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ABSTRACT 

Ferritin Diversity: Mechanistic Studies, Disease Implications, and Materials Chemistry 
 

Robert J. Hilton 
Department of Chemistry and Biochemistry 

Doctor of Philosophy 
 

  The study of ferritin includes a rich history of discoveries and scientific progress. 
Initially, the composition of ferritin was determined. Soon, it was shown that ferritin is a 
spherical, hollow protein. Eventually, over several decades of research, the structure and some 
function of this interesting protein was elucidated. However, the ferritin field was not completely 
satisfied. Today, for example, researchers are interested in refining the details of ferritin 
function, in discovering the role of ferritin in a variety of diseases, and in using ferritin for 
materials chemistry applications. The work presented in this dissertation highlights the progress 
that we have made in each of these three areas:  
1) Mechanistic studies: The buffer used during horse spleen ferritin iron loading 
significantly influences the mineralization process and the quantity of iron deposited in ferritin. 
The ferrihydrite core of ferritin is crystalline and ordered when iron is loaded into ferritin in the 
presence of imidazole buffer. On the other hand, when iron is loaded into ferritin in the presence 
of MOPS buffer, the ferrihydrite core is less crystalline and less ordered, and a smaller amount of 
total iron is loaded in ferritin. We also show that iron can be released from the ferritin core in a 
non-reductive manner. The rate of Fe3+ release from horse spleen ferritin was measured using the 
Fe3+-specific chelator desferoxamine. We show that iron release occurs by three kinetic events. 
2) Disease studies: In order to better understand iron disruption during disease states, we 
performed in vitro assays that mimicked chronic kidney disease. We tested the hypothesis that 
elevated levels of serum phosphate interrupted normal iron binding by transferrin and ferritin. 
Results show that phosphate competes for iron, forming an iron(III)-phosphate complex that is 
inaccessible to either transferrin or ferritin. Ferritin samples separated from the iron(III)-
phosphate complex shows that as the phosphate concentration increases, iron loading into ferritin 
decreases. 
3) Materials chemistry studies: Anion sequestration during ferritin core reduction was 
studied. When the core of horse spleen ferritin is fully reduced using formamidine sulfinic acid, a 
variety of anions, including halides and oxoanions, cross the protein shell and enter the ferritin 
interior. Efforts have been made to use ferritin to control the concentration of anions for 
reactions. In addition, the native ferrihydrite mineral core of ferritin is a semi-conductor capable 
of catalyzing oxidation/reduction reactions. Light can photo-reduce AuCl4

− to form gold 
nanoparticles (AuNPs) with ferritin as a photocatalyst. The mechanism of AuNP formation using 
ferritin as a photocatalyst was examined. From this work, we propose that the ferrihydrite core of 
ferritin photo-reduces; the mineral core dissolves into a soluble iron(II) mineral. The iron(II) then 
re-oxidizes, and a new mineral forms that appears to be the new photocatalyst, as the lag phase is 
significantly decreased with this new mineral form of ferritin. 
 
 
Keywords: ferritin, chronic kidney disease, nanocage, anion, gold nanoparticles, photochemistry  



 
 

ACKNOWLEDGEMENTS 
 

 The success of the work contained in this dissertation was possible thanks to significant 

contributions from many individuals. First, I wish to thank Richard Watt for his incredible 

patience, advisement, and direction with the work. The research would not have progressed 

without his intellectual contributions, energy, and persevering attitude. Richard has had a great 

impact in the way that I approach problems, scientific or otherwise. His mentorship has taught 

me how to be a better person.  

 I would also like to thank several undergraduate and graduate students, post-doctoral 

researchers, and collaborators; Dr. Gary Watt, Dr. Alejandro Yevenes, Matthew Graff, Jeremiah 

Keyes, David Andros, Zach Kenealey, Curtis Seare, Naomi Martineau, Cata Matias, Dr. Kwang 

Min Shin, and Dr. Jeffery Farrer. Without their assistance, this work would not have been 

possible. 

 Finally, I would like to thank my unwavering family. Because of the tremendous support 

system that they have constantly offered through encouragement and praise, I have been able to 

persevere. Most especially, thanks to my beloved wife, Lacy. Her attitude, patience, and 

persistence has lifted me up and strengthened me. Our late-night conversions that centered on my 

research generated many ideas and thoughts, and her contributions are as significant as any. 

 Ultimately, I wish to thank my Father in Heaven for creating the world in which we live, 

full of complexities and mysteries. Discovery of these complexities turn out to be beautiful and 

profoundly spiritual. I am grateful for the opportunity I have had to catch but a glimpse of the 

creations of God.  

 



iv 
 

TABLE OF CONTENTS 
LIST OF TABLES ............................................................................................................................. vii 

LIST OF FIGURES ........................................................................................................................... viii 

LIST OF SCHEMES ............................................................................................................................ xi 

ABBREVIATIONS ............................................................................................................................ xii 

CHAPTER 1: INTRODUCTION TO FERRITIN ........................................................................................ 1 

Single Ferritin Subunit Structure ................................................................................................ 2 

Nanocage Structure ..................................................................................................................... 3 

The Role of H and L Chain Ferritin ............................................................................................ 6 

Mechanism of Ferritin Function ................................................................................................. 8 

Disease ...................................................................................................................................... 10 

Ferritin in Materials Chemistry ................................................................................................ 12 

Conclusion ................................................................................................................................. 13 

References ................................................................................................................................. 13 

CHAPTER 2: CRYSTALLINE FERRIHYDRITE FORMATION IN FERRITIN ............................................. 19 

Abstract ..................................................................................................................................... 19 

Introduction ............................................................................................................................... 20 

Materials and Methods .............................................................................................................. 22 

Results ....................................................................................................................................... 25 

Discussion ................................................................................................................................. 36 

References ................................................................................................................................. 36 

CHAPTER 3: FERRIC IRON RELEASE FROM FERRITIN USING DESFEROXAMINE .............................. 40 

Abstract ..................................................................................................................................... 40 

Introduction ............................................................................................................................... 40 



v 
 

Materials and Methods .............................................................................................................. 44 

Results ....................................................................................................................................... 46 

Discussion ................................................................................................................................. 59 

References ................................................................................................................................. 65 

CHAPTER 4: THE ROLE OF TRANSFERRIN IN CHRONIC KIDNEY DISEASE ....................................... 68 

Abstract ..................................................................................................................................... 68 

Introduction ............................................................................................................................... 68 

Materials and Methods .............................................................................................................. 75 

Results ....................................................................................................................................... 75 

Discussion ................................................................................................................................. 86 

References ................................................................................................................................. 88 

CHAPTER 5: THE ROLE OF FERRITIN IN CHRONIC KIDNEY DISEASE ............................................... 95 

Abstract ..................................................................................................................................... 95 

Introduction ............................................................................................................................... 96 

Materials and Methods .............................................................................................................. 98 

Results ..................................................................................................................................... 100 

Discussion ............................................................................................................................... 117 

References ............................................................................................................................... 121 

CHAPTER 6: ANION DEPOSITION IN FERRITIN .............................................................................. 124 

Abstract ................................................................................................................................... 124 

Introduction ............................................................................................................................. 125 

Materials and Methods ............................................................................................................ 127 

Results ..................................................................................................................................... 131 

Discussion ............................................................................................................................... 139 



vi 
 

References ............................................................................................................................... 142 

CHAPTER 7: FERRITIN AS A PHOTOCATALYST FOR GOLD NANOPARTICLE FORMATION ............... 145 

Abstract ................................................................................................................................... 145 

Introduction ............................................................................................................................. 145 

Materials and Methods ............................................................................................................ 148 

Results and Discussion ............................................................................................................ 150 

Conclusions ............................................................................................................................. 163 

References ............................................................................................................................... 163 

CHAPTER 8: FERRITIN PHOTOCATALYST; INTERMEDIATES AND MECHANISM .............................. 170 

Abstract ................................................................................................................................... 170 

Introduction ............................................................................................................................. 170 

Materials and Methods ............................................................................................................ 171 

Results ..................................................................................................................................... 172 

Discussion ............................................................................................................................... 182 

References ............................................................................................................................... 184 

CHAPTER 9: EVALUATION AND OUTLOOK ................................................................................... 186 

Mechanisms of Iron Core Formation and Iron Release ......................................................... 186 

Role of Transferrin and Ferritin in CKD ................................................................................ 189 

Materials Chemistry ................................................................................................................ 190 

References ............................................................................................................................... 196 

  



vii 
 

LIST OF TABLES 
Table 3–1. Activation parameters derived from the reactions shown in Figure 3–3. ................... 50 

Table 5-1. Initial rates of iron loading. ....................................................................................... 103 

Table 5-2. Elemental analysis of ferritin ..................................................................................... 109 

Table 5-3. Elemental analysis of rHuHF and rHuLF .................................................................. 117 

Table 6-1. ISE and ICP determinations ...................................................................................... 132 

 

 

  



viii 
 

LIST OF FIGURES 
Figure 1-1. Stereo diagram of human heavy ferritin....................................................................... 3 

Figure 1-2. Packing interactions between subunits of ferritin ........................................................ 5 

Figure 1-3. The ratio of H to L chain ferritin varies across tissue types ......................................... 7 

Figure 1-4. Kinetic loading of iron into H or L chain ..................................................................... 8 

Figure 1-5. Pathway of iron transport in the cell .......................................................................... 11 

Figure 2-1. Kinetics of iron loading into ferritin .......................................................................... 26 

Figure 2-2. Comparison of iron loading kinetics .......................................................................... 27 

Figure 2-3. Spectra of ferritin samples ......................................................................................... 28 

Figure 2-4. Electron micrographs of ferritin samples ................................................................... 31 

Figure 2-5. XRD spectrum of lyophilized apoferritin powder ..................................................... 32 

Figure 2-6. XRD spectra of 500 Fe/ferritin samples..................................................................... 33 

Figure 2-7. XRD spectrum of maximally loaded ferritin samples................................................ 34 

Figure 3-1. Channel binding sites ................................................................................................. 42 

Figure 3-2. The release of Fe3+ from the HoSF mineral core using DES chelation ..................... 47 

Figure 3-3. Calculated activation parameters derived from measurements of Fe release ............ 49 

Figure 3-4. EPR spectra of ferritin samples .................................................................................. 54 

Figure 3-5. Kinetics of Fe3+ release from native vs. reconstituted HoSF. .................................... 55 

Figure 3-6. Fe3+ release from ferritin using DES with different core sizes and ages. .................. 56 

Figure 3-7. Kinetics of iron loading and chelation ....................................................................... 57 

Figure 3-8. Small molecule effect on iron release. ....................................................................... 59 

Figure 4-1. Stereo diagram of human transferrin.......................................................................... 70 

Figure 4-2. Iron binding site within the N-lobe of transferrin ...................................................... 76 

Figure 4-3. UV-Vis spectrophotometry spectra of iron binding by transferrin ............................ 77 



ix 
 

Figure 4-4. UV-Vis spectrophotometry kinetics ........................................................................... 78 

Figure 4-5. Deprotonation of tyrosine residues ............................................................................ 79 

Figure 4-6. Change in absorbance at 241 nm vs. equivalents of iron ........................................... 80 

Figure 4-7. UV-Visible spectrophotometry kinetics ..................................................................... 83 

Figure 4-8. UV-Visible spectrophotometry kinetics monitoring the oxidation ............................ 84 

Figure 4-9. Relative rates of iron loading into transferrin ............................................................ 86 

Figure 5-1. Spectrophotometric assay......................................................................................... 102 

Figure 5-2. Spectra of ferritin ..................................................................................................... 104 

Figure 5-3. Gel filtration of ferritin............................................................................................. 106 

Figure 5-4. Electron micrographs ............................................................................................... 108 

Figure 5-5. Relative rates of either iron oxidation ...................................................................... 110 

Figure 5-6. Oximetry assay ......................................................................................................... 112 

Figure 5-7. Comparative loading of iron into ferritin ................................................................. 114 

Figure 5-8. Kinetics of iron loading ............................................................................................ 116 

Figure 6-1. Representative standard curve for the ISE ............................................................... 129 

Figure 6-2. Elution profiles of samples run over a G-25 column ............................................... 134 

Figure 6-3. Spectra of the oxidized native ferritin ...................................................................... 137 

Figure 6-4. Scanning transmission electron micrographs of ferritin .......................................... 138 

Figure 6-5. EDX shows unique spectra ...................................................................................... 139 

Figure 7-1. Spectrophotometric analysis of AuNPs ................................................................... 151 

Figure 7-2. TEM of AuNPs formed under different conditions ................................................. 153 

Figure 7-3. MOPS reactions pre-illuminated before AuCl4
– addition ........................................ 154 

Figure 7-4. Control reactions to form AuNPs using ferrihydrite nanoparticles ......................... 156 



x 
 

Figure 7-5. STEM and EDX of particles formed in Tris ............................................................ 157 

Figure 7-6. Size-exclusion chromatography of samples prepared in Tris. ................................. 158 

Figure 7-7. AuNP formation on the exterior surface of ferritin. ................................................. 159 

Figure 7-8. AuNP formation on the interior of ferritin. .............................................................. 162 

Figure 8-1. Spectrophotometric analysis of AuNPs ................................................................... 172 

Figure 8-2. Buffers significantly influence the rate of reaction. ................................................. 174 

Figure 8-3. Photochemical reduction of the iron core inside ferritin. ......................................... 176 

Figure 8-4. AuNP formation with native vs. photo-reduced ferritin. ......................................... 178 

Figure 8-5. Size-exclusion chromatography of illuminated ferritin ........................................... 179 

Figure 8-6. Kinetic runs using ferric-citrate as a catalyst. .......................................................... 180 

Figure 8-7. Spectra of AuNPs catalyzed with ferric citrate with various proteins present. ........ 181 

Figure 9-1. Detailed view of the ferritin channels. ..................................................................... 191 

Figure 9-2. Silver nanoparticles. ................................................................................................. 193 

Figure 9-3. Palladium and platinum nanoparticles. .................................................................... 193 

Figure 9-4. Blots of surface photo deposition. ............................................................................ 195 

 

 

  



xi 
 

LIST OF SCHEMES 
Scheme 4-1. Model of Fe3+ binding by transferrin ....................................................................... 73 

Scheme 5-1. Model of serum in healthy (left) and CKD patients .............................................. 118 

Scheme 6-1. A graphical depiction of the mechanism of anion entry ........................................ 127 

Scheme 7-1. A diagram of the photo-illumination ..................................................................... 150 

Scheme 7-2. Mechanism of AuNP formation by ferritin illumination. ...................................... 160 

Scheme 8-1. A model depicting the photocatalysis of AuNPs. .................................................. 183 

Scheme 9-1. Model of iron recycling from ferritin ..................................................................... 189 

Scheme 9-2. Principle of surface photo deposition .................................................................... 194 

 

  



xii 
 

ABBREVIATIONS 
AA – atomic absorption spectroscopy 

AFM – atomic force microscopy 

AgNP – silver nanoparticle 

AMPSO – 3-((1,1-Dimethyl-2-hydroxyethyl)amino)-2-hydroxypropanesulfonic acid 

AuNP – gold nanoparticle 

Bipy – 2,2′-bipyridine 

BSA – bovine serum albumin 

CKD – chronic kidney disease 

DES – desferoxamine 

DMT – divalent metal transporter 

EDTA – ethylenediaminetetraacetic acid 

EDX – energy-dispersive X-ray spectroscopy 

EPPS – 3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulfonic acid 

EPR – electron paramagnetic resonance spectroscopy 

FeDES – iron(III)-desferoxamine complex 

FSA – formamidine sulfinic acid 

HEPES – 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HFE – human hemochromatosis protein 

HoSF – horse spleen ferritin 

IC – ion chromatography 

ICP-OES – inductively coupled plasma optical emission spectroscopy 

ISE – ion selective electrodes 

JCPDS – Joint Committee on Powder Diffraction Standards 



xiii 
 

(k)Da – (kilo)Dalton 

MES – 2-(N-morpholino)ethanesulfonic acid 

MOPS – 3-(N-morpholino)propanesulfonic acid 

NMR – nuclear magnetic resonance 

NTA – nitrilotriacetic acid 

NTBI – non-transferrin bound iron 

PDB – protein database 

PIPES – piperazine-N,N′-bis(2-ethanesulfonic acid) 

rHuHF – recombinant human heavy chain ferritin 

rHuLF – recombinant human light chain ferritin 

RMSD – root mean square deviation 

ROS – reactive oxygen species 

SPD – surface photo deposition 

SPR – surface plasmon resonance 

(S)TEM – (scanning) transmission electron microscopy 

TES – 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid 

Tris – tris(hydroxymethyl)aminomethane 

TSAT – transferrin saturation 

XRD – X-ray powder diffraction 



1 
 

CHAPTER 1: INTRODUCTION TO FERRITIN 
Iron is the most abundant element in the earth as a whole. It is the fourth most abundant 

element in the earth’s crust, and the second most abundant metal, after aluminum. Iron is most 

commonly found in the +2 and +3 oxidation states (ferrous and ferric, respectively). Living 

organisms take advantage of iron not only because of its abundance, but also because of the 

useful redox chemistry that is characteristic of iron. The ability of iron to cycle from the ferric to 

the ferrous oxidation state makes iron a key element for a number of necessary processes within 

the cell. Unfortunately, this same useful property makes iron a toxic substance to cells through 

the generation of reactive oxygen species (ROS), which damage proteins, lipids, and DNA. In 

addition, ferrous iron is not easily obtained from our oxygen abundant environment because 

ferrous iron is reactive to oxygen, forming the highly inaccessible and insoluble ferric iron. Thus, 

organisms evolved to develop sophisticated methods of acquiring iron. In addition to evolving 

methods of iron acquisition, organisms have also established complex systems of iron transport 

and storage in order to protect against ROS. The main player in the storage of iron is the protein 

ferritin. 

Ferritin was first described in 1937 by Victor Laufberger,1 and since that time thousands 

of publications concerning both the structure and function of ferritin have been published. 

Although much is known concerning ferritin, certain aspects of ferritin remain uncertain. For 

example, the structure of ferritin is well established, and this has yielded important information 

concerning the uptake and storage of iron. On the other hand, the mechanism of iron release, the 

role ferritin plays in diseased states, and the extent of applications using ferritin in materials 

chemistry have only recently been investigated, and many questions are still left to be answered.  
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The general biological function of ferritin is iron storage and release during times of iron 

abundance or scarcity, respectively. Because protein function relies heavily on structure, a 

discussion on the structure of ferritin will be presented.  

Ferritin is an approximate 20 kDa polypeptide of 182 amino acids. Twenty-four subunits 

come together to form a hollow, octahedral sphere or nanocage of 450 kDa. Theoretically, 4,500 

iron atoms are capable of being stored within this nanocage (volume = 2.68×10–22 L), although in 

biology, this number is generally closer to 2,000 iron atoms per ferritin. Iron loading into ferritin 

occurs when iron is oxidized from ferrous to ferric iron in the presence of oxygen.  

Single Ferritin Subunit Structure 

A single ferritin polypeptide chain folds into an all α-helical domain comprised of five α-

helices (Figure 1–1). Four helices, helices A, B, C, and D, arrange to form a four-helix bundle, 

with up-down-down-up topology. The loop connecting helix B with helix C (loop BC) back 

tracks the entire length of the protein, giving the down-down orientation of helices B and C. 

Helices A, B, and C are made up of 28 amino acids each and form 43 Å long α -helices. Helix D 

is comprised of 32 amino acids and is 52 Å in length. The fifth helix, helix E, caps one end of the 

four-helix bundle. It is made of 10 amino acids and is 16 Å in length. The four-helix bundle 

motif provides considerable stability to the ferritin subunit. Similar to other four-helix bundle 

motifs, most of the core of the bundle is composed of hydrophobic residues (~70% 

hydrophobic). A strong ionic interaction from Arg77 of helix B to Asp127 of helix D also 

provides stability and possible gated action.2 The short helix E is stabilized next to helix B and D 

due to the ionic interaction of Asn51 of helix B interacting with Asp172 of helix E. Loop BC is 

stabilized next to the four-helix bundle due largely to a disulfide bond between Cys90 on loop 

BC and Cys102 on helix C.  
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Figure 1-1. Stereo diagram of human heavy ferritin subunit. The single subunit (PDB code 2FHA3) folds into a 

four-helix bundle, with a fifth, smaller helix packed on one end. Helix A is red, Helix B is gold, Helix C is green, 

Helix D is blue, and Helix E is magenta. Loops connecting the helices are in tan. The four helix bundle is brought 

together by a strong hydrophobic core. An ionic lock consisting of negatively charged D127 from Helix D and 

positively charged R77 from Helix B to further stabilize the bundle, shown here in ball and stick form (labeled in 

red). A similar interaction takes place between N51 and D172 to stabilize Helix E next to the bundle, also shown 

(labeled in red). The residues that make up the ferroxidase center (labeled black) are also shown here in ball and 

stick form. These residues bind and oxidize iron for iron deposition into ferritin. This is an inside looking out 

perspective of ferritin. Molecular graphics images were produced using the UCSF Chimera package from the 

Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported 

by NIH P41 RR-01081).4  

Nanocage Structure 

 When 24 subunits come together, an octahedral protein shell is formed. The quaternary 

structure of ferritin is referred to as a nanocage, and is a spectacular display of nature’s 
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symmetry. This nanocage is 12 nm in exterior diameter with an 8-nm interior diameter. The 

interface of four subunits forms a 4-fold axis, for a total of three 4-fold axes throughout the 

nanocage (Figure 1–2A). The 4-fold axis forms a channel that is ~2 Å in diameter and is packed 

with hydrophobic residues. Two residues (Leu165 and Ile169) from each of the four subunits 

contribute to this hydrophobic channel, for a total of eight hydrophobic residues. The nanocage 

also has four 3-fold axes. The 3-fold axis is formed at the interface of three subunits (Figure 1–

2B). This interface forms an approximate 4 Å channel that is lined with six negatively charged 

amino acids. Each subunit contributes both Asp131 and Glu134 to the channel, creating a 

negatively charged environment. Finally, ferritin also has six 2-fold axes at the interface of two 

subunits. This interface is lined with helices A and B, as well as the BC loop. This dimer 

interaction is lined with hydrophobic residues and contains salt bridges, providing a large area of 

inter-subunit stability. Overall, the nanocage is extremely stable, and remains intact up to 70 ºC 

and over pH extremes of 3–10.5-7 At pH less than 3, the 24 subunits will dissociate, but 

reversibly reassemble at pH greater than 3. A pH less than 2 will cause irreversible denaturation 

of the single subunits. The robust nature of ferritin ensures its function in a variety of organisms 

living in diverse environments. 



5 
 

D131

D131

D131

E134

E134
E134

A. Hydrophobic Four-fold Axis

B. Negatively charged Three-fold Axis

C. Two-fold Axis

L165

L165
L165

L165

L169

L169

L169

L169

 
Figure 1-2. Packing interactions between subunits of ferritin quaternary structure (PDB code 2FHA3). Ferritin has 

three 4-fold axes (A), four 3-fold axes (B), and six 2-fold axes (C) of symmetry. An expanded view of each image is 

shown on the right, with important residues displayed. The 4-fold axis is characterized by hydrophobic residues. The 

3-fold axis is characterized by negatively charged residues. The 2-fold axis contains no distinct character in residue 

composition. Figure adapted from Bou-Abdallah et al.8 Molecular graphics images were produced using the UCSF 

Chimera package from the Resource for Biocomputing, Visualization, and Informatics at the University of 

California, San Francisco (supported by NIH P41 RR-01081).4  
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The Role of H and L Chain Ferritin 

Two isoforms of ferritin are common among vertebrates; the heavy chain (H ferritin) and 

the light chain (L ferritin). The genes for the H and L ferritin proteins for humans are encoded on 

separate chromosomes9 (11 and 19, respectively) and consist of 182 and 174 amino acids, 

respectively.10, 11 H and L ferritins share 55% amino acid sequence identity and are structurally 

homologous (RMSD = 0.461 Å),12 but despite their similarity, they have distinct roles.13 H chain 

ferritin contains a ferroxidase center (Figure 1–1), a group of amino acids that is capable of 

rapidly oxidizing ferrous iron to ferric iron. The ferroxidase center is made up of residues Glu27, 

Glu61, Glu62, His65, and Glu107. Several studies have investigated the role that these residues 

play, and mutation of these residues leads to a loss of ferroxidase activity by the H chain 

ferritin.14-16  

L chain ferritin lacks the ferroxidase residues but does contain residues that act as 

nucleation sites for iron binding upon iron entry into ferritin. Specifically, Glu53, Glu56, and 

Glu57 have been shown to be the nucleation sites within L chain ferritin.17 Thus, whereas the H 

ferritin is important for iron incorporation and oxidation, the L chain is important for iron 

mineralization. The proper mineralization allows for greater iron incorporation over longer 

periods of time. This notion is further supported by the observation that in various tissue types, 

the ratio of H ferritin to L ferritin varies.11, 18, 19 For example, heart and brain ferritin is composed 

of 90% H and 10% L ferritin, presumably because of the need to quickly oxidize and incorporate 

any free iron into ferritin.20 On the other hand, liver and spleen ferritin is predominantly L chain, 

presumably for the long-term storage of iron (Figure 1–3). 
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Figure 1-3. The ratio of H to L chain ferritin varies across tissue types. The varied ratios of ferritin isoforms confers 

slightly varied abilities with each type. The predominantly H chain ferritins, such as heart or brain, are able to 

quickly oxidize and store ferritin in these types of high iron metabolism tissue types. In the liver and spleen, the long 

term storage of iron is the main focus, and so ferritin is made up predominantly of the L chain isoform. 

Work in our laboratory where we expressed and purified recombinant human heavy or 

recombinant human light chain ferritin also supports the roles that these isoforms have. 

Homopolymers of H chain ferritin quickly oxidize and incorporate iron into the core (Figure 1–

4). However, only about 500 iron atoms accumulate into ferritin before the protein begins to 

precipitate. This likely is due to the formation of a quickly formed, disorganized iron core, which 

in turn limits the amount of iron that effectively incorporates into H ferritin. On the other hand, 

homopolymers of L chain ferritin slowly incorporate iron into the core (at the same rate of iron 

oxidation in buffer). However, L chain ferritin is capable of storing over 2,000 irons per ferritin 

in an ordered iron core. Heteropolymers of H and L chain ferritin are able to both quickly 

incorporate iron and store larger amounts of iron.   
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Figure 1-4. Kinetic loading of iron into H or L chain homo- and heteropolymers of ferritin. A loading of 100 

irons/ferritin was performed five times and monitored spectrophotometrically at 310 nm using an Agilent 8453 

diode array spectrophotometer. The curves are as follows; the black is all H, the red curve is 90% H, the blue curve 

is 50% H, the cyan curve is 10% H, and the green curve is all L. The final absorbance is higher for L chain 

homopolymer, indicating that the greatest amount of iron is incorporated into this sample.  

Mechanism of Ferritin Function 

 By understanding the structure of ferritin, a significant amount of information concerning 

the function of ferritin has been derived. For example, several possible routes of iron entry exist 

in the ferritin protein. The ionic diameter of iron is 1.64 Å, so any possible routes of entry would 

need to accommodate this size. The six 4-fold channels, although of appropriate diameter (~2Å), 

are hydrophobic, and so are not amenable to iron entry. On the other hand, the eight 3-fold 

channels are prime candidates because they are lined with six negatively charged aspartate and 

glutamate residues, which can act as a funnel for positively charged iron ions to flow into ferritin 

(Figure 1–2B). Furthermore, the channel size of ~4 Å would easily accommodate an ion the size 

of iron. It is now generally accepted that iron enters ferritin at these 3-fold channels.8, 21-25 
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Once iron enters ferritin, it must be oxidized from the ferrous form to the ferric form. In 

order to accomplish this feat, H chain ferritin contains a ferroxidase center. The ferroxidase 

center is located in the middle of the four helix bundle, and is made up of negatively charged 

residues, as described previously. These negatively charged residues are thought to coordinate 

iron upon entry, thus allowing nearby residues to quickly oxidize Fe(II) to Fe(III). It is this 

oxidation process that allows iron to mineralize within ferritin in a non-toxic form. The mineral 

that forms is a nano-phase ferrihydrite mineral.  

As important as iron uptake and storage is, it is equally important for the organism to be 

able to reclaim iron from these storage sites during times of iron scarcity. Despite the clues for 

iron entry, there exist no clear structural clues as to how iron is released. In vitro, iron is released 

in a two-step process. First, the Fe(III) is reduced with a reducing agent, often sodium 

hydrosulfite. Next, the iron is chelated with a strong Fe(II) chelator, often 2,2′-bipyridine. 

Because these are not physiological species, a different mechanism for in vivo retrieval of iron 

must exist. Several studies have shown that ferritin is directed to the lysosome for degradation.26, 

27 The degradation of ferritin results in a release of iron, which is then subsequently taken up for 

other uses. Other researchers suggest that physiologically relevant small molecules are capable 

of chelating iron from ferritin in order for the cell to obtain necessary iron.28-30 Likely, both of 

these processes are taking place. 

The first portion of this dissertation will address these mechanistic questions. In Chapter 

2, the study of iron core formation will be addressed. Specifically, we investigate the mineral 

core formation of ferritin and show that it can be controlled, depending on environmental factors. 

Chapter 3 discusses progress we have made in our laboratory to understand the release of iron 

from ferritin. We investigate the non-reductive release of iron from ferritin, and show that iron 
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can be retrieved from ferritin without destroying the protein itself. The release of iron also tends 

to depend greatly upon the environmental conditions. 

Disease 

An interesting observation in our mechanistic studies showed that when we load iron into 

ferritin in the presence of phosphate, we observe an accelerated oxidation of iron. Initially, we 

also thought that this meant an increased deposition of iron into ferritin. However, following the 

appropriate purification and analysis, we determined that much of the iron was not actually going 

into ferritin. This led us to investigate circumstances where phosphate concentrations would be 

increased in vivo. Thus, our mechanistic studies led to studies of ferritin involvement in disease.    

 The role of ferritin in disease has only recently been considered due to several recent 

discoveries that link iron dysregulation to each of several diseases.31 For example, patients with 

Alzheimer’s disease,32, 33 Parkinson’s disease,34 diabetes,35 age-related macular degeneration,36-40 

chronic kidney disease,41-43 heart disease,44 and many others45-47 all have a disruption in iron 

metabolism and can be linked to ferritin. This is perhaps not too surprising because of the central 

role iron plays in cellular metabolism for organisms. Indeed, any deviation from normal iron 

regulation, no matter to which extreme, leads to serious problems for the organism. Thus, 

cellular iron metabolism is tightly regulated. Several key proteins play a role in the regulation of 

iron. In Figure 1–5, pathway A diagrams how iron is incorporated into the cell. Transferrin binds 

up to two ferric iron atoms and then holotransferrin binds to the transferrin receptor. 

Holotransferrin and its receptor are endocytosed together and the iron is released in the 

endosome. Pathway B diagrams the uptake of iron by ferritin and iron release from the cell. 

Holoferritin releases its iron by one of several possibilities (as discussed above), and iron is 

exported through ferroportin, where ceruloplasmin or hephaestin oxidizes the iron for transferrin 
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uptake. Pathway C highlights how iron release through ferroportin is blocked by hepcidin. The 

mode of action for hepcidin inhibition is for hepcidin to bind to ferroportin causing its 

endocytosis and degradation. Pathway D shows how iron intake is blocked by HFE. Together, 

this brief picture of cellular iron metabolism underscores the complexity of iron regulation 

within the cell. Variations in these processes lead to diseased states.   
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Figure 1-5. Pathway of iron transport in the cell. (A) Pathway for iron entry. Holotransferrin binds to transferrin 

receptor. This complex is endocytosed into the cell in clathrin coated pits. The transferrin with its receptor binds to 

an endosome, where the low pH allows for iron release. Apo-transferrin and receptor are then exported back to the 

cell membrane. (B) Pathway for iron storage and release. Iron is reduced in the endosome by ferric reductase and 

sent to the cytosol by DMT-1. Ferritin sequesters iron during iron excess. During iron deficiency, ferritin releases its 

iron to ferroportin. Ferroportin transfers iron to transferrin, mediated by ceruloplasmin. (C) During inflammation, 

hepcidin binds to ferroportin causing its endocytosis and degradation within the lysosome, thus limiting iron export. 

(D) HFE regulates the amount of transferrin that is endocytosed. 
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 Understanding the fundamental principles of iron loading into ferritin, how ferritin 

interacts with other proteins, and how small molecules that are present in vivo affect ferritin 

function can lead to useful and interesting data concerning the role ferritin plays in a number of 

diseases. Chapters 4 and 5 of this work highlight the discovery that phosphate competes with 

ferritin for iron. Phosphate binds iron and forms an insoluble iron-phosphate complex. These 

data and the results discussed in these chapters provide some answers about the symptoms that 

patients with chronic kidney disease are experiencing. Additional work in our lab shows that 

other small molecules may be involved in altering the ability of ferritin to function properly. 

Although these studies will not be discussed in great detail in this work, the principle that small 

molecules can change ferritin function is noteworthy.  

Ferritin in Materials Chemistry 

 Ferritin has recently garnered significant attention for its use in materials chemistry. 

Ferritin is useful in this application because it is a biological nanocage — a spherical protein 

with a hollow interior that can act as a template for material growth. The added benefit is that 

Nature perfected this nanocage, and with some slight modifications, scientists can tune the 

protein for specific uses. Applications include, but are not limited to, nanoparticle synthesis,48-50 

biomedical imaging,51 drug delivery,52 and as a foundation for carbon nanotube growth.53, 54 

Chapters 6, 7, and 8 delve into the important discoveries of materials synthesis that have 

been made in this lab. Ferritin is a dynamic tool for making novel materials because it is a 

nanocage that has an interior environment separated from the exterior. This is helpful in the 

synthesis of nanoparticles that would otherwise be difficult to form. In Chapter 6, we show that 

we are able to incorporate anions into ferritin in a controlled and reversible manner. The 

incorporation of anions using the method described in Chapter 6 is efficient for a large number of 
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anions that we tried. Our synthetic method is general enough that it can be applied to a wide 

range of anions for a variety of applications. 

In Chapters 7 and 8, we show the ability of ferritin as a photocatalyst for directing gold 

nanoparticle synthesis. This system can be used for a variety of metals and applications, and 

these will be discussed in greater detail in these chapters.   

Conclusion 

Over many decades, meticulous study of ferritin has slowly yielded information both 

structurally and functionally. The structure of ferritin is clear. It consists of 24 subunits arranged 

in an octahedral sphere, with a volume capable of holding 4,500 iron atoms. Iron entry into 

ferritin was recently shown to take place through a two-step process, where iron first enters the 

3-fold channels.8 Next, iron traverses the 4-helix bundle to the ferroxidase center. Upon binding 

at the ferroxidase center, ferrous iron is oxidized to ferric iron, and deposited into the interior of 

ferritin. How ions other than iron traverse ferritin is not yet certain, but has been made more 

clear with the results of the research contained in this work. Ferritin, it appears, may not be the 

rock-solid, static protein that many scientists imagined it to be. Indeed, this work shows that 

ferritin is a dynamic and active protein. An overall evaluation and summary of this work is 

presented in Chapter 9. 

References 

1. Laufberger, V. Sur la Cristallisation de la Ferritine. Bull Soc Chim Biol 1937, 19, 1575–1582. 

2. Liu, X.; Jin, W.; Theil, E. C. Opening Protein Pores with Chaotropes Enhances Fe Reduction and 

Chelation of Fe from the Ferritin Biomineral. PNAS 2003, 100 (7), 3653–3658. 

3. Hempstead, P. D.; Yewdall, S. J.; Fernie, A. R.; Lawson, D. M.; Artymiuk, P. J.; Rice, D. W.; 

Ford, G. C.; Harrison, P. M. Comparison of the Three-Dimensional Structures of Recombinant Human H 

and Horse L Ferritins at High Resolution. J Mol Biol 1997, 268 (2), 424–448. 



14 
 

4. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; 

Ferrin, T. E. UCSF Chimera - A Visualization System for Exploratory Research and Analysis. J Comput 

Chem 2004, 25 (13), 1605–1612. 

5. Santambrogio, P.; Levi, S.; Arosio, P.; Palagi, L.; Vecchio, G.; Lawson, D. M.; Yewdall, S. J.; 

Artymiuk, P. J.; Harrison, P. M.; Jappelli, R.; Cesareni, G. Evidence that a Salt Bridge in the Light Chain 

Contributes to the Physical Stability Difference Between Heavy and Light Human Ferritins. J Biol Chem 

1992, 267 (20), 14077–14083. 

6. Santambrogio, P.; Levi, S.; Cozzi, A.; Rovida, E.; Albertini, A.; Arosio, P. Production and 

Characterization of Recombinant Heteropolymers of Human Ferritin H and L Chains. J Biol Chem 1993, 

268 (17), 12744–12748. 

7. Kim, M.; Rho, Y.; Jin, K. S.; Ahn, B.; ; Kim, H.; Ree, M. pH-Dependent Structures of Ferritin 

and Apoferritin in Solution: Disassembly and Reassembly. Biomacromolecules 2011, 12, 1629–1640. 

8. Bou-Abdallah, F.; Zhao, G.; Biasiotto, G.; Poli, M.; Arosio, P.; Chasteen, N. Facilitated Diffusion 

of Iron(II) and Dioxygen Substrates into Human H-Chain Ferritin. A Fluorescence and Absorbance Study 

Employing the Ferroxidase Center Substitution Y34W. JACS 2008, 130, 17801–17811. 

9. Caskey, J. H.; Jones, C.; Miller, Y. E.; Seligman, P. A. Human Ferritin Gene is Assigned to 

Chromosome 19. PNAS 1983, 80 (2), 482–486. 

10. Andrews, S.; Harrison, P.; Yewdall, S.; Arosio, P.; Levi, S.; Bottke, W.; Briat, J.; Laulhère, J.; 

Lobreaux, S. Structure, Function, and Evolution of Ferritins. J Inorg Biochem 1992, 47, 161–174. 

11. Dedman, D. J.; Treffry, A.; Candy, J. M.; Taylor, G. A.; Morris, C. M.; Bloxham, C. A.; Perry, R. 

H.; Edwardson, J.; Harrison, P. Iron and Aluminium in Relation to Brain Ferritin in Normal Individuals 

and Alzheimer's-Disease and Chronic Renal-Dialysis Patients. Biochem J 1992, 287, 509–514. 

12. Watt, R. K.; Hilton, R. J.; Graff, D. M. Oxido-Reduction is not the Only Mechanism Allowing 

Ions to Traverse the Ferritin Protein Shell. BBA 2010, 1800 (8), 745–759. 

13. Arosio, P.; Levi, S. Ferritin, Iron Homeostasis, and Oxidative Damage. Free Rad Biol Med 2002, 

33, 457–463. 



15 
 

14. Wade, V. J.; Levi, S.; Arosio, P.; Treffry, A.; Harrison, P. M.; Mann, S. Influence of Site-

Directed Modifications on the Formation of Iron Cores in Ferritin. J Mol Biol 1991, 221 (4), 1443–1452. 

15. Levi, S.; Corsi, B.; Rovida, E.; Cozzi, A.; Santambrogio, P.; Albertini, A.; Arosio, P. 

Construction of a Ferroxidase Center in Human Ferritin L-Chain. J Biol Chem 1994, 269, 30334–30339. 

16. Levi, S.; Santambrogio, P.; Albertini, A.; Arosio, P. Human Ferritin H-Chains can be Obtained in 

Nonassembled Stable Forms Which Have Ferroxidase Activity. Febs Letters 1993, 336 (2), 309–312. 

17. Crichton, R. R.; Herbas, A.; Chavez-Alba, O.; Roland, F. Identification of Catalytic Residues 

Involved in Iron Uptake by L-Chain Ferritins. J Biol Inorg Chem 1996, 1 (6), 567–574. 

18. Wagstaff, M.; Worwood, M.; Jacobs, A. Properties of Human Tissue Isoferritins. Biochem J 

1978, 173 (3), 969–977. 

19. Connor, J. R.; Boeshore, K. L.; Benkovic, S. A.; Menzies, S. L. Isoforms of Ferritin have a 

Specific Cellular Distribution in the Brain. J Neurosci Res 1994, 37 (4), 461–465. 

20. Zhao, G.; Su, M.; Chasteen, N. D. [mu]-1,2-Peroxo Diferric Complex Formation in Horse Spleen 

Ferritin. A Mixed H/L-Subunit Heteropolymer. J Mol Biol 2005, 352 (2), 467–477. 

21. Bou-Abdallah, F. The Iron Redox and Hydrolysis Chemistry of the Ferritins. BBA 2010, 1800, 

719–731. 

22. Theil, E. C.; Takagi, H.; Small, G. W.; He, L.; Tipton, A. R.; Danger, D. The Ferritin Iron Entry 

and Exit Problem. Inorgan Chim Acta 2000, 297 (1–2), 242–251. 

23. Bou-Abdallah, F.; Arosio, P.; Levi, S.; Janus-Chandler, C.; Chasteen, N. D. Defining Metal Ion 

Inhibitor Interactions with Recombinant Human H- and L-Chain Ferritins and Site-Directed Variants: An 

Isothermal Titration Calorimetry Study. J Biol Inorg Chem 2003, 8 (4), 489–497. 

24. Bauminger, E. R.; Harrison, P. M. Ferritin, the Path of Iron into the Core, as Seen by Mossbauer 

Spectroscopy. Hyperfine Interact 2003, 151 (1), 3–19. 

25. Treffry, A.; Bauminger, E. R.; Hechel, D.; Hodson, N. W.; Nowik, I.; Yewdall, S. J.; Harrison, P. 

M. Defining the Roles of the Threefold Channels in Iron Uptake, Iron Oxidation and Iron-Core Formation 

in Ferritin - A Study Aided by Site-Directed Mutagenesis. Biochem J 1993, 296, 721–728. 



16 
 

26. Radisky, D. C.; Kaplan, J. Iron in Cytosolic Ferritin can be Recycled Through Lysosomal 

Degradation in Human Fibroblasts. Biochem J 1998, 336, 201–205. 

27. Kidane, T. Z.; Sauble, E.; Linder, M. C. Release of Iron from Ferritin Requires Lysosomal 

Activity. Am J Physiol 2006, 291 (3), C445–C455. 

28. Cassanelli, S.; Moulis, J.-M. Sulfide is an Efficient Iron Releasing Agent for Mammalian 

Ferritins. BBA 2001, 1547 (1), 174–182. 

29. Liu, X. S.; Patterson, L. D.; Miller, M. J.; Theil, E. C. Peptides Selected for the Protein Nanocage 

Pores Change the Rate of Iron Recovery from the Ferritin Mineral. J Biol Chem 2007, 282, 31821–31825. 

30. De Domenico, I.; Ward, D. M.; Kaplan, J. Specific Iron Chelators Determine the Route of Ferritin 

Degradation. Blood 2009, 114 (20), 4546–4551. 

31. Watt, R. K. The Many Faces of the Octahedral Ferritin Protein. Biometals 2011, 24 (3), 489–500. 

32. Lavados, M.; Guillon, M.; Mujica, M. C.; Rojo, L. E.; Fuentes, P.; Maccioni, R. B. Mild 

Cognitive Impairment and Alzheimer Patients Display Different Levels of Redox-Active CSF Iron. J 

Alzheimers Dis 2008, 13 (2), 225–232. 

33. Gerlach, M.; Ben-Shachar, D.; Riederer, P.; Youdim, M. B. Altered Brain Metabolism of Iron as 

a Cause of Neurodegenerative Diseases? J Neurochem 1994, 63 (3), 793–807. 

34. Kaur, D.; Rajagopalan, S.; Andersen, J. K. Chronic Expression of H-Ferritin in Dopaminergic 

Midbrain Neurons Results in an Age-Related Expansion of the Labile Iron Pool and Subsequent 

Neurodegeneration: Implications for Parkinson's Disease. Brain Res 2009, 1297, 17–22. 

35. Jehn, M. L.; Guallar, E.; Clark, J. M.; Couper, D.; Duncan, B. B.; Ballantyne, C. M.; Hoogeveen, 

R. C.; Harris, Z. L.; Pankow, J. S. A Prospective Study of Plasma Ferritin Level and Incident Diabetes: 

The Atherosclerosis Risk in Communities (ARIC) Study. Am J Epidemiol 2007, 165 (9), 1047–1054. 

36. Loh, A.; Hadziahmetovic, M.; Dunaief, J. L. Iron Homeostasis and Eye Disease. BBA 2009, 1790 

(7), 637–649. 

37. Goralska, M.; Ferrell, J.; Harned, J.; Lall, M.; Nagar, S.; Fleisher, L. N.; McGahan, M. C. Iron 

Metabolism in the Eye: A Review. Exp Eye Res 2009, 88 (2), 204–215. 



17 
 

38. Deleon, E.; Lederman, M.; Berenstein, E.; Meir, T.; Chevion, M.; Chowers, I. Alteration in Iron 

Metabolism During Retinal Degeneration in rd10 Mouse. Invest Ophthal Vis Sci 2009, 50, 1360–1365. 

39. Wong, R. W.; Richa, D. C.; Hahn, P.; Green, W. R.; Dunaief, J. L. Iron Toxicity as a Potential 

Factor in AMD. Retina 2007, 27 (8), 997–1003. 

40. Dunaief, J. L. Iron Induced Oxidative Damage as a Potential Factor in Age-Related Macular 

Degeneration: The Cogan Lecture. Invest Ophthalmol Vis Sci 2006, 47 (11), 4660–4664. 

41. Zarjou, A.; Jeney, V.; Arosio, P.; Poli, M.; Antal-Szalmas, P.; Agarwal, A.; Balla, G.; Balla, J. 

Ferritin Prevents Calcification and Osteoblastic Differentiation of Vascular Smooth Muscle Cells. J Am 

Soc Nephrol 2009, 20 (6), 1254–1263. 

42. Kalantar-Zadeh, K.; Lee, G. H. The Fascinating but Deceptive Ferritin: To Measure it or not to 

Measure it in Chronic Kidney Disease? Clin J Am Soc Nephrol 2006, 1 Suppl 1, S9–18. 

43. Nakanishi, T.; Kuragano, T.; Nanami, M.; Otaki, Y.; Nonoguchi, H.; Hasuike, Y. Importance of 

Ferritin for Optimizing Anemia Therapy in Chronic Kidney Disease. Am J Nephrol 2010, 32, 439–446. 

44. Cantor, E. J.; Mancini, E. V.; Seth, R.; Yao, X. H.; Netticadan, T. Oxidative Stress and Heart 

Disease: Cardiac Dysfunction, Nutrition, and Gene Therapy. Curr Hypertens Rep 2003, 5 (3), 215–220. 

45. Bennett, T. D.; Hayward, K. N.; Farris, R. W.; Ringold, S.; Wallace, C. A.; Brogan, T. V. Very 

High Serum Ferritin Levels are Associated with Increased Mortality and Critical Care in Pediatric 

Patients. Pediatr Crit Care Med 2011, in press. 

46. Yonal, O.; Akyuz, F.; Demir, K.; Ciftci, S.; Keskin, F.; Pinarbasi, B.; Uyanikoglu, A.; Issever, H.; 

Ozdil, S.; Boztas, G.; Besisik, F.; Kaymakoglu, S.; Cakaloglu, Y.; Mungan, Z.; Okten, A. Decreased 

Prohepcidin Levels in Patients with HBV-Related Liver Disease: Relation with Ferritin Levels. Dig Dis 

Sci 2010, 55 (12), 3548–3551. 

47. Alsultan, A. I.; Seif, M. A.; Amin, T. T.; Naboli, M.; Alsuliman, A. M. Relationship Between 

Oxidative Stress, Ferritin and Insulin Resistance in Sickle Cell Disease. Eur Rev Med Pharmacol Sci 

2010, 14 (6), 527–538. 



18 
 

48. Kasyutich, O.; Ilari, A.; Fiorillo, A.; Tatchev, D.; Hoell, A.; Ceci, P. Silver Ion Incorporation and 

Nanoparticle Formation inside the Cavity of Pyrococcus furiosus Ferritin: Structural and Size-

Distribution Analyses. JACS 2010, 132 (10), 3621–3627. 

49. Ensign, D.; Young, M.; Douglas, T. Photocatalytic Synthesis of Copper Colloids from Cu(II) by 

the Ferrihydrite Core of Ferritin. Inorg Chem 2004, 43 (11), 3441–3446. 

50. Butts, C. A.; Swift, J.; Kang, S. G.; Di Costanzo, L.; Christianson, D. W.; Saven, J. G.; 

Dmochowski, I. J. Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein. Biochemistry 

2008, 47 (48), 12729–12739. 

51. Valero, E.; Tambalo, S.; Marzola, P.; Ortega-Munoz, M.; Lopez-Jaramillo, F. J.; Santoyo-

Gonzalez, F.; Lopez, J. D.; Delgado, J. J.; Calvino, J. J.; Cuesta, R.; Dominguez-Vera, J. M.; Galvez, N. 

Magnetic Nanoparticles-Templated Assembly of Protein Subunits: A New Platform for Carbohydrate-

Based MRI Nanoprobes. JACS 2011, 133 (13), 4889–4895. 

52. Ma-Ham, A. H.; Wu, H.; Wang, J.; Kang, X. H.; Zhang, Y. Y.; Lin, Y. H. Apoferritin-Based 

Nanomedicine Platform for Drug Delivery: Equilibrium Binding Study of Daunomycin with DNA. J 

Mater Chem 2011, 21 (24), 8700–8708. 

53. Bhaviripudi, S.; Mile, E.; Steiner, S. A.; Zare, A. T.; Belcher, A. M.; Kong, J. CVD Synthesis of 

Single-Walled Carbon Nanotubes from Gold Nanoparticle Catalysts. JACS 2007, 129, 1516–1517. 

54. Park, J.; Yoon, J.; Kang, S. J.; Kim, G. T.; Ha, J. S. High Yield Production of Semiconducting p-

type Single-Walled Carbon Nanotube Thin-Film Transistors on a Flexible Polyimide Substrate by Tuning 

the Density of Ferritin Catalysts. Carbon 2011, 49 (7), 2492–2498. 

 



19 
 

CHAPTER 2: CRYSTALLINE FERRIHYDRITE FORMATION 
IN FERRITIN 

Abstract 

The buffer used during horse spleen ferritin iron loading significantly influences the 

mineralization process and the quantity of iron deposited in ferritin. Ferritin iron loading in 

imidazole (C3H4N2) buffer shows a rapid hyperbolic curve in contrast to iron loading in 3-(N-

morpholino)propanesulfonic acid (MOPS) buffer, which displays a slower sigmoidal curve. 

Ferritin iron loading in an equimolar mixture of imidazole and MOPS produces an iron-loading 

curve that is intermediate between the imidazole and MOPS curves, indicating that one buffer 

did not dominate the reaction mechanism. The UV-Visible spectrum of the ferritin mineral has a 

higher absorbance from 250–450 nm when prepared in imidazole than when prepared in MOPS. 

These results suggest that different mineral phases form in ferritin by different loading 

mechanisms in imidazole and MOPS buffered reactions. Samples of 1,500 Fe/ferritin were 

prepared in MOPS or imidazole buffer and were analyzed for crystallinity using the electron 

diffraction capabilities of the electron microscope. The iron cores formed in imidazole showed 

significantly more crystallinity than those prepared in MOPS. X-ray powder diffraction studies 

showed that small cores (~500 Fe/ferritin) prepared in MOPS or imidazole possess a 2-line 

ferrihydrite spectrum. As the core size increases, the mineral phase begins to change from 2-line 

to 6-line ferrihydrite, with the imidazole sample favoring the 6-line ferrihydrite phase. Taken 

together, these data suggest that the iron deposition mechanism in ferritin can be controlled by 

properties of the buffer, with samples prepared in imidazole forming a more crystalline mineral 

than samples prepared in MOPS.   
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Introduction 

Ferritin is composed of 24 subunits that self-assemble into a spherical protein cage with 

an outer diameter of 12 nm and an interior cavity diameter of 8 nm.1 Molecules enter and leave 

ferritin through channels of 4 Å in diameter, eight of which are hydrophilic and six of which are 

hydrophobic. The iron atoms form a ferric oxyhydroxide core in the center of the ferritin cavity 

that most resembles ferrihydrite.2-4 The solid iron core can be removed through chemical 

reduction followed by chelation and dialysis.5, 6    

Ferritin can theoretically sequester 4,500 iron atoms, but in nature the average is closer to 

2,000. It has been proposed that oxidative damage to apoferritin results in the termination of core 

formation and presents a serious problem when trying to maximize the number of iron atoms 

loaded into the protein.1, 7 In the natural process of core formation, Fe2+ is oxidized at the 

ferroxidase center or oxidized on the mineral core surface where it crystallizes in the central 

cavity.8 If the Fe2+ is oxidized at other protein sites, hydroxyl radicals are produced through the 

well-known Fenton chemistry (Fe2+ + H2O2 → Fe3+ + OH∙ + OH −). The production of these 

radicals damages the ferritin protein and inhibits iron core formation.9 An alternative hypothesis 

for the much lower iron loading in vitro may simply be based on solubility arguments. At 

physiological pH, Fe2+ and Fe3+ interact with hydroxide ions and precipitate.   

Previous studies showed that buffers could greatly affect iron uptake in ferritin during in 

vitro iron loading.10, 11 Salt concentrations can also influence the rate of iron loading into ferritin. 

Studies by Cutler et al. concluded that in general, cations slow the rate of iron loading into 

ferritin by competing with Fe2+ for negatively charged amino acids near the 3-fold channels.12 

On the other hand, some anions, such as halides and sulfate, had no effect. However, other 

anions, such as phosphate and its tetrahedral oxoanion analogs have been shown to stimulate the 
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rate of iron loading into ferritin and produce a different mineral phase with the oxoanions 

incorporated into the mineral.7, 13-15  

Iron loading into ferritin has been studied extensively, and the mechanism of iron entry is 

well characterized.16-18 In addition, the mineralization and characterization of the ferrihydrite 

core of ferritin is also well characterized.4, 19, 20 Nevertheless, we recently observed that various 

forms of ferrihydrite are capable of forming inside ferritin depending on the environmental 

conditions. This chapter examines the effects of buffers on iron loading in ferritin with the goal 

of maximizing the amount of iron that can be loaded into ferritin. We reasoned that maximal iron 

loading into ferritin might be enhanced by using buffers that stabilized Fe2+ in solution by 

slowing oxidation, minimizing the formation of radicals that might damage ferritin, and 

minimizing side reactions that lead to precipitation of Fe(OH)3 (s) outside ferritin. Ferritin iron-

loading reactions were performed in imidazole (C3H4N2) buffer, which coordinates Fe2+and its 

oxidation product Fe3+. These reactions were compared to iron loading reactions performed in 3-

(N-morpholino)propanesulfonic acid (MOPS) buffer, a Good’s buffer that is commonly used for 

iron loading reactions with ferritin. MOPS buffer coordinates to Fe2+ poorly, if at all. We 

observed that the iron loading kinetics were very different in imidazole than in MOPS. This 

suggests that imidazole loads ferritin by a different mechanism than MOPS. This different iron 

loading mechanism that we observed when using imidazole allows iron loading to a greater 

extent under the conditions used in this work and produces a mineral phase with different 

mineral properties than the core formed using MOPS buffer.     
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Materials and Methods  

Materials. All aqueous solutions in this study were made using Milli-Q water having a 

resistance of 18 MΩ. Chemical reagents were obtained commercially and used without further 

purification. Horse spleen ferritin (HoSF) was acquired from Sigma-Aldrich in a 0.15 M NaCl 

solution. Thioglycolic acid was also purchased from Sigma-Aldrich as a 98% solution, and 

MOPS buffer was purchased from Fisher Bioreagents with purity greater than 97%. All other 

reagents had a purity of at least 97%. 

 Preparation of apoferritin. Native HoSF obtained from Sigma-Aldrich was treated 

according to established methods to make apoferritin.21 As obtained, HoSF in saline solution was 

dialyzed for 24 hours against 1% thioglycolic acid and 0.25 M sodium acetate (NaC2H3O2) at 4 

°C. This process was repeated with an addition of 100 mg/L of 2,2′-bipyridyl, which chelates 

Fe2+ forming the red [Fe(2,2′-bipyridyl)3]2+ complex. The HoSF was then dialyzed twice with 5 

g/L sodium bicarbonate (NaHCO3) at 4 °C. The apoferritin solution was then dialyzed several 

times with H2O at 4 °C to remove ionic species from the solution. Dialysis with H2O was 

terminated when Na, S, C, Cl, and Fe ions could not be detected in the water outside the dialysis 

tubing. The Na was analyzed by atomic absorption spectroscopy (AA), whereas S, C, and Fe 

were analyzed using inductively coupled plasma optical emission spectroscopy (ICP-OES), and 

the Cl was quantified using ion chromatography (IC). 

Kinetics of iron core formation in MOPS and imidazole buffers. Kinetic studies of iron 

loading in ferritin were carried out on an Agilent 8453 UV-Visible spectrophotometer. Imidazole 

and MOPS solutions (0.05 M) were prepared and the pH was adjusted to 7.5 by the addition of 

NaOH for MOPS and HNO3 for imidazole. A 0.010 M Fe2+ solution was prepared by dissolving 
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Fe(NH4)2(SO4)2
.6H2O in a 1 x 10−3 M HCl solution. Iron loading reactions were carried out in a 

cuvette by adding apoferritin (0.3 µM) and a Teflon stir bar into 2.0 mL of the indicated buffer. 

The spectrophotometer was zeroed on the buffer prior to the addition of ferritin. The reaction 

was initiated by the addition of 25 µL of 0.010 M Fe2+ (~400 Fe2+/ferritin) and the absorbance at 

310 nm was measured over time to monitor ferritin iron mineralization. The beginning of each 

time trace shows a lag phase, which is the background absorbance prior to the addition of Fe2+. 

The absorbance measurements were continued until the reaction reached a plateau, and in some 

instances multiple additions of Fe2+ were added to the same solution.   

