The Asymmetric Phase-Transfer Catalyzed Alkylation of Imidazolyl Ketones and Aryl Acetates and Their Applications to Total Synthesis

Michael Andrew Christiansen
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Biochemistry Commons, and the Chemistry Commons

BYU ScholarsArchive Citation

Christiansen, Michael Andrew, "The Asymmetric Phase-Transfer Catalyzed Alkylation of Imidazolyl Ketones and Aryl Acetates and
Their Applications to Total Synthesis" (2010). All Theses and Dissertations. 2400.
https://scholarsarchive.byu.edu/etd/2400

The Asymmetric Phase-Transfer Catalyzed Alkylation of Imidazolyl

Ketones and Aryl Acetates and Their Applications
to Total Synthesis

By

Michael A. Christiansen

A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Merritt B. Andrus
Steven L. Castle
Matt A. Peterson
Heidi R. Vollmer-Snarr
Roger G. Harrison

Department of Chemistry and Biochemistry
Brigham Young University
April 2010

Copyright © 2010 Michael A. Christiansen
All Rights Reserved

ABSTRACT
The Asymmetric Phase-Transfer Catalyzed Alkylation of Imidazolyl
Ketones and Aryl Acetates and Their Applications to Total Synthesis
Michael A. Christiansen
Department of Chemistry and Biochemistry
Doctor of Philosophy

Phase-transfer catalysts derived from the cinchona alkaloids cinchonine and cinchonidine are widely used in the asymmetric alkylation of substrates bearing moieties that resonancestabilize their enolates. The investigation of α-oxygenated esters revealed decreased α-proton acidity, indicating the oxygen's overall destabilizing effect on enolates by electron-pair repulsion. Alkylation of α-oxygenated aryl ketones with various alkyl halides proved successful with a cinchonidine catalyst, giving products with high yield and enantioselectivity. The resulting compounds were converted to esters through modified Baeyer-Villiger oxidation.

Alkylation with indolyl electrophiles gave products that underwent decomposition under Baeyer-Villiger conditions. Alternative N-methylimidazolyl ketones were explored. Alkylated imidazolyl ketones, obtained in high yield and enantioselectivity, could be converted to esters through treatment with methyl triflate and basic methanol. This technique has the advantage of not requiring stoichiometric addition of chiral reagents, which is requisite when employing traditional chiral auxiliaries. This method's utility is demonstrated in the total asymmetric syntheses of $(+)$-kurasoin B and analogs, and 12-(S)-HETE.

Kurasoin B is a fungal-derived natural compound possessing moderate farnesyl transfer (FTase) inhibitive activity $\left(\mathrm{IC}_{50}=58.7 \mu \mathrm{M}\right)$. FTase catalyzes post-translation modifications of membrane-bound Ras proteins, which function in signal cell transduction that stimulates cell growth and division. The oncogenic nature of mutated Ras proteins is demonstrated by their commonality in human tumors. Thus, FTase inhibitors like $(+)$-kurasoin B possess potential as cancer chemotherapy leads. Derivatization may enable structure-activity-relationship studies and greater FTase inhibition activity to be found.

12-(S)-HETE, a metabolite from a 12-lipoxygenase pathway from arachidonic acid, has been found to participate in a large number of physiological processes. Its transient presence in natural tissues makes total synthesis an attractive avenue for obtaining sufficient quantities for further study. Five asymmetric syntheses of $12-(S)$-HETE have been reported. Three require chiral resolutions of racemates, with the undesired enantiomers being discarded or used for other applications.

Asymmetric PTC alkylation is also described for aryl acetates, whose products were enantioenriched through recrystallization. This technique is applied to a total synthesis of the anti-inflammatory drug (S)-Naproxen.

Keywords: phase-transfer catalysis, asymmetric alkylation, kurasoin, 12-(S)-HETE, farnesyl transferase, acyl imidazole, aryl acetate, (S)-Naproxen

ACKNOWLEDGEMENTS

I thank my wife McKenna and my children, Adam and Grace, for supporting me during my many hours away conducting research. I thank my late father, who taught me how to work hard, to value learning, and to sacrifice present comforts for future success. To my other family members, including my mother, siblings, their spouses, and children: thank you for everything.

I am deeply grateful for the patience and assistance of my advisory committee members. They have answered endless questions through the years, helping me to develop a love and understanding of the field. I thank Dr. Merritt Andrus, most especially, for his unending flexibility and encouragement in allowing me to learn and mature through pursuing many of my own ideas in the lab, even when most didn't work. He has never once raised his voice because of my failings and has remained ever optimistic in the face of challenge.

I'm most appreciative to Dr. Matt Peterson for allowing me to help with some of his work and thereby have my name on two of his publications. Though I'm not sure I deserve it, thank you. I'm further grateful to both Dr. Peterson and Dr. Steven Castle, as well as to Dr. Andrus again, for the many letters of recommendation they've written and tirelessly sent for me to various agencies and laboratories across the country. To Dr. Peterson, also: thank you for helping find me a post-doctoral position. I likewise thank my lab mates for all their help with our research through the years.

Most importantly, I thank the BYU Department of Chemistry for the chance to come. I've had countless growing experiences that extend beyond my coursework, lab research, and other projects. These have included many chances to teach undergraduate classes and labs, which is what I truly enjoy the most. Additionally, I've been given various fellowships, assistantships, and other financial rewards that I will never forget. Thank you, everyone.

Table of Contents

Page

1. BACKGROUND 1
1.1. $(+)$-Kurasoin B 1
1.1.1. Ras Proteins and Farnesyl Transferase. 1
1.1.2. Isolation, Syntheses, and Characterization 2
1.1.3. Biological Activity 4
1.1.4. Additional Synthetic Efforts 5
1.2. 12-(S)-HETE 6
1.2.1. Background and Isolation 6
1.2.2. Biological Activity. 7
1.2.3. Synthetic Overview 8
1.3. (S)-Naproxen. 9
1.3.1. Discovery 9
1.3.2. Biological Activity 9
1.3.3. Synthetic Overview 10
1.4. References and Notes 12
2. ASYMMETRIC PHASE-TRANSFER CATALYZED ALKYLATION 18
2.1. Background 18
2.2. PTC Alkylations of α-Oxygenated Substrates 22
2.3. Total Syntheses of (-)-Ragaglitazar and (+)-Kurasoin A 24
2.4. Limits of the Methodology: Attempted Synthesis of (+)-Kurasoin B 26
2.5. References and Notes 27
3. PHASE-TRANSFER-CATALYZED ASYMMETRIC ACYLIMIDAZOLE
ALKYLATION 29
3.1. Bypassing the Baeyer-Villiger Oxidation Step. 29
3.2. Substrate, Catalyst, and Reaction Condition Development 30
3.3. A Modified and Improved Synthesis of the Catalyst 32
3.4. Finishing the Methodology 37
3.5. Further Optimization of the Catalyst 38
3.6. Comparisons with Commercial Catalyst 41
3.7. References and Notes 41
4. THE TOTAL SYNTHESIS OF (+)-KURASOIN B 42
4.1. Synthetic Analysis 42
4.2. Making the Electrophile 43
4.3. First-Generation Synthesis 44
4.4. Second-Generation Synthesis 45
4.5. Analog Syntheses 48
4.5.1. First-Generation Analogs. 48
4.5.2. Indole Variation Through Modified Larock Chemistry 50
4.5.3. Second-Generation Analogs 51
4.6. References and Notes 52
5. THE TOTAL SYNTHESIS OF 12-(S)-HETE 54
5.1. Previous Synthetic Efforts. 54
5.2. Synthetic Analysis. 56
5.3. First-Generation Synthesis 57
5.3.1. Making the Electrophile 57
5.3.2. Alkylation Screen 58
5.3.3. To Aldehyde 133 61
5.3.4. Making Wittig Salts $\mathbf{1 2 3}$ and $\mathbf{1 5 8}$ 61
5.3.5. Coupling with Aldehyde 133 66
5.3.6. Completing the Synthesis 67
5.4. Second-Generation Synthesis 68
5.5. References and Notes 69
6. PHASE-TRANSFER CATALYZED ASYMMETRIC ARYLACETATE ALKYLATION 72
6.1. PTC Alkylation of α-Aryl Esters 72
6.2. PTC Alkylation of 6-Methoxynaphthyl Acyl Esters. 75
6.3. Total Synthesis of (S)-Naproxen 77
6.4. Asymmetric PTC Alkylation of Phenyl Phenylacetates 79
6.5. References and Notes 80
7. EXPERIMENTAL DETAILS AND DATA 83
7.1. General Methods and Materials 83
7.2. Cerium Molybdate Stain 84
7.3. Procedures from Chapter 3 84
7.3.1. Acyl Imidazole Substrate Preparations. 84
7.3.2. Alternative Route to Acyl Imidazole Substrates (EDCI-Free) 88
7.3.3. Catalyst Synthesis 93
7.3.4. General Procedure for Racemic Alkylations 99
7.3.5. General Procedure for Asymmetric Alkylations 100
7.3.6. Selected Alkylation Data 101
7.3.7. General Procedure for Converting Imidazole Products to Methyl Esters 116
7.3.8. 2-NPM Removal with DDQ 119
7.4. Procedures from Chapter 4 120
7.4.1. Synthesis of Electrophile 44 120
7.4.2. Alkylating Substrate $\mathbf{5 8}$ with Electrophile 44 123
7.4.3. Total Synthesis of $(+)$-Kurasoin B 125
7.4.4. First-Generation Analogs. 134
7.5. Procedures from Chapter 5 138
7.5.1. Synthesizing Electrophile 136 138
7.5.2. PTC Alkylations 140
7.5.3. To Aldehyde 133 141
7.5.4. To Wittig Salt 158 145
7.5.5. Coupling with Trans-Cinnamaldehyde. 151
7.5.6. Completing the Synthesis 152
7.6. Procedures from Chapter 6 155
7.6.1. Selected Substrate Preparations 155
7.6.2. General Procedure for Racemic Aryl Acetate Alkylations. 157
7.6.3. General Procedure for Asymmetric Aryl Acetate Alkylations 158
7.6.4. Selected Alkylations 159
7.6.5. Racemic Alkylation Products from Table 6.3 162
7.6.6. Recrystallization Data from Table 6.3 167
7.6.7. Total Synthesis of (S)-Naproxen. 176
7.6.8. Synthesis of Catalyst 186 182
7.7. Selected NMR Spectra 184

List of Abbreviations

2-NPM	2-naphthalenemethyl
AIBN	azobisisobutyronitrile
Bn	benzyl
Boc	tert-butoxylcarbonyl
Cd	cinchonidine or cinchonidinium
Cn	cinchonine or cinchoninium
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DEAD	diethyl azodicarboxylate
DIBAL-H	diisobutylaluminum hydride
DPM	diphenylmethyl
EDCI	N-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride
ee	enantiomeric excess
HPLC	high-pressure liquid chromatography
HWE	Horner-Wadsworth-Emmons
IC_{50}	Half maximal inhibitory concentration

KHMDS	potassium hexamethyldisilazide
LiHMDS	Lithium Hexamethyldisilazide
NBS	N-bromosuccinimide
NHC	N-heterocyclic carbenoid
Np	naphthyl
OTf	triflate (trifluoromethane sulfonate)
OTs	pyridinium chlorochromate p-toluenesulfonate)
PCC	Benzene
PhH	pivaloyl
Piv	triethylsilyl
PMB	phase-transfer catalysis or phase-transfer catalyzed
TBAF	

Chapter 1. Background

1.1. (+)-Kurasoin B

1.1.1. Ras Proteins and Farnesyl Transferase

Ras proteins are G-proteins that play central roles in various cell functions, including signal transduction and cell proliferation. ${ }^{1}$ The Ras super family includes over 100 proteins originating from three functional $R A S$ genes: H-RAS, N-RAS, and K-RAS. ${ }^{1,2} R A S$ genes encode four cytoplasmic precursor proteins (H-Ras, N-Ras, and the alternatively spliced K-RasA and KRasB), which are functionalized and diversified through various post-translational modifications. ${ }^{1}$ The first of these modifications is prenylation, followed by proteolysis, carboxymethylation, and palmitoylation. ${ }^{3-7}$

Ras protein prenylation begins in the cytosol with farnesylation, which occurs at the cysteine residue of the protein's CAAX (C , cysteine; A, aliphatic amino acid; X , any amino acid), CC, or CXC carboxy-terminal consensus sequences. ${ }^{8-11}$ Farnesylation is catalyzed by the 93 kDa enzyme farnesyl transferase (FTase), which binds the protein's carboxy terminus in proximity to farnesyl pyrophosphate (FPP) and forms a thioether link with the 15-carbon farnesyl moiety. Further modifications then produce fully functional, membrane-bound proteins. Ras proteins that are modified so as to not undergo farnesylation fail to functionalize, despite further post-translational modifications. ${ }^{12}$
$R A S$ gene mutations are present in 20-30\% of all human tumors, with higher frequencies observed in adenocarcinomas of the pancreas (90%), colon (50\%), and lung (30\%). ${ }^{1,13}$ RAS mutations have also been found in neoplasms of the small intestine, prostate, liver, skin, and thyroid, as well as in multiple myeloma and a number of leukemias, making them among the most frequently observed in human cancer. ${ }^{1,14}$ The more common mutations at codons 12,13 ,
and 61 produce Ras mutants that fail to interact properly with GTPase activating proteins (GAPs). ${ }^{1,15}$ This inhibits the GTP hydrolysis necessary to turn Ras proteins "off", thereby contributing to uncontrolled cell growth and cancer.

Oncogenic Ras activities might be subdued by inhibiting post-translational modification. This idea has led to great interest in FTase inhibitors as potential anti-cancer therapeutics. ${ }^{14,16-19}$ Various candidates have been explored, including FPP analogues, CAAX derivatives, and "bisubstrate" molecules bearing both FPP and CAAX moieties. ${ }^{1}$ Several of these drug leads have been explored in Phase I and Phase II clinical trials. ${ }^{1,20}$

FTase inhibitors have been found to act synergistically with other anticancer therapeutics, including paclitaxel and the epothilones, in halting tumor cell growth. ${ }^{21}$ Advantageously, FTase inhibitors exhibit minimal toxicity to healthy cells. This is thought to occur because cancerous activity is more frequently observed with mutations in N-Ras proteins. K-Ras proteins, which contribute less often to cancer and have a 10- to 50 -fold higher affinity for FTase, may possess redundant functionality with N -Ras proteins. ${ }^{1}$ Thus, cancers caused by N-Ras mutations are selectively impeded by FTase inhibitors, whereas the more active K-Ras proteins continue to contribute to normal cell growth. Unfortunately, the higher affinity of K-Ras for FTase makes cancers caused by K-Ras mutation more resistant to FTase inhibition. ${ }^{1,22-24}$

1.1.2. Isolation, Syntheses, and Characterization

While searching for natural FTase inhibitors, Ōmura and coworkers ${ }^{25}$ prepared 20 liters of broth from the cultured mycelia of the Japanese soil fungus Paecilomyces species FO-3684. Extensive extractions yielded a heavy brown oil that was purified by HPLC to provide two unknown white powders in 2.1- and 4.5-milligram amounts. HR-FAB-MS (High-Resolution-

Fast-Atom-Bombardment-Mass-Spectrometry) analysis revealed their molecular weights to be 256 and 279 , respectively, and later HMQC experiments uncovered their structures to be $\mathbf{1}$ and $\mathbf{2}$ (Figure 1.1). These compounds were named kurasoins A and B.

1

2

Figure 1.1. Kurasoins $A(1)$ and $B(2)$.
\cdot In concert with this discovery, Ōmura's group reported racemic syntheses of $\mathbf{1}$ and $\mathbf{2}$ from commercially available lactic acids $(\pm)-\mathbf{3}$ and $(\pm)-\mathbf{4}$, illustrated in Scheme 1.1. ${ }^{25}$ Ōmura later determined the kurasoins' absolute stereochemical configurations through asymmetric total syntheses (Schemes 1.2 and 1.3). ${ }^{26}$ These routes provided $\mathbf{1}$ and $\mathbf{2}$ with respective yields of 5.0 and 5.7\%.

Scheme 1.1. Ōmura's racemic syntheses of $\mathbf{1}$ and $\mathbf{2}$ from lactic acids $\mathbf{3}$ and $\mathbf{4}^{25}$

1. (+)-DIPT, $\mathrm{Ti}(\mathrm{O}-\mathrm{Pr})_{4}$, (45\%)

Scheme 1.2. Ōmura's asymmetric synthesis of $1 .{ }^{26}$

Scheme 1.3. Ōmura's asymmetric synthesis of 2. ${ }^{26}$

1.1.3. Biological Activity

When employed in an FTase inhibition assay, ${ }^{27}$ kurasoins A and B were found to possess respective IC_{50} values of $59.0 \mu \mathrm{M}$ and $58.7 \mu \mathrm{M}$, respectively. ${ }^{25}$ Later investigations revealed that the S configuration was essential to the molecules' bioactivities, with the S enantiomers being >6 times more potent than their R counterparts. ${ }^{26}$ Though micromolar potency is not sufficient for practical pharmaceutical application, derivatization of the kurasoins might provide increased efficacy and insight into their mode of action on FTase.

Independent model work by Pang et al. ${ }^{20}$ revealed more about the mode of interaction of kurasoin B with FTase. The calculated lowest energy complex of kurasoin B showed that its
carbonyl carbon interacts electrostatically with the divalent zinc cation present in FTase's active site. Kurasoin B's phenyl ring was found to π-stack with a tyrosine moiety in the enzyme's active site, whereas its indolyl appendage interacts with four adjacent lysines. Kurasoin B's free hydroxyl group then complexes with an approaching FPP molecule, inhibiting pro-Ras proteins' abilities to be farnesylated at FTase's active site.

1.1.4. Additional Synthetic Efforts

Since Ōmura's asymmetric syntheses of the kurasoins were disclosed, previous members of our group successfully completed the only other asymmetric total synthesis of $(+)$-kurasoin A, achieved in 29% yield over 10 steps. ${ }^{28}$ Later efforts were undertaken in unsuccessful attempts to prepare $(+)$-kurasoin B, which will be addressed later on.

More recently, an asymmetric synthesis of $\mathbf{2}$ was disclosed by Fernandes. ${ }^{29}$ This route began by reducing commercial ester 5 to alcohol $\mathbf{6}$, which was then converted to bromide 7 (Scheme 1.4). Sharpless asymmetric dihydroxylation, followed by nucleophilic displacement of the terminal bromide, furnished epoxide $\mathbf{8}$ with a 95% ee in a two-step, one-pot procedure. Jones

Scheme 1.4. Fernandes' synthesis of 2 . 29
oxidation gave 9 , which was subjected to ytterbium-catalyzed ring opening with nucleophilic indole. This route provided 2 in 37% yield over six steps from 5.

1.2. 12-(S)-HETE

1.2.1. Background and Isolation

When triggered by various stimuli, phospholipase A_{2}, which is present in most mammalian cells, releases arachidonic acid $\mathbf{1 0}$ from glycerol moieties embedded in the cell's phospholipid membrane (Figure 1.2). ${ }^{30-31}$ Arachidonic acid then serves as a synthetic precursor for a class of paracrine hormones called eicosanoids.

Three types of eicosanoids exist: prostaglandins, thromboxanes [formed from $\mathbf{1 0}$ through cyclooxygenase (COX) activity], and leukotrienes (produced from 10 by lipoxygenase enzymes). ${ }^{31-32}$

Figure 1.2. Formation of eicosanoids from arachidonic acid (10).

In 1974, Hamberg and Samuelsson isolated three metabolites from aggregating platelet cells suspended in medium containing ${ }^{14} \mathrm{C}$-labeled arachidonic acid. ${ }^{33}$ One of these was a novel compound named $12(S)$-hydroxy- $5(E), 8(Z), 10(E), 14(Z)$-eicosatetraenoic acid (11), later known
as 12-(S)-HETE (Figure 1.3). Lacking the conjugated triene core characteristic of traditional leukotrienes formed from 5-lipoxygenase, 12-(S)-HETE's discovery confirmed the existence of a previously unknown 12-lipoxygenase pathway from arachidonic acid. ${ }^{34}$ Compound $\mathbf{1 1}$ was later found in keratinocytes ${ }^{35}$ and psoriatic lesions. ${ }^{36}$

Figure 1.3. 12-(S)-HETE.

1.2.2. Biological Activity

Though its precise functions remain largely unknown, 12-(S)-HETE has been implicated in many physiological processes, including inflammation, ${ }^{34,37}$ stimulation of neutrophils ${ }^{38}$ and smooth muscle cells, ${ }^{39}$ hypertension, ${ }^{40} \mathrm{COX}$ attenuation, ${ }^{41}$ cellular response to epidermal growth factor and insulin, ${ }^{42}$ human pancreatic cancer cell proliferation, ${ }^{43}$ endothelial cell retraction, ${ }^{44}$ angiogenesis, ${ }^{45}$ tumor cell metastasis, ${ }^{46}$ atherogenesis, ${ }^{47}$ coronary thrombosis, ${ }^{48}$ type I diabetes induction, ${ }^{49}$ psoriasis, ${ }^{34,50}$ and inhibition of apoptosis. ${ }^{51}$

In light of 12-(S)-HETE's biological relevance, it would be very desirable to understand its specific functions. Unfortunately, the compound's transience in biological tissues makes large-scale isolation impractical. ${ }^{34}$ Efficient total synthesis, therefore, has become an attractive goal, opening possible avenues for increased testing.

1.2.3. Synthetic Overview

Since its discovery, five syntheses of optically pure 12-(S)-HETE have been reported. ${ }^{52-56}$ Though thorough coverage is beyond the scope of this introduction, critical details will be addressed later on. As Table 1.1 summarizes, overall yields and route lengths vary. It is noteworthy that the more recent approaches by Sato, Spur, and Suh were all achieved through the use of different chiral resolutions of racemates, with the undesired enantiomers being unused in the total synthesis of $\mathbf{1 1}$.

Group	Number of steps	Overall yield (\%)	Ref.
Corey	11	Unreported (>12.8)	52
Just	12	4.1	53
Sato	12	15.3	54
Spur	10	11.5	55
Suh	13	9.0	56

Table 1.1. Summary of the five published routes to optically active 12 -(S)-HETE.

Interestingly, it has been found that 12-(R)-HETE (the enantiomer of 11) also possesses important bioactivity, being the more prominent enantiomer in psoriatic lesions and having greater potency than 12-(S)-HETE in attracting human leukocytes. ${ }^{31}$

Twenty-two years after publishing his 12-(S)-HETE synthesis, ${ }^{52}$ E. J. Corey reported a route to $12-(R)-\mathrm{HETE}^{34}$ that employs a complimentary chiral antipode as reagent in its key step. This total synthesis will be addressed later on in this work.

1.3. (S)-Naproxen

1.3.1. Discovery

In consequence of a search for nitrogen-free, nonsteroidal antiinflammatory drugs (NSAIDs), the Syntex research group released a 1970 disclosure of several bioactive naphthylacetic acid derivatives. ${ }^{57}$ The most potent of these was the S enantiomer of 2-(6-methoxynaphthalen-2-yl)propanoic acid 12, which came to be known as (S)-Naproxen (Figure 1.4).

Figure 1.4. (S)-Naproxen.

Since its inception as an antiinflammatory drug in 1976, (S)-Naproxen has become one of the most profitable optically pure pharmaceuticals in the world. ${ }^{58}$ (S)-Naproxen and its sodium salt have been made available under various trade names, including Naprosyn, Anaprox, Midol Extended Relief, and Aleve.

1.3.2. Biological Activity

COX-1, being constitutively expressed in most tissues, participates in various homeostatic functions that include gastric cytoprotection. COX-2, which contributes more actively to pain and inflammation, is an inducible enzyme typically present in low levels. Indiscriminate attenuation of both COX enzymes would logically subdue the protective activities of COX-1, thereby causing adverse gastrointestinal side effects. ${ }^{59}$

Many common NSAIDs inhibit both COX enzymes, and (S)-Naproxen is no exception, attenuating COX activity by blocking the active site that binds arachidonic acid (10). ${ }^{59}$ This obstructs prostaglandin and thromboxane syntheses, thereby reducing inflammation, fever, pain, and swelling. ${ }^{60}$ Unsurprisingly, (S)-Naproxen's COX-1 inhibition damages the gastrointestinal tract among chronic users. Furthermore, regular (S)-Naproxen use can also cause cardiovascular problems like myocardial infarction and stroke.
(S)-Naproxen's exact binding mode still remains unclear; however, studies suggest that the molecule's acid moiety associates with an arginine residue in the COX isozymes' active sites. ${ }^{61}(S)$-Naproxen's in vivo IC_{50} values have not been reported, though in vitro numbers range from 1.7 to $17 \mu \mathrm{M}$ (for COX-1) and 14 to $50 \mu \mathrm{M}$ (for COX-2). ${ }^{62}$ Enantiopurity is crucial for potency: the R enantiomer of $\mathbf{1 2}$ is virtually devoid of any COX-attenuating activity. ${ }^{63}$

1.3.3. Synthetic Overview

Thorough coverage of the vast number of (S)-Naproxen syntheses is well beyond the scope of this introduction. The first industrial-scale approach began by converting β-naphthol $\mathbf{1 3}$ to dibromide 14, as Scheme 1.5 illustrates. ${ }^{58}$ Treatment with bisulfite removed the more labile bromine at the 1-position, providing ether $\mathbf{1 5}$ after methylation. This intermediate was then converted to a Grignard reagent. Transmetalation with zinc (II) chloride and treatment with bromo ethylpriopionate, followed by basic hydrolysis, then furnished racemic Naproxen 16 with a $50-60 \%$ yield over three steps. Recrystallization with cinchonidine gave two diastereomeric salts; the more potent enantiomer of $\mathbf{1 2}$ was obtainable from the less soluble salt in 47.5% yield (95% of the theoretical). This ultimately provided optically pure (S)-Naproxen in 20-25\% yield over seven steps from β-naphthol.

Scheme 1.5. The first industrial-scale approach to optically-pure 12. ${ }^{58}$

Synthetic streamlining uncovered a more expeditious route to (S)-Naproxen, which circumvented the need for undesirable zinc byproducts. ${ }^{58}$ Shown in Scheme 1.6, intermediate 15 (obtained as per Scheme 1.5) was again converted to a Grignard reagent and then treated with a magnesium salt of bromo ethylpriopionate, furnishing racemic 16 in $>90 \%$. A less-expensive resolution, achieved through recrystallization from N -alkylglucamine, then gave optically pure $\mathbf{1 2}$ in 47.5% yield (95% of the theoretical). This alternative synthesis provided (S)-Naproxen in $36-38 \%$ yield over six steps from β-naphthol.

Scheme 1.6. The second industrial-scale route to optically-pure 12. ${ }^{58}$

Ongoing research continues to provide new routes to $\mathbf{1 2}$ that circumvent the need for wasteful resolutions of racemates, which account for two-thirds of the compound's total
production cost. Such approaches include using materials from the chiral pool, ${ }^{58,64}$ asymmetric catalytic hydrogenation, ${ }^{65}$ and asymmetric hydroformylation, ${ }^{66}$ among others. ${ }^{58}$ As new technologies arise, more efficient means to this useful anti-inflammatory drug, as well as related compounds possessing other biologically valuable properties, are anticipated.

