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ABSTRACT 

Effects of Nutritional Modification in Pseudo and Ruminant Livestock 

Rebekah Paige Jensen 
Department of Plant and Wildlife Sciences, BYU 

Master of Science 

Small ruminant species are utilized for their diverse products including meat, dairy 
products, and wool. Effective and humane management are essential to maintain high production 
rates and comfortable animals. To attain this objective, managers needs to have an extensive 
knowledge of husbandry techniques, understanding of physiological processes, and familiarity 
with nutritional requirements. We examined the effects of varying feed components on two 
different ruminal species. In Chapter 1, we conducted a study to evaluate the effects of a low 
metabolizable energy (LME) and high metabolizable energy (HME) diet on twenty-two 
Friesian/Lacuane cross ewes and lamb nutritional status. Effects on milk production during early 
lactation stages and the growth of the neonatal lambs were also investigated. We anticipate 
energy levels will have an effect on milk production and lamb growth. Our results indicate that 
ewes on the LME diet produced more milk with higher concentrations of fat though this group 
maintained lower body condition. We concluded that neither the HME nor the LME diet met the 
needs of the sheep due to the shift in nutrient partitioning towards milk production rather 
than allocating nutrients to maintaining both body condition and milk production. Limited 
energy requirements are further evidenced by the decline in back fat (BF) for both the HME and 
LME groups for the duration of the study.  We determined the degradation parameters of grass 
hay supplemented with soybean meal (SBM) and the effects of SBM on compartment 1 
(C1) ammonia and volatile fatty acid (VFA) concentrations in alpacas. Our findings show that 
the degradation rate was not different for dry matter (DM), but it was for crude protein (CP) 
(P<0.05). With this data it can be concluded that SBM can be a CP supplement when the diet is 
insufficient to improve microbial yield. It should be noted that care should be taken to avoid 
causing a protein-energy imbalance. The results of these two studies indicate shifts in 
nutrients availability and changes in feeding strategies can affect both the health of 
the animal and their subsequent offspring. 

Keywords: Alpaca, Friesian sheep, in situ digestibility, soybean meal, VFA 
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CHAPTER 1 

  Plane of Energy Nutrition on Blood Metabolites, Milk Production and Lamb Growth in Friesian 
Sheep 

Rebekah Paige Jensen, Todd F. Robinson 
Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 

ABSTRACT 

This study was conducted to evaluate the effects of a low metabolizable energy (LME) 

and high metabolizable energy (HME) diet on twenty-two Friesian/Lacuane cross ewe milk 

production and nutritional status of the ewes and their lambs. Ewes were housed in a common 

paddock with ad libitum water and were fed alfalfa hay at 3% of body weight (BW). On day 100 

of gestation, ewes were divided into metabolizable energy (ME) groups and fed alfalfa hay and 

rolled corn that provided either 80% low metabolizable energy (LME) or 140% high 

metabolizable energy (HME) of recommended ME requirement based on published NRC (2007) 

values for 70 kg ewes carrying twins, nursing twins and producing 1.5 to 2.9 kg milk/day. The 

treatment period was from the last trimester of gestation (approximately six weeks) to six weeks 

after parturition. Lamb treatments included HME, LME and lambs artificially reared (AR) on 

goat’s milk. Body weight and backfat (BF) were monitored and recorded weekly for each ewe 

while weekly lamb BW was obtained for the duration of the study. Blood samples were collected 

weekly from the ewes beginning at their third trimester and concluding six weeks post 

parturition. Lamb blood samples were also collected weekly for six weeks post birth. Blood 

metabolites including, glucose, plasma urea nitrogen (PUN), creatinine, total protein (TPP) and 

triglycerides were analyzed to assess the nutritional status of both ewes and lambs. In 

addition, weekly milk samples for each ewe were analyzed for butter fat, protein, lactose, milk 

urea nitrogen (MUN), somatic cell count (SCC), and solids-not-fat (SNF). Ewe body weight was 
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not effected by treatment. There were differences in BF with the HME group having more BF 

than the LME group. A weekly effect was noted for ewe blood components glucose, PUN, and 

TPP. Milk fat percentage, daily fat produced, and lactose were affected by energy treatments. 

The LME group displayed both higher BF percentages and daily fat in milk while the HME 

group had higher concentrations of milk protein and lactose percentages. Lamb weight showed 

weekly and treatment affects for all three lamb groups (AR, HME, and LME) with the HME 

group weighing the most by the end of the experiment. Concentrations of plasma glucose, PUN, 

and creatinine resulted in differences with the HME group having the highest concentration of 

each component. Our results indicate that perinatal nutrition effects both the ewe and lamb as 

well as milk production. Because of the lower energy intake of the LME group, we see that 

nutrient partitioning occurs enabling the ewe to allocate energy towards growth of the fetus and 

to produce enough milk to sustain growth of the lamb post placental drop. This partitioning of 

energy came at the expense of body condition for the LME group, and to a lesser extent to the 

HME group, in order to produce adequate milk for the offspring. It is also evident, that neither 

diet met animals' energy nutrient requirements as both BW and BF declined for each group post 

parturition.  

INTRODUCTION 

Animal production is a fast growing and evolving industry. The Food and Agriculture 

Organization of the United Nations acknowledges that livestock contribute 40% of the global 

value of agricultural output and in addition, support the livelihoods and food security of almost 

a 1.3 billion people (Food and Agriculture Organization of the Unites States, 2014). In 2014, 

milk production reached about 168 million tonnes of milk and of that 3.2% of total milk 
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production came from sheep (Ovis aries), goats (Capra aegagrus), and bison (Bison bison); 

(Food and Agriculture Organization of the United States, 2014). Dairy sheep of the Friesian 

breed production is not as well established in the United States as it is in Europe and surrounding 

countries. In the United States, sheep are typically utilized for their meat and wool products.   

Pregnant ewes undergo a gestation period of five months (approximately 150 days) and 

lactate from four to five months in commercial herds. During gestation and lactation, the 

endocrine system of the ewe distributes nutrients throughout the body to support the fetus and 

thereby causes major changes affecting metabolic processes (Charismiadou et al., 2000). In this 

way, prenatal ewe nutrition is vital to both the mother and potential offspring (Charismiadou et 

al., 2000). Consequently, animal performance is contingent on the intake of metabolizable 

and digestible nutrients (Mertens, 1994). Deficiency or overabundance of nutrients will affect the 

animal’s productive capabilities. Though some ewes may be fed what is considered the 

appropriate mixed diet based on ewe breed, size, gestational stage, and milk production needs 

(NRC, 2007), there is a possibility that fetal growth could be reduced because of a placental 

limitation on the supply of nutrients (Mellor, 1983). When this occurs, nutrient restriction during 

gestation shift nutrient partitioning towards the uterus to foster growth of the fetus (Celi et 

al., 2008). Additionally, underfeeding pregnant sheep can result in a variety of adverse effects 

on fetal and newborn lambs such as affecting placental size, growth of the fetus, fetal fat reserves 

allocation for use after birth, udder development as well as colostrum and milk production 

(Mellor, 1983 and 1988). Likewise, metabolism can vary due to the amounts and ratios 

of absorbed nutrients, as well as the individual, and the interaction of, biochemical 

pathways (Mertens, 1994). With the multitude of interactions occurring, it is important to keep in 
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mind that differences in breed, diet, environment and management can also affect nutrient 

requirements and utilization by the animals (Galvani et al., 2008).    

Our objective was to evaluate the effects of a low metabolizable energy (LME) and 

high metabolizable energy (HME) diet on Friesian ewe and lamb nutritional status including 

analysis of blood components, weight, and body condition scores (BCS). In addition, we 

determined the effects of ME on milk production during early lactation. We expected the energy 

level fed to the ewes will have an effect on milk production and lamb growth. Lambs are 

subdivided into three categories: those that are offspring from the HME fed ewes, those that are 

offspring from the LME fed ewes, and a small portion that are unable to nurse from mother and 

are fed goat milk make up the artificially reared (AR) group. Analysis and evaluation of ME is 

reviewed to better understand the energy effects on these high milk producing sheep.