Transmission electron microscopy (TEM). Samples were prepared by adding 1.0 mL 

apoferritin (5.4 mg/mL) into 10 mL 0.050 M MOPS, 0.1 M NaCl pH 7.5 or 0.050 M imidazole 

buffer, 0.1 M NaCl pH 7.5. The samples were stirred in air and 0.60 mL of 0.010 M 

Fe(NH4)2(SO4)2
.6H2O was added to deliver 500 Fe/ferritin. The sample was stirred for 30 

minutes in air to allow the Fe2+ to oxidize. Two additional aliquots of Fe2+ were added following 

the identical procedure to reach an iron core of 1,500 iron atoms/ferritin. The samples were 

centrifuged to remove any unbound iron or precipitated protein and an iron and protein analysis 

was performed to confirm the samples contained 1,500 Fe/ferritin. The samples were deposited 

on charged grids (lacey carbon fiber, 400 mesh copper grids, Ted Pella, Inc.). Following 30 to 60 

seconds on the grid, the solution was wicked off of the grid, and the grid was rinsed in water to 

remove salts or buffers. The grid was then dried. The grids were analyzed using a FEI Tecnai 

F30 TEM (FEI Company, the Netherlands), operating at 140 keV. 

Preparation and characterization of reconstituted ferritin mineral cores in imidazole and 

MOPS. Ferritin was reconstituted in the presence of imidazole or MOPS buffer by adding 

apoferritin to the imidazole or MOPS buffer followed by slowly titrating with a 0.010 M Fe2+ 
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solution at room temperature under constant stirring. Various imidazole and MOPS 

concentrations were tested and reactions were performed in the presence and absence of various 

concentrations of NaCl. Some samples were loaded with iron by slowly adding Fe2+ from a 

peristaltic pump that delivered a very dilute Fe2+ concentration at a very slow delivery speed. 

The pH of the solutions was monitored and maintained at 7.5 by the addition of NaOH (aq). As 

the titration progressed, the solution turned to a dark brownish-red. When the solution began to 

appear cloudy, the addition of iron was stopped and the sample was centrifuged to remove any 

solid material. The ferritin solution was then transferred to a dialysis bag and dialyzed at 4 °C 

with repeated changes of water to remove all salts and impurities. The water removed from each 

round of dialysis was analyzed for S, Na, C, and Cl ions. Once the levels of these species were 

below detection limits (using the methods described above), the dialysis was stopped. Samples 

used for X-ray powder diffraction (XRD) were lyophilized. The crystallinity of the ferritin cores 

were characterized by XRD using a Scintag Diffractometer (Cu-Kα radiation, λ = 1.54176 nm) at 

a scanning rate of 0.1 2θ.min−1 and a power of 15 kW over the range 5 to 80°. The XRD data for 

the ferritin samples were smoothed using a boxcar calculation of 25 points on either side of a 

given point. Although the signal intensity is slightly decreased as a result of the smoothing, the 

noise in the spectrum is dramatically reduced and the XRD reflections are much more evident. 
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Results 

Kinetic traces of iron loading in the presence of MOPS and imidazole. Because iron 

mineralization in ferritin corresponds with a strong absorbance at 310 nm, the absorbance change 

at this wavelength versus time was measured.11 The reactions were performed in both MOPS and 

imidazole to compare the iron loading kinetics for each buffer (Figure 2–1). The MOPS reaction 

is characterized by a sigmoidal shape, which was described previously as the result of two 

different iron-loading reactions.22 The first reaction occurs when no iron is present in ferritin and 

Fe2+ is oxidized at the ferritin ferroxidase center. As a core begins to form inside ferritin, Fe2+ is 

oxidized on the surface of the growing mineral. As the surface area of the core increases, the rate 

of iron oxidation increases, and the sigmoidal shape is a result of these two reactions. In contrast, 

the curve for the imidazole reaction is hyperbolic. This behavior suggests that the mechanism of 

iron loading in imidazole is different than the MOPS reaction, although the mechanism has yet to 

be characterized. The final absorbance of the imidazole sample was higher than that of the 

MOPS sample, also suggesting that the mineral phase of iron formed in ferritin when using 

imidazole is different than that formed when using MOPS because it has a higher extinction 

coefficient.   
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Figure 2-1. Kinetics of iron loading into ferritin in MOPS () or imidazole buffer (). The absorbance at 310 nm 

versus time was monitored to follow iron core formation. The reaction was initiated by adding 50 µL of 0.010 M 

Fe2+ to 0.3 μM apoferritin for a ratio of 800 Fe/ferritin. Each buffer was 0.050 M at pH 7.5. The reaction was 

continuously stirred with a magnetic stirrer. 

The effects of combining buffers. The observation that ferritin in imidazole appeared to 

load iron by a different mechanism than ferritin in MOPS led us to test an equal mixture of the 

two buffers to determine if one of them was dominant in controlling the reaction mechanism and 

the resulting iron mineral that formed. Figure 2–2 shows kinetic traces of iron loading in ferritin 

for solutions of 0.050 M MOPS, 0.050 M imidazole, or an equal mixture of 0.025 M MOPS and 

0.025 M imidazole. The equimolar mixture of MOPS and imidazole produces an iron-loading 

curve that is intermediate between that of the individual buffers. As additional iron is added, the 
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curves begin to approach the same kinetic rates, suggesting that oxidation of iron on the core 

surface begins to be the dominant mechanism for iron deposition into ferritin.   

 

Figure 2-2. Comparison of iron loading kinetics in MOPS, imidazole, and an equimolar mixture of 

MOPS/imidazole. Kinetic traces of Fe2+ (25 μL 0.010 M Fe2+) added to ferritin (0.3 μM). The different reactions are 

done in: () 0.050 M imidazole buffer pH 7.5, () 0.050 M MOPS buffer pH 7.5, and () 0.025 M MOPS/0.025 

M imidazole mixture pH 7.5. 400 Fe2+ were added in each addition for 1,200 Fe/ferritin at the end of the reaction. 

The sizes of the symbols were chosen to represent the maximum error bars between duplicate samples prepared for 

each run. 

One explanation for the higher final absorbance of the imidazole sample after the first 

addition of iron (Figure 2–1) is that a different mineral phase forms with a higher extinction 

coefficient than the mineral formed using MOPS. Figure 2–3 shows spectra of ferritin samples of 

identical protein concentration (1.0 µM) that were treated with identical concentrations of iron 

(200 µM) and stirred in air for 30 minutes. No obvious distinguishing features are apparent in 

either of the curves except for the small peak at 280 nm attributed to the protein absorbance, yet 
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a comparison of the two curves shows that the imidazole sample has a more intense absorbance 

from 250–450 nm and therefore has different properties in the mineral core. 

 

Figure 2-3. Spectra of ferritin samples prepared in MOPS or imidazole buffer. Curves are: (black) apoferritin, (red) 

200 Fe/ferritin loaded in 0.050 M imidazole buffer, pH 7.5, and (green) 200 Fe/ferritin loaded in 0.050 M MOPS 

buffer, pH 7.5. 

  The difference in absorbance intensities between the imidazole and MOPS samples is due 

to the iron distribution within ferritin. A diffuse organization of iron atoms lining the protein 

exhibits a different extinction coefficient than iron atoms clustered in an ordered mineral 

phase.23, 24 In contrast to the disperse ions lining the protein interior, other studies have shown 

that the iron mineral core forms in discrete clusters initiated from the nucleation sites on the 
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interior of ferritin. The crystallinity and number of these individual sites may influence the 

absorbance maxima of the mineral formed inside ferritin.20, 25   

Because no precipitation was observed during iron loading in our studies, it is assumed 

that all of the iron is bound to ferritin in both reactions. The different buffers may influence the 

distribution of iron between the mineral core, the ferroxidase center, the channels, and the 

outside surface of ferritin. Thus, the higher absorbance that is observed in the imidazole buffer 

may be from strong iron oxygen interactions associated with an organized and ordered iron 

mineral core. On the other hand, the lower absorbance observed in the MOPS sample may 

correspond to iron bound to the surface, the channels, the ferroxidase centers, and the pathway to 

the nucleation site, with a smaller, less organized mineral phase. We used additional analyses to 

determine whether the imidazole prepared samples were more crystalline than the MOPS 

prepared samples.    

Iron loading of ferritin. A variety of methods were used to maximize loading of iron into 

ferritin in order to obtain high signals for crystallinity analyses. Ferritin samples were prepared 

by either trying to completely pack the ferritin interior (iron additions ceased when the sample 

became cloudy due to iron or protein precipitation) or by a targeted loading, where iron was 

added to reach a targeted goal such as 2,000 or 3,000 Fe/ferritin, even if the solution became 

cloudy. Iron was added in doses such as 500 Fe/ferritin, 200 Fe/ferritin, or 100 Fe/ferritin and 

iron was allowed to accumulate inside ferritin before the next addition of the same amount of 

iron was given to the sample (generally 20 minutes between additions of iron). Another approach 

was to load iron slowly by adding Fe2+ from a peristaltic pump that delivered dilute Fe2+ at a 

very slow delivery speed. The pH of all the solutions was monitored and maintained at 7.5 by the 

addition of NaOH (aq).   
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Qualitatively, higher buffer concentrations improved ferritin iron loadings by maintaining 

a constant pH. The presence of NaCl favored core growth in both buffers. The addition of iron 

after the solution appeared cloudy caused further protein precipitation and did not lead to 

improved iron loading into ferritin. We observed that the lower doses of iron/ferritin were more 

favorable for reaching higher iron loadings of ferritin, presumably because excess iron initiated 

more radicals that caused damage to the ferritin protein. The peristaltic pump method, allowing a 

very slow exposure of Fe2+ to ferritin, produced the samples with the highest loaded mineral 

cores. 

Structural characterization of the iron core. To test the hypothesis that MOPS and 

imidazole form minerals with different properties, the ferritin cores were studied using 

transmission electron microscopy (TEM). Ferritin samples containing 1,500 Fe/ferritin were 

prepared in either MOPS or imidazole buffer and placed on EM grids. Iron analysis and protein 

analysis demonstrated that each sample contained 1,500 Fe/ferritin and that the samples 

contained the same amount of protein. The results of the TEM analysis are shown in Figure 2–4. 

The ferritin samples appear similar in size and density and are dispersed on the EM grid in 

similar densities. However, the crystallinity of the two samples was very different when studied 

by electron diffraction. The MOPS sample (Figure 2–4C) diffracted poorly, suggesting an 

amorphous mineral composition. In contrast, the imidazole sample (Figure 2–4D) had a strong 

diffraction pattern, indicative of a crystalline mineral phase. 
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Figure 2-4. Electron micrographs of ferritin samples prepared in MOPS or imidazole buffers. Ferritin samples were 

prepared with 1,500 Fe/ferritin in A) MOPS or B) imidazole and analyzed by EM to visualize the ferritin particles. 

The grids were not stained in order to obtain clear diffraction patterns of the iron cores. Iron minerals of 

approximately 8 nm diameters were observed in both samples. The distribution of ferritin was similar on both grids. 

Using the electron diffraction capabilities of the TEM, the samples were analyzed for crystallinity. Both samples 

showed electron diffraction and crystallinity but the sample prepared in C) MOPS showed less electron diffraction 

compared to the sample prepared in D) imidazole, which had a more crystalline mineral phase within the ferritin 

protein. The d-spacings of the rings are shown for each sample and these data correspond to d-spacings for 

ferrihydrite. The numbers in parentheses show the planes of the lattice fringes. The grids were analyzed using a FEI 

Tecnai F30 TEM (FEI Company, the Netherlands), operating at 140 keV.  
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The TEM studies also revealed that the crystallinity of the iron core increased over time 

(data not shown). If the samples that were prepared in either the MOPS or imidazole buffers 

were allowed to incubate for a period of many days, and then placed on an electron microscope 

grid, the electron diffraction patterns of these samples showed much higher patterns of 

crystallinity, suggesting that as the iron core ages, the core becomes more ordered and 

crystalline. Thus, in order to distinguish between the immediate effects of the buffers on iron 

loading and core formation inside ferritin, the samples needed to be prepared fresh and analyzed 

immediately. For a more comprehensive study of the aging effect of the iron core, please refer to 

Chapter 3 of this work.  

Ferrihydrite is the mineral generally reported to form in ferritin. To further characterize 

these ferritin samples, the ferritin was lyophilized and analyzed by XRD to determine whether 

the crystalline mineral phase that formed in imidazole buffer was a mineral other than 

ferrihydrite. An XRD spectrum in the range 5 to 80o for a lyophilized sample of apoferritin 

(control sample) is shown in Figure 2–5. Two reflections are observed at 2θ values of 9.72o, and 

19.80o. After the second peak, the spectrum decays with no other features. 

 

Figure 2-5. XRD spectrum of lyophilized apoferritin powder. 
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Ferrihydrite is known to exist as the 2-line polymorph in small particles and shift to the 6-

line structure as the particle grows and becomes more ordered.26 To determine if a similar 

process occurred in ferritin, samples were prepared with a target of 500 Fe/ferritin to compare 

the XRD spectra of ferritin of low iron contents. Figure 2–6 shows the XRD patterns for a 

ferritin sample prepared with 500 Fe/ferritin in imidazole and MOPS buffers. These patterns are 

almost identical and mainly resemble the pattern for apoferritin. However, focusing on the region 

where the 2-line ferrihydrite sample is observed, a reflection at 63˚ for 2-line ferrihydrite is 

visible and a shoulder around 35˚ is observed. This indicates that low iron loading into ferritin in 

both MOPS and imidazole produces a 2-line ferrihydrite mineral phase. 

 

Figure 2-6. XRD spectra of 500 Fe/ferritin samples reconstituted in MOPS or imidazole. Imidazole is shown in 

black and MOPS is shown in red. A control of 2-line ferrihydrite (blue) is shown with peaks at 35° and 63°. In both 

the MOPS and imidazole samples, an absorption peak is observed at 63° and a shoulder is observed at 35°. 

Figure 2–7 shows the XRD spectrum from two samples, one loaded in MOPS (~2,000 

Fe/ferritin) and one loaded in imidazole (~3,300 Fe/ferritin). These samples represent the 
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maximum iron loading that we could achieve using these respective buffers. Figure 2–7 also 

shows the reference peaks for the reflections of 6-line ferrihydrite found in JCPDS card 00-029-

0712 and the spectrum for a 2-line ferrihydrite standard.27 The MOPS sample shows an overall 

lower intensity and a character that mostly corresponds to 2-line ferrihydrite. There is a small 

indication of reflections at 46o and 53o that suggests that cores of this size have some 6-line 

character. These reflections are seen with much more intensity in the spectrum of the imidazole 

sample that has a much larger core. As indicated by the arrows in this figure, there are two 

prominent features, which are not observed in the spectrum of the MOPS sample. First is an 

additional peak at 41˚, and the second is the bifurcation of the peak centered at 62˚. Both of these 

features indicate a greater 6-line character than that observed in the spectrum of the MOPS 

sample.  

 

Figure 2-7. XRD spectrum of maximally loaded ferritin samples reconstituted in MOPS and imidazole. The red 

lines represent the standard pattern for 6-line ferrihydrite. The blue trace represents a 2-line ferrihydrite standard. 

The green line represents ferritin loaded in MOPS with ~2,000 Fe/ferritin. The black line represents ferritin loaded 

in imidazole (3,300 Fe/ferritin). The data suggest that as the iron cores of ferritin become larger, there is a transition 

from 2-line ferrihydrite to 6-line ferrihydrite.     
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The evidence provided in this figure suggests that while both buffers direct the formation 

of ferrihydrite, the higher iron loading allowed by imidazole allows imidazole ferritin to form 

larger particles that are capable of producing the 6-line ferrihydrite product inside ferritin. The 

fact that imidazole produces a more crystalline core (Figure 2–4) may also contribute to the 6-

line spectrum because 6-line ferrihydrite is more ordered than 2-line ferrihydrite. At present, it is 

unclear if the more ordered core observed in the imidazole samples leads to the production of the 

6-line ferrihydrite mineral or if the increased core size is simply large enough to cross the 

threshold that transitions the mineral from 2-line to 6-line ferrihydrite. The reason that MOPS 

cannot achieve the higher iron content achieved by imidazole is also puzzling. Does imidazole 

influence the stability of ferritin by preventing the formation of radicals and favor more 

extensive iron loading, or does the more ordered mineral allow more efficient iron mineralization 

inside ferritin? This work is ongoing in our laboratory in order to explore these possibilities. 
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Discussion 

The results of this study indicate that the efficiency of iron core formation inside ferritin 

varies depending on which molecules are in the environment. Imidazole is a molecule that is able 

to bind iron to a higher degree than MOPS. Although both buffer types are able to maintain a 

physiological pH during iron loading, imidazole may be a more effective buffer because it is able 

to bind iron, thus assisting ferritin in the uptake of iron. In addition to allowing greater iron 

uptake, imidazole also tends to favor a more ordered and crystalline formation of iron inside 

ferritin. Thus, the mechanism of iron uptake is directly influenced by the environment 

surrounding ferritin. Ongoing studies in our laboratory are designed to determine the interaction 

between ferritin and imidazole and between imidazole and iron so that the mechanism of iron 

loading can be directly determined. 

In the body, ferritin is most effective when it can quickly and efficiently incorporate and 

store iron, thus mitigating the harmful effects of reactive oxygen species (ROS). There may be 

physiologically relevant molecules or peptides that are able to act in a manner similar to 

imidazole by cooperating with ferritin for enhanced iron oxidation and uptake. Future studies can 

be designed to load iron into ferritin in the presence of these physiologically relevant molecules 

and peptides to determine their efficacy in this role. Continued efforts in this area will contribute 

to the growing understanding of the mechanism of iron loading into ferritin. 

This work was published in part in the Journal of Inorganic Biochemistry.28  
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CHAPTER 3: FERRIC IRON RELEASE FROM FERRITIN 
USING DESFEROXAMINE 

Abstract 

The rate of Fe3+ release from horse spleen ferritin (HoSF) was measured using the Fe3+-

specific chelator desferoxamine (DES). The reaction consists of two kinetic phases. The first is a 

rapid non-linear reaction followed by a slower linear reaction. The overall two-phase reaction 

was resolved into three kinetic events: 1) a rapid first-order reaction (k1); 2) a second slower 

first-order reaction (k2); and 3) a zero-order slow reaction (k3). The zero-order reaction was 

independent of DES concentration. The two first-order reactions had a near zero-order 

dependence on DES concentration and were independent of pH from 6.8 to 8.2. The two first-

order reactions accounted for 6–9 rapidly reacting Fe3+ ions. Activation energies of 10.5 ± 0.8, 

13.5 ± 2.0, and 62.4 ± 2.1 kJ/mol were calculated for the kinetic events associated with k1, k2, 

and k3, respectively. Iron release occurs by: 1) a slow zero-order rate-limiting reaction governed 

by k3 and corresponding to the dissociation of Fe3+ ions from the FeOOH core that bind to an 

Fe3+ binding site designated as Site 1 (proposed to be within the 3-fold channel); 2) transfer of 

Fe3+ from Site 1 to Site 2 (a second binding site in the 3-fold channel) (k2); and 3) rapid iron loss 

from Site 2 to DES (k1). Several factors affect the rate of Fe3+ release from ferritin, including the 

size of the iron core, the age of the iron core, and the presence of small molecules present in the 

ferritin environment. 

Introduction 

In the previous chapter, the deposition and storage of iron in ferritin was shown to be 

enhanced depending upon the presence of environmental stimuli. In this chapter, the release of 

ferric iron is discussed. The ability of ferritins to dynamically control iron location and 

availability within an organism is determined by two distinct biochemical redox reactions. The 
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first is the binding and oxidation of free Fe2+ with subsequent deposition as FeOOH within the 

hollow ferritin interior during periods of abundant cellular iron (see Chapter 2).1 This iron 

deposition process not only stores iron within the hollow interior for later metabolic uses but also 

decreases the likelihood of cellular damage arising from the formation of oxygen radicals.2 The 

second redox process is the reductive release of Fe2+ from the FeOOH mineral core stored within 

the ferritin interior.3-7 Both of these processes are readily conducted in vitro using various types 

of ferritins ranging from native animal and bacterial ferritins to a variety of recombinant 

ferritins.8-12 

 The reactions conducted by native animal ferritins are of particular interest because in 

contrast to the bacterial ferritins that only have one subunit type,13 the animal ferritins are 

heteropolymers consisting of two different subunit types, heavy (H) and light (L).14 The presence 

of H and L subunits in animal ferritins suggests specialized roles for each of these subunits. For a 

detailed overview comparing the subunit types, see Chapter 1. Although extensive studies of iron 

deposition within various ferritin types have been conducted,10-12, 15-19 the complete loading 

process remains poorly understood because it is difficult to separately study the redox reactions 

from the non-redox processes of migration and hydrolysis of Fe3+ to form the mineral core. 

Initial iron loading requires the ferroxidase center to catalyze the oxidation of Fe2+ to Fe3+ 

followed by migration of the Fe3+ to the interior of ferritin for nucleation and mineralization.  

Once a mineral core begins to form, Fe2+ can pass through the 3-fold channels and oxidize on the 

mineral core surface without passing through the ferroxidase center.11 Electrostatic potential 

calculations for divalent metals entering the ferritin 3-fold channel showed that there are two 

divalent metal binding sites in each 3-fold channel.20 From these calculations, there are two 



42 
 

potential metal ion-binding sites in each of the 3-fold channels of ferritin. A model showing 

these channel binding sites is represented in Figure 3–1. 

FeOOH Fe3+(aq.)

Site 1 Site 2

Fe3+(aq.)

DES

Fe(III)-DES

k1k2k3

3-Fold Channel

A

B

 

Figure 3-1. Channel binding sites. A) Schematic representation for the release of Fe3+ from ferritin by DES 

chelation. DES rapidly chelates Fe3+ bound in Site 1 and Site 2 of the 3-fold channels, represented by k1 and k2. 

Once the channel-bound Fe3+ has been removed, iron release is dependent on the rate-limiting step, which is the 

equilibrium of Fe3+ dissociating from the iron mineral core (orange spheres) inside ferritin, represented by k3. B) 

Left, space filling model that highlights the residues that act as Site 1 (Asp-139, Glu-140, and Glu-141) and Site 2 

(Asp-131 and Glu-134) metal binding sites, with a magnified view on the right. 

 Previously, Zhang et al. attempted to separate the non-redox reactions from the redox 

reactions.21 They investigated the rates of Fe3+ and Fe2+ transfer into horse spleen ferritin (HoSF) 
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interior by trapping ferrocyanide or ferricyanide inside ferritin. As Fe3+ or Fe2+ traversed the 

protein shell and entered the ferritin interior, a color change was observed based upon the 

formation of Prussian blue. The rate of Fe3+ entering ferritin was also measured by trapping the 

Fe3+-specific chelator desferoxamine (DES, shown below) inside ferritin by pH disassembly of 

ferritin followed by reassembly of ferritin in the presence of DES. These studies showed that 

Fe3+ entered ferritin at a rate nearly twice that of Fe2+ with rate constants of 0.4 sec−1 for Fe2+ and 

0.76 sec−1 for Fe3+.21 Unfortunately, attempts to measure the rate of transfer of these two iron 

species out of the HoSF interior were not successful. 

 

In a recent study, the non-redox release of Fe3+ from the mineral core of HoSF was 

studied by using the small iron chelating agents, aceto- and benzo-hydroxamic acids.22 The 

results suggested that these small chelators entered the ferritin interior and directly removed iron 

from the mineral core. In contrast, in this work we examined the non-redox release of Fe3+ from 

the mineral core in HoSF using DES. DES is larger than aceto- and benzo-hydroxamic acids and 

is restricted from entering the ferritin interior. As a consequence, iron must transfer through the 

protein shell to DES at the ferritin exterior.23 During redox mediated iron release, Fe2+ is the 

dominant form of iron transferred through the ferritin protein shell to the external chelating 

reagents. Here we describe the reactions for Fe3+ release from native HoSF using DES chelation 

and identify several steps involved in the Fe3+ export system. We also investigate the role of 

small molecules in the release of Fe3+ from ferritin. From these reactions, we propose an overall 

mechanism for iron transport from the mineral core through binding sites within the 3-fold 

channels to the chelator on the exterior of ferritin.  
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Materials and Methods 

Materials. HoSF containing 2,050 iron atoms and 375 phosphate groups was obtained 

from Sigma. Stock HoSF solutions at 0.5 and 7.0 mg/mL (1.1 and 15.6 µM) were prepared in 

0.025 M N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid (TES), 0.05 M NaCl at pH 

values of 6.8, 7.5, and 8.2. Medicinal grade DES was obtained from Ciba-Geigy Limited, Basel, 

Switzerland and stock solutions were prepared in 0.025 M TES at pH values of 6.8, 7.5 and 8.2. 

Aceto- and benzo-hydroxamic acids were purchased from Sigma. A molar absorptivity of 2,865 

M−1cm−1 at 430 nm for FeDES was used to quantitate iron release from HoSF. Ferritin samples 

were incubated with ethylenediaminetetraacetic acid (EDTA) and passed down a Sephadex G-25 

column to remove adventitiously bound iron. Iron-release reactions were compared with samples 

treated with or without EDTA and no differences were observed between these samples.  

Recombinant human heavy ferritin (rHuHF) from the pET12b HF plasmid and 

recombinant human light ferritin (rHuLF) from the pDS20pTrp LF plasmid were generously 

provided by Paulo Santambrogio.24 These plasmids were placed into a BL21-DE3 E. coli strain. 

The rHuHF was grown in LB medium for eight hours at 37 °C in a New Brunswick Scientific 

Bioflo 110 Fermentor/Bioreactor. The rHuLF was grown under the Trp promoter in minimal 

media M9 broth under similar conditions. Both were purified identically. The bacterial cells were 

lysed using sonication and the cellular debris was removed by centrifugation. The crude extract 

was heated to 75 °C for 10 minutes, and the denatured protein was removed with centrifugation. 

The supernatant was run over a SuperdexTM 200 10/300 GL size-exclusion column using a GE 

Healthcare ӒKTApurifier FPLC. H and L ferritin samples were prepared in the apo-form and 

analyzed for protein and iron content. 
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Ferritin reconstitution. HoSF, rHuHF, and rHuLF were reconstituted in TES buffer, pH 

7.5 to target-sized cores. Samples were then treated with DES either immediately, following 

overnight incubation, or following a ten-day incubation.  

 Stopped-flow measurements. A DX.17MV Sequential Stopped flow Spectrofluorimeter 

from Applied Photophysics with optical path lengths of 10.0 and 2.0 mm was used for the 

acquisition of stopped-flow kinetic data. The stopped-flow instrument was connected to a 

variable-temperature circulator water bath that controlled the temperature of the optical cell and 

the sample syringes to ± 0.10 oC. Kinetic traces were typically obtained by mixing ~0.01 M DES 

with 1.0–5.0 µM native holo HoSF (DES/HoSF ~ 2,000, DES/Fe ~ 1.0) at 5 oC intervals using 

computer programmed temperature variation from 10–50 oC. Multiple kinetic reactions were 

recorded and averaged at each temperature to correct for random error. When the reaction 

sequence was finished at 50 oC, the temperature was returned to 20 oC for the final reaction. This 

final 20 oC reaction was compared with the 20 oC reaction measured during the initial 10–50 oC 

temperature sequence to be certain that no modification of the protein occurred while at 50 oC. 

Stopped-flow curves were analyzed using a user-derived equation consisting of two exponential 

terms and a linear zero-order term.  

 The reaction of DES with native holo HoSF produced a two-phase kinetic curve, which 

indicated a rapid nonlinear release of iron lasting ~500 s followed by a slower nearly linear 

release of iron. Another set of stopped-flow measurements were conducted after holo HoSF was 

first equilibrated with DES for >500 s to eliminate the rapid kinetic phase. For this sequence of 

reactions, 1.0 mL of ~5.0 µM holo HoSF was reacted with a 100-fold excess of DES for 500 s to 

remove the rapidly reacting iron atoms and the reacted holo HoSF was separated from unreacted 

DES and FeDES on a 1.0 x 10 cm Sephadex G-25 column equilibrated in 0.025 M TES, 0.05 M 
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NaCl, pH 7.5. This DES-free HoSF was then loaded into the stopped-flow instrument ~1–2 h 

later and reacted with a second portion of DES as outlined above to determine if the rapidly 

reacting iron atoms had been restored.  

UV-visible spectrophotometry. An Agilent 8453 UV-Visible spectrophotometer was used 

to measure the kinetic data for the formation of the FeDES complex (ε430 = 2,865 M−1 cm−1). A 5 

µM ferritin solution in 25 mM TES, 50 mM NaCl, pH 7.5 was stirred and monitored. During the 

iron loading experiments, injections of 10 mM ferrous ammonium sulfate in 1 mM HCl stock 

solution was added in the appropriate amounts to create the target core sizes, and the absorbance 

at 330 nm was monitored. For iron chelation, a final concentration of 10 mM DES was added 

and the absorbance at 430 nm was monitored.   

Electron paramagnetic resonance (EPR) measurements. HoSF was reacted with DES 

until the fast reaction was complete and the zero-order reaction was well established. The 

reaction mixture was cooled and passed through a Sephadex G-25 column equilibrated at 4 oC to 

separate holo HoSF from FeDES and unreacted DES. A portion of the separated HoSF at 4 oC 

was then placed in an EPR tube and frozen in liquid nitrogen. A second portion was placed in an 

identical EPR tube and equilibrated at 30 oC for 1.0 hr, to allow repopulation of the rapidly 

reacting sites from the FeOOH mineral core, and then frozen in liquid nitrogen. The EPR spectra 

of these samples were collected at a temperature of 4 K on a Bruker EMX spectrometer with the 

following settings: power = 1.997 mW, modulation frequency 100 = kHz, and modulation 

amplitude = 9.99 G. 

Results 

 Figure 3–2 shows the rate of FeDES formation at 25 oC. Equation 1 represents the 

reaction of holo HoSF with a ten-fold excess of H4DES (H4DES/HoSF) at pH 7.5.  
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                  FeOOH + H4DES = FeDES + 2H2O + H+      (Eq. 1) 

FeOOH represents the native mineral core sequestered within the hollow interior of HoSF 

and H4DES is the protonated form of DES occurring at pH 7.5 prior to Fe3+ chelation. The 

reaction was monitored at 430 nm, where FeDES has a maximum absorbance. Fitting analysis of 

this iron release curve shows two distinct kinetic phases for the formation of FeDES. The first is 

a non-linear reaction occurring from about 0–500 s followed by a slower, nearly linear reaction 

occurring from about 500 s until the reaction was terminated at 1,000 s. The shape of the curve is 

typical of “burst” kinetics, indicating that intermediates were quickly lost but the reaction slowly 

attains a steady state replenishment of these intermediates. The analysis of each of these distinct 

kinetic regions provides information about the movement of iron from the mineral core through 

the protein shell to the DES chelator. 

 
Figure 3-2. The release of Fe3+ from the HoSF mineral core using DES chelation. The change of absorbance at 430 

nm during the release of Fe3+ from HoSF was monitored by stopped-flow spectrophotometry (solid blue line). The 

fit to the experimental data using Equation 2 is shown as the red dashed line that overlays the blue line. The solid red 

line is the deviation of the fit from the experimental measurement. The relative standard deviation is less than 1% 

for each rate constant and the variance of the overall fit is less than 10−6 for all 4,000 data points. Only a slight 

deviation is observed during the first 10 seconds of the reaction for which Equation 2 was unable to account. The 

kinetic traces were obtained by mixing 0.01 M DES with 5.0 µM native holo HoSF (2,050 Fe/ferritin) in the 

following ratios (DES/HoSF = 2000, DES/Fe = 1.0) in TES buffer, pH 7.5 at 25 oC.   
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The overall reaction sequence is given by Equation 2 and consists of two sequential first-

order iron-release reactions followed by a zero-order iron-release reaction. 

 rate = ae−k
1

t +be−k
2
t + k3t +c    (Eq. 2) 

The rate constants, k1 (6.2 x 10−2 s−1) and k2 (5.7 x 10−3 s−1) are first-order rate constants 

in HoSF accounting for the rapid release (“burst”) of iron, k3 is a zero-order rate constant, t is 

time in seconds and a, b, and c are representative amplitudes (a = 4.4 x 10−2, b = 6.6 x 10−2, and 

c = 0.13) associated with k1, k2, and k3, respectively. Equation 2 gives good fits to the absorbance 

vs. time data, as seen by the calculated residuals shown in Figure 3–2.  

The linear rate for iron chelation was truncated for convenience of presentation after 

1,000 s in Figure 3–2 but remains linear for much longer time intervals (days). This linear 

portion suggests a zero-order reaction for Fe3+ release. The zero order rate constant for k3 was 

determined to be 1.6 x 10−4 M s−1. To more fully describe the rate law for this linear iron-release 

process, identical reactions were conducted with a 10-, 50-, and a 100-fold excess of DES under 

identical conditions. In all cases, linear curves were obtained with k3 values nearly identical to 

that in Figure 3–2, suggesting that the reaction was independent of DES concentration. The DES 

independence of k3 suggests that iron release from the HoSF core is the rate-limiting step and 

corresponds to Equation 3.  

Fe(OOH) + H2O = Fe3+ + 3OH−   (Eq. 3) 

Analysis of the linear portion of each curve at pH of 6.8, 7.5 and 8.2 showed two 

important features. First, the rate expressed by k3 for FeDES formation remained independent of 

DES concentration with pH variation. Second, the rate of iron release decreased by a factor of 5 

between pH 6.8 and 8.2. The invariance of rate with DES concentration and the decrease in rate 

with increasing pH suggests that the iron core dissolution reaction represented by Equation 3 
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represents the iron release reaction in Figure 3–2. As the pH increases, the increase in OH− 

concentration shifts the equilibrium to the left and causes the FeOOH core to become more 

stable,25 causing the rate of iron release to decrease.   

 The rate dependence for the zero-order linear reaction shown in Figure 3–2 was 

investigated at 5 oC intervals from 10–50 oC at pH 7.5 with a 100-fold excess of DES. The rate 

varied uniformly with temperature and Figure 3–3 shows the Arrhenius plot for the temperature 

dependence of the zero-order rate constant (k3). From Figure 3–3, an activation energy of 62.4 ± 

2.1 kJ/mol was calculated. Additional activation parameters for this zero order process are shown 

in Table 3–1. 

 
Figure 3-3. Calculated activation parameters derived from measurements of Fe release from native HoSF as a 

function of temperature for reactions corresponding to () k1, () k2, and () k3. Measurements were performed as 

described in the Materials and Methods section. 

-14

-12

-10

-8

-6

-4

-2

0

0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037

ln
 k

1/T (K−1)



50 
 

Table 3–1. Activation parameters derived from the reactions shown in Figure 3–3. 
Rate constant Ea (kJ/mol) ΔS (J/mol K) ΔH (kJ/mol) 

k1 10.5 151 7.95 

k2 13.5 134 11.0 

k3 62.4 266 60.0 
    

The rate of formation of FeDES from 0–500 s is represented by a curved line and shows 

that Fe3+ chelation is initially rapid, but slows with time, indicating the chelatable iron atoms 

may be close to the surface of the protein and available for reaction with DES. Extrapolating the 

linear section of Figure 3–2 to zero time gives the absorbance change due to the rapidly reacting 

iron atoms and shows that 8–9 Fe3+/HoSF are rapidly lost. This corresponds to ~1.0 Fe3+/three-

fold channel. These kinetic and stoichiometric results also suggest that the protein-bound Fe3+ 

ions are in equilibrium with the iron atoms in the FeOOH core. To test this possibility, additional 

kinetic studies were conducted. 

In order to corroborate the conclusions derived from fitting the kinetic results by 

Equation 2, two additional sets of experiments were conducted: one kinetic and the second 

stoichiometric. The kinetic approach required reacting HoSF with excess DES as shown in 

Figure 3–2 for more than 500 s until the linear reaction is fully established. The HoSF-DES 

mixture was then separated by Sephadex G-25 chromatography at 25 oC to isolate holo HoSF 

from excess DES and the FeDES produced in the rapid, initial phase of reaction. This holo 

HoSF, with only a small part of its iron core removed by the k1 and k2 reaction steps (fast 

component of Figure 3–2) was loaded into the stopped-flow after a 1-h delay and reacted with 

excess DES under the conditions of Figure 3–2. An identical two-phase reaction as in Figure 3–2 

was observed, which yielded identical k1, k2, and k3 values as the native HoSF. These results 

show that in the absence of DES, and with an appropriate incubation time, Fe3+ ions become 
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reestablished in the 3-fold channel and can react with DES in the identical reaction that occurs 

with native HoSF. This means that the burst is due to repopulation of the channels and not due to 

non-specifically bound iron. The repopulation of the rapidly reacting iron atoms from the HoSF 

FeOOH core is quite slow. This is consistent with the rate-limiting step (k3) of the iron release 

process being the transfer of Fe3+ from the FeOOH core to the protein binding sites.   

The stoichiometric experiments investigated the number of iron atoms involved in the 

rapid reaction shown in Figure 3–2. By extrapolating the linear reaction back to zero, the number 

of Fe3+ ions released in the burst was calculated to be 9.0 Fe3+/HoSF or 1.1 rapidly reacting Fe3+ 

ions per 3-fold channel at 25 oC. The two exponential reactions obtained from curve fitting the 

data in Figure 3–2 were evaluated using Equation 2. Values for the two amplitudes associated 

with k1 and k2 in Equation 2 were obtained. The kinetic results suggest that there are two binding 

sites with different affinities for iron. This result is consistent with electrostatic potential 

calculations showing that two divalent metal binding sites exist in the 3-fold channels of 

ferritin.20 Assuming that Fe3+ transfer occurs through the 3-fold channel, it is concluded that 

more than one Fe3+ binding site exists in each of the eight channels and that the population in 

each channel site was resolved by the kinetic analysis. 

To determine whether there are any errors in the fitting procedure caused by additional 

reactions not accounted for in Equation 2, the non-linear iron-release reaction was investigated at 

5 oC intervals between 10 and 50 oC at a DES:HoSF ratio of 50:1. Each progress curve at each 

temperature was fitted using Equation 2 as outlined above. Table 3–1 summarizes the activation 

parameters obtained. The strict linear response of k1, k2, and k3 with temperature seen in Figure 

3–3 confirms that Equation 2 is a consistent representation of the Fe3+ loss reaction. Secondary 

reactions would likely have different activation energies and contribute to a change in rate with 



52 
 

temperature. A reaction that is unaccounted for by Equation 2 would cause the calculated values 

of k1, k2, and k3 to vary in an irregular way with temperature instead of the linear response 

observed in Figure 3–3. 

To confirm the binding sites are in the 3-fold channels, identical iron release experiments 

were performed with homopolymers of H and L human ferritin. This was done because an 

alternative location for monomeric Fe3+ ions might be the two iron binding sites of the 

ferroxidase center. HoSF consists of 10% H subunits or ~3 H subunits/ferritin. Potentially 6 Fe3+ 

could come from the H subunits of HoSF. Homopolymers of H ferritin contain 24-subunits, each 

with a ferroxidase center that can bind up to 2 Fe3+ ions. Therefore, a homopolymer of H ferritin 

could bind up to 48 Fe3+/ferritin if the iron had not migrated to the interior. In contrast, L ferritin 

would have zero monomeric Fe3+ binding sites associated with the ferroxidase center. Therefore, 

if the Fe3+ was coming from the ferroxidase centers and not the 3-fold channels, we would 

expect a burst of 48 Fe3+/ferritin from H ferritin and no burst from L ferritin. If the Fe3+ comes 

from the 3-fold channels, the burst would be ~9. We expressed and purified homopolymers of H 

and L chain ferritins, and loaded each sample with an equal number of iron atoms (~600 

Fe/ferritin). We then performed iron chelating experiments with DES in triplicate, as described 

above. Our results showed a burst of 6.86 ± 0.27 for H chain ferritin and 6.40 ± 0.10 for L chain 

ferritin at 25 oC, consistent with our proposal that the Fe3+ comes from the 3-fold channels. 

EPR measurements were conducted to further examine the nature of the rapidly reacting 

iron atoms in HoSF. Monomeric Fe3+ in a low symmetry environment is known to exhibit an 

EPR signal at g = 4.3. The EPR studies were performed to determine if the rapidly reacting Fe3+ 

ions observed by DES release are related to the monomeric Fe3+ EPR signal.    
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HoSF was reacted with DES until the fast reaction was complete and the zero-order 

reaction was well established and then the DES and FeDES were separated from HoSF on a 

Sephadex G-25 column at 4 oC. The ferritin fraction was collected and divided into two samples. 

The first sample was placed in an EPR tube and frozen in liquid nitrogen. This sample should 

have minimal population of Fe3+ in the protein binding sites at this low temperature because of 

the large activation energy for the zero-order reaction required to free Fe3+ from the mineral core 

(Table 3–1). The second sample was placed in an identical EPR tube and equilibrated at 30 oC 

for 1.0 h to allow repopulation of Fe3+ into the protein binding sites. After one hour, this sample 

was frozen in liquid nitrogen. The kinetic results described above suggest that Site 1 and Site 2 

would become populated by incubation at room temperature for one hour.     

Figure 3–4 shows that the immediately frozen HoSF sample had only a small g = 4.3 

signal (blue spectrum), whereas the sample that was allowed to incubate at room temperature had 

~4-fold larger amplitude at g = 4.3 (black spectrum). The spectrum of native ferritin not treated 

with DES is identical to the black spectrum (data not shown). These results suggest that the g = 

4.3 signal corresponds to monomeric Fe3+ ions in the 3-fold channels. The DES treated sample 

followed by immediate freezing was unable to repopulate the Fe3+ ions due to the high energy of 

activation of k3. However, after incubation at room temperature for one hour, Fe3+ anions 

mobilized from the core and repopulated the binding sites in the 3-fold channels. This 

equilibration restored Fe3+ ions associated with the burst that is seen in Figure 3–2. 
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Figure 3-4. EPR spectra of ferritin samples. The red EPR signal is of apoferritin and is shown as the negative 

control. A slight peak is observed due to residual iron in apoferritin. The blue is from native HoSF from which Fe3+ 

was removed by DES chelation at 4 °C and passed down a Sephadex G-25 column at 4 °C to separate ferritin from 

unbound DES and FeDES followed by freezing immediately after elution from the column. The black is from native 

HoSF from which Fe3+ was removed by DES chelation at 4 °C and passed down a Sephadex G-25 column to 

separate ferritin from unbound DES and FeDES followed by a one hour incubation at 30 °C followed by freezing in 

liquid N2. Native ferritin not treated with DES has an EPR spectrum essentially identical to the black spectrum. 

In Chapter 2, we discussed how the iron core of ferritin becomes more crystalline as the 

core size increases and as the iron core ages. In order to determine whether the iron was 

accessible to varying degrees, we reconstituted iron into ferritin with target core sizes of 8, 16, 

24, 50, 100, 200, 500, 1,000, and 2,000 Fe/ferritin. The first question was how well the 
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reconstituted HoSF compared to native HoSF. Kinetic traces of reconstituted HoSF are 

compared to native HoSF (Figure 3–5). Reconstituted HoSF showed a greater burst of iron, 

followed by a steeper linear phase. This suggests that when iron is reconstituted in ferritin in 

vitro, the iron core forms a different mineral than it does in vivo, and that this iron core is more 

accessible for non-reductive iron chelation. This data is consistent with the data found in Chapter 

2, suggesting that the environment in which iron is loaded into ferritin can have a significant 

effect on the resulting iron core formation. 
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Figure 3-5. Kinetics of Fe3+ release from native vs. reconstituted HoSF. Each sample was run in triplicate, and the 

error bars represent the standard deviation for each run. The red curve is native ferritin and the blue curve is 

reconstituted ferritin. Each sample was done with 1 μM ferritin, ~2,000 Fe/ferritin, in 25 mM TES, 50 mM NaCl, 

pH 7.5, with the addition of 2.5 mM DES. 



56 
 

 As the size of the iron core increases in reconstituted ferritin, a greater number of iron 

atoms are able to be chelated by DES during the burst phase. However, the burst does reach a 

limiting value of around 20 iron atoms, despite the increase in the core size (Figure 3–6). 

Similarly, as the iron core ages, the core becomes more stable, and less iron is readily chelatable 

by DES. These data suggest that both the size and the age of the iron core are important factors 

for the non-reductive release of iron from ferritin. 
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50 18.79 ± 0.79 9.08 ± 0.03 4.58 ± 0.36

100 26.06 ± 1.76 15.13 ± 1.70 6.98 ± 0.17

200 43.16 ± 0.53 20.36 ± 1.07 11.46 ± 0.50

500 68.30 ± 4.89 39.91 ± 1.79 18.15 ± 0.70

1,000 317.63 ± 12.58 50.26 ± 1.85 19.20 ± 5.24

2,000 842.35 ± 45.55 609.66 ± 5.33 539.27 ± 2.47

 

Figure 3-6. Fe3+ release from ferritin using DES with different core sizes and ages. The blue bars represent iron that 

is chelated from ferritin immediately following iron loading, the red bars represent the chelation of iron following 

an overnight incubation of iron into ferritin, and the black bars represent chelation of iron after the core was allowed 

to incubate for 10 days. The exact numbers represented in the bar chart are shown in the corresponding table. All 

runs were repeated in triplicate, and the standard deviations are reported. These runs were all performed in 25 mM 

TES buffer, 50 mM NaCl, pH 7.5. Iron was loaded from a 10 mM ferrous ammonium sulfate stock, in 1 mM HCl. 

The protein concentration was 1 μM ferritin. 
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The kinetic traces of iron loading and iron chelation displayed an interesting trend. Iron 

loading into ferritin can be observed by monitoring a shoulder at 330 nm, which represents the 

oxidized iron inside of ferritin, specifically the FeOOH mineral. On the other hand, the iron(III)-

DES complex has a peak at 430 nm. Thus, by observing the deposition of iron into ferritin (330 

nm) followed by the chelation of iron by DES (430 nm), we observed an interesting kinetic 

interaction. Iron loads into ferritin as normally observed, with a small tailing out to 430 nm. 

After the iron loading plateaus off, DES is added to the reaction, and a peak at 430 nm grows in, 

whereas the absorbance at 330 nm decreases, indicating that the source of the iron being chelated 

by DES is from the iron core of ferritin (Figure 3–7). 
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Figure 3-7. Kinetics of iron loading and chelation. The blue kinetic curve is the absorbance at 330 nm, and 

represents the loading and unloading of iron into ferritin. The red curve is the absorbance at 430 nm, and is the 

chelation of iron using DES. The inset shows the full spectra from 300 nm to 650 nm at three distinct time points. 

Black is the spectrum at time = 0 s. Blue is the spectrum at time = 900 s (fully loaded ferritin core). Red is the 

spectrum at time = 2,400 s (depleted iron core, and formation of FeDES). 
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Galvez et al. showed that both aceto- and benzo-hydroxamic acids are able to enter the 

ferritin interior to pull iron out of ferritin. Because of the sizes of acetohydroxamic acid (3 Å) 

and benzohydroxamic acid (6 Å), they are able to enter the 3-fold channels (4 Å), bind iron, and 

then leave the 3-fold channels because of the flexibility and dynamic breathing of ferritin. 

However, they also showed that in the presence of urea, the 3-fold channels increase in size, and 

more iron is able to be chelated. In like manner, we wondered whether DES would be able to 

chelate more iron in the presence of urea or other small molecules. Figure 3–8 shows the effect 

of these molecules. The molecules were mixed with ferritin and DES chelation experiments were 

performed either immediately or following an overnight incubation of ferritin with the 

molecules. Essentially, the only molecules that allow an increased amount of iron release and 

chelation by DES are citrate and pyrophosphate, and only when these are incubated overnight 

with ferritin. Each small molecule was also combined with urea to see if we could observe any 

enhanced effect. However, in this study, the presence of urea made no difference upon DES 

chelation.  
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Figure 3-8. Small molecule effect on iron release. Each run was performed in triplicate, and the standard deviation 

is shown as error bars. The blue bars represent runs performed immediately following the mixture of ferritin with 

the small molecules, whereas the red bars represent the runs where the small molecules were incubated with ferritin 

overnight and then the samples were treated with DES. 

Discussion  

Numerous studies using siderophores and siderophore analogs evaluated the release of 

Fe3+ from free FeOOH, and the FeOOH-containing biominerals hemosiderin and ferritin to 

determine their efficacy in treatment of iron overload diseases.22, 23, 26-30 These studies 

demonstrated the favorable thermodynamics of iron transfer from polynuclear iron sources to 

form mononuclear chelates, but the rates of chelate formation are relatively slow (on the order of 

hours and days) and in the order: FeOOH>hemosiderin>ferritin. The slow iron-release rates from 

these polynuclear sources are consistent with the ability of the chelator to gain access to the 
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surface of the iron mineral. The slow reaction for ferritin was attributed to restriction of iron 

transfer from the protected ferritin mineral through the protein shell to the chelator on the ferritin 

exterior. These results show that the ferritin protein shell is performing the exact role that it 

evolved to perform—to sequester iron and prevent it from reacting with other biological 

molecules.  

Because of the slow rate of iron release from ferritin, most measurements using 

siderophores followed iron release at one-hour intervals or longer and did not examine iron-

release reactions that occurred at the early time points. However, one report noted that iron 

release with DES and rhodotorulic acid was more rapid in the first hour compared to subsequent 

time intervals, suggesting important information was present in the early stages of iron 

chelation.3 Our interest in determining the rates of iron transfer through the protein shell has led 

us to investigate the initial steps of iron release from HoSF using DES chelation.   

Figure 3–2 shows that DES can remove Fe3+ from the HoSF iron core in a non-reductive 

process. Figure 3–1 shows the model built from the kinetic data. This model comes from 

evaluations of Equation 2 where the entire kinetic progress curve for the overall iron-release 

reaction shown in Figure 3–2 was resolved into two first-order reactions in HoSF (one rapid and 

a second ~4 times slower) and a third even slower reaction that is zero-order in HoSF. Figure 3–

1 shows that DES removes iron from the HoSF mineral core by binding Fe3+ ions that are present 

in the 3-fold channels of the HoSF protein shell. Control reactions with H and L ferritin 

confirmed that the Fe3+ comes from the 3-fold channels and not the ferroxidase center. The 

kinetic results mimic those often referred to as burst kinetics. The burst comes from protein 

associated Fe3+ intermediates, which are readily chelated by DES but are slowly repopulated by a 

slower step.   
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DES is too large to enter the HoSF interior through the 3-fold channels,23, 31-33 so it must 

react with Fe3+ bound at or near the protein surface of HoSF. The lack of DES dependence on the 

kinetics after this initial burst reaction suggests that DES cannot interact with Fe3+ bound at the 

mineral core surface, but that this iron is separated from DES by the protein shell. The curve 

fitting procedure based on Equation 2 suggests that DES chelates ~9 Fe3+ ions/ferritin at 25 oC. 

Because these Fe3+ ions are bound in the 3-fold channels, the average population is 1.1 

Fe3+/channel, suggesting that two partially occupied iron-binding sites are present. A population 

of 1–2 Fe3+/channel is consistent with results from electrostatic potential calculations suggesting 

that two Fe2+ binding sites are present in the three-fold channels.20 Therefore, the first conclusion 

from this study is that the non-linear steps represent the burst of iron release from these two 

binding sites in the 3-fold channels. 

The Fe3+ in Site 1 is more tightly bound, but is in equilibrium with the weaker binding 

Site 2 (Figure 3–1). The removal of Fe3+ from Site 2 by DES chelation shifts the equilibrium and 

the channel-bound Fe3+ at Site 1 moves closer to the surface and bind at Site 2. The transfer rate 

from Site 1 to Site 2 is slower than release from Site 2 and is reflected by the slower value of k2.   

 Our results show the Fe3+ egress pathway consisting of two intermediate Fe3+ binding 

sites contained within the 3-fold channel. An Fe3+ entry pathway was previously reported that 

transports Fe3+ from the external solution to the ferritin interior.21 For the entry pathway, only a 

single kinetic step was observed and not the two kinetic events observed for the egress pathway. 

This is consistent with Figure 3–1 because if Site 1 binds Fe3+ more strongly than Site 2, then the 

entering Fe3+ would rapidly pass from Site 2 to Site 1 in an apparent single kinetic event.  

Once the Fe3+ binding sites have been depleted by DES chelation, an equilibrium state is 

established between DES and the FeOOH mineral core with the protein shell as a barrier 
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between the chelator and the iron mineral. With an equilibrium in favor of FeDES formation, the 

FeOOH core transfers Fe3+ through the channels to the external solution. Essentially, the small 

amount of free Fe3+ that exists in the ferritin interior binds to Site 1 in the 3-fold channel and is 

transferred to Site 2 where it can be accessed by DES. Figure 3–4 supports this view by showing 

that Fe3+ bound in the channels can be initially removed by DES and that the vacated sites can be 

slowly replenished by transfer from the Fe(III) stored in the core. The EPR results indicate that 

the majority of the Fe3+ observed in the g = 4.3 signal of holo HoSF is channel bound Fe3+ but 

smaller levels of additional Fe3+ ions may also be present. The transfer of iron from the mineral 

core to these channel iron-binding sites controls the overall rate of release of Fe3+ from the HoSF 

core to DES because it is the rate-limiting step. The FeOOH mineral core is in equilibrium with 

the channel binding sites and a small amount of Fe3+ is released to repopulate the binding sites in 

the protein channels. The reaction is driven because FeDES forms a more stable complex than 

the FeOOH found in the core or Fe3+ bound in the channels. Ultimately, the FeOOH core slowly 

supplies Fe3+ to the channels and the channels transfer Fe3+ to DES. 

We also show that a reconstituted iron core in ferritin is more accessible for DES 

chelation than is native ferritin. Figure 3–5 shows that both the burst and the linear phase vary 

from reconstituted to native ferritins. This indicates that the iron core in the two ferritin types 

varies, and thus the kinetics are different. Reconstituted ferritin differs from native ferritin in that 

native ferritin contains a phosphate layer on the iron core, and in our reconstituted samples, no 

phosphate is present. Additionally, the uptake and deposition of iron inside ferritin likely varies 

in vitro compared to in vivo deposition and mineralization. Future work in this area would be to 

determine the rate constants for the release of iron from reconstituted ferritin. One precaution 
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would be that the reconstitution of the iron mineral can vary significantly depending on the 

environmental stimuli.19 

We also observed that both the size and the age of the iron core contributed to the iron 

burst and the release rates with reconstituted ferritin (Figure 3–6). In general, the larger cores are 

able to hold on to a greater percentage of the total iron, especially when the iron core has been 

given enough time to rearrange. In the body, the half life of ferritin is only about 12 hours, with 

complete turnover being near 36 hours.34 This would indicate that the iron core inside of ferritin 

is at most two days old. Therefore, the aging of the iron mineral would only be relevant in a 

biological system for time points less than two days. Our data indicate that when the iron mineral 

is youngest, it is most accessible for chelation. Thus in the body, non-reductive iron chelation 

may be possible given the proper environment. Furthermore, native HoSF that was used in this 

study was purified by Sigma-Aldrich one year prior to the study (Product # F4503-1G, lot # 

040M7004). The actual moment that the iron core was formed in horse spleen was some date 

prior to that, but the overall conclusion is that the native ferritin used underwent a much longer 

aging process than would actually be relevant on a biological time scale, and thus the in vivo 

implications based on our results would indicate that the kinetic events that take place in vivo 

would be increased compared to the reported values included here. In conclusion, the aging data 

we report here indicates that Fe3+ is likely accessible from ferritin in vivo. 

We also show the effects of small molecules on the release of iron from ferritin (Figure 

3–7). Urea has previously been reported to open the 3-fold channels of ferritin.22, 35 We used urea 

in combination with small molecules to determine whether we could chelate more iron. In this 

study, the presence of urea made no difference on the non-reductive release of iron from ferritin. 

The only significant difference that we observed was when citrate or pyrophosphate was 
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incubated with ferritin overnight, in the absence or presence of urea. In these cases, a 

significantly greater number of iron atoms were released during the burst phase. This is 

interesting in two arenas. First, the ability of citrate to enable us to chelate more iron may play a 

role in materials chemistry, and this is discussed in detail in Chapters 7 and 8. Second, in the 

context of chronic kidney disease (CKD), serum phosphate levels are significantly elevated. 

Although phosphate does not allow increased non-reductive iron release from ferritin, we 

wondered whether elevated levels of phosphate could somehow disrupt the ability of ferritin (or 

other proteins involved in iron metabolism) to bind and sequester iron. Chapters 4 and 5 

investigate the role of phosphate in iron metabolism in greater detail. 

Finally, although the pathway described here is for Fe3+, it may also be relevant to the 

Fe2+ transfer process, with some expected differences. For example, protein Sites 1 and 2 are 

proposed to be composed of carboxylate side chains. Such binding sites will accommodate both 

Fe2+ and Fe3+, but the latter ion will likely be more strongly bound due to electrostatic 

interactions. The consequence would be that Fe3+ transfer out from the HoSF interior should be 

slower than Fe2+. The extent of this binding difference was demonstrated by modeling of the iron 

binding capabilities of the three-fold channel for both Fe2+ and Fe3+ ions.20 This previous study 

showed that Fe3+ is bound 1.3 times stronger than Fe2+. Although the present study did not 

measure the rate of Fe2+ egress for comparison, Zhang et al. reported the rate for the opposite 

reaction of Fe2+ and Fe3+ transfer into HoSF interior.21 The rate of Fe3+ entry was twice as rapid 

as that for Fe2+, consistent with overall stronger binding of Fe3+ to channel sites compared to 

Fe2+. 

This work was published in part in the Journal of Inorganic Biochemistry.36 
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CHAPTER 4: THE ROLE OF TRANSFERRIN IN CHRONIC 
KIDNEY DISEASE 

Abstract 

Many diseases of inflammation and oxidative damage are marked by a disruption in 

normal iron metabolism. A common occurrence of iron disruption is the build-up of what is 

referred to as non-transferrin bound iron (NTBI). NTBI is harmful because when iron is not 

bound by the transport protein transferrin, nor stored safely within ferritin, it is capable of 

catalyzing the production of harmful reactive oxygen species (ROS). This can result in oxidative 

damage and inflammation. In order to better understand NTBI in the context of iron transport, 

we performed in vitro assays that mimicked chronic kidney disease (CKD). We tested the 

hypothesis that elevated levels of serum phosphate interrupted normal Fe3+ binding by 

transferrin. We show that phosphate competes with apotransferrin for Fe3+ by reacting with free 

Fe3+ ions in solution to form a polymeric iron(III)-phosphate complex. The formation of the 

iron(III)-phosphate complex depletes Fe3+ from solution and minimizes the total Fe3+ available 

for binding to apotransferrin. Once formed, the iron(III)-phosphate complex is unable to donate 

Fe3+ to apotransferrin. However, complexed forms of Fe3+, such as Fe3+-nitrilotriacetic acid 

(NTA), are not susceptible to this phosphate complexation reaction and are a better source of 

Fe3+ for delivery to apotransferrin. The formation of the iron(III)-phosphate complex may 

contribute to the increased levels of NTBI that is observed in patients with CKD. These in vitro 

data suggest that elevated phosphate concentrations significantly influence the ability of 

apotransferrin to bind iron, depending on the oxidation state of the iron.  