1.4. References and Notes

1. Reuter, W. M.; Morgan, M. A.; Bergmann, L. Blood 2000, 96, 1655-1669.
2. Wennerberg, K.; Rossman, K. L.; Der, C. J. J. Cell. Sci. 2005, 118, 843-846.
3. Glomset, J. A.; Farnsworth, C. C. Annu. Rev. Cell. Biol. 1994, 10, 181-205.
4. Zhang, F. L.; Casey, P. J. Annu. Rev. Biochem. 1996, 65, 241-269.
5. Gelb, M. H. Science 1997, 275, 1750-1751.
6. Mumby, S. M. Curr. Opin. Cell. Biol. 1997, 9, 148-154.
7. Casey, P. J. Seabra, M. C. J. Biol. Chem. 1996, 271, 5289-5292.
8. Reiss, Y.; Goldstein, J. L.; Seabra, M. C.; Casey, P. J.; Brown, M. S. Cell. 1990, 62, 81-88.
9. Reiss, Y.; Stradley, S. J.; Gierasch, L. M.; Brown, M. S.; Goldstein, J. L. Proc. Natl. Acad. Sci U. S. A. 1991, 88, 732-736.
10. Yokoyama, K.; Goodwin, G. W.; Ghomashchi, F.; Glomaset, J. A.; Gelb, M. H. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 5302-5306.
11. Moores, S. L.; Scahber, M. D.; Mosser, S. D.; Rands, E.; O'Hara, M. B.; Garsky, V. M.; Marshall, M. S.; Pompliano, D. L.; Gibbs, J. B. J. Biol. Chem. 1991, 266,14603-14610.
12. Heimbroo, D. C.; Oliff, A. Curr. Biol. 1998, 10, 284-288.
13. Bos, J. L. Cancer Res. 1989, 49, 4682-4689.
14. Leonard, D. M. J. Med. Chem. 1997, 40, 2971-2990.
15. Gibbs, J. B.; Oliff, A. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 143-166.
16. Cox, A. D.; Garcia, A. M.; Westwick, J. K.; Kowalczyk, J. J.; Lewis, M. D.; Brenner, D. A.; Der, C. J. J. Biol. Chem. 1994, 269, 19203-19206.
17. Lee, S.-H.; Kim, H.-K.; Seo, J.-M.; Kang, H.-M.; Kim, J. H.; Son, K.-H.; Lee, H.; Kwon, B.-M. J. Org. Chem. 2002, 67, 7670-7675.
18. Lee, S.-H.; Kim, M.-J.; Bok, S. H.; Lee, H.; Kwon, B.-M. J. Org. Chem. 1998, 63, 71117113.
19. Wittinghofer, A. Biol. Chem. 1998, 379, 933-937.
20. Xu, K.; Perola, E.; Prendergast, F. G.; Pang, Y.-P. J. Mol. Model. 1999, 5, 203-217.
21. Moasser, M. M.; Sepp-Lorenzino, L.; Kohl, N. E.; Oliff, A.; Balog, A. Su, D. S. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 1369-1374.
22. James, G. L.; Goldstein, J. L.; Brown, M. S. J. Biol. Chem. 1995, 270, 6221-6226.
23. Zhang, F. L.; Kirschmeier, P.; Carr, D. James, L.; Bond, R. W.; Wang, L.; Patton, R.; Windsor, W. T.; Syto, R.; Zhang, R.; Bishop, W. R. J. Biol. Chem. 1997, 272, 1023210239.
24. James, G.; Goldstein, J. L.; Brown, M. S. Proc. Natl. Acad. Sci. U.S.A. 1996, 93,44544458.
25. (a) Uchida, R.; Shiomi, K.; Sunazauka, T.; Inokoshi, J.; Nishizawa, A.; Hirose, T.; Tanaka, H.; Iwai, Y.; Ōmura, S. J. Antibiot. 1996, 49, 886-889. (b) Uchida, R.; Shiomi, K.; Inokoshi, J.; Masuma, R.; Kawakubo, T.; Tanak, H.; Iwai, Y.; Ōmura, S. J. Antibiot. 1996, 49, 932-934.
26. (a) Sunazuka, T.; Hirose, T.; Zhi-Ming, T.; Uchida, R.; Shiomi, K.; Harigaya, Y.; Ōmura, S. J. Antibiot. 1997, 50, 453-455. (b) Hirose, T.; Sunazuka, T.; Zhi-Ming, T.; Handa, M.; Uchida, R.; Shiomi, K.; Harigaya, Y.; Ōmura, S. Heterocycles 2000, 53, 777-784.
27. Ōmura, S.; Van Der Pyl, D.; Inokoshi, J.; Takahashi, Y.; Takeshima, H. J. Antibiot. 1993, 46, 222-228.
28. Andrus, M. B.; Hicken, E. J.; Stephens, J. C.; Bedke, D. K. J. Org. Chem. 2006, 71, 86518654.
29. Fernandes, R. A. Tetrahedron Assym. 2008, 19, 15-18.
30. (a) Nelson, D. L.; Cox, M. M. Lehninger Principles of Biochemistry, $3^{\text {rd }}$ ed.; Worth Publishers: U.S.A., 2000; 378-9, 784-8. (b) Borgeat, P.; Sirois, P. J. Med. Chem. 1981, 24, 121-126. (c) Ben-Menahem, D.; Shraga-Levine, Z.; Limor, R.; Naor, Z. Biochemistry 1994, 33, 12795-12799.
31. van der Donk, W. A.; Tsai, A.-L.; Kulmacz, R. J. Biochemistry 2002, 41, 15451-15458.
32. Samuelsson, B.; Dahlén, S.-E.; Lindgren, J. A.; Rouzer, C. A.; Serhan, C. N. Science 1987, 237, 1171-1176.
33. Hamberg, M.; Samuelsson, B. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 3400-3404.
34. Han, X.; Corey, E. J. Org. Lett. 2000, 2, 2543-2544.
35. Hammarstrom, S.; Lindgen, J. A.; Mercello, C.; Duell, E. A.; Anderson, T. F.; Voorehees, J. J. J. Invest. Dermatol. 1979, 73, 180.
36. Hammarstrom, S.; Hamberg, M.; Samuelsson, b.; Duell, E. A.; Stawiski, M.; Voorhees, J. J. Proc. Natl. Acad. Sci. U.S.A. 1975, 72, 5130-5134.
37. Spector, A. A.; Gordon, J. A.; Moore, S. A. Prog. Lipid Res. 1988, 27, 271-323.
38. Goetzl, E. J.; Woods, J. N.; Gorman, R. R. J. Clin. Invest. 1977, 59, 179-183.
39. Setty, B. N. Y.; Graeber, J. E.; Stuart, M. J. J. Biol. Chem. 1987, 262, 17613-17622.
40. Antonipillai, I.; Nadler, J. L.; Robin, E. C.; Horton, R. Hypertension 1987, 10, 61-66.
41. (a) Setty, B. N. Y.; Stuart, M. J. J. Clin. Invest. 1986, 77, 202-211. (b) Hadjiagapiou, C.; Sprecher, H.; Kaduce, T. L.; Figard, P. H.; Spector, A. A. Prostaglandins, 1987, 34, 579589.
42. Arora, J. K.; Lysz, T. W.; Zelenka, P. S. Invest. Ophthalmol. Vis. Sci. 1996, 37, 1411-1418.
43. Ding, X.-Z.; Tong, W.-G.; Adrian, T. E. Int. J. Cancer, 2001, 94, 630-636.
44. Tang, D. G.; Chen, Y. Q.; Diglio, C. A.; Honn, K. V. J. Cell. Biol. 1993, 121, 689-704.
45. (a) Nie, D.; Tang, K.; Diglio, C.; Honn, K. V. Blood 2000, 95, 2304-2311. (b) Tang, K.; Finley, R. L.; Nie, D.; Honn, K. V. Biochemistry 2000, 39, 3185-3191. (c) Nie, D.;

Hillman, G. G.; Geddes, T.; Tang, K.; Pierson, C.; Grignon, D. J.; Honn, K. V. Adv. Exptl. Med. Biol. 1999, 469, 623-630.
46. Ding, X. Z.; Iversen, P.; Cluck, M. W.; Knezetic, J. A.; Adrian, T. E. Biochem. Biophys. Res. Commun. 1999, 261, 218-223. (b) Chen, L. C.; Chen, B. K.; Liu, Y. W.; Chang, W. C. FEBS Lett. 1999, 455, 105-110. (c) Tang, K.; Honn, K. V. Adv. Exptl. Med. Biol. 1999, 447, 181-191. (d) Yamamoto, S.; Suzuki, H.; Ueda, N. Prog. Lipid Res. 1997, 36, 23-41. (e) Herbertsson, H.; Hammarström, S. Adv. Exptl. Med. Biol. 1997, 400A, 287-295. (f) Nie, D.; Hillman, G. G.; Geddes, T.; Tang, K.; Pierson, C.; Grignon, D. J.; Honn, K. V. Cancer Res. 1998, 58, 4047-4051.
47. Cyrus, T.; Witztum, J. L.; Rader, D. J.; Tangirala, R.; Fazio, S.; Linton, M. F.; Funk, C. D. J. Clin. Invest. 1999, 103, 1597-1604.
48. Katoh, A.; Ikeda, H.; Murohara, T.; Haramaki, N.; Ito, H.; Imaizumi, T. Circulation 1998, 98, 2891-2898.
49. Bleich, D.; Chen, S.; Zipser, B.; Sun, D.; Funk, C. D.; Nadler, J. L. J. Clin. Invest. 1999, 103, 1431-1436.
50. (a) Ziboh, V. A. Lipids 1996, 31, S249-S253. (b) Natarajan, R.; Pei, H.; Gu, J. L.; Sarma, J. M.; Nadler, J. Cardiovasc. Res. 1999, 41, 489-499.
51. Tang, D. G.; Chen, Y. Q.; Honn, K. V. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 5241-5246.
52. Corey, E. J.; Niwa, H.; Knolle, J. J. Am. Chem. Soc. 1978, 100, 1942-1943.
53. (a) Just, G.; Wang, Z. Y. J. Org. Chem. 1986, 51, 4796-4802. (b) Just, G.; Wang, Z. Y. Tetrahedron Lett. 1985, 26, 2993-2996.
54. Shimazaki, T.; Kobayashi, Y.; Sato, F. Chem. Lett. 1988, 1785-1788.
55. Rodríguez, A.; Nomen, M.; Spur, B. W.; Godfroid, J. J.; Lee, T. H. Tetrahedron, 2001, 57, 25-37.
56. Suh, Y.-G.; Min, K.-H.; Lee, Y.-S.; Seo, S.-Y.; Kim, S.-H. Park, H.-J. Tetrahedron Lett. 2002, 43, 3825-3828.
57. Harrison, I. T.; Lewis, B.; Nelson, P.; Rooks, W.; Rszkowski, A.; tomolonis, A.; Fried, J. H. J. Med. Chem. 1970, 13, 203-205.
58. Harrington, P. J.; Lodewijk, E. Org. Proc. Res. Dev. 1997, 1, 72-76.
59. Hecken, A. V.; Schwartz, J. I.; Depré, M.; Lepeleire, I. D.; Dallob, A.; Tanaka, W.;

Wynants, K.; Buntinx, A.; Arnout, J.; Wong, P. H.; Ebel, D. L.; Gertz, B. J.; De Schepper, P. J. J. Clin. Pharmacol. 2000, 40, 1109-1120.
60. Simmons, D. L.; Wagner, D. Clin. Infect. Dis. 2000, 31 (Suppl 5), S211-218.
61. Vaya, I.; Jiménez, M. C.; Miranda, M. A. Tetrahedron-Asymmetry 2005, 16, 2167-2171.
62. Warner, T. D.; Vojnovic, Ivana; Bishop-Bailey, D.; Mitchell, J. A. Faseb J. 2006, 20, 542544.
63. Evans, A. M. J. Clin. Pharmacol. 1996, 36, 7S-15S.
64. Giordano, C.; Castaldi, G.; Cavicchioli, S.; Villa, M. Tetrahedron 1989, 45, 4243-4252.
65. Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R. J. Org. Chem. 1987, 52, 31743176.
66. Stille, J. K.; Su, H.; Brechot, P.; Parinello, G.; Hegedus, L. S. Organometallics 1991, 10, 1183-1189.

Chapter 2. Asymmetric Phase-Transfer Catalyzed Alkylation

2.1. Background

Enantioselective carbon-carbon bond formation is a central objective of synthetic chemistry. One way of achieving this goal is by asymmetrically alkylating substrates with sp^{3} hybridized electrophiles. Most examples depend heavily on the use of chiral auxiliaries, which have to be added in stoichiometric amounts. ${ }^{1}$

General, catalytic means of asymmetric alkylation are often limited to a narrow substrate scope. ${ }^{2-4}$ Within this field, asymmetric phase-transfer catalyzed (PTC) alkylation continues to broaden as a useful means of forming enantio-enriched C-C bonds.

Phase-transfer catalysts typically possess polar, charged centers and non-polar, hydrocarbon appendages, giving them partial dual solubility in both polar and non-polar media. Chiral quaternary ammonium salts are the catalysts of choice, since many are known or easily synthesized.

PTC alkylation of carbonyl-bearing substrates 17 (Figure 2.1) occurs under biphasic conditions (organic/aqueous or organic/solid), where deprotonation at the interphase (path A) gives achiral enolate complex 18. ${ }^{5}$ Alkylation with halide $\mathrm{R}_{3} \mathrm{X}$ (path B) would then produce racemic product ($\mathbf{\pm} \mathbf{) - 1 9}$. Divergently, cation exchange with an asymmetric ammonium catalyst $\mathrm{X}^{-} \mathrm{N}^{+}(\text {alk })_{4}{ }^{*}$ (path C) would give non-racemic complex 20. Alkylation of this complex would form asymmetric product 19 and regenerate the catalyst.

Stereoselective outcome depends heavily on the relative rates of cation exchange $\left(k_{1}\right)$ from $\mathbf{1 8}$ to $\mathbf{2 0}$ and their individual reactivities with $\mathrm{R}_{3} \mathrm{X}\left(\mathrm{k}_{2}\right.$ vs. $\left.\mathrm{k}_{3}\right)$. When k_{1} is slow and k_{2} is
fast, racemic (\pm)-19 is favored. When k_{1} is fast, the structure of $\mathbf{2 0}$ and its mode of interaction with the electrophile, as well as reaction conditions, contribute significantly to outcome.

Figure 2.1. The mechanism of asymmetric phase-transfer catalyzed alkylation. ${ }^{5}$

Asymmetric PTC alkylation was pioneered by researchers at Merck, ${ }^{6-7}$ who treated substrates 21 with methyl chloride and catalyst 22 to give products 23 with high selectivity and yield (Scheme 2.1).

Scheme 2.1. PTC methylation of 21 by Merck. ${ }^{6-7}$

O'Donnell extended the field by benzylating glycine derivative 24 through use of (+)cinchonine catalyst 25, giving rise to phenylalanine derivative 26 (Figure 2.3). ${ }^{8}$

Scheme 2.2. O'Donnell's benzylation of 24 with cinchonine-derived catalyst 25. ${ }^{8}$

Corey and Lygo independently benzylated 24 with (-)-cinchonidine anthracenylmethyl catalysts 27 and 28 to give ent-26 (Figure 2.4), thus demonstrating the enantio-complementarity of catalysts derived from (+)-cinchonine (29) and (-)-cinchonidine (30)..$^{9-10}$ These two diastereomeric cinchona antipodes are epimeric at the asterisked carbon stereocenters.

Scheme 2.3. Corey and Lygo's benzylation of $\mathbf{2 4}$ with cinchonidine catalysts 27 and 28. ${ }^{9-10}$

Numerous cinchona catalysts have been reported since these groundbreaking findings, as portrayed generally in Figure 2.2. These may be easily modified at positions $\mathrm{R}_{1}, \mathrm{R}_{2}$, and Ar and are typically accessible in just a few linear steps from naturally occurring cinchona alkaloids.

cinchoninium catalysts

Figure 2.2. General depiction of cinchonidinium (Cd) and cinchoninium (Cn) phase-transfer catalysts.

Additional PTC catalysts have also been developed by Maruoka from complimentary (S)or (R)-biphenolic cores. ${ }^{11}$ These generally require lower catalyst loadings, but take more steps to synthesize. ${ }^{12-14}$ Two representative examples are seen in the benzylation of compounds $\mathbf{3 1}$ and 32 (Scheme 2.4). ${ }^{11}$

Scheme 2.4. Asymmetric PTC benzylations of $\mathbf{3 1}$ and $\mathbf{3 2}$ by Maruoka. ${ }^{11}$

2.2. PTC Alkylations of $\boldsymbol{\alpha}$-Oxygenated Substrates

Despite a diversity of catalysts, until recently asymmetric PTC alkylations were limited to glycine derivatives such as $\mathbf{2 4}$ and 31, or cyclic β-keto esters like 32, all of which possess moieties that resonance-stabilize their respective enolates. To expand the field's scope, members of the Andrus group examined replacing the nitrogen of $\mathbf{2 4}$ with an oxygen.

It was initially unclear how this modification might affect reactivity. α-Proton pKa values are about 19.7 for $\mathbf{2 4},{ }^{15}$ stabilized by delocalization into the unsaturated diphenylketimine moiety. The pKa for an oxygenated surrogate was less obvious. Though an oxygen's higher electronegativity could inductively stabilize the enolate and decrease pKa , its additional lone electron pair and lack of resonance delocalization might have the opposite effect.

To address this question, compounds $\mathbf{3 4}$ were prepared and tested with Corey catalyst $\mathbf{2 7}$ (Scheme 2.5). Various conditions were screened, but failed to produce observable reactivity. Apparently, oxygen's destabilizing effects predominate, decreasing α-proton acidity.

Scheme 2.5. Previous group members' attempts at PTC allylation of substrates $\mathbf{3 4}$.

Because a ketone's α-protons are more acidic than an ester's, it was reasoned that a ketone surrogate for $\mathbf{3 4}$ might improve reactivity. Hence, aryl ketones $\mathbf{3 5}$ were prepared and benzylated with catalyst 36 at $-40^{\circ} \mathrm{C}$ (Table 2.1). ${ }^{16-17}$ Reactivity was markedly improved, with the 2,5-dimethoxy-appended ester giving the best enantioselectivity (entry 11).

entry	Ar	time (h)	yield (\%)	ee (\%)
1	phenyl	26	74	25
2	p-anisyl	6	82	54
3	o-anisyl	8	78	66
4	m-anisyl	16	50	50
5	N,N-dimethylaniline	13	87	17
6	o-toluyl	12	72	62
7	2,4-xylyl	8	70	66
8	5-methyl-2-anisyl	11	83	60
9	1-naphthyl	8	78	55
10	2,4-dimethoxy	13	90	54
11	2,5-dimethoxy	7	83	71

Table 2.1. Preparation and PTC benzylations of substrate 25. ${ }^{16}$

A screen of oxygen-protecting groups revealed that the diphenylmethyl (DPM) group gave ideal reactivity, and substrate $\mathbf{3 7}$ (Table 2.2) was subsequently studied. Alkylations with allyl, benzyl, and propargyl electrophiles provided compounds $\mathbf{3 8}$ in high yields and excellent enantioselectivities. ${ }^{16}$ Aliphatic halides failed to give positive results. Products $\mathbf{3 8}$ could be converted to aryl esters by exposure to non-epoxidizing Baeyer-Villiger conditions developed by Shibasaki. ${ }^{18}$

Table 2.2. PTC alkylations of 37. ${ }^{16}$

2.3. Total Syntheses of (-)-Ragaglitazar and (+)-Kurasoin A

The now-developed methodology was next applied to an asymmetric total synthesis of the diabetes drug (-)-ragaglitazar 39 (Scheme 2.6). ${ }^{17}$ This synthesis featured the asymmetric PTC alkylation of $\mathbf{3 7}$ with electrophile $\mathbf{4 0}$ in its key step, arriving at $\mathbf{4 1}$ in 95% yield and 83% ee. DPM removal was accomplished by treating 41 with titanium (IV) chloride; subjection to the aforementioned Shibasaki Baeyer-Villiger conditions (TMS-peroxide, SnCl_{4}, and sulfonamide
42) then provided aryl ester $\mathbf{4 3}$, whose ee was boosted to 95% after recrystallization from $1: 1$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes. Subsequent transformations then led to the final target $\mathbf{3 9}$ in 38% yield over 10 steps.

Scheme 2.6. The total synthesis of (-)-ragaglitazar. ${ }^{17}$

A later synthesis of $(+)$-kurasoin A 1 was realized from 43 (Scheme 2.7). ${ }^{19}$ As with (-)ragaglitazar, asymmetric PTC alkylation and Baeyer-Villiger oxidation were employed as key steps in the synthesis.

Scheme 2.7. Andrus group total synthesis of (+)-kurasoin A (1). ${ }^{19}$

2.4. Limits of the Methodology: Attempted Synthesis of (+)-Kurasoin B

A total synthesis of (+)-kurasoin B 2 began with the PTC alkylation of substrate $\mathbf{3 7}$ with electrophile 44 (Scheme 2.8). ${ }^{5}$ This provided 45 in 90% yield and 82% ee. Unfortunately, all attempts to convert to ester $\mathbf{4 6}$ only resulted in substrate decomposition, even when alternative N - and O-protecting groups were employed.

Scheme 2.8. Attempted synthesis of 46 en route to (+)-kurasoin B (2). ${ }^{5}$

A different route was investigated, based on Larock's indole syntheses from 2iodoaniline 47 and various internal alkynes. ${ }^{20-21}$ PTC alkylation of 37 with electrophile 48 gave intermediate 49 with high yield and enantioselectivity (Scheme 2.9). ${ }^{5}$ Exposure to catalytic palladium (II) acetate, 2-iodoaniline $\mathbf{4 7}, \mathrm{LiCl}$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in DMF at $90^{\circ} \mathrm{C}$ then produced $\mathbf{5 0}$. As with 45, all attempts to convert $\mathbf{5 0}$ to its aryl ester derivative failed. It was hoped, then, that 49 might be esterified prior to indole formation, giving 51 as a synthetic precursor to compound 52 and, ultimately, (+)-kurasoin B. Unfortunately, all conditions failed to give 51, effectively ending work toward $\mathbf{2}$ through alkylation of $\mathbf{3 7}$.

Scheme 2.9. Synthesis of $\mathbf{5 0}$ and attempted route to $\mathbf{5 1}$ and $\mathbf{5 2}$. ${ }^{5}$

The indole moiety's sensitivity to Baeyer-Villiger oxidation demonstrated the limits of the new PTC methodology. An alternative PTC alkylation methodology that did not require Baeyer-Villiger oxidation was consequently desired.

2.5. References and Notes

1. Crimmins, M. T.; Emmitte, K. A.; Katz, J. D. Org. Lett. 2000, 2, 2165-2167.
2. Imai, M.; Hagihara, A.; Kawasaki, H.; Manabe, K.; Koga, K. J. Am. Chem. Soc. 1994, 116, 8829-8830.
3. Vignola, N.; List, B. J. Am. Chem. Soc. 2004, 126, 450-451.
4. Doyle, A.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 62-63.
5. Hicken, E. J. Ph.D. Thesis, Brigham Young University, Provo, UT, 2005.
6. Dolling, U.-H.; Davis, P.; Grabowski, E. J. J. J. Am Chem. Soc. 1984, 106, 446-447.
7. Hughes, D. L.; Dolling, U.-H.; Ryan, K. M.; Schoenewaldt, E. F.; Grabowski, E. J. J. J. Org. Chem. 1987, 52, 4745-4752.
8. O'Donnell, M. J.; Bennett, W. D.; Wu, S. J. Am. Chem. Soc. 1989, 111, 2353-2355.
9. Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414-12415.
10. Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595-8598.
11. Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656-5682.
12. Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 1999, 121, 6519-6520.
13. Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 5139-5151.
14. Hashimoto, T.; Maruoka, K. Tetrahedron Lett. 2003, 44, 3313-3316.
15. O'Donnell, M. J.; Delgado, F.; Hostettler, C.; Schwesinger, R. Tetrahedron Lett. 1998, 39, 8775-8778.
16. Andrus, M. B.; Hicken, E. J.; Stephens, J. C. Org. Lett. 2004, 6, 2289-2292.
17. Andrus, M. B.; Hicken, E. J.; Stephens, J. C.; Bedke, D. K. J. Org. Chem. 2005, 70, 94709479.
18. Kuramochi, A.; Usuda, H.; Yamatsuga, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 14200-14201.
19. Andrus, M. B.; Hicken, E. J.; Stephens, J. C.; Bedke, D. K. J. Org. Chem. 2006, 71, 86518654.
20. Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1992, 113, 6689-6690.
21. Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652-7662.

Chapter 3. Phase-Transfer-Catalyzed Asymmetric Acylimidazole Alkylation

3.1. Bypassing the Baeyer-Villiger Oxidation Step

As explained in chapter 2, it became desirable to create a PTC methodology that provided α-oxy, α-alkylated esters without requiring harsh Baeyer-Villiger conditions. A potential alternative was inspired by a report from Evans' group at Harvard, in which the imidazole appendages of ketones $\mathbf{5 3}$ were activated with iodomethane or methyl triflate and then displaced by various nucleophiles. ${ }^{1-3}$ This one-pot, two-step transformation converted ketones $\mathbf{5 3}$ to esters, acids, or amides 54 in high yield without disturbing their indole moieties.

Sheme 3.1. Nucleophilic displacement of the imidazole moiety in 53. ${ }^{1-3}$

We reasoned that if imidazolyl ketones of type $\mathbf{5 5}$ underwent expeditious alkylation with electrophile 44, then the resulting products 56 might be converted to methyl esters 57. This route would circumvent Baeyer-Villiger oxidation and provide a new PTC methodology ideal for an alternate route to $(+)$-kurasoin B.

Scheme 3.2. Envisioned synthesis of indole-appended compounds 57.

3.2. Substrate, Catalyst, and Reaction Condition Development

To test this plan, 2-naphthalenemethyl (2-NPM) protected substrate $\mathbf{5 8}$ was prepared and screened with four catalysts to form product 59 (Table 3.1). ${ }^{4}$ Though Andrus catalyst $\mathbf{6 0}^{5}$ gave 86% ee, its accompanying 58% yield was modest. By comparison, cinchonidinium (Cd) dimer catalyst $\mathbf{6 1}{ }^{6}$ provided $\mathbf{5 9}$ in 82% yield and 86% ee (ee's measured by comparison with racemic samples via chiral HPLC).

catalyst	time (h)	yield (\%)	ee (\%)
$\mathbf{3 6}$	6	77	74
27	6	58	71
60	16	58	86
61	4.5	82	86

Table 3.1. Catalyst screen in the PTC benzylation of $\mathbf{5 8}$. ${ }^{4}$

An O-protecting group screen was done next, which showed the 2-NPM group to be ideal in terms of overall yield and enantioselectivity (Table 3.2, entry 1). Surprisingly, DPM protection, which had been optimal for substrate 37 , gave comparably modest results (entry 2).

58, 62-64

entry	substrate	time (h)	yield (\%)	ee (\%)
1	58: R = 2-NPM	4.5	82	86
2	62: R = DPM	5.5	70	58
3	63: R = Bn	7	75	82
4	64: R = PMB	5	78	81

Table 3.2. O-protecting group screen.

Imidazolyl variation was next explored, which revealed the modest performances of N phenyl and N-benzyl imidazole-appended substrates 65 and 66 (Table 3.3, entries 2-3). By comparison, N-methylbenzimidazolyl ketone 67 gave 76% yield and 93% ee (entry 4).

entry	compound	Ar	time (h)	yield (\%)	ee (\%)
1	58		4.5	82	86

2
65

18
31
0
3
66

16
4
76
93

Table 3.3. Imidazole variation screen.

Because substrates $\mathbf{5 8}$ and $\mathbf{6 7}$ both performed so well, neither was abandoned at this juncture. Instead, an in-depth study of reaction conditions was conducted. Ultimately, ideal results were obtained by employing $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ as the base at $-40^{\circ} \mathrm{C}$ in either dichloromethane or 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. These conditions provided benzylated products with yields and enantiomeric excesses above 90% in many cases.

When investigations with allyl bromide began, substrate 67 gave surprisingly modest yields of $41-54 \%$ and ee's of less than 72% at best. Surprisingly, other electrophiles performed
even worse, showing the excellent performance of the $67 /$ benzylbromide system to be somewhat atypical. The exact cause of this outcome remains unclear, but focus naturally shifted to allylating 58, which occurred with a satisfactory 70% yield and 80% ee during initial trials.

When the preliminary batch of catalyst 61 ran out after introductory investigations, efforts to repeat its synthesis according to Park's original report ${ }^{6}$ and previous group members' notes resulted in discoveries crucial to the catalyst's improvement and the project's ultimate success.

3.3. A Modified and Improved Synthesis of the Catalyst

Catalyst 61 was originally synthesized by Park and coworkers, ${ }^{6}$ who used it in the asymmetric alkylation of $\mathbf{2 4}$ with various allyl, benzyl, and propargyl electrophiles. Park's route began with the palladium-catalyzed reduction of (-)-cinchonidine $\mathbf{3 0}$ to (-)-hydrocinchonidine 68, achieved in 92% yield as Scheme 3.3 depicts (vide infra). Separate treatment of 2,7dimethylnaphthalene 69 with NBS and AIBN then produced intermediate 70 with an 88% yield. When combined at high temperature, 68 and 69 furnished a reportedly light-pink di-ammonium salt 71 in 97% yield, which was subsequently allylated to give catalyst 61.

To synthesize the new batch of catalyst, we followed Park's procedure, seamlessly providing compounds 68 and 70. However, when these were combined to produce 71, a darkpurple syrup formed in which no product was detectable by HRMS. (No further characterization of this mixture was performed.)

Scheme 3.3. Park's original synthesis of catalyst 61. ${ }^{6}$

A second attempt on smaller scale formed the light-pink solid desired, but scale-up once again yielded a dark-purple syrup. Presuming that intermediates 68 and 70 were somehow impure, these were newly synthesized and submitted freshly on large scale to form 71.

Strangely, a yellow solid was now obtained, which eventually gave catalyst $\mathbf{6 1}$ in 60% yield after chromatographic purification. Unfortunately, PTC allylation of substrate $\mathbf{5 8}$ with this batch of catalyst provided product with a modest 44% yield and 53% ee. Formation of 71 was clearly a problematic step in the catalyst's synthesis, though the cause for this difficulty remained as yet enigmatic.

The purity of $\mathbf{6 8}$ and $\mathbf{7 0}$ was carefully determined by developing new conditions for monitoring reaction progression via TLC. Great attention was also paid to spectroscopic characterization of products. By increasing the number of Fourier transforms, our first clear NMR spectra for $\mathbf{6 8}$ and $\mathbf{7 0}$ were obtained. Despite our growing confidence in the purity of these compounds, a renewed attempt to prepare 71 once again gave a dark-purple mixture.

It was hypothesized that one of four factors might be causing failure in the formation of the catalyst: (1) trace Pd / C left in $\mathbf{6 8}$ was causing detrimental effects; (2) syringes or needles were contaminated; (3) solvents were not sufficiently dry; or (4) reaction temperature was too high.

These questions were eventually addressed by intentionally adding trace amounts of Pd / C and water in separate formations of 71. It was found that Pd / C caused formation of the darkpurple syrup, whereas water resulted in yellow discoloration. Hence, great effort was taken thereafter to thoroughly dry solvents and to completely filter Pd / C from $\mathbf{6 8}$, which was ultimately isolated in 67% yield as an off-white solid (free from any gray discoloration).

