value of potatoes in 2014 was $3.66 billion (USDA-NASS 2015). 

Diseases threaten to reduce potato yields up to 24% without the use of fungicides (Oerke 2006). 

Early blight, caused by Alternaria solani Sorauer, is a foliar disease of potatoes that affects most 

varieties grown throughout the world (Franc and Christ 2001). Early blight appears on the 

foliage as brown concentric rings with a yellow halo around the outside of lesions (Franc and 

Christ 2001). Infections can defoliate the crop, substantially reducing yields (Rotem 1994). 

Protectant fungicides used for early blight control can increase yields 18 to 39% (Harrison and 

Venette 1970; Horsfield et al. 2010). Alternaria solani, however, has a history of developing 

fungicide resistance. For example, A. solani populations developed resistance to quinone outside 

inhibitors (QoIs) two years after introduction (Pasche et al. 2004; Pasche et al. 2005). Current 

management strategies are four to six applications of fungicide per growing season in Idaho, 

where 30% of the potatoes in the U.S. are produced (USDA-NASS 2015). Other fungicides used 

for early blight control are mancozeb (manganese ethylenebis (dithiocarbamate) (polymeric)) and 

chlorothalonil (2, 4, 5, 6-tetrachlorobenzene-1, 3-dicarbonitrile), yet they are not as efficient in 

early blight protection as single-site inhibitors when under high disease pressure (Pasche and 

Gudmestad 2008; Stevenson and James 1999). Single-site inhibitors are frequently tank-mixed or 

alternated with multi-site inhibitors or other single-site inhibitors to expose A. solani to differing 

modes of action, but control continues to be a challenge for growers (Staub 1991). 
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Fungicides currently used to control early blight in Idaho include boscalid (2-chloro-N-

[2-(4-chlorophenyl) phenyl] pyridine-3-carboxamide), fluopyram (N-{2-[3-chloro-5-

(trifluoromethyl)-2-pyridyl] ethyl}-α, α, α-trifluoro-o-toluamide), and chlorothalonil. Boscalid 

(Endura; BASF Corporation, Agricultural Products, Research Triangle Park, NC) was registered 

for use in 2003, and is a carboxamide fungicide belonging to the succinate dehydrogenase 

inhibitors (SDHI), group 7 (FRAC 2015). SDHI fungicides affect cell respiration by targeting 

complex II of the mitochondrial respiratory chain and inhibiting the binding of ubiquinone to the 

docking-site between subunits B, C, and D of the succinate dehydrogenase enzyme (Avenot and 

Michailides 2010; Horsefield et al. 2006). Boscalid was initially effective in controlling A. solani 

when first registered (Pasche et al. 2005; Pasche and Gudmestad 2008). However, resistance to 

boscalid has been reported in Alternaria spp. isolates from potato and pistachio (Avenot and 

Michailides 2007; Gudmestad et al. 2013). In 2009, 15% of A. solani isolates collected from 

Idaho were described as resistant, while isolates sampled in 2010 reported resistance in 58% of 

the population (Fairchild et al. 2013). In vitro studies, such as Gudmestad et al.(2013) calculate 

resistance levels by finding the effective concentration that kills 50% of conidia (EC50). Isolates 

collected from nine different states for this study observed 75% of A. solani isolates had in vitro 

EC50 values greater than 5 µg/ml, providing evidence of early blight resistance to boscalid 

spreading across potato-growing regions of the U.S. (Gudmestad et al. 2013). Resistant isolates 

of A. solani were found across the U.S. as early as 6 years following boscalid registration on 

potatoes. 

Fluopyram (Luna Privilege, Bayer Crop Science, Durham, NC) was registered on 

potatoes in 2012 as Luna Tranquility (pre-mix of fluopyram and pyrmethanil). Fluopyram is also 

an SDHI (group 7) fungicide inhibiting complex II of the mitochondrial respiratory chain. 
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However, the chemical formula differs from that of boscalid, resulting in stronger binding within 

complex II of the mitochondrial respiratory chain (Fraaije et al. 2012; FRAC 2015). Alternaria 

solani isolates have not developed high levels of resistance to fluopyram (Fairchild et al. 2013; 

Gudmestad et al. 2013). In 2010, 4% of isolates tested in Idaho had reduced sensitivity, but it 

increased to 9% in 2011 (Fairchild et al. 2013; Miles et al. 2014). Since the emergence of 

boscalid resistance in A. solani isolates, some have postulated that A. solani might develop 

resistance to fluopyram given they are both in the same fungicide group 7. Cross-resistance 

occurs as pathogen populations develop resistance to one fungicide may also confer resistance to 

other fungicides of the same group such as carbendzim and thiabendazole of group 1 among 

Botrytis cinerea Pers. ex FR. isolates of grapevine (Leroux et al. 1999). However, cross-

resistance is not observed to fluopyram and boscalid among Alternaria spp. (Avenot et al. 2014; 

Gudmestad et al. 2013). The lack of cross-resistance to fluopyram among Alternaria spp. 

resistant to boscaldid may be attributed to the different chemistries causing different binding 

affinities with boscalid and fluopyram (Fraaije et al. 2012; Scalliet et al. 2012). Mutations of the 

succinate dehydrogenase enzyme (complex II) decreases the binding affinity of boscalid to the 

ubiquinone docking-site (Scalliet et al. 2012). Fluopyram has not been observed to be affected by 

the mutations that cause resistance to boscalid in isolates of Mycosphaerella graminicola 

(Fückel) J. Schröt. In Cohn or A. solani (Mallik et al. 2014; Scalliet et al. 2012). 

Chlorothalonil (Bravo, Syngenta Crop Protection, LLC, Greensboro, NC) is a multi-site 

inhibitor that reacts with glutathione and other thiols, disrupting enzyme activity in the cell 

(Tillman et al. 1973). Chlorothalonil, registered for use on potatoes in 1966, is often mixed with 

other fungicides such as boscalid and fluopyram and is considered to be at low risk for resistance 

development due to the multi-site activity (FRAC 2015). However, studies by Barak and 
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Edgington (1984) and Sujkowski et al. (1995) report low levels of resistance among 

Phytophthora infestans and Botrytis cinerea isolates. Fairchild et al. (2013) reported 35-40% of 

A. solani isolates collected from various sites in Idaho were resistant to chlorothalonil, which 

causes significant concern among growers because control options appear to be dwindling. 

Coupled with accounts of limited control under high disease pressure, there are concerns about 

chlorothalonil and SDHI fungicides becoming limited in their ability to control early blight 

(Gudmestad et al. 2013; Pasche and Gudmestad 2008). 

Consistent exposure to fungicides via multiple applications during a growing season may 

drive a selection process, giving rise to fungicide resistance (Gudmestad et al. 2013; Rosenzweig 

et al. 2008). Resistant pathogen populations have a competitive fitness advantage as fungicides 

are used to control early blight. Fitness is defined as the survival and reproductive success of an 

allele, individual, or group and can be advantageous or a cost to the pathogen (Karaoglanidis et 

al. 2011). If resistance to boscalid, fluopyram, and cholorothalonil could be attributed to 

continued exposure of fungicides, the mutation may be a cost to the pathogen after the fungicide 

is no longer used as a selection factor. However, not all mutations result in a fitness cost to the 

resistant isolate; Plasmopara viticola isolates resistant to QoIs were observed to have higher 

infection frequencies than sensitive isolates (Corio-Costet et al. 2011). However, fitness costs 

have been seen in powdery mildew (Erysiphe graminis f.sp. hordei) of wheat as isolates resistant 

to quinoxyfen produced less spores (Hollomon et al. 1997). A fitness cost was also observed in 

the lower winter survival rates of the sclerotia of B. cinerea isolates resistant to iprodione 

(Raposo et al. 2000). The change of fungicide treatments on an annual basis may be enough to 

exploit less spores produced, slower growth rates, lower survival rates, etc. of fungicide-resistant 

isolates, particularly in boscalid, fluopyram and chlorothalonil. Therefore, the objectives of this 
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research are to (i) determine if populations of A. solani collected from areas where boscalid, 

fluopyram, and chlorothalonil were applied differ in their sensitivity to the respective fungicides; 

(ii) determine if boscalid resistant isolates are also resistant to fluopyram (cross-resistant); (iii) 

determine if there is a fitness cost for maintaining resistance to boscalid, fluopyram, and 

chlorothalonil. 