Introduction 

 Chronic kidney disease (CKD) effects 26 million Americans and several million more are 

at high risk for developing the disease. CKD is manifest by a progressive loss of kidney function, 
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most commonly as a result of diabetes mellitus or from metabolite imbalance. This results in a 

general loss of wellness. Patient markers of CKD include anemia, increased non-transferrin 

bound iron (NTBI), decreased transferrin saturation, severe oxidative stress, 5–10 fold increase 

in serum ferritin, and elevated phosphate levels.1-4 The disease progresses from a mild stage 1 to 

the severe kidney failure of stage 5. By stage 3, patients are generally recommended for dialysis, 

a time-intensive and costly treatment that is designed to replace kidney function. At this stage of 

treatment, the risk of death also increases.5 Fortunately, during the past decade, two significant 

improvements in the management of CKD have taken place. First, the National Kidney 

Foundation developed guidelines and a systematic definition of CKD and its stages to increase 

awareness of the symptoms and treatments of the disease.6 Second, improved medications have 

directly alleviated the symptoms of CKD, with more continually coming down the pipeline.7-9  

Despite these efforts, the role that iron plays in the disease is poorly understood, although 

based on the serum markers of CKD (e.g., NTBI, anemia, altered iron metabolism protein 

concentrations), the role of iron is clearly significant. In order to fully appreciate these serum 

markers, one must understand the basic principles of iron metabolism in humans. 

Iron is an essential element required to sustain life, but if not properly bound and directed 

to the correct locations in the body, it can catalyze the formation of reactive oxygen species 

(ROS).10 To minimize ROS formation, nature has evolved mechanisms to transport, sequester, 

and escort iron to specific locations within the body. These mechanisms include membrane 

transport proteins, iron binding and storage proteins, hormones that regulate iron uptake and 

release, and iron chaperones.11-20 In order to maintain healthy iron homeostasis, all of these 

mechanisms must be synchronized and functioning properly. 
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The average individual consumes 10–20 mg of iron each day. About 10% of this is 

absorbed in the small intestines where it is eventually chelated by transferrin. Transferrin is an 

approximate 80 kDa iron transport protein that can hold up to two iron atoms at a time.21 The 

two iron binding sites are situated on separate lobes of the protein, which are very similar in 

structure, although not identical (Figure 4–1).  

 

Figure 4-1. Stereo diagram of human transferrin. The N-lobe is depicted in blue and the C-lobe is depicted in green. 

Also shown is an iron atom in each lobe, coordinated with a corresponding synergistic anion (CO3
2−). PDB code 

1JNF.22 Molecular graphics images were produced using the UCSF Chimera package from the Resource for 

Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIH P41 

RR-01081).23 

Transferrin has a high affinity for iron(III) (~1022 M−1) at physiological pH.21, 24, 25 Thus, 

transferrin readily binds any iron that enters the bloodstream, protecting the body from radical 

damage that can occur from iron-generated ROS. Iron bound to transferrin represents a small 

percentage of the total iron stores, only about 0.1%. However, this iron pool is a very significant 

indication of the health of iron metabolism in the body. The amount of iron that is actually bound 

to transferrin compared to the amount of transferrin that is available to bind iron is referred to as 

transferrin saturation (TSAT). In healthy individuals, TSAT is generally >20%. However, in 

patients with CKD, TSAT consistently falls below 20%.26 Generally, such low TSAT levels is an 

indication of iron deficient anemia. However, although these patients do exhibit anemia (low red 
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blood cell levels), they have elevated iron levels in the form of NTBI, which is an inaccessible 

form of iron. 

Free iron, also known as NTBI, represents a state where the normal iron processing 

mechanisms are not functioning properly and iron is found free in biological fluids.1, 27-30 The 

presence of NTBI is dangerous because iron in this form is not protected by transport or storage 

proteins, and is capable of leading to severe oxidative damage via free radical oxidation.31 

Hemochromatosis and thalassemia patients have NTBI because the iron concentrations in the 

bloodstream exceed that of the iron binding capacity of serum iron binding proteins.32, 33 Another 

source of NTBI is from iron supplements that are given to patients who are iron deficient.26, 33, 34 

In this case, NTBI occurs when the iron supplement dose exceeds the iron binding capacity of 

serum iron binding proteins. 

Patients with CKD also show elevated levels of NTBI. Recent reports show the presence 

of NTBI in CKD patients independent of whether they received iron supplementation.1, 32, 33, 35 

This observation is puzzling because of the strong affinity that transferrin has to bind iron. The 

existence of NTBI in the presence of unsaturated transferrin suggests the presence of an inhibitor 

to transferrin iron binding or indicates the formation of an iron complex in serum that is not 

biologically available to transferrin.  

In vitro studies with transferrin have shown that polymeric salts of iron are poor 

substrates for transferrin and that in vitro transferrin loading requires a chelated form of iron or a 

low pH treatment for efficient loading.36, 37 In fact, many of the iron supplements currently used 

only transfer a small part of the iron to transferrin, while the rest of the iron is absorbed by cells 

lining the bloodstream. This iron can be exported back to the bloodstream through the iron 

export protein, ferroportin, for proper loading into transferrin.33, 38, 39  
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Unfortunately, these patients also have an inflammatory response. Hepcidin, an iron 

hormone, is expressed as part of the inflammatory response.15-19 Hepcidin binds to ferroportin, 

causing its endocytosis and degradation, resulting in a block of iron export into the 

bloodstream.40 Hepcidin is from a family of antimicrobial peptides and its function is consistent 

with stopping microbial growth by limiting iron in the serum.41 The hepcidin block on 

ferroportin iron export helps explain the decreased TSAT levels that lead to anemia in CKD 

patients. Thus, the hepcidin effect may make iron supplementation less effective than hoped 

because iron export into the bloodstream is blocked.  

With the hypothesis that a biologically unavailable iron species forms in vivo in the 

serum of CKD patients, we sought to identify conditions that would produce such species. We 

postulated that the inability of the failing kidneys to properly filter the blood leads to an increase 

in a metabolic species that was capable of binding iron to form species that are not biologically 

available to transferrin. The CKD literature shows that phosphate concentrations in the serum of 

CKD patients are significantly elevated.42 Patients with CKD have phosphate concentrations 

more than double that of healthy individuals (~3.5 mM and 1.0 mM, respectively).43-45 

Examination of solubility product tables showed that phosphate reacts with iron to produce 

insoluble complexes (Equations 1 and 2).  

3 Fe2+ + 2 PO4
3− ↔ Fe3(PO4)2 (s)      Ksp = 1.0 x 10−36                (Eq. 1) 

Fe3+ + PO4
3− ↔ FePO4  (s)                Ksp = 1.3 x 10−22                (Eq. 2) 

The insolubility of iron-phosphate species suggests that iron may precipitate in the 

bloodstream as the phosphate concentrations increase. Furthermore, for proper iron binding by 

transferrin, a synergistic anion is required. Carbonate functions in this role in vivo; however, 

other anions have been able to function in this role in vitro (Scheme 4–1A). Phosphate has 
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previously been shown not to function as a synergistic anion, except in bacterial transferrin.46-48 

Although phosphate does not function as the synergistic anion in transferrin, we wondered 

whether elevated phosphate levels could nonetheless compete with carbonate for the anion 

binding site (Scheme 4–1B). If this is the case, then elevated phosphate would cause decreased 

TSAT levels, because transferrin would be unable to bind iron. Another possibility is that 

phosphate competes with transferrin for the binding of iron (Scheme 4–1C). In this case, iron is 

not taken up by transferrin because elevated phosphate levels out-compete transferrin for iron. 

Overall, we postulated that the elevated phosphate levels observed in the serum of CKD patients 

disrupts iron loading into transferrin, decreasing TSAT and producing NTBI. Furthermore, once 

formed, the resultant NTBI is not a substrate for binding to transferrin. This model is depicted in 

Scheme 4–1.  

Fe3+ + CO3
2− + 

Apo-transferrin Holo-transferrin

A. Transferrin Fe3+ Binding

B. Phosphate Competing with Carbonate

Fe3+ + CO3
2− + 

PO4
3−

Apo-transferrin CO3
2− Partially saturated

Holo-transferrin

+

PO4
3−

C. Phosphate Complexing or Precipitating Fe3+

Fe3+ + CO3
2− + 

Apo-transferrin Partially saturated
Holo-transferrin

NTBI
Fe(PO4)x  

Scheme 4-1. Model of Fe3+ binding by transferrin. A) Model of ferric iron loading into transferrin. A synergistic 

anion (usually carbonate) is required for efficient iron loading to take place. B) Reactions were performed to 

determine whether phosphate competes with carbonate to prevent binding. C) An alternative model for phosphate 
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disruption of iron loading into transferrin. Here, phosphate competes with ferric iron to form a polymeric iron-

phosphate species. The iron in this complex is inaccessible to transferrin, and forms NTBI. 

In this work, we examined the ability of transferrin to bind iron from iron(III) salts and 

iron(III) complexes and evaluated the effect of phosphate on these binding reactions. We also 

examined conditions similar to those used by cells to export iron(II) by ferroportin where iron(II) 

must be oxidized to enter the bloodstream and bind to transferrin.49, 50 To do this, we used assays 

that monitored the ability of transferrin to recognize iron(III) immediately after it was oxidized, 

but before it hydrolyzed water to form aggregates of iron. 

 We report that phosphate does not act as a synergistic anion under the conditions tested, 

but that phosphate competes with apotransferrin by reacting with free Fe3+ ions in solution to 

form an iron-phosphate complex. The formation of the iron-phosphate complex depletes Fe3+ 

from solution and minimizes the total Fe3+ available for binding to apotransferrin. Once formed, 

the iron-phosphate complex is not a substrate for donating Fe3+ to apotransferrin. Complexed 

forms of Fe3+ such as Fe3+-nitrilotriacetic acid (NTA) are not susceptible to this phosphate 

complexation reaction and are a better source of Fe3+ for delivery to apotransferrin. Recombinant 

H-chain ferritin is a catalyst for oxidizing Fe2+ for incorporation into apotransferrin, and 

phosphate stimulates this reaction. Additionally, phosphate alone can coordinate Fe2+ in solution 

and facilitate oxidation to Fe3+. If apotransferrin is present when this iron(II)-phosphate complex 

is oxidized, the Fe3+ is rapidly bound by transferrin. The efficiency of this reaction for donating 

Fe3+ to apotransferrin decreases as the phosphate complex increases because phosphate begins to 

compete for the Fe3+ ions formed to form the polymeric iron(III)-phosphate complex. 
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Materials and Methods 

Materials. Human apotransferrin was purchased from Sigma. The powder was dissolved 

into a solution of 25 mM MOPS, pH 7.4. Recombinant human H-chain ferritin (rHuHF) (plasmid 

pET12b HF) was over-expressed in E. coli (strain BL21-DE3) and purified in our lab, as 

described in Chapter 3.51, 52 Fe(NH4)2(SO4)2∙H2O (Fe2+), FeCl3 (Fe3+), Na2HPO4, and NaHCO3, 

were all purchased from Fisher. Fe2+ and Fe3+ solutions were made by dissolving the solid into 

0.001 M HCl. NTA was purchased from Sigma. The Fe-NTA complex was made by combining 

NTA with a stoichiometric amount of Fe3+.37 All solutions were prepared the day they were used. 

UV-Vis Spectrophotometry. An Agilent 8453 UV-Visible spectrophotometer was used to 

monitor the binding of iron to transferrin. Final concentrations of protein and solutions were: 5 

mg/mL transferrin, 0.2 mg/mL rHuHF (when used), 25 mM MOPS pH 7.4, 10 mM CO3
2−, 

varying concentrations of phosphate, and 0.18 mM Fe3+ (for an excess amount of Fe/transferrin, 

~3.5 Fe/transferrin) or 0.18 mM Fe2+ for the ferroxidase work. The final volume was 2 mL. The 

kinetic run was setup to monitor the change in absorbance at 460 nm over a time span of 1,800 s. 

Transferrin was combined with carbonate with or without phosphate and allowed to stir to 

equilibrate. The kinetic run was initiated and recorded, and the appropriate volume of Fe3+ was 

added. Runs were collected in triplicate.   

Results 

Transferrin specifically binds two Fe3+ ions, one in each lobe.53-58 Carbonate also binds in 

each of the two separate lobes of the protein and acts as the synergistic anion to anchor the iron 

into the binding cavity.36, 53 The proposed mechanism is that carbonate binds in the cleft of either 

lobe of transferrin to positively charged residues (Arg124) and also to peptide-chain nitrogens of 

residues (Ala126 and Gly127) on the N-terminus of transferrin to neutralize the positive charge 
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of these residues.59 After neutralizing the repulsive positive charge, carbonate provides the final 

two ligands for coordinating the incoming Fe3+ ion (Figure 4–2). 

 

Figure 4-2. Iron binding site within the N-lobe of transferrin. Four residues (Asp63, Tyr95, Tyr188, and His249) 

plus carbonate bind iron. Two residues (Arg124 and Ala126) stabilize carbonate. PDB code 1JNF.22 Molecular 

graphics images were produced using the UCSF Chimera package from the Resource for Biocomputing, 

Visualization, and Informatics at the University of California, San Francisco (supported by NIH P41 RR-01081).23 

Our proposal that phosphate inhibits iron binding to apotransferrin might occur by two 

different pathways (Scheme 4–1). The first pathway requires phosphate to compete with 

carbonate as the synergistic anion. The second pathway involves phosphate reacting with Fe3+ in 

solution prior to binding to apotransferrin and forming a complex that is not available to bind to 

transferrin.  

Our first goal was to confirm previous studies showing that phosphate does not act as a 

synergistic anion for iron binding to transferrin.47 One indicator of iron binding to transferrin is 

the characteristic absorbance peak at 460 nm that forms when iron is bound to transferrin. Figure 
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4–3 shows that when Fe3+ is added to apotransferrin in the presence of carbonate, the iron loads 

into transferrin, forming holotransferrin, indicated by the increased absorbance at 460 nm. The 

control reactions show the spectrum of apotransferrin alone, apotransferrin reacted with Fe3+ in 

the absence of carbonate, and apotransferrin reacted with Fe3+ in the presence of phosphate but in 

the absence of carbonate. Each of these controls failed to produce the characteristic absorbance 

peak at 460 nm that is indicative of Fe3+ binding by transferrin.  
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Figure 4-3. UV-Vis spectrophotometry spectra of iron binding by transferrin. Iron binding can be monitored by 

observing the peak that forms at 460 nm. The blue trace is apotransferrin alone. The black trace is transferrin + Fe3+ 

+ CO3
2−. The cyan trace is transferrin + Fe3+ without CO3

2−. The red trace is transferrin + Fe3+ + PO4
3−. Iron binding 

by transferrin only takes place in the presence of a synergistic anion, such as carbonate. In the absence of carbonate, 

transferrin does not bind iron. Phosphate is unable to substitute for carbonate in this capacity.  

 The results in Figure 4–3 confirm that phosphate does not substitute for carbonate for 

iron binding by transferrin. Therefore, using similar conditions, the effect of phosphate on the 

rate of iron loading into transferrin with carbonate present was measured. Our goal was to 
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determine if the presence of phosphate decreased the ability of apotransferrin to bind Fe3+. Fe3+ 

was added to apotransferrin in the absence or presence of increasing phosphate concentrations. 

Carbonate was always present in the reaction mixtures to provide the synergistic anion. The 

source of Fe3+ in these reactions was FeCl3 or Fe3+-NTA. Previous work showed that FeCl3 was 

not as efficient for binding by apotransferrin as Fe3+ from a complexed source.36 Indeed, the rate 

of formation of the 460 nm peak was faster when the Fe3+ was supplied from the Fe3+-NTA stock 

solution, but the same final absorbance was achieved by both Fe3+ sources.  

 

Figure 4-4. UV-Vis spectrophotometry kinetics monitoring the loading of Fe3+ into apotransferrin (460 nm). Left is 

iron loading in the form of FeCl3, whereas right is the loading of iron as the Fe3+-NTA complex. Various 

concentrations of phosphate were used in the assays to monitor the effects of phosphate. Black is no phosphate, red 

is 1 mM, green is 2.5 mM, cyan is 5 mM, and blue is 10 mM. 

 When phosphate was present prior to the addition of Fe3+, a significant difference in the 

Fe3+ loading kinetics into apotransferrin was observed. When the Fe3+ source was FeCl3, the 

presence of phosphate produced samples with significantly less absorbance at 460 nm, indicating 

a significant decrease in the total Fe3+ that bound to apotransferrin. In contrast, when the Fe3+ 

source was Fe3+-NTA, phosphate showed no inhibitory effect on Fe3+ binding by apotransferrin. 
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The Fe3+ complexing ability of NTA allowed Fe3+ to be coordinated in solution and prevented 

phosphate from reacting with Fe3+ to coordinate or precipitate Fe3+ from the solution.  

 The specificity of Fe3+ binding to the Fe3+ pocket of transferrin was examined in order to 

confirm that the above results were not due to non-specific binding of iron to transferrin.37 Two 

of the ligands to Fe3+ are tyrosine residues that are deprotonated upon Fe3+ binding and provide 

evidence of specific Fe3+ coordination to transferrin. The deprotonation of these tyrosine residues 

confirms the specific binding of Fe3+ to transferrin.60 Figure 4–5 shows the spectrum of FeCl3 

added to apotransferrin in the presence of carbonate. The peaks at 241 nm and 290 nm 

correspond to the deprotonation of tyrosine.60 Titrations of 0.5 equivalents of Fe3+ were added 

until the absorbance at 241 and 290 nm ceased to increase with increasing concentration of Fe3+.  

 

Figure 4-5. Deprotonation of tyrosine residues. Spectra show an increase in absorbance at 460 nm, indicative of iron 

loading into transferrin. In addition, peaks at 241 nm and 295 nm also increase with increasing iron concentration, 

which corresponds to the deprotonation of tyrosine residues. Ratios of Fe3+ to transferrin are as follows: pink is 0.5, 

blue is 1.0, cyan is 1.5, green is 2.0, red is 2.5, and black is 3.0. 

Figure 4–6 shows a plot where the change in absorbance at 241 nm versus equivalents of 

Fe3+/transferrin is represented. A break point is observed where the tyrosine residues are 
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completely deprotonated and the addition of more iron no longer leads to an increased change in 

the tyrosine absorbance at 241 nm. The small increase in absorbance that is observed is from 

additional iron added, but this does not significantly change the tyrosine absorbance. The break 

point occurs at 2 Fe3+ ions per transferrin, consistent with the two-transferrin binding sites. 

Figure 4–6 also shows the same experiment performed under identical conditions, but with 1mM 

phosphate present in solution (red). At 1 mM phosphate, 12 equivalents of iron were required to 

maximize the tyrosine deprotonation signal. Reactions with 2.5 mM phosphate required 14 

equivalents of Fe3+ to completely deprotonate the tyrosine residues (green). When 5 mM 

phosphate was present, no break point was observed, indicating that complete tyrosine 

deprotonation was not achieved under the assay conditions (black). The increasing ratios of Fe3+ 

to transferrin as phosphate concentrations increase indicate that higher ratios of iron are required 

to saturate transferrin. This suggests that phosphate decreases the available iron from solution. 

 

Figure 4-6. Change in absorbance at 241 nm vs. equivalents of iron to demonstrate transferrin saturation. In the 

absence of phosphate, transferrin saturation occurs at two iron atoms per transferrin (cyan). In 1 mM phosphate, 

transferrin saturation occurs at 12 irons per transferrin (red). In 2.5 mM phosphate, transferrin saturation occurs at 

14 irons per transferrin (green). In 5 mM phosphate, saturation was not observed under experimental conditions 

(black). 



81 
 

 We observed that no precipitate formed in these reactions, which was contradictory to 

what was predicted from Equations 1 and 2. In these equations, iron reacts with phosphate to 

form a solid and insoluble iron-phosphate precipitate. However, when phosphate is present in 

excess (> 10-fold), a soluble polymeric species forms.61 Control experiments, using identical 

conditions but without apotransferrin, also produced solutions without any precipitate. Observing 

this solution spectrophotometrically revealed an identical spectrum as the red spectrum we 

observed in Figure 4–3. The detailed findings of this polymeric iron(III)-phosphate complex are 

spelled out in Chapter 5. For the purpose of this chapter, a polymeric iron(III)-phosphate 

complex forms under our assay conditions and this species is not a substrate for binding by 

transferrin. Indeed, previous work has shown that polymeric iron(III) species cannot act as 

substrates for binding to transferrin.36 We prepared the iron(III)-phosphate complex and then 

incubated it with apotransferrin in the presence of carbonate. No evidence of Fe3+ binding by 

apotransferrin was observed as judged by monitoring the absorbance at 460 nm (data not shown). 

This suggests that if soluble iron(III)-phosphate complex exists in vivo as NTBI, it would not be 

a substrate for binding to apotransferrin. 

Although the evidence presented so far suggests that an iron(III)-phosphate complex 

forms and competes with apotransferrin for Fe3+, another potential mechanism would be that 

phosphate strips the Fe3+ from transferrin after it had bound. This type of Fe3+ chelation from 

transferrin has been previously observed for pyrophosphate.62 Previous work has shown that 

holotransferrin treated with pyrophosphate loses Fe3+ by observing the decrease in absorbance at 

460 nm with time. Identical experiments using phosphate failed to change the 460 nm peak 

during the same time interval, indicating that phosphate was not able to strip Fe3+ from 

transferrin (data not shown). The results confirmed that phosphate does not chelate Fe3+ from 
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transferrin and also confirm the hypothesis that phosphate prevents Fe3+ loading into 

apotransferrin by forming a polymeric iron-phosphate complex that is inaccessible for transferrin 

binding. 

Normal Fe3+ loading into apotransferrin in vivo occurs when Fe2+ is pumped out of cells 

by ferroportin. When Fe2+ leaves ferroportin, it is oxidized to Fe3+ by either ceruloplasmin or 

hephaestin, copper oxidase enzymes.63-65 In the absence of ceruloplasmin or hephaestin, Fe2+ 

remains in the ferroportin export channel and is not exported from cells and into the 

bloodstream.64 As Fe2+ exits ferroportin, it might be exposed to phosphate prior to oxidation by 

ceruloplasmin or hephaestin. Because the Ksp for Fe3(PO4)2 (Ksp = 1 x 10-36) is 1014 times smaller 

than FePO4 (Ksp = 1x10-22) we postulated that elevated phosphate concentrations might decrease 

iron loading into apotransferrin because Fe2+ might react with phosphate before it could be 

oxidized by ceruloplasmin or hephaestin. Transferrin iron loading reactions were performed by 

adding Fe2+ to apotransferrin using conditions previously described for Fe3+ loading into 

transferrin. However, in this assay, iron loading required Fe2+ oxidation prior to binding by 

apotransferrin because apotransferrin has very low intrinsic ferroxidase activity.36 We postulated 

that the presence of phosphate would complex or precipitate the Fe2+ and inhibit iron loading 

into transferrin. 

Surprisingly, Figure 4–7 shows results that are the opposite of what was predicted using a 

solubility product argument. The presence of phosphate increased the rate of Fe3+ loading into 

apotransferrin when Fe2+ is added. As the phosphate concentration was increased through the 

range of 0, 1, 2.5, 5 and 10 mM phosphate, the initial rate of Fe3+ binding to apotransferrin 

increased. Interestingly, the final absorbance steadily decreased as the phosphate concentration 

increased. Several factors contribute to the reactions shown in Figure 4–7. First, excess 
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phosphate is present (at least 10-fold) compared to Fe2+ and instead of precipitation of Fe3(PO4)2 

(s), a soluble Fe(II)-phosphate complex forms (see Chapter 5). The precipitation reactions only 

occur when Fe2+ and phosphate are present in approximately 1:1 ratios, but excess phosphate 

produces a soluble Fe(II)-phosphate complex. Second, phosphate promotes oxidation of Fe2+ to 

Fe3+ by coordinating to the Fe2+, and according to hard-soft acid base theory, increases the ability 

of Fe2+ to be more easily oxidized to Fe3+.66 Once oxidation occurs, Fe3+ is transferred to 

apotransferrin. The decrease in final absorbance is due to the formation of the iron(III)-phosphate 

complex that was responsible for the inhibition shown previously. Apparently the redox change 

from Fe2+ to Fe3+ allows apotransferrin to favorably compete for Fe3+ before the iron(III)-

phosphate polymeric species forms. This could represent the kinetics of ligand exchange or it 

may simply be a better mimic of the natural reaction that occurs when Fe2+ passes through 

ferroportin and is oxidized by ceruloplasmin prior to transferrin binding. These results suggest 

that the redox change from Fe2+ to Fe3+ may be an important recognition system for transferrin to 

bind iron. 

 

Figure 4-7. UV-Visible spectrophotometry kinetics monitoring the oxidation of Fe2+ and subsequent loading of Fe3+ 

into apotransferrin (460 nm). Various concentrations of phosphate were used in the assay to monitor the effects of 

phosphate. Black is no phosphate, red is 1 mM, green is 2.5 mM, cyan is 5 mM, and blue is 10 mM. 
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These results led us to investigate the ability of ferritin to oxidize Fe2+ in the presence of 

phosphate. Ferritin possesses ferroxidase activity and has been used as an oxidase for in vitro 

assays to load transferrin.67, 68 We used this assay to determine how increasing phosphate 

concentrations influence Fe3+ loading into apotransferrin when the iron is presented as Fe2+. 

Figure 4–8 shows that recombinant human H-chain ferritin (rHuHF) significantly stimulates the 

rate of Fe3+ loading into apotransferrin compared to the control that lacks rHuHF. Additionally, 

when both rHuHF and 1 mM phosphate are present, the initial rate of Fe3+ loading into 

apotransferrin is further stimulated. When higher concentrations of phosphate are present in this 

reaction, the initial rate of iron loading into apotransferrin continues to increase. This is 

consistent with reports that phosphate stimulates the rate at which the ferritin ferroxidase center 

functions.69-72 Again, however, we observed that as the phosphate concentration increases, the 

final absorbance decreases. This suggests that at high phosphate concentrations, the formation of 

the iron(III)-phosphate complex begins to compete with apotransferrin for binding Fe3+. 

 

Figure 4-8. UV-Visible spectrophotometry kinetics monitoring the oxidation of Fe2+ using ferritin as a ferroxidase. 

Various concentrations of phosphate were used in the assay to monitor the effects of phosphate. Black is no 

phosphate, red is 1 mM, green is 2.5 mM, cyan is 5 mM, and blue is 10 mM. Pink is a control without ferritin and 

without phosphate. 
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 To better visualize how rHuHF influences the apotransferrin loading reaction, the relative 

initial rates from Figures 4–7 and 4–8 are plotted together (with and without rHuHF at identical 

phosphate concentrations) (Figure 4–9). In the absence of phosphate, rHuHF significantly 

increases the Fe3+ loading into apotransferrin. The combination of both rHuHF and phosphate is 

significantly faster than the rHuHF without phosphate, suggesting that phosphate has a 

stimulatory effect on the ferroxidase center of ferritin.69-72 The decrease in final absorbance is 

observed in the curves with 5 mM phosphate. Note that the sample without ferritin has a larger 

decrease than the sample with ferritin, indicating that when rHuHF is present, there is a greater 

efficiency of Fe3+ loading into apotransferrin. In fact, Figure 4–8 shows that the sample with 

rHuHF and 2.5 mM phosphate achieved the same final absorbance as the 1 mM phosphate 

sample and the sample without phosphate, which represents complete Fe3+ loading. These results 

suggest that in the presence of a protein with ferroxidase activity, iron loading is not inhibited by 

phosphate until the phosphate concentration reaches a value between 2.5 mM and 5 mM 

phosphate. Near 5 mM phosphate and above, the formation of the iron phosphate complex 

becomes more favorable and even in the presence of rHuHF, possessing ferroxidase activity is 

not sufficient to completely prevent the formation of the iron(III)-phosphate complex.  
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Figure 4-9. Relative rates of iron loading into transferrin. Blue bars are the relative initial rates (ΔAbs/sec) over the 

first 60 seconds of the reaction. Red bars are the relative final absorbance values, where a value of ten represents 

complete iron loading into transferrin.  

The stimulation of Fe2+ loading into apotransferrin occurs because phosphate coordinates 

to Fe2+ and creates an environment that favors oxidation.66 Interestingly, the iron(II)-phosphate 

complex appears to be a good substrate for donating Fe3+ to apotransferrin in contrast to the 

iron(III)-phosphate complex, which does not donate Fe3+ to apotransferrin.  

Discussion 

 Elevated phosphate concentrations inhibit Fe3+ loading into apotransferrin. Because 

phosphate does not compete with carbonate as a synergistic anion (Figure 4–3), we propose that 

the inhibition must occur by another pathway. Our results show that phosphate blocks Fe3+ 

loading into apotransferrin by coordinating to Fe3+ and forming an iron(III)-complex that is 

biologically unavailable to bind to apotransferrin. When Fe3+ is coordinated by NTA prior to 
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incubation with phosphate, normal Fe3+ loading into apotransferrin is observed. This suggests 

that maintaining Fe3+ in a monomeric form is an essential step in apotransferrin loading.  

 The specificity of Fe3+ binding to apotransferrin was tested by monitoring the 

deprotonation of the tyrosine residues in transferrin that coordinate the Fe3+ ions. In the absence 

of phosphate, the expected stoichiometry of 2 Fe3+/transferrin was observed. In the presence of 

phosphate, much higher stoichiometries of Fe3+ were required to completely saturate the binding 

sites of apotransferrin. This is consistent with the hypothesis that phosphate competes for the 

Fe3+ ions and depletes them from solution by forming an iron(III)-phosphate complex that is not 

a substrate for binding by apotransferrin. This is significant for CKD patients because NTBI may 

be forming in the serum of these patients as the phosphate levels rise as a result of the failing 

kidneys.  

 The in vivo mechanism of Fe3+ delivery to transferrin occurs by export of Fe2+ from cells 

by ferroportin. The release of Fe2+ requires an oxidase, ceruloplasmin or hephaestin, to oxidize 

the Fe2+ to Fe3+. The ferroxidase activity of rHuHF was used to mimic this reaction in vitro. In 

the presence of rHuHF, phosphate has a less inhibitory effect on iron loading and actually 

stimulates the ferroxidase activity of ferritin. In the absence of rHuHF, phosphate also stimulates 

the oxidation of Fe2+, but as the phosphate concentration increases, the formation of the iron(III)-

phosphate complex begins to compete with apotransferrin for the Fe3+ ions in solution. 

In summary, patients with CKD have serum markers of decreased TSAT, increased 

serum phosphate levels, elevated NTBI, elevated serum ferritin, anemia, and severe oxidative 

damage. The decreased levels of TSAT can be explained because transferrin is unable to bind 

iron. Instead, the elevated phosphate levels compete for the iron, effectively inhibiting transferrin 

binding and uptake. As a result, a soluble iron-phosphate complex forms, contributing to the 
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elevated NTBI. This makes the iron inaccessible, and anemia results. However, iron in the form 

of NTBI is still capable of causing oxidative damage. Another interesting feature of CKD is the 

presence of elevated serum ferritin levels. Considerable work has gone into understanding the 

role of serum ferritin in CKD, and the results from that work will be expounded upon in Chapter 

5.  

This work was accepted in part for publication in Biometals. 

This work was presented as a poster at the International BioIron Society 2011 in Vancouver, BC Canada. 
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CHAPTER 5: THE ROLE OF FERRITIN IN CHRONIC 
KIDNEY DISEASE 

Abstract 

Iron loading into ferritin was studied in the presence of physiological serum phosphate 

concentrations (1 mM), elevated serum concentrations (2.5–5 mM), and intracellular 

concentrations of phosphate (10 mM). Experiments used horse spleen ferritin to represent 

cytosolic ferritin and also as a serum ferritin mimic because of the high L ferritin content. 

Results show that both ferritin and phosphate are capable of stimulating the oxidation of Fe2+, as 

detected by both oximetry and spectrophotometric assays. A competing side reaction was 

identified where a soluble iron(III)-phosphate complex forms outside ferritin. The iron(III)-

phosphate complex was characterized by electron microscopy (EM) and atomic force 

microscopy (AFM), which revealed spherical nanoparticles between 20–200 nm. The iron(III)-

phosphate complex is difficult to separate from ferritin and a new purification method was 

devised to separate this complex from ferritin. Elemental analysis on ferritin samples separated 

from the iron(III)-phosphate complex shows that as the phosphate concentration increases, iron 

loading into ferritin decreases. The composition of the mineral that forms in ferritin has a higher 

iron/phosphate ratio (~1:1) than ferritin purified from tissue (~10:1). Similar iron loading 

experiments were performed using homopolymers of H or L ferritin. H ferritin showed 

significantly better iron loading in the presence of elevated phosphate. The ferroxidase center 

efficiently competes with phosphate for the binding and oxidation of Fe2+. Phosphate 

significantly inhibited iron loading into L ferritin, due to the lack of the ferroxidase center in this 

homopolymer.   
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Introduction 

In the previous chapter, we showed that phosphate disrupts the ability of transferrin to 

bind iron. For patients with chronic kidney disease (CKD) this can have serious implications. 

Remember that the markers associated with CKD are increased serum phosphate levels, 

increased non-transferrin bound iron (NTBI), decreased transferrin saturation (TSAT), increased 

oxidative damage and inflammation, and increased serum ferritin levels. The increased serum 

phosphate levels may result in a cascade of events that ultimately lead to kidney failure. The one 

marker listed above that may seem somewhat out of place is the rise in serum ferritin levels. This 

chapter shows our efforts to understand why serum ferritin levels may be increased in patients 

with CKD. Because an extensive introduction was presented in the previous chapter, the reader is 

referred there for an understanding of iron metabolism and specifics of CKD. 

Serum ferritin concentrations increase during inflammation as part of the acute-phase 

response.1, 2 Hepcidin is also an inflammatory response protein that is expressed in order to limit 

iron export from cells. Considering that hepcidin functions to inhibit microbial growth by 

decreasing the serum iron concentration, it is logical that ferritin might be expressed in the serum 

to bind and sequester iron inside its 24-subunit protein shell to prevent the formation of ROS.3-5 

Another interesting observation is that for CKD patients with elevated serum phosphate 

concentrations and low TSAT, ferritin has been shown to have increased rates of iron binding in 

the presence of phosphate.6 Based on these observations, we propose that serum ferritin is 

expressed to bind iron during symptoms of CKD in order to bind and remove NTBI that results 

from the inhibition of iron loading into transferrin by phosphate. 

Unfortunately, this hypothesis immediately faces challenges because the effectiveness of 

iron binding by ferritin in the serum has been questioned. Early studies evaluating the iron 
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content of serum ferritin from patients with thalassemia and hemochromatosis showed a very 

low iron content in serum ferritin (185–540 Fe/ferritin).7-10 Because of the elevated iron levels in 

these patients, it was concluded that ferritin does not bind or carry iron in the serum. 

Recently, the iron content of serum ferritin was measured in healthy individuals (~1,100–

1,200 Fe/ferritin) and patients with inflammation (~800 Fe/ferritin).11, 12 The iron content of 

ferritin from these individuals is significantly higher than from patients with hemochromatosis 

and thalassemia. Furthermore, serum ferritin levels increase 4–10-fold in patients with 

inflammation.2, 13 The increase in serum ferritin concentration also means an increase in total 

iron carried by serum ferritin, which in several studies increased approximately four-fold 

(normal individuals 110–140 ng ferritin/mL vs. inflammation patients 450–500 ng 

ferritin/mL).11, 12 The significant increase in total serum iron in the form of serum ferritin might 

represent a previously unknown role for ferritin in iron transport during inflammation. This 

observation challenges the paradigm that serum ferritin carries very little iron under all 

conditions. Instead, the previous assertions that serum ferritin carries very little iron may only 

apply specifically to conditions of hemochromatosis and thalassemia.  

In fact, the role of serum ferritin may be more significant than previously understood. A 

recent study shows that serum ferritin, rather than transferrin, delivers iron to kidney cells during 

development.14 A recently discovered ferritin receptor Scara515 was identified and was shown to 

use serum ferritin as a source of iron for the cells. Because little is understood about how ferritin 

binds iron in the serum, the present study was undertaken to evaluate iron loading into ferritin 

under conditions found in the serum.   

This work examines the ability of ferritin to bind iron under various phosphate 

concentrations. Ferritin iron-loading experiments were conducted in the presence of 
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physiological phosphate concentrations (1 mM) and elevated phosphate concentrations similar to 

those found in CKD patients (2.5–5 mM). For completeness, iron loading in the presence of 

intracellular phosphate concentrations (10 mM) was also performed. Phosphate stimulates the 

rate of iron oxidation both in the presence and absence of ferritin. Iron loading in the presence of 

phosphate produces a mineral core that has a higher phosphate content (~1–2 Fe:PO4
3−) than 

ferritin isolated from healthy tissue (~10 Fe:PO4
3−). High phosphate concentrations prevent 

efficient loading of iron into ferritin because a side reaction leads to the formation of a large 

soluble iron-phosphate complex that forms outside of ferritin. H ferritin can compete effectively 

with the side reaction because the ferroxidase center allows H ferritin to rapidly bind and oxidize 

the ferritin. Iron loading into L ferritin is significantly inhibited by phosphate because the iron-

phosphate complex oxidizes the iron faster than L ferritin and once the iron-phosphate complex 

is formed it is inaccessible to ferritin. This complex may form in vivo at elevated phosphate 

concentrations and contribute to the formation of NTBI and oxidative damage observed in CKD 

patients. 

Materials and Methods 

Materials. Horse spleen apoferritin was purchased from Sigma. Recombinant human 

heavy chain ferritin (rHuHF) and human light chain ferritin (rHuLF) were expressed and purified 

as described in Chapter 3.16, 17 

Iron Loading. Ferritin samples were reconstituted with iron alone or were reconstituted 

with iron in the presence of phosphate, using the following procedure. An apoferritin solution (1 

µM) was prepared in 0.05 M MOPS buffer, pH 7.4, 0.05 M NaCl. Phosphate was added to the 

apoferritin solution to achieve the desired concentration. This solution was stirred aerobically in 

a cuvette in an Agilent 8453 UV-Visible spectrophotometer and Fe2+ ions were added from an 
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anaerobic 0.010 M FeSO4 stock solution to attain the desired iron loading. Iron loading was 

monitored spectrophotometrically at 310 nm versus time.18, 19 Control samples with no phosphate 

or no ferritin were prepared using the identical procedure. Ferritin with higher iron loadings were 

prepared by adding 100 iron/ferritin in a stirred vial and allowing the iron to incubate with the 

ferritin for 30 minutes. This process was repeated until the desired iron/ferritin load was 

achieved. The same procedure was followed for the oxygen electrode assays. The spectrum of 

the resulting samples and control reactions were recorded on the spectrophotometer. To remove 

unbound ions, samples and controls were passed over a GE-Healthcare PD-10 Sephadex G-25 

column and the elution profile of these samples and controls were recorded by monitoring the 

elution peaks at 310 nm.   

Elemental Analysis. The following procedure was used to prepare ferritin samples for 

elemental analysis. After the addition of iron and phosphate, the samples were centrifuged (3,200 

x g for 10 minutes) to remove any precipitated protein or small insoluble complexes. The 

supernatant (2.0 mL) was treated with 0.5 mL of Bio-Rad Bio-Gel P-10 gel slurry (75 g in 100 

mL total volume) and agitated for 30 minutes. The samples were then centrifuged at (3,200 x g 

for 10 minutes) and the supernatant collected. The supernatant was centrifuged through Amicon 

Ultra–4 centrifugal filters with a 100,000 molecular weight cut-off for 5 minutes at 3,200 x g. 

After the first centrifugation step, the concentrated retentate was diluted with 3 mL of 0.05 M 

MOPS buffer at pH 7.5 with 0.05 M NaCl and centrifuged again. The concentration and dilution 

steps were repeated two additional times to remove any remaining phosphate in the sample. 

Finally, the concentrated retentate was resuspended in 1.0 mL of 0.05 M MOPS buffer at pH 7.5 

with 0.05 M NaCl.   
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The iron content of the samples was analyzed by inductively coupled plasma emission 

(ICP) on a PerkinElmer Optima 2000 DV or by formation of the [Fe(2,2′-bipiridyl)3]2+ complex 

(ε520 = 8,400 M−1 cm−1) after chemical reduction of the iron with sodium dithionite. Protein 

concentrations were determined using the Lowry Method.20 The phosphate content was 

measured using a modified phospho-molybdate assay21 that required the addition of 2% SDS to 

keep the ferritin protein solubilized. Without the addition of SDS, a blue flocculent precipitate 

formed that was presumably denatured ferritin as this precipitate did not occur in the absence of 

ferritin. SDS was shown to solubilize the ferritin precipitate and to have no effect on the standard 

curve of the assay. 

Electron Microscopy. Samples were prepared and placed on charged ultrathin carbon film 

supported by a lacey carbon film on a 400 mesh copper grid (Ted Pella, Inc.). The grids were 

charged using a discharge tube designed in the laboratory of Dr. David Belnap. A 3.5 μL sample 

was incubated on the grid for 30–60 seconds to allow adherence of the protein or particles to the 

grid. The liquid was then wicked off, and the grid was rinsed in water. The samples with ferritin 

were then negative stained by adding 3.5 μL of a 1% solution of uranyl acetate to allow 

visualization of the protein. Iron-phosphate samples were not stained, as the samples lack protein 

and are electron dense (iron-containing). The grids were rinsed one more time in water and 

allowed to dry. The grids were then analyzed using a Tecnai F30 TEM, 140 kV.  

Results 

Previous studies of iron loading into ferritin in the presence of phosphate concluded that 

phosphate stimulates the rate of iron loading into ferritin.22-25 Phosphate is a natural constituent 

of ferritin isolated from tissue26 and alters the mineral core properties of ferritin.27 The current 

study was conducted to examine the effect of phosphate on iron loading into ferritin. In this way, 
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we desired to determine whether ferritin expression can help minimize the inhibitory effect that 

phosphate has on transferrin (see Chapter 4). Experiments were conducted to mimic phosphate 

concentrations in serum from healthy individuals (1.0 mM), CKD patients (>2.5 mM), and at 

intracellular phosphate concentrations (10 mM). Iron loading was monitored by 

spectrophotometry, oximetry, and elemental analysis of the purified samples.   

Spectrophotometry. The absorbance change at 310 nm is a common assay to monitor iron 

loading into ferritin.18, 28, 29 These results are shown in Figure 5–1. To simplify the graph, only 

the data for 1 mM and 10 mM phosphate are shown to represent the extremes of the range used 

in this work. The open symbols represent the control reactions performed in the absence of 

ferritin. The first control (open square) shows the slow oxidation of Fe2+ to Fe3+ in 0.05 M MOPS 

buffer pH 7.5 in the absence of phosphate or ferritin. The formation of an orange precipitate, 

Fe(OH)3, confirmed the oxidation of Fe2+ to Fe3+ in this reaction. When 1 mM or 10 mM 

phosphate was present (open circle and open triangle), the initial rate of the reaction was 

dramatically increased 3.5-fold or 30-fold respectively, compared to the rate of iron oxidation in 

buffer alone (Table 5–1). In the presence of phosphate, no visible precipitate was observed, 

which was surprising considering the Ksp values presented in Equations 1 and 2. The lack of a 

precipitate and the change in absorbance at 310 nm implied that a soluble iron-phosphate 

complex formed.  
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Figure 5-1. Spectrophotometric assay. Each reaction was performed in 0.05 M Mops buffer pH 7.5 and contain 

either no phosphate or the indicated phosphate concentration. Fe2+ ions (anaerobic 0.01 M FeSO4) were added with a 

Hamilton syringe to start the reaction. Open symbols represent controls without ferritin and closed symbols 

represent reactions with ferritin. Samples are -no phosphate, -no phosphate + ferritin, -1mM phosphate, -1 

mM phosphate + ferritin, -10 mM phosphate, -10 mM phosphate + ferritin. 
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Table 5-1. Initial rates of iron loading. 

 Sample Initial Rate (∆Abs/sec) Fold 
increase 

 UV/Vis*   
1 Iron added to MOPS buffer 0.0002 0 
2 1 mM phosphate control 0.0007 3.5 
3 10 mM phosphate control 0.0061 30.5 
4 Ferritin 0.0012 6 
5 Ferritin in 1 mM phosphate 0.0057 28.5 
6 Ferritin in 10 mM phosphate 0.0136 68 
 Oxygen electrode+ Initial Rate (nmole O2 

consumed/min) 
Fold 

Increase 
1 Iron added to MOPS buffer 0.14 0 
2 1 mM phosphate control 1.04 7.2 
3 10 mM phosphate control 4.33 30.2 
4 Ferritin 1.03 7.2 
5 Ferritin in 1 mM phosphate 2.99 20.9 
6 Ferritin in 10 mM phosphate 6.31 44.1 

*An apoferritin solution (1 µM) was prepared in 0.05 M MOPS buffer pH 7.4, 0.05 M NaCl. Phosphate was added 

to the apoferritin solution to achieve the desired concentration. This solution was stirred aerobically in a cuvette in 

an Ocean Optics Chem 2000 UV-Visible spectrophotometer and Fe2+ ions were added from an anaerobic 0.010 M 

FeSO4 stock solution to attain the desired iron loading. Iron loading was monitored spectrophotometrically at 310 

nm versus time. Control samples with no phosphate or no ferritin were prepared using the identical procedure. Initial 

rates were calculated from the first 15 seconds of the reaction. 

+Identical experimental procedures were used for the oxygen electrode assays. 

These results suggest a potential side-reaction might be occurring during the ferritin iron 

loading reactions. To test this, more controls were performed to understand the solution 

chemistry of iron and phosphate under these conditions. The iron and phosphate concentrations 

were varied to determine when soluble complexes and solid, insoluble iron-phosphate complexes 

form. A bluish-green precipitate was observed with a 1:1 iron to phosphate ratio, but as the 

phosphate concentration was increased, less precipitate was observed. When the phosphate 
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concentration was greater than 3-fold, the amount of precipitate decreased significantly and a 10-

fold excess of phosphate produced very little precipitate. The phosphate to iron ratios in the 

assay shown in Figure 5–1 are in the range from ~20 to ~200 phosphate/iron, consistent with the 

formation of a soluble complex rather than a precipitate.  

The spectrum of ferritin, apoferritin, and the iron-phosphate complex were recorded and 

are shown in Figure 5–2. Apoferritin shows the typical protein absorbance at 280 nm. Ferritin 

loaded with iron or iron and phosphate has a peak at 280 nm as well as a shoulder trailing into 

the visible region between 300–450 nm, characteristic of iron mineralization inside ferritin. The 

iron-phosphate complex has a peak near 280 nm that trails off into the visible region in a similar 

fashion as ferritin containing iron. The spectra show that holoferritin and the iron-phosphate 

complex both have significant absorbance at 310 nm. Because this is the wavelength used to 

monitor the formation of iron in ferritin, the kinetics reported here and in previous works may be 

monitoring not only the deposition of iron into ferritin, but also the formation of the soluble iron-

phosphate complex. 

 

Figure 5-2. Spectra of ferritin and iron-phosphate complex samples. -apoferritin, -holoferritin, -ferritin 

reconstituted by adding Fe2+ in the presence of 1 mM phosphate, and -the iron-phosphate complex prepared by 
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adding Fe2+ to a 1.0 mM phosphate solution. Samples were prepared to have identical ferritin concentrations. 

Spectra were recorded after samples were prepared and without any centrifugation steps or separation of unbound 

ions. This mimics the conditions observed in the kinetic trials. 

Because an iron-phosphate complex may form outside of ferritin, and because the 

absorbance peak overlays the absorbance of holoferritin, the spectrophotometric assay does not 

confirm that the iron is loading into ferritin. To determine if iron and phosphate were actually 

loaded into ferritin, we developed a method to separate ferritin from the iron-phosphate complex 

and performed elemental analysis on the purified ferritin to determine the iron and phosphate 

content of the samples.  

Separating the Iron–Phosphate Complex from Ferritin. To determine whether the iron-

phosphate complex forms outside of ferritin during iron loading, the following procedure was 

developed. Ferritin samples and controls were prepared as described for the spectrophotometric 

assay (Figure 5–1) and were centrifuged to remove insoluble material. The supernatant was 

loaded onto a GE Healthcare PD-10 desalting column. The iron control without ferritin or 

phosphate present precipitated as an orange solid of Fe(OH)3 during the centrifugation step and 

the supernatant was colorless. When the supernatant of this sample was passed over a GE 

Healthcare PD-10 desalting column, no elution peak was observed, consistent with all of the iron 

precipitating prior to chromatography (Figure 5–3). The ferritin sample prepared in the absence 

of phosphate had no precipitate after the centrifugation step and eluted in the void volume of the 

GE Healthcare PD-10 desalting column. Both the 1 mM and 5 mM phosphate controls with iron 

but no ferritin (representing the iron-phosphate complex) had very small greenish-white pellets. 

When the supernatant of these samples was passed over the GE Healthcare PD-10 desalting 

column, elution peaks were observed near the void volume indicating the presence of large 
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molecular weight species (Figure 5–3). Ferritin, with a molecular mass of ~450,000 Da, should 

clearly separate from Fe2+, Fe3+, or phosphate if they exist as ions or as small complexes. The 

results from the PD-10 column suggest that a large molecular mass iron-phosphate complex is 

formed. This also demonstrates that using a column to separate ferritin from the iron-phosphate 

complex is not achievable, because they co-elute.   

 

Figure 5-3. Gel filtration of ferritin or Fe-phosphate complexes on a GE Healthcare PD-10, G-25 column. -Fe(II) 

added to apoferritin, -Fe(II) added to 1 mM phosphate, -Fe(II) added to 5 mM phosphate, -Fe(II) added to 

0.05 M MOPS buffer, pH 7.5 as a negative control. The samples were centrifuged after iron was added to remove 

insoluble iron precipitates. After centrifugation, the supernatant was loaded onto a GE Healthcare PD-10 column 

and the eluting species detected as they eluted at 310 nm. 

Centrifugal ultrafiltration devices were also used to confirm that the iron-phosphate 

controls formed large molecular weight species. Control samples were prepared by adding Fe2+ 

to solutions containing 1 mM or 5 mM phosphate. These samples were incubated for the 

appropriate amount of time to allow iron oxidation and complex formation. The solutions were 

loaded onto Amicon Ultra centrifugal filter devices with a molecular weight cut-off of 100 kDa. 
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After centrifugation, the retentate and the flow-through were analyzed for iron by the addition of 

2,2′-bipyridyl, which specifically binds to Fe2+. Neither the flow-thru nor retentate changed color 

upon 2,2′-bipyridyl addition, indicating that the Fe2+ ions had been oxidized to Fe3+. When 

sodium dithionite was added to both chambers, the flow-through remained colorless but the 

retentate turned red, indicating that the filter retained the iron-phosphate complex. These data are 

consistent with the results from the GE healthcare PD-10 column (Figure 5–3) and indicate that 

the iron-phosphate complex is a large, soluble species. The results also show that iron is in the 

iron(III) oxidation state.   

The iron-phosphate complex was separated from ferritin using a Bio-Rad P-10 Gel. A 2.5 

cm x 15 cm column of Bio-Rad P-10 was prepared and equilibrated with 0.05 M MOPS buffer, 

pH 7.5 with 0.05 M NaCl. Ferritin passed through the column, whereas the iron-phosphate 

complex bound tightly to the column. Any remaining free phosphate could be removed from the 

ferritin samples by passing the sample over a GE Healthcare PD-10 column or by repeated 

concentration and dilution using an Amicon Ultra centrifugal filter system as described in 

Materials and Methods. The bound iron-phosphate complex could be decomposed and released 

from the Bio-Rad P-10 resin by passing an anaerobic solution of 1 mM sodium dithionite and 0.5 

mM 2,2′-bipyridyl over the column, which chemically reduced and chelated the iron. Subsequent 

experiments showed that the addition of 0.5 mL of 70% Bio-Rad P-10 slurry in water to 2.0 mL 

samples specifically and quantitatively bound the iron-phosphate complex. This procedure 

provided a convenient method to rapidly remove iron-phosphate complexes from solution and 

permitted elemental analysis to be performed on ferritin samples. Samples prepared by removing 

the iron-phosphate complex using the Bio-Rad P-10 column or by using the batch Bio-Rad P-10 
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precipitation method gave the same results by elemental analysis, confirming the effectiveness of 

the latter method.   

Preliminary characterization of this complex shows a polynuclear complex with a ratio of 

about two irons to three phosphates. Gel filtration and Amicon filtration experiments show the 

complex to be large. Electron microscopy or atomic force microscopy of the sample shows 

particles ranging from 20–200 nm (Figure 5–4). Because the phosphate protonation at pH 7.5 is a 

mixture of HPO4
2− and H2PO4

−, changes in pH will be important in how much of this complex 

forms. A careful characterization of the stoichiometry, pH of formation, and size of this complex 

as well as reactivity toward catalyzing the formation of reactive oxygen species is underway in 

our laboratory. 

 

 Figure 5-4. Electron micrographs of negative stained (uranyl acetate) ferritin (top left), compared to non-stained 

iron-phosphate complex (top right). Comparative atomic force micrographs are shown of ferritin (bottom left) and of 
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the iron-phosphate complex (bottom right). The iron-phosphate complex was formed as described and the 

supernatant was placed on an EM or AFM grid. The particles are around 20–200 nm in diameter.   

Iron Loading into Ferritin. Once conditions were established to separate the iron-

phosphate complex from ferritin, elemental analysis was performed. A combined analysis of the 

initial rates of the reactions (Figure 5–1 and Table 5–1) and the actual iron loading of ferritin 

(Table 5–2) provides valuable insight into the iron loading process in the presence of phosphate. 

Table 5-2. Elemental analysis of ferritin samples loaded in the absence or presence of phosphate. 

Theoretical Loading Iron/Ferritin Phosphate/Ferritin Iron/Phosphate 
100 Iron/Ferritin    

No phosphate 119 ±7 5.3 ± 0.4 24 ± 2 

1 mM phosphate 67 ± 6 35.1 ± 1.2 2.0 ± 0.2 

2.5 mM phosphate 54 ± 2 51.1 ± 0.6 1.1 ± 0.04 

5 mM phosphate 33 ± 3 25.1 ± 1.4 1.4 ± 0.14 

10 mM phosphate 25 ± 3 3.85 ± 0.5 6.6 ± 1.7 

1,000 Iron/Ferritin    

No phosphate 1,069 ± 26 5.1 ± 0.4 210 ± 17 

1 mM phosphate 752 ± 38 582 ± 24 1.3 ± 0.08 

2.5 mM phosphate 692 ± 13 318 ± 19 2.1 ± 0.13 

5 mM phosphate 232 ± 36 356 ± 67 0.7 ± 0.17 

10 mM phosphate 84 ± 11 83 ± 20 1.01 ± 0.28 
  

The initial rate of the reaction of Fe2+ with ferritin in the presence of physiological 

concentrations of phosphate (1 mM) is more than 4 times faster than ferritin iron loading without 

phosphate and is ~8 times faster than the control of 1 mM phosphate without ferritin (Figure 5–

5). These data show that with normal serum phosphate concentrations, ferritin appears to load 

faster than without phosphate. Table 5–2 shows the actual deposition of the iron in ferritin and 
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shows that 67% and 75% of the iron was incorporated when 100 and 1,000 iron atoms were 

added to ferritin with 1 mM phosphate, respectively. The higher percentage of iron loading in the 

larger core is consistent with data showing that phosphate on the mineral core surface assists iron 

binding and oxidation.30 

 
Figure 5-5. Relative rates of either iron oxidation (red) or oxygen consumption (blue). The oxygen consumption 

was determined as a secondary means to support the iron oxidation data, and shows a similar trend. Samples are the 

same as those shown in Table 5–1. 

Figure 5–5 also shows that the reaction of ferritin in 10 mM phosphate displays the 

fastest initial rate and is ~2.4-times faster than the 1 mM phosphate reaction with ferritin present, 

and is ~2 times faster than the 10 mM phosphate control without ferritin. The elevated phosphate 

concentration improves the collision frequency of phosphate with iron in solution and competes 

with the ferritin for iron binding. This is confirmed in Table 5–2 where iron loading into ferritin 
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is significantly inhibited by the presence of 10 mM phosphate. This could be anticipated by 

comparing the reaction profile curves for 10 mM phosphate versus 10 mM phosphate and ferritin 

in Figure 5–1. The curves almost overlap, indicating that the iron-phosphate complex formation 

is very favorable under these conditions.   

Previously, the addition of phosphate was shown to alter the absorbance properties of the 

iron core of ferritin.24, 25 Figure 5–1 shows a decrease in final absorbance as phosphate 

concentration increases. This complicates the interpretation of the kinetic data because reactions 

with two different extinction coefficients are being compared. The combination of a changing 

extinction coefficient and a competing side-reaction (Figures 5–2 and 5–3) complicates the 

interpretation of the kinetic data. For this reason, Table 5–1 reports spectrophotometric data as 

change in absorbance versus time instead of change in molar concentration of product. 

Furthermore, the spectrophotometric assay may be measuring multiple steps in the iron loading 

process: the binding of iron to ferritin, the oxidation of iron at the ferroxidase center, and 

migration of the iron to the nucleation sites in the core. In an attempt to analyze the kinetics of 

iron loading by a more direct assay that would avoid these complications, we used oximetry to 

monitor the consumption of the reactant oxygen in the reaction.  

Oximetry. Samples were prepared exactly as in Figure 5–1 and analyzed in a Hansatech 

Oxygraph oxygen electrode. Figure 5–6 shows the oximetry results. Controls prepared in the 

absence of ferritin are shown by open symbols and samples with ferritin are closed symbols. The 

control sample without ferritin or phosphate (open squares) shows that oxygen consumption (and 

therefore, iron oxidation) is slow. As the phosphate concentration is increased to 1 mM and 10 

mM, the rate and extent of oxygen consumption increases. The initial rates from these 

experiments are summarized in Table 5–1. In the absence of ferritin, 1 mM and 10 mM 
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phosphate stimulate the rate of iron oxidation ~7-fold and ~30-fold, respectively compared to the 

reaction without phosphate (Figure 5–5). This is comparable to the ~4- and ~30-fold change in 

rate observed in the spectrophotometric assay for these controls. These results also demonstrate 

that phosphate significantly stimulates the rate of oxygen consumption and thus, iron oxidation, 

even in the absence of ferritin. 