With reagents and conditions now optimized, large-scale reaction of $\mathbf{6 8}$ with 70 at lower temperature $\left(50{ }^{\circ} \mathrm{C}\right)$ gave 71 as the desired, light-pink solid. Surprisingly, rinsing the crude product with dichloromethane and methanol during flask transfer converted it to a dark-red solid, in which the presence of byproduct 72 (Scheme 3.4) was confirmed by HRMS (481.2827 $[\mathrm{M}+\mathrm{H}]^{+}$found; calcd 481.28 for $\left[\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$). Compound 72 is likely produced through a solvation/substitution reaction of methanol for one of the two hydrocinchonidinium moieties. Catalyst formed from this batch of $\mathbf{7 2}$ gave poor enantioselectivity and yield in PTC alkylations.

Scheme 3.4. Formation of $\mathbf{7 2}$ during methanolic rinse of 71.

With these observations now made after many optimization experiments, $\mathbf{6 8}$ was synthesized again and filtered thoroughly to ensure removal of Pd / C. Dry solvents were employed, which ultimately furnished 71 cleanly as a light-pink solid on 500 mg scale. 71 was not rinsed with methanol, and subsequent allylation then furnished catalyst $\mathbf{6 1}$.

Catalyst purification was now addressed. Earlier cinchona catalysts synthesized by our group were being tediously purified by column chromatography in 5% methanoldichloromethane. The reason for this was that recrystallization from dichloromethane-hexane, as described by Park, ${ }^{6}$ had repeatedly failed in our lab, resulting in the crude catalyst remaining completely dissolved in solution.

Recrystallization was now explored. In time it was found that the crude catalyst could be dissolved in a minimal amount of warm dichloromethane and then precipitated instantly by copious addition of hexanes. When filtered immediately, $\mathbf{6 1}$ was obtained cleanly as a lightyellow solid in 96% yield. If left in solution, crystalline 61 redissolved.

Previous batches of $\mathbf{6 1}$ had failed to give acceptable results with any electrophiles other than benzyl bromide. In contrast, our latest batch, which was prepared according to the modifications just described, showed dramatic improvement, giving products $\mathbf{7 3}$ with high yields and excellent enantioselectivities (Table 3.4).

2-NP entry			PMO 73	
	RBr	time (h)	yield	ee (\%)
1		60	91	>99
2		22	92	>99
3		22	88	>99
4		22	88	>99
5		49	82	85
6	BnBr	26	85	83
7	Allyl-Br	49	59	73
${ }^{\text {a }} 8$	Allyl-Br	8	90	88
bg		7	80	91
b10	$\mathrm{C}_{5} \mathrm{H}_{11}=\mathrm{Br}$	8	77	79
${ }^{\text {b }} 11$		6	75	75

${ }^{\text {a }}$ obtained with a later batch of 61 in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hex.
bobtained in 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hex.
Table 3.4. PTC alkylations of substrate $\mathbf{5 8}$ with optimized batch of catalyst $\mathbf{6 1}$.

3.4. Finishing the Methodology

The next step in developing the methodology was to displace the N-methylimidazole appendages of the alkylated products. After screening many conditions, we found that stirring compounds $\mathbf{7 3}$ with methyl triflate for three days facilitated imidazolium formation. Addition of sodium methoxide/methanol then provided methyl esters 74 with quantitative yield and no measurable epimerization. Alternative nucleophiles (ethanol, isopropanol, morpholine, and hydrogen peroxide) were ineffective.

Scheme 3.5. Converting ketones 73 to esters 74.

With imidazole displacement now optimized, product 74 (where $\mathrm{R}=\mathrm{Bn}$) was treated with DDQ to remove the 2-NPM protecting group (Scheme 3.6). These conditions afforded optically active $\mathbf{7 5}$ in 70% yield. Optical rotation comparison with known $\mathbf{7 5}^{\mathbf{7}}$ confirmed the absolute stereoconfiguration as S.

Scheme 3.6. Converting product 74 to known hydroxy ester 75.

These final developments represent a new PTC route to asymmetric α-oxy, α-alkylated esters that does not require Baeyer-Villiger oxidation. This work culminated in a published summary of our most important findings. ${ }^{8}$

3.5. Further Optimization of the Catalyst

Further discoveries relating to the catalyst's synthesis have been made since generating the data featured in Table 3.4. These came about when HRMS examination of in-house batches of catalyst showed the presence of two unexpected ions at 377 and 417 , respectively. Candidate structures 76 and 77, shown in Figure 3.1, were proposed.

76
$\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}^{+}$
Exact Mass: 377.26

77
$\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}^{+}$
Exact Mass: 417.29

Figure 3.1. Structures 76 and 77.

Potential origins of 76 and 77 are somewhat straightforward. During catalyst formation from 71, hydroxyl attack might occur, liberating free hydrocinchonidine $\mathbf{6 8}$ and forming byproduct 78 (Scheme 3.7). Subsequent allylation of 68, expected in the presence of excess allyl bromide, could then produce inseparable contaminants 76 and 77. These might behave as competitive, non-selective catalysts, explaining the poor results sporadically obtained with some catalyst batches.

Scheme 3.7. Proposed origin of byproducts 76 and 77.

When allylating 71 during the final step of the catalyst's synthesis, excessive reaction time might presumably exacerbate this effect and increase the amounts of 76 and 77. Monitoring the reaction in situ by HRMS revealed that starting material 71 was completely consumed after only 15 minutes. This contrasts sharply with Park's original procedure, which calls for stirring the reaction at room temperature for four hours.

To avoid these contaminants and thereby improve catalyst performance, modifications to the synthesis of the catalyst were developed (Scheme 3.8). The most meaningful advance of this improved procedure lies in the thoroughness of its experimental details, which now make the catalyst's preparation comparatively straightforward and reproducible. A researcher with minimal lab experience can now reproducibly synthesize $\mathbf{6 1}$ with high yield in only a few days.

--

Scheme 3.8. Modified synthesis of catalyst 61.

Through this process, several improvements to the catalyst's synthesis have been made.
First, TLC conditions are now reported for monitoring reaction completion during the formation of intermediates $\mathbf{6 8}$ and 70. ${ }^{8}$ Next, higher-yielding conditions (benzoyl peroxide in refluxing benzene) are now used as an alternative means to 70. The yellow, dark-red, or dark-purple contaminants, which give rise to unsuitable catalyst, are now reported as byproducts to the synthesis of $\mathbf{7 1}$ under certain conditions. Likely causes of these contaminants are also confirmed. Additionally, formation of byproduct 72 is reported; avoiding exposure of 71 to methanol is critically noted. Byproducts 76 and 77 are duly noted, resulting in optimal catalyst
formation by running the final step for only 15 minutes. Lastly, the mode of catalyst purification by recrystallization is now reported with sufficient detail to allow its reproducible application, and printed NMR spectra for the catalyst and each intermediate in its synthesis are published. ${ }^{8}$

3.6. Comparisons with Commercial Catalyst

Since this work began, catalyst $\mathbf{6 1}$ was made commercially available by Aldrich. For comparison's sake, commercial $\mathbf{6 1}$ was purchased and used to benzylate $\mathbf{5 8}$ under the same conditions shown in Table 3.4, entry 6. This reaction ran 19 hours and gave product 73 in 86% yield and 76% ee. When commercial catalyst was tested by HRMS for the presence of contaminants 76 and $\mathbf{7 7}$, only 76 was observed [found $377.2592(\mathrm{M})^{+}$and $378.2724(\mathrm{M}+\mathrm{H})^{+}$, calcd 377.26 for $\left(\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}\right)^{+}$and 378.27 for $\left.\left(\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}\right)^{+}\right]$.

3.7. References and Notes

1. Evans, D. A.; Fandrick, K. R.; Song, H.-J. J. Am. Chem. Soc. 2005, 127, 8942-8943.
2. Evans, D. A.; Fandrick, K. R. Org. Lett. 2006, 8, 2249-2252.
3. Evans, D. A.; Song, H.-J.; Fandrick, K. R. Org. Lett. 2006, 8, 3351-3354.
4. Andrus, M. B.; Hicken, E. J.; Bedke, D. K.; Christiansen, M. A. Unpublished Results.
5. Andrus, M. B.; Ye, Z.; Zhang, J. Tetrahedron Lett. 2005, 46, 3839-3842.
6. Park, H.; Jeong, B.-S.; Yoo, Mi.-S.; Lee, J.-H.; Park, M.; Lee, Y.-J.; Kim, M.-J.; Jew, S. Angew. Chem. Int. Edit. 2002, 41, 3036-3038.
7. Burk, M. J.; Kalberg, C. S.; Pizzano, A. J. Am. Chem. Soc. 1998, 120, 4345-4353.
8. Andrus, M. B.; Christiansen, M. A.; Hicken, E. J.; Gainer, M. J.; Bedke, K. D.; Harper, K. C.; Mikkelson, S. R.; Dodson, D. S.; Harris, D. T. Org. Lett. 2007, 9, 4865-4868.

Chapter 4. The Total Synthesis of (+)-Kurasoin B

4.1. Synthetic Analysis

With the new methodology now developed, the stage was set to complete the total synthesis of (+)-kurasoin B. This was envisioned retrosynthetically through benzyl Grignard addition and deprotection of $\mathbf{7 9}$ (Scheme 4.1). Compound 79, in turn, would originate from straightforward manipulations of $\mathbf{8 0}$, which would be obtained from an asymmetric PTC alkylation of $\mathbf{5 8}$ with electrophile 44.

Scheme 4.1. Retroanalysis of 2.

In the forward sense, it was envisioned that compound $\mathbf{8 0}$ could be converted to $\mathbf{7 9}$ via the approach illustrated in Scheme 4.2. Formation of methyl ester $\mathbf{8 1}$ could be accomplished via treatment of $\mathbf{8 0}$ with methyl triflate and sodium methoxide. Boc removal would give $\mathbf{8 2}$, and deprotection of the 2-NPM group would furnish 83; this could then be converted to Weinreb amide 84. Protecting this intermediate's free hydroxyl group as a TES ether would then provide
79. Although this deprotection/reprotection sequence might appear inefficient, previous work with (+)-kurasoin A had shown it necessary to prevent undesired byproduct formation and low overall yield during benzyl Grignard addition. ${ }^{1}$ Treatment of $\mathbf{7 9}$ with BnMgCl would give $\mathbf{8 5}$, and reaction with TBAF would then unveil the final target.

Scheme 4.2. Planned synthesis of (+)-kurasoin B 2 from 80.

4.2. Making the Electrophile

Despite its commercial availability, a synthetic route to electrophile 44 was sought, due to the compound's high cost (\$356 per gram). Attempted brominations of $\mathbf{8 6}$ (accessible in one step from 3-methylindole) failed, even after applying numerous conditions suggested by literature precedent (Scheme 4.3). ${ }^{2-3}$

Scheme 4.3. Bromide 44 was inaccessible from 86.

An alternative route, shown in Scheme 4.4, was pursued from indole-3-carboxaldehyde 87. Following published conditions, ${ }^{4} N$-Boc protection of $\mathbf{8 7}$ provided $\mathbf{8 8}$ in quantitative yield, and sodium borohydride reduction of $\mathbf{8 8}$ gave $\mathbf{8 9}$. At this stage, different bromination conditions were explored. Treatment with $\mathrm{Br}_{2} / \mathrm{Ph}_{3} \mathrm{P} / \mathrm{Et}_{3} \mathrm{~N}$ failed, giving only a complex mixture. By comparison, an alternative procedure with mesyl chloride and lithium bromide ${ }^{5}$ gave spectroscopically pure 44 in quantitative yield. This product was a deep-purple solid that became more darkly colored over time. All alkylations with this electrophile gave modest selectivity ($<50 \%$ ee), so an improved procedure was sought. This led to the treatment of $\mathbf{8 9}$ with PBr_{3} at low temperature, giving electrophile 44 as a white solid in 92% yield. The first alkylation of $\mathbf{5 8}$ with this electrophile provided $\mathbf{8 0}$ in 83% yield and 95% ee.

$\begin{gathered}\text { 89: } \mathrm{R}=\mathrm{OH} \\ \text { 44: } \mathrm{R}=\mathrm{Br}\end{gathered}{ }^{-\mathrm{PBr}_{3}, \mathrm{Et}_{2} \mathrm{O},}-40^{\circ} \mathrm{C}, 92 \%$

Scheme 4.4. Completed synthesis of electrophile 44.

4.3. First-Generation Synthesis

When the synthesis of compound $\mathbf{8 0}$ was attempted again (this time on two-gram scale) with the now-optimized catalyst, product $\mathbf{8 0}$ was obtained in 91% yield and $\sim 100 \%$ enantiomeric purity (Scheme 4.5). With $\mathbf{8 0}$ now in hand, displacement of the N-methylimidazole group was
explored. Eventually, conditions were found that provided $\mathbf{8 2}$ in 75% yield, with some epimerization (84% ee). Fortuitously, cleavage of the Boc group also occurred, thereby increasing the simplicity of the overall synthesis.

Scheme 4.5. Synthesis of $\mathbf{8 2}$ from 58.

With $\mathbf{8 2}$ in hand, removal of the 2-naphthalenemethyl protecting group was explored. ${ }^{7}$ Unfortunately, every condition examined-including high-pressure hydrogenation and treatment with boron trichloride or DDQ—failed, producing only complex mixtures or no reaction. Attempts to remove the 2-NPM protecting group during later stages of the synthesis were also unsuccessful.

4.4. Second-Generation Synthesis

At this stage, benzyl-protected substrate $\mathbf{6 3}$ was reconsidered. This compound had performed satisfactorily in earlier studies (see Table 3.2, entry

3) and seemed a better alterative to $\mathbf{5 8}$, given the difficulty we encountered in trying to remove the 2-NPM protection from 82.

Gratifyingly, PTC alkylation of $\mathbf{6 3}$ with electrophile $\mathbf{4 4}$ gave product $\mathbf{9 0}$ in 98% yield and $\sim 100 \%$ enantiomeric purity (Scheme 4.6). Besides providing a slightly higher yield than 58 in this alkylation (compare Scheme 4.5), substrate 63 also required less reaction time (3.5 hours versus 60 hours for $\mathbf{5 8}$). With product 90 now in hand, treatment with methyl triflate and basic methanol provided ester 91 in 94% yield, with some epimerization (88% ee).

63

Scheme 4.6. Synthesis of $\mathbf{9 1}$ from 63.

Conditions were now screened to remove 91's benzyl protecting group (Table 4.1).
Complex mixtures resulted from treatment of $\mathbf{9 1}$ with DDQ and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{H}_{2}$ (entries 1-2), while $10 \% \mathrm{Pd} / \mathrm{C}$ gave incomplete reactivity (entry 3). Boron trichloride eventually proved suitable,

Table 4.1. Benzyl deprotection screen of 91 .
giving ester $\mathbf{8 3}$ cleanly in 56% yield at $-78{ }^{\circ} \mathrm{C}$ (entry 4). When the temperature was increased to $-20^{\circ} \mathrm{C}$ as the reaction proceeded, quantitative product formation ensued (entry 5).

Besides having the more easily-cleaved benzyl protecting group, substrate $\mathbf{6 3}$ is less expensive to make than 58. This is because $\mathbf{6 3}$ is formed from benzyl alcohol ($20 \notin$ per gram), while $\mathbf{5 8}$ is made from costlier 2-naphthalene methanol (\$15.66 per gram). The efficiency of compound 63 in asymmetric PTC alkylation, coupled with its relatively low cost, proved doubly advantageous to the attractiveness of this method.

With enantioenriched $\mathbf{8 3}$ now formed on large scale, seamless manipulations thereafter completed the total synthesis of $(+)$-kurasoin B. As Scheme 4.7 illustrates, treatment with $\mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine $\cdot \mathrm{HCl}$ and trimethyl aluminum provided Weinreb amide 84 in 92% yield. TES protection then gave 79, and benzyl Grignard addition gave 85. Final deprotection with TBAF then provided (+)-kurasoin B (2) in 43\% yield over ten steps from benzyl alcohol. Data obtained from our synthetic sample, including optical rotation, matched those of the natural compound, culminating in a published summary of the total synthesis. ${ }^{7}$

Scheme 4.7. Final steps to (+)-kurasoin B (2) from 83.

4.5. Analog Syntheses

4.5.1. First-Generation Analogs

In hopes of conducting structure-activity relationship studies and possibly discovering
(+)-kurasoin B derivatives with higher FTase-inhibitory activity, analogs of type $\mathbf{9 2}$ were desired
(Figure 4.1). To this end, intermediate 79 was reacted with commercial Grignard reagents 93-95 to give 96-98 after TBAF deprotection (Scheme 4.8).

Figure 4.1. General (+)-kurasoin B analog structures.

Scheme 4.8. Syntheses of analogs 96-98 from 79.

Indole variation proved more challenging. Despite the existence of substituted indoles of type 99 (Figure 4.2), their commercial availability is often limited and cost-prohibitive.

Figure 4.2. General representation of 3-formylindole variants.

One exception is 5-bromoindole 100. Based on literature precedent, ${ }^{8-11}$ it was envisioned that coupling reactions with $\mathbf{1 0 0}$ might produce various substituted indoles that could eventually lead to an expanded library of $(+)$-kurasoin B analogs.

Figure 4.3. Bromoindole 100.

To this end, electrophile $\mathbf{1 0 1}$ was prepared from $\mathbf{1 0 0}$ in a sequence analogous to the one used to prepare 44 (Scheme 4.4). This electrophile was then used in the PTC alkylation of substrate 58, giving 102 in 87% yield (Scheme 4.9). Compound 102, for which no enantiomeric excess was measured, was then examined as a substrate for Suzuki couplings to form analogs 103. A variety of attempts were unsuccessful, but exhaustive optimization was not pursued.

Scheme 4.9. Attempted Suzuki couplings of 102 to form 103.

An alternative route to indole variation was envisioned from N -Boc-protected TBS ether 104, as well as from aldehyde $\mathbf{1 0 0}$ itself (Scheme 4.10). Multiple Suzuki conditions (not shown) with various coupling partners failed to give products $\mathbf{1 0 5}$ in significant quantities, despite the use of reactive NHC ligand $\mathbf{1 0 6}^{12}$ during many attempts. Alternative Negishi conditions, for which some literature precedent was known, ${ }^{8}$ were also unsuccessful, due to the apparent stability of indoles $\mathbf{1 0 0}$ and $\mathbf{1 0 4}$.

104: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OTBS}, \mathrm{R}_{1}=\mathrm{Boc} \quad \mathrm{R}_{2}=\mathrm{Ph}, n-\mathrm{Bu}$
Scheme 4.10. Attempted Suzuki couplings of 100 and 104 to form 105.

4.5.2. Indole Variation Through Modified Larock Chemistry

At this stage modification of Larock's indole chemistry ${ }^{13-14}$ was considered. It was reasoned that available iodoanilines or accessible amino tosylates or triflates $\mathbf{1 0 7}$ might provide indoles 108 after TMS removal. These could then be transformed into electrophiles $\mathbf{1 0 9}$ as an alternative means to $(+)$-kurasoin B analogs. Unfortunately, all attempts at indole formation from arenes $\mathbf{1 0 7}^{15-17}$ failed, effectively halting our work toward indole variation.

Scheme 4.11. Envisioned syntheses of 109 from 107.

4.5.3. Second-Generation Analogs

Despite these setbacks, PTC alkylation of $\mathbf{6 3}$ was done with $\mathbf{1 0 1}$ to give $\mathbf{1 1 0}$ in 90% yield and 84% ee on large scale (Scheme 4.12). This was then converted to $\mathbf{1 1 1}$. Work currently advances toward bromoindolyl analogs 112-115, with the reaction conditions and unoptimized yields indicated. Once their preparations are completed, these analogs will be tested alongside compounds 96-98 for FTase-inhibitory activity.

Scheme 4.12. Current progress toward analogs 112-115.

4.6. References and Notes

1. Andrus, M. B.; Hicken, E. J.; Stephens, J. C.; Bedke, D. K. J. Org. Chem. 2006, 71, 86518654.
2. Liu, R.; Zhang, P.; Gan, T.; Cook, J. M. J. Org. Chem. 1997, 62, 7447-7456.
3. Zhang, P.; Liu, R.; Cook, J. M. Tetrahedron Lett. 1995, 36, 9133-9136.
4. Jesus Oliveira, D.; Coelho, F. Synth. Comm. 2000, 30, 2143-2159.
5. Andrus, M. B.; Hicken, E. J.; Meredith, E. L.; Simmons, B. L.; Cannon, J. F. Org. Lett. 2003, 5, 3859-3862.
6. See: (a) Bacci, J. P. Kearney, A. M.; Van Vranken, D. L. J. Org. Chem. 2005, 70, 90529053. (b) Inoue, M.; Uehara, H.; Maruyama, M.; Hirama, M. Org. Lett. 2002, 4, 45514554. (c) Wright, J. A.; Yu, J.; Spencer, J. B. Tetrahedron Lett. 2001, 42, 4033-4036. (d) Xia, J.; Abbas, S. A.; Lochke, R. D.; Piskorz, C. F.; Alderfer, J. L.; Matta, K. L. Tetrahedron Lett. 2000, 41, 159-173. (e) Kim, J. D.; Han, G.; Zee, O. P.; Jung, Y. H. Tetrahedron Lett. 2003, 44, 733-735. (f) Gaunt, M. J.; Yu, J.; Spencer, J. B. J. Org. Chem. 1998, 63, 4172-4173. (g) Crich, D.; Vinogradova, O. J. Org. Chem. 2007, 72, 3581-3584. (h) Schmid, G.; Fukuyama, t.; Akasaka, K.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 259260. (i) Fukuyama, T.; Wang, C.-L. J.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 260-262. (j) Meade, E. A.; Wotring, L. L.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1997, 40, $794-$ 801.
7. Christiansen, M. A.; Butler, A. W.; Hill, A. R. Andrus, M. B. Synlett 2009, 4, 653-657.
8. Balle, T.; Perregaard, J.; Tamirez, M. T.; Larsen, A. K.; Søby, K. K.; Liljefors, T.; Andersen, K. J. Med. Chem. 2003, 46, 265-283.
9. Wang, W.; Xiong, C.; Yang, J.; Hurby, V. J. Tetrahedron Lett. 2001, 42, 7717-7719.
10. Valente, C.; Baglione, S.; Candito, D.; O’Brien, C. J.; Organ, M. G. Chem. Commun. 2008, 735-737.
11. Le Sann, C.; Huddleston, J.; Mann, J. Tetrahedron 2007, 63, 12903-12911.
12. Song, C.; Ma, Y.; Chai, Q.; Ma, C.; Jiang, W.; Andrus, M. B. Tetrahedron 2005, 61, 74387446.
13. Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1992, 113, 6689-6690.
14. Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652-7662.
15. Gwaltney II, S. L.; Imade, H. M.; Li, Q.; Gerhrke, L.; Credo, R. B.; Warner, R. B.; Lee, J. Y.; Kovar, P.; Frost, D.; Ng, S.-C.; Sham, H. L. Bioorg. Med. Chem. Lett. 2001, 11, 16711673.
16. Andersen, K. K.; Gowda, G.; Jewell, L.; McGraw, P.; Phillips, B. T. J. Org. Chem. 1982, 47, 1884-1889.
17. Darses, S.; Michaud, G.; Genêt, J.-P. Eur. J. Org. Chem. 1999, No. 8, 1875-1883.

Chapter 5. The Total Synthesis of $\mathbf{1 2 - (S)}$-HETE

5.1. Previous Synthetic Efforts

Of the various routes to 12-HETE mentioned in chapter 1, two bear particular relevance to our work. The first, reported by Spur et al., ${ }^{1}$ began by chiral resolution of epoxide $\mathbf{1 1 6}$ with catalyst 117, which gave enantiopure 118 in 45% yield (Scheme 5.1). Treatment of $\mathbf{1 1 8}$ with lithiated 1-heptyne, followed by TES protection, then gave 119. Swern oxidation of $\mathbf{1 1 9}$ selectively affected the primary TES ether, directly affording aldehyde 120. This was then reacted with stabilized Wittig reagent $\mathbf{1 2 1}$ to produce compound 122. Exposure to Wittig salt $\mathbf{1 2 3}$

Scheme 5.1. Spur and coworkers' synthesis of 12-(S)-HETE (11). ${ }^{1}$
(addressed later on) provided 124, which was hydrogenated with Lindlar catalyst to access $\mathbf{1 2 5}$. Deprotection and hydrolysis then furnished the final product with an 11.5% yield over 10 steps from 116.

Corey's route to $12-(R)-$ HETE 2 began by coupling $\mathbf{1 2 6}$ with $\mathbf{1 2 7}$ to form allyl bromide 128, which was then converted to ester 129 (Scheme 5.2). Asymmetric dihydroxylation with AD-mix- β occurred with concomitant lactonization, producing intermediate $\mathbf{1 3 0}$ in 95% ee. Lindlar reduction provided the Z-olefinic moiety; the free alcohol was converted thereafter to a mesylate, and the lactone reduced to a lactol, giving 131. Reaction with $\mathbf{1 2 3}$ (shown above) then provided (R)-132, which was hydrolyzed to the final target (no yield reported). The synthesis was reported as embarking eight total steps from 126. However, formation of $\mathbf{1 2 3}$ was loweryielding and required the same number of steps as $\mathbf{1 3 1}$. Hence, the total synthesis was actually done over eight steps from hex-5-ynenitrile (the precursor to 123) with $<12.8 \%$ yield (no yield reported for the last step). Its advantage lies in its amenability to $12-(S)$-HETE 11 by using complimentary AD-mix- α in the key step.
${ }^{a}$ No yield reported

$\left.\begin{array}{l}\text { (R)-132: } \mathrm{R}=\mathrm{Me} \\ (R)-11: \mathrm{R}=\mathrm{H}\end{array}\right]$ ${ }^{\mathrm{L} L O H}, \mathrm{H}_{2} \mathrm{O}$

Scheme 5.2. Corey and coworkers' synthesis of 12-(R)-HETE. ${ }^{2}$

5.2. Synthetic Analysis

To further showcase the utility of our PTC alkylation methodology, a route to 12-(S)HETE 11 was devised, as depicted in Scheme 5.3. Retrosynthetically, 11 was envisioned as arising from 123 and 133. Compound 133, in turn, could come from reacting aldehyde $\mathbf{1 3 4}$ with Wittig reagent 121. Compound 134 could be derived from 135, which could originate from the asymmetric PTC alkylation of $\mathbf{6 3}$ with electrophile 136.

Scheme 5.3. Retroanalysis of $\mathbf{1 1 .}$

In the forward direction, treating 135 with methyl triflate and basic methanol would yield ester 137, and careful reduction of $\mathbf{1 3 7}$ would give aldehyde $\mathbf{1 3 4}$ (Scheme 5.4). Reaction with 121 would then produce 133 . Noting 133 's structural similarity to 122 above, coupling with Wittig reagent $\mathbf{1 2 3}$ would be anticipated to provide 138. Deprotection and hydrolysis would then give the final target, formed over 10 steps from the benzyl alcohol used to make 63.

Scheme 5.4. Planned synthesis of 11 from 135.

5.3. First-Generation Synthesis

5.3.1. Making the Electrophile

The synthesis began by examining PTC alkylation with electrophile 136. This had been done earlier on substrate 58 (see Table 3.4, entry 10) to give product with an acceptable 77\% yield and 79% ee. Unfortunately, the reaction suffered from irreproducibility. Typical alkylations with electrophile 136 resulted in 45-65\% yields and ee's below 75%.

Our earlier syntheses of $\mathbf{1 3 6}$ had been done by reducing 2-octyn-1-ol to Z-2-octen-1-ol and then converting the alcohol to its bromide derivative. ${ }^{3-4}$ However, this bromide had never been properly characterized. As modest alkylations of $\mathbf{5 8}$ and $\mathbf{6 3}$ continued, our electrophile's purity was questioned. Alternative routes to purer electrophile were consequently examined.

The first was envisioned by coupling 139^{5-6} with hexanal to produce ester $\mathbf{1 4 0}$, which could undergo reduction to alcohol 141 and subsequent conversion to bromide $\mathbf{1 3 8}$ (Scheme 5.5). Despite clean formation of $\mathbf{1 3 9}$, all coupling reactions with hexanal failed. Hence, attention was turned back to reducing 2-octyn-1-ol. After exploring several conditions, use of catalytic nickel
(II) acetate proved successful, providing pure $\mathbf{1 4 1}$ (no E isomer detected) in 85% yield. ${ }^{7}$ This reaction had to be monitored by taking an aliquot from the reaction mixture in situ and analyzing it by ${ }^{1} \mathrm{H}$ NMR spectroscopy prior to quench and workup. Successful bromination of $\mathbf{1 4 1}$ was eventually achieved with PBr_{3}, providing spectroscopically pure 136 in 97% yield. Low vacuum was necessary when concentrating 136 and its precursors, due to their high volatility.

Scheme 5.5. Investigated routes to electrophile 136.

5.3.2. Alkylation Screen

Initial alkylations of $\mathbf{6 3}$ with $\mathbf{1 3 6}$ were conducted without purification (Table 5.1).
Instead, ee's were measured quickly by chiral HPLC after flushing the crude product through a short silica pad. Decreasing to 2.0 equivalents of electrophile caused unacceptably sluggish reactivity (entry 1), while 4.0 equivalents gave product in 65% ee (entry 2). Solvent screens showed modest improvement when a $2: 1$ mixture of dichloromethane $/ n$-hexane was employed (entry 3). Decreased base equivalency also caused unacceptably slow reactivity (entry 4), while lowered temperature $\left(-60^{\circ} \mathrm{C}\right)$ provided $\mathbf{1 3 5}$ after 23 hours in 80% ee (entry 5).

entry	solvent/temperature	modifications	time (h)	ee (\%)
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}$	2.0 equiv 136	>48	--
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}$	4.0 equiv 136	28	65
3	$2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hex, $-40^{\circ} \mathrm{C}$	4.0 equiv 136	25	70
4	$2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hex, $-40^{\circ} \mathrm{C}$	2.0 equiv $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ used	>48	--
5	$2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hex, $-60^{\circ} \mathrm{C}$	4.0 equiv $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ used	23	80

Table 5.1. Condition screens in alkylating 63 with electrophile 136.