METHODS 

Animals, location and experimental design 

Twenty-two Friesian/Lacuane cross ewes, between the ages of 2 and 5 years, were bred to 

East Friesian rams under the approval of the BYU IACUC (#16-1103). Pregnancy was confirmed 

by ultrasound initially, then by blood analysis (Utah Veterinary Diagnostic Laboratory, Logan, 

UT). Each ewe was identified by a farm ear tag as well as federal scrapies ear tag. Three days 

after birth, each lamb was fitted with a farm tag and scrapies tag. One day prior to beginning the 

experiment (third trimester), ewes were vaccinated with a commercial 8-way 

product (Ultrabac 8®, Zoestis Animal Health, Parsppany, NJ, USA) and dewormed with a broad-

spectrum anti-parasitic (Valbazen®, Zoestis Animal Health, Parsppany, NJ, USA).   
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Treatment groups were fed either an 80% (LME) or 140% (HME) of recommended ME 

requirement based on the Small Ruminant NRC (2007) values for 70 kg ewes with high milk 

production in late gestation and early lactation. For the gestation period the NRC ME 

requirement was 3.50 and 6.12 MCal for the LME and HME groups. The lactation 

period NRC ME target was 4.38 and 7.67 MCal.   

During the first two trimesters of gestation, ewes were housed in a common paddock 

with ad libitum water and alfalfa hay (Medicago sativa; see Table 1-1). On day 100 of gestation 

(approximately the beginning of the last trimester), ewes were randomly divided into ME 

treatment groups to ensure that ewe ages were equally represented in the two treatments, with 11 

ewes per diet.  

Ewes were housed in two dry lot pens with access to shelter bedded with straw and ad 

libitum water. Ewes gave birth in these pens and soon after, ewes and lambs were moved into a 

barn for sample collection. Ewes and lambs were sampled as outlined below. If a ewe had triplets 

(15 ewes), quadruplets (1 ewe), or it was determined she was unfit to raise a lamb, the lamb or 

lambs were moved to the artificially reared (AR) lamb group after receiving colostrum. After 

parturition, ewes with lambs were moved to cribs as outlined below. Lambs in the AR group 

were fed 60 ml of sheep colostrum at three 4-hr intervals. They were then fed 75 ml of fresh goat 

milk four times per day until d-7. From d-8 to d-17 lambs were fed 120 ml four times per day. 

From d-15 to d 21 lambs were fed 240 ml three times per day. From d-22 to d-42 lambs were fed 

480 ml twice daily. Goat milk fed to AR lambs was analyzed for milk components as outlined 

below (Table 1-4).  
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Sampling 

From day 100 of gestation to parturition (approximately day 145), ewes were fed 

daily (0700 hr) treatment diets (see Table 1-1 and Table 1-2). Ewes were weighed weekly at 

1000 hr on a platform scale while lambs were weighed on a portable scale until large enough 

(3000 g) to use the platform scale. Body condition score was determined by backfat (BF) depth 

over the 12th rib (industry standard) using A-mode ultrasound (Preg-Alert Pro, Renco, Golden 

Valley, MN, USA). Blood was drawn (5 ml) weekly using a syringe and needle from the jugular 

vein of each ewe. The site of extraction was shaved and cleaned with alcohol prior to the blood 

draw. 

At parturition, ewes were weighed, BF measured, and blood drawn post placental drop 

prior to putting the ewe and lambs into crib pens. At birth, lambs were weighed and 2ml of blood 

drawn prior to nursing and being put into the cribs with their mother, or in the case of the AR 

lambs, into the lamb nursery. Ewes and lambs remained in the cribs for three days while they 

"mothered-up" (i.e., socially bond). After that time, ewes and lambs were reintroduced back with 

the treatment group.       

From parturition to six-weeks postpartum, weekly weights, BF, and blood samples were 

collected from the ewes and weight and blood samples from the lambs. Plasma was harvested by 

centrifugation, aliquoted and stored for analysis. Twenty-four hr milk production was measured 

by holding the lambs from the ewes for 24 hr (0700 to 0700) three days after weight, blood and 

BF samples were collected. Milk weight was measured and a 20ml sample collected in Dairy 

Herd Improvement Association (Rocky Mountain DHIA, Logan, UT, USA) vials. 
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 Assays 

Plasma from both ewes and lambs was analyzed using colorimetric assay kits for glucose, 

urea nitrogen, creatinine, total plasma protein, and triglycerides using TECO kits 

(TECO Diagnostics, Anaheim, CA, USA). Analysis was conducted at Brigham Young 

University (Provo, UT, USA). Weekly milk samples for each ewe were analyzed for butter fat, 

protein, lactose, urea nitrogen, and somatic cell count. Analysis was conducted at the Rocky 

Mountain DHIA (Logan, UT, USA). 

Statistical Analysis 

Statistical analysis was conducted with the proc Mixed module in SAS (SAS Inst., Inc., 

Cary, NC). Fixed main effects included ME treatment and week, while animal was random to 

account for repeated measures. Least square means for treatment and week were determined to 

be significant at P<0.05. Model comparisons included weekly ME treatment comparisons for the 

response variables weight, BF, metabolites, milk production and milk composition. Main effect 

comparisons were also made between prepartum, parturition and post parturition. Treatment and 

week main effect comparisons were analyzed for the lamb response variables and expressed as 

least square means and determined significant at P<0.05. 

RESULTS 

Three ewes did not complete the study due to sickness (n = 1) or death (n = 2). The LME 

group had eight sets of twins, and three sets of triplets, and one ewe that had quadruplets. Within 

the HME group, one ewe gave birth to a single lamb, other produced seven sets of twins, and two 

sets of triplets. The LME groups produced 29 lambs while the HME group produced 21 

lambs. Eleven lambs were moved to the AR group. Three of the AR lambs were from the 
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LME group while the remaining eight were from the HME group. Hay and corn 

grain were completely consumed by the ewes of both groups, leaving no feed residual, 

therefore feed intake for each group is that presented in Table 1-2.    

Ewes 

Body weight (Figure 1-1) was not different between treatment groups. As expected, there 

was a sharp drop in weight at parturition for all ewes, with a difference of 20 kg between pre and 

post parturition. Pre-parturition weights increased from 75.2 kg to 84. 5 kg for the LME group 

and from 76.1 kg to 84.2 kg for the HME group. After parturition there was no change in weight 

for either group, with postpartum weights averaging 68.7 and 67.2 kg for LME and HME 

respectively. Back fat (Figure 1-3), showed a difference by treatment. The LME 

group backfat steadily decreased from week -6 (3.0 mm) to week +6 (1.8 mm), while HME ewes 

increased from 3.3 to 3.6 mm between week -6 to week -3 then decreased to 2.7 mm at week -1 

and maintained until week +4 where they decreased to 2.4 at week +6.    

Weekly blood metabolites are presented in Table 1-3 and a comparison of weight, and 

blood metabolites of ewes during pre- and post-parturition is presented in Table 1-5. There 

was no treatment effect for plasma glucose concentration however, there was a week 

effect. For both the HME and LME groups, the week of parturition differed from the weeks prior 

and post parturition with a concentration of 9.43 mmol/l and 10.19 mmol/l; respectively. The 

average concentration of glucose for sheep in general has been reported to range from 2.78 to 

4.44 mmol/l (3.80 ± 0.33; Kaneko et al., 1997). The average pre-partum concentration for this 

study was 3.91 and 4.32 mmol/l for LME and HME respectively and 3.80 and 3.77 mmol/l 

postpartum.  
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Plasma urea nitrogen varied significantly between treatment groups where LME PUN 

concentrations steadily increased from 4.3 mmol/l at week -5 to 7.0 mmol/l at week -1. During 

this period HME concentrations fluctuated between 3.3 to 3.7 mmol/l. At parturition, both HME 

and LME were similar at 4.5 mmol/l. Postpartum concentrations averaged 4.3 and 4.9 mmol/l 

HME and LME. There were no differences in creatinine for treatment or 

week. Prepartum concentrations were 72.9 and 67.9 µmol/l for LME and HME, 77.0 and 69.9 

µmol/l at parturition and 69.4 and 74.3 µmol/l postpartum. 

Total plasma protein displayed a weekly effect in both the HME and LME groups.  From 

week -5 to week -1 LME TPP decreased from 68.6 to 57.4 g/l, while at this same time, 

HME fluctuated between 73.2 to 65.3 mmol/l. At parturition, both HME and LME 

groups increase to 73.6 and 69.3 mmol/l. The LME group remained at this level for the 

remainder of the experiment. At week +1 HME levels drop to 50.9 mmol/l before increasing to 

an average of 64.0 mmol/l for the remainder of the experiment. Prepartum triglyceride levels are 

0.247 and 0.275 mmol/l for LME and HME, increasing to 0.280 and 0.291 mmol/l at parturition 

then dropping to 0.195 and 0.192 mmol/l.  