 

Figure 5-6. Oximetry assay. All reactions were performed in 0.05 M MOPS buffer, pH 7.5 and contain either no 

phosphate or the indicated phosphate concentration. Fe2+ ions (anaerobic 0.01 M FeSO4) were added with a 

Hamilton syringe to start the reaction. Open symbols represent controls without ferritin and closed symbols 

represent reactions with ferritin. Samples are -buffer only, -buffer + ferritin, -1mM phosphate, -1 mM 

phosphate + ferritin, -10 mM phosphate, -10 mM phosphate + ferritin. 

When the oximetry is performed with both ferritin and phosphate, the rate of oxygen 

consumption is faster than the comparable controls without ferritin (Figures 5–5 and 5–6 and 

Table 5–1). When ferritin and phosphate are present, the initial rate increases ~3- and ~6-fold for 

1 mM and 10 mM phosphate, respectively versus the sample with ferritin and no phosphate. The 
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spectrophotometric assay showed ~4- and ~10-fold increase under the same conditions. 

Therefore, the general trends from these data show that both phosphate and ferritin stimulate the 

rate of iron oxidation. It appears that these data are consistent with the spectrophotometric data 

suggesting that the oxidation of the Fe2+ is the rate-limiting step for both iron loading into ferritin 

and the formation of the iron(III)-phosphate complex reactions. Because this is the case, both 

assays give the same results and the assays cannot distinguish a difference in kinetics between 

the ferritin iron loading and the formation of the iron-phosphate complex.  

The iron(III)-phosphate complex is not a substrate for loading iron into ferritin. All 

attempts to use the pre-formed iron(III)-phosphate complex as a substrate for iron loading into 

apoferritin, including various reaction times and the presence of reducing agents,31 were 

unsuccessful. Even with a large excess of iron, no more than a few iron atoms (~10/ferritin) 

could be loaded into ferritin. We conclude that under the conditions used, the iron(III)-phosphate 

complex is not a substrate for loading iron into ferritin. 

Iron-Phosphate Mineralization in Ferritin. As discussed above, elemental analysis was 

performed to determine the extent of iron and phosphate loading into the ferritin interior (Table 

5–2). Samples were prepared at two levels of iron loading: 100 iron/ferritin and 1,000 

iron/ferritin. The phosphate concentrations present during iron loading were 1, 2.5, 5, and 10 

mM. Table 5–2 shows that when iron was added in the absence of phosphate, essentially all of 

the iron was incorporated into ferritin at both low (100 iron/ferritin) and high (1,000 iron/ferritin) 

quantities. When the physiological concentration of serum phosphate (1 mM) was used, the 

efficiency of iron loading into ferritin decreased and only 67–75% of the iron was incorporated 

into ferritin. At 2.5 mM phosphate, approximately 50% of the iron deposited in the 100 

Fe/ferritin sample and ~70% for the 1,000 iron/ferritin sample. When 5 mM phosphate was 
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present, iron loading was very poor, with approximately 20–30% of the iron loaded into ferritin, 

leaving 70–80% of the iron unbound by ferritin. Finally, 10 mM phosphate showed ~90% 

inhibition of iron loading into ferritin. At the lower phosphate concentrations, it appears that as 

the core gets larger, the efficiency of ferritin to bind and sequester iron improves (Figure 5–7). 

This effect is probably due to the autocatalytic iron binding and oxidation properties of the iron 

mineral core.32 As the phosphate concentration increases, the larger amount of iron added to 

ferritin is less efficiently bound by ferritin. This suggests that at higher phosphate concentrations, 

the formation of the iron(III)-phosphate complex dominates the binding of iron. Thus, the early 

steps in core formation are critical for efficient iron loading into ferritin in the presence of 

phosphate. Consistent with this hypothesis is that H-chain ferritin containing the ferroxidase 

center may provide an important advantage in iron loading when phosphate is present. 

 
Figure 5-7. Comparative loading of iron into ferritin. Theoretical loadings of 100 Fe/ferritin (red) and 1,000 

Fe/ferritin (blue), as described in Table 5–2. The general trend is that with increasing concentrations of phosphate 

there is a decreased level of iron loading into ferritin. 
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rHuHF and rHuLF. In order to better understand the effects of H and L chain ferritins, 

we used rHuHF and rHuLF, compared to iron loading in the presence of phosphate with horse 

spleen ferritin (90% L chain). Two subunits have evolved to create functional ferritin, the human 

heavy (H) and light (L) chain ferritins (see Chapter 1 for a discussion on the roles of the different 

ferritin isoforms).  

Figure 5–8 shows loadings of iron into H and L chain ferritins in the presence and 

absence of phosphate. With rHuHF, the absence or presence of phosphate did not seem to affect 

the rate of iron oxidation and loading into ferritin. This suggests that the ferroxidase center of H 

chain ferritin is capable of oxidizing and sequestering iron faster than the iron(II)-phosphate 

complex can form and oxidize the iron. However, with rHuLF, the rate of iron oxidation 

increases significantly as the concentration of phosphate increases. This is consistent with the 

lack of a ferroxidase center in L chain ferritin, suggesting that phosphate out-competes L ferritin 

for Fe2+ to form the iron(II)-phosphate complex and oxidize the Fe2+. As a control, the same 

studies were repeated in the absence of ferritin (data not shown). As the concentration of 

phosphate increases, the oxidation of iron increases, similar to the increases seen with the L 

chain ferritin. In the absence of both ferritin and phosphate, ferrous iron predictably oxidizes to 

ferric iron and precipitates out of solution. However, when phosphate is present, the oxidized 

iron does not precipitate out, again confirming that a soluble iron-phosphate complex forms. The 

other interesting observation is that we observe an increase at 310 nm, consistent with the 

oxidation of iron, even in the absence of ferritin. Thus, the formation of the iron-phosphate 

complex cannot easily be discerned from the oxidation and deposition of iron into ferritin. 
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Figure 5-8. Kinetics of iron loading into H (red) or L (blue) ferritin with increasing concentrations of phosphate (0, 

1, 2.5, 5, and 10, progressing from lighter to darker colors). 

To determine whether the iron oxidized and loaded into ferritin or instead complexed 

with phosphate, we performed an elemental analysis on the samples, following purification, as 

previously described. The results of this analysis are summarized in Table 5–3. The data show 

that rHuHF does a better job of sequestering iron in the presence of phosphate than does rHuLF. 

However, rHuHF is unable to completely sequester iron in the presence of phosphate, and is 

capable of sequestering only ~54% in the presence of high phosphate concentrations. 

Nevertheless, this is significantly higher than loading by both rHuLF (only about 11%) and horse 

spleen ferritin (only about 21–27%, depending on core size) with similar phosphate 

concentrations. Unfortunately, it was difficult to observe this trend for varied core sizes because 

rHuHF is only capable of forming small iron cores, presumably because it lacks nucleation sites. 

Thus, only core sizes of around 500 iron atoms/ferritin were investigated in this study. 
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Table 5-3. Elemental analysis of rHuHF and rHuLF samples loaded in the absence or presence of phosphate. 

Sample Iron/Ferritin Phosphate/Ferritin Iron/Phosphate Relative % 
Iron Loaded 

rHuHF no Pi 391.63* 10.86 36.06 100 

rHuHF 1mM Pi 239.14 27.69 8.64 61.06 

rHuHF 2.5mM Pi 231.43 31.23 7.41 59.09 

rHuHF 5mM Pi 212.88 40.18 5.30 54.36 

rHuLF no Pi 471.15* 9.59 49.13 100 

rHuLF 1mM Pi 97.95 16.77 5.84 20.79 

rHuLF 2.5mM Pi 71.21 13.44 5.30 15.11 

rHuLF 5mM Pi 53.12 5.46 9.73 11.27 
*Theoretical loading of 500 iron atoms/ferritin were performed, and these numbers reflect experimental 

loading values as obtained from elemental analysis. 

Discussion 

Chronic kidney disease is characterized by severe oxidative damage, increased levels of 

NTBI, decreased TSAT levels, and elevated serum ferritin and serum phosphate levels. The work 

described in this chapter combined with the work in Chapter 4 may help to explain the 

interactions between these disrupted markers. Our proposed model is that elevated phosphate 

levels compete with transferrin for iron binding. The result is a build-up of NTBI in the form of 

iron(III)-phosphate. Iron in this form is capable of forming ROS that lead to oxidative damage. 

Our evidence shows that iron in the form of iron(III)-phosphate cannot be bound by transferrin, 

and we suggest that the body recognizes the elevated iron levels, and signals for ferritin 

expression. Ferritin is released into the serum in an attempt to bind iron and mitigate the effects 

of NTBI (Scheme 5–1). 
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Healthy Chronic Kidney Disease

ROS

 

Scheme 5-1. Model of serum in healthy (left) and CKD patients (right). Transferrin is represented by the green half-

moons, with TSAT levels decreasing in the diseased state. Iron is represented by the red spheres, and NTBI is 

represented by the blue sphere, with NTBI showing up in the diseased state, leading to oxidative damage through the 

generation of ROS. Phosphate is represented in ball and stick form, with phosphate levels rising in CKD. Serum 

ferritin levels also rise in the diseased state. 

Our work highlights the fact that ferritin is only able to compete with phosphate for iron 

oxidation and sequestration if the ferritin is the H chain isoform. Ferritin from horse spleen, 

which is only 10% H chain (and has been estimated to be even lower), shows a very poor ability 

to sequester iron in the presence of phosphate. However, rHuHF homopolymer, consisting 

entirely of H chain ferritin, is able to better sequester iron, although not completely. Furthermore, 

studies performed in our lab show that ferritin is unable to sequester iron that is already 

complexed by phosphate in an iron(III)-phosphate complex (data not shown). Thus, the secretion 

of H chain ferritin during inflammation in CKD may be a response to bind the iron present in 
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serum. In this sense, ferritin expression can help slow the effects of elevated phosphate levels, 

but is unable to reverse the effects or to stop the formation of NTBI completely. Consistent with 

these ideas, H chain ferritin is expressed and secreted from cells into the serum during times of 

inflammation, such as would occur with CKD. The expression and secretion of H-ferritin during 

inflammation may be a response to provide the appropriate catalytic ferritin subunit to bind and 

oxidize Fe(II) in the presence of elevated phosphate.  

The results of this in vitro study can now be tested in vivo to determine if elevated 

phosphate concentrations block normal iron transport in the serum resulting in NTBI. The 

iron(III)-phosphate complex could be added to an animal to determine if serum ferritin or 

transferrin is capable of removing such a complex from the serum. Furthermore, the animals 

could be injected with elevated phosphate levels, similar to those seen in CKD patients to 

elucidate whether H chain ferritin is secreted. 

Elemental analysis on the purified ferritin samples revealed that total iron loading into 

ferritin was lower when the samples were prepared in the presence of phosphate and that 

phosphate concentrations equal to those observed in CKD patients (>2.5 mM phosphate) blocked 

30–50% of the iron from entering ferritin (Table 5–2).  If this occurs in vivo, a change from 

healthy phosphate levels (1.0 mM phosphate) to levels measured in CKD patients could cause a 

doubling in the amount of free iron in serum. These results confirmed our hypothesis that at least 

in vitro, elevated phosphate levels in serum can disrupt iron loading into ferritin.   

Native ferritin is commonly reported to contain approximately 10 iron atoms per 

phosphate. Several groups have shown that iron release is more favorable from ferritin prepared 

in the presence of phosphate (1:1 Fe/phosphate) than from native ferritin.33, 34  If ferritin in CKD 

patients contains phosphate rich mineral cores, these cores may be less stable under 
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physiological conditions and iron may be released more easily from ferritin, resulting in NTBI 

observed in these patients. Future work will focus on obtaining ferritin from CKD patients to 

determine if ferritin does in fact contain cores with high concentrations of phosphate as predicted 

here. 

The ability of ferritin to sequester not only iron but also phosphate in large quantities in 

vivo is an intriguing occurrence. Ferritin is also capable of sequestering and storing other types 

of anions and oxoanions, and this capability of ferritin may have interesting in vitro possibilities. 

The ability of ferritin to bind a variety of anions in vitro was studied in our lab, and that work is 

discussed in detail in Chapter 6. 

 The discovery that a soluble iron (III)-phosphate complex forms as a competing side 

reaction during iron loading into ferritin has significant implications toward how iron loads into 

ferritin in vivo. For healthy individuals the impact of normal serum phosphate levels (1.0 mM) 

may not be significant because the majority of the iron enters ferritin under these conditions. 

Other serum components not present in our assay may compensate for any free iron and prevent 

the formation of the iron phosphate complex. At 2.5 mM phosphate, ~50% of the iron does not 

enter ferritin but forms the iron(III)-phosphate complex. The iron(III)-phosphate complex may 

contribute to the NTBI found in CKD patients. Perhaps a more significant discovery is the 

almost complete inhibition of iron loading into ferritin under intracellular phosphate 

concentrations (10 mM phosphate). These data infer that for ferritin to obtain iron under these 

conditions, a mechanism other than ferritin interacting with free Fe2+ ions in the cytosol is 

required. 

This work was accepted in part for publication in Biometals. 

This work was presented as a poster at the International BioIron Society 2011 in Vancouver, BC Canada.  
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CHAPTER 6: ANION DEPOSITION IN FERRITIN 
Abstract 

Anion sequestration during ferritin core reduction was monitored using ion selective 

electrodes, elemental analysis, and energy-dispersive X-ray spectroscopy. When the core of 

horse spleen ferritin is fully reduced using formamidine sulfinic acid, a variety of anions, 

including halides and oxoanions, cross the protein shell and enter the ferritin interior. Reduction 

of the iron core of the ferritin nanocage initiates the release of two OH− ions per iron and 

sequesters one halide ion per iron inside ferritin in a charge balancing reaction. In general, 

smaller anions, such as F−, accumulate in greater abundance than do the larger oxoanions, such 

as MoO4
2−, presumably because the protein channels restrict the transfer of the larger anionic 

species. Fe(II) remains stably sequestered inside ferritin as shown by electron micrograph 

imaging. Upon oxidation of the iron core, the halides are expelled from ferritin, returning the 

iron to the original Fe(O)OH mineral. The reaction shows that halides and hydroxide ions exhibit 

anti-port movement across the ferritin protein shell in response to reduction or oxidation. This 

finding is significant for three specific reasons: 1) the ability of ferritin to take up and store 

negatively charged species represents a new mechanistic function of ferritin, 2) because 

negatively charged species can be accumulated in ferritin in a controlled nano-environment, 

novel material synthesis can now be undertaken in a specific and controlled manner, and 3) we 

have the ability to develop stimuli-triggered release or uptake nano-systems to release reactants 

from a nanocage for the initiation of chemical reactions. In summary, redox events trigger the 

release of anions from ferritin, providing a redox-initiated anion release switch that is capable of 

changing the pH or ionic strength of solutions. 
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Introduction 

Protein nanocages are potential delivery vehicles for the stimuli triggered release of 

molecules trapped within the interior of the nanocage.1 The nanocage shell functions to separate 

the entrapped molecules in a non-reactive form until triggered release initiates a reaction with 

molecules in the external environment. However, this concept is dependent on a method to 

trigger the release of the sequestered reactant from the nanocage. Previous work examining the 

triggered disassembly of structures to release encapsulated molecules has used light, enzymes, or 

chemical reduction to trigger disassembly.2, 3 These systems most often use lipid vesicles4 or 

polymers5, 6, but not protein cages. This work describes the use of the ferritin nanocage for 

stimuli-triggered release of OH− or halide ions. 

Ferritin is a nanocage that functions as an iron storage protein in essentially all 

organisms.7 Ferritin is one of the more extensively studied bio-nanocages because of its ability to 

sequester iron and other metals as ~8 nm nanoparticles.8 It is composed of 24 subunits that form 

a hollow sphere capable of storing up to 4,500 iron atoms as Fe(O)OH (as described in previous 

chapters).9 Ferritin crystallizes in 2-dimensional arrays allowing the sequestered materials to be 

deposited in ordered arrays on surfaces.10, 11 Ferritin is pH stable, thermo stable1 and is easily 

functionalized12, 13 for attachment to surfaces such as electrodes for electrochemical material 

applications.14-16 All of these properties make ferritin a useful bio-molecule for materials 

applications.    

The majority of studies using ferritin in material applications have focused on metal 

sequestration and release from ferritin but few studies have examined anion incorporation into 

ferritin. The counter anion for physiological mineral formation with iron is OH−, but the core 

also contains ~10% phosphate in mammalian ferritin and significantly more phosphate if the 
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ferritin comes from bacterial sources.17 Other oxoanions can substitute for OH− or phosphate 

during iron loading in ferritin.18 

Upon reduction of the FeOOH mineral core, the iron mineral remains sequestered inside 

ferritin unless an Fe(II) chelator is present to remove the iron.19 The addition of electrons to the 

ferritin interior produces a charge imbalance that is compensated for by expelling two OH− ions 

per iron from the ferritin interior (Eq. 1).20 However, this equation fails to provide charge 

balance inside ferritin. Subsequent studies established that chloride present in the reaction buffer 

entered the ferritin interior to provide charge balance (Eq. 2).20 In the absence of halides in the 

buffer, only one hydroxide ion is expelled from ferritin, forming Fe(OH)2 as the mineral phase 

inside ferritin. The large number of iron atoms present in native ferritin (typically 1,500–

2,500/ferritin) allows a large number of halides or hydroxides to cross the protein shell in 

response to redox changes in the iron mineral core. Scheme 6–1 represents the reactions 

pictorially.  

Fe(O)OH + H2O + e− → Fe(OH)+ + 2 OH−                (Eq. 1) 

 Notice on the right that the iron-hydroxide species has a net charge of +1. However, this 

species remains inside the ferritin shell, and with approximately 2,000 iron atoms, this represents 

a net positive charge of +2,000; an impossibly high negative charge. To balance that charge, 

negatively charged species, often Cl– (represented here as X–) is transfered into the core: 

Fe(O)OH + X− + H2O + e− → Fe(X)OH + 2 OH−        (Eq. 2) 
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Pathway #1 Pathway #2

 

Scheme 6-1. A graphical depiction of the mechanism of anion entry, demonstrating chloride accumulation within 

ferritin upon reduction with OH− ions being expelled.  These reactions are reversed upon oxidation of the iron core. 

Materials and Methods 

Horse spleen ferritin (HoSF) was purchased from Sigma. The solution was dialyzed into 

buffer (0.025 M MOPS, pH 7.4) to eliminate the 0.15 M NaCl present in the stock buffer. The 

dialysis allowed the preparation of a defined amount and type of halide present in solution. The 

iron content of ferritin was 1,500 Fe/ferritin, as determined by reducing the iron using sodium 

hydrosulfite followed by chelation with 2,2′ -bipyridine (bipy). The Fe-bipy complex has a peak 

maximum at 520 nm, with an extinction coefficient of 8,400 M−1 cm−1. Protein concentrations 

were determined using the Lowry protein method.21. Anion salts, including NaF, NaCl, NaBr, 

NaI, NaClO4, Na2MoO4, NaH2PO4, NaNO3, NaVO3, Na2WO4, were obtained from Fisher 
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Scientific or Sigma-Aldrich, and stock solutions of 1.00 M were prepared. Formamidine sulfinic 

acid (FSA) was obtained from Sigma, and fresh stock solutions of 0.1 M were prepared 

anaerobically immediately prior to use. Ferritin was combined with an equimolar amount of 

anion (~1 anion per Fe atom) and then de-oxygenated and placed in an oxygen free glove box. 

FSA was added to the ferritin samples in an excess amount (2 FSA:1 Fe) to ensure complete 

reduction of the entire iron core. The reaction was allowed to stir over night. For samples treated 

with FSA, the Lowry method could not be used to determine protein concentrations due to FSA 

interference. In these instances, the Bradford method22 was used instead, with no interference. 

Ion Selective Electrodes. Ion selective electrodes (ISEs) specific for several anions were 

purchased from Oakton Instruments, Vernon Hills, IL. A standard curve was generated directly 

prior to use (Figure 6–1), and the concentration of anion prior to reduction was determined. The 

concentration of anion following reduction by FSA was then determined. In this case, the 

concentration of anion as measured using the ISE corresponds to the concentration of anion that 

is free in solution, or anion that is not sequestered within the interior of ferritin. Thus, the 

concentration inside ferritin was determined by subtracting the final concentration from the 

initial concentration. The samples were then exposed to oxygen, and the concentration of anion 

was again determined. The re-oxidized samples had anion concentrations identical to the starting 

concentrations. Controls were designed to determine whether FSA interfered with the ISEs 

readings. The reason that we use FSA as the reductant is because unlike a handful of other 

reductants that we tested, FSA does not interfere with the ISE.   
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Figure 6-1. Representative standard curve for the ISE work. This particular curve is for the determination of Cl– 

concentration. The concentration is plotted vs. the electrode readout (voltage, V), and is shown in the inset. To 

obtain the standard curve, the −log [ ] is plotted vs. voltage. Also shown is the R2 value and the line equation. 

Sample concentrations are determined by measuring the voltage (y-value) and calculating for the –log [ ] (x-value). 

The concentration is determined by taking 10–log [ ].  

Inductively Couple Plasma. ISEs have not been developed for each type of anion that we 

desired to test. In these cases, we analyzed the samples by inductively coupled plasma 

spectroscopy (ICP) on a PerkinElmer Optima 2000 DV. On the other hand, many of the anions 

that were tested with the ISEs are unable to be effectively measured using ICP. Thus, both types 

of analyses were needed in order to make measurements for a wide variety of anions. For ICP, it 

was necessary to run the reduced samples over a column to separate the anions sequestered 
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within ferritin from any excess anions free in solution. To do this, we used a GE-Healthcare PD-

10 Sephadex G-25 column that we packed and placed in an oxygen free glove box. De-aerated 

buffer was passed over the column prior to the addition of the anaerobic reduced sample to 

equilibrate the column. The chromatography and fractionation was all performed in the oxygen 

free environment of the glove box. One mL fractions were collected, and each fraction was 

tested for protein content using the Bradford method, and also for elemental content using ICP. 

All samples were compared against a standard curve. Appropriate controls were treated 

identically.  

UV-Vis Spectrophotometry. A spectrophotometer was placed in an oxygen free glove 

box. Samples were prepared as above, and the spectra prior to reduction and following reduction 

were determined. Controls without ferritin were also collected to show that the FSA peak is not 

responsible for the significant peaks shown.  

Electron Microscopy (EM). EM samples were prepared in the glove box to eliminate 

oxidization in the solution prior to placement on a grid. Grids were prepared by placing 4 μL of 

sample on a charged lacey carbon film, 400 mesh copper grids (Ted Pella, Inc.). Following 30 to 

60 seconds on the grid, the solution was wicked off the grid, and the grid was rinsed in water to 

remove any salts or buffers. The grids were not stained in order to avoid contamination from the 

uranyl acetate. The grid was allowed to dry prior to removal from the glove box. Control samples 

were also prepared that contained no ferritin in order to determine the degree of unspecific 

binding by salts and buffers. The grids were then analyzed using a Tecnai F30 TEM, 140 kV. 

Energy dispersive x-ray spectroscopy (EDX) was used on the various samples. 
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Results 

To determine the extent that chloride could enter the ferritin interior and to determine if 

other halides or anions could substitute for chloride, ISEs for the respective anions were used to 

monitor anion accumulation inside the ferritin nanocage in response to reduction of the ferritin 

iron core. Ferritin containing 1,500 Fe/ferritin (5 mM total iron in the reaction solution) was 

incubated with a 5 mM concentration of the indicated anion. When the anions were transported 

across the ferritin protein shell and sequestered inside ferritin, they could not be detected by the 

ISE. The results of these reactions are summarized in Table 6–1. The general trend shows that 

smaller anions traverse the ferritin shell more efficiently than the larger anions. Control reactions 

using apoferritin showed that anions were unable to accumulate inside ferritin in the absence of 

the iron mineral. In addition, ferrihydrite nanoparticles that are 8 nm in diameter, but lack a 

protein shell, were subjected to the same reductive conditions in the presence of anions. Using 

these ferrihydrite nanoparticle controls, we were unable to detect a change in the anion 

concentration. Thus, neither the protein alone nor the ferrihydrite mineral alone can account for 

the change in anion concentration, supporting the model that the iron mineral inside of ferritin 

must be reduced, at which time the protein shell is able to sequester anionic species. 

The pathway for anion influx into ferritin is unknown, but the most likely route is through 

channels that penetrate the ferritin nanocage at the 3-fold or 4-fold symmetry axes. However, the 

properties of these channels are not favorable for anion migration into the interior. The 3-fold 

channels are negatively charged and hydrophilic and the 4-fold channels are hydrophobic. In 

addition, both channels have a 4 Å diameter (2 Å radius), which is the approximate size of, if not 

smaller than, most of the anions, even without taking into account the size of the anions when 

hydrated (Table 6–1). Based on the properties of these channels it is remarkable that anions, 
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especially the larger anions, are capable of entering the ferritin interior. In order for anions to 

efficiently enter ferritin, it would require a breathing mode of ferritin that would allow an 

enlargement of the channels. The decreased loading of ferritin with larger halides is consistent 

with size and charge repulsion slowing the entry of these halides.    

Table 6-1. ISE and ICP determinations of anion transfer into ferritin, listed according to size.  

Anion Ionic radius, 
Å 

% of anion that 
enters ferritin 

# of anions that 
enter ferritin 

Fe/anion inside 
ferritin 

F− 1.36 100 ± 12 1,585 ± 165 1.0 ± 0.1 

NO3
− 1.45 26.2 ± 10.0 393 ± 151 3.81 ± 0.35 

Cl− 1.81 94.2 ± 7.8 1,278 ± 114 1.17 ± 0.08 

Br− 1.95 72.9 ± 2.9 1,078 ± 84 1.39 ± 0.04 

PO4
3− 2.10 12.1 ± 4.4 181 ± 124 1.32 ± 0.23* 

I− 2.16 80.7 ± 2.3 1,210 ± 53 1.24 ± 0.04 

ClO4
− 2.20 57.6 ± 6.6 854 ± 303 1.76 ± 0.20 

VO4
3− 2.58 79.4 ± 5.5 1,190 ± 108 1.26 ± 0.16 

MoO4
2− 2.64 92.0 ±4.5 1,380 ± 158 1.09 ± 0.24 

WO4
2− 2.68 14.5 ± 2.3 217 ± 22 6.91 ± 0.28 

[ferritin]=1.5 mg/ml, [Fe]=5 mM, Fe/ferritin=1,500, initial [anion] in solution=5 mM, [FSA]=10 mM. 

*The phosphate sample chelated iron from ferritin. Thus, the Fe:anion ratio is an artifact; although it appears 

close to one, it is the result of very little iron remaining inside of ferritin. In other samples, the iron content 

remained very close to the original amount (~1,500 Fe/Ftn). The error is the standard deviation of three 

separate experiments. 

The reactions were all initiated with a 1:1 iron to anion ratio. In the case of the halides, 

following reduction of the iron core, essentially all of the halide ions present in solution entered 
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the ferritin interior. The 1:1 association of halides with iron is evidence that upon reduction, the 

iron core must change properties from a crystalline mineral to an amorphous, porous state so that 

the halides can intercalate in the mineral phase and interact with each individual iron atom. This 

reduced ferritin mineral has not yet been characterized but should provide a very interesting 

mineral phase to study. The percentage of oxoanion incorporation into the ferritin core is not as 

high as that for the halides. Nevertheless, it represents the greatest number of oxoanion 

incorporation into ferritin that we are aware of in the current literature. The significant input of 

oxoanion into ferritin provides strong support for the effectiveness of this method for creating 

novel anion-iron minerals within ferritin. For anions that were determined using ICP, a 

separation technique was required wherein we ran the samples anaerobically over a size-

exclusion column and collected the fractions. Each fraction was analyzed for protein, iron, and 

the element of interest (such as Mo, V, and etc.) using techniques described in Materials and 

Methods. Representative elution profiles of these separations are shown in Figure 6–2 for 

MoO4
2− and WO4

−. We observe a nearly 100% incorporation of MoO4
2− into the ferritin interior, 

as evidenced by the Mo peak shift from fraction 7 to fraction 3. On the other hand, WO4
− only 

incorporates about 15% into ferritin, as shown by the minimal peak shift, and the remaining 85% 

remains soluble outside of ferritin. 
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Figure 6-2. Elution profiles of samples run over a G-25 column. A) Molybdate elution profile. B) Tungstate elution 

profile. The black traces represent the protein elution profiles, whereas the colored traces are the oxoanions. The 

lighter lines are the samples prior to reduction, and the darker lines are the samples following FSA reduction. 
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In the previous chapter, we showed that phosphate can be incorporated into ferritin in a 

nearly 1:1 ratio of phosphate to iron, with iron cores up to about 1,000 iron atoms per ferritin. 

This represents a significant number of phosphate molecules that are able to be incorporated into 

ferritin. Interestingly, using this method, we are unable to incorporate any phosphate into ferritin. 

The reason we propose, is that at a 1:1 ratio of iron to phosphate in the system, upon reduction of 

the iron core, phosphate efficiently chelates and pulls all of the iron from ferritin. This finding is 

confirmed when the sample supernatant is purified in the absence of oxygen by running it over 

an oxygen free G-25 column and collecting fractions. The fractions are analyzed for protein, 

iron, and phosphate content. The protein elutes in the same fraction as normal, but both iron and 

phosphate are completely absent from the sample. Some iron and phosphate elute together in a 

later fraction. However, most of the iron and phosphate is found in the insoluble material that 

forms as the result of this reaction. Thus, the ability to form novel materials inside ferritin using 

this technique requires that the iron remain inside ferritin and directs the anion into ferritin 

without causing competing precipitation reactions. 

The molar concentration of the anion inside ferritin can be calculated using the moles of 

halide and dividing by the calculated internal volume of ferritin. Ferritin, with an internal 

diameter of ~8 nm, has an interior volume of 2.68 x 10−22 L. The halide concentration 

approaches 10 M for fluoride ion incorporation inside ferritin, which is a 2,000-fold increase 

over the original 5 mM fluoride concentration in solution. Because the movement of anion is 

against a concentration gradient, the driving force for the reaction must come from the charge 

imbalance that occurs when two OH− ions are expelled from the ferritin interior for each Fe(III) 

reduced in the iron core (Eq. 1 and Eq. 2). 
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Upon oxidation, the reverse reaction occurs and anions are expelled from ferritin. OH− 

ions either traverse the ferritin protein shell to return to the interior, or water present on the inside 

of ferritin is hydrolyzed to form the iron oxyhydroxide mineral core. The exact mechanism of 

OH− ion movement or proton movement across the protein shell has not yet been established, but 

the net yield is that two OH− ions traverse the shell in response to reduction or oxidation of the 

iron core.   

Several additional studies were used to confirm anion entry into ferritin. Native ferritin 

possesses a characteristic spectrophotometric signature. The peak at 280 nm represents the 

protein, and the broad shoulder tailing into the visible region (from 300–500 nm) represents the 

Fe(O)OH mineral sequestered inside ferritin. The oxidized ferritin solution appears reddish-

brown (Figure 6–3, left inset). Upon reduction, the reddish-brown color is replaced with a very 

faint yellow to colorless appearance (Figure 6–3, right inset), and the broad visible shoulder from 

300–500 nm decreases significantly (This is true in most cases. One exception is the formation of 

the iron-molybdate core, where the solution changes from reddish-brown to greenish-brown.). 

Reduction of ferritin in the presence of anion produces a similar spectrum to reduced ferritin but 

with slight variations, particularly around 320 nm, due to anion interactions with Fe(II). 

Reduction of ferritin in the presence of chloride shows the most significant spectral changes 

around 320 nm, compared to the other halides (Figure 6–3). The slight spectral variation around 

320 nm when different halides are present supports the view that upon reduction, the halides 

accumulate inside ferritin and interact with Fe(II). Upon oxidation, the solution returns to the 

original reddish-brown color, and the spectrum returns to the oxidized ferritin spectrum. ISE data 

confirm that upon oxidation, the anions are expelled from ferritin to form the native Fe(O)OH 

mineral.  
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Figure 6-3. Spectra of the oxidized native ferritin core (black) compared to ferritin cores reduced in the presence of 

halides. Fe(X)OH cores (cyan, OH−; yellow, F−; green, Cl−; orange, Br−; and blue, I−). Inset depicts the solution 

color prior to (left) and following (right) reduction with formamidine sulfinic acid (FSA). Following oxidation, the 

anions are expelled, the solution turns reddish-brown, and the spectra return to the spectrum represented by the 

black trace. 

To further verify that the anions were sequestered inside the ferritin protein shell, ferritin 

samples were reduced in the presence of anions in an anaerobic glove box, placed on electron 

microscope grids, and washed extensively followed by EM analysis. Figure 6–4 shows a 

representative EM image of ferritin before and after being reduced in the presence of anion. 

Figure 6–4 also shows that Fe(II) remains sequestered inside the 8 nm interior of ferritin upon 

reduction.  
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Figure 6-4. Scanning transmission electron micrographs of ferritin before reduction (left), and after reduction (right) 

of the mineral core reduced in the presence of anions (representative micrographs). The sample is not negatively 

stained, thus the density represents the iron core within ferritin and not the protein. 

In addition, the halide samples were studied using energy-dispersive X-ray spectroscopy 

(EDX) to determine the elemental composition inside ferritin (Figure 6–5). The samples were 

prepared as described above in an anaerobic glove box. Identical washing procedures were used 

for ferritin samples and control samples of apoferritin and no ferritin. The scanning area was half 

a micron squared. This area samples an average of 1,500 ferritin molecules. The spectra show the 

expected peaks corresponding to each individual halogen element, except for F, because the Kα 

peak of F (0.677 keV) is buried in the Lα peak of Fe (0.705 keV). In all other spectra, each 

respective halogen peak is identifiable. Controls with apoferritin reduced in the presence of 

halides did not show halogen peaks with EDX analysis, nor did controls coating grids with the 

holoferritin and the individual halides without reduction where the identical washing procedure 

was performed prior to EDX analysis. To confirm the presence of these halides within the 

protein shell, STEM was used to selectively scan a ~12 nanometer square region that contained a 

single ferritin molecule. The combined data support the claim that the respective halides 

accumulate inside the nanocage of ferritin. 
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Figure 6-5. EDX shows unique spectra for the various Fe(X)OH cores, where X is a halide. Black is the control 

with no ferritin placed on the grid. The remaining spectra are of Fe(F)OH, yellow;  Fe(Cl)OH, green; Fe(Br)OH, 

orange; and Fe(I)OH, blue. 

Discussion 

The role of ferritin in biological systems is to store iron, protecting the organism from 

iron-catalyzed oxidative damage. The structure of ferritin makes it very effective for the uptake 

of iron; eight 3-fold channels are negatively charged, and act as a funnel for cation sequestration. 

In this work, we show that ferritin is also capable of accumulating a significant number of 
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anions. Thus, our perspective on the ability of ferritin to take up ions has been expanded beyond 

only cations. This has significant applications in materials chemistry, where previously, we have 

been limited to the uptake of cations, but new anionic species can be sequestered and used for 

materials synthesis within ferritin. In addition, stimuli-triggered uptake and release can be 

controlled in this nano-environment in a controlled manner. This may have significant 

applications in the fields of nano-actuators and nano-devices. 

In Chapter 5, we showed that phosphate competes with ferritin for the uptake of iron. In 

this work, we also highlight that under conditions used in this work, phosphate coordinates iron, 

forming an insoluble Fe3(PO4)2 precipitate. Thus it is noteworthy to emphasize that the 

environmental conditions surrounding ferritin has a significant impact in the ability of ferritin to 

retain iron and other materials. This is important not only for general ferritin function, but also in 

diseased states and in materials applications as well. In fact, Chapters 7 and 8 will show that the 

presence of iron-coordinating molecules has a significant impact on our ability to control 

nanoparticle synthesis. 

The results presented in this chapter bring up an interesting biochemical question relating 

to the evolution of ferritin. If ferritin expels only one OH− ion/iron it would remain charge 

balanced. Why then, does ferritin expel two OH− ions/iron upon reduction and produce a state 

that requires anion import to maintain charge balance? Below, we outline a mechanism 

suggesting that the expulsion of two OH− ions/iron may have evolved as a protective mechanism 

to prevent protein denaturation from elevated pH.  

The reactions driving OH− ion efflux from ferritin may be better understood by 

evaluating the concentrations of species that form inside ferritin. Upon reduction of the iron, 

halides accumulate inside ferritin at concentrations approaching 10 M (based on the number of 
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iron atoms in the volume of ferritin, and comparing the ratio of iron to anion inside ferritin, 

Table 6–1). Even higher concentrations of OH− ions are liberated by the reduction of the ferritin 

iron core. The reduction of the FeOOH mineral of ferritin produces Fe(OH)+ and releases two 

OH− ions into the ferritin interior (Eq. 1). If these reactions happened instantaneously, the 

resulting OH− concentration inside ferritin would approach ~20 M. Ferritin is stable up to ~pH 

10 but the concentration of OH− ions inside ferritin under these conditions would be ~pH 15, 

which would denature the protein. To maintain protein structural integrity, ferritin must rapidly 

expel the OH− ions. If all of the OH− ions were released simultaneously, the concentration 

gradient driving this reaction would be powerful with an internal OH− ion concentration of ~20 

M and an external OH− ion concentration of 10−7 M at pH 7.0. To avoid OH− denaturation, 

ferritin must efficiently efflux OH− ions to maintain protein integrity. The elimination of only 

one OH− ion/iron would be insufficient to protect the protein from pH denaturation.  

In a simplistic stepwise view, after reduction of the iron core, ferritin expels all of the free 

OH− ions in an attempt to lower the OH− ion concentration to a safe level and in the process 

becomes charge imbalanced. Ferritin now requires anions to compensate for the positive charge 

build-up inside ferritin. The available anions for charge balance are halides (the 5 mM 

concentration was chosen to mimic the in vivo chloride concentration) and OH− ions, present at 

10−7 M at pH 7.0. Because the halides are present at a 50,000 times greater concentration, halides 

enter ferritin to balance the charge. In reality, such a stepwise reaction cannot occur, thus the 

efflux of OH− ions must be simultaneously matched by an influx of halide ions. Understanding 

these reactions and taking into account the properties of ferritin will allow ferritin to be used as a 

redox-switch nanocage actuator for the storage and redox-controlled release of OH− and halide 

ions.   



142 
 

Finally, these findings may have in vivo implications. In healthy humans, the average 

chloride concentration within a cell is ~5 mM. The inside of a cell is a reducing environment, 

and iron release from ferritin is proposed to occur by a reductive mechanism. Because iron 

chlorides are more soluble than iron hydroxides, the accumulation of chloride ions inside ferritin 

upon reduction of the iron may be a specific biological mechanism to facilitate the solubility and 

release of iron from ferritin. This is in contrast to the view that ferritin would need to be 

degraded in the lysosome in order to release iron.23 The association of iron with chloride inside 

ferritin is an attractive model for iron release from ferritin that allows iron to remain available for 

iron binding.24 

This work was accepted in part by the Journal of Inorganic Biochemistry. 

This work was presented as a poster at BioMetals 2010 in Tucson, AZ and as a talk and poster at nanoUtah 2010 in 

SLC, UT. 
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CHAPTER 7: FERRITIN AS A PHOTOCATALYST FOR 
GOLD NANOPARTICLE FORMATION 

Abstract   

The ferrihydrite mineral core of ferritin is a semi-conductor capable of catalyzing 

oxidation/reduction reactions. This chapter shows that light can photo-reduce AuCl4
− to form 

gold nanoparticles (AuNPs) with ferritin as a photocatalyst. An important goal of this work was 

to identify innocent reaction conditions that prevented formation of AuNPs unless the sample 

was illuminated in the presence of ferritin. Tris buffer satisfied this requirement and produced 

AuNPs with spherical morphology with diameters of 5.7 ± 1.6 nm and a surface plasmon 

resonance (SPR) peak at 530 nm. Size-exclusion chromatography of the AuNP-ferritin reaction 

mixture produced two peaks containing both ferritin and AuNPs. TEM analysis of the peak close 

to where native ferritin normally elutes showed that AuNPs form inside ferritin. The other peak 

eluted at a volume indicating a particle size much larger than ferritin. TEM analysis revealed 

AuNPs adjacent to ferritin molecules, suggesting that a dimeric ferritin-AuNP species forms. We 

propose that the ferritin protein shell acts as a nucleation site for AuNP formation leading to the 

AuNP-ferritin dimeric species. Ferrihydrite nanoparticles (~10 nm diameter) were unable to 

produce soluble AuNPs under identical conditions unless apoferritin was present, indicating that 

the ferritin protein shell was essential for stabilizing AuNPs in aqueous solution. 

Introduction 

 Nanoparticle synthesis can be guided by using templates to control the size and 

morphology of the resulting nanoparticles.1-4 The iron storage protein ferritin provides a template 

for size-constrained nanoparticle synthesis because it is composed of 24 polypeptide subunits 

that assemble into a hollow sphere with a 12-nm exterior diameter and an 8-nm interior diameter 
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cavity.5 Ferritin can accommodate up to 4,500 iron atoms as crystalline ferrihydrite. The iron can 

be removed by reduction and chelation, resulting in an empty apoferritin protein shell.6 Other 

metallic materials have been prepared inside ferritin using a variety of synthetic methods. 

Synthetic ferritin minerals include: metal oxides of chromium, manganese, iron, cobalt, nickel, 

titanium, europium, and uranium;7-13 sulfides (and in some instances selenides) of iron, 

cadmium, gold, lead, and zinc.14-19 In addition, metal ions have been reduced to their elemental 

form to produce metallic palladium, copper, cobalt, nickel, gold, and silver nanoparticles 

(AgNPs).18, 20-25   

 In addition to being a nano-reactor to sequester metallic materials, ferritin has been used 

as a photocatalyst for performing redox reactions in solution. Exposure to light generates an 

electron-hole pair in the ferrihydrite mineral core that is sufficiently long-lived to react with 

other components in solution, including sacrificial electron donors and electron acceptors.26 

Photochemical studies include the photo-reduction of Cr(VI) to Cr(III),27 Cu(II) to Cu(0),28 and 

the photo-reduction of cytochrome c and viologens.26 In addition, metal loading into ferritin 

occurs photochemically by reducing metal-citrate complexes of Fe(III), Eu(III), and Ti(IV) and 

allowing the reduced form of the metal to be oxidized by the ferroxidase center of the ferritin H-

chain leading to incorporation of the metal into ferritin.13   

Recently, several studies describing the preparation of AuNPs or AgNPs using ferritin as 

a template were reported. Two of the studies prepared gold on the exterior surface of ferritin,18, 

29, 30 whereas others produced AuS, Au, Ag, or AgAu alloy nanoparticles inside ferritin.18, 24, 25, 31, 

32 Some of these studies relied on diffusion of Au or Ag ions into the interior of ferritin followed 

by reduction by NaBH4. Other studies used protein engineering to incorporate thiolate and 
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histidine ligands inside ferritin to attract and bind the Au and Ag. In addition, less powerful 

reductants (MOPS buffer) were required and light was used for the reduction of Ag+ to Ag(0). 

 AuNPs have been used in a variety of applications including colorimetric assays,33-38 

immuno-detection assays,39, 40 treatment of cancer41 and amyloid fiber related diseases,42 carbon 

nanotube synthesis,43 and selective oxidation catalysts.44 Because AuNPs have different 

characteristics depending on their size and the passivity of the surface, it is important to develop 

controlled synthetic routes to create particles with different morphologies, sizes, and surface 

passivation.45 In addition, if the AuNPs are to be used in biological systems, capping agents and 

buffers used must be compatible for biology.46 The solubility, reactivity, and photonic properties 

of ferritin AuNPs are sensitive to the size of the particle and the local environment of the gold 

surface. For instance, the use of different reducing agents to prepare AuNPs with ferritin 

influences the catalytic properties of the AuNPs.29 Therefore, the deposition of AuNPs on the 

exterior or interior of ferritin will influence the potential applications of the nanoparticles. 

 Several photochemical methods to form AuNPs have been published.47-52 However, these 

methods require “gold seeds” or the use of detergents or other chemical stabilizers, reducing 

agents, or capping agents that are not biologically compatible.40 One advantage of photochemical 

methods is that chemical reductants are not required and this minimizes contaminants, by-

products, and other potential reactants that can affect studies in biological systems. This study 

was undertaken to use ferritin and a minimal reaction system to photo-reduce AuCl4
− to form 

AuNPs without requiring gold seeds, non-biological reducing agents, or chemical stabilizers. 

Potentially the AuNPs might form inside the ferritin cavity, as was observed for Cu(II) photo-

reduction,28 providing an encapsulation method for AuNP delivery. Alternatively, the AuNPs 

may form on the exterior of ferritin and provide a potential catalyst as was observed for chemical 
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reduction of AuNPs in the presence of ferritin.29 If ferritin sequesters the AuNPs or acts as a 

capping agent for the AuNPs, the products would be a useful medium for introducing AuNPs 

into biological systems. To establish the importance of the protein shell, we tested ferrihydrite 

nanoparticles to determine if the ferrihydrite catalyst was sufficient to form AuNPs or if the 

ferritin protein shell was required for the formation of AuNPs. We report that ferritin can 

catalyze the formation of AuNPs and that the protein shell is required for gold nanoparticle 

formation and solubilization. We observed that AuNPs form both on the exterior and interior of 

ferritin. Furthermore, we observed that buffers significantly influence both the size of the 

particles and the absorbance maximum of the SPR peak of the AuNP products.   

Materials and Methods  

 Horse spleen ferritin was obtained from Sigma. Ferritin was prepared in the desired 

buffer by performing buffer exchanges using Amicon Ultra centrifuge tubes with a molecular 

weight cutoff of 100,000 Da to concentrate the solution and exchange the buffer to 2-amino-2-

hydroxymethyl-propane-1,3-diol (Tris) buffer (100 mM Tris, 25 mM NaCl, pH 7.5) or 3-

morpholinopropane-1-sulfonic acid (MOPS) buffer (25 mM MOPS, 25 mM NaCl, pH 7.5). The 

protein concentration was measured using the Lowry method.53 The iron concentration was 

measured after treatment with dithionite to reduce the iron followed by chelation by 2,2′-

bipyridine to form the Fe(bipy)3
2+ complex. The absorbance at 520nm (ε520 = 8,400 M−1 cm−1) 

was measured to determine iron content.54  

 AuNPs were prepared by mixing the ferritin catalyst, the sacrificial electron donor citrate, 

and AuCl4
– in a quartz cuvette followed by illumination with an ultra violet Oriel Hg lamp 

(model 66056). The wavelength of light required for photocatalysis was from 290–310 nm. 

Sample temperature was maintained at 25 °C using a water-circulating cuvette holder connected 
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to a water bath. The final volume of each sample was 1.25 mL. The final concentrations of 

MOPS containing samples were: 0.155 mg/mL protein, 0.44 mM iron, 4 mM MOPS, 125 mM 

NaCl, 32 mM citrate, and 0.8 mM AuCl4
–. This corresponds to 2,300 Au atoms per ferritin 

molecule. Final concentrations of Tris containing samples were: 0.15 mg/mL protein, 0.42 mM 

iron, 20 mM Tris, 125 mM NaCl, 32 mM citrate, and 0.8 mM AuCl4
–. This corresponds to 2,400 

Au atoms per ferritin molecule with 1,000 Fe atoms within each ferritin molecule. Control 

reactions were performed without citrate to determine if the buffers could act as electron donors. 

Reactions in MOPS buffer still produced AuNPs, showing that MOPS could substitute for citrate 

as an electron donor in the absence of citrate. However, reactions in Tris or in water did not 

produce AuNPs, indicating that Tris could not be oxidized under these conditions to donate 

electrons to AuCl4
−. 

 UV-visible absorption spectra were measured using an Agilent 8453 spectrophotometer. 

Transmission electron microscopy (TEM), scanning TEM (STEM), and energy-dispersive X-ray 

spectroscopy (EDX) were performed on a Tecnai F20 Analytical STEM operating at 200 keV. 

Samples were deposited on copper TEM grids (Ted Pella lacey carbon film grids) by placing a 5 

µL sample onto the grid for 20 seconds and then washing the grid with deionized water for 3 

seconds. For samples that were stained to visualize the protein, a 5 µL addition of 1% uranyl 

acetate was placed on the grid for 10 seconds after the water wash. The grid was then allowed to 

air dry. In between each step the grid was blotted with filter paper. Fast protein liquid 

chromatography was performed on a GE Healthcare ӒKTApurifier. A Superdex TM 200 10/300 

GL size-exclusion column was used to determine the particle size. The sample was eluted in 0.02 

M Tris with 0.125 M NaCl at pH 7.4. 
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 The reactions in each figure were prepared as described above. The time that each sample 

was exposed to light depended on the buffer used to prepare the sample. Figure 7–1 shows that 

some reactions occurred more rapidly than others. For each sample, the reaction was prepared as 

in Figure 7–1 and when the plateau was reached, the reaction was stopped by turning off the 

light. All other analyses were performed on samples after the reaction had reached a plateau in 

the spectrophotometric assay.  

Results and Discussion 

 The photocatalytic formation of AuNPs can be detected by observing the surface plasmon 

resonance (SPR) band that forms around 530 nm. Samples containing ferritin, AuCl4
−, and citrate 

with the indicated buffer were placed in a spectrophotometer and illuminated with a mercury 

lamp perpendicular to the spectrophotometer light path and the rate of AuNP formation was 

monitored at 530 nm under a variety of reactions conditions (Scheme 7–1). It was essential to 

find conditions that did not permit AuNP formation in the absence of ferritin so that any AuNP 

formation observed was catalyzed by the illumination of ferritin. 

Hg Lamp

Detector
UV/Vis 

Spectrophotometer

Water 
Temperature 

Bath

 

Scheme 7-1. A diagram of the photo-illumination equipment used to prepare AuNPs. 
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Results shown in Figure 7–1A follow the formation of the AuNPs kinetically at 530 nm 

and Figure 7–1B shows the spectrum of the resulting samples. Insets show photographs of the 

initial solution and the product solutions. Figure 7–1A shows that in the absence of light, 

samples prepared in Tris buffer do not form AuNPs as evidenced by the absence of the SPR 

absorbance peak at 530 nm. Similar results were observed for samples prepared in water (data 

not shown). Upon illumination in Tris (or water), ferritin catalyzes the oxidation of citrate and 

the reduction of AuCl4
− to produce a red solution containing AuNPs with an absorbance 

maximum at 530 nm. 

 

Figure 7-1. Spectrophotometric analysis of AuNPs. A) Solutions were prepared with ferritin, citrate, and AuCl4
− in 

the following buffers and illumination conditions and the formation of AuNPs was monitored by following the 

change in absorbance at 530 nm with time. (□) MOPS with illumination; (■) MOPS dark; (Δ) water with 

illumination; (◊) Tris with illumination; (♦) Tris and water dark (identical curves). B) The spectrum of AuNPs from 

the Tris illuminated (◊) and MOPS illuminated (□) reactions. (○) represents the spectrum of the samples prior to 

illumination. Insets show photos of the solutions before and after illumination. 
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In contrast, MOPS has previously been shown to chemically reduce AuCl4
− to AuNPs 

both in the absence and presence of ferritin.29, 55, 56 The results in Figure 7–1A show that AuNPs 

form more rapidly when illuminated in MOPS, but that they also rapidly form in the dark. 

Interestingly, both of the reactions in MOPS produce purple solutions and not the red solution 

observe for the Tris reaction (Figure 7–1B inset) and have a broader, red-shifted SPR maximum 

of 550 nm (Figure 7–1B). 

To confirm that AuNPs formed under the conditions shown in Figure 7–1, the samples 

were characterized by TEM (Figure 7–2). Electron micrographs of the illuminated Tris sample 

(Figure 7–2A) show the formation of spherical gold nanoparticles with diameters of 5.7 ± 1.6 

nm. In comparison, the illuminated MOPS sample shows larger, more irregularly shaped 

particles that are 15–30 nm in diameter along with many smaller, spherically shaped particles 

(Figure 7–2B). We wondered why this sample contained both small and large particles, and so 

we performed the MOPS reaction in the dark, focusing on the chemical reduction of AuNPs. In 

this sample, we observed only the larger, more irregularly shaped particles in the 15-30 nm 

diameter size range (Figure 7–2C). These results suggest that the MOPS illuminated sample 

represents a mixture of light and dark reactions, where light reactions form smaller ~6-nm 

diameter particles and chemical reduction (dark reactions) form larger 15–30-nm diameter 

particles.  

This led us to determine whether ferritin was necessary during the chemically reducing 

reactions (MOPS reactions). In the absence of ferritin, the solution initially turned purple, but 

then aggregates formed. Observing this sample with electron microscopy, we see large gold 

aggregates (Figure 7–2D). This demonstrates that ferritin acts as a nano-architecture structure to 

guide the size and shape of the chemically reduced AuNPs.29   
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A. B.

C. D.

 

Figure 7-2. TEM of AuNPs formed under different conditions. TEM of AuNPs formed by A) illuminating ferritin in 

Tris, B) illuminating ferritin in MOPS, C) chemical reduction by MOPS in the presence of ferritin, D) chemical 

reduction by MOPS in the absence of ferritin. 

The illuminated MOPS reaction produced both large and small AuNPs (Figure 7–2B) and 

is proposed to be a mixture of both the light catalyzed reaction (small particles) and dark 

chemical reduction reaction (larger, irregularly-shaped particles). Because the light reaction 

proceeds at a faster rate, we hypothesized that the AuNP particle size can be controlled in MOPS 

buffer depending on the timing of when AuCl4
− is added to the reaction. A MOPS sample was 

prepared by mixing all of the components of the reaction mixture except for the AuCl4
− and the 

sample was placed in the spectrophotometer and the mercury light was focused on the sample. 

The absence of gold prevented the chemical reduction (dark reaction) from beginning prior to 

illumination. We refer to this reaction as the pre-illuminated MOPS reaction. While the solution 
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was illuminated, AuCl4
− was added and the reaction proceeded as detected by SPR band 

formation at 530 nm. The product that formed in this reaction was red and not purple as seen 

previously for MOPS reactions. Figure 7–3 compares the spectrum of the product of the MOPS 

pre-illuminated reaction with a sample illuminated in Tris. Both show spectra for the SPR 

maxima at 530 nm with nearly identical peak width. Furthermore, the TEM images show 

similarly sized, spherically-shaped particles with a diameter of 5.7 ± 1.6 nm for reactions in Tris 

compared to diameters of 5.5 ± 1.8 nm for the reaction in MOPS. These data indicate that 

illumination prior to the addition of AuCl4− to MOPS drives product formation by the photo-

reduction reaction. 

 

   

Figure 7-3. MOPS reactions pre-illuminated before AuCl4
– addition. A) Comparison of the spectrum of (○) Tris 

illuminated AuNPs with pre-illuminated (□) MOPS AuNPs. B) TEM of Tris illuminated AuNPs, C) TEM of MOPS 

pre-illuminated AuNPs. D) Size distribution of the AuNP diameters from B), whereas E) shows the size distribution 

of the particles from C).   
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 Control reactions in Tris in the absence of ferritin but with citrate and AuCl4
–

 failed to 

produce AuNPs upon illumination. Similar reactions adding apoferritin to citrate and AuCl4
– in 

Tris failed to produce AuNPs under illumination, indicating that the ferrihydrite mineral inside 

ferritin is the photocatalyst. To determine if ferrihydrite alone (without ferritin) could catalyze 

the formation of AuNPs, we repeated the reaction using a colloidal suspension of ferrihydrite 

nanoparticles (ferrihydrite nanoparticle powder shown in Figure 7–4A) with an average size of 

10 nm (a kind gift from Brian Woodfield).57 The product of this reaction was a gray precipitate 

(Figure 7–4B shows the dried product) and not the red or purple solution that is indicative of 

soluble AuNP formation. TEM of the gray precipitate (Figure 7–4C) shows large aggregates and 

not discrete nanoparticles. These controls confirm that the protein shell is essential for the 

formation and solubility of the AuNPs. We propose that the protein shell; 1) separates the 

ferrihydrite photocatalyst from the nucleating gold particles and prevents interactions between 

the iron and gold that lead to precipitation reactions between these metals; 2) provides amino 

acid residues on the protein exterior surface that act as nucleation sites for gold deposition; and 

3) acts as a capping agent for the AuNPs to maintain solubility.  
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A. 

B.

C. 

 

Figure 7-4. Control reactions to form AuNPs using ferrihydrite nanoparticles. Using identical conditions to the 

previous studies, ferrihydrite nanoparticles were substitute for ferritin in the reactions. A) Photograph of the 10 nm 

diameter ferrihydrite powder used to prepare a colloidal suspension to act as a photocatalyst for AuNP synthesis. B) 

Photograph of the dried product that formed when ferrihydrite nanoparticles were illuminated with citrate and 

AuCl4
–. C) TEM of the sample shown in B.   

Understanding the elemental composition of the AuNPs is important in determining 

whether the AuNPs form inside ferritin or on the outside surface. One potential mechanism for 

AuNP formation is that Au3+ ions enter ferritin and that the iron mineral surface acts as a 

nucleation site for the photo-reduction and deposition of AuNPs inside ferritin.28 This is a 

particularly appealing proposal because the illuminated Tris samples produced ~6 nm diameter 

sized nanoparticles, which compares favorably to the inner dimension of the ferritin interior with 

a ~8 nm diameter interior. If the ferritin iron core is the site of reduction and nucleation of the 

nascent AuNPs, the new particles should be a mixture of both gold and iron. Therefore, the 

elemental composition of the resulting particles was analyzed by EDX for gold and iron. Figure 
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7–5A shows two highlighted nanoparticles, a bright particle that obviously contains gold due to 

the electron scattering in box 1, and a faint particle corresponding to what is presumably ferritin 

with an iron core in box 2. The elemental composition of the nanoparticles is shown in Figure 7–

5B for box 1 and Figure 7–5C for box 2. Figure 7–5B confirms that box 1 is a gold nanoparticle 

but shows evidence of a small iron peak. Box 2, which is the less intense and smaller 

nanoparticle, shows an iron EDX signal in addition to a gold signal. These results are consistent 

with gold nucleating on the iron core surface followed by growth of the gold nanoparticle.   