Catalysts depicted in Figure 5.1 were used in a broad alkylation screen under nowoptimized conditions, producing the data shown in Table 5.2. Novel catalyst 142, developed from the fairly inexpensive 2,6-dimethylnaphthalene, only gave product with a 54% ee (entry 2). Commercial Maruoka catalysts $\mathbf{1 4 3}$ and $\mathbf{1 4 4}$ (added in 1 mol percent) resulted in excessive reaction times (entries 3-4). Catalyst 60 gave a complex mixture (entry 5), while 145 and 146 caused unacceptable reaction times (entries 6-7). Pleasingly, catalysts 36 and 147 produced ee's of $86-87 \%$ (entries $8-9$). Furthermore, novel catalyst 148 furnished product with a superior 88% ee, which was reproducible on large scale.

(S)-144

 148

36

145

Figure 5.1. Catalysts used in Table 5.2.

${ }^{\text {a }}$ ee not measured
Table 5.2. Catalyst screen.

5.3.3. To Aldehyde 133

Product $\mathbf{1 3 5}$ was next reacted in crude form with methyl triflate and sodium methoxide/methanol to give 137 in 75% yield over two steps from 63 (Scheme 5.6). Slight epimerization was observed, with $\mathbf{1 3 7}$ being isolated in 84% ee. Conversion to aldehyde $\mathbf{1 3 4}$ proceeded smoothly in 82% yield by employing DIBAL-H at $-78{ }^{\circ} \mathrm{C},{ }^{8-13}$ and treatment with commercial reagent 121 in benzene gave α, β-unsaturated aldehyde 133 in 99% yield. With this key intermediate now in hand, attention turned to Wittig salt 123.

1. MeOTf, m. sieves

135

$\left.\begin{array}{r}\text { 137: } \mathrm{R}=\mathrm{OMe} \\ \text { 134: } \mathrm{R}=\mathrm{H}\end{array}\right] \begin{aligned} & \text { DIBAL-H, tol., } \\ & -78^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 82 \%\end{aligned}$
121

Scheme 5.6. Formation of α, β-unsaturated aldehyde 133 from 135.

5.3.4. Making Wittig Salts 123 and 158

Three different routes to $\mathbf{1 2 3}$ are known. In their racemic synthesis of 12 -HETE, ${ }^{14}$ Gunn and Brooks began by lithiating chloropentyne $\mathbf{1 4 9}$ and adding ethylene oxide to access alcohol 150 (Scheme 5.7). ${ }^{15}$ Nitrile substitution, acidification, and methyl esterification with diazomethane, followed by palladium-catalyzed reduction, then provided alcohol 151.

Straightforward transformations continued thereafter to $\mathbf{1 2 3}$ in 20% yield over eight steps from
149.

Scheme 5.7. Gunn synthesis of $\mathbf{1 2 3}{ }^{14-15}$

Just and coworkers, who published a synthesis of 12-(S)-HETE in $1986,{ }^{16}$ formed $\mathbf{1 2 3}$ by the same route used in Corey's 12-(R)-HETE synthesis. ${ }^{2,17}$ This began by converting nitrile $\mathbf{1 5 2}$ to orthoester $\mathbf{1 5 3}$ in 89% yield. Lithiation and treatment with ethylene oxide, ${ }^{18}$ followed by acidification and reduction, then gave alcohol 151. Sequential manipulations thereafter provided 123 in 18% yield over six steps from 152.

1. $\mathrm{Li} / \mathrm{NH}_{3}$ /ethylene oxide
2. $\mathrm{HCl} ; 3 . \mathrm{BNi}_{2}, \mathrm{H}_{2}$

Scheme 5.8. Route to $\mathbf{1 2 3}$ used independently by Just and Corey. ${ }^{16-18}$

A more expeditious route to $\mathbf{1 2 3}$ by Rokach et al. began by employing LiHMDS to couple Wittig salt 154 (made quantitatively from 3-bromopropanol) ${ }^{19}$ with aldehyde $\mathbf{1 5 5}$. The crude product was then deprotected to provide alcohol 151. Bromination, iodination, and reaction with triphenylphosphine then afforded $\mathbf{1 2 3}$ in 68\% yield over seven steps from 3bromopropanol.

Scheme 5.9. Rokach's route to $\mathbf{1 2 3} .{ }^{19}$

Incomplete experimental details made these procedures all potentially challenging. It was eventually opted to follow Rokach's route, however, since it gave product in higher yield and included the greatest amount of procedural information.

We followed Rokash's conditions to seamlessly obtain compound 154 in quantitative yield from 3-bromopropanol. ${ }^{20-21}$ However, attempts to prepare 155 from δ-valerolactone 156 gave product that was heavily contaminated by an unidentified aromatic compound. ${ }^{22-23}$ Purification by chromatography and distillation failed.

Scheme 5.10. Attempted formation of 155 from 156. ${ }^{22-23}$

An alternative approach was envisioned in which benzyl ester 157 could serve as a surrogate for $\mathbf{1 5 5}$ (Scheme 5.11). Compound $\mathbf{1 5 7}$ is UV-active, a desirable property that would enable easier chromatographic purification and monitoring of reaction progress via TLC. One potential synthetic advantage of $\mathbf{1 5 8}$ over $\mathbf{1 2 3}$ would be the possibility of doubly deprotecting intermediate $\mathbf{1 5 9}$ with boron trichloride in a single step, instead of the two steps required by synthon 138.

Scheme 5.11. Envisioned formation of $\mathbf{1 5 8}$ en route to $12-(S)$-HETE 11.

According to plan, $\mathbf{1 5 6}$ was converted smoothly to alcohol $\mathbf{1 6 0}$ in 97% yield. ${ }^{23}$ As anticipated, compound $\mathbf{1 6 0}$ was UV-active and easily purified by column chromatography. Oxidation with PCC then provided 157 cleanly after column purification.

Scheme 5.12. Preparation of 157 from 156.

As Table 5.3 illustrates, coupling screens proved lithium and sodium hexamethyldisilazides ineffective at producing 161 (entries 1-2). These only gave dark mixtures of unidentifiable byproducts. Screens with n-butyllithium and sodium hydride gave modest yields initially (entries 3-4), but n-butyllithium's performance improved as temperatures were varied (entries 5-7), ultimately providing 161 in 97% yield. As with compounds 136 and 141 above, concentration of $\mathbf{1 6 1}$ had to be done cautiously under low vacuum to prevent product loss.

Table 5.3. Condition screen in forming 161.

Deprotection of $\mathbf{1 6 1}$ unveiled alcohol 162 in 85% yield (Scheme 5.13). Direct conversion to iodide $\mathbf{1 6 3}$ was then facilitated through use of triphenylphosphine, imidazole, and iodine (98% yield), and overnight treatment with triphenylphosphine in refluxing acetonitrile gave 158 quantitatively as desired. As anticipated, each of these intermediates was UV-active, which facilitated chromatographic purification. Once optimized, this route provided $\mathbf{1 5 8}$ efficiently from δ-valerolactone (156) in 74% yield over six steps.

Scheme 5.13. Formation of $\mathbf{1 5 8}$ from 161.

5.3.5. Coupling with Aldehyde 133

Initial couplings of Wittig salt $\mathbf{1 5 8}$ with aldehyde $\mathbf{1 3 3}$ gave product $\mathbf{1 5 9}$ in only $\mathbf{1 9 \%}$
yield. To conserve precious 133 , cinnamaldehyde 164 was used as a test substrate to optimize conditions (Table 5.4). When a first trial gave no product (entry 1), $\mathbf{1 5 8}$ was purified by column chromatography in $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. This salt, isolated as a dark yellow syrup, was found to

Table 5.4. Condition screen for coupling 158 with cinnamaldehyde (164).
be extremely water sensitive and only functioned well when subjected to overnight concentration in vacuo with phosphorous pentoxide $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$. In time, screening of the base revealed n butyllithium's superiority (entries 2-4), though decreased temperature limited reactivity (entries 5-6). Vigorous drying by azeotropic distillation with THF/toluene, followed by in vacuo concentration overnight in the presence of $\mathrm{P}_{2} \mathrm{O}_{5}$, provided $\mathbf{1 5 8}$ in its driest form. Renewed reactivity with methyllithium then produced $\mathbf{1 6 5}$ cleanly in 85% yield.

5.3.6. Completing the Synthesis

Salt 158 was found to decompose slowly over time. Consequently, its ability to provide positive results gradually ceased, eventually necessitating preparation of a new batch. Once prepared and properly dried, fresh 158 was coupled with 133 (200 mg scale) under optimized conditions to furnish 159 (Scheme 5.14). Disappointingly, this proceeded with only a 33% yield after purification. Cleavage of both the benzyl ether and ester of $\mathbf{1 5 9}$ in a single step proved

Scheme 5.14. Final steps to 12-(S)-HETE 11 from aldehyde 133.
unsuccessful. Instead, treatment with boron trichloride at low temperature furnished intermediate 166, in which only the benzyl ether was cleaved (32% yield). LiOH -mediated hydrolysis of the ester was then performed following Corey's procedure, ${ }^{2}$ but the amount of compound $\mathbf{1 1}$ isolated was too small to characterize spectroscopically. We were able to detect product $\mathbf{1 1}$ in the crude reaction mixture by HRMS after quench and workup.

5.4. Second-Generation Synthesis

In light of the coupling failures with Wittig salt 158, a second-generation synthesis of 12-(S)-HETE is currently in development. This is projected to unfold as Scheme 5.15 depicts, by converting aldehyde 134 (prepared as per Scheme 5.6) to vinyl iodide 167. ${ }^{24-25}$ Separate

Scheme 5.15. Second-Generation route to 12-(S)-HETE 11 currently underway.
oxidation of alcohol 162 (prepared as per Scheme 5.13) should yield aldehyde 168. Treatment with TMS-diazomethane ${ }^{26}$ or $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$ and n-butyllithium ${ }^{27}$ should then provide terminal acetylene 169. Sonagashira coupling with 167 , for which similar conditions were reported in a 12-(S)-HETE synthesis by Sato and coworkers, ${ }^{28}$ should then produce intermediate 170. Half reduction of the internal alkyne should proceed without disturbing the olefinic moieties, ${ }^{28}$ giving compound 159. Benzyl deprotection and hydrolysis should then give 12-(S)-HETE 11, obtained over seven steps in the longest linear sequence from benzyl alcohol (the precursor to 134).

5.5. References and Notes

1. Rodríguez, A.; Nomen, M.; Spur, B. W.; Godfroid, J. J.; Lee, T. H. Tetrahedron, 2001, 57, 25-37.
2. Han, X.; Corey, E. J. Org. Lett. 2000, 2, 2543-2544.
3. Gunn, B. P.; Brooks, D. W. J. Org. Chem. 1985, 50, 4417-4418.
4. Binns, M. R.; Haynes, R. K.; Lambert, D. E.; Schober, P. A.; Turner, S. G. Aust. J. Chem. 1987, 40, 281-290.
5. Touchard, F. P. Eur. J. Org. Chem. 2005, 1790-1794.
6. Touchard, F. P.; Capelle, N.; Mercier, M. Adv. Synth. Catal. 2005, 347, 707-711.
7. Gansäuer, A.; Fan, C.-A.; Keller, F.; Keil, J. J. Am. Chem. Soc. 2007, 129, 3484-3485.
8. Paquette, L. A.; Lai, K. W. Org. Lett. 2008, 10, 3781-3784.
9. Fu, P.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 4430-4451.
10. Aho, J. E.; Salomäki, E.; Rissanen, K.; Phiko, P. M. Org. Lett. 2008, 10, 4179-4182.
11. Marchal, E.; Cupif, J.-F.; Uriac, P.; van de Weghe, P. Tetrahedron Lett. 2008, 49, 37133715.
12. Janetka, J. W.; Almeida, L.; Ashwell, S.; Brassil, P. J.; Daly, K.; Deng, C.; Gero, T.;

Glynn, R. E.; Horn, C. L.; Ioannidis, S.; Lyne, P.; Newcombe, N. J.; Oza, V. B.; Pass, M.;
Springer, S. K.; Su, M.; Toader, D.; Vasbinder, M. M.; Yu, D.; Yu, Y.; Zabludoff, S. D. Bioorg. Med. Chem. Lett. 2008, 18, 4242-4248.
13. Lee, H.; Chung, Y. M.; Ahn, K. H. Tetrahedron Lett. 2008, 49, 5544-5547.
14. Gunn, B. P.; Brooks, D. W. J. Org. Chem. 1985, 50, 4418-4420.
15. Perchonock, C. D.; Finkelstein, J. A.; Uzinskas, I.; Gleason, J. G.; Sarau, H. N.; Cieslinski, L. B. Tetrahedron Lett. 1983, 24, 2457-2460.
16. Just, G.; Wang, Z. Y. J. Org. Chem. 1986, 51, 4796-4802.
17. Just, G.; Luthe, C. Tetrahedron Lett. 1982, 23, 1331-1334.
18. Zamboni, R.; Milette, S.; Rokach, J.; Tetrahedron Lett. 1983, 24, 4899-4902.
19. Wang, S. S.; Rokach, J. Tetrahedron Lett. 1994, 24, 4051-4054.
20. Boutellier, M.; Wallach, D.; Tamm, C. Helv. Chim. Acta. 1993, 76, 2515-2527.
21. Glebocka, A.; Sicinski, R. R.; Plum, L. A.; Clagett-Dame, M.; DeLuca, H. F. J. Med. Chem. 2006, 49, 2909-2920.
22. (a) Gannett, P. M.; Nagel, D. L.; Reilly, P. J.; Lawson, T.; Sharpe, J.; Toth, B. J. Org. Chem. 1987, 53, 1064-1071. (b) Corey, E. J.; Albright, J. C.; Barton, A. E. Hashimoto, S. I. J. Am. Chem. Soc. 1980, 102, 1435-1436.
23. Weber, A. E.; Halgren, T. A.; Doyle, J. J.; Lynch, R. J.; Siegl, P. K. S.; Parsons, W. H.; Greenlee, W. J.; Patchett, A. A. J. Med. Chem. 1991, 34, 2692-2701.
24. Song, H. Y.; Joo, J. M.; Kang, J. W.; Kim, D.-S.; Jung, C.-K.; Kwak, H. S.; Park, J. H.; Lee, E.; Hong, C. Y.; Jeong, S.; Jeon, K.; Park, J. H. J. Org. Chem. 2003, 68, 8080-8087.
25. Venkatasamy, R.; Faas, L.; Young, A. R.; Raman, A.; Hider, R. C. Bioorg. Med. Chem. 2004, 12, 1905-1920.
26. Anwar, H. F.; Hansen, T. V. Org. Lett. 2009, 11, 587-588.
27. Eade, S. J.; Walter, M. W.; Byrne, C.; Odell, B.; Rodriguez, R.; Baldwin, J. E.; Adlington, R. M.; Moses, J. E. J. Org. Chem. 2008, 73, 4830-4839.
28. Shimazaki, T.; Kobayashi, Y.; Sato, F. Chem. Lett. 1988, 1785-1788.

Chapter 6. Phase-Transfer Catalyzed Asymmetric Arylacetate Alkylation

6.1. PTC Alkylation of $\boldsymbol{\alpha}$-Aryl Esters

Attention turned next to the asymmetric PTC alkylation of esters lacking α-oxygenation, beginning with test substrate 171, which was benzylated with various catalysts and a multitude of conditions (not shown) to provide $\mathbf{1 7 2}$ with modest enantioselectivities (Scheme 6.1).

Scheme 6.1. Asymmetric PTC benzylations of 171.

Ester variation was explored by preparing an extensive library of substrates 173 (Scheme 6.2 , vide infra). These were asymmetrically benzylated under a vast array of conditions (not shown) with catalysts 27 and 36. Dimer catalyst 61, whose synthesis had not yet been optimized by this time, performed quite poorly with these substrates. The highest ee's obtained (60-74\%) were not reproducible. Typical enantiomeric excesses ranged from 40-55\%.

When the synthesis of catalyst $\mathbf{6 1}$ had finally been optimized, esters and ketones $\mathbf{1 7 5}$ (shown in Table 6.1 below) were explored in anticipation of a new methodology applicable to (S)-Naproxen 12. Surprisingly, the N-methylimidazolyl variant gave no observable enantioselectivity (entry 1). Slight improvements were obtained with various aryl esters and amides (entries 2-5 and 7), though selectivities were still modest. The phenethyl variants, in
contrast, gave marked enhancement (entries 10-12), with the phenethyl ester featured in entry 10 providing 176 in near-quantitative yield.

(38-94\%, 10-74\% ee)

Scheme 6.2. Asymmetric PTC benzylation of esters 173.

As Table 6.2 illustrates (vide infra), no selectivity enhancements were observed when various catalysts were screened in the allylation of phenethyl ester 177. Not surprisingly, higher temperature decreased reaction time (entry 5), while lower temperature had the opposite effect (entry 6); however, enantioselectivity remained a modest 56% ee at best.
aller
${ }^{\text {a }} 6$-MeO-naphthyl acetate used as substrate
Table 6.1. Alkylation screen of β-naphthyl esters and ketones 175.

Table 6.2. Catalyst allylation screen with substrate 177.

As additional attempts at optimization continued to give modest improvements, abandonment of the project was considered. However, it was fortuitously discovered that product $\mathbf{1 7 8}$ could be recrystallized overnight from 1:1 ether/hexanes to produce an enantioenriched product. This gave pure $\mathbf{1 7 8}$ in 63% yield and 93% ee, all without any chromatographic purification.

This technique was successfully applied to alkylations with other electrophiles, generating enantio-enriched products 179 (Table 6.3). Thus a new route to asymmetrically α alkylated naphthyl acetates had been devised.

6.2. PTC Alkylation of 6-Methoxynaphthyl Acyl Esters

While engaged in this research we discovered a recent report by Kumar and Ramachandran ${ }^{1}$ that featured the asymmetric methylation of tert-butyl ester 180, catalyzed by cinchonine catalyst 181 (Scheme 6.3, vide infra). This technique generated product $\mathbf{1 8 2}$ in $\mathbf{7 4 \%}$

177

entry	R'X		time (h)	crude ee (\%)	after recrystallization yield (\%) ee (\%)	
1	-		8	56	63	93
2			26	57	68	86
3			28	59	68	70
4		$\mathrm{R}=4-\mathrm{Br}$	28	48	67	97
5		$\mathrm{R}=4-\mathrm{t}-\mathrm{Bu}$	23	71	72	99
6		$\mathrm{R}=2-\mathrm{Ph}$	28	89	81	92
7			27	63	73	94
8	Mel		18	55	71	92

Table 6.3. PTC alkylations of $\mathbf{1 7 7}$ and enantio-enriching kinetic resolutions of $\mathbf{1 7 9}$.
yield and 56% ee. Recrystallization from tert-butyl alcohol then gave enantioenriched $\mathbf{1 8 3}$ in 93% ee, though no isolated yield was reported. Hydrolysis then provided (S)-Naproxen 12 in 94\% yield.

For the sake of comparison, substrate $\mathbf{1 8 0}$ was prepared by our group and treated with catalyst 61 and methyl iodide under our conditions. Surprisingly, no measurable product was formed, even after 48 hours. 2-Phenethyl ester 184, by comparison, underwent complete allylation after only 18 hours with catalyst $\mathbf{6 1}$ (Scheme 6.4). (Methylation was not attempted.) This quantitatively provided $\mathbf{1 8 5}$ in $\mathbf{4 3 \%}$ ee. Recrystallization from 1:1 ether/hexanes then furnished enantioenriched product in 93% ee and 62% yield.

Scheme 6.3. Kumar and Ramachandran's synthesis of (S)-Naproxen (12). ${ }^{1}$

Scheme 6.4. Allylation of $\mathbf{1 8 4}$ and enantio-enriching recrystallization of $\mathbf{1 8 5}$.

6.3. Total Synthesis of (S)-Naproxen

Absolute configurations of products thus far were presumed to be R based on previous alkylations with cinchonidine catalysts. This was corroborated by Ramachandran's production of S-product $\mathbf{1 8 2}$ using complimentary cinchonine catalyst 181. A total synthesis of (S) Naproxen from 184 was therefore reasoned to similarly require a cinchonine catalyst.

Consequently, novel bis-cinchoninium catalyst 186 was prepared (Figure 6.1).

Figure 6.1. Cn catalyst 186.

The total synthesis began with Willgerodt-Kindler ${ }^{2}$ conversion of acetyl naphthalene 187 to morpholine thioamide 188 in 98\% yield (Scheme 6.5). Hydrolysis and EDCI coupling with phenethanol then gave ester $\mathbf{1 8 4}$ in $\mathbf{7 6 \%}$ yield. PTC methylation of $\mathbf{1 8 4}$ with catalyst $\mathbf{1 8 6}$ proceeded smoothly at $-30^{\circ} \mathrm{C}$ to give $\mathbf{1 8 9}$ in 71% yield and 92% ee after recrystallization from

$$
\begin{gathered}
186(10 \mathrm{~mol} \%), \mathrm{Mel}, \\
-30^{\circ} \mathrm{C}, \mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \\
\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23 \mathrm{~h}
\end{gathered}
$$

(76\% from 188)

Scheme 6.5. Total synthesis of (S)-Naproxen 12 from 187. ${ }^{3-4}$

1:1 ether/hexanes. This intermediate's optical rotation and HPLC data matched those of a separate sample of $\mathbf{1 8 7}$ made from commercial (S)-Naproxen, thereby confirming its absolute configuration as $S S^{3-4}$

Hydrolysis was facilitated smoothly in 91% yield with non-epimerizing conditions reported by Carpino and Tunga. ${ }^{5}$ Our synthetic $\mathbf{1 2}$ matched a commercial sample by HRMS, NMR spectroscopy, and optical rotation. This new method furnished (S)-Naproxen in 48% yield over six steps from 6-methoxy-2-naphthalene 187.

The elegance of this approach lies in the fact that only two intermediates (184 and 188) require chromatographic purification, and the key step generates 189 in 71% yield and 92% ee with no requisite chromatography. This is potentially advantageous over traditional routes to (S)-Naproxen that necessitate costly chiral resolutions and recycling of racemates ${ }^{6-9}$ or chiral auxiliaries that have to be recovered. ${ }^{10-12}$

6.4. Asymmetric PTC Alkylation of Phenyl Phenylacetates

As the arylacetate alkylation methodology progressed, a single allylation of substrate $\mathbf{1 9 0}$ was found to give product in 77% yield and 93% ee without any enantio-enriching recrystallization (Scheme 6.6). ${ }^{3}$

Scheme 6.6. PTC allylation of substrate 190. ${ }^{3}$

This finding might be logically extended to 4-oxygenated derivatives of type 191 in an anticipated route to the isoflavanoid S-equol (Scheme 6.7). ${ }^{13-20}$ Synthetically, PTC alkylation of 191 with electrophile $\mathbf{1 9 2}^{21-23}$ would be anticipated to generate product 193 . The requisite S configuration would be expected through use of cinchonine catalyst 186. Reduction of $\mathbf{1 9 3}$ would then give diol 194 with concomitant pivalate removal, and ring-closing Mitsunobu chemistry could provide 195. ${ }^{21-23}$ Di-demethylation of $\mathbf{1 9 5}$ would then unveil the final target over four steps from 191. Work toward this end is currently underway.

Scheme 6.7. Planned total synthesis of the isoflavonoid (S)-equol.

6.5. References and Notes

1. Kumar, S.; Ramachandran, U. Tetrahedron-Asymmetr. 2005, 16, 647-649.
2. (a) Carmack, M.; Spielman, M. S. In Organic Reactions; Adams, R.; Ed.; Wiley: New York, 1946; Vol. 3 pp 83-104. Ch. 2; (b) Harrison, I. T.; Lewis, B.; Nelson, P.; Rooks, W.; Roszkowski, A.; Tomolonis, A.; Fried, J. H. J. Med. Chem. 1970, 13, 203-205; (c) Harrak, Y.; Rosell, G.; Daidone, G.; Plescia, S.; Schillaci, D.; Pujol, M. D. Bioorg. Med. Chem. 2007, 15, 4876-4890.
3. Andrus, M. B.; Harper, K. C.; Christiansen, M. A.; Binkley, M. A. Tetrahedron Lett. 2009, 50, 4541-4544.
4. Andrus, M. B.; Harper, K. C.; Christiansen, M. A.; Binkley, M. A. Synfacts 2009, 8, 920.
5. Carpino, L. A.; Tunga, A. J. Org. Chem. 1986, 51, 1930-1932.
6. Day, J. T.; Waugh, R.; Lorz, E.; Lyle, D. W. US Pat. Appl. US 3904683, 1975.
7. Holton P. G. US Pat. Appl. US 4246193, 1981.
8. Sheldon, R. A. J. Chem. Technol. Biotechnol. 1996, 67, 1-14.
9. Chodankar, N. K.; Oak, G. M. Eur. Pat. Appl. EP 1029846, 2000;
10. Baird, J. M.; Kern, J. R.; Lee, G. R.; Morgans, D. J.; Sparacaino, M. L. J. Org. Chem. 1991, 56, 1928-1933.
11. Castaldi, G.; Cavicchioli, S.; Giordano, C.; Uggeri, F. J. Org. Chem. 1987, 52, 3018-3027.
12. Tsuchihashi, G. I. Tetrahedron Lett. 1982, 23, 5427-5430.
13. Marrian, G. F.; Haslewood, A. D. Biochem J. 1932, 26, 1227-1232.
14. Axelson, M.; Kirk, D. N.; Farrant R. D.; Cooley, G.; Lawson A. M.; Setchell K. D. R. Biochem J. 1982, 201, 353-7.
15. Setchell, K. D. R.; Brown, N. M.; Zimmer-Nechemias, L.; Brashear, W. T. Am. J. Clin. Nutr. 2002, 76, 447-53.
16. Setchell, K. D. R.; Borriello, S. P.; Hulme, P.; Kirk, D. N.; Axelson, M. Am. J. Clin. Nutr. 1984, 40, 569-78.
17. Kelly, G. E.; Nelson, C.; Waring, M. A.; Joannou, G. E.; Reeder, A. Y. Clin. Chim. Acta. 1993, 223, 9-22.
18. Heinonen, S.; Wahala, K.; Adlercreutz, H. Anal. Biochem. 1999, 274, 211-9.
19. Atkinson, C.; Berman, S.; Humbert, O.; Lampe, J. W.; J. Nutr. 2004, 134, 596-9.
20. Chang, Y.-C.; Nair, M. G. J. Nat. Prod. 1995, 58, 1892-1896.
21. Versteeg, M.; Bezuidenhoudt, B. C. B.; Ferreira, D. Tetrahedron 1999, 55, 3365-3376.
22. Versteeg, M.; Bezuidenhoudt, B. C. B.; Ferreira, D. Heterocycles 1998, 48, 1373-1394.
23. Versteeg, M.; Bezuidenhoudt, B. C. B.; Ferreira, D. Heterocycles 1993, 36, 1743-1746.
24. Heemstra, J. M.; Kerigan, S. A.; Doerge, D. R.; Helferich, W. G.; Boulanger, W. A. Org. Lett. 2006, 8, 5441-5443.

Chapter 7. Experimental Details and Data

7.1. General Methods and Materials

Air and water sensitive reactions were performed in flame-dried glassware under nitrogen atmosphere. Air and moisture sensitive reagents were introduced via dry syringe or cannula. THF, methylene chloride, acetonitrile, DMF, triethylamine, DMSO, benzene, methanol, toluene, and diethyl ether were drawn from a pressurized dry solvent system, which maintains solvent dryness by flushing HPLC (or comparable) grade solvents through activated alumina casks stored under argon. (Freshly distilled solvents would serve as adequate substitutes.) HPLC grade chloroform, ethanol, and hexanes were dried over $4 \AA$ molecular sieves before use. Flash chromatography was carried out using 230×400 mesh silica gel purchased from Sorbent Technologies (catalog \#30930M). Analytical thin-layer chromatography (TLC) was performed with silica gel $60 \mathrm{~F}_{254}, 0.255 \mathrm{~mm}$ pre-coated TLC plates, purchased from Merck. TLC plates were visualized using UV_{254} and a cerium molybdate stain with charring (see procedure below). All ${ }^{1} \mathrm{H}$ NMR spectra were obtained with 300 or 500 MHz Varian spectrometers using TMS (0.0 ppm) or chloroform (7.27 ppm) as an internal reference. Signals are reported as m (multiplet), s (singlet), d (doublet), t (triplet), q (quartet), bs (broad singlet), dd (doublet of doublets), or dq (doublet of quartets); the coupling constants are reported in hertz (Hz). ${ }^{13} \mathrm{C}$ NMR spectra (75 or 125 MHz) were acquired with chloroform (77.2 ppm) as the internal standard. Mass spectral data (HRMS) were obtained using an Agilent multi-mode source mass spectrometer. Optical rotations were acquired with a Bellingham and Stanley Limited ADP220 polarimeter using the sodium D line at ambient temperature. Low temperatures were maintained using a Neslab CC100 immersion cooler with a cooling probe placed in an acetone bath.