Milk Data 

There was no difference in treatment groups or week effect for milk yield (Table 1-

4), averaging 1.665 kg/d for HME and 1.779 kg/d for LME. Fat percentage was different for 

treatment effect, 2.53% for HME and 4.43% for LME. Average daily milk fat was also only 

different between treatment groups, 44.8 g/d for HME and 87.7 g/d for LME. Milk protein 

percent was different for week effect where HME decreased from 4.93 to 4.44% and no change 

noted for LME (average 4.75%). Daily milk protein was not different between treatment or week 
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and averaged 75.0 and 85.0 g/d for HME and LME respectively. Milk lactose percent was 

different between treatment, 5.43% for HME and 5.12% for LME. No differences were noted for 

daily lactose, averaging 89.9 and 90.3 g/d for HME and LME respectively. No differences were 

determined for solids not fat % (SNF) or daily production or for MUN. Milk samples and 

weights were corrected for energy based on the equation (Hemme, 2017). 

 ECM = (0.327 x milk kg) + (12.95 x fat kg) + (7.2 x protein kg). Where EMC is energy-

corrected milk. ECM was not different for treatment, week, or the interaction of the two 

variables. From week 1 to week 6 for both treatment groups declined with a difference of 0.56 g 

LME, and 1.00 g HME. The average for the two groups are (5.02 g LME), (3.95 g HME). 

Lambs 

Lamb weight (Figure 1-1) increased steadily for 6 weeks post parturition with lambs in 

the HME group increasing from 4.625 kg to 15.288 kg, a 231% increase. LME lamb weights 

increased from 4.180 kg to 13.221 kg (216% increase), while the AR weights increased from 

4.256 kg to 12.300 kg (189% increase) over the six-week period. There is no difference in birth 

weight across the treatments and treatment differences do not become evident until weeks 5 and 

6, where the HME group weights were 2.052 and 2.988 kg greater than the LME and AR.  

Lamb blood metabolite analysis is presented in Table 1-6. There is no treatment effect for 

glucose concentrations (see Figure 1-2) between the lamb groups. However, there is 

a weekly difference for blood glucose between week zero (at birth; from 2.37 to 3.48 mmol/l) 

increasing to between 8.32 to 9.57mmol/l at week 2 then decreasing to between 5.0 to 

5.26 mmol/l at week 6. Plasma urea nitrogen was significant for only the weekly effect where at 

birth levels are 4.8, 4.9 and 5.5 mmol/l for LME, HME and AR respectively. The LME and HME 
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PUN levels increased to 6.4 mmol/l at week 1, while the AR group dropped to 2.6 mmol/l. Week 

2 to 6 PUN levels fluctuated between 2.00 to 3.89 mmol/l.  

Blood creatinine is not significant between treatments, but was for week with levels 

higher at birth ranging from 204.2 to 157.9 μmol/l. The levels decrease to an average of 

55 μmol/l at week 2 and remain constant at this level for the remainder of the experiment. Total 

plasma protein was different for both treatment and week. At birth, the levels are 49.2, 42.2 and 

46.8 g/l for HME, LME and AR respectively. The remainder of the experiment the levels 

fluctuated between 53 and 67 g/l, with LME most often being the highest and AR the lowest. 

Triglyceride concentrations were not different between treatments or weeks, ranging between 

0.367 to 0.774 mmol/l.  

.   

DISCUSSION 

Dietary restrictions during gestation can affect the metabolic processes of ruminant 

animals and their subsequent offspring (Celi, 2008). This is evident in the contrast between the 

two diet regimes compared in this experiment. We documented changes due to diet in the body 

weight, body condition, and milk production. Milk production, for instance, can be increased 

through the utilization of energy-rich diets which reduce the mobilization of energy from body 

reserves (Cannas, 2013). Diet regimes we implemented were kept simple to minimize the sources 

of metabolizable energy. 

Ewes   

Body weights of the two treatment groups were not different. Addah et al., (2017) 

suggest that sheep are able to compensate for sudden changes in nutrient restriction by increasing 

the efficiency of nutrient absorption and utilization, even though the sudden shift initially 
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reduces average daily gain. Previous studies such as Mora et al., (1996) indicate that for a limited 

duration, ruminants have the ability to cope with moderate levels of malnutrition. The 

short period the experimental diets were fed may be the reason there is no difference between the 

weights of the ewes. Though there were no differences between weights of our two treatment 

groups, there is a difference in BF during the study. We used BF as a body condition estimate 

where thicker BF would indicate body energy reserves. It is well documented that body fat 

reserves are first accrued internally, then inter-muscularly and then as BF. These fat stores 

provide the animal with reserves that can be utilized to maintain substrate for required energy 

needs. When energy balance is negative lipolysis provides energy substrates to meet the body’s 

energy needs. The first store of lipid to be utilized when energy is limited is BF. Though there is 

a numerical decrease in BF from the initiation of the study (approximately 0.5 mm for both 

treatments), statistical differences do not become apparent until after parturition when the energy 

needs of lactation overcome the dietary supply. The sharpest decline of prepartum body 

condition for both groups is from week -3 to parturition suggesting that energy levels prior to 

parturition may not adequate to meet the energy demands placed on the ewe for fetal growth and 

the preparation for lactation. The postpartum decline of BF for the LME ewes is further evidence 

of the effects of limiting energy requirements on lactating ewes. Similarly, the HME diet 

does not seem to meet the energy demands of lactation as BF decreased at week +4.  

Blood metabolite determinations provide an understanding of how various factors can 

influence general nutritional status.  The combination of these blood metabolites 

provides information on how administered treatments affect metabolic processes.  In the case of 

this experiment, how does dietary energy level affect nutritional status of Friesian ewes and 

lambs. Burton et al., (2003) and Celi et al., (2008) report glucose responses in pre and postpartum 
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alpacas and goats show a spike in blood glucose at parturition, similar to the response noted in 

our sheep. Leat (1974) also observed an increase in the glucose concentration in ewe plasma 

within 2 to 3 days prior to parturition followed by a decrease in levels 20 days postpartum. The 

period between late gestation and early lactation is an intense metabolic transition phase from 

providing nutrients to the fetus to lactogenesis (Burton et al., 2003). Bell (1995) concluded 

that the gravid uterus absorbs 30 to 50% of the ewe’s glucose supply, thus putting stress on the 

ewe to maintain required glucose levels. Homeorhetic hormones (e.g., glucocorticoids, growth 

hormone, prolactin and estradiol) interact with homeostatic hormones (e.g., insulin and cortisol) 

to regulate glucose levels (Tucker, 1985). The glucose spike at parturition could be a result of the 

timing of sample collection. In the case of this experiment, with the fetus born, the large amount 

of maternal glucose going to the fetus has stopped and the glucose regulation has not 

yet adjusted. The ewe now must transition glucose to the needs of lactation.     

When protein intake is in excess or energy is limiting, urea N levels will increase due to 

the catabolism of amino acids either for fat stores or for energy needs. Increases in protein and 

energy can increase retention of nitrogen in growing ruminant animals and may result in an 

increase of PUN (Tur et al., 2017). Recycling PUN via the rumen is important for microbial 

growth and function and improves nitrogen utilization (Wang et al., 2012), thus urea N not taken 

up by the rumen is excreted in the urine. Excess concentrations of urea in the blood can affect 

multiple physiological processes including production of milk, immune function, embryo 

survivability and reproductive efficiency (Dominic et al., 2014). Several studies have stated 

that PUN serves as an indirect indicator of the energy or protein levels in the diet in conjunction 

with levels of energy required (Ramin et al., 2010). In this study, PUN levels for the LME group 

increased from approximately 4.5 to 7.0 mmol/l between week -5 and parturition, while the 
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HME group PUN remained relatively constant between 3.5 and 4.0 mmol/l. This indicates 

the LME ewes may have shifted to protein catabolism to meet energy needs brought on by the 

dietary energy restriction.        