MATERIALS AND METHODS 

Field trial maintenance 

Trials were established at Miller Research Experimental Farm near Acequia, ID. Certified 

disease-free potato seed (cv. Russet Burbank) used in trials were purchased from a commercial 

potato grower. Plots within each trial were 3.7 m. (four rows) wide and 8.8 m long with a 2.1 m 

border between plots. Treatments (2014: A-14, B-14, C-14, D-14, E-14; 2015: A-15, B-15, C-15, 

D-15; fungicides used in the treatments are listed in Table 1) were established according to a 

randomized complete block design with four replications (Table 1). Treatments were also chosen 

based on industry sponsors and fungicide use in Idaho. Treatment E-14 was not continued in 2015 

based on industry protocol for trial. 

Fungicide applications were made using the Miller Research ground plot sprayer (a small 

self-propelled tractor with a hydrostatic drive). The tractor carries twelve 11.4 liter capacity stainless 

steel tanks in which product was mixed and a Teflon-coated laboratory magnet was placed inside 

the tank to stir the mix as a second magnet located under the tank turned with a hydraulic motor; 

allowing for constant agitation of the spray mixture during application. Spray tanks were 

pressurized to 20 psi with compressed air and connected to the spray manifold with one-way valves 

to prevent an intermixing of spray solutions. 
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 The spray boom consisted of eight TeeJet XR 11002 VS flat fan nozzles (Spraying Systems 

Co., Glendale Heights, IL) spaced 45.7 cm apart. Sprayer speed was measured at 6.0 k h-1 which 

resulted in a spray volume of 115.1 L ha-1. The boom was positioned approximately 45.7 to 50.8 cm 

above the canopy. Treatment applications began just prior to row closure on June 21 and all 

treatments except D-14, were planned on a two-week schedule (Table 1) based on growers and 

industry requests of early blight trials in Idaho. Treatment D-14 received applications weekly for 

six total applications in 2014 however, the industry in Idaho requested a trial of only 4 

applications in 2015.  

Isolation of Alternaria solani 

Potato leaves were collected in September 2, 2014 and August 12, 2015 from field trial 

plots. The field trials were established to test the efficacy of fungicides boscalid, fluopyram, and 

chlorothalonil to control A. solani (Table 1). Twenty to 25 leaf samples were collected in 2014 

and eight to 11 samples in 2015 from each of the four blocks of treatments in Table 1. Leaf 

samples of differing blocks and treatments were kept separate. All leaf samples were taken to 

Brigham Young University in Provo, Utah, where they were pressed and dried in preparation for 

A. solani isolation. 

Dried leaflets were sterilized in 10% sodium hypochlorite for 1-2 min. They were then 

washed in autoclaved distilled water, blotted dry on a paper towel, and then placed in 70% ethyl 

alcohol for 30 seconds. Leaves were then blotted dry and pieces were cut and placed on water 

agar. After four days, conidia were isolated using a glass needle and the aid of a microscope at 

60x magnification. Conidia were transferred onto water agar, then separated for single spore 

isolation and transported to V8 media similar to Gudmestad et al. (2013). Media was modified 

slightly by not centrifuging the V8 juice before adding it to the media. Isolates were grown for 
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10-14 days under 24-hours of 40 watt fluorescent bulbs. Once mycelium covered the media, 4-

mm plugs were placed in 2-ml centrifuge tubes, filled with 1 ml 15% glycerol solution, and 

stored in a freezer at -80° C. A total of ten isolates from each treatment (Table1), two to three 

isolates from each block, were randomly selected for in vitro assessment of fungicide sensitivity. 

In vitro assessment of fungicide sensitivity 

Thirteen to15-day-old A. solani cultures were used for inoculum production. Cultures 

were grown under 40 watt fluorescent bulbs for 11-13 days at 21°C, and then placed in a dark 

incubator for 2-3 days at 21°C for conidia production. Using sterile distilled water and a glass 

rod, conidia were washed clean of the V8 media. Conidia concentration was determined using a 

hemacytometer (Bright-Line, Hausser Scientific, Horsham, PA) and adjusted to 5 x 104 conidia 

ml-1. An aliquot of 150 µl of conidia suspension was then added to the surface of fungicide 

amended media and spread with a sterile glass rod. Media contained 2% bacteriological grade 

agar (J637 Agar, AMRESCO LLC, Solon, OH) and was amended with technical grade boscalid 

(99% active ingredient [a.i.]; BASF Corporation, Research Triangle Park, NC), fluopyram 

(97.78% a.i.; Bayer CropScience, Durham, NC), and chlorothalonil (98% a.i.; Syngenta Crop 

Protection, LLC, Greensboro, NC). Isolates were tested on amended media at the concentrations: 

0.0, 1.0, 10.0, 100.0, 500.0, and 1000.0 µg ml-1, 0.0 0.1 1.0, 10.0, 100.0 µg ml-1, and 0.0, 0.1, 

1.0, 5.0, 10.0 µg ml-1 for boscalid, fluopyram, and chlorothalonil respectively. The technical 

grade fungicides were dissolved in acetone. Concentrations over 10 µg ml-1 required the use of 

formulated product of boscalid (tradename Endura) (70% a.i.; BASF) and fluopyram (tradename 

Luna Privilege) (43.5% a.i.; Bayer). Salicylhydroxamic acid (SHAM) stock solution was added 

to the amended media because past research has found that QoI and SDHI fungicides prevent the 

pathogen from developing resistance via an alternative pathway and gives a better assessment 
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fungicide sensitivity (Pasche et al. 2004). The stock solution contained 10,000 micrograms per 

milliliter of methanol. Final concentration of SHAM in amended fungicide media was 100 µg 

ml-1. All media had a final concentration of 0.1% acetone and 1% methanol. 

The plates were incubated in an Enviromental Growth Chamber (EGC, Chagrin, Ohio) at 

26°C for 15 hours under continuous fluorescent bulbs of 54 watts. Petri plates were then 

examined at 80x magnification for conidia that had a germ tube or multiple germtubes as long as 

the conidia, and counted as viable germination. The experiment was performed twice each year, 

2014 and 2015, with fungicide concentrations being replicated twice in each experiment. 

Effective concentration of 50% (EC50) was determined by finding the relative 

germination (RG) compared to the untreated control. Relative germination is, 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑔𝑔 𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑔𝑔 𝑔𝑔𝑐𝑐𝑔𝑔 𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

∗ 100 

Binomial regression was used after using the ln(x+1) transformation of the concentration to 

predict EC50 concentrations. Isolates with estimated EC50 values to boscalid exceeding 1000 µg 

ml-1 were adjusted to 1000 µg ml-1 because extrapolated values could not be trusted and fell 

outside the range of tested concentrations. Previous studies determined that EC50 values above 5 

µg ml-1 were considered resistant by comparing isolate EC50 values that have been exposed to the 

fungicide with baseline isolate in vitro EC50 values (Gudmestad et al. 2013; Pasche et al. 2004).  

Leaf Residue analysis 

In-field leaf residues were tested to determine the deposition of fungicides within a potato 

canopy immediately after fungicide application, and then again 14 days later. Ten leaflets were 

collected on June 23 and July 6 from the upper, middle, and lower canopy of the four blocks of 

treatments B-15, C-15, and D-15 (Table 1). A total of 120 leaflets were collected from each of 

the three treatments. Leaflets were then sent to OMIC analytical laboratories (OMIC USA Inc., 
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Portland, OR) to obtain residue concentrations of boscalid, fluopyram, and chlorothalonil from 

the respective treatments: B-15, C-15, and D-15 at the three different levels of the canopy. 