7.2. Cerium Molybdate Stain

A solution of cerium molybdate stain was prepared by dissolving 0.5 g ceric ammonium nitrate, 24 g ammonium molybdate tetrahydrate, and 28 mL concentrated sulfuric acid in 500 mL distilled water, stirred for three hours at room temperature to form a clear, yellow solution. TLC plates, once developed, were dipped in this solution and then charred, glass side down, on a hot plate, until spot visualization occurred.

7.3. Procedures from Chapter 3

7.3.1. Acyl Imidazole Substrate Preparations

2-(naphthalen-2-ylmethoxy) acetic acid. To a flame-dried 100 mL round bottom flask (flask A) was added bromoacetic acid ($2.054 \mathrm{~g}, 1.0$ equiv) and THF ($42 \mathrm{~mL}, 0.35 \mathrm{M}$). Sodium hydride ($886 \mathrm{mg}, 2.5$ equiv) was then added carefully. This suspension was stirred at room temperature until hydrogen gas stopped evolving, monitored by attaching an outlet tube from the flask to a bubbler. Once this occurred, flask A was cooled to $0^{\circ} \mathrm{C}$. To a separate flask 100 mL round bottom flask (flask B) was added naphthalene methanol ($1.59 \mathrm{~g}, 0.68$ equiv) and THF (42 mL , $0.35 \mathrm{M})$. This was also cooled to $0^{\circ} \mathrm{C}$. The contents of flask B were then added to flask A at 0 ${ }^{\circ} \mathrm{C}$, and the combined solution was warmed to room temperature with vigorous stirring. n tetrabutyl ammonium iodide ($55 \mathrm{mg}, 0.05$ equiv) was then added, and the resulting mixture was
fitted with a water condenser and brought to reflux, which continued with vigorous stirring for 4 hours. The reaction flask was then cooled to $0^{\circ} \mathrm{C}$ and ethanol $(10 \mathrm{~mL})$ was added. This crude mixture was concentrated by rotary evaporator, and the solid material was diluted with ethyl ether (40 mL) and was extracted with saturated aqueous sodium bicarbonate ($3 \times 50 \mathrm{~mL}$). The aqueous layer was then carefully acidified to pH 2 with 1 N aqueous HCl , and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 50 \mathrm{~mL})$. The acid product was then dried over magnesium sulfate, filtered, and concentrated in vacuo to give an off-white solid, isolated in a quantitative yield of the crude product $(2.44 \mathrm{~g})$.

N-methoxy- N-methyl-2-(naphthalen-2-ylmethoxy)acetamide. To a flame-dried 50 mL roundbottom flask, 2-(naphthalen-2-ylmethoxy) acetic acid ($2.24 \mathrm{~g}, 10.34 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(41 \mathrm{~mL})$ and cooled, while stirring, to $0{ }^{\circ} \mathrm{C}$ under N_{2}. To this were added N, O-dimethylhydroxylamine hydrochloride ($1.51 \mathrm{~g}, 97.55 \mathrm{mmol}, 1.5$ equiv), 4(dimethylamino)pyridine ($316 \mathrm{mg}, 122.17 \mathrm{mmol}, 0.25$ equiv), diisopropylethylamine (2.88 mL , $129.25 \mathrm{mmol}, 16.5$ equiv), and N-(3-Dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride (EDCI, $1.982 \mathrm{~g}, 191.71 \mathrm{mmol}, 10.34$ equiv). This mixture was then stired, warming gradually overnight to room temperature, for 25 hours. The reaction was then quenched by adding $\mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$. The combined organic layers were then washed sequentially with 3 M aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}(1 \times 10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(1 \times 10 \mathrm{~mL})$, and brine $(1 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated by rotary
evaporator. The crude product was isolated without purification as an off-white solid (2.63 g , 98% yield $)$. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.55\left(50 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 7.84-7.83 (m, 4H), $7.55(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.56$ (s, 3H), $3.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 135.4,133.5,133.3,128.5,128.2,128.0$, 127.1, 126.4, 126.2, 73.5, 67.4, 61.6 .

1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) ethanone (58). To a flame-dried 25 mL round-bottom flask (flask A), N-methylimidazole ($1.08 \mathrm{~mL}, 13.57 \mathrm{mmol}$) was dissolved in THF (4.0 mL). This was cooled, while stirring, to $0^{\circ} \mathrm{C} . n$-butyl lithium (1.6 M in hexanes) was then added dropwise $(8.15 \mathrm{~mL})$, and the resulting orange solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour. As flask A neared one hour of stirring, 1-morpholino-2-(naphthalen-2-ylmethoxy) ethanone ($1.55 \mathrm{~g}, 5.43 \mathrm{mmol}$) was dissolved in THF (5.43 mL) in a separate, flame-dried 25 mL pear-shaped flask (flask B), cooled to $-78^{\circ} \mathrm{C}$. Once flask A had stirred for 1 hour, it was also cooled to $-78^{\circ} \mathrm{C}$ and was added to flask B by cannula, giving a dark-green solution. This combined solution was then warmed to $-40^{\circ} \mathrm{C}$ and stirred for 1 hour, during which time it warmed further to $-15^{\circ} \mathrm{C}$. The reaction was quenched by the addition of a 1 N aqueous $\mathrm{HCl}(20$ $\mathrm{mL})$, stirred for 5 minutes, and then diluted with a saturated solution of aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$ and saturated aqueous sodium bicarbonate $(10 \mathrm{~mL})$. This suspension was then transferred to a separatory funnel and was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 50 \mathrm{~mL})$. The combined organic layers were dried over magnesium sulfate, filtered, and concentrated by rotary
evaporator. The crude product was then purified by column chromatography in 50%
EtOAc/hexanes to afford $1.29 \mathrm{~g}(85 \%)$ of the desired compound as an off-white solid. Data are: TLC $\mathrm{R}_{f}=0.35(50 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.84-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 3.93$, (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 188.3,141.2,135.3,133.5,133.3,129.5,129.2,128.5,128.2$, $127.9,127.2,127.1,126.3,126.2,72.8,72.4,36.0$; HRMS found $281.1285[\mathrm{M}+\mathrm{H}]^{+}$, calcd 280.1212 for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$.

1-(1-methyl-1H-benzo[d]imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)ethanone (67).
Following the same technique used described for 58, where N-methylbenzimidazole was used in place of N-methylimidazole, 67 was obtained in 71% yield (455 mg) as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.80(50 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.86-7.82(\mathrm{~m}, 4 \mathrm{H})$, $7.59(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.29(\mathrm{~m}, 6 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 191.2,144.1,141.8,136.8,135.2,133.5,133.4,128.6,128.2,128.0,127.1$, $126.4,126.3,126.2,126.2,124.2,122.0,110.8,73.8,73.2,32.2$; HRMS found $330.1368[\mathrm{M}]^{+}$, calcd 330.1368 for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$.

7.3.2. Alternative Route to Acyl Imidazole Substrates (EDCI-Free)

1-morpholino-2-(naphthalen-2-ylmethoxy) ethanone. To a flame-dried 50 mL round bottom flask was added 2-(naphthalen-2-ylmethoxy) acetic acid (1.53g, 7.08 mmol) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14.15$ $\mathrm{mL})$. This solution was cooled with stirring to $0^{\circ} \mathrm{C}$. Oxalyl chloride ($1.54 \mathrm{~mL}, 17.69 \mathrm{mmol}$) was then added, with vigorous stirring. This was followed by careful addition of 3 drops of DMF, added very slowly to avoid uncontrolled bubbling over. This mixture was then stirred at 0 ${ }^{\circ} \mathrm{C}$, warming to room temperature overnight, for 18.5 hours. Benzene (14.15 mL) was then added, and the solvent was evaporated off using a rotary evaporator. More benzene (14.15 mL) was then added and then evaporated off once again rotary evaporator. This addition of benzene, followed by its removal via evaporation, was repeated one more time to remove excess oxalyl chloride. More $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14.15 \mathrm{~mL})$ was then introduced, and the solution was cooled with stirring once again to $0^{\circ} \mathrm{C}$. Triethyl amine (2.96 mL), morpholine ($1.85 \mathrm{~mL}, 21.23 \mathrm{mmol}$), and dimethylamino pyridine $(0.86 \mathrm{~g}, 0.71 \mathrm{mmol})$ were then added, whereupon the reaction was stirred for 6.5 hours. The reaction was then quenched by addition of a 1 N aqueous $\mathrm{HCl}(20 \mathrm{~mL})$ and added to a separatory funnel. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and purified by column chromatography ($100 \% \mathrm{EtOAc}$) to afford $1.55 \mathrm{~g}(77 \%)$ of the desired compound as a yellow oil. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.4(2 \times 50 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.87-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 3 \mathrm{H}), 4.77(\mathrm{~s}$, 2H), $4.21(\mathrm{~s}, 2 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 6 \mathrm{H}), 3.47-3.45(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 168.0$,
$134.9,133.5,133.4,128.6,128.2,127.1,127.20,126.5,126.4,126.1,73.6,69.5,67.0,45.8$, 42.34; HRMS found $286.1438[\mathrm{M}+\mathrm{H}]^{+}$, calcd 286.1438 for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}$.

1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) ethanone (58). To a flame-dried 25 mL round-bottom flask (flask A), N-methylimidazole ($1.08 \mathrm{~mL}, 13.57 \mathrm{mmol}$) was dissolved in THF (4.0 mL). This was cooled, while stirring, to $0^{\circ} \mathrm{C} . n$-butyl lithium (1.6 M in hexanes) was then added dropwise (8.15 mL), and the resulting orange solution was stirred at $0^{\circ} \mathrm{C}$ for 1 hour. As flask A neared one hour of stirring, 1-morpholino-2-(naphthalen-2-ylmethoxy) ethanone ($1.55 \mathrm{~g}, 5.43 \mathrm{mmol}$) was dissolved in THF (5.43 mL) in a separate, flame-dried 25 mL pear-shaped flask (flask B), cooled to $-78^{\circ} \mathrm{C}$. Once flask A had stirred for 1 hour, it was also cooled to $-78{ }^{\circ} \mathrm{C}$ and was added to flask B by cannula, giving a dark-green solution. This combined solution was then warmed to $-40^{\circ} \mathrm{C}$ and stirred for 1 hour, during which time it warmed further to $-15^{\circ} \mathrm{C}$. The reaction was quenched by the addition of a 1 N aqueous $\mathrm{HCl}(20$ $\mathrm{mL})$, stirred for 5 minutes, and then diluted with a saturated solution of aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$ and saturated aqueous sodium bicarbonate $(10 \mathrm{~mL})$. This suspension was then transferred to a separatory funnel and was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 50 \mathrm{~mL})$. The combined organic layers were dried over magnesium sulfate, filtered, and concentrated by rotary evaporator. The crude product was then purified by column chromatography in 50% EtOAc/hexanes to afford $1.29 \mathrm{~g}(85 \%, 73 \%$ from naphthalene methanol) of the desired compound as an off-white solid. Substrates shown from table 1 (where $\mathrm{Ar}=\mathrm{N}$ -
methylbenzimidazole, N-phenylimidazole, and N-benzylimidazole) were prepared in the same manner, substituting the parent heterocycles for N-methylimidazole as shown in this procedure. Data are: $\operatorname{TLC~} \mathrm{R}_{f}=0.35\left(50 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.84-7.80(\mathrm{~m}$, $4 \mathrm{H}), 7.54(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{~s}$, $2 \mathrm{H}), 3.93,(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 188.3,141.2,135.3,133.5,133.3,129.5,129.2$, $128.5,128.2,127.9,127.2,127.1,126.3,126.2,72.8,72.4,36.0$; HRMS found 281.1285 $[\mathrm{M}+\mathrm{H}]^{+}$, calcd 280.1212 for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$.

2-(benzyloxy)acetic acid. Bromoacetic acid ($18.89 \mathrm{~g}, 135.93 \mathrm{mmol}, 1.0$ equiv) was dissolved in THF ($387 \mathrm{~mL}, 0.239 \mathrm{M}$ with respect to the alcohol) in a flame-dried 1000 mL round bottom flask with a stir bar (flask A). Sodium hydride ($8.167 \mathrm{~g}, 340.28 \mathrm{mmol}, 3.68$ equiv) was then added carefully. This suspension was stirred at room temperature until hydrogen gas stopped evolving, monitored by attaching an outlet tube from the flask to a bubbler. Once this occurred, flask A was cooled to $0^{\circ} \mathrm{C}$ under N_{2}. To a separate, flame-dried 500 mL round bottom flask with a stir bar (flask B), benzyl alcohol ($9.57 \mathrm{~mL}, 92.47 \mathrm{mmol}, 1.0$ equiv) was dissolved in THF (387 $\mathrm{mL}, 0.239 \mathrm{M})$. This was also cooled, with stirring under N_{2}, to $0^{\circ} \mathrm{C}$. The contents of flask B were then transferred to flask A at $0^{\circ} \mathrm{C}$, and the combined solution was warmed to room temperature with vigorous stirring. N-tetrabutyl ammonium iodide ($2.527 \mathrm{~g}, 0.074$ equiv) was added, and the resulting mixture was fitted with a water condenser and brought to reflux, which continued with vigorous stirring for 19 hours. The reaction flask was then cooled gradually to 0 ${ }^{\circ} \mathrm{C}$ and ethanol (93 mL) was added. This crude mixture was concentrated by rotary evaporator,
and the solid material was diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and transferred to a separatory funnel. The resulting suspension was extracted with saturated aqueous sodium bicarbonate ($3 \times 100 \mathrm{~mL}$). The combined aqueous layers were then carefully acidified to pH 2 with 1 N aqueous HCl and were then transferred to another large separatory funnel. This suspension was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 100 \mathrm{~mL})$. These combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ organic layers were now dried over MgSO_{4}, filtered, and concentrated in vacuo to give the crude acid quantitatively as an off-white solid (20.59 g), which was used without further purification.

2-(benzyloxy)-1-morpholinoethanone. 2-(benzyloxy) acetic acid ($8.16 \mathrm{~g}, 49.13 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(98 \mathrm{~mL}, 0.5 \mathrm{M})$ in a flame-dried 1000 mL round bottom flask with a stir bar. This solution was cooled, while stirring, to $0^{\circ} \mathrm{C}$ under N_{2}. Oxalyl chloride ($10.7 \mathrm{~mL}, 122.8$ mmol, 2.5 equiv) was then added, followed by CAREFUL AND SLOW addition of DMF (1 mL), done very slowly to avoid uncontrolled bubbling over. This was then stirred at $0^{\circ} \mathrm{C}$, warming to room temperature overnight, for 16 hours. Benzene ($98 \mathrm{~mL}, 0.5 \mathrm{M}$) was then added, and the solvent was carefully evaporated off using a rotary evaporator. More benzene (98 mL , 0.5 M) was then added and evaporated off once again using the rotary evaporator. A third addition of benzene ($98 \mathrm{~mL}, 0.5 \mathrm{M}$), followed by its evaporation, was then done. These three benzene distillations were done to remove excess oxalyl chloride. More $\mathrm{CH}_{2} \mathrm{Cl}_{2}(98 \mathrm{~mL}, 0.5 \mathrm{M})$ was then added, and the solution was cooled, with stirring under N_{2}, to $0^{\circ} \mathrm{C}$. Triethyl amine ($20.54 \mathrm{~mL}, 147.4 \mathrm{mmol}, 3$ equiv), morpholine ($12.85 \mathrm{~mL}, 147.4 \mathrm{mmol}, 3$ equiv), and dimethylamino pyridine ($0.6 \mathrm{~g}, 4.91 \mathrm{mmol}, 0.1$ equiv) were then added, and the reaction was
stirred for 6.5 hours. The reaction was then quenched by addition of 1 N aqueous $\mathrm{HCl}(20 \mathrm{~mL})$ and was transferred to a separatory funnel. The layers were mixed and then separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 30 \mathrm{~mL})$. The combined organic layers were then dried over MgSO_{4}, filtered, and purified by column chromatography ($50 \% \mathrm{EtOAc} /$ hexanes, then $100 \% \mathrm{EtOAc})$ to afford $8.391 \mathrm{~g}(73 \%$ yield, 98% from benzyl alcohol) of the title compound as a yellow oil. (Note: Once done with the benzene distillations, it is important to clean out the rotary evaporator by aspirating distilled water and acetone directly into the catch trap in alternating fashion, three times each, to remove excess oxalyl chloride condensed at this stage.) Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.38(100 \% \mathrm{EtOAc}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.29-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{t}, J=$ $3.5,2 \mathrm{H}), 4.09(\mathrm{t}, J=4,2 \mathrm{H}), 3.58(\mathrm{bs}, 2 \mathrm{H}), 3.54(\mathrm{bs}, 4 \mathrm{H}), 3.39(\mathrm{~d}, J=1.75,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 167.9,137.4,128.7,128.2,73.4,69.6,67.0,45.8,42.3$; HRMS found $236.1281[\mathrm{M}+\mathrm{H}]^{+}$, calcd 236.1281 for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}$.

2-(benzyloxy)-1-(1-methyl-1H-imidazol-2-yl)ethanone (63). 1-methylimidazole (0.774 mL , 9.75 mmol , 2.5 equiv) was dissolved in THF $(2.9 \mathrm{~mL}, 1.33 \mathrm{M})$ in a flame-dried 25 mL roundbottom flask (flask A) and was cooled under N_{2} to $0^{\circ} \mathrm{C}$. N-butyl lithium (1.6 M in hexanes, 5.36 $\mathrm{mL}, 8.58 \mathrm{mmol}, 2.2$ equiv) was then added dropwise, and the resulting yellow solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour. As flask A neared its one hour of stirring, 2-(benzyloxy)-1morpholinoethanone ($0.917 \mathrm{~g}, 3.9 \mathrm{mmol}$) was dissolved in THF ($3.9 \mathrm{~mL}, 1 \mathrm{M}$) in a separate, flame-dried 50 mL round-bottom flask (flask B) with a spin vane. This was cooled, while
stirring under N_{2}, to $-78^{\circ} \mathrm{C}$. Once flask A had been stirred for 1 hour, it was also cooled to -78 ${ }^{\circ} \mathrm{C}$ and was transferred to flask B by cannula, giving a dark brown solution. This mixture was then warmed to $-40^{\circ} \mathrm{C}$ and stirred for 1 hour, during which time it warmed further to $-15^{\circ} \mathrm{C}$. The reaction was quenched by the addition of 1 N aqueous $\mathrm{HCl}(5 \mathrm{~mL})$, was stirred for 5 minutes, and was then diluted with a saturated solution of aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$ and saturated aqueous sodium bicarbonate (10 mL). This suspension was then transferred to a separatory funnel and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 50 \mathrm{~mL})$. The combined organic layers were dried over magnesium sulfate, filtered, and concentrated by rotary evaporator. The crude product was then purified by column chromatography ($50 \% \mathrm{EtOAc} /$ hexanes, then $100 \% \mathrm{EtOAc}$) to afford $0.775 \mathrm{~g}(86 \%, 84 \%$ from benzyl alcohol $)$ of the desired compound as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.54(100 \% \mathrm{EtOAc}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.43-7.4(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 188.3,137.8,129.5,128.7,128.3,128.1,127.2,73.7,72.3,36.1 ;$ HRMS found $231.1302[\mathrm{M}+\mathrm{H}]^{+}$, calcd 231.1128 for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$.

7.3.3. Catalyst Synthesis

Hydrocinchonidine (68). To a flame-dried, 3-neck round bottom flask with a stir bar was added (-)-cinchonidine 30 ($5 \mathrm{~g}, 16.98 \mathrm{mmol}, 1$ equiv), followed by anhydrous MeOH ($154 \mathrm{~mL}, 0.11$
M). $10 \% \mathrm{Pd} / \mathrm{C}$ was then added carefully $\left(1 \mathrm{~g}, 1 \mathrm{~g} \mathrm{Pd} / \mathrm{C}\right.$ for every $5 \mathrm{~g}(-)$-cinchonidine). H_{2} gas (1 large balloon) was afterward introduced by evacuating the flask 3 times and flushing it under H_{2} atmosphere. The reaction was then stirred at room temperature under H_{2} balloon pressure for 10.5 h . The crude reaction mixture was afterward filtered through celite thusly: a $500 \mathrm{~mL}, 25-50$ micron filter cup filled with celite 545 was placed over a 1 L filter flask and was bathed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude reaction mixture was then added to the top of the celite and vacuum-filtered through the celite, with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ used as the eluent solvent (added frequently enough to prevent air from introducing bubbles in the celite). Periodic swabs with capillary tubes were taken from the drip off the filter cup as the liquid passed through. Each swab was monitored under UV light for luminescence, indicating the presence of the hydro-cinchonidine product. When the luminescent color had dissipated under UV, the filtration was stopped. The resulting filtered liquid was then concentrated in a 500 mL round bottom flask to give an off-white solid. (Note: If this solid bears any black or gray color, it may be indicative of the presence of either unfiltered Pd / C or contaminating celite. Under such circumstance, the product should be re-filtered through celite prior to its suspension in hexanes.) This solid was suspended in hexanes (200 mL , 0.085 M) and was stirred at RT for 1 h . The resulting precipitate, hydrocinchonidine, was then filtered, concentrated by rotary evaporator, and collected as an off-white solid ($4.7 \mathrm{~g}, 93 \%$ yield). (Note: The final product can be compared by TLC to the starting material, to ensure reaction completion. Starting material, $\mathrm{R}_{f}=0.275(100 \% \mathrm{MeOH})$; product, $\left.\mathrm{R}_{f}=0.15(100 \% \mathrm{MeOH}).\right)$ When running the ${ }^{1} \mathrm{H}$ NMR, an increased number of Fourier transfer scans were necessary. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.15(100 \% \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CHCl}_{3}-d_{1}, 500 \mathrm{MHz}\right): \delta 8.90(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.13(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{bs}, 1 \mathrm{H}), 3.39-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.04(\mathrm{dd}$,
$1 \mathrm{H}), 2.87(\mathrm{bs}, 1 \mathrm{H}), 2.66-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.782(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-$ $1.66(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CHCl}_{3}-d_{1}, 125 \mathrm{MHz}\right): \delta 150.25,149.1,148.3,130.4,129.0,126.6,123.1,118.1$, $72.4,60.2,58.7,43.3,37.6,28.4,27.6,25.5,21.7,12.1$; HRMS found $297.1961[\mathrm{M}+\mathrm{H}]^{+}$, calcd 297.1961 for $\left[\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$.

2,7-bis(bromomethyl) naphthalene (70). To a flame-dried 250 mL round bottom flask with a stir bar was added 2,7-dimethylnaphthalene $\mathbf{6 9}(1.48 \mathrm{~g}, 9.47 \mathrm{mmol}, 1$ equiv), followed by PhH ($190 \mathrm{~mL}, 0.05 \mathrm{M}$). N -bromosuccinimide was then added ($3.75 \mathrm{~g}, 21.05 \mathrm{mmol}, 2.223$ equiv), followed by benzoyl peroxide ($123 \mathrm{mg}, 0.509 \mathrm{mmol}, 0.0538$ equiv). This suspension was then heated and stirred vigorously at reflux $\left(\sim 120^{\circ} \mathrm{C}\right)$ for 8 h . The reaction was monitored by TLC for consumption of starting material $\left(\mathrm{R}_{f}=0.7\right.$; product, $\mathrm{R}_{f}=0.345,5 \% \mathrm{EtOAc} /$ Hexanes $)$. Once this stirring was done, the reaction mixture was cooled slowly to $0^{\circ} \mathrm{C}$ and was filtered through a 25-50 micron filter cup. (All solid collected in the filter cup is precipitate succinimide; the final product remains in the mother liqueur.) The mother liqueur was concentrated by rotary evaporator and the residue was recrystallized from $\mathrm{CHCl}_{3} /$ hexanes thusly: warm CHCl_{3} was added until the crude solid dissolved; then a generous amount of hexanes at RT was added until precipitation occurred. The suspension was capped and cooled in the freezer overnight. The next morning it was filtered to give 2,7-Bis(bromomethyl)naphthalene 70 as an off-white solid $\left(2.73 \mathrm{~g}, 92 \%\right.$ yield). Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.345$ ($5 \% \mathrm{EtOAc} /$ Hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3}-d_{1}, 500\right.$
$\mathrm{MHz}): \delta 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CHCl}_{3}-d_{1}, 125 \mathrm{MHz}\right): \delta 128.8,128.1,127.7,33.9$.

2,7-bis(hydrocinchonidinium- \boldsymbol{N}-methyl) naphthalene dibromide (71). To a pre-weighed 250 mL round bottom flask with a stir bar were dissolved 2,7-Bis(bromomethyl)naphthalene 70 (1.5 $\mathrm{g}, 4.77 \mathrm{mmol}, 1$ equiv) and hydrocinchonidine $\mathbf{6 8}(2.88 \mathrm{~g}, 9.73 \mathrm{mmol}, 2.04$ equiv) in $\mathrm{EtOH}(7.2$ $\mathrm{mL}, 0.662 \mathrm{M})$, DMF ($8.6 \mathrm{~mL}, 0.552 \mathrm{M}$), and $\mathrm{CHCl}_{3}(2.9 \mathrm{~mL}, 1.655 \mathrm{M})$. This suspension was heated to reflux $\left(100-120^{\circ} \mathrm{C}\right)$ and stirred vigorously for 2 H . The reaction was monitored for the consumption of 2,7-Bis(bromomethyl) naphthalene by $\operatorname{TLC}\left(\mathrm{R}_{f}=0.345,5 \% \mathrm{EtOAc} /\right.$ Hexanes $)$. The reaction was then cooled to room temperature and diluted with $\mathrm{MeOH}(29 \mathrm{~mL}, 0.1655 \mathrm{M})$ and $\mathrm{Et}_{2} \mathrm{O}(87 \mathrm{~mL}, 0.055 \mathrm{M})$. This suspension was stirred at room temperature for 1 H . The crude, light-pink precipitate was afterward filtered through a 25-50 micron filter cup and was rinsed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. It was scraped out of the filter cup using a spatula and was placed back in the original pre-weighed reaction flask, isolated as a pink solid ($3.94 \mathrm{~g}, 4.34 \mathrm{mmol}, 91 \%$ yield). Data are: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$, with increased Fourier transfers): $\delta 9.00$ (d, $J=$ $2.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.33(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 8.22(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H})$, $5.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{bs}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~m}$, $2 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{bs}, 2 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.61(\mathrm{~m}$,
$4 \mathrm{H}), 0.72(\mathrm{t}, J=7 \mathrm{~Hz}, 4 \mathrm{H})$; large extraneous peaks: $\delta 3.36\left(\mathrm{H}_{2} \mathrm{O}\right.$ in DMSO- $\left.d_{6}\right)$, $2.5\left(\mathrm{DMSO}-H_{x}\right.$ in DMSO- d_{6}). HRMS: $746.4560\left[\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{2}\right]$ and $374.2353\left[\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{2+} / 2$ found; calcd 746.4549 for $\left[\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{2+}$. (Note: If the initial reaction suspension turns dark purple or red soon after reflux, this indicates Pd / C contamination. The resulting product will not form good catalyst. Crude 71 should not be rinsed with MeOH , or byproduct $\mathbf{7 2}$ will result, turning the light-pink solid product to a dark red. Compound 72 confirmed by HRMS: $481.2827[\mathrm{M}+\mathrm{H}]^{+}$ found; calcd $481.2850\left[\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$. Contamination with 72 will result in poor catalyst.

72

2,7-bis[O (9)-allylhydrocinchonidinium- \boldsymbol{N}-methyl]naphthalene dibromide (61). To a 100 mL round bottom flask with a stir bar was added 2,7-bis(hydro-cinchonidinium- N-methyl) naphthalene dibromide $71\left(4.258 \mathrm{~g}, 4.695 \mathrm{mmol}\right.$, 1 equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($13.5 \mathrm{~mL}, 0.35 \mathrm{M}$). Allyl bromide ($2.38 \mathrm{~mL}, 28.17 \mathrm{mmol}$, 6 equiv) was then added, followed by 50% aqueous KOH (47 $\mathrm{mL}, 0.1 \mathrm{M}$), forming a yellow-brown solution. This was stirred at room temperature for 15 minutes, during which time the solution turned yellow-orange. At this stage a small amount of the reaction solvent was removed with a pipet, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and rushed to the mass spec lab for analysis, which revealed complete consumption of the starting material $\left([M+2 H]^{2+} / 2=\right.$
373.2207 for $\left[\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{2+} / 2$). The reaction was afterward quenched by addition of 30 mL $\mathrm{H}_{2} \mathrm{O}$ and was transferred to a separatory funnel. The layers were mixed and then separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered thoroughly, concentrated by rota-evaporation, and then purified by recrystallization as follows: the crude solid was dissolved in a minimal amount of warm $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; then hexane at ambient temperature was added generously, causing swift precipitation. The precipitate was filtered immediately through a $25-50$ micron filter cup. (Note: the crude product should be filtered immediately after recrystallization. If left in the recrystallization solvent, it will dissolves.) The filtered product, 2,7-bis[$O(9)$-allylhydrocinchonidinium- N-methyl] naphthalene dibromide 61, was isolated as a light-orange solid ($4.44 \mathrm{~g}, 4.50 \mathrm{mmol}, 96 \%$). Data are: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$, with increased Fourier transfers): $\delta 9.03(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}$, $2 \mathrm{H}), 8.27-8.23(\mathrm{~m}, 4 \mathrm{H}), 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.94-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.81-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.72$ $(\mathrm{t}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 6.23-6.16(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.33-5.32(\mathrm{~m}, 4 \mathrm{H})$, $5.06(\mathrm{~d}, J=6.25 \mathrm{~Hz}, 2 \mathrm{H}), 4.41-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.99(\mathrm{~m}, 4 \mathrm{H}), 2.32-$ $2.29(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{bs}, 2 \mathrm{H}), 1.76(\mathrm{bs}, 4 \mathrm{H}), 1.52(\mathrm{t}, J=13.5,2 \mathrm{H}), 1.23-$ $1.16(\mathrm{~m}, 6 \mathrm{H}), 0.70(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H})$; large extraneous peaks: $\delta 5.75\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ in DMSO- $\left.d_{6}\right), 3.33$ $\left(\mathrm{H}_{2} \mathrm{O}\right.$ in DMSO- $\left.d_{6}\right), 2.49\left(\right.$ DMSO- H_{x} in DMSO- $\left.d_{6}\right)$. HRMS found $413.2587[\mathrm{M}+2 \mathrm{H}]^{2+} / 2$; calcd 413.2588 for $\left[\mathrm{C}_{56} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{2+} / 2$. (Note: Allylation of unreacted hydrocinchonidine gives byproducts 76 and 77, which are inseparable from catalyst 61 and may behave as competitive catalysts. Improved catalyst is made if the hydrocinchonidine is completely consumed during the formation of intermediate 71. If allylation of $\mathbf{7 1}$ is run too long, increased formation of $\mathbf{7 6}$ and 77 will result. The presence of byproducts 76 and 77 was confirmed by HRMS. For 76: found $377.2587\left[\mathrm{M}^{+}\right]$; calcd 377.2587 for $\left[\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$. For 77: found $417.2904\left[\mathrm{M}^{+}\right]$; calcd
417.2900 for $\left[\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$. Trace amounts of 76 seem unavoidable, confirmed by HRMS in the purest batches of catalyst.