Triglyceride concentrations in the blood provide an indication of fat metabolism, where 

low levels indicate malnutrition and high levels obesity. Prepartum triglyceride levels are higher 

compared to postpartum indicating there is a shift in nutrient status and that the postpartum ewes 

have a higher energy demand than prepartum. This is brought out in the NRC (2007), where 

lactating ewes require higher energy than gestating ewes. What these metabolites in conjunction 

with the body condition indicate is that the requirements published in the NRC (2007) may be 

inadequate for these dairy sheep breeds.  

 

Milk   

Due to its nutritional composition, sheep milk contains more nutrients and a larger supply 

of total solids than cow or goat milk (Recio et al., 2009). Sheep milk provides a source of 

proteins, lipids, calcium and phosphorous while balancing a similar quantity of carbohydrates, 

fat, and proteins (Recio et al., 2009). Several factors affect milk yield including lactation length, 

environmental factors, feed quality and availability, and genetics to name a few (Collier et 

al., 2017; Pulina et al., 2007). Lactose synthesis controls water secretion; thus, lactose determines 

milk volume osmotically (Miglior et al., 2006). Additionally, protein and fat concentrations 

in milk are largely determined by dietary protein, VFA production in the rumen and the water 

content driven by lactose (Henao-Velasquez et al., 2014).     

         Energy requirements for lactation are determined by energy corrected milk (ECM; Milis, 

2008).  The equation to determine ECM takes into account the percent of fat and protein as well 
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as volume. Somewhat surprisingly, the LME group has a higher milk yield and higher 

concentration of milk fat than the HME group, but when expressed on an ECM basis there are no 

differences between the groups. Cannas et al., (2013) found that ewes fed lower amounts of non-

fiber carbohydrates (NFC) produced more milk than those fed more NFC. Additionally, those on 

the high diet were able to partition ME towards fat deposits rather than milk secretion (Roche et 

al., 2008). A comparable result occurred in this study where the ewes in the LME group 

produced more milk than those in the HME group. Like the ewes in the Cannas et al., (2013) 

study, this may be a result of ME being shuttled towards fat reserves rather than milk 

production. Ewes in the HME group had on average higher backfat than those in the LME group, 

3.0 and 2.5 mm respectively, supporting this assumption. Cannas further suggests that higher 

milk production in sheep with lower NFC could be the result of a more marked partitioning of 

dietary energy towards milk synthesis (Cannas et al., 2013). These results indicate that ewes fed 

140% ME (HME) allocated more energy towards maintaining high body conditions (e.g., fat 

stores) than towards milk production.  Whereas those fed 80% ME (LME) did not have the 

resources to maintain higher body conditions, they redirect resources towards milk production to 

sustain the growing lamb.    

Milk fat varies greatly during the lactation period, between ewes, between daily milking, 

between milking sheep breeds, and due to season and climate (Milis, 2008; McDonald et 

al., 1995). This variation can be due in part to concentration of volatile fatty acids (VFAs) 

which originate in the rumen. Specific VFA’s such as acetate, propionate, and butyrate, are bi-

products of microbiota that provide the main source of energy for ruminants and have an 

individualized profile per animal. The proportion and type of volatile fatty acids produced in the 

rumen depend on the substrate metabolized and the species of bacteria present (Dijkstra, 
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1994). Our study did not focus on VFAs, however a difference in milk fat concentration may be 

attributed to differing levels and composition of VFAs. Acetate and butyrate are the primary 

precursors for milk fat synthesis whereas propionate is glucogenic (Bergman, 

1990; Urrutia and Haveratine, 2017). In goats, Eknæs and Skeie (2006) and Eknæs et al., (2006) 

concluded that milk yield was not only affected by the mobilization of tissue energy, but it also 

affected milk composition; specifically the fatty acid profile.  

Other factors that affect milk fat concentration include energy balance of the ewes, 

neutral detergent fiber (NDF) fraction in forages consumed, NFC, as well as particle size of the 

feed, amount of feed consumed, and the fatty acid composition of dietary fat supplements 

(Pulina, 2006). Goetsch et al., (2011) states that forage source has an impact on milk fat that is 

independent of energy intake. Milk fat synthesis is stimulated via diets rich in digestible fiber, 

likely through the enhanced supply of acetate to the mammary gland (Cannas et al., 2013). Milk 

fat yield in goats was found to be greater for diets consisting of higher forage (60 to 65%) 

content (Álvarez et al., 2007; Ngwa et al., 2009).      

Unlike the findings of Alvarez et al., (2007) and Ngwa et al., (2009), this study found that 

milk fat was higher for ewes in the LME group. Goetsch et al., (2011) stated that forage source, 

rather than energy intake, has an impact on milk fat concentration. The LME sheep in our study 

were limit fed the alfalfa in addition to the corn grain to achieve a level of 80% ME. The HME 

group was fed more than the required dry matter intake (NRC, 2007) and no hay refusal was 

noted, leading us to conclude that even the HME were limit fed to some degree. Amount of hay 

(forage) provided for each treatment group could still be too low for Eastern Friesian causing no 

difference in milk yield or milk fat concentrations.  
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MUN and Milk Protein  

Urea nitrogen is a waste product derived by the breakdown of protein, is formed in the 

liver, circulates in the blood and is excreted in the urine. Blood urea concentrations rapidly 

equilibrate with body fluid pools such as the mammary gland. In the secretory cells of the 

mammary gland, urea moves into the milk and becomes a non-protein nitrogen component of 

milk (Cannas, 1998; Gustafsson and Palmquist, 1993). MUN and blood urea nitrogen 

concentrations are used to evaluate diets fed to ruminants because they are considered to be 

adequate indicators of protein metabolism and intake (Jelinek et al., 1996; Roseler et 

al., 1993). Though there are no differences between MUN or PUN in our study, at week three and 

four (when there were high concentrations of MUN in the HME group; 13.5 mmol/l and 

13.3 mmol/l), milk production decreased. Weeks three and four for the HME group were the 

only times MUN concentrations exceeded 12.6 mmol/l of MUN concentration. This could be a 

result of the alfalfa hay crude protein level. To keep the diets simple and easily manageable, diets 

we used were not isonitrogenous while CP was slightly below requirement for the LME group 

and well above requirement for the HME group.   

Lactose concentrations were higher for the HME group throughout the 6-week collection 

period, with overall means of 5.43% and 5.12% for HME and LME respectively. Henao-

Velasquez et al (2014), stated that lactose levels differ daily in milk production and differ in 

concentration of fat, milk urea nitrogen, glucose availability and somatic cell count. Our findings 

were similar in that lactose levels followed a similar curve as the MUN levels, with a 

low concentration of both components at week one, a slight increase through subsequent weeks, 

and finally a decrease at week five. ECM was not significant for treatment, week or the 

interaction. 
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 Lambs  

Birth Weight 

Fetus growth during the third trimester varies due to ewe nutritional status during late 

gestation (Robinson, 1980). The fetus however, does increase by nearly 75% during this time. 

Late gestation is recognized as a highly energy-inefficient physiological process for ruminants 

due partly to the high expenditure of energy for maintenance and growth of the fetus (Kiani, 

2006; Lodge and Heany, 1970). Birth weight of lambs was not different across our three 

treatments. The AR group was a result of lambs born to ewes from both ME treatments who were 

unable to raise the lamb on their own. Because they were evenly a result of both groups coming 

from sets of twins or triplets, no differences were noted in birth weights between the 

groups. Lamb weight increased from birth to the end of our experiment (six weeks), with the 

HME group showing great weight gain despite no difference in milk yield, milk composition or 

ECM between the treatment groups. Ewes in this study were fed the alfalfa hay ad libitum prior to 

the initiation of the experiment. The lack of difference between birth weights of the two ME 

groups may be attributed to the LME utilizing feed more efficiently as explained by Lu et 

al., (2005) or due to fat reserves in the ewes that were able to compensate for the restriction in 

energy intake, or both. 

Blood Metabolites    

Plasma glucose levels were different at parturition and weeks two and three displaying a 

weekly effect but no treatment effects. Glucose concentrations for each group were as 

follows: AR (6.08 mmol/); HME (7.00 mmol/l); LME (6.70 mmol/l), nearly twice the normal 

values published by Kaneko et al., (1997) (2.78-4.44 mmol/l). Milk lactose and 
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other glucogenic compounds have been shown to increase blood glucose (Rauprich et 

al., 2000).    