Residues were obtained to help determine the potential exposure levels of A. solani isolates to 

boscalid, fluopyram, and chlorothalonil. 

Isolate fitness 

Fitness of resistant and non-resistant A. solani isolates were tested by mycelium growth 

over a seven day period, and by the number of spores produced after those seven days. Mycelial 

growth was measured by taking three 4-mm plugs from the 21-day-old cultures and placed each 

in the center of Petri dishes containing V8 agar. Two radial-growth measurements at 2, 4, 6, and 

7 days were taken on three plates stored at 22°C under continuous 40 watt fluorescent light for 

four days. On the fifth day, lights were turned off for in vitro conidial production (Lukens 1960). 

After 7 days the conidia were washed with 5 ml of dH2O and were counted using a 

hemacytometer. Both the mycelial growth and conidial production experiments were replicated 

twice.  

Statistical Analysis 

Natural log transformed mean (Ln) EC50 values of isolates to fluopyram and 

chlorothalonil were analyzed using two-way analysis of variance (ANOVA). Means were 

separated using Fisher’s protected LSD test (α < 0.5) when the treatments were significant. 

Boscalid EC50 values were analyzed using a Kruskal-Wallis comparison of ranked-sums test for 

non-parametric data. Spearman’s ranked correlation coefficients between boscalid and fluopyram 

were determined to compare isolate EC50 values (α < 0.5). Fitness data were analyzed by a linear 

model for mycelium growth and a two-sample t-test for spore production also using the Ln 

transformation. All analyses were done using R (R Foundation for Statistical Computing, 2013). 
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Early blight severity data were analyzed by ANOVA and means were separated using Fisher’s 

protected LSD when the treatment effect was significant using Agricultural Research Manager 

(ARM) version 9 (Gylling Data Management, Brookings, South Dakota). 

RESULTS 

In vitro fungicide sensitivity 

Estimated EC50 values of A. solani isolates varied among the different fungicide 

treatments and years (Figure 1). Boscalid EC50 values of A. solani isolates exhibited a wider 

range (17.1 to >1000 µg ml-1) than what was observed with isolates of other studies. The EC50 

values of fluopyram and chlorothalonil were not as variable (Figure 1). In 2014, boscalid values 

ranged from 128 to 1000 µg ml-1 with a mean of 853.5 µg ml-1. Boscalid values decreased in 

2015 by 2.2-fold with a mean EC50 value of 392.4 and ranged from 17.1 to 1000 µg ml-1 (P < 

0.001) (Figure 1). The range of resistance found among isolates in 2015 indicated a drop in the 

level of resistance among A. solani isolates. Fluopyram EC50 values increased 2.04 fold between 

2014 and 2015 (P < 0.001) with a range of 0.38 to 33.1 µg ml-1 and 2.71 to 58.5 µg ml-1, 

respectively (Figure 1). The range of fungicide resistance changed little between years, but the 

number of resistant isolates increased from 60% in 2014 to 85% in 2015. Chlorothalonil values 

were significantly different (P < 0.001) between 2014 and 2015 decreasing 2.12-fold with ranges 

of 1.00 to 4.00 µg ml-1 and 0.24 to 1.97 µg ml-1, respectively (P < 0.001) (Figure 1). As found for 

boscalid, the values for chlorothalonil decreased from 2014 to 2015, however, resistance was not 

observed. All isolates had EC50 values less than 5 µg ml-1. 

The boscalid EC50 values observed for all isolates collected in 2014 and 2015 were well 

above 5 µg ml-1 (Figure 1). However, there was not a significant difference among treatments in 

2014 (P = 0.34) or 2015 (P = 0.70) (Table 2). Treatment B-14 had the highest mean EC50 value 
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to boscalid (1000 µg ml-1). However, differences among treatments were not seen in sensitivity 

trials. Treatment B-15 did not yield isolates with the highest mean EC50 value in 2015 as 

treatment B-14 (Table 2). 

Fluopyram-resistant isolates, having EC50 values greater than 5 µg ml-1, were 60% in 

2014 and 85% in 2015 (Figure 1). Fungicide treatments were significantly (P < 0.001) different, 

and the highest mean value of isolates was C-14 in 2014 with 17.06 µg ml-1 (Table 2). However, 

treatment C-15 in 2015, had a lower mean of 11.83 µg ml-1 and was not the most resistant. None 

of the treatments in 2015 were significantly different (P=0.45, Table 2). The lack of treatment 

effect may be a result of isolates with different sensitivities to fluopyram being collected (Table 

2). 

None of the isolates collected in 2014 and 2015 were resistant to chlorothalonil (Figure 

1). There was a significant (P = 0.002) difference with treatment D-14 to B-14 and C-14 to 

chlorothalonil in 2014 but, no differences in 2015 (Table 2). Treatment D-14 had the highest 

EC50 mean of 2.29 µg ml-1, and was again the highest in 2015 with a mean of 1.09 µg ml-1 (Table 

2). The use of chlorothalonil without another fungicide was observed to have higher means. 

However, levels of treatments were not significant in 2015 with a range between treatments of 

0.29 and 0.12 µg ml-1 (P = 0.44, Table 2). 

Although a high percentage of A. solani isolates were observed to be resistant to boscalid, 

cross-resistance was not observed as isolates were considerably less resistant to fluopyram 

(Figure 1). Resistance observed to boscalid had no correlation with fluopyram resistance in 2014 

(r = -0.342, P = 0.015) or 2015 (r = -0.467, P = 0.002) (Figure 2). The negative correlations 

found in both years suggests that there was no cross-resistance occurring within the A. solani 

isolates located within the plots. 
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Early blight severity 

Severity of early blight in field plots were significant in both years (P < 0.001) (Table 2). 

In 2014 and 2015, treatments A-14 and A-15 had the highest mean percent severity at 34.7% and 

36%, respectively. Treatments C-14 and C-15 had the lowest percent severity of 6.6% and 6.8%, 

respectively, and were significantly less than other treatments. While treatments B-14, D-14, and 

E-14 had significantly lower early blight severity than A-14, they were significantly higher than 

C-14 in 2014. In 2015, treatments B-15 and D-15 were not significantly different from each 

other but were significantly different than C-15. Treatments C-14 and C-15 are the only two 

treatments with fluopyram in the field trials (Table 1). Boscalid did not decrease disease severity 

when tank-mixed with chlorothalonil or other fungicides from treatment E-14 (Table 2).  

Leaf residue of fungicides 

The amount of boscalid, fluopyram, and chlorothalonil diminished down through the 

canopy, and after 14 days the amount decreased substantially (Figure 4). Boscalid and fluopyram 

had lower amounts of residue found on leaves than chlorothalonil. Rates of application were also 

lower for boscalid (281.3 ml ha -1) and fluopyram (92.8 ml ha -1) than chlorothalonil (947.1 ml ha 

-1, Table 1). Boscalid and fluopyram residues after 14 days ranged from 0.37 to 0.96 ppm and 

0.29 to 0.45 ppm, respectively. The amount of chlorothalonil residue substantially decreased 

from 1 day after the application of chlorothalonil to 1 days later on the upper canopy; however, 

the amount on the mid canopy diminished slightly in the time period signifying less degradation, 

while the residue on the lower canopy increased (Figure 4). The amounts of chlorothalonil 

residue on the mid and lower canopy were 22 and 24 ppm respectively. The amount of residue 

was well above the designated resistance level of 5 µg ml-1. 
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Resistant vs sensitive isolate fitness 

The growth rate of resistant A. solani isolates were not significantly different from non-

resistant isolates (P = 0.24) (Figure 3-B). Resistant and non-resistant isolates grew similarly 

regardless of the year they were collected. The number of conidia mm-2 between resistant and 

non-resistant isolates showed sensitive isolates produced 1.32 more conidia mm-2 than resistant 

isolates (p =0 .052) (Figure 3-A). The slight increase of spore production may be a source of 

fitness advantage for sensitive isolates. 