76
$\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}^{+}$
Exact Mass: 377.26

77
$\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}^{+}$
Exact Mass: 417.29

7.3.4. General Procedure for Racemic Alkylations

(土)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-phenylpropan-1-one

(Table 3.4). To a flame-dried round bottom flask was added 1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-ethanone $\mathbf{5 8}$ ($50 \mathrm{mg}, 0.178 \mathrm{mmol}$), $n-\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}(6.5 \mathrm{mg}, 0.021 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.78 \mathrm{~mL})$. The solution was cooled to $0^{\circ} \mathrm{C}$ and then $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.120 \mathrm{~g}, 0.712$ mmol) was added in one portion. The mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , at which time benzyl bromide ($0.106 \mathrm{~mL}, 0.89 \mathrm{mmol}$) was added. The mixture then stirred at $0^{\circ} \mathrm{C}$, allowing to warm to room temperature overnight, for 17 h , at which time the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (30 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were mixed and then separated and the organic layer was washed with a saturated aqueous solution of aqueous $\mathrm{NaCl}(1 \times 10 \mathrm{~mL})$ and then dried over MgSO_{4}. The mixture was filtered, the solvent was removed by rotary evaporator, and the crude
residue was purified by column chromatography ($40 \% \mathrm{EtOAc} /$ hexanes) to afford $0.031 \mathrm{~g}(47 \%)$ of the desired compound as an off-white solid. Data are: TLC $\mathrm{R}_{f}=0.4(40 \% \mathrm{EtOAc} /$ hexanes $)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.81-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{dd}, 1 \mathrm{H}), 4.70(\mathrm{dd}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, 3.36-3.02 (m, 2H) ${ }^{13}{ }^{13} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 191.3,142.1,138.2,135.7,133.3,133.0,129.9$, 129.7, 128.4, 128.1, 128.0, 127.7, 127.3, 126.6, 126.0, 126, 125.9, 81.6, 72.7, 39.7, 36.1; HRMS found $370.1681 \mathrm{M}^{+}$, calcd 370.1681 for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, $5 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, $23{ }^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $\left.S 21.2 \mathrm{~min}, R 47.2 \mathrm{~min}, 50.7: 49.2 \mathrm{er}\right)$.

7.3.5. General Procedure for Asymmetric Alkylations

(S)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-phenylpropan-1-one

(Table 3.4, entry 6). To a flame-dried round bottom flask was added $\mathbf{5 8}$ ($50 \mathrm{mg}, 0.178 \mathrm{mmol}$), catalyst $61(17 \mathrm{mg}, 0.017 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$. The solution was cooled to $-40{ }^{\circ} \mathrm{C}$ and then $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.120 \mathrm{~g}, 0.712 \mathrm{mmol})$ was added in one portion. The mixture stirred at $-40{ }^{\circ} \mathrm{C}$ for 10 min , at which time benzyl bromide $(0.106 \mathrm{~mL}, 0.89 \mathrm{mmol})$ was added. The mixture then stirred at $-40^{\circ} \mathrm{C}$ for 5 h (monitored by TLC for consumption of starting material), at which time the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were mixed and then separated and the organic layer was washed with a saturated aqueous solution of aqueous NaCl
$(1 \times 10 \mathrm{~mL})$ and then dried over MgSO_{4}. The mixture was filtered and concentrated, and the crude residue was purified by column chromatography ($40 \% \mathrm{EtOAc} /$ hexanes) to afford 0.057 g (85%) of product as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.45$ (50% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.81-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, 2 \mathrm{H}), 3.93$ (s, 3H), 3.36-3.02 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 191.3,142.1,138.2,135.7,133.3$, $133.0,129.9,129.7,128.4,128.1,128.0,127.7,127.3,126.6,126.0,126,125.9,81.6,72.7,39.7$, 36.1; HRMS found $370.1681 \mathrm{M}^{+}$, calcd 370.1681 for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, $5 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $20.9 \mathrm{~min}, R$ (minor) $46.7 \mathrm{~min}, 91.5: 8.5 \mathrm{er}$).

7.3.6. Selected Alkylation Data

(土)-1-(1-methyl-1H-benzo[d]imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-phenylpropan-1-

one (Table 3.3, entry 4). Following the general procedure for racemic alkylations above on 50 mg scale, $0.029 \mathrm{~g}(38 \%)$ of product were isolated as an off-white solid. Data are: $\mathrm{TLC}_{\mathrm{R}}^{\mathrm{f}} \mathrm{=}=0.44$ (30\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.94(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=$ $3.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.6(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.30(\mathrm{~m}, 11 \mathrm{H})$, $5.74(\mathrm{dd}, J 1=2.56 \mathrm{~Hz}, J 2=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (s, 3H), 3.46-3.11 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 197.6, 130.0, 128.5, 128.2, 127.8,
126.9, 126.8, 126.4, 126.2, 126.0, 124.1, 122.4, 110.8, 82.3, 73.0, 39.6, 32.2; HRMS found $420.1838\left(\mathrm{M}^{+}\right)$, calcd 420.1838 for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, $5 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, $23{ }^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $\left.S 18.4 \mathrm{~min}, R 58.1 \mathrm{~min}, 53.9: 46.1 \mathrm{er}\right)$.

(S)-1-(1-methyl-1H-benzo[d]imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-phenylpropan-1one (Table 3.3, entry 4). Following the general procedure for asymmetric alkylations above on 50 mg scale, $0.048 \mathrm{~g}(76 \%)$ of product were isolated as an off-white solid. Data are: TLC $\mathrm{R}_{f}=$ $0.44\left(30 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.94(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J$ $=3.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.6(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.30(\mathrm{~m}$, $11 \mathrm{H}), 5.74(\mathrm{dd}, J 1=2.56 \mathrm{~Hz}, J 2=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 197.6,130.0,128.5,128.2,127.8$, $126.9,126.8,126.4,126.2,126.0,124.1,122.4,110.8,82.3,73.0,39.6,32.2$; HRMS found $420.1838\left(\mathrm{M}^{+}\right)$, calcd 420.1838 for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, $5 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, $23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 18.4 \mathrm{~min}, R 58.1 \mathrm{~min}, 96.4: 3.6$ er).

(土)-1-(1-methyl-1H-benzo[d]imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)pent-4-en-1-one.
Following the general procedure for racemic alkylations above on 50 mg scale, where allyl bromide was substituted for benzyl bromide, $0.024 \mathrm{~g}(43 \%)$ of the desired compound were isolated as an off-white solid. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.53(30 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta$ 7.96-7.30 (m, 11H), 5.63-5.59(m, 1H), 5.15-5.09(m, 1H), 4.94-4.90(m, 2H), 4.79 $(\mathrm{d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 197.6,133.7,128.5,128.3,128.2,127.8,127.3,126.4,126.2,124.1,122.3,118.1,110.8$, 80.6, 73.0, 39.5, 37.8, 32.2; HRMS found $370.1681\left(\mathrm{M}^{+}\right)$, calcd 370.1681 for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, $5 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 13.4 \mathrm{~min}, R 27.5$ $\min , 51: 49 \mathrm{er})$.

(S)-1-(1-methyl-1H-benzo[d]imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)pent-4-en-1-one.

Following the general procedure for asymmetric alkylations above on 50 mg scale, where allyl bromide was substituted for benzyl bromide, $0.024 \mathrm{~g}(54 \%)$ of the desired compound were isolated as an off-white solid. Data are: $\mathrm{TLC}_{\mathrm{R}}=0.53(30 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta$ 7.96-7.30 (m, 11H), 5.63-5.59 (m, 1H), 5.15-5.09 (m, 1H), 4.94-4.90 (m, 2H), 4.79
$(\mathrm{d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 197.6,133.7,128.5,128.3,128.2,127.8,127.3,126.4,126.2,124.1,122.3,118.1,110.8$, 80.6, 73.0, 39.5, 37.8, 32.2; HRMS found $370.1681\left(\mathrm{M}^{+}\right)$, calcd 370.1681 for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, $5 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 13.4 \mathrm{~min}, R 27.5$ $\min , 86.2: 13.8 \mathrm{er})$.

(土)-Tert-butyl 3-(3-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-oxopropyl)-
1H-indole-1-carboxylate (Table 3.4, entry 1). Following the general procedure for racemic alkylations above on 50 mg scale, where electrophile 44 (described in section 7.4.1 below) was substituted for benzyl bromide, $0.055 \mathrm{~g}(61 \%)$ of product were isolated as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.5$ (40\% EtOAc/hexanes); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.13(\mathrm{bs}, 1 \mathrm{H})$, 7.77-7.76 (m, 1H), 7.68-7.54 (m, 4H), 7.45-7.42 (m, 3H), 7.32-7.27 (m, 3H), $7.21(\mathrm{~d}, \mathrm{~J}=2.25$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J 1=2.25 \mathrm{~Hz}, J 2=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J$ $=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.17(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 191.2,150.0,142.2,135.6,133.4,133.1,131.0,129.8,128.2,128.1,127.8$, $127.5,126.9,126.2,126.1,126.0,124.8,124.4,122.6,119.8,116.7,115.3,83.5,80.2,72.8,36.1$, 29.4, 28.5; HRMS found $509.2315\left(\mathrm{M}^{+}\right)$, calcd 509.2315 for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 10\% $\mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 12.7 \mathrm{~min}, R 118.3 \mathrm{~min}, 50.1$: 49.8 er).

(S)-Tert-butyl 3-(3-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-oxopropyl)1 H -indole-1-carboxylate (Table 3.4, entry 1). Following the general procedure for asymmetric alkylations above on 2.33 g scale, where electrophile 44 was substituted for benzyl bromide, 3.85 $\mathrm{g}(91 \%)$ of product were isolated as an off-white solid. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.5(40 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.13(\mathrm{bs}, 1 \mathrm{H}), 7.77-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.54(\mathrm{~m}$, 4H), 7.45-7.42 (m, 3H), 7.32-7.27 (m, 3H), 7.21 (d, $J=2.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J 1=2.25 \mathrm{~Hz}, J 2=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.17(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 191.2, 150.0, $142.2,135.6,133.4,133.1,131.0,129.8,128.2,128.1,127.8,127.5,126.9,126.2,126.1,126.0$, $124.8,124.4,122.6,119.8,116.7,115.3,83.5,80.2,72.8,36.1,29.4,28.5 ;$ HRMS found $509.2315\left(\mathrm{M}^{+}\right)$, calcd 509.2315 for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 10\% EtOH/hexane, 1.0 $\mathrm{mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $\left.S 12.7 \mathrm{~min}, R 118.3 \mathrm{~min},>99.0:<1.0 \mathrm{er}\right)$.

(土)-3-(biphenyl-2-yl)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) propan-1one (Table 3.4, entry 2). Following the general procedure for racemic alkylations above on 50
mg scale, where 2-phenylbenzyl bromide was substituted for benzyl bromide, 41 mg of product (52\%) were isolated as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.76$ (50% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.82(\mathrm{bs}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{q}, J=1.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, 2 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.15(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 191.5,143.0,141.8,135.8,135.5$, $133.4,133.2,130.7,130.4,129.9,129.7,128.3,128.1,127.8,127.4,127.3,126.9,126.7,126.6$, $126.1,126.1,126.0,81.2,72.7,36.1$; HRMS found $446.1994 \mathrm{M}^{+}$, calcd 446.1994 for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S $22.84 \mathrm{~min}, R 38.9 \mathrm{~min}, 50.4$: 49.6 er$).$

(S)-3-(biphenyl-2-yl)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) propan-1one (Table 3.4, entry 2). Following the general procedure for racemic alkylations above on 50 mg scale, where 2-phenylbenzyl bromide was substituted for benzyl bromide, 73 mg of product (92\%) were isolated as an off-white solid. Data are: $\mathrm{TLC}_{\mathrm{R}_{f}}=0.5$ ($40 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.82(\mathrm{bs}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{q}, J=1.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, 2 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.15(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 191.5,143.0,141.8,135.8,135.5$, $133.4,133.2,130.7,130.4,129.9,129.7,128.3,128.1,127.8,127.4,127.3,126.9,126.7,126.6$, 126.1, 126.1, 126.0, 81.2, 72.7, 36.1; HRMS found $446.1994 \mathrm{M}^{+}$, calcd 446.1994 for
$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 5\% EtOH/hexane, 1.0 $\mathrm{mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $22.5 \mathrm{~min}, R$ (minor) $37.4 \mathrm{~min},>99:<1$ er).

(土)-1-(1-methyl-1H-imidazol-2-yl)-3-(naphthalen-2-yl)-2-(naphthalen-2-ylmethoxy)propan-
1-one (Table 3.4, entry 3). Following the general procedure for racemic alkylations above on 50 mg scale, where 2-bromomethylnaphthalene was substituted for benzyl bromide, 33 mg of product (44\%) were isolated as an off-white solid. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.35(40 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.90-7.87(\mathrm{~m} 2 \mathrm{H}), 7.82-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.39$ (m, 8H), $7.72(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{dd}, 1 \mathrm{H}), 4.72(\mathrm{dd}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.20(\mathrm{~m}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 191.4,135.9,135.6,133.8,133.4,133.1,132.7,129.9,128.6$, $128.5,128.2,128.0,128.0,127.9,127.8,127.5,126.8,126.1,126.0,126.0,125.6,81.7,72.8$, 40.0, 36.2; HRMS found $420.1838\left[\mathrm{M}^{+}\right]$, calcd 420.1838 for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 10\% $\mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 25 \mathrm{~min}, R 56.3 \mathrm{~min}, 48.8: 51.2$ er).

(S)-1-(1-methyl-1H-imidazol-2-yl)-3-(naphthalen-2-yl)-2-(naphthalen-2-ylmethoxy) propan-

1-one (Table 3.4, entry 3). Following the general procedure for asymmetric alkylations above on 50 mg scale, where 2-bromomethylnaphthalene was substituted for benzyl bromide, 66 mg of product (88\%) were isolated as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.38(40 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.90-7.87(\mathrm{~m} 2 \mathrm{H}), 7.82-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.39$ $(\mathrm{m}, 8 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{dd}, 1 \mathrm{H}), 4.72(\mathrm{dd}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.20(\mathrm{~m}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 191.4,135.9,135.6,133.8,133.4,133.1,132.7,129.9,128.6$, $128.5,128.2,128.0,128.0,127.9,127.8,127.5,126.8,126.1,126.0,126.0,125.6,81.7,72.8$, 40.0, 36.2; HRMS found $420.1838\left[\mathrm{M}^{+}\right]$, calcd 420.1838 for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, $10 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $24.6 \mathrm{~min}, R$ (minor) no measurable signal, $>99:<1 \mathrm{er}$).

(土)-3-(4-tert-butylphenyl)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)

propan-1-one (Table 3.4, entry 4). Following the general procedure for racemic alkylations above on 50 mg scale, where 4-tertbutylbenzyl bromide was substituted for benzyl bromide, 23 mg of product (30%) were isolated as an off-white solid. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.45(40 \%$

EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.81-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{bs}$, 2H), $7.44(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.72(\mathrm{dd}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.01(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 191.6, 149.4, 142.3, 135.8, 135.1, 133.1, 129.8, 129.6, 128.2, 128.0, 127.8, 127.3, 126.7, 126.1, $126.0,125.9,125.4,81.7,75.4,72.6,39.2,36.2,34.7,31.7$; HRMS found $426.2307 \mathrm{M}^{+}$, calcd 426.2307 for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, $5 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 10.1 \mathrm{~min}, R 40.5 \mathrm{~min}, 49.9: 50.1 \mathrm{er})$.

(S)-3-(4-tert-butylphenyl)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)
propan-1-one (Table 3.4, entry 4). Following the general procedure for asymmetric alkylations above on 50 mg scale, where 4-tertbutylbenzyl bromide was substituted for benzyl bromide, 67 mg of product (88\%) were isolated as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.5(40 \%$

EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.81-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{bs}$, 2H), $7.44(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.72(\mathrm{dd}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.01(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 191.6, 149.4, 142.3, 135.8, 135.1, 133.1, 129.8, 129.6, 128.2, 128.0, 127.8, 127.3, 126.7, 126.1, $126.0,125.9,125.4,81.7,75.4,72.6,39.2,36.2,34.7,31.7$; HRMS found $426.2307 \mathrm{M}^{+}$, calcd 426.2307 for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 5\%

EtOH/hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $11.7 \mathrm{~min}, R$ (minor) $40.7 \mathrm{~min},>99:<1 \mathrm{er})$.

(土)-4-methyl-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) pent-4-en-1-one

(Table 3.4, entry 5). Following the general procedure for racemic alkylations above on 50 mg scale, where 3-bromo-2-methylpropene was substituted for benzyl bromide, 16 mg of product (27\%) were isolated as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.75$ ($50 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.89-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.17,(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) 5.50(\mathrm{dd}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.69(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.53(\mathrm{~m}, 2 \mathrm{H})$, $1.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 173.5,131.0,130.8,129.2,128.9,128.7,128.6$, $128.4,128.3,128.1,128.1,127.7,127.6,127.0,127.7,66.7,54.0,42.0,41.5,40.1$; HRMS found $334.1681 \mathrm{M}^{+}$, calcd 334.1681 for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, $5 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \boldsymbol{\lambda}=$ 254 nm , retention times: $S 11.9 \mathrm{~min}, R 16.9 \mathrm{~min}, 50.5: 40.5 \mathrm{er})$.

(S)-4-methyl-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) pent-4-en-1-one
(Table 3.4, entry 5). Following the general procedure for asymmetric alkylations above on 50 mg scale, where 3-bromo-2-methylpropene was substituted for benzyl bromide, 49 mg of
product (82\%) were isolated as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.44(50 \%$
EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.89-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.17$, (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) 5.50(\mathrm{dd}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.69(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}), 2.72-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 173.5,131.0,130.8,129.2$, $128.9,128.7,128.6,128.4,128.3,128.1,128.1,127.7,127.6,127.0,127.7,66.7,54.0,42.0,41.5$, 40.1; HRMS found $334.1681 \mathrm{M}^{+}$, calcd 334.1681 for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, $5 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $12.6 \mathrm{~min}, R$ (minor) $18.3 \mathrm{~min}, 92.7$: 7.3 er).

(土)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)pent-4-en-1-one (Table 3.4,

 entry 7). Following the general procedure for racemic alkylations above on 50 mg scale, where allyl bromide was substituted for benzyl bromide, 34 mg of product (68\%) were isolated as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.63(50 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 7.85-7.79 (m, 4H), 7.55-7.46(m, 3H), 7.18(s, 1H), 7.04 (s 1H), 6.03-5.90(m, 1H), 5.40-5.34 (m, $1 \mathrm{H}), 5.15-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{dd}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.60,(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 173.46,131.0,130.8,129.2,128.9,128.7,128.6,128.4,128.3,128.1,128.1,127.7$, $127.6,127.0,126.7,66.7,54.0,42.0,41.5,40.1$; HRMS found $320.1525 \mathrm{M}^{+}$, calcd 320.1525 for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC (DAICELChiralpack AD-H column, $5 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S $20.5 \mathrm{~min}, R 32.8 \mathrm{~min}, 51: 49 \mathrm{er})$.

(S)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) pent-4-en-1-one (table 3.6, entry 8). Following the general procedure for racemic alkylations above on 50 mg scale, where allyl bromide was substituted for benzyl bromide, 51 mg of product (90\%) were isolated as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.50(50 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 7.85-7.79 (m, 4H), 7.55-7.46 (m, 3H), $7.18(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s} 1 \mathrm{H}), 6.03-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.34(\mathrm{~m}$, $1 \mathrm{H}), 5.15-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{dd}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.60,(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 173.46,131.0,130.8,129.2,128.9,128.7,128.6,128.4,128.3,128.1,128.1,127.7$, 127.6, 127.0, 126.7, 66.7, 54.0, 42.0, 41.5, 40.1; HRMS found $320.1525 \mathrm{M}^{+}$, calcd 320.1525 for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 5\% EtOH/hexane, 0.75 $\mathrm{mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $25 \mathrm{~min}, R$ (minor) $35 \mathrm{~min}, 94: 6 \mathrm{er}$).

(\pm)-(E)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) hept-4-en-1-one (Table
3.4, entry 9). Following the general procedure for racemic alkylations above on 50 mg scale, where (E)-1-bromo-2-pentene was substituted for benzyl bromide, 17 mg of product (27\%) were
isolated as an off-white solid. Data are: $\mathrm{TLC}_{\mathrm{R}_{f}}=0.27(30 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta$ 7.83-7.79 (m, 4H), 7.52-7.44 (m, 3H), $7.15(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.54-5.51(\mathrm{~m}, 2 \mathrm{H})$, 5.33-5.29(m, 1H), $4.76(\mathrm{dd}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{q}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 191.8,135.9,135.5,133.4,133.2,129.5,128.1$, $127.8,127.2,126.9,126.3,126.1,126.0,124.1,100.2,80.5,72.6,36.7,36.1,29.9,25.8,13.9$; HRMS found $348.1838 \mathrm{M}^{+}$, calcd 348.1838 for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5\% EtOH/hexane, 1.0 $\mathrm{mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 15.3 \mathrm{~min}, R 32.9 \mathrm{~min}, 53.8: 46.2 \mathrm{er}$).

(S)-(E)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) hept-4-en-1-one (Table

3.4, entry 9). Following the general procedure for racemic alkylations above on 50 mg scale, where (E)-1-bromo-2-pentene was substituted for benzyl bromide, 50 mg of product (80%) were isolated as an off-white solid. Data are: $\mathrm{TLC}_{\mathrm{R}}=0.34(30 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 7.83-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.54-5.51(\mathrm{~m}, 2 \mathrm{H})$, 5.33-5.29 (m, 1H), $4.76(\mathrm{dd}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{q}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 191.8,135.9,135.5,133.4,133.2,129.5,128.1$, $127.8,127.2,126.9,126.3,126.1,126.0,124.1,100.2,80.5,72.6,36.7,36.1,29.9,25.8,13.9$; HRMS found $348.1838 \mathrm{M}^{+}$, calcd 348.1838 for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, $5 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $17.6 \mathrm{~min}, R$ (minor) $34.2 \mathrm{~min}, 95.8: 4.2 \mathrm{er}$).

(土)-(Z)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) dec-4-en-1-one (Table

3.4, entry 10). Following the general procedure for racemic alkylations above on 50 mg scale, where (Z)-1-bromo-2-octene (described in chapter 5's experimental section) was substituted for benzyl bromide, 14 mg of product (20%) were isolated as an off-white solid. Data are: $\mathrm{TLC}_{\mathrm{f}}=$ 0.27 (30% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.85-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.3-7.44(\mathrm{~m}, 3 \mathrm{H})$, $7.15(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.54-5.45(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, 2 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 191.6,135.9,133.5,133.2,133.0,129.6,128.5,128.1,127.8,127.2$, $126.9,126.3,126.1,125.9,125.6,125.4,124.2,80.5,72.7,36.1,31.5,29.4,27.5,22.7,14.2$; HRMS found $390.2307 \mathrm{M}^{+}$, calcd 390.2307 for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5\% EtOH/hexane, 1.0 $\mathrm{mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 12.1 \mathrm{~min}, R 16.6 \mathrm{~min}, 51.3: 48.7 \mathrm{er}$).

(S)-(Z)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) dec-4-en-1-one (Table

3.4, entry 10). Following the general procedure for racemic alkylations above on 50 mg scale, where (Z)-1-bromo-2-octene (described in chapter 5's experimental section) was substituted for benzyl bromide, 53.5 mg of product (77\%) were isolated as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}$
$=0.27$ (30\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.85-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.3-7.44(\mathrm{~m}$, $3 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.54-5.45(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, 2 \mathrm{H}), 3.92$ $(\mathrm{s}, 3 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 191.6,135.9,133.5,133.2,133.0,129.6,128.5,128.1,127.8,127.2$, $126.9,126.3,126.1,125.9,125.6,125.4,124.2,80.5,72.7,36.1,31.5,29.4,27.5,22.7,14.2$; HRMS found $390.2307 \mathrm{M}^{+}$, calcd 390.2307 for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, $5 \% \mathrm{EtOH} /$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S $11.2 \mathrm{~min}, R 13.5 \mathrm{~min}, 89.5$: 10.5 er).

$(\pm)-(E)-5,9-d i m e t h y l-1-(1-m e t h y l-1 H-i m i d a z o l-2-y l)-2-(n a p h t h a l e n-2-y l m e t h o x y) ~ d e c a-4,8-~$

dien-1-one (Table 3.4, entry 11). Following the general procedure for racemic alkylations above on 50 mg scale, where geranyl bromide was substituted for benzyl bromide, 34.8 mg of product (47\%) were isolated as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.64(50 \%$

EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.85-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~s}$, $1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.35-5.29(\mathrm{~m}, 2 \mathrm{H}), 5.19-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{dd}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.51$, $(\mathrm{m}, 2 \mathrm{H}), 2.0(\mathrm{bs}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 191.9,142.3,138.2,135.9,131.6,130.7,129.9,128.2,127.8,127.4,126.9$, $126.5,126.4,126.1,126.0,125.1,124.5,119.2,80.6,72.7,40.0,32.330 .0,26.9,25.6,18.7$, 16.5; HRMS found $416.2464 \mathrm{M}^{+}$, calcd 416.2464 for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention
times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 10\% EtOH/hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $\left.S 7.9 \mathrm{~min}, R 12.1 \mathrm{~min}, 50.5: 48.5 \mathrm{er}\right)$.

(S)-(E)-5,9-dimethyl-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) deca-4,8-dien-1-one (Table 3.4, entry 11). Following the general procedure for racemic alkylations above on 50 mg scale, where geranyl bromide was substituted for benzyl bromide, 74 mg of product (75\%) were isolated as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.64(50 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.85-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~s}$, $1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.35-5.29(\mathrm{~m}, 2 \mathrm{H}), 5.19-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{dd}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.51$, $(\mathrm{m}, 2 \mathrm{H}), 2.0(\mathrm{bs}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 12341234$; HRMS found $416.2464 \mathrm{M}^{+}$, calcd 416.2464 for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}$; the enantiomers' retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 10% EtOH/hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 23$ ${ }^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $7.9 \mathrm{~min}, R$ (minor) $12.1 \mathrm{~min}, 87.5: 12.5 \mathrm{er}$).

7.3.7. General Procedure for Converting Imidazole Products to Methyl Esters

(S)-Methyl 2-(naphthalen-2-ylmethoxy)-3-phenylpropanoate (74). To a flame-dried 10 mL round bottom flask was added 1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-
phenylpropan-1-one $73(0.058 \mathrm{~g}, 0.156 \mathrm{mmol})$, powdered $4 \AA$ molecular sieves $(0.039 \mathrm{~g})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.12 \mathrm{~mL})$. These were stirred vigorously at room temperature for 5 minutes. Methyl triflate $(0.177 \mathrm{~mL}, 1.56 \mathrm{mmol})$ was then added in one portion. This mixture was stirred at room temperature for 72 hours, monitored by TLC for the consumption of starting material $\left(\mathrm{R}_{f}=0.33\right.$, $30 \% \mathrm{EtOAc} /$ Hexanes $)$. Anhydrous methanol (3.12 mL) was then added, followed by dry sodium methoxide ($0.064 \mathrm{~g}, 1.19 \mathrm{mmol})$. The mixture was then stirred for 4 hours at room temperature. It was afterward diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The layers were mixed and then separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated by rotary evaporator. The crude residue was purified by column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to afford 0.050 g (quant.) of the desired compound as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.75(30 \%$

EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.82-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~s}$, $1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.70(\mathrm{dd}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 3.14-3.04 (m, 2H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.0,137.3,135.0,133.4,133.2,129.8$, 128.6, 128.3, 128.2, 127.8, 127.0, 126.8, 126.3, 126.1, 125.9, 79.3, 72.7, 52.2, 39.8; HRMS found $338.1751\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, calcd 338.1751 for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{3} \cdot \mathrm{NH}_{4}\right]+$. The enantiomers' retention times were determined by chiral HPLC and compared to samples prepared from racemic 74. The data revealed that no racemization had occurred. (DAICEL Chiralpack AD-H column, 5\%
$\mathrm{EtOH} /$ hexane, $0.75 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $15.2 \mathrm{~min}, R$ (minor) $18.8 \mathrm{~min}, 95.5$: 4.5 er). Racemic 74 HPLC data (same column/conditions): S (major) $17.6, R$ (minor) $20.9 \mathrm{~min}, 54$: 46 er .