One week after parturition, there was a sharp increase in the concentration of PUN for the 

LME and HME groups. At week two, the HME group and the AR group continued to exhibit 

high concentration of PUN, though the LME group's levels were significantly lower. Kirk 

and Walker (1976) stated that neonatal sheep have difficulty excreting urea the first few days of 

life. However, lambs become more efficient as they age, as evidenced by the PUN concentration 

beginning to level out six weeks post-birth similar to alpaca cria (Burton et al., 2003).    

Creatinine levels were higher overall in the HME group than in the LME and AR groups. 

There was a drop in creatinine levels one week following parturition for all three groups after 

parturition and concentrations leveled out without a significant increase. Burton et al., (2003) 

described how metabolic pathways are adjust to new sources of substrate during this first week 

of life. Protein mobilization and kidney function may account for the high levels of creatinine 

during the first week of life (Burton, 2003).   

CONCLUSIONS 

The results of this study demonstrate that perinatal and post-natal nutrition affects ewe 

and offspring metabolic processes and milk production. Energy restriction in the LME group 

resulted in nutrient partitioning allowing ewes in the LME group to produce milk that 

facilitate lamb growth such that they grew at a rate similar to those from the HME group. It is 

evident that ewes and offspring can adapt to restricted diets, although body condition will be 

compromised so that adequate milk is produced for the lambs. The simple diet regime we 

implemented to meet the needs of the ewes during three different stages of life (late gestation, 



20 
 

parturition, and lactation) was deficient, as evidenced by declining BF of the ewes within six 

weeks of parturition. This indicated a redistribution of body reserves for lactation.  Further 

research is needed to refine energy requirements of Friesian milking sheep. 
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FIGURES 

Figure 1-1.  Lamb weight changes from birth to six-weeks of age for artificially reared (AR), high energy (HME) 
and low energy (LME) lambs.  Asterisk (*) indicates difference (P<0.05) between HME group and the other two 
(LME and AR), while “abcdef” indicate differences (P<0.05; SEM 2.47) between weeks.       
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Figure 1-2.  Effects of maternal energy intake (80% vs. 140%) on blood glucose concentrations of lambs naturally 
reared on dams (HME=140%; LME=80%) or artificially reared (AR) on goats milk. Week means with differing 
“abc” are different at P<0.05 (SEM 0.52).  There are no treatment differences. 

Figure 1-3.  Backfat measurements of ewes fed at 80% (LME) or 140% (HME) of NRC (2007) energy requirement. 
Treatment and week differences are significant at P<0.05 (SEM 0.22). 
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TABLES 

Table 1-1. Chemical composition of the two diet components (alfalfa and corn) expressed on a percent dry matter 
basis.  

Alfalfa Corn 
Crude protein 21.4 8.9 
NDF 37.1 11.0 
ADF 27.9 4.1 
Lignin 7.4 1.1 
NFC 28.3 73.8 
Starch 0.6 66.0 
Fat 2.7 4.5 
Ash 10.5 1.8 
NEL, Mcal/kg 1.39 2.07 
aExpressed on dry matter basis 
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Table 1-2. The diet formulation of both the LME and HME groups adjusted for two stages in life: gestation and 
lactation. 

Gestation Lactation 
LME HME LME HME 

DMI, kg/d 1.59 2.10 1.95 2.58 
Alfalfa, kg/d 1.350 1.786 1.459 1.932 
Corn, kg/d 0.236 0.314 0.486 0.645 
NFC, % 35.1 35.1 39.6 40.8 
NDF, % 33.1 33.2 30.5 30.5 
Protein intake, g/d 310 410 355 470 
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Table 1-3.  Ewe weight, backfat and blood metabolites of dairy sheep fed at 80% or 140% of energy requirement for six weeks prior, at, and six weeks post parturition. 
Weeks from Parturition P<0.05b 

Dieta -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 SEM TRT Week TxW 
Weight, LME 76.1 79.1 81.9 83.8 85.6 84.2 66.9 66.6 69.5 68.6 67.0 65.0 66.1 2.47 ns + ns
kg HME 75.2 78.1 80.0 81.5 84.2 84.5 67.6 69.7 69.7 65.8 65.3 65.3 64.5 

Backfat, LME 3.0 3.0 3.1 3.0 2.6 2.6 2.5 2.5 2.4 2.2 1.6 1.8 1.8 0.22 + + ns
mm HME 3.3 3.4 3.4 3.6 3.1 2.7 2.7 2.7 2.7 2.8 2.7 2.4 2.4 

Glucose, LME 3.20 3.31 3.89 4.14 4.55 4.43 10.18 3.18 3.75 3.84 4.22 4.34 3.65 0.51 ns + ns
mmol/l HME 3.81 3.91 4.13 4.76 4.49 4.81 9.43 4.10 3.05 3.56 3.97 3.72 4.22 

UreaN, LME 4.80 4.33 5.26 6.35 6.84 7.02 4.55 3.44 3.54 3.78 4.84 5.00 5.01 1.28 ns ns ns 
mmol/l HME 4.04 3.77 3.44 3.73 3.89 3.30 4.59 3.48 4.87 4.54 4.81 5.90 5.18 

Creatinine, LME 67.2 72.3 85.3 73.2 66.7 73.2 77.0 70.7 65.3 67.5 68.9 70.0 74.9 4.42 ns ns + 
µmol/l HME 64.3 67.8 63.0 67.2 69.1 75.4 69.9 72.9 72.7 75.4 69.9 79.7 75.3 

TPP, LME 68.0 68.6 66.7 60.7 64.0 57.4 69.3 66.0 62.2 64.9 59.0 69.5 69.6 3.2 ns + ns
g/l HME 73.2 73.3 68.1 65.3 66.6 65.3 73.6 50.9 65.4 62.7 65.9 66.2 70.2 

Triglycerides, LME 0.240 0.255 0.254 0.264 0.243 0.227 0.280 0.194 0.174 0.203 0.199 0.216 0.184 0.018 ns + ns
mmol/l HME 0.210 0.275 0.308 0.275 0.316 0.265 0.291 0.185 0.166 0.227 0.178 0.210 0.187 
aLME = low energy diet; HME = high energy diet. 
bSymbol + indicates significance. 
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Table 1-4. Milk yield and milk composition of dairy ewes fed diets providing 80% or 140% of energy requirement. 
Week from Parturition P<0.05c 

Dieta 1 2 3 4 5 SEM TRT Week TxW 
Milk yield LME 1783 1838 1813 1886 1573 260 ns ns ns 
g/d HME 1667 1785 1657 1565 1650 

Milk Fat, LME 5.00 3.95 3.94 4.52 4.74 0.61 + ns ns 
% HME 3.34 2.72 2.44 2.16 2.01 

Milk Fat, LME 94.3 84.3 80.6 101.2 77.9 19.6 + ns ns 
g/d HME 64.3 46.4 42.2 35.4 35.6 

Milk Protein, LME 5.00 4.63 4.67 4.62 4.85 0.13 ns + ns
% HME 4.93 4.62 4.53 4.45 4.44 

Milk Protein, LME 89.7 85.9 84.6 87.2 76.6 12.4 ns ns ns 
g/d HME 81.8 79.9 73.7 68.5 70.8 

Milk Lactose, LME 5.03 5.08 5.29 5.06 5.16 0.11 + ns ns 
% HME 5.27 5.54 5.51 5.41 5.43 

Milk Urea, LME 4.89 5.25 5.21 5.29 5.57 0.48 ns ns ns 
mmol/l HME 4.71 5.86 6.75 6.64 5.82 

ECMb LME 5.36 5.14 4.99 5.61 4.80 0.92 ns ns ns 
HME 4.33 3.88 3.57 3.22 3.33 

aLME = low energy diet; HME = high energy diet  
bECM: energy corrected milk = (0.327 x milk pounds) + (12.95 x fat pounds) + (7.2 x protein pounds). 
cSymbol + indicates significance. 
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Table 1-5. Weight and blood metabolite comparisons of pre- and post-parturition ewes fed 80 or 140% required energy intake. 
Stage P<0.05 

Dieta Pre Parturition Post SEM TRT Stage TxP 
Weight, LME 81.8 66.8 67.2 5.11 ns + ns
kg HME 80.7 67.5 68.7 

Backfat, LME 2.89 2.55 2.05 0.12 + + ns 
mm HME 3.24 2.66 2.71 

Glucose, LME 3.92 10.19 3.80 0.22 ns + ns
mmol/l HME 4.32 9.43 3.77 

Urea N, LME 5.75 4.57 4.25 0.79 ns ns + 
mmol/l HME 3.68 4.57 4.75 

Creatinine, LME 0.825 0.871 0.785 0.028 ns ns + 
mg/dL HME .768 0.791 0.840 

TPP, LME 64.2 69.1 64.9 1.4 ns + ns
g/l HME 69.3 74.2 63.8 

Triglycerides, LME 0.247 0.280 0.195 0.009 ns + ns
mmol/l HME 0.275 0.291 0.192 
aLME = low energy diet; HME = high energy diet. 
bSymbol + indicates significance. 
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Table 1-6.  Effects of maternal energy intake (80% vs. 140%) on weight and blood metabolites of lambs naturally reared on dams or artificially reared on goats 
milk for six weeks post birth.  