DISCUSSION  

All isolates collected in this study were resistant to boscalid at rates far beyond the 5 ug 

ml-1 resistance threshold. The mean EC50 values in this study were 2000 fold greater than the 

baseline mean EC50 values in Gudmestad et al (2013).Based on the extensive use of boscalid 

from the time it was registered for use in 2005, the buildup of fungicide-resistant populations 

should not be surprising based on a study where Gudmestad et al. (2013) observed a 75% of 

isolates with boscalid EC50 values ranging from 15 to greater than 100 fold greater than EC50 

values of baseline isolates. The boscalid EC50 isolates surveyed in 2010 and 2011 ranged from 

0.5 to greater than 500 µg ml-1 with 75% of all isolates surveyed in 2010 and 2011 producing 

values greater than 5 ug ml-1 and in Idaho 42% of isolates returning values greater than 40 µg ml-

1 (Gudmestad et al. 2013). Even with high levels of resistance to boscalid among isolates of A. 

solani, the mean EC50 value of 2015 was 2.18 fold less than in 2014. The decrease of EC50 values 

may be a result of less boscalid used in 2015 than in 2014 resulting in less-resistant isolates 

collected in 2015 than in 2014. If less boscalid were used year to year, non-resistant isolates may 

repopulate the area allowing boscalid to be more efficient in disease control. A similar trend was 

observed among isolates of Sphaerotheca fuliginea, powdery mildew on cucurbits (Schroeder 
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and Provvidenti 1969). S. fuliginea had been resistant to benomyl, however after 20 years of not 

using benomyl few isolates were observed to be resistant (McGrath et al. 1996). 

Over the past few years, fluopyram has been highly efficient in early blight control in 

Idaho (Miller 2012) (Table 2). The increased use of products with fluopyram as an activie 

ingredient has been slow by growers due to the high costs and delaying the amount of resistance 

found among the A. solani population. Fairchild et al. (2013) reported about 4% of A. solani 

isolates were resistant to flupyram in 2010 and Miles et al. (2014) reported 9% of isolates were 

observed to be resistant to fluopyram in 2011; yet 73% of the isolates in this study were resistant 

to fluopyram (Figure 1). Values observed for fluopyram in our study were more than 42-fold 

higher than the baseline isolates in the Gudmestad et al. (2013) study. This high level of 

resistance may be attributed to the lack of genetic variability associated with the small area of the 

trial (mean 0.58 ha) or the amount of incubation time before collection of data. Treatments in 

2014 were significantly different when tested against fluopyram during in vitro tests supporting 

the hypothesis that treatments where fluopyram were applied affected levels of resistance. 

However, the mean values of the treatments in 2015 were not significantly different from each 

other (Table 2). Treatment C-14 received two treatments of fluopyram and pyrimethanil without 

being mixed with chlorothalonil (Table 1). Treatment C-15 received two applications of 

fluopyram, pyrimethanil, and chlorothalonil, the tank-mix of chlorothalonil appears to have 

lowered the mean EC50 in 2015 and coincides with management strategies of using tank-mixes. 

However, as fluopyram is used with more frequency resistance levels are likely to increase as 

indicated with the increase in resistant isolates from 2014 to 2015 (Figure 1).  

Cross resistance from boscalid is not influencing the development of A. solani resistant 

isolates to fluopyram. In fact, the correlation is negative, meaning cross-resistance is not 
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developing between these fungicides even though they are in group 7 (FRAC 2015) (Figure 2). 

This is supported in other papers dealing with the resistance of SDHI fungicides (Amiri et al. 

2014; Gudmestad et al. 2013). Research on the binding affinity of fluopyram to the quinone 

binding site shows that fluopyram binds tighter than does boscalid due to the binding of ligands 

with the toxins and it decreases the ability of A. solani to develop resistance (Fraaije et al. 2012; 

Scalliet et al. 2012).  

Chlorothalonil results show that D-14 and D-15 had the highest mean EC50 values, 

though none were resistant. These two treatments differed in applications between 2014 and 

2015 (Table 2). Treatment D-14 received six applications of chlorothalonil while D-15 only 

received four applications, however there were no differences in disease severity between the 

two years (Table 1, Table 2). In a study done by Holm et al. (2003), field populations of A. solani 

were observed to be more resistant to chlorothalonil as the growing season progressed. Holm et 

al. (2003) also observed an effect in rate and number of applictions of chlorothalonil causing 

different mean EC50 values among fields. Our study observed higher EC50 values with more 

applications of chlorothalonil in treatment D-14 of 2014, EC50 values may be higher among 

isolates compared to treatment D-15 in 2015. Chlorothalonil is considered low risk for resistance 

development (FRAC 2015); however, sensitivities of isolates to chlorothalonil may vary 

according to how much is applied without tank-mixing products with different modes of action. 

Our results are different from those observed by Fairchild et al. (2013) who reported 35-40% 

resistance among A. solani isolates collected in Idaho. The methods of Fairchild et al. (2013) and 

our study differed in the use of light. Fairchild et al. (Fairchild et al. 2013) did not expose 

amended fungicide plates, with inoculum, to light during the incubation period, while we 

exposed our plates to light for 15 hours. Light is reported to be important in the activation of 
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chlorothalonil and influences the efficacy to A. solani conidia (Khan and Akhtar 1983; Peñuela 

and Barceló 1998). However, our study is not a representative selection of isolates from Idaho 

and inferences cannot be made about the population of A. solani across Idaho because our 

samples came from plots located in a single field. Chlorothalonil also saw a decrease in EC50 

values from 2014 to 2015 (Figure 1). The decrease in EC50 values may be related to different 

field locations in 2014 and 2015 due to crop rotation. The different locations would likely have a 

different subset of the population. 

Our study with all isolates were resistant to boscalid and 73% of all isolates were 

resistant to fluopyram (Figure 1). These results of boscalid and fluopyram are higher than 

previously reported (Gudmestad et al. 2013; Pasche et al. 2005). Pasche et al. (2005) and 

Gudmestad et al. (2013) evaluated conidia germination for the in vitro sensitivity tests after four 

hours of incubation which may result in lower percentage of germination and lower EC50 values. 

Tymon and Johnson (2014) incubated isolates for 24 hours giving conidia more time to 

germinate. We evaluated germination after 15 hours because conidia in control plates had nearly 

100% germination at that time, which was considerably higher than germination after four hours 

incubation. We observed germination of conidia after 4 hours at high concentrations of boscalid 

but after 15 hours germination was much higher. We believe germination is delayed at high 

concentrations of boscalid but not killed. Extending the incubation period may have allowed 

relatively more spores to germinate, which would have likely been considered dead if evaluated 

after a 4-hour incubation period (Majchrowicz and Poprawski 1993). A more prolonged 

incubation period may have also given conidia more time to overcome any delayed germination 

responses. 
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As the amount of boscalid, fluopyram, and chlorothalonil application increases or 

decreases in the field, A. solani resistance seems to increase or decrease with the amount of 

respective fungicides used. Isolates collected from treatments in 2014 and 2015 did not yield 

different mean EC50 values to boscolid (Table 2). However, isolates among treatments did yield 

different mean EC50 values to fluopyram and chlorothalonil in 2014, but not in 2015 (Table 2). 

The differences observed per year may be in part due to the land area of this study causing plot 

to plot interference or contamination. To better test the effect of fungicide applications on levels 

of resistance in A. solani, it may be better to inoculate with one isolate of known EC50 value to 

boscalid, fluopyaram, and chlorothalonil than to rely on natural inoculum. 

Early blight severity ratings from the field plots were significantly different and 

demonstrate the usefulness of fungicides, but they also show that EC50 values obtained from lab 

experiments do not always correspond directly with the field tests of disease severity according 

to the amount of resistance found among isolates to boscalid and the low amounts of disease 

severity (Table 2). It is unclear if boscalid was effective in the fungicide programs as B-14 and 

B-15 were not significantly different to D-14 or D-15. As long as tank-mixing fungicides with 

different modes of action continues to be a standard management practice, early blight severity 

will be less than non-treated plants (table 2). Due to the high levels of resistance to boscalid 

found in our in vitro studies, the use of boscalid alone is not recommended for early blight 

control, however boscalid continues to be effective against Sclerotinia sclerotiorum (Lib.) de 

Bary (white mold) control and so growers continue to mix it in their sprays (Kirk et al. 2009). 