 

Figure 7-5. STEM and EDX of particles formed in Tris. A) STEM image of gold particles formed by illumination 

of ferritin and AuCl4
– in Tris. Box 1 and box 2 correspond to the EDX graphs in panel B and C, respectively. B) 

Spectrum from EDX on box 1, presumably a gold particle. Gold peaks are observed at characteristic locations of 

2.12, 9.712, and 11.919 keV. In addition, a characteristic peak for iron is observed at 6.403 keV. This indicates that 

iron is nearby or within the gold particle. C) This smaller, less dense particle (box 2) is confirmed to be iron by EDX 

and also shows a small gold peak. 

 Size-exclusion chromatography was used as another method to determine if AuNPs were 

forming inside ferritin. The presence of AuNPs (530 nm) or ferritin (280 nm) in the fractions was 

detected by monitoring the absorbance of fractions eluted from a SuperdexTM 200 10/300 GL 

size-exclusion column. The first peak eluted at ~8 mL and showed absorbance at both 530 and 

280 nm, representing AuNPs and ferritin, respectively (Figure 7–6). A second peak eluted at 10–
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11 mL, where purified ferritin normally elutes from this column. This peak was predominantly a 

protein peak (280 nm absorbance) with smaller amounts of AuNPs (530 nm absorbance). 

 

Figure 7-6. Size-exclusion chromatography of samples prepared in Tris. The size-exclusion elution profile of a 

sample prepared by illumination in Tris. Wavelengths of 280 nm (○) and 530 nm (□) detect ferritin and AuNPs, 

respectively. 

The major elution peak of the chromatograph is at ~8 mL. This fraction elutes much 

earlier than native ferritin (peak #2, ~10 mL). Fraction 8 has two intense peaks, one for the 

protein (280 nm), and one for the AuNPs (530 nm). Inductively coupled plasma (ICP) analysis of 

this fraction showed the highest concentration of gold in any of the fractions (data not shown). 

TEM analysis using uranyl acetate to stain for the ferritin protein shell showed both AuNPs and 

ferritin in this fraction, even though purified ferritin normally elutes at a later volume (Figure 7–

7). The elution of this fraction prior to the expected elution volume of ferritin suggests a large 

hydrodynamic radius for the eluting particles. Because ferritin is observed in this fraction, it 

suggests that ferritin is attached to AuNPs and that these two particles are co-migrating. The 
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arrows point to ferritin molecules adjacent to AuNPs. The ferritin is the lighter halo that 

surrounds the slightly darker iron cores. The thickness of the white halos is consistent with the 2 

nm thickness of the ferritin protein shell. The TEM image confirms that ferritin is found adjacent 

or attached to AuNPs and explains why ferritin eluted much earlier than expected. This suggests 

that AuNPs form on the external surface of ferritin. Because this fraction contains the majority of 

the AuNPs (greatest absorbance at 530 nm), it appears this is the predominant reaction forming 

AuNPs under the conditions tested. 

10 nm

 

Figure 7-7. AuNP formation on the exterior surface of ferritin. Representative electron micrograph of the sample 

that eluted at 8 mL from the size-exclusion column. The sample was prepared and stained with uranyl acetate on 

TEM grids, as describe in the Materials and Methods section. The arrows identify ferritin molecules that are 

adjacent to AuNPs. The presence of ferritin in this elution fraction suggests that ferritin is attached to these AuNPs. 

Inset shows a STEM image from the 9 mL fraction. This image shows small AuNP seeds attached to the external 

surface of ferritin. 



160 
 

The inset in Figure 7–7 shows a STEM image of a representative ferritin observed in 

fraction 9, and shows two very small 1–2-nm AuNPs attached to the protein surface. The 

presence of small gold seeds attached to ferritin is consistent with the hypothesis that gold ions 

nucleate on the external surface of ferritin, followed by growth of the AuNP. Scheme 7–2 shows 

a model of how this reaction may proceed. 

 

Scheme 7-2. Mechanism of AuNP formation by ferritin illumination. Ferritin possesses a putative nucleation site 

that attracts Au3+ ions. Photochemical excitation of the iron core transfers electrons across the ferritin protein shell to 

reduce the Au3+ ions. The electron holes created by this photochemistry are replenished from the sacrificial electron 

donor citrate. The initial gold particle seed acts as a nucleation site that attracts more Au3+, which in turn are reduced 

and deposited on the growing gold particle. 

Scheme 7–2 suggests that there is a metal nucleation site near the exterior surface of 

ferritin. A likely location might be the threefold channel of ferritin, which contains cysteine 

amino acid residues that have high affinity for binding gold. Kim et al. demonstrated that small 

AuNPs were able to bind at the threefold channel sites.30 Once gold has nucleated on ferritin, 
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electrons can be transferred to this site as a method of reduction and nanoparticle growth. 

Electron transfer through the 2-nm protein shell has been previously demonstrated by several 

methods.58, 59 

 Unfortunately, the model proposed in Scheme 7–2 conflicts with the proposed model for 

chromate reduction by ferritin as the authors suggested that reduction occurred inside ferritin 

rather than on the outside surface.27 This model was based on the observation that some of the 

Cr(III) product was observed inside ferritin despite the fact that Cr(III) does not diffuse into 

ferritin. In contrast, an alternate model showed that the majority of Cr(III) produced was found in 

the exterior solution but not attached to ferritin. This might be rationalized by the fact that gold 

has a much higher affinity for thiolate ligands than Cr(III) and may stay attached to ferritin, 

whereas the formation of Cr(III) on the exterior surface would more easily dissociate into 

solution. Therefore, our results suggest that the model showing AuNP reduction on the exterior 

surface of ferritin and the chromate reduction on the exterior surface of ferritin are consistent. 

The fact that both studies show smaller amounts of product on the interior of ferritin suggests 

that another mechanism also exists for metal reduction on the interior of ferritin, but the 

mechanism is not yet established for how this occurs. 

Although the majority of the AuNPs form on the outside of ferritin, we do observe a 

significant fraction of AuNPs that form on the inside of ferritin. Fraction 9 from the size-

exclusion column contained the majority of the gold-containing ferritin particles. TEM analysis 

of fraction 9 produced images that show AuNPs surrounded by ferritin (Figure 7–8). The ferritin 

is visualized by staining with uranyl acetate, and the protein is identified with white halos in the 

micrographs. The arrows in Figure 7–8 identify gold-containing ferritin nanoparticles and 

compare them to iron-containing ferritin molecules (white halos with less intensity due to iron). 
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STEM analysis shows ferritin stained with uranyl acetate with a very faint mineral core signal 

due to iron in the core (top), ferritin with a much brighter core, indicating a mixture of gold and 

iron (middle), and a gold core inside ferritin (bottom). This is consistent with the EDX analysis 

shown in Figure 7–5. These three images suggest that there might be a progression from an iron 

core to a gold core as the gold nucleates and grows within the ferritin protein shell. Another 

explanation for this observation is that the ferritin sample has different iron loadings based on the 

inhomogeneity of the native ferritin sample. Perhaps different iron contents leads to different 

gold loading on the interior of ferritin molecules. 

 

Figure 7-8. AuNP formation on the interior of ferritin. Fraction 9 from the size-exclusion column shows AuNPs 

surrounded by a white halo. These TEM images were stained with uranyl acetate, to allow visualization of the 

protein shell (white halos). A) Compares iron-containing ferritin with gold-containing ferritin. B) Shows greater 

magnifications of the gold containing-ferritin. C) STEM analysis of iron and gold containing ferritin. Top is a 

ferritin containing iron. Middle is a ferritin with a brighter mineral core suggesting a mixture of gold and iron. 

Bottom is a ferritin with a very bright interior, indicative of gold inside ferritin. 
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Conclusions 

In summary, we have presented a photochemical method to prepare protein stabilized ~6-

nm diameter spherically shaped AuNPs using ferritin as a photocatalyst. Our results are 

consistent with two pathways for AuNP formation. One pathway is an external AuNP growth 

pathway, observed in Figure 7–7. The second is gold deposition on the inside of ferritin, where 

gold is proposed to nucleate in the iron core of ferritin, as seen in Figure 7–8. We are currently 

exploring conditions to control whether the AuNPs form only on the surface or only on the 

interior of ferritin. 

The work presented here highlights that the formation of AuNPs can be controlled by 

using ferritin as a photocatalyst. In Chapter 3, the role of citrate was discussed for the non-

reductive release of iron from ferritin. In this work, citrate is used as an electron donor, but we 

also wondered about the possibility of citrate acting as an iron chelator. Chapter 8 discusses 

progress we have made in better understanding the role of citrate in this reaction.  

This work was published in part in the Journal of Nanoparticle Research60 and in Proceedings of SPIE61, 62. 

This work was presented as a poster at nanoUtah 2009 in SLC, UT and as a poster and talk at SPIE 2010 in San 

Diego, CA.  
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CHAPTER 8: FERRITIN PHOTOCATALYST; 
INTERMEDIATES AND MECHANISM 

Abstract   

The mechanism of gold nanoparticle (AuNP) formation using ferritin as a photocatalyst 

was examined. The purpose of this study was to determine the effectiveness of using ferritin as a 

photocatalyst for use in an artificial photosynthesis system. AuNPs were used because it is easy 

to monitor the rate and efficiency of the reaction, based upon the readily observable surface 

plasmon resonance of AuNPs. We investigated each component of the reaction (buffer, salt, 

citrate, gold, protein) to determine the effect that each one plays in the growth of these particles. 

We show that Tris buffer is the only buffer that increases the length of the lag phase in the 

reaction. Tris inhibits the autocatalytic formation of AuNPs, and so in an effort to understand the 

intermediates in the lag phase, the majority of the studies were undertaken using Tris buffer. We 

propose that the iron core of ferritin becomes photo-reduced, so that the ferrihydrite mineral 

dissolves into a soluble iron(II) mineral. The iron(II) then re-oxidizes, and a new mineral forms 

that appears to be the new photocatalyst, as the lag phase is significantly decreased with this new 

mineral form of ferritin. We show that ferritin is required in order to form a tight distribution of 

size-constrained AuNPs. 

Introduction 

 AuNPs have been increasingly simple to synthesize in a size-constrained manner using a 

variety of techniques.1-5 Interest in AuNP synthesis revolves around the properties of AuNPs, 

including optical and electrical properties, and is also based upon the potential applications in 

biomedical research,6-8 as was discussed in the previous chapter. The optical properties of 

AuNPs are especially useful for us because it renders a simple colorimetric assay for determining 

the rate and efficiency of the transfer of electrons using ferritin. Essentially, we are able to 
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readily monitor the reaction using ferritin as a photocatalyst by the observance of the localized 

surface plasmon resonance (SPR) peak of AuNPs at 530 nm. SPR is an electromagnetic wave 

that propagates along the surface of metal nanoparticles. This wave emits an intense red color for 

AuNPs, so that a relatively small amount of reactant can be detected and monitored. Shifts in the 

SPR peak are attributed to the properties of the surface, namely the diameter of the particles or 

the adsorption of other molecules on the surface. In our studies, the shift in the SPR peak has 

been observed to relate strictly to the size and distribution of the particles, as observed using 

electron microscopy. A tight peak at 530 nm indicates a tight distribution of nanoparticles in the 

~6 nm range, with a red solution color. As the peak broadens, the distribution becomes broader. 

Likewise, when the peak red-shifts, the particle size increases and the solution becomes blue. 

Materials and Methods  

 Horse spleen ferritin was purchased from Sigma-Aldrich. The ferritin was dialyzed into 

pure water, to eliminate the high salt concentration that is present in Sigma ferritin. Protein 

concentration was determined using the Lowry method9 and iron concentrations were determined 

using the reduction/chelation method by treating with dithionite and 2,2′-bipyridine.10 

 Reaction conditions were 0.1 mg/mL (2.2 x 10–4 mM) ferritin, 20 mM 2-amino-2-

hydroxymethyl-propane-1,3-diol (Tris) buffer, pH 7.4, 50 mM NaCl, 0.4 mM AuCl4
−, 20 mM 

citrate to a final volume of 1 mL. In addition, a wide array of buffers was used in this study. All 

buffers were prepared identical to the Tris buffer solution, to maintain consistency across 

experiments. 

UV-Visible spectrophotometry was performed using an Agilent 8453 spectrophotometer. 

The cuvette holder was coupled to a water-circulated stirring mechanism and also a water-
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circulated temperature bath to maintain constant temperature at 23 °C. Photochemistry was 

performed using a Sun Ray 400 UV flood lamp (Integrated Dispensing). 

    Transmission electron microscopy was performed using a Tecnai F30 EM, operating at 

140 keV. Samples were deposited on copper TEM grids (Ted Pella lacey carbon film grids) by 

placing a 3.5 μL sample onto the grid, followed by a short incubation and a rinse with deionized 

water. The grid was allowed to air dry. 

Results 

 To study the mechanism of AuNP growth using ferritin, and thereby maximize the 

efficiency of ferritin as a photocatalyst, we performed all reactions using Tris buffer. Tris buffer 

lengthens the time of the lag phase, and it also limits any side reactions that take place. To 

monitor the efficiency of the electron transfer reactions initiated by light over a variety of 

conditions, we used the colorimetric properties of AuNPs. As discussed in the previous chapter, 

the growth of AuNPs can be observed by monitoring the absorbance peak at 530 nm (Figure 8–

1).  
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Figure 8-1. Spectrophotometric analysis of AuNPs. A) The absorbance of AuNPs can be observed 

spectrophotometrically by monitoring the peak at 530 nm. Yellow is the absorbance prior to illumination, and red is 

the absorbance following formation of AuNPs. B) The AuNPs were observed using EM, and we observe particles 

with an average diameter of approximately 6 nm. 
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We observed previously that MOPS buffer stimulates the rate of the reaction compared to 

water and that Tris buffer inhibits the rate of the reaction compared to water.11 Because buffers 

have a significant effect on the reaction, we sought to characterize a wide array of commonly 

used buffers, to determine how they affect the rate and final product. Generally, we observe that 

buffers containing a morpholino group significantly enhance the rate of the reaction (Figure 8–

2). Most other buffers have no stimulatory effect, compared to water. Tris buffer is the only 

buffer that significantly decreases the rate of the reaction. The stimulatory buffers, EPPS, 

HEPES, MOPS, MES, and PIPES, stimulate the rate of the reaction from ~6–14-fold. The 

structures of these buffers are similar, with each containing a morpholino group. Previous work 

has shown that some Good’s buffers are able to auto-reduce gold ions, forming AuNPs.12 This is 

confirmed in this study, where we observe broad, red-shifted peaks, indicating the formation of a 

broad distribution of particle sizes, generally of a larger nature. The particles also tend to be less 

spherical. These results indicate that neither ferritin nor light are necessary for the formation of 

AuNPs using these buffers, and thus the use of these buffers should be avoided when trying to 

understand the mechanism of ferritin photocatalysis of AuNPs. 

On the other hand, buffers that do not dramatically affect the rate of the reaction often 

seem to play a role in the final product of the reaction. This was concluded by observing that the 

peak was broader and red-shifted, and the solution appears blue, rather than red. From this 

information, we conclude that side reactions may be occurring that lead to multiple products in 

the reaction. Furthermore, in an effort to study the mechanism of the reaction, it is desirable to 

extend the lag phase, which effectively extends the formation of intermediates that may be 

playing a role as the catalyst for AuNP formation. As a result, we chose to work with Tris buffer, 

which did not shift the peak in any way, and which is the only buffer that considerably extends 

the lag phase. 
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Figure 8-2. Buffers significantly influence the rate of reaction. A) The rate of AuNP formation was monitored at 

530 nm in a variety of buffers. We observed that buffers containing N-morpholino groups stimulate (green) the rate 

of the reaction up to 14-fold (for EPPS buffer). Several other buffer types have rates very similar to water (black 

dots). Tris buffer is the only buffer that we tested that strongly inhibits (red) the rate of formation of AuNPs. B) The 

relative rates (compared to water) are shown as a chart for comparison, where the rate is the slope of formation 

divided by the lag phase. Also shown are the less well-known structures of the buffers. 
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In addition to buffers, we also wanted to break down the reaction by looking at ideal 

concentrations for each component in the reaction. By keeping all components constant and by 

varying only one, we were able to determine the appropriate concentrations and relevance of 

each variable in the system (buffer, NaCl, citrate, AuCl4
−, protein) (data not shown). Based on 

these studies, there are a few interesting observations. First, limited concentrations of Tris buffer 

(< 2 mM) tend to stimulate the reaction slightly, but at concentrations above 2 mM, we observe 

that Tris inhibits the auto-reduction of gold ions to AuNPs. The ideal concentration for 

preventing auto-reduction side reactions and only allowing the photo-reduction reaction is 20 

mM Tris. The presence of salt tends to stimulate the rate of the reaction, to a point. Once we 

reach 50 mM salt, the rate of the reaction reaches a maximum. We also observe that the ideal 

ratio of citrate to gold is 50:1. Finally, we determined that approximately 2,000 gold ions for 

every ferritin molecule is ideal (~1:1 ratio of gold to iron). Together, these studies help elucidate 

ideal conditions for the synthesis of AuNPs, which can be extended to the synthesis of other 

metal nanoparticles. These studies may also help shed light on the exact molecular interactions 

that may be taking place. 

After having determined the appropriate buffer to use for this study, including the ideal 

concentration of each variable in the reaction, we sought to determine what changes were taking 

place to the ferritin core upon illumination. Previous work has shown that light photo-reduces the 

iron core of ferritin.13 Thus, upon photo-reduction, one should be able to detect Fe(II). We set up 

the identical reaction conditions, but instead of adding gold ions to the reaction, we added an 

excess of 2,2′-bipyridine (greater than 3:1 ratio of 2,2′ -bipyridine to iron). Figure 8–3 shows the 

results of this experiment. 
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Figure 8-3. Photochemical reduction of the iron core inside ferritin. The reaction is placed under illumination, and 

2,2′-bipyridine is added after 30 seconds. Black is the addition of 2,2′-bipyridine, but in the absence of illumination. 

Red is the addition of 2,2′-bipyridine with illumination. Blue is illumination at 30 seconds, but 2,2′-bipyridine is not 

added until 700 seconds (after the lag phase), at which time the illumination is cut off. These data show that the iron 

core of ferritin is reduced to Fe2+ with illumination. When light is not present or when it is removed, no increase in 

Fe2+ concentration is observed. Each reaction was performed in triplicate.  

When 2,2′-bipyridine is added with concomitant illumination, a burst of Fe2+ is observed, 

followed by a steady state release of Fe2+ from ferritin, as observed by the formation of a red 

[Fe(2,2′-bipyridyl)3]2+ complex at 520 nm. This indicates that the illumination of ferritin results 

in a reduction of ferric iron to ferrous iron. The black line shows that the addition of 2,2′-

bipyridine to ferritin in the absence of light does not chelate iron, consistent with a ferric iron 

core. The observed decrease in absorbance that we see is the result of dilution from the addition 

of the 2,2′-bipyridine. The formation of AuNPs from Figure 8–2 does not start until about 700 s 

with Tris buffer. Thus, we illuminated ferritin through the 700 s time period, at which point we 
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turned off the lamp and added 2,2′-bipyridine. The blue line in Figure 8–3 shows that when we 

add 2,2′-bipyridine after illuminating through the lag phase of 700 s, Fe2+ is present, even though 

the illumination is stopped upon addition of 2,2′-bipyridine. Initially, we anticipated that the 

increase in absorbance at 520 nm with the blue trace would equal the absorbance in the red trace 

at the same time point. However, the absorbance of the blue tends to be about one-fourth that of 

the red curve. This can be explained in two ways: 1) with illumination in the absence of 2,2′-

bipyridine, the iron core of ferritin is reduced but the Fe2+ re-oxidizes, and 2) in the presence of 

2,2′-bipyridine, Fe2+ is immediately complexed upon formation, driving the equilibrium of Fe3+ 

to Fe2+. 

Based on these data, we propose that the photo illumination of ferritin causes the 

reduction of the ferritin iron core from a ferric mineral to ferrous iron. The ferrous iron re-

oxidizes and forms a new mineral. We propose that this newly formed mineral is the 

photocatalyst for the formation of AuNPs. We observe that Fe2+ forms upon illumination of 

ferritin. However, ferrous iron is rapidly oxidized back to Fe3+. To test our hypothesis that this 

newly formed mineral is the photocatalyst, we ran the identical reaction in the absence of gold 

ions and also in the absence of 2,2′-bipyridine. Following the reaction, the sample was incubated 

in the fridge for 3 hours or overnight. Following this incubation period, all of the iron oxidized 

back to Fe3+, as observed when upon the addition of 2,2′ -bipyridine, there was no formation of 

[Fe(2,2′-bipyridyl)3]2+. We then repeated the photo-reduction of the gold ions using these 

previously illuminated ferritin samples. The rate of AuNP formation was characterized using 

UV-Visible spectrophotometry. Figure 8–4 shows the results of these studies. The previously 

illuminated samples were treated as normal, with the addition of AuCl4
− at 30 seconds. We 

observe a dramatic decrease in the lag phase compared to the control reaction. This suggests that 
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the native core is not a photocatalyst in this reaction, but that the photocatalyst can be generated 

by illumination of ferritin. Once the photocatalyst is generated, the reaction proceeds more 

rapidly.  
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Figure 8-4. AuNP formation with native vs. photo-reduced ferritin. Black is the control sample and shows the 

normal rate of AuNP formation using Tris buffer (AU 530 nm). Red shows the rate of the same reaction that was 

initially illuminated through the 700 s lag phase, but then removed from illumination and incubated for a period of 3 

hours or overnight. The reaction was then initiated as normal, but the lag phase is considerably shorter (AU 530 

nm). Blue is the addition of 2,2′-bipyridine to the photo-reduced ferritin sample after the incubation period to show 

that oxidation of the core occurred and that no Fe2+ is present (AU at 520 nm). All runs were performed in triplicate. 

These results indicate that illumination reduces the ferric core of ferritin to a ferrous state. 

The ferrous iron then oxidizes and arranges into the photocatalyst that is capable of reducing 

gold ions. This leads to two plausible possibilities. First, the ferrous iron can be oxidized by 

ferritin and deposited back into ferritin to create a newly arranged iron core. Second, the ferrous 

iron could be chelated by citrate, and over time, the ferrous iron oxidizes to ferric, forming a 

ferric-citrate complex. To test these models, we photo-reduced the iron core of ferritin, and then 
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incubated the samples to allow the reduced iron to oxidize. We then ran the column over a GE-

Healthcare PD-10 Sephadex G-25 column to separate ferritin from citrate or ferric-citrate. We 

analyzed each fraction for protein and iron content. Figure 8–5 shows the results of this 

separation technique. 
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Figure 8-5. Size-exclusion chromatography of illuminated ferritin following an incubation period. The blue trace is 

the control of ferritin and citrate run over the column without illumination (identical to the control of ferritin 

illuminated in the absence of ferritin). The red trace is the sample of ferritin and citrate with illumination, following 

an oxidation incubation. The peaks show the molar concentration of iron in each fraction.   

The size-exclusion data show nearly identical elution profiles. Indeed, the total amount of 

iron in each profile is identical. Small deviations are observed in fractions six and seven, where a 

shoulder is observed in the ferritin sample that was illuminated in the presence of citrate. This 

shoulder likely represents a small ferric-citrate complex that elutes at a later fraction than where 

ferritin elutes. Consistent with this is the results of a protein analysis for each fraction, which 

shows that the protein elutes in the first large peak that is observed in Figure 8–5 (data not 
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shown). This suggests that most of the iron is retained by ferritin, but that a small amount forms 

a smaller ferric-citrate complex outside of ferritin. 

To test whether ferric-citrate is the catalyst for this reaction, we performed this reaction 

with ferric-citrate in the absence of ferritin, or in the presence of proteins of various types. The 

results of these kinetic reactions are shown in Figure 8–6.  
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Figure 8-6. Kinetic runs using ferric-citrate as a catalyst. Ferric-citrate was added to the reaction buffer with 

concentrations of iron identical to what we would have if holoferritin were present (~0.4 mM). The gray trace is 

ferric-citrate without protein. Red is a control of apoferritin without ferric-citrate. Black is the control reaction as 

performed above. The other traces are the presence of ferric-citrate with various proteins: green, transferrin; cyan, 

apoferritin; blue, holoferritin; and pink, BSA. 

The kinetic data show that using ferric-citrate alone, without any protein allows the 

formation of AuNPs initially, but the particles quickly aggregate and precipitate out of solution. 

With all other proteins, the rate of AuNP formation is significantly faster when ferric-citrate is 

present, than in the absence of ferric-citrate. This would indicate that ferric-citrate is the 
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important photocatalyst for the formation of AuNPs, and that protein of any kind is required to 

help passivate the particles, allowing them to remain soluble and distinct in solution. Upon 

further investigation, we noticed that the final products for each protein that we used varied 

significantly in color, indicating that we were obtaining different sized AuNPs. This was initially 

characterized by UV-Visible spectrophotometry (Figure 8–7). 

 

Figure 8-7. Spectra of AuNPs catalyzed with ferric citrate with various proteins present. Color scheme is identical 

to that in Figure 8–6. Black is the control with the original conditions (holoferritin without ferric-citrate). Gray is 

ferric-citrate without protein present. The rest are ferric-citrate with different proteins: cyan, apoferritin; green, 

transferrin; blue, holoferritin; pink, BSA. 

These spectra show that all samples compared to the control are broader and more red-

shifted to varying degrees. Indeed, the solutions with spectra that are broader and more red-

shifted appear much bluer than the sharp peak at 530 nm for the control reaction. Using EM, 

these particles were analyzed, and consistent with the spectral information, the samples were 
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composed of a variety of sizes of nanoparticles that were generally not spherical in shape (data 

not shown). 

Discussion 

A large number of variables influence the ferritin photocatalyzed formation of AuNPs. 

When the reaction is performed in Tris buffer, the auto-catalyzed reduction of gold ions to 

AuNPs is inhibited. Thus, the reaction can be carried out in a controlled manner, and the result is 

a size-controlled distribution of AuNPs. How does Tris buffer inhibit the auto photo-reduction of 

AuNPs, thereby lengthening the lag phase of the reaction? Tris buffer has previously been shown 

to complex with Cu2+ and Ni2+ species.14 Additionally, Tris has been shown to be a poor buffer 

of choice for iron loading into ferritin.15, 16 When reconstituting iron into ferritin in vitro, ferrous 

iron is used. The ferrous iron then migrates to the ferroxidase center, where it is oxidized to 

ferric iron and subsequently deposited into ferritin, forming a crystalline ferrihydrite mineral (see 

Chapter 1). Generally, this is carried out in Good’s buffers, such as MOPS or MES. However, 

when using Tris buffer, precipitation occurs and the efficiency of iron loading is poor. Taken 

together, a likely mechanism for this action is that Tris buffer can coordinate Fe2+, inhibiting the 

iron from migrating to the ferroxidase center. The iron eventually oxidizes and forms insoluble 

rust, precipitating out of solution. The coordination of Tris to iron likely has relevance in this 

reaction as well. When the iron core is photo-reduced, Tris competes with citrate for the iron. 

Eventually, either citrate or ferritin oxidize the iron, and are able to out-compete Tris. 

Nonetheless, Tris is able to slow the reaction down. This is shown with an overall mechanism in 

Scheme 8–1.  
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Scheme 8-1. A model depicting the photocatalysis of AuNPs. Light reduces iron within ferritin, forming ferrous 

iron. Ferrous iron is coordinated by citrate. The ferrous-citrate oxidizes to ferric-citrate, and the formation of AuNPs 

takes place on nucleation sites on ferritin. 

When ferritin is illuminated, the core photo-reduces. Citrate has previously been shown 

to be able to bind both ferrous and ferric iron, though it binds ferric iron more tightly.17-19 Our 

data indicate that ferrous iron oxidizes to ferric iron. A small amount of ferric-citrate forms, but 

most of the iron is retained in ferritin. We attempted electron diffraction on the ferritin cores 

prior to illumination and after illumination to determine the diffraction pattern. This would tell us 

whether a new mineral forms following illumination. Unfortunately, these attempts were 

unsuccessful. Indeed, it is difficult to obtain adequate diffraction patterns on nano-particles 

within ferritin. However, it may be possible to optimize conditions so that diffraction patterns 

can be obtained.  
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It is currently not known whether the ferric-citrate that forms outside ferritin, a newly 

formed mineral inside ferritin, or both contribute to the formation of the AuNPs. Ferric-citrate 

alone can form AuNPs, but these are unstable. On the other hand, holoferritin without citrate is 

also able to form AuNPs. In this case, electron donors such as oxalate or tartrate are used. Thus, 

it is difficult to separate the ferritin catalyzed reaction from the ferric-citrate catalyzed reactions. 

Most likely, both catalysts contribute to the formation of the AuNPs, and the use of both of them 

together creates a more efficient system for the photocatalysis of AuNPs. Future work on this 

project should be focused on determining the roles that each catalyst plays in the reaction 

mechanism. 
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CHAPTER 9: EVALUATION AND OUTLOOK 
Although ferritin was discovered nearly 75 years ago, we are continuing to learn a great 

deal about iron mineralization and release from ferritin, the role ferritin may play in diseases, and 

the role of ferritin as a scaffold or catalyst for materials chemistry. Our work has extended the 

field in these three areas, and has also opened up many doors for future work and investigation. 

The purpose of this chapter is to evaluate the work contained in this dissertation and to suggest 

future studies that may be undertaken based upon the findings in this work. 

Mechanisms of Iron Core Formation and Iron Release 

Many studies have been undertaken to understand the pathway of iron deposition into 

ferritin.1 These studies have resulted in a general consensus of iron uptake, oxidation, and 

deposition into ferritin. Nevertheless, there remains uncertainty in the field as to the 

mineralization of iron in ferritin. This study begins to elucidate the nature of the mineral core 

formation under various conditions in vitro. The ferrihydrite core of ferritin appears to exhibit a 

variety of properties depending largely upon the environmental conditions. Notably, the age and 

size of the iron core tend to be significant factors in the crystalline property of ferritin. Given that 

ferritin has a turnover rate on the order of days in the human body,2 the normally studied core 

properties of ferritin cores using months-old horse spleen ferritin may not completely represent 

in vivo properties of ferritin. Likely, the storage of iron in ferritin is a dynamic function, where 

the iron is constantly coming in and out of ferritin. In this scenario, of necessity is the careful 

regulation of these events by transport proteins, chaperones, and other regulators that carefully 

monitor the iron levels within the cell. Such a dynamic and living system seems appropriate 

given the important nature of iron in biology. 

The greatest weakness of this study from a biological standpoint is that it was performed 

in vitro. To truly obtain an idea of the core formation in ferritin on a biologically relevant level, 
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these studies would need to be performed in vivo. The general idea would be to perform several 

mouse trials. One would be on a low iron diet, one with a normal iron diet, and one on a high 

iron diet. The iron cores of ferritin could be analyzed by taking the livers of the mice, purifying 

the ferritin, and determining the crystallinity of the iron cores within ferritin. One would need to 

take into account the high turnover of ferritin. In addition, one should take care during the ferritin 

purification process so as not to disrupt the potential oxidation states of the core. Remember, 

within the cell is a reducing environment. During the purification process, one should attempt to 

maintain this environment; otherwise the core structure may change during the process. The 

cores should be quickly examined for crystallinity using the techniques described in Chapter 2. 

The study of iron core formation in vivo is a difficult prospect because the age, size, and 

oxidation can significantly modify the crystalline structure, and these factors are difficult to 

control during purification and analysis. 

On the other hand, from a materials chemistry standpoint, this work has significant 

applications. It is often desirable to form cores within ferritin as large as possible, thus forming 

iron nanoparticles of maximum size. These particles have a number of uses, including quantum 

dots, superparamagnetic nanocomposites, nano seeds for carbon nanotube growth, nanobatteries, 

and targeted treatment of cancer and diseases.3-12  Understanding optimal conditions to maximize 

iron loading and also to predict core formation will give the researcher the benefit of targeted 

materials synthesis. Future work in this area includes the use of other transition metals, including 

the use of multiple metals for the synthesis of alloy materials, which would be useful in the fields 

of nanomagnetics for high-density storage memory media, and photochemistry for high-density 

and maximized semi-conductor properties. 
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The release of iron from ferritin is also an intriguing area of research, based on current 

models of iron release from ferritin. In the most extreme camp, ferritin is thought of as a dead-

end trap for iron, similar to how metallothioneins are for copper.13 This pathway seems unlikely, 

however, considering that when cells are iron deficient, iron has clearly been shown to be 

recycled from ferritin.14, 15 In another camp, the argument is that ferritin is directed to the 

lysosome for lysosomal degradation and subsequent release of free iron. This iron is then 

directed to the appropriate locations for use.16-18 The evidence presented for this pathway is 

compelling, and likely represents one pathway for iron release from ferritin. In the final camp, 

iron is released directly from ferritin in the presence of biological iron chelators or possibly 

through ferritin binding iron chaperone proteins.19-22 Together, these two pathways of extracting 

iron from ferritin may help to explain the dynamic role ferritin plays in iron homeostasis. Thus, 

iron can be extracted as needed under a variety of conditions (Scheme 9–1). Our work from 

Chapter 3 shows how iron can be released from ferritin in a non-reductive manner using small 

molecules.23 This work has significance in both showing the pathway of iron exit as well as in 

giving further credence to the non-degradation extraction of iron from ferritin. 
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Scheme 9-1. Model of iron recycling from ferritin. A) Ferritin is directed to the lysosome for lysosomal degradation 

and subsequent iron release. B) Iron is chelated from ferritin and exported through ferroportin, and then directed to 

the proteasome for degradation. C) Small cytosolic molecules, such as citrate, chelate iron from ferritin. Figure 

adapted from Theil et al.24 

Role of Transferrin and Ferritin in CKD 

 Ferritin has recently been implicated as being a key player in a number of diseases and 

biological functions. These range from a number of iron-related diseases, such as Alzheimer’s 

and Parkinson’s diseases,25-30 as well as other surprising conditions and functions, such as 

attention-deficit hyperactivity disorder,31 and the normal function of the circadian clock.32 
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Our in vitro work shows that ferritin is likely important in chronic kidney disease (CKD). 

We showed that elevated serum phosphate levels, like those shown in CKD, is a likely culprit for 

many of the markers found in patients with CKD (increased NTBI, decreased transferrin 

saturation, increased oxidative damage and inflammation, increased serum ferritin). Elevated 

phosphate levels mean that transferrin must compete with phosphate for binding of iron. Once an 

iron(III)-phosphate complex forms (in the form of NTBI), transferrin cannot effectively take up 

the iron, and the result is decreased transferrin saturation (TSAT). The iron(III)-phosphate 

complex is proposed to form reactive oxygen species (ROS), and the result is oxidative damage 

and inflammation. The inflammatory response is known to trigger H ferritin expression and 

secretion from cells. We showed that H ferritin is effective in competing with phosphate for iron. 

As highlighted in Chapter 5, a series of tests can be performed to determine whether our in vitro 

model is consistent in vivo. 

 Other future works can be directed at determining the structure of the iron(III)-phosphate 

complex. From our studies, we know that it is a large molecular weight species, as determine 

with size-exclusion chromatography, EM, AFM, and Amicon Ultra-centrifugation studies. We 

also determined that the complex has an iron to phosphate ratio of 2:3. Studies using 31P NMR 

may help to reveal the structure of this polymeric species.   

Materials Chemistry 

 Using ferritin as a template for materials chemistry has yielded important information in 

our lab. Our work showing the ability of ferritin to take up a significant number of anions 

showed surprising results. Ferritin, which evolved to sequester positively charged ions, 

specifically iron, has been shown to efficiently take up negatively charged species. Figure 9–1 

shows a close up of the 4-fold hydrophobic channel of ferritin and the 3-fold negatively charged 
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channel of ferritin. Based on the crystal structure of ferritin, the most likely entry point for these 

anions is through one or both of these two channels, based on the size of these anions. However, 

the likelihood of anions entering either channel based on hydrophobicity (4-fold channel) or on 

negative charge repulsion (3-fold channel) appears slim. Contrary to these observations, we 

observe a high through-put of anions into ferritin. The explanation can only be the driving force 

of the enormous charge imbalance that takes place upon reduction of the iron core. Current work 

in our laboratory involves the use of metals that block the 3-fold channels (such as zinc, terbium, 

or cadmium) to determine whether the anions enter through this channel.33-35 Blockage of these 

channels followed by the reductive reaction that pumps anions should help us understand 

whether anions enter through the 3-fold channels. 

 

Figure 9-1. Detailed view of the ferritin channels. Left, 4-fold channel with the hydrophobic residues in gray. Right, 

3-fold channel with the negatively charged residues highlighted. 

 In addition to using this method for the synthesis of novel materials in ferritin, there is 

potential to use this as a redox actuated device. Ferritin could be attached to electrodes in a 

closed system. One could pass a current through the electrode, reducing the iron core of ferritin. 
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Anions in solution would be taken up into ferritin until the current is shut off, at which time the 

ferritin core would oxidize, and anions would be expelled. In this way, anion influx and efflux 

can be specifically controlled by using ferritin as a gated anion storage container. Applications 

with such a device range from artificial muscles36 to bioremediation of anionic contaminants.37 

In Chapters 7 and 8 we discussed the progress we made using ferritin as a photocatalyst. 

This was worked out using gold nanoparticles (AuNPs), in part because Au3+ is readily reduced 

to Au0, and also because AuNPs have an intense surface plasmon resonance band that makes the 

formation of AuNPs easily detectable. But how general is this method for making a variety of 

nanoparticles? Recently, we have investigated this question and have obtained a considerable 

amount of preliminary data that shows that we are capable of forming metal nanoparticles of 

copper, platinum, silver, and palladium, as well as metal alloy nanoparticles of gold and silver 

(Figures 9–2 and 9–3). Although electron micrographs are not shown here, preliminary studies 

using the microscope reveal that in each case, we are forming metal nanoparticles, with some 

having a tighter size distribution than others. Thus, the photocatalytic ability of ferritin to make 

AuNPs is a broad principle that can be applied to a variety of materials, depending on the goals 

and potential applications that the researcher has in mind.  
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Figure 9-2. Silver nanoparticles. UV-Visible spectra show the sample prior to illumination (blue) and after 

illumination (red). The peak at 415 is characteristic of silver nanoparticles. The inset shows characteristic yellow 

solution of silver nanoparticles. 

 

Figure 9-3. Palladium and platinum nanoparticles. The UV-Visible spectra show the reaction prior to illumination 

(light blue) and following illumination (dark blue). Following illumination with either palladium or platinum 

results in identical spectra. The products are shown in the inset, with palladium nanoparticles on the left, and 

platinum nanoparticles on the right. 
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The ability of ferritin to catalyze the photo-reduction of gold ions prompted us to attempt 

site-directed deposition of AuNPs, referred to as surface photo deposition (SPD). By depositing a 

small volume of ferritin onto a surface (this can be done in arrays or in any design that the 

researcher deems useful), the photochemical reaction can be carried out (Scheme 9–2). Initial 

studies showed promise in our ability to guide the deposition of AuNPs to locations only where 

ferritin is present (Figure 9–4). Initial attempts were successful both for spot blotting of ferritin 

and also in native gels of ferritin, where the AuNPs only nucleate and form on ferritin, producing 

distinct purple bands. 

Au3+

Au3+Au3+

Au3+

Au3+

Au3+

Au3+ Au3+

1.

2.

3.

 

Scheme 9-2. Principle of surface photo deposition. Step 1, deposit ferritin onto a surface in precise locations in an 

array or pattern. Step 2, introduce gold ions, an electron donor, and a light source. Step 3, gold deposits only where 

ferritin is located.  
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Figure 9-4. Blots of surface photo deposition. A) Native gel of ferritin (lane 1, 450 kDa), transferrin (lane 2, 80 

kDa), and bovine serum albumin (lane 3, 70 kDa) stained with GelCode Blue for protein detection. B) Same blot as 

in A, but instead of staining the membrane, we illuminate with gold ions present. C) Spot blot of ferritin onto a 

membrane in an array (each spot is ~1 mm in diameter), stained for protein with GelCode Blue. D) Same spot blot 

as in C, but with surface photo deposition of AuNPs.  

Future work can be designed to spot ferritin into microarrays using the method developed 

by Zhang et al., in the labs of Matthew Linford and Matthew Asplund.38 In this way, arrays can 

be specifically and accurately designed. In addition, ferritin can be printed onto surfaces using 

printing technologies that are being refined in the laboratory of Greg Nordin. Using this 

technology, an endless possibility of nano gold deposition patterning can be achieved. 

Collectively, these techniques can be used for a precise deposition of ferritin to create nucleation 

locations for gold nanoparticles. These can then be used for junctions for applications in nano-

circuits and other nano-devices.  
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Background: Most models for ferritin iron release are based on reduction and chelation of iron. However,
newer models showing direct Fe(III) chelation from ferritin have been proposed. Fe(III) chelation reactions
are facilitated by gated pores that regulate the opening and closing of the channels.
Scope of review: Results suggest that iron core reduction releases hydroxide and phosphate ions that exit the
ferritin interior to compensate for the negative charge of the incoming electrons. Additionally, chloride ions
are pumped into ferritin during the reduction process as part of a charge balance reaction. The mechanism of
anion import or export is not known but is a natural process because phosphate is a native component of the
iron mineral core and non-native anions have been incorporated into ferritin in vitro. Anion transfer across
the ferritin protein shell conflicts with spin probe studies showing that anions are not easily incorporated
into ferritin. To accommodate both of these observations, ferritin must possess a mechanism that selects
specific anions for transport into or out of ferritin. Recently, a gated pore mechanism to open the 3-fold
channels was proposed and might explain how anions and chelators can penetrate the protein shell for
binding or for direct chelation of iron.
Conclusions and general significance: These proposed mechanisms are used to evaluate three in vivo iron
release models based on (1) equilibrium between ferritin iron and cytosolic iron, (2) iron release by
degradation of ferritin in the lysosome, and (3) metallo-chaperone mediated iron release from ferritin.

© 2010 Elsevier B.V. All rights reserved.

1. Background and scope of the review

The discovery and initial characterization of ferritin [1–3] ushered
in an era of active investigation of this unusual metal encapsulating
bio molecule by biochemists, chemists, physicists, and material
scientists. Biochemists and cell biologists seek to determine the
biochemical role of ferritin in iron metabolism as it functions to
protect the cell against the deleterious effects of unbound iron and
oxidative damage [4,5]. More recent studies show that ferritin is
involved in inflammation [6–10] and angiogenesis [11–13] (in this
issue, Torti). Chemists investigating the mechanism of iron deposition
and release study the nature of the unique ferrihydrite-phosphate
mineral core and ask why this unusual mineral forms and not other
iron oxyhydroxy minerals (in this issue, LeBrun and Moore and Bou-
Abdallah). Physicists and chemists study the magnetism [14,15],
photochemical [16–18], and semiconducting properties [19,20] of the

mineral core [15,21] (in this issue, Papaefthymiou). Material scientists
use the unique architecture of apo ferritin to create new non-
biological minerals and nano-material compounds within the hollow
ferritin interior for technological applications (in this issue, Douglas)
[22,23]. These latter efforts produced mineral cores of magnetite
[24,25], quantum dots [26,27], and even a ferritin-based nano battery
[28]. These efforts continue to produce new nano materials encapsu-
lated within the protein interior with the promise of continued
success.

It is the purpose of this review to summarize some of the unique
chemical, redox, and mineral formation properties of ferritin in
relation to ion transport (both cations and anions) across the ferritin
protein shell to form both native and non-native minerals in ferritin.
Understanding how ions are transported in and out of ferritin,
especially with respect to the transfer of electrons, will provide
important information about how the cell controls iron concentra-
tions. These results will also provide insight toward developing
synthetic procedures to prepare non-biological compounds inside
ferritin for materials applications.

2. Mechanism of ferritin iron loading

Iron loading into ferritin has been studied extensively, and Bou-
Abdallah and LeBrun cover this topic in this issue. A brief discussion of
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the ferritin structure, subunit function, mineral core composition, and
iron loading as they relate to anion incorporation and how ions
traverse the protein shell is presented below, but we refer to reviews
in this issue by Crichton, Andrews, Papaefthymiou, and LeBrun for a
more extensive coverage of these topics.

2.1. Ferritin structure

The structures of many ferritins isolated from a wide range of
biological tissues have been determined as well as structures of
recombinant proteins containing only H and L subunits (in this issue,
Crichton). A common architecture has been conserved throughout
biological species and consists of a spherical molecule composed of 24
subunits arranged in 4, 3, 2 symmetry with an outside diameter of
12 nm and a hollow internal cavity 8 nm in diameter. Six channels
lined with hydrophobic residues ∼0.4 nm in diameter pass through
the 2 nm protein shell at the 4-fold axes. Eight channels, ∼0.4 nm in
diameter, lined with carboxylate groups are formed at the 3-fold axes
[29,30]. Molecular traffic passing from the surrounding exterior
solution into the ferritin hollow interior is proposed to occur through
the 3-fold channels [31]. Calculations of the electrostatic surface
potential of ferritin identified a funnel of negative charge that would
attract the Fe2+ ions toward the 3-fold channel and into the ferritin
interior [32,33]. Ferritin is remarkably stable to temperature and pH
changes, as evidenced by its stability up to N70 °C and over pH
extremes of 3–10 [34]. At pH less than 3, the 24 subunits dissociate but
reversibly reassemble at pH greater than 3 [34].

Mammalian ferritin is composed of two different but very similar
peptide subunits known as H-chain and L-chain ferritin, which share
55% amino acid sequence identity and are structurally homologous
(RMSD=0.461 Å) [35]. The H-chain is so named because it is ∼21 kDa
(182 amino acids) compared to ∼19 kDa (174 amino acids) for the L-
chain. The H-chain/L-chain ratios differ depending on the tissue from
which the ferritin is isolated [36]. Ferritin isolated from liver, a very
iron-rich organ, is predominantly L-chain ferritin. The L-chain ferritin
possesses protein residues (Glu-57 amd Glu-60) on the inside surface
of the protein that are involved in iron binding and nucleation and aid
in the formation of a stable iron mineral core [32,37]. H-chain ferritin
is predominant in heart tissue and possesses the ferroxidase center
that is required for rapid Fe2+ oxidation and is important in rapid iron
loading into ferritin [15].

2.2. Ferritin mineral core

The prevailing mechanism for iron loading suggests that Fe2+

binds to the ferritin protein and migrates to an enzyme site, named
the ferroxidase center where oxidation to Fe3+ occurs. After
oxidation, the iron migrates from the ferroxidase center to the protein
interior where it forms the iron mineral. The nature of the iron
mineral core of ferritin has been the focus of numerous studies
utilizing a wide variety of physical and chemical techniques [38–44].
Initial compositional studies of the ferritin iron core proposed a
composition of (FeOOH)8(FeO:OPO3H2) [45]. X-ray diffraction studies
revealed two and six line diffraction patterns indicative of a
ferrihydrite mineral composition [15]. Magnetic measurements of
the iron core confirm that the iron is Fe(III) and reveal a super
paramagnetic iron core [46]. Early transmission electron microscopy
reveals a core size of 7–8 nm, consistent with the internal size of the
protein shell [39]. However, more recent HAADF-STEM studies show
smaller 2 nm clusters indicative of multiple smaller nanoparticles
forming inside the ferritin cavity [47]. Small inorganic clusters of
copper were observed in the synthesis of copper and palladium
nanoparticles inside ferritin [48,49]. These observations are consistent
with multiple metal nucleation sites inside ferritin and relates well
with the 4, 3, 2 symmetry of the ferritin molecule that would suggest
multiple sites for nucleation. Furthermore, these studies demonstrate

that the true nature of crystal growth and core formation is still an
active area of study. Ferritins with mixed iron and phosphate cores
have also been studied extensively [40,50–56]. These cores are more
amorphous than the crystalline cores without phosphate present.

A recent study has examined the iron mineral core of ferritin by
transmission electron microscopy (TEM), X-ray absorption Near Edge
Spectroscopy (XANES), Electron Energy-Loss Spectroscopy (EELS),
Small-Angle X-ray Scattering (SAXS), and SQUID magnetic studies
[57]. The core was gradually removed with thioglycolic acid, and the
mineral properties and composition were observed to change as the
total iron in the core decreased. Three different mineral phases were
observed in this study: ferrihydrite, magnetite, and hematite (Fig. 1).
The model proposes that all three of these minerals are present and
occur at different locations in relation to the protein shell of ferritin
depending on core size. In support of this model, previous work in
bacterial ferritin reported two populations of Fe atoms, which
consisted of mostly bulk iron and a small group of iron atoms
bound to the heme [58] (Section 3.4). The existence and function of
ferritin multi-phase iron minerals and any in vivo significance have
yet to be established.

2.3. Iron oxidation in ferritin

The process of iron oxidation for iron loading is reviewed in this
issue by Bou-Abdallah. Our purpose here is to briefly discuss how iron
oxidation is involved in ionmovement through the protein shell. Early
experiments showed that adding Fe2+ to apo ferritin in the presence
of an oxidizing agent was essential for iron to be incorporated into the
ferritin interior to form the mineral core [1]. Bakker et al. found that
ferritin was capable of oxidizing iron under lower pH conditions

Fig. 1. Composition of the ferritin mineral core. Spectroscopic analysis suggests that
ferritin is composed of a mixture of ironminerals located in different regions within the
ferritin protein cavity. Magnetite appears to form along the inner surface of the protein
shell, while hematite and ferrihydrite are more prevalent closer to the center of the
mineral [57]. (Reproduced with permission from the Journal of the American Chemical
Society).
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(pH=6.0) where Fe2+ was stable against oxidation by O2 and that
transferrin could be used in this reaction to bind the resulting Fe3+ to
monitor iron oxidation [59]. The ferritin enzyme activity associated
with iron oxidation is called ferroxidase activity. Lawson identified
the ferroxidase center active site as a di-iron cofactor found inside the
4-helix bundle of the H-chain ferritin subunit [60]. Two Fe2+ ions bind
to the ferroxidase center and, in the presence of oxygen, are oxidized
to Fe3+. After oxidation, the Fe3+ ions migrate from the ferroxidase
center to the interior of ferritin where mineral core formation occurs
at the nucleation sites of the L-chain ferritin. This process is essential
for the early stages of core formation when no iron is present in
ferritin. After a mineral core is formed, iron is proposed to migrate
through the 3-fold channels and become oxidized directly on the
mineral core surface [32]. Iron oxidation on the core surface is faster
than at the ferroxidase center, and although studies show that the
ferroxidase center still functions after a core is established, its
contribution to Fe2+ oxidation is less significant than the oxidation
on the mineral core surface [15].

2.4. Fe2+ binding and oxidation of iron on the core surface phosphate
layer

The work of Treffry began to disclose the true nature of the native
ferritin mineral core and the role of phosphate associated with
ferritin. This work suggested that a phosphate layer “caps” the
crystalline ferrihydrite mineral [50]. Treffry demonstrated that
ferritin, reconstituted in the presence of phosphate, was very different
than a native core. However, if ferritin was reconstituted with iron
and later incubated with phosphate, a phosphate layer formed on the
mineral core surface (Fig. 2A) and possessed similar properties to a
native mineral core. This provided evidence that anions could diffuse
through the ferritin protein shell and become associated with the iron
mineral of ferritin by binding to the surface and stacking faults in the
iron mineral crystal.

Further studies showed that a phosphate layer could be formed on
a reconstituted ferritin core by adding Fe2+ in the presence of at least
a 3-fold excess of phosphate under anaerobic conditions [61]. A
phosphate layer consisting of one iron for three phosphates formed
under these conditions (Fig. 2B). Additional reactivity studies of
native or reconstituted ferritins containing phosphate on the mineral
surface demonstrated that Fe2+ readily binds to the phosphate layer
under anaerobic conditions (Fig. 2C) [62]. Furthermore, once the
incoming Fe2+ binds to the core, it is in redox equilibrium with the
existing Fe(III) core such that the incoming Fe2+ is oxidized to Fe3+

and the electrons are transferred to the internal iron atoms where
they are delocalized within the mineral core (Fig. 2D) [54,62]. Once
oxidized, the resulting Fe3+ becomes buried under the phosphate
layer (Fig. 2E). This was shown by adding more Fe2+ to ferritin that
had been through a cycle of Fe2+ binding and oxidation and the
incoming Fe2+ ions bound indicating that the phosphate was still on
the surface and available to bind more incoming iron (Fig. 2F) [54].
The movement of iron through the phosphate layer during cycles of
oxidation and iron removal was clearly established by removing Fe3+

by DFO chelation [54]. During this process, the phosphate layer only
decreased in size by one phosphate for every six Fe3+ removed and
continued to cap the decreasing size of the mineral core [54].

Similar to animal ferritin, bacterial ferritins also contain phos-
phate-ironmineral cores. However, in contrast to mammalian ferritin,
the bacterial cores are amorphous and contain a homogeneous
phosphate/iron distribution with a ratio of ∼1.0 [63]. The phos-
phate-containing bacterial ferritin mineral core avidly binds Fe2+

under anaerobic conditions and the incoming Fe2+ is oxidized to Fe3+

upon binding to the phosphate similar to mammalian ferritin [63].

2.5. Iron loading in the presence of phosphate

The difference in mineral core composition and properties
between bacterial and animal ferritins led to a series of synthetic
and spectroscopic studies in which animal ferritin was reconstituted
in the presence of phosphate [40]. Furthermore, it has been reported
that phosphate stimulates the rate of iron loading into ferritin
[51,56,64,65]. Iron loading kinetics on bacterial ferritin showed that
phosphate stimulated the rate of iron oxidation and the authors
proposed that phosphate binds at or near the ferroxidase center [65].
Similar results have been observed for mammalian ferritin where
phosphate caused 2-fold acceleration and appeared to alter the
reaction mechanism from two potential iron-loading pathways to a
single pathway [64]. Cheng et al. reported iron deposition at 12 Fe(II)/
ferritin with 0.5–1.0 mM phosphate [56] and observed increased
oxidation rates resulting from phosphate shifting the redox potential
of Fe2+ to a more negative potential.

Phosphate appears to play an important role in later steps of iron
loading as well. Cheng et al. observed that phosphate stimulated the
decay of an EPR signal representing an iron(III) species that formed
after oxidation at the ferroxidase site. They reported a stimulated
decay of this signal in the presence of phosphate, suggesting that
phosphate aids migration of iron from the ferroxidase center to the
core [56]. Orino et al. suggest that the prompt iron uptake may be due

Fig. 2. Formation of the phosphate layer on the ferritin ironmineral. (A) A phosphate layer can be formed on the surface of a reconstitutedmineral core by incubating the sample with
phosphate. (B) The addition of phosphate and Fe2+ ions under anaerobic conditions to a reconstituted iron core will allow Fe2+ and phosphate to be deposited onto the mineral
surface. (C) Fe2+ added anaerobically to a ferritin core with phosphate will bind to the mineral surface. (D) Upon binding anaerobically, the incoming Fe2+ is in redox equilibrium
with the existing Fe3+ core such that the incoming Fe2+ is oxidized to Fe3+ and the electrons are transferred to the internal iron atoms where they are delocalized within the
semiconducting ferrihydrite mineral core. (E) The resulting Fe3+ is transferred under the phosphate layer upon oxidation because, (F) the anaerobic addition of more Fe2+ ions
permits more binding to the core surface, indicating that the phosphate was still on the surface and available to bind more incoming Fe2+ ions.
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to phosphate facilitating iron core growth rather than helping at the
ferroxidase center. This is consistent with previous work where
phosphate was shown to provide binding sites for incoming iron
atoms [54,61,62]. The iron phosphate mineral core has a decreased
UV/Vis absorbance compared to ferritin prepared in the absence of
phosphate [51]. The charge transfer band from iron interacting with
hydroxide is muchmore intense than iron interacting with phosphate
[64,65].

2.6. Iron loading with oxoanions

An extension of the studies of iron loading in the presence of
phosphate was done using phosphate analogs. Tetrahedral oxoanions
of arsenate, vanadate, and molybdate were reacted with apo ferritin
and Fe2+ in the presence of oxygen to load iron into ferritin. In each
case, the oxoanion was co-deposited with iron in an approximate 1:1
iron to oxoanion ratio [51]. This work further substantiated the
transport of anions across the protein shell in vitro.

To further clarify the process of anion transport, additional studies
were performed with sulfate, nitrate, and carbonate [66]. Iron loading
into ferritin was slightly inhibited under these conditions, but the
inhibition was due to the counter cations (sodium or potassium) of
sulfate, nitrate, and carbonate, which competed with Fe2+ for the
negative charges of the 3-fold channel [32]. Sulfate, carbonate, and
nitrate were not incorporated into ferritin and did not show an
inhibitory effect on iron loading. The question arises as to why most
tetrahedral oxoanions were incorporated into ferritin and sulfate was
not. Furthermore, the trigonal planar oxoanions were not incorpo-
rated into ferritin. It was concluded that deposition into ferritin was
based on solubility. If the anion formed an insoluble complex with
iron, a complex formed inside ferritin. If the iron and anion complex
was relatively soluble, then iron hydroxide formed instead [66].

A role for in vivo incorporation of molybdate or vanadate is
unclear. These metals are used in the active sites of enzymes [67,68]
and may use ferritin as a storage site as these metals have been found
as native component of ferritin [51,69]. Little is known about ferritin
oxoanion import or export, but it is a well-documented process that
occurs as a native and artificial process across the protein shell of
ferritin. Further discussion of ion transport through the protein shell is
covered in Section 4.

3. Iron release from ferritin—reduction and chelation models

Typical in vitro methods to remove iron from ferritin require
chemical reduction of the iron(III) mineral in the presence of Fe2+

chelating agents. This process has been performed with many
chemical reductants and chelators. Eq. (1) represents this reaction
with the chelator bipyridyl (bipy). This overall process can be viewed
as a two-step process consisting of reduction followed by chelation of
Fe2+ from the mineral core.

Holo! ferritinþ reductantþ 3bipy→½FeðbipyÞ3&2þ þ apoferritin ð1Þ

Four specific iron release models have been proposed and tested
and will be reviewed below because they provide unique insights into
possible iron releasemechanisms and how ions are transported across
the ferritin protein shell. The models are quite varied and not
mutually exclusive. Therefore, under in vivo conditions, each model
may be functioning depending on conditions that exist in the cell.