Weeks from Birth P<0.05b 

Dieta 0 1 2 3 4 5 6 SEM TRT Week TxW 
Weight, kg LME 4180 5378 6722 8076 9771 11426 13221 520 + + ns 

HME 4625 5997 7442 9158 11575 13478 15288 
AR 4256 5360 6161 7304 10416 11933 12300 

Glucose, LME 3.48 7.46 8.95 7.83 7.25 6.80 5.10 0.52 ns + ns
mmol/l HME 3.66 8.37 9.59 7.99 7.53 6.59 5.26 

AR 2.37 7.30 8.32 6.82 6046 6.24 5.00 

Urea N, LME 4.91 6.39 2.00 1.98 2.40 3.26 3.65 0.64 ns + + 
mmol/l HME 4.83 6.44 2.43 2.25 2.93 3.62 3.89 

AR 5.54 2.61 2.93 2.17 2.85 2.92 3.25 

Creatinine, LME 157.9 74.1 46.0 64.4 49.1 57.9 57.9 11.5 ns + ns
mmol/l HME 204.2 111.8 56.2 68.4 58.8 55.2 54.0 

AR 177.7 59.3 59.1 74.5 56.5 57.9 65.8 

TPP, LME 42.2 63.9 55.9 59.7 57.8 57.9 66.8 2.3 + + + 
g/l HME 49.2 62.4 58.7 62.0 58.0 56.2 58.4 

AR 46.8 54.3 53.3 56.5 53.0 53.0 56.7 

Triglycerides, LME 0.552 0.576 0.500 0.638 0.774 0.561 0.405 0.066 + + ns 
mmol/l HME 0.554 0.531 0.596 0.580 0.668 0.598 0.570 

AR 0.432 0.498 0.463 0.498 0.531 0.367 0.470 
aLME = low energy diet; HME = high energy diet; AR = artificially reared lambs. 
bSymbol + indicates significance. 
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CHAPTER 2 

Digestion of Soybean Meal in Alpacas 

Rebekah Paige Jensen and Todd F. Robinson 
Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 

ABSTRACT 

The objective of this experiment was to determine the degradation parameters of grass 

hay (GH) supplemented with soybean meal (SBM) and to determine the effects of SBM on 

compartment 1 of the rumen (C1) ammonia (NH3-N) and volatile fatty acid (VFAs) 

concentrations in alpacas. Four C1 fistulated adult male alpacas (Vicugna pacos) (7±1.5 years 

old; 61±5 kg body weight; BW) were housed in metabolism crates and received water ad 

libitum during the treatment periods of this study. The GH and SBM treatments were fed at 0700 

every day. Treatment periods were for 14 days in which GH or SBM treatments were 

randomly allocated to each alpaca. On day 14 volatile fatty acids (VFAs), pH and NH3-N were 

determined at 1, 3, 6, 10, 14, 18 and 24 hrs post feeding. C1 degradation of GH and SBM was 

determined with the alpacas being fed GH only and the samples incubated for 0, 2, 4, 8, 14, 24, 

48 and 72 hrs. Dry matter (DM) and crude protein (CP) degradation were determined and 

divided into three categories: a = immediately soluble; b = non-soluble but degradable; and u = 

non-degradable/unavailable, potential extent of degradation (PE), degradation rate (c), effective 

degradation (ED) and kp (passage rate) = 5.5%∙hr-1). Total DM intake was different between the 

two treatments (P<0.05), while CP intake was increased (72.5 to 191.0 g/d) with the addition of 

SBM. SBM NH3-N level was greater than GH. Total VFA concentration was not different with 

the inclusion of SBM, but for percent composition a shift was noted away from acetate (Ac) 

towards propionate and butyrate (Pr, Bu). DM fraction a was not different between GH and 
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SBM, while there was for fraction b. CP fractions a and b were different. Degradation rate was 

not different for DM, but was for CP. From these data we learned that SBM can be a CP 

supplement when the diet is deficient to improve microbial yield, but care should be taken 

to avoid causing a protein-energy imbalance. 

INTRODUCTION 

Soybean meal (SBM) is a solid product resulting from the oil extraction process from 

whole soybeans. More than 99 percent of soybean meal today is produced through the solvent-

extraction process in which the dehulled, conditioned flakes of soybeans are washed 

in a countercurrent manner with hexane. The solvent solubilizes the lipid material in the 

soybeans and the hexane-oil mixture is separated through a series of steps. After evaporation of 

the oil-rich extract, the “spent flakes” of soybeans are toasted, then dried and cooled. Soybean 

meal is used primarily as a filler and protein source in animal diets. The typical composition of 

soybean meal produced through the solvent-extraction process is 90% dry matter, 44.0% crude 

protein, 0.5% ether extract, 7.0% crude fiber, and 6.0% ash.  

Studies of the effects of soybean meal on many animals have been performed, but the 

digestion kinetics and characteristics have not yet been determined 

in alpacas (Vicugna pacos). Alpaca digestive systems are comprised of three compartments 

similar to that of the ruminant species, they are called compartment 1 (C1), compartment 2 

(C2), and compartment 3 (C3). The use of soybean meal in animal diets has been used 

to alter levels of amino acids in the diet that are typically deficient in grains and grain by-

products (Swick et al., 1995; Swick, 1998). The increased protein content in the diet should be 
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beneficial to the microflora of the alpaca since the additional protein and energy available to the 

rumen microflora increases the production of VFAs from the fermentation of these components.  

It has been shown that pseudo-ruminant species produce and absorb VFAs from the 

digestive tract (Bergman, 1990). Engelhardt and Sallmann (1972) showed that large quantities of 

VFA were absorbed in the C1 and C2 of guanaco (Lama guanicoe), particularly in the glandular 

saccule region. Engelhardt et al., (1979) found in llamas that absorption of water, sodium and 

VFA’s also occurred in the C3. Species differences between camelids and ruminants occur in 

rumen volume, dilution rates and absorption rate of VFA's which affects volatile fatty acid 

concentrations (Abbas et al., 1995; Elsden, 1946).  

Rumen microbial nitrogen requirement for protein synthesis is met by ammonia, 

free amino acids, and peptides obtained from degradation of dietary CP and recycled CP 

(Boucher et al., 2007). Camelids are also known to recycle nitrogen at a higher rate, although 

feed protein degradation is not different between camelids, sheep and goats (Jouany et al., 1995). 

Due to the camelid’s higher rate of nitrogen recycling, it is assumed that urea supplementation 

would be detrimental to the C1 ecosystem because of the readily available nitrogen. As such, 

SBM is a good candidate as a CP supplement because of its slower degradation rate observed in 

other species. The objective of this experiment was to determine the degradability of grass hay 

(GH) supplemented with SBM and the C1 NH3-N and VFA production associated with 

the addition of SBM in alpacas.

METHODS 

Four adult male alpacas (x̅ = 7±1.5 years old; 61±5 kg BW) were housed in metabolism 

crates during the treatment periods of this study. Each alpaca had previously been instrumented 
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with a C1 fistula, as outlined by Robinson et al. (2013). Care of these animals followed animal 

use and care guidelines (FASS, 2010) provided by the The Camelid Center Animal Use 

Committee. When not collecting samples, the alpacas were walked for 30 minutes daily. Alpacas 

were fed a mixed-grass hay forage (orchard grass (Dactylis glomerata); 

meadow bromegrass (Bromopsis biebersteinii); smooth bromegrass (Bromus inermis)) for thirty 

days prior to the experiment allowing them to acclimate to this GH forage. During this 

period, the alpacas were fed ad libitum at 0700, and water was offered ad libitum. Dry matter 

intake (DMI) was measured during the last seven days of the acclimation. This research was 

conducted in two trials: in situ degradation and determination of C1 VFA concentrations of 

GH and GH supplemented with 333g DM soybean meal (SBM).  