Based on our results fungicide-resistance levels observed in lab-based studies do not 

correlate to the concentrations of fungicides found in the field (Figure 4). Resistance in this 

study, and other previous studies, identified resistant isolates when germination occurred after 
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exposure to 5 or more µg ml-1 of fungicide (Gudmestad et al. 2013; Kim and Xiao 2010; Yin et 

al. 2011). Field residues are subjected to a number of variables, such as irrigation, 

photodegradation, and new plant growth, which diminish fungicide concentrations within the 

upper and middle canopies (Geary et al. 1999). The observed decreasing trend in residues of 

boscalid, fluopyram, and chlorothalonil followed similar trends observed by Geary et al. (1999) 

where fungicide concentrations were higher in all canopy levels immediately after application 

but decreased in the upper to mid-levels of the canopy prior to the next application. They also 

observed that as residues diminished, percent disease severity also increased. The loss of 

effective fungicide concentrations between two applications may be a factor in the development 

of resistance given that not all isolates are exposed to lethal rates of fungicide (Figure 3). If 

resistance is to be minimized, then an understanding of fungicide persistence within a canopy is 

necessary to maintain lethal concentrations. Fungicide residue analysis within this study was not 

comprehensive due to expensive laboratory procedures, but provided an overview of what was 

occurring within the field at the time of application and again 14 days later. Fungicide deposition 

trends in our study followed that of Geary et al., (1999). However, boscalid and fluopyram have 

not been tested as extensively as chlorothalonil. 

Isolate fitness can be influenced by several different stages of pathogen life cycles. 

Mutations causing resistance can affect fitness throughout stages of the life cycle (Chapara et al. 

2011; Karaoglanidis et al. 2011; Ma and Uddin 2009). Evidenced by enhanced fitness via 

increased spore production in wild-type A. solani isolates compared to QoI fungicide resistant 

isolates (Pasche and Gudmestad 2008). In our study, differences in mycelium growth were not 

significant. However, there was evidence that isolates not resistant to fluopyram produced more 

spores than resistant isolates and may help to control the frequency of isolates resistant to 
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fluopyram in the population (Figure 3, P = 0.052). In order to exploit this cost of fitness to 

fluopyram, one viable resistance management strategy would be to not use fluopyram every year 

in order for the sensitive isolates to predominate. 

CONCLUSIONS 

Field treatments of fluopyram and chlorothalonil affected the sensitivity levels of A. 

solani, which gives limited support that treatments alter sensitivity levels. In contrast, boscalid 

did not give any evidence of the effect of treatment on levels of resistance. However, resistance 

levels to boscalid were observed to decrease as growers in the area used less boscalid. Fluopyram 

resistance was observed among the small population sampled from the limited geographical 

region in the two years of our study. Non-resistant isolates produce more spores than do resistant 

isolates to floupyram, therefore management practices should not use fluopyram as often to 

select for non-resistant isolates. As is consistent with previous trials, resistance to boscalid does 

not confer resistance to fluopyram (Gudmestad et al. 2013). Better management practices can be 

determined from the results. Boscalid is not an effective fungicide in the control of early blight 

disease. Evidence of fluopyram resistance increases as fluopyram is used. Isolates are not 

resistant to chlorothalonil continues to control early blight and should be used with other 

fungicides in tank-mixes.  
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TABLES AND FIGURES 

Table 1. Fungicide treatments for control of early blight used in field at Miller Research in 2014 and 215. 

Treatment Fungicides Rate1 
no. 

Applications 
Date of 

Application 
Date of 

Application Sample % a.i2 
2014 

A-14 Untreated Control NA NA 21-Jun 8-Jul 2-Sep NA 

B-14 Boscalid+Chlorothalonil 281.3 ml ha-1,  631.4 ml ha-1 2 22-Jul 6-Aug
2-Sep

70, 54 

Chlorothalonil 947.1 ml ha-1 2 21-Jun 8-Jul 54 

C-14
Fluopyram+Pyrimethanil 92.8 ml ha-1, 277.0 ml ha-1 2 22-Jul 6-Aug 2-Sep 11.3,33.8 

Chlorothalonil 947.1 ml ha-1 2 21-Jun 8-Jul 2-Sep 54 

D-14 Chlorothalonil 947.1 ml ha-1 6 22-Jul 6-Aug 2-Sep 54 

E-14
Boscolid+Mandipropamid+ 
Difenoconazole 

281.3 ml ha-1, 87.7 ml ha-1, 
87.7 ml ha-1  

2 21-Jun 8-Jul 2-Sep 70,21.9,21.9 

Pyrimethanil+Chlorothalonil 279.2 ml ha-1, 631.4 ml ha-1 2 22-Jul 6-Aug 2-Sep 54.6,54 

2015 
A-15 Untreated Control NA NA 22-Jun 6-Jul 12-Aug NA 

B-15 Boscalid+Chlorothalonil 281.3 ml ha-1,  631.4 ml ha-1 2 22-Jul 4-Aug
12-Aug

70, 54 

Chlorothalonil 947.1 ml ha-1 2 22-Jun 6-Jul 54 

C-15
Fluopyram+Pyrimethanil+ 
Chlorothalonil 

92.8 ml ha-1, 277.0  ml ha-1, 
947.1 ml ha-1 

2 22-Jul 4-Aug 12-Aug 11.3, 33.8, 54

Chlorothalonil 947.1 ml ha-1 2 22-Jun 6-Jul 12-Aug 54 

D-15 Chlorothalonil 947.1 ml ha-1 4 22-Jul 4-Aug 12-Aug 54 
1, Rates were taken from the rate of formulated product multiplied by percent active ingredient. 
2, Percent active ingredient in formulated product. 
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Table 2. Results of in vitro EC50 values1 (µg ml-1) and disease severity. Treatments are as follow: A-14 = untreated 
control, B-14 = boscalid+chlorothalonil, C-14 = fluopyram+ pyrimethanil +chlorothalonil, D-14 = chlorothalonil, E-
14 = boscalid+mandipropamid+difenoconazole+pyrimethanil+chlorothalonil. 

Boscalid Fluopyram Chlorothalonil 
Disease 
Severity 

Year, Treatment mean range mean range mean range %Area 

2014 
A-14 956.9 643.7 to 1000 5.6 bc 1.9 to 24.1 2.1 ab 1.7 to 2.8 34.7 a 
B-14 1000.0 NA* 2.6 c 0.4 to 8.5 1.8 bc 1.2 to 2.6 17.7 b 
C-14 741.4 128.0 to 1000 17.1 a 6.9 to 33.1 1.5 c 1.00 to 3.2 6.6 c 
D-14 795.6 178.7 to 1000 6.0 b 1.5 to 24.8 2.3 a 1.4 to 3.0 14.3 b 
E-14 802.2 128.1 to 1000 6.5 bc 1.7 to 25.0 2.2 ab 1.8 to 4.0 16.9 b 

p-vlaue (α=0.05) 0.3 < 0.001 0.002 < 0.001 
2015 

A-15 302.9 17.1 to 1000 11.0 2.7 to 46.8 0.9 0.2 to 2.0 36.0 a 
B-15 357.0 27.3 to 1000 11.0 4.3 to 36.5 1.0 0.5 to 1.8 14.1 b 
C-15 410.4 89.0 to 1000 11.8 5.8 to 31.1 0.8 0.7 to 1.0 6.8 c 
D-15 534.1 49.4 to 1000 18.3 5.4 to 58.5 1.1 0.7 to 1.8 16.1 b 

p-vlaue (α=0.05) 0.7 0.452 0.443 < 0.001 
*. All mean EC50 values were adjusted to 1000 µg ml-1 and therefore there is no range or SD. 
1. Values are back transformed after ln transformation.
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.
Figure 1. Distribution of 50 A. solani isolates collected in 2015 and 40 isolates in 2014 of sensitivities to boscalid, fluoypram, and chlorothalonil.. 
Distribution of 40 A. solani isolates in 2014 and 50 isolates collected in 2015 of sensitivities to boscalid, fluoypram, and chlorothalonil. Isolates were 
collected from research field plots near Miller, Research in Rupert, ID. Effective concentrations which inhibits spore germination by 50% were 
estimated using in vitro methods compared to non-amended control (EC50 µg ml-1). Line at 5 µg ml-1 represents threshold for resistance; bars to the 
left of line are sensitive and bars to the right of line are resistant 



28 

Figure 2. Spearman rank correlation of in vitro sensitivities to fluopyram and boscalid to 50 isolates collected in 
2014 and 40 isolates collected in 2015.