3.1. Subunit displacement

In 1993, Massover summarized evidence that large reagents
gained access to the core by direct reagent-core particle contact
[70]. Electron microscopy images supported this view by showing
ferritin shell alterations consistent with subunit removal. However,

the strong stability of the ferritin subunits to high temperatures,
denaturants such as urea, and pH extremes argue against facile
subunit displacement. Furthermore, no studies since this proposal
have supported this view and its present status has declined in view of
alternate proposals. However, this idea is interesting due to the
formation of hemosiderin, which appears to be a damaged form of
ferritin with missing subunits. It may be that certain signals or cellular
conditions promote subunit displacement leading to the formation of
hemosiderin [71].

3.2. Diffusion of molecules through the 3-fold channels

The unique architecture of ferritin derived from its X-ray crystal
structure suggested that the 3- and 4-fold channels, 0.4 nm in nominal
diameter, provided access to the ferritin interior from external
reagents [29]. The 3-fold channels are a currently accepted route for
iron entry and exit through the protein shell [31] with the ferroxidase
site an entry pathway when ferritin iron content is low. Initial
proposals suggested that reducing agents and chelators diffused
through the ferritin channels and reduced and chelated iron by direct
contact. This view was supported by using free reduced FMN and
reduced FMN attached to polymers. The former readily released iron,
presumably by diffusing into the ferritin interior to directly reduce the
iron core. However, the latter did not mobilize iron because
attachment to a polymer was thought to prevent FMN from diffusing
into the ferritin interior [72]. However, the requirement for diffusion
became problematic when redox reagents and iron chelators with a
larger diameter than the channel size successfully reduced and
chelated iron from ferritin [73] (see Section 3.4).

Diffusion of molecules through the 3-fold channel was elegantly
established through a series of studies using EPR active nitroxide
radical spin probes [74,75] with negative, neutral, and positive
charges. The basis of this procedure relies on the attenuation of the
EPR signal when the nitroxide free radicals enter the ferritin interior.
The EPR signal is attenuated because of the slow tumbling of the N-
oxide-ferritin complex. The positively charged spin probe successfully
penetrated the ferritin shell, but the negatively charged spin probe
was repelled by the negative charge of the 3-fold channel and did not
enter ferritin. The neutral spin probe bound to ferritin shell but did not
enter the interior. Increased temperature increased the rate of
diffusion of these spin probes into ferritin. Interestingly, the
dimensions of the spin probes were ∼0.7–0.9 nm in diameter,
which is approximately twice the size of the 3-fold channel. Since
the diameter of the 3-fold channel was determined crystallograph-
ically, it is possible that in solution, ferritin has breathing modes that
allow molecules of larger diameter to enter the ferritin cavity. In this
study, the charge of the molecules appears to be a more important
attribute than the size for traversing the protein shell. These studies
are consistent with electrostatic calculations based on the surface
charge and channel charge of ferritin where positively charged ions
would be attracted into the 3-fold channels by the negatively charged
amino acids and negatively charged ions would be repelled [32,33]. It
is interesting that the electrostatic calculations and the nitroxide spin
probe studies both indicate that anions such as phosphate, chloride,
and hydroxide would not readily traverse the ferritin protein shell.
Their presence inside ferritin is anomalous in relation to these studies
and requires that anions enter the interior by some other process. One
explanation suggests that anions are accompanied by a flow of
positive ions in the same direction.

The importance of charge was further investigated using the
natural substrates Fe2+ and Fe3+ by measuring the rates of transfer of
these ions across the protein shell from the exterior solution to the
ferritin interior [76]. The procedure consisted of reacting apo ferritin
containing encapsulated [Fe(CN)6]3− with Fe2+ or [Fe(CN)6]4− with
Fe3+ and measuring the rate of Prussian blue (PB) formation within
the ferritin interior [76]. When compared to control reactions with [Fe
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(CN)6]3− added to Fe2+ or [Fe(CN)6]4− added to Fe3+ in solution with
no ferritin, the reactions with [Fe(CN)6]3− or [Fe(CN)6]4− encapsu-
lated inside ferritin had a 15- to 20-s lag phase before PB was formed.
This indicated that the lag phase was due to iron traversing the
protein shell. Similar results were obtained when DFO was encapsu-
lated inside ferritin and Fe3+ traversed the protein shell. An
unexpected observation was that Fe3+ ions crossed the protein shell
much faster than Fe2+ indicating that the inability of ferritin to bind
and sequester Fe3+ in most reaction assays is probably due to the
rapid hydrolysis and insolubility of the Fe(OH)3. Another explanation
is that the gated pores of ferritin (see Section 3.3) may be selective for
Fe2+ or Fe3+ under different conditions. The simplest explanation for
this behavior is that the Fe2+,3+ ions migrated through the 3-fold
channels and once inside the ferritin interior rapidly react with DFO or
[Fe(CN)6]3−,4− to form products.

Additionally, ferritins have been prepared with anions such as
[PdCl]42− and [PtCl]42− and after chemical reduction, the elemental
form of these metals has been obtained [77,78]. This synthesis would
require these anions to shed the chloride ligands or to diffuse through
the channels as large anions. Since these anions are slightly larger
than the dimensions of the channels and have negative charges, these
anions should not traverse the 3-fold channels of ferritin. The
mechanism of how these metals enter ferritin is still not established.

3.3. Gated pores

Ion transport across membranes requires mechanisms allowing
ions to traverse the hydrophobic barrier of the membranes. This
process occurs in both the exterior membranes of cells and is also
required for ions to enter and leave organelles. Transmembrane
proteins mediate this process by forming channels or pores that allow
ions to pass through the membrane. These pores have mechanisms to
regulate ion flow by opening or closing, depending on cellular
requirements. Pores that can be opened or closed are called gated
pores. Some channels function to allow ions to flow from a high
concentration to a low concentration and are called ion channels.
Other proteins transport ions against a concentration gradient (from
low to high concentrations) and are called ion pumps or ion
transporters. Ion pumps require the input of energy to move the
ions against a concentration gradient.

The protein shell of ferritin has a similar function as cellular
membranes in that it separates the cytosol from the stored iron. This is
a protective barrier that prevents radical chemistry initiated by iron.
Recently, Theil et al. explained how the 3-fold channels of ferritin act
as gated pores and the newly elucidated mechanism explains how
molecules larger than 0.4 nm can traverse the ferritin protein shell
[79]. Increased temperature and physiological concentrations of urea
(2–7 mM in plasma and in cells) were shown to open the channels
and significantly increase the rate of iron release as monitored by an
iron release assay of FMNH2 as a reductant and bipy as chelator [80]. A
creative amino acid search was performed using three criteria to
identify amino acids responsible for forming the gated pore. These
criteria included (1) amino acids conserved in all ferritins, (2)
proximity to the 3-fold channel, and (3) “orphan residues” with no
other known function [79]. Three residues fit the search and were
identified as Leu-110, Arg-72, and Asp-122. Assays on proteins
mutated at these residues confirmed that changing these residues
significantly increased the ability of iron to migrate out of the ferritin
interior during reductive iron release studies [81]. Structural analysis
shows that Arg-72 and Asp-122 form an ion pair at the opening of the
3-fold channel that gates the pore. Furthermore, it was shown that
Leu-110 interacts with conserved Leu-134 [82] by hydrophobic
interactions. In combination, these four residues have a significant
impact on the formation and stability of the 3-fold channel.

The conformation representing the closed 3-fold channels of
ferritin is shown in Fig. 3A. The electrostatic gating interaction

between Asp-122 and Arg-72 is shown. A proline substitution [82] at
the conserved residue Leu-134 disrupts the hydrophobic interaction
between Leu-134 and Leu-110 weakening the hydrophobic stabiliza-
tion between helices C and D (Fig. 3C). Proline is a helix breaker, and
the structure of the Leu134Pro mutation shows a significantly shorter
D helix (compare Fig. 3A to B). This mutation also disrupts the loop
that connects the C and D helices and alters a flexible region from
residues 114–133, near the 3-fold channel. This change is critical
because it prevents the formation of the electrostatic interaction
between Asp-122 and Arg-72 (Fig. 3B and C) that act as the gated pair
to stabilize the 3-fold channel. As a result, a much larger 3-fold pore is
observed in the crystal structure of the mutant that is approximately
3 nm in diameter, compared to a ∼0.4-nm diameter pore in wild-type
ferritin (Fig. 3B). In actuality, the pore may not be 3 nm in diameter,
but this mutation has such a destabilizing effect on ferritin that
structural analysis does not show crystallographically defined order in
the area surrounding the 3-fold channel. Therefore, that ability of the
protein to regulate what ions pass through the 3-fold channel is
significantly altered by this mutation.

In addition, this mutation causes a disruption in the gated pore, by
destabilizing the hydrophobic interaction between Leu-134 and Leu-
110 that normally stabilizes the protein tertiary structure. The
additive effect of the Pro substitution on all 24 subunits of the
nanocage results in disruptions to both interhelical and intersubunit
interactions. Ultimately, these four residues significantly affect the
structure and size of the 3-fold gated pore. Studies with circular
dichroism (CD) spectroscopy, temperature [83], chaotropic com-
pounds, iron release [80,82], and mutant proteins [81] all point to the
conclusion that localized melting of these residues increases the rate
of iron release from ferritin.

Peptides from a combinatorial library were created, which bound
to the ferritin subunits and presumably altered their flexibility, which
in turn regulated iron release by opening or closing the pores [83]. It is
proposed that the opened or closed state of the 3-fold channel is
regulated by binding of substrate [80] or by regulatory proteins
binding to ferritin in vivo [79,83].

3.4. Electron transfer through the protein shell

A clear compositional distinction between animal and bacterial
ferritins is the presence of protoporphyrin IX in bacterial ferritins.
The reduction potential of the 12-heme groups in apo Azotobacter
bacterial ferritin is−205 mV but becomesmore negative (−430 mV)
in the presence of themineral core [84]. This property suggests that the
mineral and the heme groups are in close proximity, and this contact
could facilitate electron transfer from external reagents directly to the
mineral core facilitating reduction of the latter for iron release. In fact,
two populations [58] of Fe atoms were found in bacterial ferritin,
which consisted of mostly bulk iron and a small group of iron atoms
bound to the heme. In contrast to animal ferritin, which have a pH-
dependent reduction potential of −190, −310, −416 mV at pH 7.0,
8.0, and 9.0, respectively, the reduction potential of holo bacterial
ferritin iron core is more negative (−430 mV) and is independent
of pH.

For bacterial ferritin, direct electron transfer from large exterior
reductants through the heme to the mineral core is mediated by the
heme [58,85]. This process eliminates the requirement for reductants
to diffuse through the channels to reduce the iron mineral core
directly. For mammalian ferritin, there is no obvious pathway for
long-range electron transfer through the 2 nm protein shell of ferritin;
however, studies have shown that large reductants and oxidants, too
large to enter the ferritin interior, can transfer electrons through the
animal ferritin protein shell to the mineral core [73,86]. These studies
suggest that a specific electron transfer pathway exists within the
ferritin protein shell. Although an electron transfer pathway through
the protein shell has not been identified in mammalian ferritin, the
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presence of heme groups in bacterial ferritin suggests that such a
systemmight be required, especially since the thickness of the ferritin
protein shell (2 nm) is near the maximum distance for electron

tunneling [87]. An electron transfer pathway to mediate electrons
across the protein shell of animal ferritin has been proposed and is
currently being evaluated [88]. This pathway for the H-chain ferritin is

Fig. 3. The gated pores of the 3-fold channel. (A) The structure of the H-chain ferritin 3-fold channel showing the ionic interaction of Arg-72 and Asp-122 (represented by ball and
stick models in the circled region). (B) The structure of the Leu110Pro mutant with a significantly larger 3-fold channel with shorter C and D helices and the lack of Asp-122 to form
the gated pair with Arg-72. (C) Ribbon diagram of the individual H-chain ferritin subunit showing the hydrophobic interaction between Leu-110 and Leu-134. Also present is the
Arg-72–Asp-122 ionic interaction at the mouth of the 3-fold channel.
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predicted to use, from the exterior to the interior of ferritin, Cys-90,
Trp-93, Met 37, Phe-55, Tyr-54, and Lys-53. A similar pathway for L-
chain ferritin was identified and consists of, from exterior to interior
(using the equivalent numbering as for H-chain ferritin) Gln-90, Trp-
93, Leu-37, Phe-55, Phe-54 [88].

Support of this hypothesis was suggested when the apo protein
shell of ferritin was shown to possess redox properties in the absence
of cofactors such as heme [89]. When treated with oxygen or chemical
oxidants, the apo ferritin shell becomes oxidized. Microcoulometry of
oxidized apo horse spleen ferritin showed that the shell is capable of
accepting six electrons per 24 subunits consisting of 6 H-chain ferritin
subunits and 18 L-chain ferritin subunits. The reduction potential was
−310 mV at pH 6.0–8.5. The reduced apo ferritin was able to donate
electrons to cytochrome c and an Fe(III)-ATP complex under
anaerobic conditions. Oxidized apo ferritin was able to oxidize Fe2+

under anaerobic conditions showing functionality of the redox center
in ferritin. Oxidized ferritin has a yellow color with increased
absorbance at wavelengths from 300 to 600 nm compared to an
identical concentration of apo ferritin reduced with dithionite. The
ferritin was dissociated by low pH and dialyzed to remove any
potential cofactors. After dialysis, the yellow color remained with the
ferritin protein after it was reassembled and oxidized. Al-Massad et al.
identified quinones in both animal and bacterioferritin [90]. The fact
that the quinone was not released by low pH treatment and dialysis
suggests that the quinone is formed from an amino acid such as
tyrosine or phenylalanine within the protein shell [91].

Horse spleen apo ferritin and rat apo ferritin with different H- and
L-chain compositions accepted different numbers of electrons when
chemically oxidized and analyzed by microcoulometry. Heteropoly-
mers of recombinant human H- and L-chains were prepared by
combining apo H- and L-chain ferritin subunits in various ratios at pH
2.0 followed by reassembly of the subunits at pH 7.0. These
heteropolymers were tested for redox activity by microcoulometry
[92] and compared to homopolymers of H- and L-chain ferritin. The
redox reactions were only observed when both H- and L-subunits
were present. H- and L-homopolymers of ferritin were not redox-
reactive. Themaximumnumber of twelve redox centers was observed
with an equal mixture of twelve H-subunits and twelve L-subunits.
Studies with mutant H-chain subunits showed that Trp-93 from H-
chain ferritin subunits is an important component of the redox center
that forms in apo ferritin [92].

4. Redox reactions require ion transport for charge balance

Based upon the iron loading and iron release results discussed
above, redox reactions play a significant role in iron entry and release
from ferritin. Several facets of this complex process have been actively
investigated including the ferroxidase center (Section 2.3), the
nucleation sites (Section 2.3), the redox properties of the mineral
core (Section 2.4), the redox reactivity of the associated phosphate
layer (Section 2.4), and the redox reactivity of the protein shell itself
(Section 3.4). However, while insights into these aspects of ferritin
function have been and are being actively investigated, processes
associated with ion transfer across the protein shell, particularly
anions required for charge balance, have been largely ignored. Ion
transfer is an inherent property of electrochemistry and redox
reactions. In any electrochemical cell, a salt bridge is an essential
component because ion migration must occur to prevent charge
build-up on either side of the half-cells. An identical process occurs in
ferritin in which the protein shell acts as an ion permeable membrane.
As iron is reduced in the mineral core, due to incoming electrons, a
concomitant release of negative charge from the core must occur to
balance the incoming negative charge. Experiments related to redox
reactions that involve ion transfer across the protein shell of ferritin
clearly highlight this important process.

4.1. Chloride and hydroxide ions traversing the ferritin protein shell

Electrochemical measurements show a pH-dependent process
with a reduction potential of −190 mV at pH 7.0 that shifts
−120 mV/pH unit more negative as the pH changes to pH 8.0
(−310 mV) and to pH 9.0 (−430 mV). Studies monitoring pH
confirmed that two hydroxide ions are released during Fe(OH)3
reduction, as shown by Eq. (2) [93]. However, this stoichiometry is not
consistent with the expected result shown in Eq. (3), which suggests
that only one hydroxide ion should be released upon iron reduction.
This behavior demonstrates a more complex core reduction process
than was originally anticipated.

FeðOHÞ3 þ e− ¼ FeðOHÞþ þ 2OH− ð2Þ

FeðOHÞ3 þ e− ¼ FeðOHÞ2 þ OH− ð3Þ

Eq. (2) is not charge balanced and implies that an impossibly large
charge build-up should occur if greater than 2000 Fe(OH)3 are
reduced forming 2000 Fe(OH)+ ions within the ferritin interior. This
dilemma was resolved when chemical analysis of the resulting
reduced ferritin mineral core showed that charge compensation
occurred when chloride ions from the buffer were incorporated into
the ferritin core (Fig. 4) [14]. In the absence of chloride ions,
hydroxide ions were the preferred anion to complex the iron atoms
and Eq. (3) was observed. The nature of this new core has not yet been
studied nor has its relationship to physiological processes been
established. One hypothesis is that the Fe(OH)2 mineral core is less
soluble than the core of FeClOH. The presence of chloride may
improve the solubility of the Fe2+ ion and facilitate iron release.

4.2. Phosphate release by reduction

The presence of phosphate as a surface layer in animal ferritins and
its presence as a 1:1 homogeneous mineral in bacterial ferritin
demonstrated that phosphate is naturally occurring and possibly is an
essential component in ferritin function [40,50]. One role was
suggested when reduction of the mineral core by 10% mobilized the
majority of the phosphate layer [61]. It appears that the surface iron
atoms are the first to be reduced and results in the release of the
associated phosphate layer. The release of the negatively charged
phosphate ions from the ferritin surface in response to the incoming
electronsmay be a rapid response for charge balance. However, if each
entering electron causes the release of one phosphate as H2PO4

−/
HPO4

2− at pH 7– 8, a large instantaneous negative charge build-up will
occur inside ferritin. The magnitude of this effect is seen by calculating
the concentration of released phosphate (∼400 phosphate groups per
mineral core of 2000 iron atoms) as H2PO4

−/H2PO4
2− within the half

filled ferritin interior (1.3×10−19 cm3), giving an instantaneous
phosphate concentration of N5 M. Such a high concentration would

Fig. 4. Chloride ion pumping during chemical reduction of the iron core. Eq. (3) shows
that upon chemical reduction of the ironmineral core of ferritin, two hydroxide ions are
released for each iron reduced. To compensate for charge, one chloride ion is pumped
into ferritin for each iron reduced. The resulting core has a composition of FeClOH.
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certainly drive a diffusional process to decrease the phosphate
concentration within the ferritin interior. An additional possibility is
that the elevated phosphate concentration acts as a trigger to open the
gated pores (Section 3.3) and allow ions to flow through the 3-fold
channels. An alternate possibility for the presence of phosphate is that
the release of phosphate may provide a local complexing agent to
maintain solubility of the iron as it moves out from ferritin.

Section 4.1 discussed the observation that chloride enters ferritin
during iron reduction in order to provide charge balance to
compensate for the expulsion of hydroxide ions from the ferritin
interior. These arguments were based on the hydroxide ion release
(Eq. (2)), but the release of phosphate must also enter into arguments
related to charge compensation because of the phosphate species that
form (H2PO4

−, HPO4
2−, or PO4

3−) and pH changes because of the weak
acid and weak base properties of these species. Phosphate is
associated with the first 10% of the iron released. As mentioned
above, its release may trigger pore opening that facilitates hydroxide
ion release from the ferritin interior.

However, an alternate possibility is that protons are transferred
from the exterior of the ferritin shell to the interior to neutralize the
hydroxide ions that are released. H2O could be easily eliminated
through the protein channels. If protons traverse the protein shell to
compensate for the increased negative charge caused by hydroxide
release from the mineral core, the interior of ferritin remains charge
balanced. However, the release of the negatively charged phosphate is
not compensated for by this mechanism.We propose that an alternate
reason for chloride to enter the ferritin interior is to compensate for
the removal of the negatively charged phosphate species that are
liberated upon chemical reduction of the ferritin mineral core. The
actual charge of the phosphate anion (H2PO4

−, HPO4
2−, or PO4

3−) that
leaves ferritin would determine the number of chloride ions that are
required to enter the ferritin cavity to balance the charge. The results
presented here clearly demonstrate the need for further studies on
the mechanism of maintaining charge balance in ferritin during redox
reactions associated with iron deposition and release.

From a materials synthesis perspective, it will be interesting to
study what other anions can substitute for chloride in this reaction.
Such a mechanism might allow for the synthesis of new materials by
chemically reducing the mineral core of ferritin in the presence of the
anion one desired to incorporate into the ferritin core.

The driving force for anion transfer across the ferritin protein shell
is an interesting question that requires further study. When
phosphate is released by reduction the concentration inside ferritin
would exceeds 5 M facilitating phosphate release by charge and
concentration arguments. The opposite argument would be made for
chloride ion diffusion into ferritin. The chloride ion concentration is
approximately 4 mM inside the cell but would be 24 M inside ferritin
if 2000 chloride ions entered the interior of a half-filled ferritin cavity.
To transfer 2000 chloride ions into the ferritin interior would require
energy and would be appropriately classified as pumping as defined
for membrane ion pumps discussed previously (Section 3.3). The
mechanism allowing chloride ions to be pumped into ferritin has not
yet been elucidated but must be driven by charge compensation and
possibly by a port–antiport mechanism associated with phosphate
diffusion out of the ferritin interior. Further studies on thismechanism
are required to completely understand this system.

5. Iron release from ferritin—non-reductive processes

The removal of iron from the ferritin core by Fe3+ chelators is more
difficult and much slower than the reductive processes discussed
above [94,95]. Therefore, the treatment of human iron overload
diseases requires chelation therapy, which consists of administering
very powerful chelator drugs such as DFO, which is a bacterial
siderophore from Streptomyces pilosus that has a binding affinity for
iron of greater than 1030 [96]. The goal is to find Fe(III) chelators that

are capable of removing excess iron from the natural and overloaded
cellular locations that include ferritin and hemosiderin [97]. The
resulting iron-chelate is then excreted from the body. DFO is not lipid
soluble and is not effective for crossing membranes or penetrating
organelles but is effectively excreted. The use of the orally adminis-
tered and membrane permeable chelators deferiprone and defer-
asirox has given a great advance to chelation therapy since these
chelators cross cell membranes and permeate organelles [98,99].
Current treatments use a combination of lipid soluble chelators such
as deferiprone or deferasirox to diffuse into iron loaded cells or
organelles, followed by diffusion back to the bloodstream where DFO
is capable of removing iron from lipid soluble chelators [100–102].
Once the iron is sequestered in DFO, the DFO–iron complex is
excreted.

During the evaluation phases of chelate selection, tests showed a
general trend for iron removal of freshly precipitated FeO(OH)NN
hemosiderinN ferritin. The slowness of iron release from ferritin was
attributed to the inability of chelators to directly access the mineral
core, which is sequestered within the hollow interior and only
accessible through the 3-fold channels of ferritin. As chelators are
usually larger than the channel openings, the slow transfer of iron
from the sequestered ferritin core through the protein shell to the
chelators at the ferritin exterior limits the rate of chelation therapy.
Numerous kinetic studies have monitored iron release from ferritin
[97,103,104] over time increments of hours or days and showed that
iron loss was zero order in ferritin due to the rate limiting release of
iron from the stored mineral core. However, some studies noted that
iron release occurred more rapidly in the initial time interval than
later in the reaction [105]. This was an important observation because
it suggests that early events in the iron loss process had been
overlooked and were potentially relevant to the overall iron loss
process. Additionally, newer studies have identified more rapid
chelation processes that rely upon diffusion of the chelator through
the 3-fold channel or use the gated pores discussed in Section 3.3
[106]. With new data supporting mechanisms for Fe(III) chelation
from the ferritin mineral core, alternatemechanisms for in vitro and in
vivo iron release must be considered.

5.1. Direct Fe3+ chelation from ferritin

Iron chelation from ferritin using the Fe(III) chelators, aceto- and
benzo-hydroxamates, demonstrated that 30–60% of the iron core
could be removed from the Fe(OH)3 mineral core. In the presence of
physiological concentrations of urea to open the gated pores
(Section 3.3), complete removal of iron from ferritin was achieved
at pH 7.4 in one hour [106]. The authors concluded that the chelating
molecules had entered the ferritin interior via the 3-fold channels and
directly interacted with the iron mineral core. This view stands in
contrast with other chelating agents such as DFO that remove iron
without entering the ferritin interior [107]. However, the dimensions
of the benzo-hydroxamate chelator (∼0.6 nm) would require breath-
ing modes or opening of the gated pores (Section 3.3) to allow it to
pass through the 3-fold channels of ferritin. Additionally, the negative
charge of these molecules would impede the progress of these
chelators to pass through the 3-fold channels. However, the authors
suggest that it is the neutral species that diffuses into ferritin. To
explain how the large iron–chelate complex could leave ferritin, the
authors proposed that first, a mono(hydroxamate) complex formed
inside ferritin and the Fe(III)-mono(hydroxamate) diffused out of the
ferritin channel. After exiting ferritin, higher coordination complexes
of the iron–chelate complex formed.

In another study, release of iron by catechols was examined.
Traditionally catechols were thought to reduce iron in ferritin by a
redox rearrangement to form Fe2+ and a quinone, followed by
chelation of the Fe2+ [108–110]. Sanchez et al. showed that the iron
was directly chelated from ferritin without redox reactions occurring
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[111]. This reaction presumably followed the same mechanism as the
aceto- and benzo-hydroxamates.

5.2. Proposed model for Fe(III) chelation from ferritin

In all considerations involving equilibrium transfer of iron, it must
be considered that the Fe(OH)3 mineral core in ferritin is a slow
responding sink of iron with a Ksp of 1.6×10−39. Therefore, proposals
involving equilibrium transfer of iron out of ferritin must be
constrained by this limit or the chelators receiving iron from ferritin
must have very large binding constants. Formodels that prevent direct
chelator access to the iron mineral core, the protein shell must
perform a role in iron mobilization. A potential role for ferritin in Fe3+

release is suggested by electrostatic calculations of the channels [33].
In this study, two metal binding sites in the 3-fold channel were
observed. Although these calculations were performed for Fe2+, the
carboxylate residues also have affinity for Fe3+, and in fact, Fe3+ binds
in these channels [112,113]. A model that might explain Fe3+ removal
from ferritin is outlined in Fig. 5. The model represents how Fe3+

might pass through the 3-fold channel but a similar model could be
used for the two metal binding sites of the ferroxidase center. This
model shows the iron core and the two binding sites within the 3-
fold channel. The unloading sequence suggested by Fig. 5 indicates
that Fe3+ dissociates (k1) from the mineral core and binds at site 1.
Although the amount of free Fe3+ is small, a tiny amount of iron does
dissociate from the iron mineral core. Once bound at site 1, the Fe3+

canmigrate to site 2 (k2), which is in equilibriumwith site 1. Site 2 has
a lower affinity for Fe2+ than site 1 according to iron loading studies
[76], but the affinities for Fe3+ are unknown. In the absence of
chelators, Fe3+ partially populates sites 1 and 2 butwhen a strong iron
chelator is present, the equilibriumwould pull Fe3+ outward from the
ironmineral core through the 3-fold channel to chelators at the ferritin
exterior.

The existence of iron in the channels is supported by two studies.
First, EPR studies commonly show a g=4.3 EPR signal for holo ferritin.
The g=4.3 EPR signal is due to isolated Fe3+ ions in a rhombic
environment [114]. This signal is also observed in the early stages of
iron oxidation when Fe2+ is oxidized to Fe3+ [115]. Since a g=4.3
signal is always present in holo ferritin, this supports the existence of

monomeric Fe3+ that may be accessible for chelation. Bauminger et al.
further substantiated surface bound Fe3+ by showing the transfer of
Fe3+ between ferritin molecules [116]. This work reported that once
oxidized, 57Fe3+ could be transferred to other ferritin molecules
containing cores of differing sizes as measured by Mossbauer
spectroscopy. This study shows that a small population of Fe3+

appears to remain surface bound and available for exchange. Such
studies support the model that a minor population of Fe3+ is available
for slow chelation from ferritin. This small population of Fe3+ explains
the rapid iron release that occurred in the initial time interval in the
kinetic studies by Crichton et al. [105].

While Fe3+ release by this process is much less rapid than iron
release from a reduced mineral core, a significant Fe3+ flux is still
available from all ferritin molecules in the cell if a suitable chelator is
present. An important question to evaluate is the role of phosphate
and other anions, such as chloride and citrate in modulating the
release of iron from themineral core. For instance, the Ksp of FePO4 (s)
is 4×10−27 so such a layer on the surface of the ferritin core would
allow Fe3+ to be over 12 orders of magnitude more soluble than Fe
(OH)3 (s) with a Ksp of 1.6×10−39. Fe(OH)2 has a Ksp of 7.9×10−16,
and it is known that chloride salts of metals are more soluble than the
hydroxides or phosphates. Even the mineral ferrihydrite is more
available for biological processes than other iron oxides [117].
Therefore, alterations to the mineral core composition will signifi-
cantly increase the ability of the cell to obtain iron from the ferritin
mineral core.

Considering the solubility product data listed above, the total
amount of Fe3+ available for release by such a mechanism would still
be very small but may meet the demands of the cell. By invoking the
gated pore model where substrate or proteins bind to the ferritin
exterior, one could envision alterations in the affinity of site 1 and site
2 for Fe3+ in a way that would allow iron release. Measurements of
Fe3+ under these conditions are still required to realistically consider
the Fe3+ release models from a thermodynamic standpoint.

6. Biochemical models for in vivo iron release

Themechanism of iron release from ferritin in vivo is unknown, but
several studies shed light on potential mechanisms. Three distinct

Fig. 5. Chelation of Fe3+ from ferritin. In the presence of DFO, iron is removed from the 3-fold channels (site 1 and site 2). In the absence of DFO, sites 1 and 2 are repopulated as Fe3+

ions slowly dissociate from the FeOOH mineral core and populate these sites. The reactions representing the rate constants k1, k2, and k3 are represented.
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models have been proposed and include (1) a model based on simple
equilibrium between cytosolic iron and iron sequestered in ferritin,
(2) ferritin degradation in the lysosome for iron release, and (3) a
chaperone protein that docks with ferritin to reduce and removes iron
from ferritin.

6.1. Intracellular equilibrium of cytosolic and ferritin iron

A model suggesting ferritin iron is in equilibrium with cytosolic
iron was proposed by De Domenico and Kaplan [118] and was based
upon studies where the intracellular iron concentration of cells was
depleted by expressing proteins that transports iron out of the cytosol.
The model suggests that iron is released by ferritin when the iron
concentration in the cytosol decreases. For these studies, the
depletion of iron in the cytosol was caused by the expression of
ferroportin, which acts as an iron export transporter, or by Ccc1p, a
yeast protein that transports iron into the vacuole [118]. These studies
showed that as the intracellular iron concentration decreased, the iron
levels in ferritin also decreased. Once the ferritin shell was depleted of
iron, it was mono-ubiquitinated and disassembled to monomers
followed by degradation in the proteasome. When similar studies
were performed in yeast, an organism that does not naturally possess
ferritin, iron release was observed from ferritin. The authors
concluded that no ferritin-specific biochemical machinery was
required to release iron from ferritin since yeast does not naturally
possess ferritin. This conclusion would be correct unless there is an
evolutionarily retained system that was conserved for another
purpose but still functions to release iron from ferritin.

Based on the difficulty of releasing Fe3+ from ferritin (Section 5.2),
an equilibriummodel where Fe3+ is in equilibriumwith the cytosol is
challenging to believe. Fortunately, for this model, the intracellular
compartment has a reducing environment and the iron core of ferritin
may exist in a mixed valent state with sufficient Fe2+ to be in
equilibrium with iron in the cytosol. Perhaps signals for iron release
also include the accumulation of reduced species that donate
electrons to ferritin to reduce iron prior to chelation. More extensive
studies need to be performed to understand the mechanism of this
iron release process.

6.2. Ferritin iron release by lysosomal degradation

The results of De Domenico and Kaplan, showing that cytosolic
iron is in equilibrium with ferritin iron, is in conflict with previous
studies. Truty et al. grew rat hepatoma cells in the absence or presence
of ferric ammonium citrate (FAC) with ferritin labeled with [35C]Met
and 59Fe [119]. In the absence of FAC, ferritin was degraded and iron
was released to the cells. This result was unexpected because of the
substantial in vitro work (Sections 3 and 5), suggesting that iron
diffuses through the 3-fold channels of ferritin for release. In a follow-
up study, using the chelator DFO to deplete cells of iron, it was shown
that independent of cell type (using hepatoma cells, Caco2 and K562
cells) ferritin was degraded in the lysosome to supply the depleted
cells with iron. The lysosomal protease inhibitors, leupeptin and
chymostatin, prevented ferritin degradation during iron limitation
caused by DFO treatment, consistent with the model that ferritin is
degraded in the lysosome as a mechanism for iron release. This model
suggests that iron is irreversibly trapped inside the ferritin protein
shell and can only be released by degradation of the ferritin protein
shell.

This model is appealing based on the solubility arguments
presented previously. Degradation of the ferritin shell would allow
access of chelators to the iron core. Furthermore, the lysosome is at
lower pH where iron is more soluble and reducing agents are present
in this compartment. However, iron in the lysosome is also dangerous
as iron and peroxide react to initiate radical chemistry that is
damaging to the lysosome and the cell [120].

6.3. Two pathways for in vivo ferritin iron release by chelators

To resolve the conflict between these two iron-release models
(lysosomal degradation model Section 6.2 and the intracellular
equilibrium model Section 6.1), De Domenico and Kaplan studied
how several chelators depleted cells of iron [118,121]. In these
studies, the effect of DFO, which is not absorbed after oral
administration and is not membrane permeable, was compared to
the orally administered and membrane permeable chelators defer-
iprone and deferasirox. Themethod of cellular entry appears to have a
significant effect on the way iron is released and how and when
ferritin is degraded. DFO enters cells by endocytosis and is targeted to
the lysosome and endosome. The presence of DFO in the lysosome
induced autophagy leading to the transfer of ferritin from the cytosol
to the lysosome. The presence of DFO in the lysosome correlated with
the cytosolic accumulation of LC2B, a protein that is essential for
autophagy. The DFO effect could be blocked by treating cells with a
plasmid expressing the dominant negative mutant (K44A) of
dynamin that blocks the clathrin mediated endocytosis process. By
excluding DFO from the lysosome, ferritin degradation in the
lysosome was inhibited. These results confirmed that the presence
of DFO in the lysosome induces autophagy and leads to ferritin
degradation in the lysosome.

In contrast to DFO, deferiprone and deferasirox traverse the
membrane and upon entering the cytosol bind iron from the
intracellular iron pool. Depletion of the intracellular iron pool triggers
the release of iron from ferritin [121]. The resulting empty ferritin
nanocages are ubiquitinated and degraded by the proteasome in a
similar fashion as when iron is depleted by ferroportin. Thus, two
independent chelator pathways exist in vivo: (1) a depletion of
cytosolic iron leading to proteasomal degradation of the empty
ferritin nano cage and (2) iron depletion in the lysosome, leading to
autophagy where ferritin is moved from the cytosol into the lysosome
for degradation and iron release.

In another study, cationized ferritin was endocytosed by cells and
degraded in the lysosome [122]. The released iron was transported to
the cytosol and induced the synthesis of ferritin. These studies
indicate that the iron concentrations in the cytosol and lysosome are
in equilibrium through membrane transporters that can transport
iron in both directions. Disturbances in iron concentrations in either
the cytosol or lysosome trigger signals that allow iron to be moved
from one location to the other. These studies further confirm the
presence of a cytosolic iron pool and demonstrate that ferritin iron is
released to replenish this pool when it decreases. Further studies are
required to better understand this relationship between cytosolic iron
and ferritin iron.

6.4. Iron delivery and/or release by iron chaperones

Recently, an intracellular iron chaperone protein was discovered
[123]. The iron chaperone protein is PCBP1, from a family of RNA-
binding proteins belonging to the heterogeneous nuclear ribonucleo-
protein K-homology domain superfamily [124]. Previous studies
showed that when ferritin is expressed in yeast, an organism that
does not naturally express ferritin, the iron loading of ferritin is very
low [123]. The co-expression of PCBP1 and ferritin in yeast allowed
iron loading to occur in ferritin [123]. A complimentary experiment
was to deplete PCBP1 in human cells and observe the inhibition of
ferritin iron loading. In vitro iron loading studies also confirmed that
PCBP1 loads iron into ferritin. PCBP1 binds to ferritin in the presence
of Fe2+ as detected by co-immunoprecipitation. PCBP1 binds 3 Fe(II)
with a Kd=0.9 μM for the first binding site and a Kd=5.8 μM as an
average for the second and third binding sites. The presence of an iron
metallo-chaperone is very appealing because a cytosolic iron-binding
chaperone could potentially minimize the formation of reactive
oxygen radical chemistry catalyzed by free iron and oxygen. Studies
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need to be done to determine if PCBP1 is the mediator that senses and
releases iron from ferritin when cytosolic iron concentrations
decrease. Metallo-chaperones have been identified for other transi-
tion metal ions such as copper, manganese, and nickel [125–129].

6.5. Ferritin binding proteins

Several ferredoxin-like proteins have been identified in DNA
regions close to ferritin in bacteria Escherichia coli [130] and
Pseudomonas aeruginosa [131]. These ferredoxin proteins have been
purified and characterized as electron transfer proteins containing
2Fe-2S clusters [131–133]. The fact that these proteins bind to ferritin
suggests that they may have a role in redox chemistry associated with
iron loading or iron release. Additionally, similarity to the NifU and
IscU proteins that are involved in iron sulfur cluster assembly
strengthens this hypothesis [134–136]. Investigations of global
transcriptional response of iron-starved cultures of P. aeruginosa
provide valuable insight into the role of this bacterial ferritin-related
protein. The bacterioferritin is expressed under high iron conditions,
whereas the ferredoxin protein called Bfd is upregulated 200-fold
under low iron conditions. This regulation suggested that Bfd might
be expressed for mobilizing iron from ferritin during iron deprivation.
Weeratunga et al. [85] established a system where NADP reductase
(FPR) and NADPH were used as a reducing system to reduce iron in
bacterioferritin and bipy was used to chelate the resulting Fe2+ [85].
This in vitro system failed to reduce the heme of the bacterial ferritin
and was sluggish in removing iron from ferritin. However, when the
same system was used and Bfd ferredoxin was added, the heme was
rapidly reduced and iron release was significantly stimulated.
Interestingly, the iron-deficient form of the ferredoxin was also
capable of stimulating heme reduction. The ferredoxin acts to make
the heme “conductive” and allows electrons to pass through the
protein shell. This system supports the model discussed in Section 3.4,
proposing that electrons are transferred through the protein shell
followed by Fe(II) chelation as model for iron release.

Finally, a series of studies have reported other proteins that bind to
ferritin. These proteins include serum proteins involved in clearing
proteins from the blood such as alpha-2-macroglobulin [137].
Apolipoprotein B has a role in heme binding in serum and was also
found to bind ferritin [138]. The apolipoprotein B/ferritin complex
may play a role in the recovery of iron from senescent red blood cells.
Recently a feline serum binding protein was reported that altered the
ability of antibodies to recognize ferritin [139]. Bovine alpha-casein is
a protein from milk that binds ferritin [140]. Currently any
physiological roles for these proteins binding to ferritin have not yet
been established. However, based upon the mechanisms discussed in
this review, such interactions with ferritin may indicate (1) roles for
degrading ferritin to release iron, (2) directing ferritin to receptors for
binding and endocytosis, and (3) proteins that dock with ferritin to
open or close the 3-fold channels of ferritin to regulate iron storage or
iron release.

7. Major conclusions

Amajor goal in studying ferritin is to understand themechanism of
iron loading and iron release so treatments can be devised to alleviate
iron overload or iron deficiency diseases. This includes understanding
disease states with elevated levels of free iron that acts as a catalyst for
oxidative damage and why this free iron is not sequestered in ferritin.
From a material science perspective, understanding how ions are
transferred across the protein shell and coupling this understanding
with the natural metal binding and mineralization capacity of ferritin
makes this protein a unique reaction vessel for size constrained
nanoparticle synthesis. In this review, we have discussed the
mechanisms of iron loading and iron release in the context of how

iron and other ions traverse the protein shell of ferritin, with the goal
of understanding ways tomaximize iron sequestration or iron release.

In vitro studies show that themost efficient method to remove iron
from ferritin is by reduction and chelation. The use of low potential
reductants and chelators with high affinity for Fe2+ rapidly remove
iron from the ferritin interior to make apoferritin [72]. Bi-functional
molecules, such as thioglycolic acid, act as both a reducing agent and a
chelating agent to remove iron from ferritin [50,141]. Direct evidence
to support the reduction and chelation model in vivo has been lacking
but has been implied because (1) Fe(II) chelation from ferritin is fast
and complete and (2) early studies on the removal of Fe(III) from
ferritin by Fe(III) chelators [97,103,104] or transferrin [95] was
significantly slower and required chelators with very strong binding
constants. Furthermore, the intracellular environment is reducing and
molecules such as glutathione and ascorbic acid are capable of
reducing the iron core of ferritin [142,143]. Additionally, electron
transfer proteins are capable of reducing the iron core of ferritin [73],
suggesting a docking site and an electron transfer pathway through
the protein shell of animal ferritin [88]. This evidence suggests that
there may be a specific mechanism to reduce the iron in ferritin when
iron release is required. The discovery of a ferredoxin that specifically
binds to the heme of bacterial ferritin and opens electron transfer
through the protein shell supports the reductive release model [85]. A
potential problem with the reduction model is that Fe2+ reacts with
oxygen to produce the toxic reactive oxygen species (ROS) superox-
ide, peroxide, and the hydroxyl radical. To prevent the formation of
ROS from Fe2+, a reductive iron release model would be strengthened
by the existence of a metallo-chaperone or Fe2+ chelating molecule
that rapidly binds Fe2+ ions in a protective environment where it is
not reactive with O2. The discovery of PCBP1, a metallo-chaperone
that docks to ferritin and binds Fe2+, is powerful evidence supporting
the reduction and chelation model [123].

The presence of an intracellular iron pool or labile iron pool (LIP)
under cellular reducing conditions seems contradictory to the iron-
scavenging role of ferritin. If the role of ferritin were to sequester and
store iron to protect the cell against free iron, one would expect a very
low level of free iron in the cell. The LIP is estimated to be around 1–
5 μM [144]. In contrast, free Cu concentration is estimated to be 6 fM
or essentially 1 free Cu2+ ion per cell [145]. The discrepancy between
the concentration of the free Cu2+ pool and that of iron has two
distinct explanations. The first is that the methods used to measure
free iron are disturbing the iron pool resulting in the mobilization of
iron from ferritin and other iron proteins and these assays give an
artificially high result. The second possibility indicates that cytosolic
iron availability is essential for critical reactions.

The LIP is proposed to be both Fe(II) and Fe(III) bound by small
organic acid ligands, phosphate, pyrophosphate, ATP, ADP, polypep-
tides, and membrane components [144]. The existence of the LIP
supports the model proposed by De Domenico and Kaplan (Sec-
tion 6.1), suggesting that cytosolic iron is in equilibrium with ferritin
iron. When ferroportin was over-expressed, the cytosolic iron
concentration decreased in the cells. This shift in iron equilibrium
caused iron to be released from ferritin, eventually resulting in apo
ferritin that was degraded. An equilibrium between iron in the cytosol
and ferritin also suggests that changes in the concentrations of organic
acids capable of complexing Fe(II) or Fe(III) in vivo could significantly
increase the LIP and decrease the iron contained in ferritin [106,111].

The gated pores model may open a new field of study and make a
significant contribution towards understanding how iron loading and
release reactions occur in ferritin [79]. Perhaps a change in the
intracellular concentration of certain organic acids is a trigger for the
ferritin channels to open and release iron. One potential mechanism
involves the known iron chelator citrate. Cytosolic citrate concentra-
tions are related to the cytosolic enzyme aconitase. Cytosolic
aconitase (c-acon) is a bi-functional enzyme that switches activities
based on the available iron concentration [146–149]. When iron is
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present, c-acon has a functioning 4Fe-4S cluster and converts citrate
to isocitrate. When cytosolic iron levels drop, the 4Fe-4S cluster is
disassembled and c-acon is converted in the iron-responsive protein-
1 (IRP-1), which binds to mRNA and blocks ferritin synthesis and
stabilizes the mRNA of the transferrin receptor, increasing the flow of
iron into the cell. During iron limitation, citrate concentrations in the
cytosol increase due to the lack of active c-acon. Does the increase in
citrate concentration open the gated pores releasing iron for use by
other enzymes? Does citrate traverse the protein shell and chelate Fe
(III) from ferritin? Perhaps citrate concentrations increase to prepare
for incoming iron that is triggered by the increased synthesis of
transferrin receptors as a result of IRP-1 activation.

An alternate hypothesis suggests that substrate binding to ferritin
increases the affinity of the iron binding sites in the channels and
shifts the equilibrium from internalized iron to surface iron where
chelators can gain access to the iron (Fig. 5). Iron in the channel may
be more accessible to the small organic chelators and facilitate iron
release to the LIP. Potential experiments to test this hypothesis could
involve growing cells on an increased concentration of citrate and test
to determine if the LIP increases and if ferritin iron levels drop
resulting in ubiquitination of ferritin. Such studies would support both
the Theil gated pore model (Section 3.3) and the iron equilibrium
model of De Dominico and Kaplan (Section 6.1).

The transport of anions across the ferritin protein shell has been
much less studied but, in light of data presented above (Section 4),
appears to play an important role in overall iron sequestration
process. Phosphate binding to the ferritin mineral core and its release
from the core upon reduction of the iron has been studied, but its
physiological function was not evident [50,62,63]. The new discovery
of gated pores and the ability to open these pores by small molecules
and proteins is an interesting newmodel to test in order to determine
if the release of phosphate is involved in opening these gated pores
(Section 4.2). Furthermore, the significance of chloride being pumped
into ferritin was initially proposed to be a mechanism to compensate
for charge balance [14]. However, as discussed above, comparing the
solubilities of Fe(OH)3, Fe(OH)2 or the chloride salts of iron clearly
shows that chloride may function to convert the stable and insoluble
iron hydroxides to iron chloride salts as a mechanism for iron
mobilization in vivo. The pumping of chloride into the ferritin core
upon reduction produces the iron mineral FeClOH, which is more
soluble [14]. The pumping of chloride into ferritin during reduction
may be by evolutionary design to form a mineral core that is more
soluble for the mobilization and release of iron from ferritin.

Another interesting observation is that the iron concentration of
the cytosol and the lysosome are in equilibrium and that depletion of
iron in one compartment draws upon iron in the other compartment
[121]. That there are two different pathways to replenish the iron
between these compartments indicates the importance of maintain-
ing a LIP for enzymes to access iron. This suggests an important role in
maintaining a free iron pool for some as yet undiscovered purpose.

The presence of ferritin binding proteinsmay also play a significant
role in iron binding or release. Liu et al. reported that a combinatorial
library identified peptides that open or close the gated pores of ferritin
[83]. Whether proteins known to bind to ferritin such as alpha-
macrogolobulin [137], α-casein [140], feline serum ferritin binding
protein [139], apolipoprotein [138], or other proteins yet to be
identified influence iron regulation by opening or closing the gated
pores of the 3-fold channels has not been studied. These or other
proteins may play an important role in iron regulation.

Clearly, many mechanisms are involved in iron release from
ferritin in vivo. Perhaps each of the mechanisms discussed in this
review functions under different metabolic conditions. Reductive
release may occur during hypoxic conditions when oxygen levels are
low and the formation of ROS is less likely. During times of elevated
respiration and ample oxygen concentrations, Fe(III) mobilization by
chelation or by opening of the gated pores may be the safest

mechanism to prevent ROS formation. In relation to oxidative damage
diseases, conditions may exist where the safety mechanisms designed
to prevent free iron are failing. It is vital to gain an understanding of
iron metabolic processes in order to develop treatments to prevent
the damage caused by free iron.
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The buffer used during horse spleen ferritin iron loading significantly influences the mineralization process and
the quantity of iron deposited in ferritin. Ferritin iron loading in imidazole shows a rapid hyperbolic curve in
contrast to iron loading in 3-(N-morpholino)propanesulfonic acid (MOPS), which displays a slower sigmoidal
curve. Ferritin iron loading in anequimolarmixture of imidazole andMOPSproduces an iron-loading curve that is
intermediate between the imidazole andMOPS curves indicating that one buffer does not dominate the reaction
mechanism. The UV–visible spectrum of the ferritin mineral has a higher absorbance from 250 to 450 nmwhen
prepared in imidazole buffer than in MOPS buffer. These results suggest that different mineral phases form in
ferritin by different loading mechanisms in imidazole and MOPS buffered reactions. Samples of 1500 Fe/ferritin
were prepared inMOPS or imidazole buffer andwere analyzed for crystallinity and using the electron diffraction
capabilities of the electronmicroscope. The sample prepared in imidazolewas significantlymore crystalline than
the sample prepared in MOPS. X-ray powder diffraction studies showed that small cores (~500 Fe/ferritin)
prepared in MOPS or imidazole possess a 2-line ferrihydrite spectrum. As the core size increases the mineral
phase begins to change from 2-line to 6-line ferrihydrite with the imidazole sample favoring the 6-line
ferrihydrite phase. Taken together, these results suggest that the iron deposition mechanism in ferritin can be
controlled by properties of the buffer with samples prepared in imidazole forming a larger, more ordered
crystalline mineral than samples prepared in MOPS.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Theuse of proteins as a template for the production of nanomaterials
is an emerging and promising area of biochemical engineering [1,2].
Research inmaterials science has assimilated the concepts of biology on
a basic level, and it now faces the challenge of carrying this knowledge
over to applied materials. Establishing the fundamental principles of
protein metal interactions for this discipline is essential for many
reasons. For example, protein cages are among just a fewnanoplatforms
capable of simultaneous control over size, shape, and biocompatibility
[3]. Studies have shown that protein interactions are capable of guiding
the nucleation of inorganic materials and can control the crystal type,
face, and size, even of metastable forms of the minerals. In addition,
proteins can perform these reactions in aqueous solutions and under
ambient conditions [1,3]. Furthermore, protein cages yield products that
are dispersed in solution and avoid the problems of solubility and
agglomeration common with other nanomaterial production methods.

Proteins are also attractive because they are amenable to alterations in
functionality through both chemical and genetic means.

Ferritin, the biological protein for iron storage [4], has been studied
extensively as a nano platform for nanoparticle synthesis. A variety of
non-native materials have been prepared in ferritin and include: Mn
(O)OH, Mn3O4, Co(O)OH, Co3O4, Cr(OH)3, Ni(OH)3, In2O3, FeS, CdS,
CdSe, and ZnSe [1,2,5–10]. Metallic nanoparticles such as Pd, Ag, and
CoPt have also been synthesized within ferritin by pre-incubation of
the protein with a metal salt and subsequent chemical reduction by a
strong reducing agent [3]. Compounds formed in ferritin have shown
promise in catalysis, electrochemistry, targeted drug delivery, and bio
imaging [1,3,5,10].

Ferritin is composed of 24 subunits that self-assemble into a
spherical protein cage with an outer diameter of 12 nm and an interior
cavity diameter of 8 nm [4]. Molecules enter and leave ferritin through
channels of 0.4 nm in diameter, eight of which are hydrophilic and six
are hydrophobic. Inside ferritin, the iron atoms crystallize to form a
ferric oxyhydroxide core in the center of the ferritin cavity that most
resembles ferrihydrite [11–13]. The solid iron core can be removed
through chemical reduction followed by chelation and dialysis [14,15].

Ferritin can theoretically sequester 4500 iron atoms, although in
nature the average is closer to 2000. It has been proposed that oxidative
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damage to apoferritin results in the termination of core formation and
presents a serious problemwhen trying tomaximize the number of iron
atoms loaded into the protein for materials purposes [4,16]. In the
natural process of core formation, Fe2+ is oxidized at the ferroxidase
center or oxidizedon themineral core surfacewhere it crystallizes in the
central cavity [17]. If the Fe2+ is oxidized at other protein sites, hydroxyl
radicals are produced through the well-known Fenton reaction. The
production of these radicals damages the ferritin protein and inhibits
iron core formation [18]. An alternative hypothesis for the much lower
iron loading in vitro may simply be based on solubility arguments.

Formaterials applications, a fully loaded ferritinwith adenselypacked
mineral in the 8 nm diameter core is desired. Previous studies show that
buffers can greatly affect iron uptake in ferritin during in vitro iron loading
[19–21]. In addition, salt concentrations influence the rate of iron loading
into ferritin. Studies by Cutler et al.[22] concluded that, in general, cations
slow the rate of iron loading into ferritin by competing with Fe2+ for
negatively charged amino acids near the 3-fold channels. Specific anions
such as halides and sulfate had no effect. However, phosphate and its
tetrahedral oxo-anion analogs have been shown to stimulate the rate of
iron loading into ferritin and produce a different mineral phase with the
oxo-anions incorporated into the mineral [16,23–25].

This study examines the effects of buffers on iron loading in ferritin
with the goal of maximizing iron content in ferritin. We reasoned that
maximal iron loading into ferritin might be enhanced by using buffers
that stabilized Fe2+ in solution by slowing oxidation, minimizing the
formation of radicals that might damage ferritin, and minimizing side
reactions that lead to precipitation of Fe(OH)3 (s) outside ferritin.
Ferritin iron-loading reactions were performed in imidazole buffer that
can coordinate Fe2+and its oxidation product Fe3+. These reactions
were compared to iron loading reactions performed in MOPS buffer,
which is commonly used for iron loading reactions with ferritin. MOPS
buffer can coordinate toFe2+, but onlypoorly.Weobserved that the iron
loading kinetics were very different in imidazole than inMOPS. Ferritin
prepared in imidazole loaded to a greater extent and formed a mineral
that was more crystalline and possessed different physical properties
than ferritin prepared in MOPS.

2. Experimental

2.1. Materials

All aqueous solutions in this study were made using Milli-Q water
having a resistance of 18 MΩ. Chemical reagents were obtained
commercially and used without further purification. Horse spleen
ferritin (HoSF) was acquired from Sigma-Aldrich in a 0.15 M NaCl
solution. Thioglycolic acid was also purchased from Sigma-Aldrich as a
98% solution, and 3-(N-morpholino)propanesulfonic acid (MOPS) from
Fisher Bioreagentswith purity greater than97%. All other reagents had a
purity of at least 97%.

2.2. Preparation of apoferritin

Native HoSF obtained from Sigma-Aldrich was treated according to
established methods to make apoferritin [26]. As obtained, HoSF in
saline solution was dialyzed for 24 h against 1% thioglycolic acid and
0.25 M sodium acetate (NaC2H3O2) at 4 °C. This process was repeated
with an addition of 100 mg·L−1 of 2,2′ bipyridyl (bipy) which chelates
Fe2+ forming the red [Fe(bipy)3]2+ complex. The HoSF was then
dialyzed twice with 5 g·L−1 sodium bicarbonate (NaHCO3) at 4 °C. The
apoferritin solution was then dialyzed several times with H2O at 4 °C to
remove ionic species from the solution. Dialysis with H2O was
terminated when Na, S, C, Cl−, and Fe could not be detected in the
water outside the dialysis tubing. The Na was analyzed by atomic
absorption spectrometry, while S, C, and Fe were analyzed using
inductively coupled plasma optical emission spectrometry, and the Cl−

was quantified using ion chromatography.

2.3. Kinetics of iron core formation in MOPS and imidazole buffers

Kinetic studies of iron loading in ferritin were carried out on an
Agilent 8453 UV–Vis spectrometer equipped with a magnetic stirring
motor. Imidazole (C3H4N2) andMOPS solutions (0.05 M)were prepared
and the pH adjusted to 7.5 by the addition of NaOH forMOPS and HNO3

for imidazole. A 0.010 M Fe2+ solution was prepared by dissolving Fe
(NH4)2(SO4)2·6H2O in a 1 mMHCl solution. Iron loading reactionswere
carried out in a cuvette by adding apoferritin (0.3 μM) and a Teflon stir
bar into 2.0 mL of the indicated buffer. The spectrophotometer was
blanked on the buffer prior to the addition of ferritin. The reaction was
initiated by the addition of 25 μL of 0.010 M Fe2+ (~400 Fe2+/ferritin)
and the absorbance at 310 nm was measured over time to monitor
ferritin iron mineralization. The absorbance measurements were
continued until the reaction reached a plateau, and in some instances
multiple additions of Fe2+ were added to the same solution.

2.4. Transmission electron microscopy (TEM)

Sampleswerepreparedbyadding1.0 ml apo ferritin (5.4 mg/ml) into
10 mL 0.050 M MOPS, 0.1 M NaCl pH 7.5 or 0.050 M imidazole buffer,
0.1 MNaCl pH7.5. The sampleswere stirred in air and0.60 mLof 0.010 M
ferrous ammonium sulfate was added to deliver 500 Fe/ferritin. The
sample was stirred for 30 min in air to allow the Fe2+ to oxidize. For the
1500 Fe/ferritin sample, two additional aliquots of 500 Fe2+ were added
following the identical procedure. The samples were centrifuged to
remove anyunbound ironor precipitatedprotein andan iron andprotein
analysis was performed to confirm that the samples contained 1500 Fe/
ferritin. The samplesweredepositedon chargedgrids (lacey carbonfiber,
400 mesh copper grids, Ted Pella, Inc.). Following 30 to 60 s on the grid,
the solutionwaswickedoff of thegrid, and thegridwas rinsed inwater to
remove salts or buffers. The grid was then dried. Two independent
samples of both the MOPS and imidazole samples were prepared and
analyzed and both studies gave similar EMdata. The gridswere analyzed
using a FEI Tecnai F30 TEM (FEI Company, the Netherlands), operating at
140 keV. The concentric rings verify crystalline pattern.