In Situ digestibility trial 

This trial followed the thirty-day acclimation period to GH. During this trial, alpacas 

were fed GH at 0700 and 1900 to provide a steady state of digestion (Vanzant et al., 

1998). DMI was determined during the end of the thirty-day acclimation period and was divided 

in half for the twice-daily feeding. DMI was calculated using feed refusal (i.e., non-ingested 

GH) gathered daily that was weighed and dried for each animal. Grab samples of the GH fed 

were dried throughout both trials and used to determine the quantity of DM fed. From this value 

for DM fed, the dried refusal was subtracted and daily DMI calculated. Daily DMI values were 

used to statistically determine the treatment DMI for each treatment. 

In situ substrate samples included GH and SBM, and each substrate was ground 

through a Wiley Mill (Aurthur H. Thomas Co., Philadelphia, PA) with a 2mm screen. Four 

samples of each substrate were prepared by weighing 5 g of each, then placing them into 

10cmx20cm Dacron bags (50μm pore; Ankom Technology, Macedon, NY). Dacron bags of 
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substrate were soaked in water (39˚C) for 20 min, prior to incubation, to reduce lag 

time associated with wetting. Substrates were incubated for 0, 2, 4, 8, 14, 24, 48 and 72 hrs. Bags 

were placed into the C1 of each alpaca and removed at the same end time. Upon removal, the 

bags were placed in ice water to halt further microbial digestion. Additionally, each bag was 

rinsed until the water ran clear (~15 min). The 0-hr samples were soaked and rinsed as outlined 

without incubation. Following rinsing, bags were dried at 50˚C for at least 

48 hrs to a dried weight.  

Residual material from in situ incubation was analyzed for DM and CP. CP concentration 

was determined using a LECO combustion N analyzer (LECO TruSpec, St. Joseph, MI, USA). N 

values determined by the LECO analyzer were then converted to CP, using the standard 

conversion factor of 6.25. Total DM and CP degradation were divided into three pool 

fractions: a = immediately soluble; b = the non-soluble but degradable; and u = the 

undegradable/unavailable fraction. Fraction calculations were performed as outlined by Nilsen et 

al., (2015). Effective C1 disappearance (ED) of DM and CP were determined as described 

by Ørkov and McDonald (1979) as a + b x (c/(c + kp)), where c the disappearance rate (%∙hr-

1) and kp is the passage rate (5.5%∙hr-1; Nilsen et al., 2015).

Volatile Fatty Acid Trial 

Two treatments consisted of grass hay (GH), and GH supplemented with 333g dry 

matter (DM) soybean meal (SBM). The level of SBM inclusion was targeted to triple the 

total CP intake. Alpacas were fed at 0700 each day. Each treatment period was for 14 

days. The SBM supplement was fed first and was consumed within 15 min of feeding. 

Hay was fed upon completion of SBM consumption. Diurnal C1 VFA samples were 

collected on day 14 and processed as outlined by Oldham et al., (2013) at 1, 3, 6, 10, 14, 
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18 and 24 hrs post feeding. Samples were immediately processed for VFA analysis and 

the supernatant frozen for future analysis (Oldham et al., 2013). In addition, 8ml of 

strained C1 fluid was added to 2 ml of 25% metaphosphoric acid, mixed and frozen for 

future analysis of NH3 (Chaney and Marbach, 1962). The remaining C1 sample was used 

for pH determination using a pH meter (Corning 340, Tewksbury, MA, USA) 

with a combination probe.  

Statistical Analysis 

The in situ DM and CP degradation parameters were determined by fitting the data to the 

nonlinear regression model of Ørkov and McDonald (1979) using Proc NLIN of SAS (SAS, 

2002). The GLM procedure (SAS, 2002) was used to determine the treatment effects of the 

degradation estimates. Least square means for treatments were determined using 

unadjusted t tests and a level of significance at P<0.05. The diurnal VFA and pH 

data were analyzed using a linear mixed model with treatment, time, and the interaction as main 

effects with time treated as a repeated measure (Littell et al., 1998). The SAS (SAS, 2002) 

procedure MIXED was used for these calculations and a probability of P<0.05 was considered 

significantly different. Least square means for levels of the treatment/time factors were 

calculated and compared using unadjusted t tests. 

RESULTS 

The chemical composition of the feeds used in this experiment are presented in Table 2-

1. The DM degradation parameters for GH and SBM are found in Table 2-2 and the patterns are

presented in Figure 2-1. Fraction a DM degradation (Fig. 2-1, panels A and B) was not different 
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between treatments. The b fraction was different between GH and SBM where GH was greater 

than SBM. Potential extent (PE) of DM degradation, based on the sum of fraction a and b, was 

greater for GH than SBM, while CP PE was not. The rate of DM degradation was not different 

between the treatments at 8.1 and 10.3 %∙hr-1 for GH and SBM, respectively. Crude protein 

degradation rate (Fig. 2-1, panel C and D) was greater for SBM by 350% at 1.9%∙hr-1 for 

GH and 8.6 %∙hr-1 for SBM. Using acid detergent insoluble ash as a marker, Nilsen et 

al., (2015) calculated kp from four alpacas to be 0.0549 %∙hr-1 ± 0.0173 fed the same GH as 

used in this experiment. We used this derived value of (0.0549) to determine effective 

degradation (ED). Dry matter ED was the same for GH and SBM at 51.5% and 54.9% 

respectively, while CP ED was greater for SBM than GH at 49.8% and 63.5% respectively.   

Dry matter intake during the VFA trial was not different for GH and SBM at 944 g/d and 

878 g/d, while the inclusion of SBM did decrease the DM hay intake to 545 g/d. The SBM 

treatment CP intake, as we planned, was 195.5 g/d, higher than GH of 71.4 g/d. The C1 diurnal 

pH was not different between the sampling times or between the two treatments. The mean 

treatment pH (see Table 2-3) was different where GH and SBM were 6.81 and 6.65, respectively. 

The SBM NH3-N (Table 2-3; 9.28 mg/dL) was 164% greater than GH at 3.52 mg/dL. Volatile 

fatty acid concentrations and proportions (Table 2-3) were not significant between the diurnal 

samples collected, so the data are not presented. No differences were noted between the 

treatment total VFA concentrations (63.1 and 67.7 mmol/l). The Ac and Bu molar concentrations 

were not different between the GH and SBM treatments, while Pr increased from 12.0 mmol/l 

for GH to 14.7 mmol/l for SBM. Expressed on a percentage basis, Ac was higher for GH at 

72.4% than SBM at 69.5%. The inclusion of SBM increased the percentage of Pr and Bu above 

the GH treatment. The acetate:propionate ratio was not different. 
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DISCUSSION 

Camelid digestive processes include a longer particle retention time (Heller et al., 1986), 

greater volatile fatty acid absorption and nitrogen recycling than other ruminants (Rübsamen and 

Engelhardt, 1979; Engelhardt et al., 1984). These digestion dynamics are why the camelid 

system is unique from true ruminants. Retention time of llamas is 50% longer than sheep fed the 

same diet (Lemosquet et al., 1996). Nitrogen recycling is an important component of the 

camelid’s protein metabolism. Farid et al., (1979) concluded that nitrogen conservation is due 

to a decrease in fecal and urine N excretion. Comparing sheep and llama renal urea N excretion, 

Hinderer and Engelhardt (1975) showed llama’s excretions were lower than 

sheep because urea N turnover in llamas was 3% versus 12% in sheep. Protein 

supplements are added to increase dietary nitrogen. Soybean meal is one of the most commonly 

used protein supplements in the United States animal industry. The addition of supplemented N 

improves microbial activity and fermentation (Mahouachi et al., 2003). While N supplementation 

can be beneficial, N utilization by the C1 microbiome is dependent on dietary carbohydrate 

content. Volatile fatty acid, NH3-N concentrations and buffering components all contribute 

to the physio-chemical stability of the C1 environment where all of these factors result in more 

efficient microbial activity. Efficient microbial activity equates to an increase in VFA production 

for energy usage by the animal. Improvement of N efficiency is dependent 

upon an understanding of C1 N sequestration, protein digestion, degradation and 

intestinal absorption. 