Figure 3. Fitness, determined by conidia production, of 26 sensitive and 64 resistant isolates collected from field 
plots in 2014 aned 2015 to fluopyram as determined from the in vitro effective concentration 50% assays. A - Radial 
measurements were taken 2, 4, 6, and 7 days after initiation of culture. Error bars represent confidence intervals. 
Model: Ln Area=day+sensitive+resistant+day2+day*sensitive+day*resistant (P = 0.24). B- Measurement of conidia 
mm-2 (P = 0.052). Letters represent significance.
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Figure 4. Concentrations of boscalid, fluopyram, and chlorothalonil residues on potatoleaflets at one and 16 sixteen 
days application. Samples tested for boscalid residue were taken from treatment B-15. Samples tested for fluopyram 
residue were taken from treatment C-15. Samples tested for chlorothalonil residue were taken from treatment D-15. 
Fungicides were applied June 23, 2015 and were not applied again for two weeks, July 6, 2015. 
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CHAPTER 2-Literature Review 

INTRODUCTION 

Early Blight of potatoes is a fungal pathogen that decreases yields. The causal agent of 

early blight is Alternaria solani (E&M) Sorauer. Different fungicides have been used to control 

the disease but resistance develops in a matter of years. Boscolid, a succinate dehydrogenase 

inhibitor (SDHI), showed great efficacy when it was first introduced on the market but 4 years 

later, evidence of resistance was observed among fields in Idaho (Fairchild et al. 2013; 

Gudmestad et al. 2013). Fluopyram is another SDHI that was introduced to the market after 

Boscolid. The two fungicides are in the same group but no cross resistance has been observed to 

isolates of Alternaria solani. 

 Chlorthalonil is a multi-site inhibitor, also used to control the early blight disease on 

potatoes. The fungicide is considered a low risk fungicide due to its ability to inhibit multiple 

enzymes. However, recently a report was made that there was 35%-40% resistance in isolates of 

Alternaria solani in Idaho (Fairchild et al. 2013). The amount of resistance observed from the 

study is suspect due to the low probability of resistance developing to Chlorothalonil and the 

methods used to determine resistance. 

 Therefore the objectives of this research are to (1) determine if populations of A. solani 

collected from areas where Boscolid, Fluopyram, and Chlorothalonil were applied differ in their 

sensitivity to the respective fungicides; (2) determine if Boscolid confers cross resistance to 

Fluopyram, and vice versa; (3) determine if there is a fitness penalty for maintaining resistance 

potential; and (4) identify recommendations of fungicide sprays that minimize the buildup of 

resistant A. solani. 
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LITERATURE REVIEW 

Potatoes 

Domesticated plants struggle with the abundance of pests that invade and damage tissue, 

lowering yields and sometimes causing devastating economic disasters. Since the 1960’s 

pesticides have played a major role in protecting our crops from pests such as insects, fungi, 

bacteria, and viruses. In 2005, potatoes treated with pesticides had estimated yield loses of 14, 7, 

11, and 8% due to pathogens, viruses, insects, and weeds, respectively; without pesticides yield 

losses were estimated at 75% (Oerke 2006).  

Potatoes are an important crop in the United States and the world. It is the number one 

consumed vegetable in the US, which is the fifth largest producer of potatoes with sales 

exceeding $3.7 billion (FAO 2014; USDA-NASS 2015). Potatoes are an economically important 

crop that must be protected from pests because they significantly reduce yields and the US needs 

to protect the more than 447 thousand metric tons of potatoes distributed throughout the world 

(FAS, Office of Global Analysis 2013) . 

Resistance 

Pesticides are an important means to protecting plant products from damage, and in 1960, 

more than 89 million kilograms of active ingredient were used for pest control. This quantity 

grew to 287 million kilograms of active ingredient in 1981, but has since decreased to 234 

million kilograms in 2008. Farmers in the US spent about $12 billion for pesticides in 2008, of 

which 80% were applied to corn, soybeans, wheat, and potatoes. Herbicides account for 76% of 

active ingredient applied to crops in 2008, and insecticides approximated 5.5% of active 

ingredient. Potatoes received approximately 10% of all active ingredient used in 2008, and 

almost 10% of that used on potatoes were fungicides (Fernandez-Cornejo et al. 2014).  
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The use of herbicides has greatly increased due to herbicide-resistant cotton, soybean, 

and corn, which contains over 90% herbicide resistant varieties. An additional 43 million 

kilograms of glyphosate were used in 2008 on soybeans, and another 37 million kilograms on 

corn and cotton as a result of herbicide resistant varieties (Fernandez-Cornejo et al. 2014). With 

this increased use, resistance has been found among crops that have been treated exclusively 

with glyphosate (Culpepper et al. 2006; Heap 2014; VanGessel 2001). These new biotypes have 

needed up to 7 times the listed rate to decrease the biomass by 50%. The use of Bt corn and 

cotton has decreased the use of insecticides; however, aphids and the Colorado potato beetle 

have shown resistance to imidicloprid. Other studies have found insects have gained resistance to 

different insecticides despite the reduction in the amount of insecticides applied (Mota‐Sanchez 

et al. 2006; Su et al. 2014; Weichel and Nauen 2003).  

Fungi, like weeds and insects, also develop resistance to fungicides, particularly those 

that are used extensively, and they do it at a faster rate weeds. Fungicides act as protectants to the 

host from the pest and/or can be curative once the fungi has colonized the host. Fungicides can 

translocate within the plant (systemic) or can be stagnate on the leaf surface (contact). There are 

many different fungicidal classes that are determined by their mode of action; the Fungicide 

Resistance Action Committee put together a code, based on the mode of action and targeted site 

of the fungicide (FRAC 2015). Each mode of action has different target sites; there are also 

different chemical groups for each target site. The Fungicide Resistence Action Committee also 

helps to educate growers about the risks of fungicide resistance developing and how to protect 

against that development. 

Fungicide resistance levels defined in a lab do not always correlate to the concentrations 

of fungicides found in the field. Resistance in this study, and other previous studies, identified 
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resistant isolates when germination occurred after exposure to 5 or more µg ml-1 of fungicide 

(Gudmestad et al. 2013; Kim and Xiao 2010; Yin et al. 2011). Field residues are subjected to a 

number of variables such as irrigation, photo degradation, and new plant growth that diminish 

fungicide concentrations within the upper and middle canopies. The observed trend in residues of 

boscalid, fluopyram, and chlorothalonil followed similar trends observed by Geary et al. (1999) 

in that fungicide concentrations were higher in all canopy levels immediately after application 

but decreased in the upper to mid-levels of the canopy prior to another application. Geary et al. 

(1999) also observed that as residues diminished, percent disease severity also increased. The 

loss of effective fungicide concentrations between two applications may be a factor in the 

development of resistance as not all isolates are exposed to lethal rates of fungicide. If resistance 

is to be managed, then an understanding of fungicide persistence within a canopy is necessary to 

maintain lethal concentrations. 