(S)-methyl 3-(4-tert-butylphenyl)-2-(naphthalen-2-ylmethoxy)propanoate. Following the general procedure for converting imidazole products to methyl esters above, the product was obtained in quantitative yield as an off-white solid. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.72(30 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.85-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~s}$, $2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.74(\mathrm{dd}, 2 \mathrm{H}), 4.23(\mathrm{dd}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H})$, , 3.11-3.07 (m, 2H), $1.38(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 173.1,135.1,134.3,133.2$, $129.5,128.3,128.2,127.9,126.8,126.2,126.1,125.9,125.5,79.4,72.6,52.2,39.2,34.7,31.7 ;$ HRMS found $376.2039[M]^{+}$, calcd 376.2039 for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{3}{ }^{+}$. The data revealed that no racemization had occurred. (DAICEL Chiralpack AD-H column, 5\% EtOH/hexane, 0.75 $\mathrm{mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $9.0 \mathrm{~min}, R$ (minor) $10.0 \mathrm{~min}, 96: 4 \mathrm{er}$.) Racemic data (same column/conditions): S (major) $5.9 \mathrm{~min}, R$ (minor) $6.5 \mathrm{~min}, 54: 46 \mathrm{er}$.

(S)-methyl 3-(biphenyl-2-yl)-2-(naphthalen-2-ylmethoxy)propanoate. Following the general procedure for converting imidazole products to methyl esters above, the product was obtained in quantitative yield as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.63(30 \% \mathrm{EtOAc} / \mathrm{hexanes}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.87-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.29$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 8 \mathrm{H}), 4.60(\mathrm{dd}, 2 \mathrm{H}), 3.99(\mathrm{dd}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.08(\mathrm{~m}$,
$2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 172.9,142.8,141.5,135.0,134.6,133.4,133.3,130.9,130.5$, $129.5,128.4,128.3,128.2,127.9,127.6,127.2,127.0,126.9,126.3,126.1,126.0,78.4,72.6$, 52.1, 36.4; HRMS found $396.1725[\mathrm{M}]^{+}$, calcd 396.1725 for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{3}{ }^{+}$. The data revealed that no racemization had occurred. (DAICEL Chiralpack AD-H column, 1\% EtOH/hexane, 0.75 $\mathrm{mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $20.3 \mathrm{~min}, R$ (minor) $22.1 \mathrm{~min}, 90: 10 \mathrm{er}$.) Racemic data (same column/conditions): S (major) $20.05 \mathrm{~min}, R$ (minor) $21.72 \mathrm{~min}, 53: 47 \mathrm{er}$.

7.3.8. 2-NPM Removal with DDQ

(S)-methyl 2-hydroxy-3-phenylpropanoate (75). To a flame-dried 10 mL round bottom flask was added (S)-methyl 2-(naphthalen-2-ylmethoxy)-3-phenylpropanoate ($0.075 \mathrm{~g}, 0.234 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.36 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(1.87 \mathrm{~mL})$, and the mixture was stirred for 5 minutes a room temperature. DDQ $(0.106 \mathrm{~g}, 0.468 \mathrm{mmol})$ was then added, turning the solution a black-brown color, and the reaction was stirred at room temperature for 4 hours. It was quenched by the addition of a saturated aqueous solution of sodium thiosulfate $(30 \mathrm{~mL})$ and was then diluted with EtOAc (50 mL) and saturated aqueous sodium bicarbonate $(20 \mathrm{~mL})$. The layers were mixed and then separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated by rotary evaporator. The crude residue was purified by column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to afford 0.030 g (70\%) of the desired compound as an off-white solid. (Note: when dilute, this product is only
faintly UV-visible, but stains well if spotted heavily on the TLC plate.) Data are: TLC $\mathrm{R}_{f}=0.18$ $(20 \%$ EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{26}=-6.25^{\circ}\left(\mathrm{c} 0.48, \mathrm{CHCl}_{3}\right)$, lit. $[\alpha]_{\mathrm{D}}{ }^{24}=-6.8^{\circ}\left(\mathrm{c} 1.39, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.51-4.47(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.20-2.97(\mathrm{~m}$, 2H), 2.78-2.76 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 174.8,136.5,129.7,128.7,127.2,71.5$, 52.7, 40.8; HRMS found $180.0786[M]^{+}$, calcd 180.0786 for $\left[\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}\right]+$. Product verification and absolute configuration were obtained by optical rotation comparison with Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168-4178.

7.4. Procedures from Chapter 4

7.4.1. Synthesis of Electrophile 44

N-(tert-butoxycarbonyl)-3-formyl indole (88). To a flame-dried 250 mL round bottom flask with a stir bar were added powdered $\mathrm{NaOH}(7.58 \mathrm{~g}, 189.44 \mathrm{mmol}, 2.75$ equiv) and tetra- n butylammonium hydrogensulfate ($470 \mathrm{mg}, 1.378 \mathrm{mmol}, 0.02$ equiv). These were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($92 \mathrm{~mL}, 0.75 \mathrm{M}$ with respect to the indole), and the resulting suspension was cooled, under N_{2} atmosphere, to $0^{\circ} \mathrm{C}$. Indole-3-carboxyaldehyde (87) was then added in one portion ($10 \mathrm{~g}, 68.889 \mathrm{mmol}, 1$ equiv), and the resulting suspension was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. At this stage, a solution of di-tertbutyldicarbonate ($16.54 \mathrm{~g}, 75.78 \mathrm{mmol}, 1.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (pre-chilled to $0{ }^{\circ} \mathrm{C}, 46 \mathrm{~mL}, 1.5 \mathrm{M}$) was added. This suspension was stirred at $0^{\circ} \mathrm{C}$ for 20 minutes, after which time more $\mathrm{CH}_{2} \mathrm{Cl}_{2}(46 \mathrm{~mL}, 1.5 \mathrm{M})$ was added. The combined mixture was
then stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by adding a saturated solution of aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The layers were mixed and then separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 150 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered, concentrated by rotary evaporation, and left under high vacuum for 1 h to give 16.9 g (quant. yield) of $\mathbf{8 8}$ as an off-white, crystalline solid, used without further purification. Data are: $\mathrm{TLC} \mathrm{R} f=0.85(40 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 10.12(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.32(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H})$, $1.75(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 186.0,136.8,126.3,124.8,122.3,121.7,115.4,85.9$, 28.3.

Tert-butyl 3-(hydroxymethyl)-1H-indole-1-carboxylate (89). To a flame-dried 250 mL round bottom flask with a stir bar, N-(tert-butoxycarbonyl)-3-formyl indole $\mathbf{8 8}(16.9 \mathrm{~g}, 69.28 \mathrm{mmol}, 1$ equiv) was dissolved in anhydrous $\mathrm{EtOH}(92 \mathrm{~mL}, 0.75 \mathrm{M})$ and was cooled under N_{2} to $0{ }^{\circ} \mathrm{C}$. NaBH_{4} was then added $(5.241 \mathrm{~g}, 138.56 \mathrm{mmol}, 2$ equiv). The resulting suspension was stirred for 30 minutes at $0^{\circ} \mathrm{C}$ and then allowed to warm to RT and stir for 2.5 h , monitored for consumption of the starting material by TLC. The EtOH was then evaporated off using a rotary evaporator, and the crude product was diluted in 1.0 N aqueous $\mathrm{NaOH}(50 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated by rotary evaporator to give a yellow, viscous oil, which was left under high vacuum for 46 h to remove the triethoxy borane byproduct. This gave 15.08 g
(88%) of the final product as a viscous, clear, colorless oil, which eventually crystallized as an off-white solid after refrigeration. Data are: TLC $\mathrm{R} f=0.48$ (30% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.14(\mathrm{bs}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 150.0$, 135.9, 129.4, 124.8, 123.9, 122.9, 120.8, 119.6, 115.5, 84.0, 57.2, 28.4.

Tert-butyl 3-(bromomethyl)-1H-indole-1-carboxylate (44). Phosphorous tribromide (0.683 $\mathrm{mL}, 7.27 \mathrm{mmol}, 0.4$ equiv) was carefully dissolved in $\mathrm{Et}_{2} \mathrm{O}(11.4 \mathrm{~mL}, 1.6 \mathrm{M}$ with respect to the indole) in a flame-dried 100 mL round bottom flask (flask A) with a stir bar. This solution was then cooled under N_{2} to $-40^{\circ} \mathrm{C}$. In a separate flame-dried, 25 mL pear-bottomed flask with a spin vane (flask B), tert-butyl 3-(hydroxymethyl)-1 H-indole-1-carboxylate $\mathbf{8 3}$ ($4.5 \mathrm{~g}, 18.197$ mmol, 1.0 equiv) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(11.4 \mathrm{~mL}, 1.6 \mathrm{M})$. This solution was also cooled under N_{2} to $-40^{\circ} \mathrm{C}$. Once both flasks were cooled and stirring homogeneously, the contents of flask B were transferred dropwise, via syringe, to flask A. Flask B was then rinsed twice with 11.4 mL of $\mathrm{Et}_{2} \mathrm{O}$ at ambient temperature, with each rinse being transferred into flask B , bringing the total $\mathrm{Et}_{2} \mathrm{O}$ volume to 45.6 mL . This reaction suspension was then raised to $-10^{\circ} \mathrm{C}$ and became a yellow-pink solution. It was afterward stirred at $-10^{\circ} \mathrm{C}$ for 25 h , until the starting material had been consumed (as visualized by TLC). The reaction was quenched by adding ice water (100 $\mathrm{mL})$ and $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$. The layers were mixed and then separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 75 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL),
dried over MgSO_{4}, filtered, concentrated by rotary evaporator, and left under high vacuum for 1 h to give $5.15 \mathrm{~g}(92 \%$ yield $)$ of as an off-white crystalline solid, used without further purification. Data are: $\operatorname{TLC~R~} f=0.82(20 \%$ EtOAc/hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.15(\mathrm{bs}, 1 \mathrm{H})$, $7.7(\mathrm{q}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 149.6,135.9,128.9,125.3,125.2,123.1,119.6,117.4,115.7,84.4,28.4,24.8$. Note: this compound should be stored at $-20^{\circ} \mathrm{C}$ under argon or nitrogen. This compound gradually decomposes within about two to three weeks -even when properly stored-to form a dark purple, crystalline solid. Once it has this appearance, it will no longer give good asymmetric results as an alkylation electrophile.

7.4.2. Alkylating Substrate 58 with Indole Electrophile 44

(S)-Tert-butyl 3-(3-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-oxopropyl)-

1H-indole-1-carboxylate (80). Preparation of this compound is detailed above under section
7.3.6.

82
$75 \%, 84 \%$ ee
(S)-methyl 3-(1H-indol-3-yl)-2-(naphthalen-2-ylmethoxy)propanoate (82). To a flame-dried 50 mL round bottom flask was added $\mathbf{8 0}(0.5 \mathrm{~g}, 0.98 \mathrm{mmol})$, powdered $4 \AA$ molecular sieves
(0.098 g), and $\mathrm{CH}_{3} \mathrm{CN}(5.8 \mathrm{~mL})$. These were stirred vigorously at room temperature for 5 minutes. Methyl triflate $(0.245 \mathrm{~mL}, 2.16 \mathrm{mmol})$ was then added in one portion. This mixture was stirred at room temperature for 24 hours, monitored by TLC for the consumption of starting material $\left(\mathrm{R}_{f}=0.78,50 \% \mathrm{EtOAc} /\right.$ Hexanes $)$. Anhydrous methanol (5.8 mL) was then added, followed by DBU $(1.4 \mathrm{~mL})$. The mixture was then stirred for 1 hour at room temperature. It was afterward diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The layers were mixed and then separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated. The crude residue was purified by column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to afford $0.264 \mathrm{~g}(75 \%)$ of the desired compound as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.75$ (30% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 8.13(\mathrm{bs}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}$, $4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=5.75 \mathrm{~Hz}$, 1H), 4.29-4.28(m, 1H), 3.74(s,3H), 3.23-3.14(m, 2H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.3$, $136.3,135.1,133.4,128.3,128.2,127.9,126.9,126.2,126.1,126.0,123.4,122.2,120.0,119.1$, $111.3,78.9,72.8,52.2,30.0,29.3$; HRMS found $359.1521[\mathrm{M}]^{+}$, calcd 359.1521 for $\left[\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{3}\right]^{+}$. The enantiomers' retention times were determined by chiral HPLC and compared to samples prepared from racemic 75. The data revealed slight racemization, with $\mathbf{7 5}$ being obtained in 84% ee. (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, $0.75 \mathrm{~mL} / \mathrm{min}, 23$ ${ }^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $30.4 \mathrm{~min}, R$ (minor) $43.7 \mathrm{~min}, 92: 8.0 \mathrm{er}$). Racemic 67 HPLC data (same column/conditions): S (major) 31.2, R (minor) 44.1 min, $52: 48$ er.

7.4.3. Total Synthesis of (+)-Kurasoin B

(土)-Tert-butyl 3-(2-(benzyloxy)-3-(1-methyl-1H-imidazol-2-yl)-3-oxopropyl)-1H-indole-1carboxylate (90). Following the general procedure for racemic alkylations (section 7.3.4 above) on 50 mg scale, where electrophile 44 (section 7.4.1 above) was substituted for benzyl bromide, $0.085 \mathrm{~g}(85 \%)$ of 90 were isolated as an off-white solid. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.74(40 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.13(\mathrm{bs}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (s, 1H), $7.29(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ $(\mathrm{d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.15(\mathrm{~m}, 1 \mathrm{H})$, $1.67(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 191.14,142.21,138.1,129.8,128.4,128.1,127.8$, $127.4,124.8,124.3,122.5,119.6,116.5,115.2,83.5,80.1,72.7,36.2,29.3,28.5 ;$ HRMS found $459.2153 \mathrm{M}^{+}$, calcd 459.2158 for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column): $10 \% \mathrm{EtOH} /$ hexane, $0.75 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}$, $\lambda=254 \mathrm{~nm}$, retention times: $S 7.11 \mathrm{~min}, R 93.10 \mathrm{~min}, 50.8: 49.2 \mathrm{er})$.

(S)-tert-butyl 3-(2-(benzyloxy)-3-(1-methyl-1H-imidazol-2-yl)-3-oxopropyl)-1H-indole-1-
carboxylate (84). Following the general procedure for asymmetric alkylations (section 7.3.5 above) on 4.66 g scale, where electrophile 44 (section 7.4.1 above) was substituted for benzyl bromide, $9.12 \mathrm{~g}(98 \%)$ of $\mathbf{9 0}$ were isolated as an off-white solid. Data are: $\mathrm{TLC}_{f}=0.56(30 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.14(\mathrm{bs}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (s, 1H), $7.29(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ $(\mathrm{d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.15(\mathrm{~m}, 1 \mathrm{H})$, 1.67 (s, 9 H$) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 191.14,149.9,142.2,138.1,131.0,129.8,128.4$, $128.1,127.8,127.4,124.8,124.3,122.5,119.6,116.5,115.2,83.5,80.1,72.7,36.2,29.3,28.5 ;$ HRMS found $459.2153 \mathrm{M}^{+}$, calcd 459.2158 for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column): $10 \% \mathrm{EtOH} /$ hexane, 0.75 $\mathrm{mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $9.99 \mathrm{~min}, R$ (minor) $>99:<1 \mathrm{er}$). $[\alpha]_{\mathrm{D}}{ }^{24}=$ $+16.75^{\circ}\left(\mathrm{c} 5.55, \mathrm{CHCl}_{3}\right)$.

(土)-Methyl-2-(benzyloxy)-3-(1H-indol-3-yl) propanoate (91). Following the general procedure for compound 74 (section 7.3 .7 above) on 84 mg scale, $0.027 \mathrm{~g}(48 \%)$ of 91 were isolated as a yellow oil. TLC showed formation of two products: $91\left(\mathrm{R}_{f}=0.75\right.$ in 30% EtOAc/hexanes) and Boc-deprotected $90\left(\mathrm{R}_{f}=0.31\right.$ in 30% EtOAc/hexanes). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 8.057(\mathrm{bs}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.10(\mathrm{~m}$, $8 \mathrm{H}), 4.73(\mathrm{~d}, J=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J 1=1 \mathrm{~Hz}, J 2=5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.26(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 128.5,128.2,127.9,123.4$, 122.2, 119.6, 119.1, 111.3, 78.9, 72.7, 52.1, 29.2; HRMS found $310.1434[\mathrm{M}+\mathrm{H}]^{+}$, calcd 310.1438 for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3}\right]+$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column): $10 \% \mathrm{EtOH} /$ hexane, $0.75 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $17.05 \mathrm{~min}, R$ (minor) $21.38 \mathrm{~min}, 50.2: 49.8 \mathrm{er}$).

(S)-methyl 2-(benzyloxy)-3-(1H-indol-3-yl)propanoate (91). To a flame-dried 100 mL round bottom flask was added (S)-tert-butyl 3-(2-(benzyloxy)-3-(1-methyl-1H-imidazol-2-yl)-3-oxopropyl)-1H-indole-1-carboxylate $90(5.5 \mathrm{~g}, 11.976 \mathrm{mmol}, 1$ equiv), powdered $4 \AA$ molecular sieves (1.2 g), and $\mathrm{CH}_{3} \mathrm{CN}(70 \mathrm{~mL}, 0.17 \mathrm{M})$. These were stirred vigorously at room temperature for 5 minutes. Methyl triflate ($6.78 \mathrm{~mL}, 59.88 \mathrm{mmol}, 5.0$ equiv) was then added in one portion,
and the mixture was stirred at room temperature for 2 hours, after which time the starting material was completely consumed, giving only methylated baseline intermediate (TLC). Anhydrous methanol ($70 \mathrm{~mL}, 0.17 \mathrm{M}$) was then added, followed by DBU ($4.48 \mathrm{~mL}, 29.94 \mathrm{mmol}$, 2.5 equiv), and the mixture was stirred for 6 hours at room temperature. The reaction was then quenched by adding $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(125 \mathrm{~mL})$ and was transferred to a separatory funnel. The layers were mixed and then separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 70 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated by rotary evaporator. TLC showed that two products were formed: the desired product $\left(\mathrm{R}_{f}=0.69\right.$ in $30 \% \mathrm{EtOAc} /$ hexanes $)$ and deprotected starting material $\left(\mathrm{R}_{f}=0.33\right.$ in 30% $\mathrm{EtOAc} /$ hexanes $)$. The crude residue was purified by column chromatography (20% EtOAc/hexanes) to afford $3.48 \mathrm{~g}(94 \%)$ of the target compound as a yellow oil. Data are: TLC $\mathrm{R}_{f}=0.69(30 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.305(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ $(\mathrm{d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.18(\mathrm{~m}, 7 \mathrm{H}), 7.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=5.75$ $\mathrm{Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J 1=1 \mathrm{~Hz}, J 2=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.35-$ $3.26(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.4,137.7,136.3,128.6,128.5,128.2,127.7$, 123.7, 122.1, 119.5, 119.0, 111.5, 110.7, 79.0, 72.8, 52.2, 29.3; HRMS found $310.1434[\mathrm{M}+\mathrm{H}]^{+}$, calcd 310.1438 for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3}\right]+$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column): 10% EtOH/hexane, $0.75 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254$ nm , retention times: S (major) $16.99 \mathrm{~min}, R$ (minor) $21.69 \mathrm{~min}, 94.1: 5.9 \mathrm{er}) .[\alpha]_{\mathrm{D}}{ }^{24}=+34.68^{\circ}(\mathrm{c}$ $2.508, \mathrm{CHCl}_{3}$).

(S)-methyl 2-hydroxy-3-(1H-indol-3-yl)propanoate (83). (S)-methyl 2-(benzyloxy)-3-(1H-indol-3-yl)propanoate 91 ($2.5 \mathrm{~g}, 8.087 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($45 \mathrm{~mL}, 0.18 \mathrm{M}$) in a flame-dried 100 mL round bottom flask and was cooled, while stirring under N_{2}, to $-78{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{BCl}_{3}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20.22 \mathrm{~mL}, 20.22 \mathrm{mmol}, 2.5$ equiv) was then added slowly over 45 minutes, and the entire reaction was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ under N_{2}. The reaction mixture was then warmed to $-20^{\circ} \mathrm{C}$ and was kept stirring at $-20^{\circ} \mathrm{C}$ for 18 h . Once the starting material had been consumed (as observed by TLC), the reaction was diluted with 50 mL of a $1: 1$ $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution that had been pre-chilled to $-40^{\circ} \mathrm{C}$ prior to its addition. The resulting mixture was then warmed to RT, and the solvent was removed under reduced pressure using a rotary evaporator. More $1: 1 \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$ at ambient temperature) was added and was subsequently removed using the rotary evaporator. Then an additional amount of 1:1 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL at ambient temperature) was added, and was also removed using the rotary evaporator. The crude material was afterward diluted using a saturated solution of aqueous sodium bicarbonate (20 mL) and was transferred to a separatory funnel. The aqueous suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated by rotary evaporator. The crude material was purified by column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to afford 1.77 g (quant.) of the target compound as a brown, crystalline solid. Data are: $\mathrm{TLC}_{\mathrm{R}}=0.49$ ($40 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 8.17(\mathrm{bs}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=3.75,1 \mathrm{H}), 7.20(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{bs}, 1 \mathrm{H}), 4.55(\mathrm{q}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.28(\mathrm{~m}, 1 \mathrm{H})$,
3.22-3.17 (m, 1H), $2.86(\mathrm{~d}, J=3.25 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 175.0,136.4$, $127.8,123.5,122.3,119.7,119.1,111.5,110.2,71.0,52.7,30.5$; HRMS found 220.0968 $[\mathrm{M}+\mathrm{H}]^{+}$, calcd 220.0968 for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3}\right] ;[\alpha]_{\mathrm{D}}{ }^{24}=+17.72^{\circ}\left(\mathrm{c} 1.69, \mathrm{CHCl}_{3}\right)$.

(S)-2-hydroxy-3-(1H-indol-3-yl)- N -methoxy- N -methylpropanamide (84). N, O -
dimethylhydroxylamine $\cdot \mathrm{HCl}(0.111 \mathrm{~g}, 1.141 \mathrm{mmol}, 5$ equiv) was dissolved in THF ($4.6 \mathrm{~mL}, 0.05$ M with respect to ester substrate) in a flame-dried 10 mL round bottom flask with a stir bar. This was cooled, while stirring under N_{2}, to $0^{\circ} \mathrm{C}$. A solution of $\mathrm{AlMe}_{3}(2.0 \mathrm{M}$ in toluene, 0.57 mL , $1.14 \mathrm{mmol}, 5.0$ equiv) was then added, and the resulting suspension was warmed to RT and stirred for 30 minutes. This mixture was then transferred by cannula to a 25 mL round bottom flask (with stir bar) containing a solution of (S)-methyl 2-hydroxy-3-(1H-indol-3-yl)propanoate (83) ($50 \mathrm{mg}, 0.228 \mathrm{mmol}, 1$ equiv) in THF ($2.28 \mathrm{~mL}, 0.1 \mathrm{M}$). At this stage the resulting suspension was warmed and stirred at reflux for 18 h . Once the starting material had been consumed (as observed by TLC), the reaction was cooled to RT and the crude material was transferred to a 100 mL round bottom flask containing Rochelle salts (23 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (23 mL). The original reaction flask was then rinsed several times with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and each rinse was added to the flask containing the Rochelle salts (this was to ensure complete transfer of the crude product). When it had been completely transferred to the 100 mL RB flask with the Rochelle salts, the mixture was stirred at RT for 1 hour, until clean separation of layers was observed. Once this occurred, the solution was transferred to a separatory funnel, and the layers were separated. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined
organic layers were washed with $1 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL})$, and were also washed with a saturated solution of aqueous sodium bicarbonate (30 mL). The combined organic layers were then dried over MgSO_{4}, filtered, and concentrated by rotary evaporator. The crude material was purified by column chromatography ($40 \% \mathrm{EtOAc} /$ hexanes), with the aliquots coming off the column being tested by TLC and HRMS for the presence of product. $52 \mathrm{mg}(92 \%)$ of the target compound were isolated as a yellow, crystalline solid. Data are: $\mathrm{TLC}_{f}=0.41(100 \% \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.12(\mathrm{bs}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=3.5,1 \mathrm{H}), 7.19(\mathrm{t}, J=10$ Hz, 1H), $7.13-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{bs}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.05$ $(\mathrm{m}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 174.5,136.3,127.9,123.4,122.1,119.6$, $118.8,111.4,111.3,69.2,61.7,32.7,30.8,30.0$; HRMS found $249.1234[\mathrm{M}+\mathrm{H}]^{+}$, calcd 249.1234 for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}\right] ;[\alpha]_{\mathrm{D}}{ }^{24}=-2.4995^{\circ}\left(\mathrm{c} 0.52, \mathrm{CHCl}_{3}\right)$.

84

79
(S)-3-(1H-indol-3-yl)-N-methoxy- N -methyl-2-(triethylsilyloxy)propanamide (79). (S)-2-hydroxy-3-(1 H -indol-3-yl)- N -methoxy- N -methylpropanamide $\mathbf{8 4}$ ($49 \mathrm{mg}, 0.197 \mathrm{mmol}, 1$ equiv) was dissolved in DMF ($1.97 \mathrm{~mL}, 0.1 \mathrm{M}$) in a flame-dried 10 mL round bottom flask with a stir bar. Imidazole ($54 \mathrm{mg}, 0.79 \mathrm{mmol}, 4$ equiv) was then added, followed by chlorotriethylsilane ($0.067 \mathrm{~mL}, 0.395 \mathrm{mmol}, 2$ equiv). This mixture was then stirred at RT for 2 hours. Once the starting material had been consumed (as observed by TLC), the reaction was diluted with distilled water $(5 \mathrm{~mL})$ and $\operatorname{EtOAc}(20 \mathrm{~mL})$ and was transferred to a separatory funnel. The layers were separated, and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporator. The
crude material was purified by column chromatography ($30 \% \mathrm{EtOAc} /$ hexanes), with the aliquots coming off the column being tested by TLC and HRMS for the presence of product. 49 mg (70\%) of the target compound were isolated as a yellow, crystalline solid. Data are: TLC $\mathrm{R}_{f}=$ $0.56\left(40 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.18(\mathrm{bs}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=3.75 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=4,1 \mathrm{H}), 7.18(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{bs}, 1 \mathrm{H}), 3.30-3.27(\mathrm{~m}$, $1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.04(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}), 0.50(\mathrm{q}, J=2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 136.4,127.9,123.8,122.0,119.5,118.8,111.6,111.4,69.4,61.4,32.6$, 31.2, 30.0, 6.8, 4.8; HRMS found $363.2099[\mathrm{M}+\mathrm{H}]^{+}$, calcd 363.2098 for $\left[\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}\right] ;[\alpha]_{\mathrm{D}}{ }^{24}$ $=+8.16^{\circ}\left(\mathrm{c} 0.49, \mathrm{CHCl}_{3}\right)$.

(S)-4-(1H-indol-3-yl)-1-phenyl-3-(triethylsilyloxy)butan-2-one (85). (S)-3-(1H-indol-3-yl)-N-methoxy- N-methyl-2-(triethylsilyloxy)propanamide 79 ($91 \mathrm{mg}, 0.357 \mathrm{mmol}, 1$ equiv) was dissolved in THF $(4.25 \mathrm{~mL}, 0.059 \mathrm{M})$ in a flame-dried 10 mL round bottom flask with a stir bar. This solution was then cooled, while stirring under N_{2}, to $0^{\circ} \mathrm{C}$. A solution of benzylmagnesium chloride (2.0 M in THF, $0.628 \mathrm{~mL}, 1.255 \mathrm{mmol}, 5.0$ equiv) was then added slowly over 5 minutes, and the mixture was warmed to RT. It was then stirred at RT for 5 h , until the starting material had been consumed (as observed by TLC). The reaction was afterward diluted with distilled water (7 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and was transferred to a separatory funnel. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated by rotary evaporator.

The crude material was purified by column chromatography ($15 \% \mathrm{EtOAc} /$ hexanes), with the aliquots coming off the column being tested by TLC and HRMS for the presence of product. 98 $\mathrm{mg}(99 \%)$ of the target compound were isolated as a clear, colorless oil. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.43$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.00(\mathrm{bs}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{~d}, J=4.25,1 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{bs}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ $(\mathrm{d}, J=2.75 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=8 \mathrm{~Hz}, 9 \mathrm{H}), 0.52(\mathrm{q}, J=4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 210.7,136.0,134.0,129.7,128.3,127.7,126.6,123.2,122.0,119.5,119.2,111.0,110.8$, $78.6,44.9,31.4,6.7,4.7$; HRMS found $394.2197[\mathrm{M}+\mathrm{H}]^{+}$, calcd 394.2197 for $\left[\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}\right]$; $[\alpha]_{\mathrm{D}}{ }^{24}=-13.79^{\circ}\left(\mathrm{c} 0.29, \mathrm{CHCl}_{3}\right)$.