The soluble a DM fraction degradation of soybean meal by alpacas in our study were 

similar to those found by Gonzales et al., (2002), while the b fraction and kp were 

different. Gonzales further showed that the degradation of similarly processed SBM from 
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different sources are different and concluded that processing of the SBM influences 

rumen availability. Soybean meal degradation has not studied in alpacas. Several studies have 

looked at SBM degradation in a number of other species. Marghazini et al., (2013) showed 

in Nili-Ravi buffalo (Bubalus bubalis) CP degradation of SBM was 16.5 and 71.8% for 

fractions a and b, with a degradation rate of 0.178 h-1. In sheep fed an alfalfa/concentrate 

diet, Kamalak et al., (2005) found SBM DM degradation to be 25.1 and 56.5% for 

fractions a and b respectively with a degradation rate of 0.06 h-1. For the same sheep SBM CP 

degradation fractions a and b were 33.4 and 51.3% with the same degradation rate. 

Huntington and Givens (1997) showed in cattle and sheep SBM degradation of 26 and 72% for 

fractions a and b with a degradation rate of 0.078 h-1. Though the species are different, the 

results are similar and variation may be accounted for by Gonzales et al., (2002)’s findings. 

These findings are also in agreement with Prigge et al., (1984) who concluded that degradation 

of feeds is similar for mature ruminants.  

Effective degradation for the GH was higher as a percentage than that noted by Stevens et 

al., (2014). They estimated the kp to be between 2 and 4%, while data from Nilsen et al., (2015) 

fed the similar hay to that used in this study measured kp to be 5.49%. On a DM basis there was 

no difference between GH and SBM, but on a CP basis SBM ED was greater than GH. The 

inclusion of SBM in the present study to GH shows an effect on the production of NH3-N and 

VFA composition with no effect on pH. The results were an increase in NH3-N and a change in 

the proportion of VFA from Ac to Pr and Bu. Lourenco et al., 2013 showed in sheep fed meadow 

grass hay that the inclusion of SBM increased rumen NH3-N by 130%. This increase in NH3-N 

was in conjunction with no change in rumen pH, %Pr or total VFA, but a lower %Ac and 

increased Bu and Ac/Pr were noted. Steers that consumed fescue straw with SBM 
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supplementation at similar inclusion as our study, Cappellozza et al., (2013) saw no difference in 

pH, total VFA, VFA composition or the Ac/Pr ratio. Raboisson et al., (2012) fed rumen 

cannulated steers SBM at 1 and 2% BW and concluded that an increase in rumen NH3-N 

was a result of the rapid degradation of the SBM. SBM protein and carbohydrate components are 

reported to produce a rapid increase in VFA after consumption (Sauvant et al., 2002). Jouany et 

al., (1995) concluded that the buffering capacity of camelids was better under acidic 

conditions and that VFA absorption was partially responsible. The C1 pH is closely tied 

to VFA production and absorption. Darlis et al., (2000) found goats and sheep fed rice straw 

supplemented with SBM had 118 and 110 mm total VFA, respectively. Acetate, propionate and 

butyrate percentages were different between the two species and were 79.1 and 75.8%, 15.6 and 

18.0%, 5.3 and 6.0%, respectively. The effects of SBM on NH3-N, VFA and pH vary and may 

be due to the forage quality being supplemented. Taminga (1983) stated that solubility, 

susceptibility of microbial proteases and residence time in the rumen are factors that affect 

degradation of protein. Our findings suggest that the total diet must be looked at to assure SBM 

supplementation will be advantageous.   

Mahouachi et al., (2003) stated that, rumen N-NH3 less than 50 mg/l will have a limiting 

effect on microbial synthesis (Satter and Slyter, 1974). Jouany et al., (1995) demonstrated in 

camelids and sheep fed low quality hay that, although camelids have a higher N recycling, feed 

protein degradation to N-NH3 is not different between the two species. They found N-NH3 

concentration in the foregut was lower in the camelids having lower N-NH3 concentrations in 

the foregut than that found in sheep was due to faster passage of the fluid phase, faster rate 

of absorption across the stomach wall or a higher uptake by the microbial population. Dulphy et 

al., (1997) concluded that the higher water turnover rate found in llamas, as compared 
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to sheep, may in fact increase cellulolytic activity because of the rapid passage of substances that 

could hinder microbial growth. 

CONCLUSIONS 

Data from this study provide the degradation patterns of SBM and GH which can be used 

to enhance our understanding of protein-energy deficiencies of alpacas. Further research needs to 

be conducted to determine the level of SBM that can foster optimal microbial growth. The CP 

fraction degradation and rate kinetics of SBM for alpacas is of interest because of their unique 

digestive system. Carmalt (2000) presents a case for protein-energy malnutrition syndrome 

in alpacas. The quality of the diet is believed to be the cause of this syndrome, where either CP 

or energy are lacking and interacting with the efficient use of the other. Hall and Huntington 

(2008) discussed nutrient synchrony, where simultaneous provision of carbohydrates 

(energy) and protein improve microbial functions in the rumen.  
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FIGURES 

Figure 2-1.  Dry matter degradation pattern for grass hay (Panels A) and soybean meal (Panel B) and crude protein 
degradation for grass hay (Panel C) and soybean meal (Panel D). 
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TABLES 

Table 2-1.  Composition of feeda for both grass and soybean meal (SBM) presented in percentages with the 
supplementation presented in grams.  

Grass SBM 

Dry matter, % 93.0 91.6 

Crude protein, % 11.4 51.6 

NDF, % 56.8 11.4 

ADF, % 34.0 7.2 

Lignin, % 4.8 0.9 

Fat, % 2.6 1.7 

Ash, % 8.8 8.4 

Non-fiber carbohydrateb, 
% 

23.5 27.7 

Starch, % 1.1 ND 

Calcium, % 0.38 0.27 

Phosphorus, % 0.24 0.87 

Potassium, % 2.16 2.40 

Supplement fed 

 Dry matter fed, g 333 

 Crude protein fed, g 172 

aAnalysis of duplicate samples were performed by Dairy One Forage Lab using wet chemistry procedures. 

bFraction determined by calculations. NFC = 100–CP–NDF–Fat–Ash–Bound protein. 
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Table 2-2.  Dry matter and crude protein degradation kinetics for grass hay and soybean meal (SBM). 

DM CP 

Grass Hay SBM SEM Grass Hay SBM SEM 

a 24.0 30.5 2.51 35.3d 25.7c 1.34 

b 50.0b 37.3a 0.91 57.2c 66.3d 2.44 

c, %/h-1 8.1 10.3 1.5 1.9c 8.6d 1.6 

Potential extent, % 74.0b 67.8a 1.87 92.5 92.0 2.42 

Effective degradation, 
% 

51.5 54.9 1.67 49.8c 63.5d 4.14 

abRow means within DM with differing superscripts are significantly different at P<0.05. cdRow means within CP 
with differing superscripts are significantly different at P<0.05.  

*a = immediately soluble; b = the non-soluble but degradable; c = degradation rate based on the equation a + b(1
– e-ct) Ørkov and McDonald (1979).  Potential extent is the sum of a + b and effective degradation is calculated as
a + (b x c/(c + kp)), where kp is 0.0549.
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Table 2-3.  Dry matter intake, NH3-N, concentration and composition of volatile fatty acids in the C1 of 
alpacas fed grass hay and grass hay soybean meal (SBM).  

Treatment 

Grass hay SBM SEM 

Dry matter intake, g/d 944 878 74.0 

Hay DM intake,  g/d 944b 545a 74.0 

Crude protein intake, g/d 72.5a 191b 5.69 

NDF intake, g/d 380a 342a 33.3 

pH 6.81 6.65 0.06 

NH3-N, mg/dl 3.52a 9.28b 0.55 

Acetate, mmol/l 45.7 46.9 2.26 

Propionate, mmol/l 12.0a 14.7b 0.92 

Butyrate, mmol/l 5.44 6.11 0.31 

Total, mmol/l 63.1 67.7 3.27 

AC/PR 3.87 3.37 0.43 

Acetate, % 72.4b 69.5a 0.84 

Propionate, % 19.4a 21.5b 0.78 

Butyrate, % 8.58a 9.03b 0.11 

abRow means with differing superscripts are significantly different at P<0.05. 
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