 Fungicides in the 1960’s were predominantly copper based or multi-site inhibitors (MSI), 

meaning they disrupted several different pathways of the pathogen by inhibiting general 

enzymes. The MSI fungicides from the 1960’s had limited efficacy and were considered harmful 

to humans and to the environment, resulting in the search for single-site mode of action and more 

efficacious fungicides. Single mode of action fungicides were developed to target a specific 

metabolic site and physiological pathways of the pathogen. Now there are many fungicides each 

with a unique mode of action and their chemical classes along with information detailing the risk 

of resistance (FRAC 2015). Fungicides are grouped according to their mode of action, five main 

groups that have been used over the past 30 years are 1- benzimidazoles, 2- demethylation 

inhibitors (DMI), 3- Quinone outside inhibitors (QoI), 4- succinate dehydrogenase inhibitors 

(SDHI), and 5- multi-site inhibitors (MSI).  
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Benzimidazoles helped the transition from these multi-site and copper based fungicides 

to single-site inhibitors during the late 1960s. This group targets microtubule formation and 

inhibits cell division (Clemons and Sisler 1971; Davidse 1986; Davidse and Flach 1977; Quinlan 

et al. 1980). Unfortunately, resistance to the benzimidazoles was detected within a few years 

after introduction. Powdery mildew of cucurbits had been controlled by benzimidazoles for 

many years; however in 1969, there were reports of resistance developing among some isolates 

(Schroeder and Provvidenti 1969). Benzimidazoles have also been used on potato tubers to 

control Helminthosporium solani but resistance was found soon after they were introduced (Hide 

et al. 1988; Jellis and Taylor 1977). Monilina fruticola, the causal agent of brown rot in apricot 

and prune trees, has also developed resistance to benzimidazole fungicides. Brown rot accounted 

for $2.82 million in annual loss and expenses in 1963 (Michailides et al. 1987). Fungicides of 

this group have diminished in use since resistance was identified and the control of pathogens is 

expensive but becomes more expensive when resistance develops and higher rates or more 

frequent applications are needed for control. Observing the cost of control and annual losses 

from M. fruticola demonstrates how resistance can be a serious problem. Interestingly, as 

applications decreased studies have shown that frequency of resistant isolates decreased while 

non-resistant isolate frequency increased (McGrath et al. 1996). Demonstrating there is a fitness 

expense to the pathogens for possessing resistance capabilities.  

Demethylation inhibitors were also developed in the 1960’s and provided a broad 

spectrum of control against many different pathogens in a variety of crops (Scheinpflug 1988). 

The DMI’s mode of action creates leaks in the fungal membranes; the fungicide binds to an 

enzyme, keeping 24-methylenedihyrolanosterol from progressing on to ergosterol (Vanden 

Bossche et al. 1987). Resistance to the DMI mode of action was first observed on cucurbits 
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infected with powdery mildew (Huggenberger et al. 1984). Continued use of these fungicides 

resulted in more fungi becoming resistant: Botryosphaeria dothidea, the causal agent of panicle 

and shoot blight, and Blumeriella jaapii, the causal agent of cherry leaf spot (Proffer et al. 2006). 

According to the Fungicide Resistance Action Committee, DMI fungicides are classified as 

medium risk for resistance development. 

Quinone outside inhibitors (QoI) have good efficacy on a number of different pathogens 

and were developed from two fungi: Strobilurus teacellus and Oudemansiella mucida. The 

common name for QoIs has become strobilurins (Knight et al. 1997). The target site for 

strobilurins is cytochrome b protein in Complex III of the mitochondria; the fungicide inhibits 

electron flow between cytochrome C1 and b, effectively inhibiting NADH oxidation (Becker et 

al. 1981; Von Jagow et al. 1986). In the United States, the fungicide azoxystrobin, a strobiluron 

fungicide, was registered in 1999 for potato use and within a few years resistance had developed 

in Alternari solani, the causal agent of early blight. Azoxystrobin was used in potato fields to 

control early blight but reports of reduced efficacy were reported as early as 2000. Isolates of A. 

solani were collected across several states from 1998-2001 and evaluated for resistance. A shift 

from sensitive to resistant A. solani was observed across all years but was more pronounced in 

2001 (Pasche et al. 2004). Other Alternaria species have also developed resistance to QoIs such 

as A. alternata, A. tenuissima, and A. arborescens (Ma et al. 2003). Researchers in Japan 

identified resistance to QoIs in powdery mildew (Podosphaera fusca (Fr.)) and downy mildew 

(Pseudoperonospora cubensis (Berk. & M. A. Curtis) Rostovzev) on cucumber (Ishii et al. 

2001). Due to resistance issues, the QoIs are not used as frequently on the many crops that 

initially used them. 
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Succinate dehydrogenase inhibitors were also developed in the 1960’s and had good 

control of many plant pathogens. The mode of action of SDHI fungicides disrupts cellular 

respiration in the cell by targeting the succinate dehydrogenase complex (Avenot and 

Michailides 2010b; White and Thorn 1975). Laboratory mutation experiments trying to 

understand the mode of action reported resistance development to SDHIs soon after the 

fungicide was developed (Ben-Yephet et al. 1974; Georgopoulos and Sisler 1970). Field studies 

of Ustilago maydis later confirmed the laboratory resistance development (Leroux and Berthier 

1988). Field resistance has also been reported in Monilini fructicola, Botrytis cinerea, Alternaria 

solani, and other fungi (Amiri et al. 2010; Avenot and Michailides 2007; Leroux et al. 2010). 

The fifth group of fungicides MSIs, have unique modes of action for each of the different 

chemical classes but because they target multiple cites so they are grouped as MSIs. Since MSIs 

target fungi at multiple sites of inhibition, resistance development is considered low. Research 

has shown some evidence of resistance, but only in small percentages of pathogen populations. A 

study conducted at Cornell University with isolates of Phytophthora infestans collected in 

Mexico, showed variable resistance levels in a couple of isolates (Sujkowski et al. 1995). A 

small amount of resistance was also found in Botrytis cinerea (Zhang et al. 2009). The low 

amounts of resistant isolates are not enough for concern but monitoring of resistance should 

continue. 

Site-specific fungicide groups, such as the four mentioned above, have improved 

pathogen control compared to MSIs, but resistance is becoming more prevalent and reducing 

site-specific efficacy. Fungicide resistance in potatoes is a problem for potato producers and if 

site-specific fungicides are ineffective then potato yields will go down. Potatoes are susceptible 

to many fungal pathogens and require multiple fungicide applications for a healthy crop. The 
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frequency of fungicides applied to potatoes has increased from 24% in the late 1960’s to 85-95% 

in 2008 (Fernandez-Cornejo et al. 2014). One of the many fungal pests of potatoes is Alternaria 

solani (E&M) Sorauer, the causal agent of early blight. Alternaria solani can reportedly form 

resistance rather quickly (Pasche et al. 2004), which is problematic because the pathogen can 

reduce yields by 50% (Harrison and Venette 1970; Neergaard 1945). An understanding of 

resistance development is necessary to keep labeled fungicides effective against Alternaria 

solani and stop the loss of these important production tools. 

Early Blight Disease 

Alternaria solani was first identified in 1882 from dying potato leaves by Ellis and 

Martin and was called Macrosporium solani; it was later changed to the genus Alternaria by 

Jones (Ellis and Martin 1882; Vermont Agricultural Experiment Station. 1888). Alternaria solani 

is identified by long multi-celled conidia with tails that are just as long as or longer than the 

conidia. Potato plants develop lesions where infected, which appear brown and circular, about 1-

2 mm in diameter. As the lesions grow on potato leaves concentric rings emerge giving the 

lesion a “bull’s eye” look. The edges of the lesion may be surrounded by a yellow halo. The 

pathogen can overwinter on infected host debris or on volunteer hosts and weeds of the 

Solanacea family (Rands 1917). Alternaria solani is a hardy fungus and can survive through hot 

dry summers and cold, wet winters. The conidia germinate and infect plants when the weather is 

warm and humid (24-29°C) (Bashi and Rotem 1974). The stomata are the main entrance of the 

germ tubes into the epidermis. Symptoms usually occur first in older leaves under warm, moist 

climates. Wind is the principle mode of dissemination but rain can also spread conidia. 