2.5. Preparation and characterization of reconstituted ferritin mineral
cores in MOPS and imidazole

Ferritin was reconstituted in the presence of imidazole or MOPS
buffer by adding apoferritin to the imidazole orMOPS buffer followed by
slowly titratingwith a0.010 MFe2+ solution at room temperature under
constant stirring. Various imidazole and MOPS concentrations were
tested and reactions were performed in the presence and absence of
various concentrations of NaCl. Some samples were loaded with iron by
slowly adding Fe2+ from a peristaltic pump that delivered a very dilute
Fe2+ concentration at a very slowdelivery speed. ThepHof the solutions
was monitored and maintained at 7.5 by the addition of NaOH (aq). As
the titration progressed the solution turned to a dark brownish-red.
When the solution began to appear cloudy the addition of iron was
stopped and the sample was centrifuged to remove any solid material.
The ferritin solutionwas then transferred to adialysis bag anddialyzedat
4 °C with repeated changes of water to remove all salts and impurities.
Thewater removed fromeach roundof dialysiswas analyzed for S, Na, C,
and Cl−. Once the levels of these species were below detection limits
(using the methods described in Section 2.2), the dialysis was stopped.
Samples used for X-ray powder diffraction (XRD) were lyophilized. The
crystallinity of the ferritin cores was characterized by XRD using a
Scintag Diffractometer (Cu-Kα radiation, λ=1.54176 nm) at a scanning
rate of 0.1 2θ·min−1 and a power of 15 kWover the range 10 to 85°. The
XRD data for the ferritin samples were smoothed using a boxcar
calculation of 25 points on either side of a given point. While the signal
intensity is slightly decreased as a result of the smoothing, the noise in
the spectrum is dramatically reduced and the XRD reflections are much
more evident.
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Qualitatively, higher buffer concentrations helped for higher ferritin
iron loadings by maintaining a constant pH. The presence of NaCl
favored core growth in both buffers. The addition of iron after the
solution appeared cloudy caused further protein precipitation and did
not lead to improved iron loading into ferritin. We observed that the
lowerdoses of iron/ferritinweremore favorable for reachinghigher iron
loadings of ferritin, presumably because excess iron initiated more
radicals that caused damage to the ferritin protein. The peristaltic pump
method, allowing a very slow exposure of Fe2+ to ferritin, produced the
samples with the highest loaded mineral cores.

3. Results and discussion

3.1. Kinetic traces of iron loading in the presence of MOPS and imidazole

Since iron mineralization in ferritin corresponds with a strong
absorbance at 310 nm, the absorbance change at this wavelength versus
time was measured [21]. The reactions were performed in both MOPS
and imidazole to compare the iron loading kinetics for each buffer
(Fig. 1). TheMOPS reaction is characterized by a sigmoidal shape, which
Xu and Chasteen [17,27] described previously as the result of two
different iron-loading reactions. The first reaction occurs when no iron is
present in ferritin and Fe2+ is oxidized at a ferroxidase center. As a core
begins to form inside ferritin, Fe2+ can be oxidized on the surface of the
growingmineral. As the surface area of the core increases, the rate of iron
oxidation increases, and the sigmoidal shape is a result of these two
reactions. In contrast, the curve for the imidazole reaction is hyperbolic
(Fig. 1). This behavior suggests that the mechanism of iron loading in
imidazole is different than the MOPS reaction although the mechanism
has yet to be characterized. The final absorbance of the imidazole sample
was higher than the MOPS sample suggesting that the imidazole sample
forms amineral with slightly different properties than theMOPS sample.

3.2. The effects of combining buffers

The observation that imidazole appeared to load by a different
mechanism than MOPS lead us to test an equal mixture of the two
buffers to determine if one of them was dominant in controlling the
reaction mechanism and the resulting iron mineral that formed. Fig. 2
shows kinetic traces of iron loading in ferritin for solutions of 0.050 M

MOPS, 0.050 M imidazole, or an equal mixture of 0.025 M MOPS and
0.025 M imidazole. The equimolar mixture of MOPS and imidazole
produces an iron-loading curve that is intermediate between that of
the individual buffers. As additional iron is added, the curves begin to
approach the same kinetic rates, suggesting that oxidation of iron on
the core surface begins to be the dominant mechanism for iron
deposition into ferritin [17].

The easiest explanation for the higher final absorbance of the
imidazole sample after thefirst addition of iron (Fig. 1) is that a different
mineral phase forms with a higher extinction coefficient than the
mineral formed using MOPS. Fig. 3 shows spectra of ferritin samples of
identical protein concentration (1.0 μM) that were treated with
identical concentrations of iron (200 μM) and stirred in air for 30 min.
No obvious distinguishing features are apparent in either of the curves
except for the small peak at 280 nm attributed to the protein
absorbance, yet a comparison of the two curves shows that the
imidazole sample has a more intense absorbance from 250 to 450 nm
and therefore has different properties in the mineral core.

The differences in extinction coefficients between the imidazole and
MOPS samples intensities might be due to the iron distribution within
ferritin. Using X-ray crystallography of cobalt loaded ferritin, Theil et al.
recently observed metal ions lining the pathway from the ferroxidase
center to the nucleation sites [28,29]. The diffuse organization of iron
atoms would have a different extinction coefficient than iron atoms
clustered in an ordered mineral phase. In contrast to the disperse ions
lining the protein interior, other studies have shown that the iron
mineral core forms indiscrete clusters initiated from thenucleation sites
on the interior of ferritin. The crystallinity and number of these
individual sites may influence the absorbance maxima of the mineral
formed inside ferritin [30,31].

Since no precipitation was observed during iron loading in our
studies, it is assumed that all of the iron is bound to ferritin in both
reactions. The different buffers may influence the distribution of iron
between the mineral core, the ferroxidase center, the channels, and the
outside surface of ferritin. For instance, a higher extinction coefficient
may be expected from strong iron oxygen interactions associated with
an organized and ordered iron mineral core. Our results suggest that
imidazole drives all of the iron to the nucleation sites forming a larger
more organized crystalline mineral. In contrast, individual iron atoms
lining the interior of the protein shell might have less intense charge
transfer interactions. Therefore, MOPS appears to favor iron bound to

Fig. 1. Kinetics of iron loading into ferritin inMOPS or imidazole buffer. The absorbance at
310 nm versus time was monitored to follow iron core formation. The reaction was
initiatedby adding50 μL of 0.010 MFe2+ to 0.3 μMapo ferritin for an~800 Fe/ferritin ratio.
Each buffer was 0.050 M at pH 7.5. The reaction was stirred constantly with a magnetic
stirrer. ■) Represents the sample prepared in imidazole and ●) represents the sample
prepared in MOPS. The curves are the average of 2–3 runs. For simplicity, the size of the
symbols was chosen to represent the largest error bars in the data.

Fig. 2. Comparison of iron loading kinetics in MOPS, imidazole and an equimolar mixture
ofMOPS/imidazole. Kinetic traces of Fe2+ (25 μL 0.010 M Fe2+) added to ferritin (0.3 μM).
The different reactions are done in■) 0.050 M imidazole buffer pH 7.5,●) 0.050 MMOPS
buffer pH 7.5, and ○) 0.025 M MOPS, 0.025 M imidazole mixture pH 7.5. 400 Fe2+ were
added in each addition for 1200 Fe/ferritin at the end of the reaction. The data represents
the average of 2–3 samples and the sizes of the symbols were chosen to represent the
maximum error bars between duplicate or triplicate samples prepared for each run.
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the surface, the channels, the ferroxidase centers, and the pathway to
the nucleation site, with a smaller more disorganized mineral phase.

Another possibility is that MOPS or imidazole is incorporated into
the iron mineral and the presence of the buffer trapped inside the iron
mineral phase influences the final absorbance of the core. The
incorporation of other molecules in the mineral core was observed in
previous studieswhere oxo-anions substituted for hydroxide ions in the
iron mineral phase [25]. Ultimately, the spectrophotometric results are

not sufficient to confirm that the increased absorbance for the imidazole
sample correlateswith a differentmineral phase forming inside ferritin.
To confirm the minerals that formed inside ferritin in MOPS and
imidazolehaddifferentphysical propertieswe studied the sampleswith
electron microscopy and X-ray powder diffraction.

3.3. Structural characterization of the iron core

To test the hypothesis that MOPS and imidazole formminerals with
different properties, the ferritin cores were studied using transmission
electronmicroscopy (TEM). Ferritin samples containing 1500 Fe/ferritin
were prepared in either MOPS or imidazole buffer and placed on EM
grids. Iron analysis and protein analysis demonstrated that each sample
contained 1500 Fe/ferritin and that the samples contained the same
amount of protein. The results of the TEManalysis of the 1500 Fe/ferritin
sample are shown in Fig. 4. The ferritin samples appear similar in size
(Fig. 4A and B) and are dispersed on the EM grid in similar densities.
However, the crystallinity of the two samples was very different when
studied by electron diffraction. The MOPS sample (Fig. 4C) did not
diffract as well as the imidazole sample (Fig. 4D) indicative of a less
crystalline mineral phase produced in MOPS. In contrast, the imidazole
sample (Fig. 4D) had a strong diffraction pattern indicative of a more
crystallinemineral phase. Ferrihydrite is themineral generally reported
to form in ferritin. The d-spacing of the electron diffraction data was
analyzed and the MOPS sample showed only two d-spacing rings
(Fig. 4C) where the imidazole sample showed 4 defined rings (Fig. 4D).
The rings of the d-spacing gave similar results to those published
previously for ferrihydrite in ferritin [11–13].

To further characterize these ferritin samples, the ferritin was
lyophilized and analyzed byXRD. An XRD spectrum in the range of 5° to
85° for a lyophilized sample of apoferritin (control sample) can be found

Fig. 3. Spectra of ferritin samples prepared in MOPS or imidazole buffer. (Black) apo
ferritin, (red) 200 Fe/ferritin loaded in 0.050 M imidazole buffer pH 7.5, and (green) 200
Fe/ferritin loaded in 0.050 MMOPS buffer pH 7.5. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Electron microscopy of ferritin samples prepared in MOPS or imidazole buffers. Ferritin samples were prepared with 1500 Fe/ferritin in A) MOPS or B) imidazole and analyzed
by EM to visualize the ferritin particles. Iron minerals of approximately 8 nm diameters were observed in both samples. The distribution of ferritin was similar on both grids. Using
the electron diffraction capabilities of the electron microscope the samples were analyzed for crystallinity. Both samples showed electron diffraction and crystallinity but the sample
prepared C) MOPS showed less electron diffraction compared to the sample prepared in D) imidazole which had a more crystalline mineral phase within the ferritin protein. The d-
spacing of the rings is shown for each sample and these data correspond to d-spacing for ferrihydrite. The numbers in parentheses show the planes of the lattice fringes. The grids
were analyzed using a FEI Tecnai F30 TEM (FEI Company, the Netherlands), operating at 140 keV. The concentric rings verify crystalline pattern.
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in Supplemental Fig. S1. Two reflections are observed at 2θ values of
9.72°, and 19.80°. After the second peak the spectrum decays with no
other features. This spectrum can be seen as the background in the XRD
spectra of the imidazole and MOPS reconstituted ferritin powders
(Figs. 5 and 6).

Ferrihydrite is known to exist as the 2-line polymorph in small
particles and shifts to the 6-line structure as the particle grows and
becomes more ordered [32]. To determine if a similar process occurred
in ferritin, sampleswerepreparedwith a small iron core ~500 Fe/ferritin
to compare the XRD spectra of ferritin of low iron contents. Fig. 5 shows
the XRD patterns for ferritin samples prepared with ~500 Fe/ferritin in
imidazole and MOPS. These patterns are almost identical and mainly
resemble the pattern for apoferritin (Fig. S1). However, focusing on the
region where the 2-line ferrihydrite sample is observed, a reflection at
64° for 2-line ferrihydrite is visible and a shoulder around 35° is
observed. This indicates that low iron loading into ferritin in bothMOPS

and imidazole produces a 2-line ferrihydrite mineral phase. It is
interesting to note that to find similar XRD intensities between the
MOPS and imidazole samples, we had to prepare an imidazole sample
that had approximately 60% of the iron of the MOPS sample. In all
samples studied, the intensity of the ferrihydrite spectrum from
imidazole samples was more intense based on an Fe/ferritin basis
(data not shown) suggesting that the imidazole samples were more
crystalline than the MOPS samples.

The ferrihydrite mineral phase is known to shift to the 6-line
polymorph structure as the ferrihydrite mineral increases in size. To
determine if the 6-line mineral can form in ferritin in either MOPS or
imidazole buffer, samples were prepared with the highest iron content
we could obtain. An interesting observationwas that imidazole allows a
muchhigher iron loading into ferritin thanMOPS. The imidazole sample
allowedus to study amuch larger core to determine if 6-line ferrihydrite
can form in ferritin as imidazole samples (3300 Fe/ferritin) began to
approach the theoretical maximal capacity of ferritin (4500 Fe/ferritin).

Fig. 6 shows the XRD spectrum from two samples, one loaded in
MOPS (~2000 Fe/ferritin) and one loaded in imidazole (~3300 Fe/
ferritin). These samples represented the maximal iron loading we could
achieve without protein precipitation occurring. Fig. 6 also shows the
reference peaks for the reflections of six-line ferrihydrite found in JCPDS
card 00-029-0712 [31] and the spectrum for a 2-line ferrihydrite sample
synthesized in our lab and acquired on the same instrument. The
spectrum of the 2-line ferrihydrite pattern matches that for 2-line
ferrihydrite as originally published by Drits et al. [33]. An inspection of
this figure yields some useful information regarding the relationship
between the iron content and crystal structure of the core. The MOPS
sample shows an overall lower intensity and properties that mostly
corresponds to 2-line ferrihydrite. There is a small indication of reflections
at 46° and 53°, suggesting that cores of this size have some 6-line
character. These reflections are seen with much more intensity in the
spectrum of the imidazole sample that has a much larger core. As
indicated by the arrows in this figure, there are two prominent features,
which are not observed in the spectrum of the MOPS sample. First is an
additional peak at 41°, and the second is the bifurcation of the peak
centeredat 62°. Bothof these features indicate agreater6-line character in
the imidazole sample than observed in the spectrumof theMOPS sample.

The evidence provided in this figure suggests that while both buffers
direct the formation of ferrihydrite, the higher iron loading allowed by
imidazole allows imidazole ferritin to form larger particles that are
capable of producing the 6-line ferrihydrite product inside ferritin. The
fact that imidazole produces a more crystalline core (Fig. 4) may also
contribute to the 6-line spectrum because 6-line ferrihydrite is more
ordered than 2-line ferrihydrite [34]. At present, it is unclear if themore
ordered core observed in the imidazole samples leads to the production
of the 6-line ferrihydrite mineral or if the increased core size is simply
large enough to cross the threshold that transitions the mineral from 2-
line to 6-line ferrihydrite. The reason that MOPS cannot achieve the
higher iron content achieved by imidazole is also puzzling. Does
imidazole influence the stability of ferritin by preventing the formation
of radicals and favor more extensive iron loading, or does the more
orderedmineral allowmore efficient ironmineralization inside ferritin.
Future work will examine these possibilities.

4. Conclusion

The use of different buffers during ferritin iron loading significantly
influences the mechanism of iron uptake, the total amount of iron
deposited in ferritin, and the crystallinity of the iron mineral that forms
within the ferritin interior. Iron loadingkinetics showed that ironuptake
in imidazole was hyperbolic while reactions in MOPS were slower and
had a sigmoidal character. These results indicate that the mineral
formation occurs by different mechanisms. UV–Vis spectra show that
the imidazole samples produce amineralwith ahigher absorbance from
250 nm to 450 nm. TEM studies confirmed that the mineral formed in

Fig. 5. XRD spectra of ~500 Fe/ferritin samples reconstituted in MOPS or imidazole.
Imidazolewith 346 Fe/ferritin is shown in black andMOPSwith 574 Fe/ferritin is shown in
red. A control of 2-line ferrihydrite is shown with peaks at 35° and 63°. In both the MOPS
and imidazole samples, an absorption peak is observed at 63° and a shoulder is observed at
35°. The Fe/ferritin rations were chosen to give spectra with similar intensities. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 6. XRD spectrum of heavily loaded ferritin samples reconstituted in MOPS and
imidazole. The red lines represent the standard pattern for 6-line ferrihydrite. The blue trace
represents a 2-line ferrihydrite standard. The green line represents ferritin loaded in MOPS
with ~2000 Fe/ferritin. The black line represents ferritin loaded in imidazole (3300 Fe/
ferritin). The data suggest that as the iron cores of ferritinbecome larger, there is a transition
from2-line ferrihydrite to 6-line ferrihydrite. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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imidazole was crystalline and the mineral formed in MOPS was less
crystalline. XRD studies showed that ferritin samples prepared in
imidazole and MOPS both favor the formation of ferrihydrite, but that
imidazole allows more iron deposition producing a larger core capable
of producing 6-line ferrihydrite. These results are consistent with our
hypothesis that coordinate buffers may improve iron loading into
ferritin by stabilizing Fe2+ in solution and preventing oxidative damage
to the ferritin protein. These results also suggest that buffers can affect
the mechanism of iron loading and the final size and crystallinity of the
iron core in ferritin.

Supplementary materials related to this article can be foundonline
at doi:10.1016/j.jinorgbio.2011.04.003.

Abbreviations
MOPS 3-(N-morpholino)propanesulfonic acid
HoSF Horse spleen ferritin
XRD X-ray powder diffraction
EM Electron Microscopy
TEM Transmission electron microscopy
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The rate of Fe3+ release from horse spleen ferritin (HoSF) was measured using the Fe3+-specific chelator
desferoxamine (DES). The reaction consists of twokinetic phases. Thefirst is a rapidnon-linear reaction followedby
a slower linear reaction. Theoverall two-phase reactionwas resolved into three kinetic events: 1) a rapidfirst-order
reaction inHoSF(k1); 2) a second slowerfirst-order reaction inHoSF (k2); and3) a zero-order slowreaction inHoSF
(k3). The zero-order reactionwas independent of DES concentration. The twofirst-order reactions had a near zero-
order dependence onDES concentration andwere independent of pH from6.8 to 8.2. The twofirst-order reactions
accounted for 6–9 rapidly reacting Fe3+ ions. Activation energies of 10.5±0.8, 13.5±2.0 and 62.4±2.1 kJ/mol
were calculated for the kinetic events associated with k1, k2, and k3, respectively. Iron release occurs by: 1) a slow
zero-order rate-limiting reactiongovernedbyk3 and corresponding to thedissociationof Fe3+ ions fromthe FeOOH
core that bind to an Fe3+ binding site designated as site 1 (proposed to be within the 3-fold channel); 2) transfer
of Fe3+ from site 1 to site 2 (a second binding site in the 3-fold channel) (k2); and 3) rapid iron loss from site 2 to
DES (k1).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Ferritins are hollow, multi-subunit, spherical proteins widely
distributed in nature that are involved in iron storage for living systems
[1–7]. The ability of ferritins to dynamically control iron within an
organism is determined by two distinct biochemical redox reactions.
The first is the binding and oxidation of free Fe2+ with subsequent
deposition as FeOOH within the hollow ferritin interior during periods
of abundant cellular iron [8]. This iron depositionprocess not only stores
iron within the hollow interior for later metabolic uses but also
decreases the likelihoodof cellulardamage arising from the formationof
oxygen radicals [7]. The second redox process is the reductive release
of Fe2+ from the FeOOH mineral core stored within the ferritin interior
[9–13]. Both processes are readily conducted in vitrousing various types
of ferritins ranging fromnative animal and bacterial ferritins to a variety
of recombinant ferritins [14–18].

The reactions conducted by native animal ferritins are of particular
interest because, in contrast to the bacterial ferritins which only have
one subunit type [19], the animal ferritins are heteropolymers

consisting of two different subunit types, heavy (H) and light (L) [20].
The presence of H and L subunits in animal ferritins suggests specialized
roles for each of these subunits. The fact that these subunits are found in
different ratios in different tissues indicates that these subunits function
in an important catalytic role relating to iron metabolism. The H and L
subunits have high amino acid sequence homology, similar structures
and similar relativemolecularmass (Mr) values near 20,000 and19,000,
respectively. Studies with the H subunit have established the presence
of a ferroxidase center that efficiently conducts Fe2+ oxidation by O2 for
in vitro iron deposition reactions [21,22]. The L subunit possesses iron-
binding residues (Glu-57, Glu-60, Glu-62, Glu-64, Glu-67) that form a
nucleationcenter that assists in Fe3+hydrolysis and the formationof the
FeOOH mineral core [23]. The L subunit lacks a ferroxidase center,
whereas the H ferritin lacks the nucleation center. Although extensive
studies of iron deposition within various ferritin types have been
conducted [16–18,24–27], the complete loading process remains poorly
understood because it is difficult to separately study the redox reactions
from the non-redox processes of migration and hydrolysis of Fe3+ to
form the mineral core.

Initial iron loading requires the ferroxidase center to catalyze the
oxidation of Fe2+ to Fe3+ followed by migration of the Fe3+ to the
interior of ferritin for nucleation and mineralization. Once a mineral
core begins to form, Fe2+ can pass through the 3-fold channels and
become oxidized on themineral core surface without passing through
the ferroxidase center [17]. Electrostatic potential calculations for
divalent metals entering the ferritin 3-fold channel showed that there
are two divalent metal binding sites in each 3-fold channel [28]. From
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these calculations, there are two potential metal ion-binding sites in
each of the 3-fold channels of ferritin. A model showing these channel
binding sites is represented in Scheme 1.

In a previous study,we attempted to separate the non-redox reactions
from the redox reactions [29].We investigated the rates of Fe3+ and Fe2+

transfer into HoSF interior by trapping ferrocyanide or ferricyanide inside
ferritin.As Fe3+or Fe2+ traversed theprotein shell andentered the ferritin
interior, a color changewasobservedby formingPrussianblue. The rate of
Fe3+ entering ferritin was also measured by trapping the Fe3+-specific
chelator desferoxamine (DES) inside ferritin by pH disassembly of ferritin
followed by reassembly of ferritin in the presence of DES. These studies
showed that Fe3+ entered ferritin at a slightly faster rate than Fe2+ with
rate constants of 0.4 s−1 for Fe2+ and 0.76 s−1 for Fe3+ [29].
Unfortunately, attempts to measure the rate of transfer of these two
iron species out of the HoSF interior were not successful.

In a recent study the non-redox release of Fe3+ from the mineral core
of HoSF was studied by using the small iron chelating agents, aceto- and
benzo-hydroxamic acids [30]. The results suggested that these small
chelators entered the ferritin interior and directly removed iron from the
mineral core. In contrast, in the currentworkwe examined the non-redox
release of Fe3+ from themineral core inHoSFusingDES.DES is larger than
aceto- and benzo-hydroxamic acids and is restricted from entering the
ferritin interior. As a consequence, ironmust transfer through the protein
shell to DES at the ferritin exterior [31]. During redox mediated iron
release, Fe2+ is the dominant form of iron transferred through the ferritin
protein shell to the external chelating reagents. However, the information
gained by studying Fe3+ transfer was deemed a useful approximation to
Fe2+ transfer because, both Fe2+ and Fe3+ enter ferritin at comparable
rates [29]. Here we describe the reactions for Fe3+ release from native
HoSF using DES chelation and identify several steps involved in the Fe3+

export system. From these reactions, we propose an overall mechanism
for iron transport from the mineral core through binding sites within the
3-fold channels to the chelator on the exterior of ferritin.

2. Materials and methods

HoSF containing 2050 iron atoms and 375 phosphate groups was
obtained from Sigma. Stock HoSF solutions at 0.5 and 7.0 mg/mL (1.1 and
16 μM) were prepared in 0.025 M (N-tris(hydroxymethyl)methyl-2-
aminoethanesulfonic acid (TES), 0.05 M NaCl at pH values of 6.8, 7.5
and 8.2. Medicinal grade desferoxamine (DES) was obtained from Ciba-

Geigy Limited, Basel, Switzerland and stock solutions were prepared in
0.025 M TES at pH values of 6.8, 7.5 and 8.2. A molar absorptivity of
2865 M−1 cm−1 at 430 nm for FeDESwas used to quantitate iron release
fromHoSF. Ferritin samples were incubatedwith EDTA and passed down
a Sephadex G-25 column to remove adventitiously bound iron. Iron-
release reactions were compared with samples treated with or without
EDTA and no differences were observed between these samples.

2.1. Stopped-flow measurements

A DX.17MV Sequential Stopped flow Spectrofluorimeter from
Applied Photophysics with optical path lengths of 10.0 and 2.0 mm
was used for the acquisition of stopped-flow kinetic data. The stopped-
flow instrument was connected to a variable temperature circulator-
water bath that controlled the temperature of the optical cell and the
sample syringes to ±0.10 °C. Kinetic traces were typically obtained by
mixing ~0.01 M DES with 1.0–5.0 μM native holo HoSF (DES/
HoSF=2000, DES/Fe=1.0) at 5 °C intervals using computer
programmed temperature variation from 10 to 50 °C. Multiple kinetic
reactions (5–8) were recorded and averaged at each temperature to
correct for random error. When the reaction sequence was finished at
50 °C, the temperature was returned to 20 °C for the final reaction. This
final 20 °C reaction was compared with the 20 °C reaction measured
during the initial 10–50 °C temperature sequence to be certain that no
modification of the protein occurred while at 50 °C. Stopped-flow
curves were analyzed using a user-derived equation consisting of two
exponential terms and a linear zero-order term.

The reaction of DES with native holo HoSF produced a two-phase
kinetic curve, which indicated a rapid non-linear release of iron
lasting ~500 s followed by a slower nearly linear release of iron.
Another set of stopped-flow measurements were conducted after
holo HoSF was first equilibrated with DES for N500 s to eliminate the
rapid kinetic phase. For this sequence of reactions, 1.0 mL of ~5.0 μM
holo HoSF was reacted with a 100-fold excess of DES for 500 s to
remove the rapidly reacting iron atoms and the reacted holo HoSFwas
separated from unreacted DES and FeDES on a 1.0×10 cm Sephadex
G-25 column equilibrated in 0.05 M TES, 0.05 M NaCl pH 7.5. This
DES-free HoSF was then loaded into the stopped-flow instrument ~1–
2 h later and reactedwith a second portion of DES as outlined above to
determine if the rapidly reacting iron atoms had been restored.

2.2. EPR measurements

HoSF was reacted with DES until the fast reaction was complete and
the zero-order reaction was well established. The reaction mixture was
cooled and passed through a Sephadex G-25 column equilibrated at 4 °C
to separate holo HoSF from FeDES and unreacted DES. A portion of the
separatedHoSF at 4 °Cwas thenplaced in an EPR tube and frozen in liquid
nitrogen. A second portion was placed in an identical EPR tube and
equilibratedat 30 °C for 1.0 h, to allowrepopulationof the rapidly reacting
sites from the FeOOHmineral core, and then frozen in liquid nitrogen. The
EPR spectra of these samples were collected at a temperature of 4 K on a
Bruker EMX spectrometer with the following settings: power 1.997 mW,
modulation frequency 100 kHz, modulation amplitude 9.99 G.

3. Results

Fig. 1 shows the rate of FeDES formation at 25 °C. Eq. (1) represents
the reactionofholoHoSFwitha ten-fold excess ofH4DES (H4DES/HoSF) at
pH 7.5.

FeOOH þ H4DES ¼ FeDES þ 2H2O þ Hþ ð1Þ

FeOOH represents the native mineral core sequestered within the
hollow interior of HoSF and H4DES is the protonated form of DES

Scheme 1. Amodel for the release of Fe3+ from ferritin by DES. DES rapidly chelates Fe3+

bound in site 1 and site 2 of the 3-fold channels. The kinetics for this reaction shows a rapid
burst and represents k1 and k2. Once the channel-bound Fe3+ has been removed, iron
release is dependent on the rate-limiting step,which is theequilibriumof Fe3+dissociating
from the iron mineral core inside ferritin represented by k3.
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occurring at pH 7.5 prior to Fe3+ chelation. The reaction wasmonitored
at 430 nm, where FeDES has a maximum absorbance. Fitting analysis of
this iron-release curve shows two distinct kinetic phases for the
formation of FeDES. The first is a non-linear reaction occurring from
about 0 to 500 s followed by a slower, nearly linear reaction occurring
fromabout500 suntil the reactionwas terminatedat 1000 s. The shapeof
the curve is typical of “burst” kinetics, indicating that intermediates were
quickly lost but the reaction slowly attains a steady state replenishmentof
these intermediates. The analysis of each of these distinct kinetic regions
provides information about the movement of iron from the mineral core
through the protein shell to the DES chelator.

Various rate laws were tested but the best-fit line in Fig. 1 was
calculated using Eq. (2).

rate ¼ ae−k
1 t þ be−k

2 t þ k3t þ c ð2Þ

The overall reaction sequence given by Eq. (2) and consists of two
sequential first-order iron-release reactions followed by a zero-order
iron-release reaction. The rate constants, k1 (6.2×10−2 s−1) and k2
(5.7×10−3 s−1) are first-order rate constants in HoSF accounting for
the rapid release (“burst”) of iron, k3 is a zero-order rate constant, t is
time in s and a, b and c are representative amplitudes (a=4.4×10−2,
b=6.6×10−2, and c=0.13) associated with k1, k2 and k3, respec-
tively. Eq. (2) gives good fits to the absorbance vs. time data in Fig. 1,
as seen by the calculated residuals shown in Fig. 1.

3.1. The zero-order iron-release reaction, k3

The linear rate for iron chelation was truncated for convenience of
presentation after 1000 s in Fig. 1 but remains linear for much longer
time intervals. This linear portion suggests a zero-order reaction for
Fe3+ release. The zero-order rate constant for k3 was determined to be
1.6×10−4 M s−1. To more fully describe the rate law for this linear
iron-release process, identical reactions were conducted with a 10-,
50- and a 100-fold excess of DES under identical conditions. In all
cases, linear curves were obtained with k3 values nearly identical to
that in Fig. 1, showing that the reaction was independent of DES

concentration. The DES independence of k3 suggests iron release from
the HoSF core is the rate-limiting step and corresponds to Eq. (3).

FeðOOHÞ þ H2O ¼ Fe3þ þ 3OH− ð3Þ

To further explore this possibility, identical reactions to those
shown in Fig. 1 were conducted at pH values of 6.8, 7.5 and 8.2.
Biphasic curves similar to Fig. 1 were obtained as a function of pH
showing that two distinct kinetic phases were still present for the
iron-release reaction (data not shown).

Analysis of the linear portion of each curve at each pH showed two
important features. First, the rate expressed by k3 for FeDES formation
remained independent of DES concentration with pH variation and
secondly, the rate of iron release decreased by a factor of 5 between
pH 6.8 and 8.2. The invariance of rate with DES concentration and the
decrease in rate with increasing pH suggests the iron core dissolution
reaction represented by Eq. (3) represents the iron-release reaction in
Fig. 1. As the pH increases, the increase in OH− concentration shifts
the equilibrium to the left and causes the FeOOH core to becomemore
stable [32], causing the rate of iron release to decrease.

The rate dependence for the zero-order linear reaction shown in
Fig. 1 was investigated at 5 °C intervals from 10 to 50 °C at pH 7.5 with
a 100-fold excess of DES. The rate varied uniformly with temperature
and Fig. 2 shows the Arrhenius plot for the temperature dependence
of the zero-order rate constant (k3). From Fig. 2, an activation energy
of 62.4±2.1 kJ/mol was calculated. Additional activation parameters
for this zero-order process are shown in Table 1.

3.2. The initial, non-linear iron-release reaction

The rate of formation of FeDES from 0 to 500 s is represented by a
curved line and shows that Fe3+ chelation is initially rapid, but slows
with time, indicating the chelatable iron atoms may be close to the
surface of the protein and available for reaction with DES. Extrapolating
the linear section of Fig. 1 to zero time gives the absorbance change due

Fig. 1. The release of Fe3+ from the HoSF mineral core using DES chelation. The change
of absorbance at 430 nm during the release of Fe3+ from HoSF was monitored by
stopped-flow spectrophotometry (solid blue line). The fit to the experimental data
using Eq. (2) is shown as the red dashed line that overlays the blue line. The lower curve
is the deviation of the fit from the experimental measurement. The relative standard
deviation is less than 1% for each rate constant and the variance of the overall fit is less
than 10−6 for all 4000 data points. Only a slight deviation is observed during the first
10 s of the reaction for which Eq. (2) was unable to account. The kinetic traces were
obtained by mixing 0.01 M DES with 5.0 μM native holo HoSF (2050 Fe/ferritin) in
the following ratios (DES/HoSF=2000, DES/Fe=1.0) in TES buffer pH 7.5 at 25 °C. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 2. Activation parameters. Calculated activation parameters derived from measure-
ments of FeDES release from native HoSF as a function of temperature for reactions
corresponding to (◆) k1, (■) k2, and (▲) k3. Measurements were performed in a
DX.17MV Sequential Stopped Flow Spectrofluorimeter from Applied Photophysics with
optical path lengths of 10.0 and 2.0 mm used for the acquisition of stopped-flow kinetic
data. The temperature was controlled within±0.10 °C of the desired temperature with
a water bath. Kinetic traces were obtained by mixing 0.01 M DES with 5.0 μM native
holo HoSF (DES/HoSF=2000, DES/Fe=1.0) in TES buffer at pH 7.5. Values were
collected at 5 °C intervals using computer programmed temperature variation from
10 to 50 °C. Multiple kinetic reactions (5–8) were recorded and averaged at each
temperature to correct for random error. When the reaction sequence was finished at
50 °C, the temperature was returned to 20 °C for the final reaction. This final 20 °C
reaction was compared with the 20 °C reaction measured during the initial 10–50 °C
temperature sequence to be certain that no modification of the protein occurred while
at 50 °C.
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to the rapidly reacting iron atoms and shows that 8–9 Fe3+/HoSF are
rapidly lost. This corresponds to ~1.0 Fe3+/3-fold channel. These kinetic
and stoichiometric results also suggest that the protein-bound Fe3+ ions
are in equilibrium with the iron atoms in the FeOOH core. To test this
possibility, additional kinetic studies were conducted.

3.3. Determining if the reactions are sequential

In order to corroborate the conclusions derived from fitting the
kinetic results by Eq. (2), two additional sets of experiments were
conducted: one kinetic and the second stoichiometric. The kinetic
approach required reacting HoSF with excess DES as shown in Fig. 1
for more than 500 s until the linear reaction is fully established. The
HoSF–DES mixture was then separated by Sephadex G-25 chroma-
tography at 25 °C to isolate holo HoSF from excess DES and the FeDES
produced in the rapid, initial phase of reaction. This holo HoSF, with
only a small part of its iron core removed by the k1 and k2 reaction
steps (fast component of Fig. 1) was loaded into the stopped-flow
after a 1-h delay and reacted with excess DES under the conditions of
Fig. 1. An identical two-phase reaction as in Fig. 1 was observed, which
yielded identical k1, k2 and k3 values as the native HoSF. These results
show that in the absence of DES, and with an appropriate incubation
time, Fe3+ ions can become reestablished in the 3-fold channel and
can react with DES in the identical reaction that occurs with native
HoSF. This means that the burst is due to repopulation of the channels
and not due to non-specifically bound iron. The repopulation of the
rapidly reacting iron atoms from the HoSF FeOOH core is quite slow.
This is consistent with the rate-limiting step (k3) of the iron-release
process being the transfer of Fe3+ from the FeOOH core to the protein
binding sites.

The stoichiometric experiments investigated the number of iron
atoms involved in the rapid reaction shown in Fig. 1. By extrapolating
the linear reaction back to zero the number of Fe3+ ions released in
the burst was calculated to be 9.0 Fe3+/HoSF or 1.1 rapidly reacting
Fe3+ ions per 3-fold channel at 25 °C. The two exponential reactions
obtained from curve fitting the data in Fig. 1 were evaluated using
Eq. (2). Values for the two amplitudes associated with k1 and k2 in
Eq. (2) were obtained. The kinetic results suggest that there are two
binding sites with different affinities for iron. This result is consistent
with electrostatic potential calculations showing that two divalent
metal binding sites exist in the 3-fold channels of ferritin [28].
Temperature dependence studies were performed to evaluate how
iron release changed with temperature. By fitting each curve at each
temperature using Eq. (2), the total number of iron atoms per ferritin
and the number associated with each of the individual binding sites
was calculated and is shown in Table 2. As the temperature increases,
the overall number of rapidly reacting Fe3+ per HoSF increases from

7.0 Fe3+ at 15 °C to 12.3 at 45 °C. The amplitudes were used to
calculate the population of Fe3+ in each site as the temperature
increased (Table 2). These results suggest that a temperature sensitive
equilibrium is operatingwithin HoSF that shifts Fe3+ from themineral
core into protein sites where DES chelation can occur. Assuming that
Fe3+ transfer occurs through the 3-fold channel, it is concluded that
more than one Fe3+ binding site exists in each of the eight channels
and that the population in each channel site was resolved by the
kinetic analysis (Table 2).

To confirm the binding sites are in the 3-fold channels, identical iron-
release experiments were performed with homopolymers of H and L
human ferritin. This was done because an alternative location for
monomeric Fe3+ ions might be the two iron-binding sites of the
ferroxidase center. HoSF has 10% H subunits or ~3H subunits/ferritin.
Potentially 6 Fe3+ could come from the H subunits of HoSF. Homo-
polymers of H ferritin contain 24-subunits, eachwith a ferroxidase center
that can bind up to 2 Fe3+ ions. Therefore a homopolymers of H ferritin
could bind up to 48 Fe3+/ferritin if the iron had not migrated to the
interior. In contrast, L ferritin would have zero monomeric Fe3+ binding
sites associated with the ferroxidase center. Therefore, if the Fe3+ was
coming from the ferroxidase centers and not the 3-fold channels we
would expect a burst of 48 Fe3+/ferritin fromH ferritin and no burst from
L ferritin. If the Fe3+ comes from the 3-fold channels, the burst would be
~8 for either homopolymers of ferritin. Our results showed a burst
between 6 and 8 Fe3+ for H and L ferritin at 25 °C consistent with our
proposal that the Fe3+ comes from the 3-fold channels (data not shown).

3.4. EPR measurements with native HoSF

EPR measurements were conducted to further examine the nature
of the rapidly reacting Fe3+ ions in HoSF. Monomeric Fe3+ in a low
symmetry environment is known to exhibit an EPR signal at g=4.3.
The EPR studies were performed to determine if the rapidly reaction
Fe3+ ions observed by DES release are related to the monomeric Fe3+

EPR signal.
HoSF was reacted with DES until the fast reaction was complete

and the zero-order reaction was well established and then the DES
and FeDES were separated from HoSF on a Sephadex G-25 column at
4 °C. The ferritin fraction was collected and divided into two samples.
The first sample was placed in an EPR tube and frozen in liquid
nitrogen. This sample should have minimal population of Fe3+ in the
protein binding sites at this low temperature because of the large
activation energy for the zero-order reaction required to free Fe3+

from the mineral core (Table 1). The second sample was placed in an
identical EPR tube and equilibrated at 30 °C for 1.0 h, to allow
repopulation of Fe3+ into the protein binding sites. After 1 h, this
sample was frozen in liquid nitrogen. The kinetic results shown in
Table 2 suggest that site 1 and site 2 would become populated by
incubation at room temperature for 1 h.

Fig. 3 shows that the HoSF sample maintained at 4 °C had only a
small g=4.3 signal (blue spectrum),whereas the sample equilibratedat
30 °C for 1 h had ~4-fold larger amplitude at g=4.3 (black spectrum).
The spectrum of native ferritin not treated with DES is identical to the
black spectrum (data not shown). These results suggest that the g=4.3
signal corresponds to monomeric Fe3+ ions in the 3-fold channels. The
DES treated sample at4 °Cwasunable to repopulate the Fe3+ ionsdue to
the high energy of activation of k3. After incubation at 30 °C for 1 h, Fe3+

ions could be mobilized from the core and repopulate the binding sites
in the 3-fold channels. This equilibration restored Fe3+ ions associated
with the “burst” that is seen in Fig. 1.

3.5. DES dependence of k1 and k2

Further experiments were conducted to determine the DES
dependence for the two reactions that constitute the rapid iron-
release reactions in Fig. 1. The overall rate of iron release from HoSF at

Table 1
Activation parameters derived from the reactions shown in Fig. 2.

Rate constant Ea (kJ/mol) ΔS (J/mol K) ΔH (kJ/mol)

k1 10.5 151 7.95
k2 13.5 134 11.0
k3 62.4 266 60.0

Table 2
Temperature dependence on 3-fold channel Fe3+ binding sites.

Temperature °C Fe3+ in site 2 (k1) Fe3+ in site 1 (k2) Fe3+ total

15.0 2.3 4.7 7.0
20.0 2.6 5.0 7.6
25.0 3.1 5.9 9.0
30.0 3.3 6.7 10.0
35.0 4.1 7.3 11.4
45.0 4.5 7.8 12.3
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10-, 100- and 1000-fold excess of DES per HoSF is only slightly
increased in comparison to the large increase in [DES] (data not
shown). This indicates that the reaction is essentially independent of
DES concentration and that the reactions are first order in HoSF and
zero order in DES.

3.6. Temperature variation of k1 and k2

To determine if there are any errors in the fitting procedure caused
by additional reactions not accounted for in Eq. (2), the non-linear
iron-release reaction was investigated at 5 °C intervals between 10
and 50 °C at a DES:HoSF ratio of 50:1. Each progress curve at each
temperature was fit using Eq. (2) as outlined above. Table 1
summarizes the activation parameters obtained. The strict linear
response of k1, k2, and k3 with temperature seen in Fig. 2 confirms that
Eq. (2) is a consistent representation of the Fe3+ loss reaction.
Secondary reactions would likely have different activation energies
and contribute to a change in rate with temperature. A reaction that is
unaccounted for by Eq. (2) would cause the calculated values of k1, k2
and k3 to vary in an irregular way with temperature instead of the
linear response observed in Fig. 2.

4. Discussion

Numerous studies using siderophores and siderophore analogs
evaluated the release of Fe3+ from free Fe(O)OH, and the Fe(O)OH-
containing biominerals hemosiderin and ferritin to determine their
efficacy in treatment of iron overload diseases [9,30,31,33–36]. These
studies demonstrated the favorable thermodynamics of iron transfer
from polynuclear iron sources to form mononuclear chelates but the
rates of chelate formation are relative slow (on the order of h and
days) and in the order: Fe(O)OHNhemosiderinN ferritin. The slow
iron-release rate from these polynuclear sources is consistent with the
ability of the chelator to gain access to the surface of the iron mineral.

The slow reaction for ferritin was attributed to restriction of iron
transfer from the protected ferritin mineral through the protein shell
to the chelator on the ferritin exterior. These results show that the
ferritin protein shell is performing the exact role that it evolved to
perform, that is, to sequester iron and prevent it from reacting with
other biological molecules.

Because of the slow rate of iron release from ferritin, most
measurements using siderophores followed iron release at 1-h intervals
or longer and did not examine iron-release reactions that occurred at
the early time points. However, one report noted that iron release with
DES and rhodotorulic acid was more rapid in the first h compared to
subsequent time intervals, suggesting important information was
present in the early stages of iron loss [9]. Our interest in determining
the rates of iron transfer through the protein shell has led us to
investigate the initial steps of iron release fromHoSFusingDES chelation.

Fig. 1 shows that DES can remove Fe3+ from the HoSF iron core in a
non-reductive process. Scheme 1 shows the model built from the
kinetic data. The scheme comes from evaluations of Eq. (2) where the
entire kinetic progress curve for the overall iron-release reaction
shown in Fig. 1 was resolved into two first-order reactions in HoSF
(one rapid and a second ~4 times slower) and a third even slower
reaction that is zero order in HoSF. Scheme 1 shows that DES removes
iron from the HoSF mineral core by binding Fe3+ ions that are present
in the 3-fold channels of the HoSF protein shell. Control reactions with
H and L ferritin confirmed that the Fe3+ comes from the 3-fold
channels and not the ferroxidase center. The kinetic results mimic
those often referred to as burst kinetics. The burst comes from protein
associated Fe3+ intermediates, which are readily chelated by DES but
are slowly repopulated by a slower step.

DES is too large to enter the HoSF interior through the 3-fold
channels [31,37–39], so it must react with Fe3+ bound at or near the
protein surface of HoSF. The lack of DES dependence on the kinetics
after this initial burst reaction suggests that DES cannot interact with
Fe3+ bound at the mineral core surface, but that this iron is separated
from DES by the protein shell. The curve fitting procedure based on
Eq. (2) suggests that DES chelates 9 Fe3+ ions/ferritin at 25 °C. Since
these Fe3+ ions are bound in the 3-fold channels, the average
population is 1.1 Fe3+/channel, suggesting that two partially occupied
iron-binding sites are present. This behavior is more apparent in
Table 2 where at higher temperatures up to 1.4 Fe3+/channel was
observed. A population of 1–2 Fe3+ ions/channel is consistent with
results from electrostatic potential calculations suggesting that two
Fe2+ binding sites are present in the three-fold channels [28].
Therefore, the first conclusion from this study is that the non-linear
steps represent the “burst” of iron release from these two binding
sites in the 3-fold channels.

At 45 °C, 12.3 Fe3+ ions were bound in the channels and accessible
for DES chelation. The Fe3+ occupation per site was determined
(Table 2) using the amplitudes of the rate constants for k1 and k2. The
Fe3+ in site 1 is more tightly bound, as the calculated distribution
indicates, but is in equilibrium with the weaker binding site 2
(Scheme 1). The removal of Fe3+ from site 2 by DES chelation shifts
the equilibrium and the channel-bound Fe3+ at site 1 moves closer to
the surface and binds at site 2. The transfer rate from site 1 to site 2 is
slower than release from site 2 and is reflected by the slower value of k2.

Our results show the Fe3+ egress pathway consisting of two
intermediate Fe3+ binding sites contained within the 3-fold channel.
An Fe3+ entry pathway was previously reported which transports Fe3+

from the external solution to the ferritin interior [29]. For the entry
pathway, only a single kinetic stepwas observed andnot the two kinetic
eventsobserved for theegresspathway. This is consistentwithScheme1
because if site 1 binds Fe3+more strongly than site 2, then the entering
Fe3+would rapidly pass from site 2 to site 1 in anapparent single kinetic
event.

Once the Fe3+ binding sites have been depleted by DES chelation,
an equilibrium state is established between DES and the FeOOH

Fig. 3. EPR spectra of ferritin samples. The red (bottom spectrum) EPR signal is of apo
ferritin and is shown as the negative control. A slight peak is observed due to residual iron
in apo ferritin. The blue (middle spectrum) is from native HoSF from which Fe3+ was
removed by DES chelation at 4 °C and passed down a Sephadex G-25 column at 4 °C to
separate ferritin fromunbound DES and Fe(III)DES followed by freezing immediately after
elution from the column. The black (top spectrum) is from native HoSF from which Fe3+

was removed by DES chelation at 4 °C and passed down a Sephadex G-25 column to
separate ferritin from unbound DES and Fe(III)DES followed by a 1-h incubation at 30 °C
followed by freezing in liquidN2. Native ferritin not treatedwith DES has an EPR spectrum
essentially identical to the black (top) spectrum that was incubated at 30 °C for 1 h (data
not shown). TheEPR spectrawereobtainedat 4 K at5 mg/ml ferritin in0.025 MTESpH7.5
as described inMaterials andmethods. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

206 J. Johnson et al. / Journal of Inorganic Biochemistry 105 (2011) 202–207



mineral core with the protein shell as a barrier between the chelator
and the ironmineral.With an equilibrium in favor of FeDES formation,
the FeOOH core transfers Fe3+ through the channels to the external
solution. Essentially the small amount of free Fe3+ that exists in the
ferritin interior binds to site 1 in the 3-fold channel and is transferred
to site 2 where it can be accessed by DES. Fig. 3 supports this view by
showing that Fe3+ bound in the channels can be initially removed by
DES and that the vacated sites can be slowly replenished by transfer
from the Fe(III) stored in the core. The EPR results indicate that the
majority of the Fe3+ observed in the g=4.3 signal of holo HoSF is
channel-bound Fe3+ but smaller levels of additional Fe3+ ions also
may be present. The transfer of iron from the mineral core to these
channel iron-binding sites controls the overall rate of release of Fe3+

from the HoSF core to DES because it is the rate-limiting step. The
FeOOH mineral core is in equilibrium with the channel binding sites
and a small amount of Fe3+ is released to repopulate the binding sites
in the protein channels. The reaction is driven because FeDES forms a
more stable complex than the FeOOH found in the core or Fe3+ bound
in the channels. Ultimately, the FeOOH core slowly supplies Fe3+ to
the channels and the channels transfer Fe3+ to DES.

Although the pathway described here is for Fe3+, it may also be
relevant to the Fe2+ transfer process, with some expected differences.
For example, protein sites 1 and 2 are proposed to be composed of
carboxylate side chains. Such binding siteswill accommodate both Fe2+

and Fe3+, but the latter ion will likely be more strongly bound due to
electrostatic interaction. The consequence would be that Fe3+ transfer
out from theHoSF interior should be slower thanFe2+. The extent of this
binding difference was demonstrated by modeling of the iron-binding
capabilities of the three-fold channel for both Fe2+ and Fe3+ ions [28].
This previous study showed that Fe3+ is bound 1.3 times stronger than
Fe2+. While the present study did not measure the rate of Fe2+ egress
for comparison, Zhang et al. reported the rate for the opposite reactionof
Fe2+ and Fe3+ transfer into HoSF interior [29]. The rate of Fe3+ entry
was twice as rapid as that for Fe2+, consistent with overall stronger
binding of Fe3+ to channel sites compared to Fe2+.

This work is also consistent with recently proposed in vitro and in
vivo models for iron release. Theil proposed a gated pore model and
identified amino acid residues involved in opening and closing of the
3-fold channels of ferritin [40]. This model suggests that the 3-fold
channels regulate the flow of iron in and out of ferritin [41–43]. Non-
reductive iron(III) release based on gated pore model was demon-
strated by using chelators normally too large to penetrate the 3-fold
channels [30]. In the presence of urea, a reagent that opens the gated
pores, rapid iron release was observed. This model suggests that
interaction of ferritin with small molecules or other proteins may
regulate opening and closing of the 3-fold channels for iron release or
iron storage functions [40].

De Domenico and Kaplan have made in vivo observations that
suggest that cytosolic iron and ferritin iron are in equilibrium and that
depletion of the cytosolic iron pool triggers iron release from ferritin
[44]. The over-expression of the iron export protein ferroportin caused a
decrease in cytosolic iron levels and the depletion of cytosolic iron
eventually depleted iron stores in ferritin [44]. Studies with Fe3+

chelators that bind cytosolic iron also depleted ferritin stores [45].
Finally, studies in yeast, that naturally lack ferritin, but had ferritin over-
expressed for the studies showed that depletion of cellular iron caused
ferritin to release its iron [44]. This study suggested that specific iron-
release machinery does not exist and that iron release from ferritin in
yeast was an equilibrium driven process. Our results support these two
newmodels and provide evidence that a slow, controlled release of Fe3+

from ferritin is a viable iron-release model for ferritin. Future work will
examine the ability of other chelators to perform the same reaction and
testswill beperformedon ferritins fromother sources todeterminehow
broad this effect is across the ferritin family.

Abbreviations
HoSF horse spleen ferritin
DES desferoxamine
H4DES the protonated form of DES
FeDES the Fe3+ complex with DES
H ferritin heavy chain ferritin
L ferritin light chain ferritin
TES (N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid
Mr relative molecular mass
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Abstract The ferrihydrite mineral core of ferritin is

a semi-conductor capable of catalyzing oxidation/

reduction reactions. This report shows that ferritin

can photoreduce AuCl4
- to form gold nanoparticles

(AuNPs). An important goal was to identify innocent

reaction conditions that prevented formation of

AuNPs unless the sample was illuminated in the

presence of ferritin. TRIS buffer satisfied this

requirement and produced AuNPs with spherical

morphology with diameters of 5.7 ± 1.6 nm and a

surface plasmon resonance (SPR) peak at 530 nm.

Size-exclusion chromatography of the AuNP–ferritin

reaction mixture produced two fractions containing

both ferritin and AuNPs. TEM analysis of the fraction

close to where native ferritin normally elutes showed

that AuNPs form inside ferritin. The other peak

eluted at a volume indicating a particle size much

larger than ferritin. TEM analysis revealed AuNPs

adjacent to ferritin molecules suggesting that a

dimeric ferritin–AuNP species forms. We propose

that the ferritin protein shell acts as a nucleation site

for AuNP formation leading to the AuNP-ferritin

dimeric species. Ferrihydrite nanoparticles (*10 nm

diameter) were unable to produce soluble AuNPs

under identical conditions unless apo ferritin was

present indicating that the ferritin protein shell was

essential for stabilizing AuNPs in aqueous solution.

Keywords Gold nanoparticles � Ferritin �
Nanoparticle synthesis � Photochemistry �
Photoreduction

Introduction

Nanoparticle synthesis can be guided by using

templates to control the size and morphology of the

resulting nanoparticles (Uchida et al. 2007; Whaley

et al. 2000; Niemeyer 2001; Katz and Willner 2004).

The iron storage protein ferritin provides a template

for size-constrained nanoparticle synthesis because it

is composed of 24-polypeptide subunits that assemble

into a hollow sphere with a 12-nm exterior diameter

and an 8-nm diameter cavity (Harrison and Arosio

1996). Ferritin can accommodate up to 4,500 iron

atoms as crystalline ferrihydrite. The iron can be

removed by reduction and chelation, resulting in an

empty (apo) ferritin protein shell (Arosio et al. 2009).
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Other metallic materials have been prepared inside

ferritin using a variety of synthetic methods. Syn-

thetic ferritin minerals include metal oxides of

chromium, manganese, iron, cobalt, nickel, titanium,

europium, and uranium (Meldrum et al. 1991; Okuda

et al. 2003; Zhang et al. 2005; Douglas and Stark

2000; Meldrum et al. 1995; Hainfeld 1992; Klem

et al. 2008); sulfides (and in some instances sele-

nides) of iron, cadmium, gold, lead, and zinc

(Douglas et al. 1995; Wong and Mann 1996;

Yamashita et al. 2004; Iwahori et al. 2005; Yoshiz-

awa et al. 2006; Turyanska et al. 2009). In addition,

metal ions have been reduced to their elemental form

to produce metallic palladium, copper, cobalt, nickel,

gold, and silver nanoparticles (Ueno et al. 2004;

Galvez et al. 2005, 2006; Kasyutich et al. 2010; Shin

et al. 2010; Butts et al. 2008; Yoshizawa et al. 2006).

In addition to being a nanoreactor to sequester

metallic materials, ferritin has been used as a

photocatalyst for performing redox reactions in

solution. Exposure to light generates an electron–

hole pair in the ferrihydrite mineral core that is

sufficiently long-lived to react with other components

in solution, including sacrificial electron donors and

electron acceptors (Nikandrov et al. 1997). Photo-

chemical studies include the photoreduction of

Cr(VI) to Cr(III) (Kim et al. 2002), Cu(II) to Cu(0)

(Ensign et al. 2004) and the photoreduction of

cytochrome c and viologens (Nikandrov et al.

1997). Most recently AuCl4
- has been reduced to

gold nanoparticles (AuNPs) using ferritin as a

photocatalyst (Hilton et al. 2010a, b). In addition,

metal loading into ferritin occurs photochemically by

reducing metal citrate complexes of Fe(III), Eu(III),

and Ti(IV) and allowing the reduced form of the

metal to be oxidized by the ferroxidase center of the

ferritin H-chain leading to incorporation of the metal

into ferritin (Klem et al. 2008).

Recently, several studies describing the prepara-

tion of AuNPs or silver nanoparticles (AgNPs) using

ferritin as a template were reported. Two of the

studies prepared gold on the exterior surface of

ferritin (Zhang et al. 2007; Kim et al. 2010;

Yoshizawa et al. 2006), whereas others produced

AuS, Au, Ag, or AgAu alloy nanoparticles inside

ferritin (Yoshizawa et al. 2006; Shin et al. 2010;

Domı̀nguez-Vera et al. 2007; Fan et al. 2010; Butts

et al. 2008). Some of these studies relied on diffusion

of Au or Ag ions into the interior of ferritin followed

by reduction by NaBH4 (Fan et al. 2010; Shin et al.

2010). Other studies used protein engineering to

incorporate thiolate and histidine ligands inside

ferritin to attract and bind the Au and Ag. In addition,

less powerful reductants (MOPS buffer) were

required and light was used for the reduction of

Ag? to Ag(0) (Butts et al. 2008).

AuNPs have been used in a variety of applications

including colorimetric assays (Liu and Lu 2003,

2006; Lee et al. 2008; Kuong et al. 2007; Cao et al.

2002; Taton et al. 2000), immuno-detection assays

(Yang et al. 2009; Yeh et al. 2009), treatment of

cancer (Skrabalak et al. 2007) and amyloid-fiber-

related diseases (Chikae et al. 2008), carbon nanotube

synthesis (Bhaviripudi et al. 2007), and selective

oxidation catalysts (Turner et al. 2008). As AuNPs

have different characteristics depending on their size

and the passivity of the surface, it is important to

develop controlled synthetic routes to create particles

with different morphologies, sizes, and surface pas-

sivation (Daniel and Astruc 2003). In addition, if the

AuNPs are to be used in biological systems, capping

agents, and buffers used must be compatible for

biology (Huang and Chen 2008). The solubility,

reactivity, and photonic properties of ferritin AuNPs

are sensitive to the size of the particle and the local

environment of the gold surface. For instance, the use

of different reducing agents to prepare AuNPs with

ferritin influenced the catalytic properties of the

AuNPs (Zhang et al. 2007). Therefore, the deposi-

tion of AuNPs on the exterior or interior of ferritin

will influence the potential applications of the

nanoparticles.

Several photochemical methods to form AuNPs

have been published (Mallick et al. 2005; Shankar

et al. 2004; Eustis et al. 2005; Zhou et al. 1999; Sau

et al. 2001; Esumi et al. 1995). However, these

methods require ‘‘gold seeds’’ or use detergents or

other chemical stabilizers, reducing agents or capping

agents that are not biologically compatible (Yeh et al.