Alternaria solani is a polycyclic pathogen meaning it will go through multiple cycles throughout 

the growing season where conidia are produced repeatedly (Kemmitt 2013). Alternaria solani 
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belongs to the phylum Ascomycota, order Pleosporales, family Pleosporacea (Ainsworth 2001). 

The genus Alternaria was first established in 1817 by Nees (Rotem 1994b). 

Alternaria fungi have reportedly gained resistance to a number of fungicides (Avenot and 

Michailides 2007; Dry et al. 2004; Fairchild et al. 2013; Gudmestad et al. 2013; Iacomi-

Vasilescu et al. 2004; Ma et al. 2003; Rosenzweig et al. 2008). Resistance development in A. 

solani to fungicides from the modes of action groups QoI, SDHI, and MSI have become a 

problem to many crops but are posing a serious concern to potato growers trying to manage early 

blight. It is no longer viable to apply a fungicide with the same mode of action over and over 

again, instead growers must alternate modes of action and monitor for cross-resistance 

development. Cross-resistance is when a pathogen develops resistance to the effects of a 

fungicide because of exposure to a related class of fungicides. Cross-resistance does not occur 

between modes of action, thus the need to alternate, but it can develop between or among classes 

of fungicides within a mode of action. Alternaria spp. have been observed to develop cross-

resistance among classes of fungicides within fungicide mode of action but not between the 

SDHI or MSI groups (Amiri et al. 2014; Fairchild et al. 2013; Gudmestad et al. 2013; Hildebrand 

et al. 1988; Ishii et al. 2001).  

Alternaria solani has been controlled in potato production in recent years with Boscolid 

(Endura; BASF Corporation, Agricultural Products, Research Triangle Park, NC), Fluopyram 

(Luna Privilege, Bayer Crop Science, Durham, NC), and Chlorothalonil (Bravo, Syngenta Crop 

Protection, LLC, Greensboro, NC). Resistance has been observed to these three fungicides 

(Fairchild et al. 2013; Gudmestad et al. 2013; Pasche et al. 2004). Boscolid and Fluopyram are 

SDHI fungicides but belong to different fungicide classes even though they have the same mode 
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of action. Chlorothalonil is a MSI fungicide, one report of resistance has been documented but it 

is unclear if resistance is growing (Fairchild et al. 2013). 

The SDHI fungicide, Boscolid, was registered in 2005 for control of early blight on 

potatoes. Boscolid proved to have good efficacy controlling early blight and became a popular 

replacement when resistance was observed to other groups of fungicides (Pasche et al. 2005). 

Soon after Boscolid was introduced resistance was detected and became prevalent in several 

states across the US. Of Isolates collected in 2010-2011, 75% demonstrated EC50 levels of 5 

µg/ml and being labeled resistance to Boscolid (Gudmestad et al. 2013). Boscolid is in the 

chemical class pyridine-carboximides and binds, or docks to the succinate dehygrogenase (SDH) 

subunits of the mitochondrial respiratory chain (complex II). Different mutations of the SDH 

genes cause different levels of resistance to the fungicide by changing the shape of the SDH 

enzyme (Fraaije et al. 2012; Scalliet et al. 2012). 

Fluopyram was registered for potato use in 2012 to control early blight. This SDHI 

fungicide belongs to the chemical class pyridinyl-ethyl-benzamides, which is different 

structurally to Boscolid (table 1) (Fig. 1). Studies have demonstrated that low levels of resistance 

has formed to Fluopyram while some of the same isolates are resistant to Boscolid (Amiri et al. 

2014). The mutations of the SDH enzyme that cause resistance to Boscolid do not necessarily 

render resistance to Fluopyram, so cross-resistance development in Fluopyram should not be due 

to Alternaria solani exposure to Boscolid. The docking of fungicide is a key factor in the toxicity 

of a fungicide to a pathogen and Fluopyram docks to the SDH protein in a different manner than 

Boscolid (Fraaije et al. 2012). After three years of application to commercial potato fields, 

resistance to Fluopyram has not been observed in high frequencies but resistance suggest a cross-

resistance effect due to Boscolid, or resistance is building due to mutation effects in the SDH 
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genes. Currently, the low levels of resistance in Fluopyram has only been explained by changes 

in the docking site of the molecule to the SDH enzyme and there are still some questions 

regarding its true effects (Fraaije et al. 2012; Scalliet et al. 2012).  

Chlorothalonil is a MSI that effectively protects potatoes from the early blight disease 

(Holm et al. 2003). The plant is protected as UV light breaks down Chlorothalonil, producing 

derivatives that inhibit thiol-dependent enzymes in the fungus (Khan and Akhtar 1983; Tillman 

et al. 1973). The derivatives cause multiple reaction sites that make resistance development more 

difficult, thus Chlorothalonil is considered to be a low risk fungicide for resistance development 

by FRAC. However, studies with Phytophthora infestans and Botrytis cinerea have reported 

limited resistance to Chlorothalonil in a few isolates (Sujkowski et al. 1995). A report of 

Alternaria solani resistance to Chlorothalonil has caused concern with potato growers because 

Chlorothalonil has had excellent control of early blight and when tank mixed with other 

fungicides it helps to reduce resistance build-up to fungicides such as Boscolid and Fluopyram 

(Fairchild et al. 2013). 

Boscolid and Fluopyram are great controllers of early blight on their own but FRAC 

maintains that all single-site fungicides should be tank mixed with other fungicide groups. In 

potatoes these fungicides are often mixed with Chlorothalonil. Field trials have shown that 

efficacy of Boscolid and Fluopyram go up when mixed with Chlorothalonil. However, a mix of 

Fluopyram and Chlorothalonil demonstrated better results than Boscolid and Chlorothalonil 

(Horsfield et al. 2010; Miller 2012).  

Monitoring for resistance to Boscolid, Fluopyram, and Chlorothalonil are necessary 

because of the importance to minimize early blight in potatoes. However, the application of these 

three fungicides selects A. solani populations resistant to the fungicides. The resistant trait within 
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the fungus gives it a fitness—ability to survive different environments—advantage that is passed 

on to progeny, and eventually the fungal population is resistant. If the build-up of resistance to 

Boscolid, Fluopyram, and Cholorothalonil could be better understood by knowing the 

importance of cross-resistance and the time frame in which resistant populations predominate, 

then we could increase the longevity of these fungicides. Some research has suggested that there 

is not a fitness cost as a result of resistance (Chapara et al. 2011; Karaoglanidis et al. 2011). 

However, in other studies fitness costs have been observed in resistant pathogens (Billard et al. 

2012; Iacomi ‐Vasilescu et al. 2008). A population shift back from resistant to susceptible 

isolates is ideal as was seen among isolates of Sphaerotheca fuliginea of cucurbits. After 20 

years S. fuliginea was more sensitive to benomyl after not being used (McGrath et al. 1996). 

Fitness and cross-resistance both have to do with the mutations causing resistance in pathogens 

(Mallik et al. 2014; Miles et al. 2014). Research done by Miles et al. (2014) observed how a 

mutation in the H133R gene of succinate dehydrogenase subunit D can result in resistance to 

boscalid and fluoypram. Mutations my not affect one single gene but multiple genes making it 

difficult to find fitness costs. Factors of mutations also need to be looked into for better 

understanding of resistance and fitness. If the timing and alteration, or tank mixing, of fungicides 

were developed so that non-resistant isolates predominate the population then the disease could 

be better controlled and our current fungicides could be used effectively for many years without 

the development of new fungicides.  

Therefore the objectives of this research are to (i) determine if populations of A. solani 

collected from areas where Boscolid, Fluopyram, and Chlorothalonil were applied differ in their 

sensitivity to the respective fungicides; (ii) determine if Boscolid confers cross resistance to 

Fluopyram, and vice versa; (iii) determine if there is a fitness penalty for maintaining resistance 
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potential; and (iv) identify recommendations of fungicide sprays that minimize the buildup of 

resistant A. solani.  
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