2009). One advantage of photochemical methods is

that chemical reductants are not required and this

minimizes contaminants, by-products and other

potential reactants that can affect studies in biological

systems. This study was undertaken to use ferritin

and a minimal reaction system to photo-reduce

AuCl4
- to form AuNPs without requiring ‘‘gold

seeds,’’ non-biological reducing agents or chemical

stabilizers. Potentially, the AuNPs might form inside
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the ferritin cavity, as was observed for Cu(II)

photoreduction (Ensign et al. 2004) providing an

encapsulation method for AuNP delivery. Alterna-

tively, the AuNPs may form on the exterior of ferritin

and provide a potential catalyst as was observed for

chemical reduction of AuNPs in the presence of

ferritin (Zhang et al. 2007). If ferritin sequesters the

AuNPs or acts as a capping agent for the AuNPs, the

products would be a useful medium for introducing

AuNPs into biological systems. To establish the

importance of the protein shell, we tested ferrihydrite

nanoparticles to determine if the ferrihydrite catalyst

was sufficient to form AuNPs or if the ferritin protein

shell was required for the formation of AuNPs. We

report that ferritin can catalyze the formation of

AuNPs and that the protein shell is required for AuNP

formation and solubilization. We observed that

AuNPs form both on the exterior and interior of

ferritin. Furthermore, we observed that buffers

significantly influence both the size of the particles

and the absorbance maximum of the plasmon reso-

nance peak of the AuNP products.

Materials and methods

Horse Spleen ferritin was obtained from Sigma.

Ferritin was prepared in the desired buffer by

performing buffer exchanges using Amicon Ultra

centrifuge tubes with a molecular weight cutoff of

100,000 Da to concentrate the solution and exchange

the buffer to 2-amino-2-hyroxymethyl-propane-1,3-

diol (TRIS) buffer (100 mM TRIS, 25 mM NaCl,

pH 7.5) or 3-morpholinopropane-1-sulfonic acid

(MOPS) buffer (25 mM MOPS, 25 mM NaCl, pH

7.5). The protein concentration was measured using

the Lowry method (Lowry et al. 1951). The iron

concentration was measured after treatment with

dithionite to reduce the iron followed by chelation by

bipyridyl to form the Fe(bipy)3
2? complex. The

absorbance at 520 nm (e520 = 8,400) was measured

to determine iron content (Watt et al. 1992).

AuNPs were prepared by mixing the ferritin

catalyst, the sacrificial electron donor citrate, and

AuCl4
- in a quartz cuvette followed by illumination

with an Oriel Hg lamp (model 66056). Sample

temperature was maintained at 25 �C using a water-

circulating cuvette holder connected to a water bath.

The final volume of each sample was 1.25 mL. The

final concentrations of MOPS containing samples

were 0.155 mg/mL protein, 0.44 mM iron, 4 mM

MOPS, 125 mM NaCl, 32 mM citrate, and 0.8 mM

AuCl4
–. This corresponds to 2,300 Au atoms per

ferritin molecule. Final concentrations of TRIS con-

taining samples were 0.15 mg/mL protein, 0.42 mM

iron, 20 mM TRIS, 125 mM NaCl, 32 mM citrate,

and 0.8 mM AuCl4
-. This corresponded to 2,400 Au

atoms per ferritin molecule with *1,000 Fe atoms

within each ferritin molecule. Control reactions were

performed without citrate to determine if the buffers

could act as electron donors. Reactions in MOPS

buffer still produced AuNPs showing that MOPS

could substitute for citrate as an electron donor in the

absence of citrate. However, reactions in TRIS or in

water did not produce AuNPs indicating that TRIS

could not be oxidized under these conditions to donate

electrons to AuCl4
-.

UV–visible absorption spectra were measured using

an Agilent 8453 spectrophotometer. Transmission

electron microscopy (TEM), scanning TEM (STEM),

and X-ray energy dispersive spectrometry (XEDS)

were performed on a Tecnai F20 Analytical STEM

operating at 200 keV. Samples were deposited on

copper TEM grids (Ted Pella lacey carbon film grids)

by placing a 5 lL sample onto the grid for 20 s and then

washing the grid with deionized water for 3 s. For

samples that were stained to visualize the protein, a

5 lL addition of 1% uranyl acetate was placed on the

grid for 10 s after the water wash. The grid was then

allowed to air dry. In between each step the grid

was blotted with filter paper. Fast protein liquid

chromatography was performed on a GE Healthcare

ÄKTApurifier. A SuperdexTM 200 10/300 GL size-

exclusion column was used to determine the particle

size. The sample was eluted in 0.02 M TRIS with

0.125 M NaCl at pH 7.4.

The reactions in each figure were prepared as

described above. The time of each sample was

exposed to light depended on the buffer used to

prepare the sample. Figure 2 shows that some

reactions occurred more rapidly than others. For each

sample the reaction was prepared as in Fig. 2 and

when the plateau was reached, the reaction was

stopped by turning off the light. All other analyses

were performed on samples after the reaction had

reached a plateau in the spectrophotometric assay.
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Results and discussion

The photocatalytic formation of AuNPs can be

detected by observing the formation of the surface

plasmon resonance (SPR) band that forms around

530 nm. Samples containing ferritin, AuCl4
-, and

citrate with the indicated buffer were placed in a

spectrophotometer and illuminated with a mercury

lamp perpendicular to the spectrophotometer light

path and the rate of AuNP formation was monitored

at 530 nm under a variety of reactions conditions

(Fig. 1). It was essential to find conditions that did

not permit AuNP formation in the absence of ferritin

so that any AuNP formation observed was catalyzed

by the illumination of ferritin.

Results shown in Fig. 2a follow the formation of

the AuNPs kinetically at 530 nm and Fig. 2b shows

the spectrum of the resulting samples. Insets show

photographs of the initial solution and the product

solutions. Figure 2a shows that in the absence of

light, samples prepared in TRIS buffer do not form

AuNPs as evidenced by the absence of the SPR

absorbance peak at 530 nm. Similar results were

observed for samples prepared in water (data not

shown). Upon illumination in TRIS (or water),

ferritin catalyzes the oxidation of citrate and the

reduction of AuCl4
- to produce a red solution

containing AuNPs with an absorbance maximum at

530 nm.

In contrast, MOPS has previously been shown to

chemically reduce AuCl4
- to AuNPs both in the

absence and presence of ferritin (Habib et al. 2005;

Xie et al. 2007; Zhang et al. 2007). The results in

Fig. 2a show that AuNPs form more rapidly when

illuminated in MOPS but that they also form in the

dark. Interestingly, both of the reactions in MOPS

produce purple solutions and not the red solution

observed for the TRIS reaction (Fig. 2b inset), and

have a broader, blue shifted SPR maximum of

550 nm (Fig. 2b). In addition, in comparison to

reactions in MOPS, both the water and the TRIS

samples have a lag phase before AuNPs form. Even

in comparison to the reaction in water, the TRIS

sample has a longer lag phase before AuNPs begin to

form. TRIS has an inhibitory effect on the photoca-

talysis reaction, but the origin of this inhibition has

Fig. 1 A diagram of the

photo-illumination

equipment used to prepare

AuNPs
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not yet been elucidated. The lower final absorbance in

the water sample is believed to be due to a lack of

buffering as the reaction proceeds.

TEM was used to further characterize the AuNPs

(Fig. 3). Electron micrographs of the illuminated

TRIS sample (Fig. 3a) show the formation of spher-

ical AuNPs with diameters of 5.7 ± 1.6 nm (size

distribution is shown in Fig. S1). In comparison, the

illuminated MOPS sample shows a mixture of

15–30 nm diameter particles that are more irregularly

shaped and smaller, spherically shaped particles

(Fig. 3b). For further clarification, a MOPS dark

sample was prepared that only showed the 15–30 nm

diameter irregularly shaped particles (Fig. 3c). These

results suggest that the particles formed in the MOPS

illuminated sample represents a mixture of light and

dark reactions where light reactions form smaller

*6-nm diameter particles and chemical reduction (dark

reactions) form larger 15–30-nm diameter particles.

Ferritin was shown to act as a nucleation site for

AuNP formation by performing controls in MOPS in

the absence of ferritin (Fig. 3d). In the absence of

ferritin, large gold aggregates form and demonstrates

that ferritin acts as a nano-architecture structure to

guide the size and shape of the chemically reduced

AuNPs (Zhang et al. 2007).

The illuminated MOPS reaction produced both

large and small AuNPs (Fig. 3b) and is proposed to

be a mixture of both the light catalyzed reaction

(small particles) and dark chemical reduction reaction

(larger particles). Since the light reaction proceeds at

a faster rate, we hypothesized that the AuNP size

could be controlled in MOPS buffer by manipulating

when AuCl4
- was added to the reaction. A MOPS

sample was prepared by mixing all of the components

of the reaction mixture except for the AuCl4
- and the

sample was placed in the spectrophotometer and

the light was focused on the sample. This prevented

the chemical reduction (dark reaction) from begin-

ning prior to illumination. While the solution was

illuminated, AuCl4
- was added and the reaction

proceeded as detected by SPR band formation at

530 nm. We refer to this reaction as the pre-

illuminated MOPS reaction. The product that formed

in this reaction was red and not purple as seen

previously for MOPS reactions. Figure 4 compares

the spectrum of the product of the MOPS pre-

illuminated reaction with a sample illuminated in

TRIS. Both show spectra for the SPR maxima at

530 nm with nearly identical peak width (Fig. 4a).

Furthermore, the TEM images show similar sized

spherically shaped particles with a diameter of

Fig. 2 Spectrophotometric analysis of AuNPs. a Solutions

were prepared with ferritin, citrate, and AuCl4
- in the

following buffers and illumination conditions and the forma-

tion of AuNPs was monitored by following the change in

absorbance at 530 nm with time. Square MOPS with illumi-

nation, filled square MOPS dark, triangle water illuminated,

diamond TRIS illuminated, and filled diamond TRIS dark. In

addition, the water sample was also analyzed in the dark and

was identical to TRIS in the dark. b The spectrum of AuNPs

from the TRIS illuminated (diamond) and MOPS illuminated

(square) reactions. The lower spectrum represents for spectrum

of the samples prior to illumination (circle). Insets show photos

of the solutions before and after illumination according to

buffer conditions shown by symbols
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5.7 ± 1.6 nm for reactions in TRIS (Fig. 4b, Fig. S1)

compared to diameters of 5.5 ± 1.8 nm for the

reaction in MOPS (Fig. 4c, Fig. S1). These data

indicate that illumination prior to the addition of

AuCl4
- to MOPS selectively drives product forma-

tion by the photoreduction reaction.

Fig. 3 TEM of AuNPs

formed under different

conditions. TEM of AuNPs

formed by a illuminating

ferritin in TRIS,

b illuminating ferritin in

MOPS, c chemical

reduction by MOPS in the

presence of ferritin, and

d chemical reduction by

MOPS in the absence of

ferritin

Fig. 4 MOPS reactions pre-illuminated prior to AuCl4
-

addition. a Comparison of the spectrum of (diamond) TRIS

illuminated AuNPs with (downward triangle) pre-illuminated

MOPS AuNPs, b TEM of TRIS illuminated AuNPs, and

c TEM of MOPS pre-illuminated AuNPs
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Control reactions in TRIS in the absence of ferritin

but with citrate and AuCl4
- failed to produce AuNPs

upon illumination. Similar reactions adding apo

ferritin to citrate and Au(III) in TRIS failed to

produce AuNPs under illumination indicating that the

ferrihydrite mineral inside ferritin is the photocata-

lyst. To determine if ferrihydrite in the absence of

ferritin could catalyze the formation of AuNPs we

repeated the reaction using a colloidal suspension of

ferrihydrite nanoparticles (ferrihydrite nanoparticle

powder shown in Fig. 5a) with an average size of

10 nm (a kind gift from Dr. Brian Woodfield)

(Liu et al. 2007). The product of this reaction was a

gray precipitate (Fig. 5b shows the dried product) and

not the red or purple solution that is indicative of

soluble AuNP formation. TEM of the gray precipitate

(Fig. 5c) shows large aggregates and not discrete

nanoparticles. These controls confirm that the protein

shell is essential for the formation and solubility of

the AuNPs. We propose that the protein shell (1)

separates the ferrihydrite photocatalyst from the

nucleating gold particles and prevents interactions

between the iron and gold that lead to precipitation

reactions between these metals; (2) provides amino

acid residues on the protein exterior surface that act

as nucleation sites for gold deposition; and (3) acts as

a capping agent for the AuNPs to maintain solubility.

To confirm that ferritin allows the AuNPs to

remain soluble, the following control reaction was

performed. Apo ferritin, AuCl4
-, and ferrihydrite

nanoparticles were added to a reaction with TRIS and

citrate and illuminated. In this reaction, a purple

solution similar to the MOPS reaction was observed

indicating that the external surface of apo ferritin is

able to stabilize the AuNPs that form by illumination.

The purple color suggests that the products of this

reaction are larger aggregates instead of smaller

AuNPs that produce the red color. In a separate

control reaction, the same reactants were used except

apo ferritin was replaced by bovine serum albumin

and a purple solution also formed indicating that

ferrihydrite could catalyze the reaction if protein

ligands (capping agents) were present to stabilize the

AuNPs that formed.

Understanding the elemental composition of the

AuNPs is important in determining if the AuNPs

form inside ferritin or on the outside surface. One

potential mechanism for AuNP formation is that

Au3? ions enter ferritin and that the iron mineral

surface acts as a nucleation site for the photoreduc-

tion and deposition of AuNPs inside ferritin (Ensign

et al. 2004). This is a particularly appealing proposal

because the illuminated TRIS samples produced

*6-nm diameter sized nanoparticles which compares

favorably to the inner dimension of the ferritin

interior (*8 nm diameter interior) (see Figs. 3a, 4b

and c). If the ferritin iron core is the site of reduction

and nucleation of the nascent AuNPs, the new

Fig. 5 Reactions to form

AuNPs with ferrihydrite

nanoparticles. Using

identical conditions to the

previous studies,

ferrihydrite nanoparticles

were substitute for ferritin

in the reactions.

a Photograph of the 10-nm-

diameter ferrihydrite

powder used to prepare a

colloidal suspension to act

as a photocatalyst for AuNP

synthesis. b Photograph

of the dried product that

formed when ferrihydrite

nanoparticles were

illuminated with citrate and

AuCl4
-. c TEM of the

sample shown in b
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particles should be a mixture of both gold and iron.

Therefore, the elemental composition of the resulting

particles was analyzed by XEDS for gold and iron.

Figure 6a shows two highlighted nanoparticles, a

bright particle that contains gold due to the electron

scattering in box 1, and a faint particle corresponding

to what is presumably ferritin with an iron core in box 2.

The elemental composition of the nanoparticles is

shown in Fig. 6b for the box 1 and Fig. 6c for box 2.

Figure 6b confirms that box 1 is a AuNP but shows

evidence of a small iron peak. Box 2, which is the

less intense and smaller nanoparticle, shows an iron

XEDS signal as well as a gold signal. These results

are consistent with gold nucleating on the iron core

surface followed by growth of the AuNP.

Size-exclusion chromatography was used as

another method to determine if AuNPs were forming

inside ferritin. The presence of AuNPs or ferritin in

the fractions was detected by monitoring the absor-

bance of fractions eluted from this column. The first

peak eluted at *8 mL (labeled peak #1 in Fig. 7) and

showed absorbance at both 530 and 280 nm repre-

senting AuNPs and ferritin, respectively. A second

peak (labeled as peak #2 in Fig. 7) eluted at

10–11 mL, where purified ferritin normally elutes

from this column. This peak was predominantly a

protein peak (280 nm absorbance) with smaller

amounts of AuNPs (530 nm absorbance).

Figure 7 shows the major elution peak (peak #1)

from the size-exclusion column at *8 mL. This

fraction elutes much earlier than native ferritin

(peak #2). This peak had an intense protein peak

(280 nm absorbance) and an intense AuNP peak

(530 nm absorbance). Inductively coupled plasma

emission spectroscopy (ICP-ES) analysis of this

fraction showed the highest concentration of gold in

any of the fractions (data not shown). This fraction

was studied by TEM using uranyl acetate to stain for

the ferritin protein shell and shows both AuNPs and

Fig. 6 STEM and XEDS of particles formed in TRIS.

a STEM image of gold particles formed by illumination of

ferritin and AuCl4
- in TRIS. Box 1 corresponds to the XEDS

graph in panel b. Box 2 corresponds to XEDS spectrum in

panel c. b Spectrum from XEDS on box 1, presumably a gold

particle. Strong gold peaks are observed at the characteristic

locations. In addition, iron’s characteristic peak is observed.

This indicates that iron is nearby or within the gold particle.

c This smaller, less dense particle (box 2) is confirmed to be

iron by XEDS and shows a small gold peak

Fig. 7 Size-exclusion chromatography of samples prepared in

TRIS. The size-exclusion elution profile of a sample prepared

by illumination in TRIS. Wavelengths of 280 nm (circle) and

530 nm (square) detect ferritin and AuNPs, respectively
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ferritin in this fraction (Fig. 8a, b). The elution of this

fraction (8 mL) prior to the expected elution volume

of ferritin (10–11 mL) suggests a large hydrodynamic

radius for the eluting molecules. Since ferritin is

observed in this fraction it suggests that ferritin is

attached to AuNPs and these two particles are

co-migrating. The arrows (Fig. 8) point to ferritin

molecules adjacent to AuNPs. The ferritin is the

lighter halo that surrounds the slightly darker iron

cores. The thickness of the white halos is consistent

with the 2 nm thickness of the ferritin protein shell.

The TEM images confirm that ferritin is found

adjacent or attached to AuNPs and explains why

ferritin eluted much earlier than expected. This

suggests that AuNPs form on the external surface of

ferritin. Since this fraction contains the majority of

the AuNPs (greatest absorbance at 530 nm) it appears

this is the predominant reaction forming AuNPs

under the conditions we tested.

This mechanism would require a gold nucleation

site on the external surface of ferritin where the gold

binds and grows. Based on this mechanism, we would

expect to observe smaller ‘‘gold seeds’’ that are in the

early process of growth. These ‘‘seeds’’ might be

observed in later fractions of the size-exclusion

column because these ‘‘seeds species’’ would have

a smaller hydrodynamic radius than those observed in

Fig. 8. To test this hypothesis, we prepared samples

for TEM analysis from the fraction that eluted at

8 mL from the size-exclusion column (peak #2 in

Fig. 7), but this fraction contained ferritin with very

few AuNPs. Although a peak does not exist at the

9 mL fraction from the gel filtration column (9 mL

fraction Fig. 7) we observed a fairly strong absor-

bance at both 280 and 530 nm in this fraction so it

was studied for ferritin and AuNPs.

The inset in Fig. 8 shows a STEM image of a

representative ferritin observed in this fraction and

shows two very small 1–2 nm gold particles attached

to the protein surface. The presence of small ‘‘gold

seeds’’ attached to ferritin is consistent with the

hypothesis that gold ions nucleate on the external

surface of ferritin followed by growth of the AuNP.

Figure 10 shows a model of how this reaction may

proceed.

Figure 10 suggests there is a metal nucleation

site near the exterior surface of ferritin. A likely

location might be the threefold channel of ferritin,

which contains cysteine amino acid residues that

have high affinity for binding gold. Kim et al.

demonstrated that small AuNPs were able to bind

at the threefold channel sites (Kim et al. 2010).

Once gold has nucleated on ferritin, electrons can

be transferred to this site as a method of reduction

and nanoparticle growth. Electron transfer through

the 2-nm protein shell has been previously demon-

strated by several methods (Watt et al. 1988; Zhang

and Watt 2007; Marken et al. 2002; Cherry et al.

1998).

Fig. 8 AuNP formation on exterior surface of ferritin. TEM

image of the sample that eluted at 8 mL from the size-

exclusion column. The sample was prepared and stained with

uranyl acetate on TEM grids as described in the ‘‘Materials and

methods’’ section. The arrows identify ferritin molecules that

are adjacent to AuNPs. The presence of ferritin in this elution

fraction suggests that ferritin is attached to these AuNPs. The

samples in a and b represent different images at different

magnifications. Inset shows a STEM image from the 9 mL

fraction (Fig. 7) from the size-exclusion column. This image

shows small AuNPs (seeds) attached to the external surface of

ferritin
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The model shown in Fig. 10 conflicts with one of the

proposed model for chromate reduction by ferritin as

the authors suggested that reduction occurred inside

ferritin rather than on the exterior surface (Kim et al.

2002). This model was based on the observation that

some of the Cr(III) product was observed inside ferritin

but that Cr(III) did not diffuse into ferritin. In contrast,

an alternate model showed that the majority Cr(III)

produced was found in the exterior solution but not

attached to ferritin. This might be rationalized by the

fact that gold has a much higher affinity for thiolate

ligands than Cr(III) and may stay attached to ferritin,

whereas the formation of Cr(III) on the exterior surface

would more easily dissociate into solution. Therefore,

our results suggest that the model showing AuNP

reduction on the exterior surface of ferritin and the

chromate reduction on the exterior surface of ferritin

are consistent. The fact that both studies show smaller

amounts of product on the interior of ferritin suggests

another mechanism also exist for metal reduction on

the interior of ferritin, but the mechanism is not yet

established for how this occurs.

Fraction #9 from the gel filtration also showed

other ferritin samples of interest. TEM analysis

produced images that show AuNPs surrounded by

ferritin (Fig. 9). The ferritin is visualized by staining

Fig. 9 AuNP formation inside ferritin. The 9 mL fraction

(Fig. 7) that eluted from the size-exclusion column shows

AuNPs surrounded by a white halo. These TEM images were

stained by uranyl acetate, to allow visualization of the protein

shell (white halos). a A comparison of ferritin with iron inside

with ferritin containing gold. b Shows greater magnifications

of the gold containing ferritin. c STEM analysis of iron and

gold containing ferritin. Top is a ferritin containing iron.

Middle is a ferritin with a brighter mineral core suggesting a

mixture of gold and iron. Bottom is a ferritin with a very bright

interior, indicative of gold inside ferritin. The sample is stained

with uranyl acetate to visualize the ferritin

Fig. 10 Mechanism of AuNP formation by ferritin illumina-

tion. Ferritin possesses a putative nucleation site that attracts

Au(III) ions. Photochemical excitation of the iron core

transfers electrons across the ferritin protein shell to reduce

the Au(III) ions. The electron holes created by this

photochemistry are replenished from the sacrificial electron

donor citrate. The initial gold particle acts as a nucleation site

that attracts more Au(III), which in turn are reduced and

deposited on the growing gold particle
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with uranyl acetate, which is visualized as a white

halo (Fig. 9a, b). The arrows in Fig. 9a identify gold

ferritin nanoparticles and compare them to iron-

containing ferritin molecules (white halos with less

intensity due to iron). STEM analysis (Fig. 9c) shows

ferritin stained with uranyl acetate with a very faint

mineral core signal due to iron in the core (top),

ferritin with a much brighter core indicating a

mixture of gold and iron (middle), and a gold core

inside ferritin (bottom). This is consistent with the

XEDS analysis shown in Fig. 6b, c. These three

images suggest that there might be a progression from

an iron core to a gold core as gold nucleates and

grows within the ferritin protein shell. Another

explanation for this observation is that the ferritin

sample has different iron loadings based on the

inhomogeneity of the native ferritin sample. Perhaps

different iron content leads to different gold loading

on the interior of ferritin molecules.

Conclusions

In summary, we have presented a photochemical

method to prepare protein stabilized *6 nm diameter

spherically shaped AuNPs using ferritin as a photo-

catalyst. Our results are consistent with two pathways

for AuNP formation. One pathway is gold deposition

on the inside of ferritin, where gold is proposed to

nucleate in the iron core of ferritin (Fig. 9). The

second is an external AuNP growth pathway

observed in Fig. 8 and a model of this reaction is

shown in Fig. 10. We are currently exploring syn-

thetic pathways to control whether the AuNPs form

inside ferritin or on the exterior surface.
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ABSTRACT   

Alternate fuel sources are becoming increasingly important as the reserve of fossil fuels decrease. We describe a 
photosynthesis mimic that is capable of extracting electrons from sacrificial electron donors. This model is based on the 
bio-photo-catalyst ferritin. Ferritin is an iron storage protein that naturally sequesters ferrihydrite inside a spherical 12 
nm protein shell. Ferrihydrite is a semi-conductor that functions as a photo-catalyst in aqueous solvents. Ferritin has 
been shown to photoreduce Au3+ to form Au(0) nanoparticles. Citrate acts as a sacrificial electron donor to supply 
electrons for the photoreduction. We describe studies designed to understand the mechanism of this catalyst in order to 
improve the efficiency of the reaction. We have developed a spectrophotometric assay to simultaneously illuminate the 
sample and kinetically monitor the formation of products of Au3+ reduction. We report that buffers containing sulfur 
significantly increase the rate of the reactions. Control reactions with colloidal ferrihydrite nanoparticles do not catalyze 
the photochemical reaction, but produce a black precipitate indicating that the protein shell has an important function in 
nanoparticle formation.   

Keywords: ferritin, ferrihydrite, gold nanoparticles, photoreduction, artificial photosynthesis, photosystem II 
 

1. INTRODUCTION  

1.1 Alternate fuel systems 
The use of fossil fuels in our society presents two fundamental problems. First, these stores are limited and are 
continually diminishing. Models predict that non-renewable fossil fuels stores will be extinguished by the year 2112.[1] 
While fossil fuels will continue to dominate as energy sources in the near future, renewable and reliable long-term 
energy is essential to sustain current standards of living. Second, the use of these fuels generates pollution that may have 
significant health and environmental effects. As a result, research into alternate, clean, and renewable energy has reached 
unprecedented levels. The largest source of renewable energy available comes from the sun. Unfortunately, technologies 
tapping into this vast energy source are inefficient, albeit promising.   

1.2 Photosynthesis model 
Nature has long used an efficient method of extracting the sun’s energy using photosynthesis. The first stage of 
photosynthesis relies on light-dependent reactions. A group of proteins, collectively referred to as Photosystem II (PSII), 
uses photons of light to create a charge separation at the P680 reaction center (Fig. 1).[2] The source of electrons in 
photosynthesis is water, which is oxidized by the water-oxidizing complex (WOC) made up of a tetra-manganese 
cluster.[3] The electron acceptors in the photosystem II complex siphon electrons away from the P680 reaction center to 
prevent recombination.[4] The reductive power generated by photosynthesis is used in anabolic processes, in particular 
to synthesize sugars that can be stored or used for energy. 
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Figure 1. Reaction center of photosystem II. The electrons from water are channeled through the protein complex 
to an external electron acceptor. 

1.3 Ferritin model 
Our research goal is to mimic the P680 charge separation reaction using ferritin as a photocatalyst. The model for our 
system is shown in Figure 2. Ferritin is an iron storage protein found in nearly all forms of life.[5] It is a spherical 
nanocage of 450 kDa.[6] Iron is stored within ferritin as ferrihydrite.[7] We use ferritin as a P680 reaction center mimic 
because ferrihydrite is a semi-conductor with a band gap of appropriate energy to allow electron excitation in the UV/Vis 
light range.[8] Furthermore, the electron trapped in the conduction band is long-lived, allowing ferritin to diffuse and 
interact with other species in solution. Finally, ferritin can oxidize organic acids in solution as a WOC mimic.[8] In the 
PSII system, the abundant electron donor is water; in our system citrate is the abundant and inexpensive electron donor.   

 

 
Figure 2. The ferritin P680 mimic. Upon illumination, electrons are excited from the valence band to the 
conduction band of the ferrihydrite semi-conductor. The valence band is filled with an electron from the sacrificial 
electron donor citrate. The excited electrons are transferred to an electron acceptor. 

In our lab, initial studies using this model gave results that were not consistently reproducible. Our goal was to maximize 
the ability of ferritin to act as a photocatalyst and the irreproducibility was a stumbling block in achieving this goal. To 
gain a better understanding of this photocatalytic system experiments were designed that would identify the minimal 
requirements for photocatalysis to occur.  The advantage of this system is that when Au3+ ions are reduced to Au(0), the 
gold nanoparticles that form (5–30 nm diameter particles) possess plasmon resonance properties that give a distinct color 
change to the solution.[9, 10] This provides an easy colorimetric assay to monitor the progress of the reaction. In this 
report we use this assay to test conditions that increase or decrease the reaction rate. By doing these studies, we advance 
our understanding of the fundamental requirements for this catalyst to function. These principles will be used to improve 
the reactivity of the ferritin photocatalyst to allow more efficient P680 mimics to be designed. 
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2. MATERIALS AND METHODS 

2.1 Ferritin preparation  
Holoferritin (Sigma) was dialyzed against thioglycolic acid to remove the native iron core.[11]  Reconstitution of ferritin 
cores to desired iron loadings was performed as described previously.[12]  Briefly, reconstituted ferritin was prepared by 
adding equivalents of 100 Fe2+/ferritin to a ferritin solution that was stirred in air.  Additional aliquots of Fe2+ were 
added every 10 minutes until the desired iron loading (1000 Fe/ferritin) was obtained. The protein concentration was 
measured using the Lowry method[13] and the iron concentration was measured after dithionite reduction, followed by 
addition of bipyridine to measure the [Fe(bipyridine)3]2+ complex at 520nm (ε520 = 8400).[14]   

2.2 Metal nanoparticle formation 
Au nanoparticles were prepared by mixing reconstituted ferritin, the sacrificial electron donor citrate, and AuCl4

− in a 
quartz cuvette followed by illumination with an Oriel Hg lamp (model 66056), similar to conditions reported by 
Ensign.[15] Sample temperature was maintained using a water-circulating cuvette holder connected to a 15 ºC water 
bath. The final volume of each sample was 1 mL. The final concentrations were: 0.150 mg/ml protein, 0.33 mM iron, 32 
mM citrate, 0.125 M NaCl, and 0.66 mM Au3+. These sample conditions correspond to 1000 Fe per ferritin and 2000 Au 
atoms per ferritin. We used varied concentrations of tris(hydroxymethyl)aminomethane (TRIS), 3-(N-
morpholino)propanesulfonic acid (MOPS), 2-(N-morpholino)ethanesulfonic acid (MES), phosphate, or carbonate buffers 
at pH 7.4 to determine the effect these buffers have on the reaction. The buffer concentrations are reported in the figure 
legends.   

2.3 Electron microscopy 
Transmission electron microscopy (TEM) was performed on a Tecnai F30 TEM, 140 kV. Samples were prepared by 
placing 3 μL of sample solution onto ultrathin lacey carbon film copper EM grids (Ted Pella, product number 01824). 
The excess solution was wicked off, and the grid was rinsed in deionized water. Prior to loading on the grids, some 
samples were purified by performing FPLC on a GE Healthcare AKTApurifier. A SuperdexTM 200 10/300 GL size 
exclusion column was used for these separations. 

3. RESULTS AND DISCUSSION 

3.1 Buffers affect the rate of nanoparticle formation with illumination 
After only a few minutes of illumination, a deep red colored solution begins to appear with a maximum peak at ~530 nm 
(Fig. 3A). This peak corresponds to the plasmon resonance band of gold nanoparticles.[9, 10] TEM studies show that the 
products of this reaction correspond to 5−10 nm gold nanoparticles (Fig. 3B).  

 
Figure 3. Gold nanoparticles formed by illumination of Ferritin. A) Upon illumination, the solution turns red and 
an absorbance peak is observed at 530 nm. B) Electron micrograph of the particles formed in the illumination 
reaction. Particles are of a relatively uniform size with spherical morphology. 
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Buffers play an important role in the photoreductive process. Buffers containing sulfur atoms (MOPS and MES) were 
shown to enhance the rates of the reactions, compared to the control in water (Fig. 4A and 4B). TRIS buffer also seemed 
to have a stimulatory effect on the rate of the reaction, but only at low concentrations (Fig. 4C). At higher concentrations 
(>5mM), TRIS appears to have an inhibitory effect on the rate. Interestingly, MOPS has a higher stimulatory effect than 
does MES (Fig. 4D), although these buffers differ in structure by a single carbon.   

 
Figure 4. Buffers influence the kinetics of gold nanoparticle formation during illumination. A) MES buffer, B) 
MOPS buffer, and C) TRIS buffer. ● – control without buffer. ■ – 5 mM buffer. ▲ – 25 mM buffer. X – 50 mM 
buffer. D) Comparison of different buffers at 25 mM. ● – control without buffer, ∆ – MOPS, ○ – MES, and □ – 
TRIS.  

Phosphate and carbonate buffers had no effect on the rate of the reaction compared to a control without buffer (Fig. 5A).  
However, upon reaction completion, the sample solutions had slightly different red colors. Spectrophotometric analysis 
of the colored solutions showed that the control in water had an absorption maximum at 520 nm. The maximum peak 
was observed to change depending on the buffer with the following maxima observed for each of the following buffers: 
phosphate (515 nm), carbonate (530 nm), MOPS with illumination (530 nm), and MOPS in the dark (540 nm) (Fig. 5B).  
Additionally, we report peak maxima for TRIS (520 nm), MES with illumination (530 nm), and MES in the dark (540 
nm) (data not shown).  The plasmon resonance peak of gold nanoparticles is known to shift depending on the size of the 
particles that form.[9, 10] Collectively, these data suggest that buffers can influence the reactions by altering the rate of 
formation and the size of the resulting nanoparticles.  
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Figure 5. Product formation depends upon the buffers used in the reaction. A) Kinetic run of 10 mM phosphate 
and carbonate buffers compared to control. ● – control no buffer, ■ – PO4

3– buffer, and ▲ – CO3
2– buffer. B) Final 

absorbance around 530 nm with arrowheads pointing to peak maxima. ● – control no buffer (520 nm), ■ – PO4
3– 

buffer (515 nm), ▲ – CO3
2– buffer (530 nm), X – MOPS with illumination (530 nm), and ○ – MOPS in the dark 

(540 nm).  

3.2 Buffers affect the rate of nanoparticle formation in the dark 
Previous studies have shown that MOPS buffer is able to reduce Au3+ ions to gold nanoparticles in the presence of 
ferritin without illumination.[16] To confirm these results and compare the dark reactions with the illuminated reactions, 
the experiments were repeated in the dark. Figure 6 shows data that represent how quickly the reaction reaches 
completion in the light versus dark reactions. Under the conditions used, the reactions are complete when they reach a 
plateau near an absorbance of 1.5 to 2.0. Gold nanoparticles begin to form immediately in MOPS in the dark,[16] but the 
light reactions have a lag phase prior to the first observance of the plasmon resonance band near 530 nm (see Fig. 4). In 
order to qualitatively compare all of the reactions (because each buffer has a different lag time before the appearance of 
gold nanoparticles) we developed an “artificial” method of comparing the time until the reaction reached completion. 
We use the plateau (Abs = 1.5–2.0) and divide by the number of seconds required to reach the plateau. This should not 
be confused with a rate because it is not an analysis of the slope of the gold nanoparticle formation. The larger the bar in 
Figure 6, the faster the reaction reached completion. Both MOPS and MES are able to chemically reduce Au3+ ions in 
the dark in the presence of ferritin, but this reduction is significantly slower than the photoreduction reaction. TRIS 
buffer is unable to catalyze chemically reduction of Au3+ ions in the dark.  

 
Figure 6. Effect of buffers on nanoparticles formation. MOPS and MES buffers are able to chemically reduce 
Au(III) in the dark (black bars), although not as rapidly as when illuminated (white bars). TRIS is unable to 
chemically reduce Au3+ ions in the dark. All data represent the mean of three independent runs, with error bars 
representing the standard deviation. The method of calculating the values is described in the text. The larger the 
bar, the faster the reaction occurred.   
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3.3 The ferritin protein shell is necessary for nanoparticle formation 
To determine the importance of the protein shell, ferrihydrite nanoparticles[17] of uniform size (5–10 nm diameter) were 
illuminated in the presence of Au3+ ions and citrate under identical conditions as the control reactions reported above. 
Rather than producing the classical wine red colors that was seen with ferritin, a gray solution containing a black 
precipitate formed. This precipitate was analyzed using TEM and determined to be a large incongruent mass of 
undetermined composition (Fig. 7A). Magnetic studies using a Magnetic Susceptibility Balance (MSB) confirmed that 
these particles are not magnetic (data not shown). In comparison, TEM images of the gold particles formed with ferritin 
are spherical in shape with a relatively tight size distribution of 5–10 nm in diameter (Fig. 7B).      

 
Figure 7. The protein shell of ferritin is crucial for metal nanoparticle formation. A) TEM images of the product of 
ferrihydrite-catalyzed nanoparticles depict large aggregated material with non-spherical morphology (scalebar 
1μM).  B) TEM of spherical gold nanoparticles produced in the presence of ferritin (scalebar 20 nm).  

4. CONCLUSIONS 
Previous studies have shown that ferritin acts as a photocatalyst to reduce various metal species, proteins and redox 
dyes.[15, 18, 19] In each of these studies, a sacrificial electron donor was used to fill the photo-induced electron hole in 
the ferrihydrite mineral core. The excited electron in the conduction band was then passed to an electron acceptor, 
leading to reduction of the various electron acceptors.  

Our research goal is to expand the use of this system for photocatalytic reduction of other electron acceptors. However, 
early efforts in this arena showed very inconsistent results in achieving reproducible data. The present study has focused 
on determining the minimal requirements for the ferritin photocatalysis reactions to occur. We demonstrate that the 
choice of buffer significantly influences the rate of the reaction and alters the final products that form.  These studies 
have provided valuable information relating to light and dark reactions that occur and which buffers to use to avoid 
chemical reduction in the dark.  

MOPS was previously shown to reduce Au3+ ions to form micrometer sized gold nanoparticle aggregates.[20] Using 
ferritin as a scaffold for gold nanoparticle synthesis, it was shown that instead of micrometer-sized aggregates, spherical 
gold nanoparticles were prepared in a size similar to ferritin 15–30 nm.[16] The authors concluded that amino acids 
supplied from the protein shell of ferritin provided nucleation sites for Au3+ binding and in the presence of MOPS, 
reduction occurred to form gold nanoparticles that were close in size to the 12 nm exterior diameter of ferritin. 

In contrast to MOPS or MES, TRIS was unable to catalyze the formation of nanoparticles in the dark and is therefore, an 
ineffective reductant in this assay. However, in the light reactions, TRIS formed gold nanoparticles in the 5–10 nm 
diameter range. Figure 5B shows that the absorbance maximum of the MOPS dark reaction has a wavelength of 540 nm 
and is purple in color. The TRIS reaction has an absorbance maximum at 530 and has a red color. This is consistent with 
TRIS forming smaller nanoparticles because of the shift in the plasmon peak.[9, 10] By understanding the nature of the 
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reduction, whether it is chemical or photochemical and judiciously choosing the buffers used in the reaction, the average 
size of the nanoparticles formed can be controlled and observed by monitoring the absorbance peak near 530 nm.   

In the photochemical reaction, TRIS is the slowest buffer for the formation of gold nanoparticles and as its concentration 
increases, the reaction slows. At present the cause of this is not known. The sacrificial electron donor in this assay is 
citrate. In the absence of citrate, reactions in water or TRIS result in the precipitation of the ferritin. This has been 
observed previously when no electron donor was added to the solution and was attributed to the ferritin protein shell 
acting as the electron donor and being oxidized and denatured.[8] Because MOPS and MES can reduce Au3+ in the dark, 
we postulated that they might act as sacrificial electron donors in the photochemical reactions and substitute for citrate. 
Reactions confirmed that in the absence of citrate, both MOPS and MES were capable of supplying electrons to ferritin 
to sustain gold nanoparticle formation (data not shown). Therefore, their ability to stimulate the reactions is most likely 
due to an enhancement in electron donation to fill electron holes generated in the ferrihydrite mineral of ferritin.    

Previous studies identified ferrihydrite as the photocatalyst in this reaction.[15, 19] We performed tests to determine if 
ferrihydrite nanoparticles could substitute for ferritin in this reaction. Upon illumination the solution changed color but 
instead of a red color a black precipitate was observed. The product was analyzed by TEM and was an aggregate of 
micrometer size. This experiment shows that the ferritin protein is important for 1) acting as a nucleation site for 
nanoparticle nucleation; and/or 2) preventing the ferrihydrite from interacting with the nascent nanoparticles. In either 
case, the role of ferritin in this reaction is essential for gold nanoparticle formation.   

The results presented in this paper provide valuable background data allowing us to understand the minimal 
requirements for the photochemical reactions to occur. Armed with this information, future work will focus on 
understanding how citrate interacts with the ferritin protein or the iron mineral core for oxidation. Likewise, the docking 
site for metal reduction (or other potential electron acceptors) will be identified. Understanding these fundamental 
principles will lead to methods for extracting electrons for practical use in bio-batteries or bio-fuels, with the source of 
energy being the sun.  
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ABSTRACT   

Gold metal nanoparticles have applications in bio sensing technology, nano-tube formation, and cancer therapy. We 
report attempts to synthesize gold nanoparticles within the ferritin cavity (8 nm) or to use ferritin as a scaffold for 
coating gold on the outside surface (12 nm). The intrinsic iron oxide core of ferritin is a semi-conductor and light can 
excite electrons to a conduction band producing a powerful reductant when a sacrificial electron donor fills the electron 
hole. We present a method using ferritin to photo chemically reduce Au(III) to metallic gold nanoparticles.  During 
initial studies we observed that the choice of buffers influenced the products that formed as evidenced by a red product 
formed in TRIS and a purple produce formed in MOPS.  Gold nanoparticles formed in MOPS buffer in the absence of 
illumination have diameters of 15-30 nm whereas illumination in TRIS buffer produced 5-10 nm gold nanoparticles.  
Increases in temperature cause the gold nanoparticles to form more rapidly.  Chemical reduction and photochemical 
reduction methods have very different reaction profiles with photochemical reduction possessing a lag phase prior to the 
formation of gold nanoparticles.  

Keywords: Ferritin, photochemistry, gold nanoparticles, photoreduction, ferrihydrite, bio-materials 
 

1. INTRODUCTION  
1.1 Gold Nanoparticles 

Nanoparticles have different reactivities and chemistry than the same material of identical composition existing in the 
bulk phase.[1]  Metal nanoparticles are particularly interesting due to effects related to plasmon resonance.[2, 3]  
Because of these interesting properties, gold nanoparticles have uses in a variety of applications that include colorimetric 
assays [4-6], immuno-detection assays [7], treatment of cancer [3] and amyloid fiber related diseases [8], carbon 
nanotube synthesis [9], and selective oxidation catalysts [10].  The ability to control the size and morphology of gold 
nanoparticles is important for controlling the chemistry and reactivity of nanoparticles.  Furthermore, finding mild 
reaction conditions with minimal waste products is important in any synthesis method because of environmental 
concerns.   

 

1.2 Ferritin photochemistry 

As the cellular iron storage protein, ferritin naturally contains an iron mineral core between 2000-3000 iron atoms but 
has a capacity of up to 4500 iron atoms.[11]  The iron mineral core is ferrihydrite, a mineral with an average 
compositional formula of FeOOH that possesses semi-conductor properties.[12]  The iron is sequestered inside a protein 
nanocage that is composed of 24 polypeptide subunits.  The protein nanocage has a molecular weight of 450,000 and has 
an external diameter of 12 nm with an internal hollow cavity with a diameter of 8 nm where the iron is deposited.[13]  
Channels traverse the protein nanocage and allow ions to enter and leave the interior.  The combination of a protein shell 
that encapsulates semi-conductor materials allows ferritin to disperse the semi-conductor material in solution, 
maximizing the exposure of the semi-conductor to light.   
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The physical properties of ferritin as a metal binding protein have been used to synthesize a variety of size-constrained 
nanomaterials inside the 8 nm diameter cavity.  These materials include metal oxides of chromium, manganese, iron, 
cobalt, nickel titanium, europium and uranium [14-20]; sulfides (and in some instances selenides) of iron, cadmium, 
gold, lead and zinc [21-26]; and metallic palladium, copper, cobalt and nickel nanoparticles.[27-29]  These materials 
have potential uses in magnetic storage, medical imaging, battery applications and catalysis. 

Recently ferritin was used in a new application as a photocatalyst.[30]  The electrons generated from the photochemical 
reaction were used to reduce ions in solution (Figure 1).  The first studies with ferritin showed reaction that reduced 
viologens and cytochrome c. [30]  Later, ferritin was used to photochemically reduce chromate to Cr(III) [31] and Cu(II) 
to copper nanoparticles [32].  The goal of this paper is to use the photocatalytic properties of ferritin to photoreduce 
Au(III) to Au(0) and form gold nanoparticles.  This should proceed at neutral pH without additional reducing agents 
producing gold nanoparticles under mild synthetic conditions.  Figure 2 represents the experimental set-up used to 
illuminate the sample and detect product formation.  The reaction is monitored spectrophotometrically as the products 
form.  This system allows the reaction to be monitored and the addition of various molecules can be monitored for their 
stimulatory or inhibitory effects on the reaction.   

 
 

Figure 1. Model of the ferritin photocatalyst. In this system, charge separation occurs when valence electrons are 
excited into the conduction band of the ferrihydrite semi-conductor.  Citrate is used as a sacrificial electron donor.  
Au(III) is used as the electron acceptor for experiments used in this paper. 

 

 

Proc. of SPIE Vol. 7646  764607-2



 

 

 
Figure 2. Schematic of experimental setup.   An Oriel Hg lamp is aligned over the cuvette holder of an Agilent 
8453 diode-array spectrophotometer.  This allows simultaneous illumination of the sample and detection of the 
products that form in the reaction.     

 

2. MATERIALS AND METHODS 
2.1 Ferritin preparation  

Holoferritin (Sigma) was dialyzed against thioglycolic acid to remove the native iron core.[33]  Reconstitution of ferritin 
cores to desired iron loadings was performed as described previously.[34]  Briefly, reconstituted ferritin was prepared by 
adding equivalents of 100 Fe2+/ferritin to a ferritin solution that was stirred in air.  Additional aliquots of Fe2+ were 
added every 10 minutes until the desired iron loading (1000 Fe/ferritin) was obtained. The protein concentration was 
measured using the Lowry method[35] and the iron concentration was measured after dithionite reduction, followed by 
addition of bipyridine to measure the [Fe(bipyridine)3]2+ complex at 520nm (ε520 = 8400).[36]   

2.2 Metal nanoparticle formation 

Au nanoparticles were prepared by mixing reconstituted ferritin, the sacrificial electron donor citrate, and AuCl4
− in a 

quartz cuvette followed by illumination with an Oriel Hg lamp (model 66056), similar to conditions reported by 
Ensign.[32] Sample temperature was maintained at the desired temperature using a water-circulating cuvette holder 
connected to a water bath. The final volume of each sample was 1 mL. The final concentrations were: 0.150 mg/ml 
protein, 0.33 mM iron, 32 mM citrate, 0.125 M NaCl, and 0.66 mM AuCl4

-. These sample conditions correspond to 1000 
Fe per ferritin and 2000 Au atoms per ferritin.  Samples prepared by centrifugation were treated by taking the sample 
after illumination and placing the sample in an Eppendorf Model 5415C centrifuge and spinning the sample at 15,000 x 
g for 10 minutes.  The supernatant was removed and the spectrum recorded. 

2.3 Electron microscopy 

Transmission electron microscopy (TEM) was performed on a Tecnai F30 TEM, 140 kV. Samples were prepared by 
placing 3 μL of sample solution onto ultrathin lacey carbon film copper EM grids (Ted Pella, product number 01824). 
The excess solution was wicked off, and the grid was rinsed in deionized water. Prior to loading on the grids, some 
samples were purified by performing FPLC on a GE Healthcare AKTApurifier. A SuperdexTM 200 10/300 GL size 
exclusion column was used for these separations. 
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3. RESULTS AND DISCUSSION 
3.1 Formation of gold nanoparticles 

Illuminating a ferritin solution containing AuCl4
- and citrate produces gold nanoparticles.  Prior to illumination the 

solution has a slight yellow color due to the iron core of ferritin and negligible absorbance in the visible range (see x-axis 
in Fig. 3).  During illumination, the solution turns red and has an absorbance maximum at 530 nm (Fig. 3) due to the 
plasmon resonance band of gold nanoparticles.[3]  Previous work demonstrated that gold nanoparticles reduced with 
MOPS or sodium borohydride produced purple solutions and TEM analysis showed nanoparticles with diameters of 15-
30 nm.[37]  Figure 3 compares the spectrum of each of these samples and shows that the illuminated sample has a 
narrower absorbance peak that is blue-shifted (Absmax = 530 nm)  compared to the chemically reduced gold nanoparticle 
sample (Absmax = 550 nm).   

 

 

 
Figure 3. Spectra of gold nanoparticles formed by photochemical reduction and chemical reduction.  Samples 
include, ▲ – ferritin in TRIS illuminated, ■ – ferritin in MOPS in the dark, ● – control spectrum recorded before 
illumination of the sample.  

 

3.2 TEM characterization of gold nanoparticles 

Plasmon resonance peaks are known to shift with the size of the nanoparticles and a shift to smaller wavelengths is 
consistent with the formation of smaller particles.  To confirm this hypothesis, the samples were analyzed by TEM (Fig. 
4).  Images show that the gold nanoparticles formed by photochemical reduction of Au(III) form gold nanoparticles in 
the 5-10 nm range.  Additionally, very few nanoparticles in the 15-30 nm range are observed, indicating that these two 
synthesis methods provide pathways to prepare 5-10 nm particles by photoreduction in TRIS or 15-30 nm particles using 
the MOPS reduction method.  
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Figure 4. TEM of gold nanoparticles formed by illumination of ferritin in TRIS. A) Sample of ferritin and gold 
nanoparticles.  The sample was stained by uranyl acetate to mark the ferritin protein shell.  The darkest spheres are 
gold nanoparticles.  The white halos are from the ferritin protein shell.  Inside the white halos can be seen darker 
spheres representing the ferritin iron core.  B) Gold nanoparticles in the 5-10 nm diameter range.   

 

3.3 Evaluation of size distribution versus aggregation of nanoparticles 

To determine if the width of the absorbance peak (Fig. 3) was due to a mixture of large and small nanoparticles or if it 
was an affect of aggregation of similar sized nanoparticles, the sample was centrifuged to remove larger particles.  
Centrifugation decreased the total amount of absorbance due to the removal of some nanoparticles, however the 
absorbance maximum of the centrifuged samples did not shift to a lower wavelength.  This observation indicates that the 
particles that were removed by centrifugation in both the TRIS illuminated sample and the MOPS dark sample were 
aggregates instead of the removal of larger particles (Fig. 5).[37]  
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Figure 5. Aggregation versus size of particles.  The absorbance maximum and width of absorbance peak is based 
on the nanoparticle size and distribution of various sized particles in the sample.  Centrifugation will remove the 
larger particles.  A shift in peak maxima and narrowing of the peak indicates that larger particles are removed.  A 
general decrease in peak intensity is evaluated as the removal of aggregated particles.  Samples are: ■ – MOPS no 
centrifugation. □ – MOPS centrifuged, ● – TRIS no centrifugation. ○ – TRIS centrifuged.  

 

3.4 Temperature dependence on gold nanoparticle formation 

Using a temperature controlled cuvette holder, the time required to reach completion for gold nanoparticle formation was 
studied as an effect of temperature.  Figure 6A follows the formation of gold nanoparticles at the plasmon resonance 
band at 530 nm.  As the temperature increases the time required for product formation is significantly decreased.  Figure 
6B shows a bar graph that represent how quickly the reaction reaches completion. Under the conditions used, the 
reactions are complete when they reach a plateau near an absorbance of 2.0.  Unfortunately, there is a lag phase that is 
much longer in the colder reactions.  In order to qualitatively compare all of the reactions (because each temperature has 
a different lag time before the appearance of gold nanoparticles) we developed an “artificial” method of comparing the 
time until the reaction reached completion. We divided the absorbance at the plateau (Abs = 1.5–2.0) by the number of 
seconds required to reach the plateau. This should not be confused with a rate because it is not an analysis of the slope of 
the gold nanoparticle formation. The larger the bar in Figure 6, the faster the reaction reached completion.  Ferritin 
provides a unique protein environment for this type of analysis because ferritin is unusually stable to temperature 
changes compared to most proteins.[38]  As shown, ferritin is stable to 80° C.  The observation that gold nanoparticle 
formation increases with increased temperature is consistent with the requirement for Au(III) to diffuse and interact with 
the ferritin protein shell prior to nucleation of Au(III) on the ferritin external surface.   
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Figure 6. Temperature dependence for gold nanoparticle formation.  A) Product formation versus time with 
product formation measured at the plasmon resonance peak at 530 nm.   Conditions were: ● = 0 °C, ■ = 10 °C, ▲ 
= 15 °C, X = 25 °C, ○ = 40 °C, □ = 60 °C, ∆ = 75 °C.  B) Due to the lag phase of the reactions start at different 
times.  A method to qualitatively evaluate the time required for samples to reach completion is plotted.  Please see 
text for method of calculation.    

 

3.5 Comparison of chemical reduction by MOPS and photoreduction by TRIS 

The lag phase observed in Figure 6 prior to the first gold nanoparticle products being formed is particularly interesting, 
especially as it is lengthened with colder temperatures.  In comparison, gold nanoparticle formation using chemical 
reduction with MOPS has a very short lag phase of less than 1 minute (Fig. 7).  For the plasmon resonance effect to 
occur, the gold nanoparticle must achieve a minimal size before the effect can be observed.  However, this minimal size 
is achieved rapidly when MOPS acts as the chemical reductant.  For the illuminated reaction in TRIS, the lag phase is 
significantly longer than that observed for MOPS chemical reduction.  Controls with TRIS in the dark show that no 
chemical reduction takes place on the timescale of these studies and after two weeks in the dark only a very faint purple 
color was observed.  There are several potential reasons for this lag phase.  The first is that a critical number of electrons 
must be excited into the conducting band of the ferrihydrite mineral core prior to initial reduction of Au(III) to Au(0).  
This may depend on how rapidly the electron holes are filled.  Perhaps a certain oxidizing potential must be obtained 
before citrate can be oxidized.  Once sufficient holes have been created, the citrate can be oxidized and the holes are 
filled trapping the excited electrons in the conduction band.  Potentially, kinetic studies examining the concentration 
dependence of citrate on the formation of gold nanoparticles could test this model.  A second model may require 
conversion of the ferrihydrite to a different mineral in ferritin.  It is known that photochemistry reduces the iron and free 
Fe2+ has been observed.[30]  It is possible that a mixed-valent Fe(II)-Fe(III) mineral is the active photocatalyst and that 
the lag phase is the rearrangement of ferrihydrite to this new mineral.   
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Figure 7. Chemical reduction of gold nanoparticles in MOPS compared to photochemical reduction in TRIS. 
MOPS reduction is rapid and begins within 1-minute ■ – MOPS in the dark.  TRIS photoreduction is slower and 
has a lag phase prior to the first gold nanoparticles being formed ● – TRIS illuminated kinetics. 

 

 

3.6 Wavelength dependence on the photochemistry of ferritin catalyzed gold nanoparticle formation 

To estimate the energy required for excitation of electrons from the valence band to the conduction band of ferrihydrite, 
we used wavelength filters to determine wavelengths required for gold nanoparticle formation to occur. A filter that 
blocked wavelengths of 410 nm and below (shorter more energetic wavelengths) was used in a reaction and no gold 
nanoparticles formed with this filter.  A second filter blocking 370 nm and below (shorter more energetic wavelengths) 
permitted the formation of gold nanoparticles.  Therefore, the energy required to excite electrons from the valence band 
into the conduction band of ferrihydrite lies between 370 and 410 nm.  These energies correspond to energies of 3.00 – 
3.35 eV.  A similar optical band gap (2.5 to 3.5 eV) was reported for the ferritin photoreduction of chromate to 
Cr(III).[31]  

 

4. CONCLUSIONS 
The ferrihydrite mineral core of ferritin acts as a photocatalyst for aqueous redox reactions (Fig. 1).  In this study we 
have used this system to oxidize citrate and reduce Au(III) to gold nanoparticles.  The advantage of using Au(III) as a 
substrate is that the plasmon resonance band of the gold nanoparticle products has a distinct color change.  Using a 
modified spectrophotometer, the sample can be illuminated and the formation of products can be simultaneously 
monitored (Fig. 2).  We used this system to kinetically monitor the formation of the products to determine how 
alterations of the reaction conditions increase or decrease the rate of product formation.     
 
Illumination of ferritin in the presence of Au(III) produced a red solution with an absorbance maximum of 530 nm (Fig. 
3) and 5-10 nm diameter gold nanoparticles as the product (Fig. 4).  Previous ferritin work where Au(III) was chemically 
reduced by MOPS produced 15-30 nm particles.[37]  The previous work proposed that amino acids on the external 
surface of ferritin created nucleation sites for gold deposition.  In the photochemical reaction, the nanoparticles are in the 
same size as the internal diameter of ferritin.  Although EM images did not show conclusive evidence that the gold 
particles are entrapped inside ferritin, the observed size distribution suggests that this is a possibility due to the apparent 
restricted size of the nanoparticles.  If this is correct, there are two distinct synthetic pathways using ferritin as a scaffold 
for nanoparticle synthesis.  The first is the dark chemical reduction of Au(III) in the presence of ferritin where 15-30 nm 
gold nanoparticles are deposited on the external surface of ferritin.  The second is a photocatalytic reduction of Au(III) 
where 5-10 nm gold nanoparticles are deposited on the inside of ferritin.   
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The samples were also tested for size-distribution using a centrifugation step (Fig. 5).  Centrifugation should remove the 
largest particles from solution.  If the larger particles are removed and the smaller particles remain in solution the 
absorbance maximum of the solution should change to a lower wavelength due to the plasmon resonance of the smaller 
particles.  If aggregated particles of a similar size are removed by centrifugation, the peak maximum would not change 
but the total absorbance would decrease.  The removal of aggregated nanoparticles is what was observed indicating that 
the size distribution is very regular in both the TRIS photochemical preparation of gold nanoparticles and the MOPS 
preparation.[37]  
 
The time the photochemical reaction required to reach completion was measured as a function of temperature (Fig. 6).  
Samples were tested in a temperature range from 0 to 70º C.  As the temperature increased, the time to reach completion 
of the reaction decreased.  This is consistent with more rapid diffusion of the Au(III) in solution and increased collisions 
for the Au(III) to find nucleation sites on the ferritin protein exterior.  Additionally, the diffusion of the sacrificial 
electron donor citrate to interact with ferritin and be oxidized would be increase.   
 
The optical band gap of 3.0 – 3.5 eV measured in these experiments is in a similar range to that reported previously for 
the ferritin photocatalyst (2.5 – 3.5 eV).[31]  This corresponds to wavelengths ranging from 370 – 410 nm.  Incidentally 
this is the range where ferritin has an absorption shoulder in the UV/Vis spectrum.  As mentioned in the introduction, 
there are a variety of metal oxides, metal sulfides and metal selenides that have been prepared in ferritin.  Future work 
will examine these materials for their optical band gap and the ability to catalyze photooxidation and photoreduction 
reactions.  A future goal will be to prepare tunable photocatalysts based on the optical band gap of these ferritin 
materials.   
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