(+)-Kurasoin B (2). (S)-4-(1H-indol-3-yl)-1-phenyl-3-(triethylsilyloxy)butan-2-one 85 (86 mg, $0.2187 \mathrm{mmol}, 1$ equiv) was dissolved in $\operatorname{THF}(1.57 \mathrm{~mL}, 0.042 \mathrm{M})$ in a flame-dried 10 mL round bottom flask with a stir bar. This solution was then cooled, while stirring under N_{2}, to $0^{\circ} \mathrm{C}$. A solution of tetra- n-butyl ammonium fluoride (1.0 M in THF, $0.235 \mathrm{~mL}, 0.23424 \mathrm{mmol}, 1.071$ equiv) was then added, and the reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h , until the starting material had been consumed (as observed by TLC). The reaction was afterward diluted with a saturated solution of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and was transferred to a separatory funnel. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined organic layers were dried over MgSO_{4}, filtered, and concentrated by rotary
evaporator. The crude material was purified by column chromatography ($30 \% \mathrm{EtOAc} /$ hexanes), with the aliquots coming off the column being tested by TLC and HRMS for the presence of product. $53 \mathrm{mg}(87 \%)$ of (+)-kurasoin B (2) were thereby isolated as an off-white crystalline solid. Synthetic data matched those of the natural product. Data are: TLC $\mathrm{R}_{f}=0.38(30 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 7.54(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=4 \mathrm{~Hz}$, 1H), $7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 2 \mathrm{H})$, $4.52(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{q}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.16(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 211.3,136.6,134.0,129.4,127.9,127.4,126.3,123.3,121.0,118.4$, 118.2, 110.8, 109.5, 76.4, 45.4, 29.7; HRMS found $280.1332[\mathrm{M}+\mathrm{H}]^{+}$, calcd 280.1332 for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}\right] ;[\alpha]_{\mathrm{D}}{ }^{24}=+45^{\circ}\left(\mathrm{c} 0.83, \mathrm{CHCl}_{3}\right)$.

7.4.4. First-Generation Analogs

79
(S)-4-(1H-indol-3-yl)-1-(2-methoxyphenyl)-3-(triethylsilyloxy)butan-2-one. Following the procedure for compound $\mathbf{8 5}$ above on 95 mg scale, where reagent $\mathbf{9 3}$ (0.25 M in THF, 5.0 equiv.) was substituted for benzylmagnesium chloride, $0.082 \mathrm{~g}(74 \%)$ of the target compound were isolated. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.73(20 \%$ EtOAc/hexanes x 2$) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.0$ (bs, 1H), $7.61(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 3 \mathrm{H}), 4.517(\mathrm{dd}, J 1=1 \mathrm{H}, J 2=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=8.75$ $\mathrm{Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}), 0.52-0.47(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 210.7,157.6,136.3,131.7,128.5,128.0,123.6,123.5,122.1,120.7$, 119.6, 119.4, 111.4, 111.3, 110.5, 78.8, 55.4, 40.5, 31.4, 7.0, 4.8; HRMS found $423.2230\left(\mathrm{M}^{+}\right)$, calcd 423.2230 for $\left[\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}\right] ;[\alpha]_{\mathrm{D}}{ }^{23}=-21^{\circ}\left(\mathrm{c} 0.23, \mathrm{CHCl}_{3}\right)$.

(S)-3-hydroxy-4-(1H-indol-3-yl)-1-(2-methoxyphenyl)butan-2-one (96). Following the procedure for compound 2 above on 58 mg scale provided $34 \mathrm{~g}(80 \%)$ of the target compound. Data are: $\operatorname{TLC~R}_{f}=0.22\left(30 \%\right.$ EtOAc/hexanes x 2); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.10(\mathrm{bs}, 1 \mathrm{H})$, 7.58 (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.08$ $(\mathrm{m}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=2.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J l=5.25 \mathrm{~Hz}, J 2=2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.13 (dd, $J 1=4.25 \mathrm{~Hz}, J 2=3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$) 210.0, 157.1, 136.1, 131.4, $128.8,127.5,123.0,122.5,122.1,120.8,119.5,118.8,111.2,110.8,110.5,76.2,55.3,40.6$, 29.7; HRMS found $309.1365\left(\mathrm{M}^{+}\right)$, calcd 309.1365 for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}\right]$.

(S)-1-(4-tert-butylphenyl)-4-(1 H -indol-3-yl)-3-(triethylsilyloxy)butan-2-one. Following the procedure for compound $\mathbf{8 5}$ above on 96 mg scale, where reagent $\mathbf{9 4}$ (0.25 M in THF, 5.0 equiv.) was substituted for benzylmagnesium chloride, $0.060 \mathrm{~g}(50 \%)$ of the target compound were
isolated. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.67(30 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.0(\mathrm{bs}$, $1 \mathrm{H}), 7.61(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.6(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=2.75 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=8 \mathrm{~Hz}, 9 \mathrm{H})$, $0.51(\mathrm{q}, J 1=4 \mathrm{~Hz}, J 2=4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 210.9,149.5,136.1,130.9$, $129.4,127.7,125.3,123.4,122.0,119.5,119.1,111.0,110.8,78.5,44.6,34.4,31.3,6.7,4.6 ;$ HRMS found $449.2750\left(\mathrm{M}^{+}\right)$, calcd 449.2750 for $\left[\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{Si}\right] ;[\alpha]_{\mathrm{D}}{ }^{23}=-8.42^{\circ}\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right)$.

(S)-1-(4-tert-butylphenyl)-3-hydroxy-4-(1H-indol-3-yl)butan-2-one (97). Following the procedure for compound $\mathbf{2}$ above on 0.057 mg scale provided $0.054 \mathrm{~g}(99 \%)$ of the target compound as a yellow solid. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.29$ ($30 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 8.08(\mathrm{bs}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14 (t, $J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 3 \mathrm{H}), 4.61(\mathrm{~d}, J=2.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.32$ (bs, 2H), 3.17-3.13 (m, 1H), $1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ 209.9, 150.1, 136.1, $130.0,129.2,127.4,125.7,123.0,122.3,119.7,118.7,111.3,110.4,76.0,45.2,34.5,31.3,29.9$, 29.7; HRMS found $355.1885\left(\mathrm{M}^{+}\right)$, calcd 335.1885 for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}\right] ;[\alpha]_{\mathrm{D}}{ }^{23}=+33.3^{\circ}(\mathrm{c} 0.9$, CHCl_{3}).

79

(S)-1-(3-bromophenyl)-4-(1H-indol-3-yl)-3-(triethylsilyloxy)butan-2-one. Following the procedure for compound $\mathbf{8 5}$ above on 92 mg scale, where reagent $\mathbf{9 5}$ ($0.25 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O}$, 5.0 equiv.) was substituted for benzylmagnesium chloride, $0.097 \mathrm{~g}(81 \%)$ of the target compound were isolated. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.63(30 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.1$ (bs, $1 \mathrm{H}), 7.61(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-6.94(\mathrm{~m}, 7 \mathrm{H}), 6.79(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.09(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=8 \mathrm{~Hz}, 9 \mathrm{H})$, $0.59(\mathrm{q}, J I=4 \mathrm{~Hz}, J 2=4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 210.5,136.2,136.0,132.7$, 129.7, 129.7, 128.4, 127.6, 123.3, 122.2, 122.2, 119.6, 119.2, 111.1, 110.4, 78.5, 44.6, 31.5, 14.2, 6.6, 4.7; HRMS was negative; $[\alpha]_{\mathrm{D}}{ }^{23}=-11.6^{\circ}\left(\mathrm{c} 1.47, \mathrm{CHCl}_{3}\right)$.

(S)-1-(3-bromophenyl)-3-hydroxy-4-(1H-indol-3-yl)butan-2-one (98). Following the procedure for compound 2 above on 0.088 mg scale provided $0.036 \mathrm{~g}(54 \%)$ of the target compound as a yellow solid. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.18$ ($30 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 8.11(\mathrm{bs}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18-$ $7.12(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=2.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J 1=12.25$ $\mathrm{Hz}, J 2=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.17(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{~d}, J=2.75 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13}{ }^{3} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $209.1,136.2,1335.3,132.6,130.3,130.0,128.2,127.3,123.1,122.6,122.5,119.9,118.7,111.4$,
$110.1,76.4,45.0,30.0,29.7$; HRMS found $357.0364\left(\mathrm{M}^{+}\right)$, calcd 357.0364 for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}_{2}\right]$; $[\alpha]_{\mathrm{D}}{ }^{23}=+33.3^{\circ}\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right)$.

7.5. Procedures from Chapter 5

7.5.1. Synthesizing Electrophile 136

(Z)-oct-2-en-1-ol (141). $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.87 \mathrm{~g}, 3.49 \mathrm{mmol})$ was dissolved in anhydrous MeOH $(18 \mathrm{~mL})$ in a two-neck flask and stirred under N_{2} at room temperature, forming a blue-green solution. This was cooled to $0^{\circ} \mathrm{C}$, and sodium borohydride ($132 \mathrm{mg}, 3.49 \mathrm{mmoL}$) was added in one portion, causing gaseous evolution and turning the solution black. This suspension was warmed to room temperature and stirred 5 min . Ethylenediamine ($0.437 \mathrm{~mL}, 6.98 \mathrm{mmoL}$) was then added; the solution stirred 5 min longer. A solution of oct-2-yn-1-ol ($2.0 \mathrm{~mL}, 13.96 \mathrm{mmoL}$) in anhydrous $\mathrm{MeOH}(6 \mathrm{~mL})$ was then added. An H_{2} balloon was attached, and the flask was purged 3 x with H_{2}. It was then stirred under H_{2} atmosphere at RT for 22 hours (a lesser time of 5 hours has also been successful). A small aliquot was removed from the mixture and subjected to a mini workup, concentrated, and analyzed by NMR to ensure consumption of starting matierla and formation of product. Once complete, the reaction mixture was filtered through celite with copious amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, being careful to keep the pyrophoric Nickel (II) immersed in solution. The purple mother liqueur was then carefully concentrated, re-diluted in $\mathrm{Et}_{2} \mathrm{O}$, and transferred to a separatory funnel. It was washed 1 x with water (which removed the dark color), and the organic layer was then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a short silica pad
with copious amounts of $\mathrm{Et}_{2} \mathrm{O}$, and carefully concentrated under low vacuum to afford 1.51 g (85%) of $\mathbf{1 4 1}$ as a clear, yellow oil. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.52(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.60-5.56(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=3 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{q}, J 1=3.5 \mathrm{~Hz}, J 2=3.75 \mathrm{~Hz}$, $2 \mathrm{H}), 1.38-1.26(\mathrm{~m}, 7 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ 133.3,128.3, 58.6, 31.4, 29.3, 27.4, 22.5, 14.0; HRMS found $128.1201\left(\mathrm{M}^{+}\right)$, calcd 128.1201 for $\left[\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}\right]$.

(Z)-1-bromooct-2-ene (136). (Z)-oct-2-en-1-ol 141 ($1.63 \mathrm{~g}, 12.7 \mathrm{mmol}$) was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ $(32 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2} . \mathrm{PBr}_{3}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.232 \mathrm{~mL}, 5.23 \mathrm{mmol}\right)$ was then added dropwise, and the solution stirred at $0^{\circ} \mathrm{C}$ for three hours. A small aliquot was removed from the mixture and subjected to a mini workup, concentrated, and analyzed by NMR to ensure consumption of $\mathbf{1 4 1}$ and formation of $\mathbf{1 3 6}$. Once complete, the reaction was carefully diluted with ice water and extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and carefully concentrated under low vacuum to afford 2.36 $\mathrm{g}(97 \%)$ of 146 as a clear, off-white oil. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.90$ ($15 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.77-5.56(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.45-$ $1.19(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ 136.4, 125.4, 31.7, 29.1, 27.7, 27.2, 22.8, 14.3; HRMS was negative.

7.5.2. PTC Alkylations

(土)-(Z)-2-(benzyloxy)-1-(1-methyl-1H-imidazol-2-yl)dec-4-en-1-one (135). Substrate 63 (52 $\mathrm{mg}, 0.225 \mathrm{mmol}), n-\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}(8.2 \mathrm{mg}, 0.027 \mathrm{mmol})$, and electrophile $\mathbf{1 3 6}(0.086 \mathrm{~g}, 0.45 \mathrm{mmol})$ were diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.25 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. After 10 minutes, $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.151 \mathrm{~g}$, 0.9 mmol) was added in one portion. The mixture then stirred at $0^{\circ} \mathrm{C}$, warming to room temperature overnight, for 18 h , at which time the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were mixed and separated, and the organic layer was washed with a saturated aqueous solution of aqueous $\mathrm{NaCl}(1 \times 10 \mathrm{~mL})$ and then dried over MgSO_{4}. The crude product was then purified by column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to afford 0.065 g (85\%) of the desired compound as a clear yellow oil. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.69(40 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.36(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.3(\mathrm{t}, J=7 . \mathrm{Hz}, 2 \mathrm{H})$, 7.26-7.23 (m, 1H), $7.15(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 5.52-5.43(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{dd}, J 1=0.75 \mathrm{~Hz}, J 2=5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.93-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.15(6 \mathrm{H}), 0.85(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 191.4,142.0$, $138.2,132.7,129.3,128.2,127.9,127.5,127.0,123.9,80.2,72.2,36.0,31.4,31.2,29.2,27.2$, 22.5, 14.0; HRMS found $340.2151\left(\mathrm{M}^{+}\right)$, calcd 340.2151 for $\left[\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$]; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5\% $\mathrm{EtOH} /$ hexane, $0.75 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 10.16 \mathrm{~min}, R 13.46 \mathrm{~min}, 51.4$: 48.6 er).

(S,Z)-2-(benzyloxy)-1-(1-methyl-1H-imidazol-2-yl)dec-4-en-1-one (135). Substrate 63 (1.88 $\mathrm{g}, 8.18 \mathrm{mmol})$, catalyst $\mathbf{1 4 8}(0.5 \mathrm{~g}, 0.82 \mathrm{mmol})$, and electrophile $\mathbf{1 3 6}(4.334 \mathrm{~g}, 22.68 \mathrm{mmol})$ were diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(55 \mathrm{~mL})$ and n-hexanes $(27 \mathrm{~mL})$ and cooled to $-60^{\circ} \mathrm{C}$. After 10 minutes, $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(5.49 \mathrm{~g}, 32.70 \mathrm{mmol})$ was added in one portion. The reaction then stirred at $-60{ }^{\circ} \mathrm{C}$ for 23 h , at which time it was found completed done (TLC). It was subsequently diluted with $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The layers were mixed and separated, and the organic layer was washed with a saturated aqueous solution of aqueous $\mathrm{NaCl}(1 \times 100 \mathrm{~mL})$ and then dried over MgSO_{4}. The crude product was then flushed through a short silica pad using copious amounts of $\mathrm{Et}_{2} \mathrm{O}$. It was concentrated to furnish 4.95 g of a clear yellow oil (178% crude yield) and was analyzed, in crude form, by chiral HPLC. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.69$ ($40 \% \mathrm{EtOAc} /$ hexanes $)$; HRMS found $340.2151\left(\mathrm{M}^{+}\right)$, calcd 340.2151 for $\left[\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}\right]$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5\% EtOH/hexane, 0.75 $\mathrm{mL} / \mathrm{min}, 23{ }^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $\left.S 9.7 \mathrm{~min}, R 12.9 \mathrm{~min}, 94.2: 5.8 \mathrm{er}\right)$. A small amount was purified to provide optical rotation data: $[\alpha]_{D}^{23}=-17.14^{\circ}\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right)$.

7.5.3. To Aldehyde 133

(土)-(Z)-methyl 2-(benzyloxy)dec-4-enoate (137). To a flame-dried 10 mL round bottom flask was added (\pm)-135 ($0.061 \mathrm{~g}, 0.179 \mathrm{mmol})$, powdered $4 \AA$ molecular sieves $(0.045 \mathrm{~g})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(1.05 \mathrm{~mL})$. These were stirred vigorously at room temperature for 5 minutes. Methyl triflate $(0.102 \mathrm{~mL}, 0.896 \mathrm{mmol})$ was then added in one portion. This mixture was stirred at room temperature for 24 hours, monitored by TLC for the consumption of starting material $\left(\mathrm{R}_{f}=0.67\right.$, $40 \% \mathrm{EtOAc} /$ Hexanes $)$. Anhydrous methanol (1.05 mL) was then added, followed by dry sodium methoxide $(0.074 \mathrm{~g}, 1.36 \mathrm{mmol})$. The mixture was then stirred for 4.5 hours at room temperature. It was afterward diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The layers were mixed and then separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated. The crude residue was purified by column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to afford $8 \mathrm{mg}(15 \%)$ of the desired compound as clear yellow oil. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.53(100 \%$ hexanes $\rightarrow 5 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-7.2758 .75, J 2=5.75 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.99(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{q}, J 1=3.75 \mathrm{~Hz}, J 2=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-$ $1.25(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 172.8,137.5,133.3,128.4$, $127.9,127.8,123.3,78.1,72.3,51.8,31.5,31.0,29.2,27.3,22.5,14.0 ;$ HRMS found 290.1882 $[\mathrm{M}]^{+}$, calcd 290.1882 for $\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}\right]^{+}$. The enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack OD-H column, $1.5 \mathrm{iPrOH} /$ heptane, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=$ 254 nm , retention times: S (major) $14.91 \mathrm{~min}, R$ (minor) $21.02 \mathrm{~min}, 50.04: 49.96 \mathrm{er}$).

(S,Z)-methyl 2-(benzyloxy)dec-4-enoate (137). To a flame-dried 10 mL round bottom flask was added crude $135(3.04 \mathrm{~g}, 8.92 \mathrm{mmol})$, powdered $4 \AA$ molecular sieves (2.23 g), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(178 \mathrm{~mL})$. These were stirred vigorously at room temperature for 5 minutes. Methyl triflate $(5.05 \mathrm{~mL}, 44.59 \mathrm{mmol})$ was then added in one portion. This mixture was stirred at room temperature for 20 hours, monitored by TLC for the consumption of starting material $\left(\mathrm{R}_{f}=0.28\right.$, $30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$). Anhydrous methanol (178 mL) was then added, followed by dry sodium methoxide $(3.66 \mathrm{~g}, 67.78 \mathrm{mmol})$. The mixture was then stirred for 3.5 hours at room temperature. It was afterward diluted with $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The layers were mixed and then separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated. The crude residue was purified by column chromatography (100% hexanes $\rightarrow 5 \% \mathrm{EtOAc} /$ hexanes) to afford 1.09 g $\left(42 \%, 75 \%\right.$ from 63) of $\mathbf{1 3 7}$ as clear yellow oil. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.53$ ($10 \% \mathrm{EtOAc} /$ hexanes); $\left.{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-7.2758 .75, J 2=5.75 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.99(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ ($\mathrm{s}, 3 \mathrm{H}), 2.55(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{q}, J 1=3.75 \mathrm{~Hz}, J 2=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 172.8,137.5,133.3,128.4,127.9,127.8,123.3$, 78.1, $72.3,51.8,31.5,31.0,29.2,27.3,22.5,14.0$; HRMS found $290.1882[\mathrm{M}]^{+}$, calcd 290.1882 for $\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}\right]^{+}$. The enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpack OD-H column, $1.5 \mathrm{iPrOH} /$ heptane, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (major) $14.90 \mathrm{~min}, R$ (minor) $21.41 \mathrm{~min}, 91.8: 8.2 \mathrm{er}) .[\alpha]_{\mathrm{D}}{ }^{26}=-35.03^{\circ}\left(\mathrm{c} 2.85, \mathrm{CHCl}_{3}\right)$. Optical rotation data: $[\alpha]_{\mathrm{D}}{ }^{23}=-17.14^{\circ}\left(\mathrm{c} \mathrm{0.7}, \mathrm{CHCl}_{3}\right)$.

(S,Z)-2-(benzyloxy)dec-4-enal (134). Compound $\mathbf{1 3 7}$ ($299 \mathrm{mg}, 1.03 \mathrm{mmol}$) was dispensed into a dry, empty flask and purged for 10 minutes with N_{2}. Dry toluene $(21 \mathrm{~mL})$ was then added, and
the solution was cooled to $-78^{\circ} \mathrm{C}$. DIBAL-H (1 M in toluene, $2.06 \mathrm{~mL}, 2.06 \mathrm{mmol}$) was then added slowly, and the reaction stirred 1.5 hours. The reaction was then diluted with $\mathrm{MeOH}(26$ mL , pre-chilled to $-78^{\circ} \mathrm{C}$), warmed gradually to room temperature, and stirred for 1 hour. It was quenched with Rochelle salts and extracted 3 x with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and purified by column $(10 \%$ EtOAc/hexanes) to afford $220 \mathrm{mg}(84 \%)$ of $\mathbf{1 3 4}$ as a clear, yellow oil. Data are: $\mathrm{TLC}_{\mathrm{R}}=0.45$ (10\% EtOAc/hexanes x 2$) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.65(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.26(\mathrm{~m}$, $5 \mathrm{H}), 5.55-5.38(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J 1=3.5 \mathrm{~Hz}, J 2=7 \mathrm{~Hz}), 1.37-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.86(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 203.3,137.3,133.7,128.5,128.1,127.9,122.6,83.2,72.5,31.5$, 20.7, 20.1, 28.3, 27.4, 22.6, 14.0; HRMS found $260.1814[\mathrm{M}]^{+}$, calcd 260.1776 for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}\right]^{+}$. $[\alpha]_{\mathrm{D}}^{23}=-33.7^{\circ}\left(\mathrm{c} 0.24, \mathrm{CHCl}_{3}\right)$. Optical rotation data: $[\alpha]_{\mathrm{D}}{ }^{23}=-33.7^{\circ}\left(\mathrm{c} \mathrm{4.0}, \mathrm{CHCl}_{3}\right)$.

(S,2E,6Z)-4-(benzyloxy)dodeca-2,6-dienal (133). Aldehyde 134 ($630 \mathrm{mg}, 2.42 \mathrm{mmol}$) was dissolved in dry benzene (36 mL). Triphenylphosphorilidene acetaldehyde $\mathbf{1 2 1}$ was then added, and the reaction was warmed and stirred at $60^{\circ} \mathrm{C}$ for 4 hours. Once 134 was consumed (TLC), the reaction was concentrated and purified by column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to afford 685 mg of $\mathbf{1 3 3}(99 \%)$ as a clear yellow oil. Data are: $\mathrm{TLC}_{\mathrm{R}}=0.26(10 \% \mathrm{EtOAc} /$ hexanes x 1, then 5% EtOAc/hexanes x 1$) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.58(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-$ $7.26(\mathrm{~m}, 5 \mathrm{H}), 6.75(\mathrm{dd}, J 1=5 \mathrm{~Hz}, J 2=2.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.32-6.27(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.34(\mathrm{~m}, 2 \mathrm{H}), 4.59$ $(\mathrm{d}, J=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.09(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{dd}$,
$J 1=3.5 \mathrm{~Hz}, J 2=3.75 \mathrm{~Hz}, 2 \mathrm{H}), 1.36=1.22(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 193.4,156.7,137.8,13.4,132.5,128.5,127.8127 .7,123.2,77.8,71.3,32.6,31.5,29.1$, 27.4, 22.5, 14.0; HRMS found $286.1932[M]^{+}$, calcd 286.1933 for $\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}\right]^{+} .[\alpha]_{\mathrm{D}}{ }^{23}=-33.7^{\circ}$ (c $\left.0.24, \mathrm{CHCl}_{3}\right)$. Optical rotation data: $[\alpha]_{\mathrm{D}}^{23}=-11.37^{\circ}\left(\mathrm{c} 4.48, \mathrm{CHCl}_{3}\right)$.

7.5.4. To Wittig Salt 158

Benzyl 5-hydroxypentanoate (160). Following the procedure detailed in Weber, A. E.; Halgren, T. A.; Doyle, J. J.; Lynch, R. J.; Siegl, P. K. S.; Parsons, W. H.; Greenlee, W. J.; Patchett, A. A. J. Med. Chem. 1991, 34, 2692-2701, 5.0 grams (49.94 mmol) of δ-valerolactone (156) were converted to crude 160, which was purified by column chromatography ($20 \% \mathrm{EtOAc}$) to provide $10.06 \mathrm{~g}(97 \%)$ of product as a clear, colorless oil. This compound was concentrated carefully at low vacuum due to its volatility. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.09$ (10% EtOAc/hexanes x 1, then 20% EtOAc/hexanes x 1$) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{dd}, \mathrm{Jl}=1.5$ $\mathrm{Hz}, J 2=3.25 \mathrm{~Hz}, 2 \mathrm{H}), 2.4(\mathrm{q}, J 1=2.5 \mathrm{~Hz}, J 2=1.25 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{bs}, 1 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 2 \mathrm{H})$, $1.62-1.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.8,136.2,128.8,128.4,66.5,62.4,34.1$, 32.6, 21.3; HRMS found $208.1099[M]^{+}$, calcd 208.1099 for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}\right]^{+}$.

Benzyl 5-oxopentanoate (157). Following the procedure detailed in Gannett, P. M.; Nagel, D. L.; Reilly, P. J.; Lawson, T.; Sharpe, J.; Toth, B. J. Org. Chem. 1987, 53, 1064-1071, 1.32 grams (6.34 mmol) of $\mathbf{1 6 0}$ were oxidized to crude $\mathbf{1 5 7}$, which was purified by column chromatography $(10 \% \mathrm{EtOAc})$ to afford $1.23 \mathrm{~g}(94 \%)$ of product as a clear, colorless oil. This compound was concentrated carefully at low vacuum due to its volatility. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.63(30 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 5 \mathrm{~h}), 5.11(\mathrm{~s}, 2 \mathrm{H})$, $2.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\delta 201.5,172.7,135.8,128.6,128.5,128.3,128.2,66.3,42.9,33.1,17.3$; HRMS found 206.0943 $[\mathrm{M}]^{+}$, calcd 206.0943 for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}\right]^{+}$.

(3-bromopropoxy)(tert-butyl)dimethylsilane. Following the procedure detailed in Boutellier, M.; Wallach, D.; Tamm, C. Helv. Chim. Acta. 1993, 76, 2515-2527, 3.52 grams (25.34 mmol) of 3-bromopropanol were converted crude product, which was flushed through a short silica pad with copious amounts of $\mathrm{Et}_{2} \mathrm{O}$ to afford 6.4 g (quant.) of (3-bromopropoxy)-(tert-butyl) dimethylsilane as a dark yellow oil. Data are: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.77(\mathrm{t}, J=5.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.55(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-1.96(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.1(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 60.7,35.8,31.0,26.2,18.6,-5.1$.

(3-(tert-butyldimethylsilyloxy)propyl)triphenylphosphonium bromide (154). (3-

bromopropoxy)(tert-butyl)dimethylsilane ($6.23 \mathrm{~g}, 24.59 \mathrm{mmol}$) was diluted in dry benzene (17.6 $\mathrm{mL})$. Triphenylphosphine $(7.09 \mathrm{~g}, 27.05 \mathrm{mmol})$ was then added. The reaction was fitted with a water condenser and brought to reflux for 72 hours. It was then concentrated to give a hygroscopic foam, which was dried under high vacuum for three days using the apparatus shown (fig. 7.1). This cleanly provided 12.6 g (quant.) of $\mathbf{1 5 4}$ as a white solid. Data are: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.82-7.79(\mathrm{~m}, 9 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 6 \mathrm{H}), 3.83(\mathrm{bs}, 2 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 2 \mathrm{H})$, $1.89(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 135.0,133.4$, 133.3, 130.4, 130.3, 118.4, 117.7, 61.6 (d, $J=8.31 \mathrm{~Hz}$), 25.7, 18.97 (d, $J=26.25 \mathrm{~Hz}), 17.9,-5.5$. HRMS found $435.2273[\mathrm{M}]^{+}$, calcd 435.2268 for $\left[\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{OPSi}\right]^{+}$.

Figure 7.1.

154

(Z)-benzyl 8-(tert-butyldimethylsilyloxy)oct-5-enoate (161). Phosphonium salt $\mathbf{1 5 4}$ (8.56 g, $16.61 \mathrm{mmol})$ was dissolved in dry THF (166 mL) and cooled under N_{2} to $-30^{\circ} \mathrm{C} . n-$ Butyllithium (1.6 M/hexanes, $11.42 \mathrm{~mL}, 18.27 \mathrm{mmol}$) was then added, turning the solution bright orange. This was warmed and stirred at room temperature for 10 minutes. Then a solution of aldehyde $157(4.11 \mathrm{~g}, 19.93 \mathrm{mmol})$ in THF (33 mL) was added by cannula. The reaction mixture was next cooled down to $-30^{\circ} \mathrm{C}$ and stirred for three hours. It was then quenched by addition of water $(100 \mathrm{~mL})$ and dichloromethane $(200 \mathrm{~mL})$. The layers were mixed and separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and purified by column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to afford $5.85 \mathrm{~g}(97 \%)$ of clean 161 as a clear yellow oil. This compound was concentrated carefully at low vacuum due to its volatility. Data are: TLC R_{f} $=0.1(5 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.41(\mathrm{t}, J=5.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{q}, J 1=4 \mathrm{~Hz}, J 2=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26=2.24(\mathrm{~m}$, 2H), 2.10-2.09 (m, 2H), 1.74-1.71 (m, 2H), 0.9 (s, 9H), 0.06(s, 6H); $\delta{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz) $\delta 173.6,130.5,128.8,128.4,127.2,66.3,63.1,53.6,33.9,31.3,26.9,26.2,25.1,18.6,-$ 5.0. HRMS found $362.2277[M]^{+}$, calcd 362.2277 for $\left[\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}^{+}\right.$.

(Z)-benzyl 8-hydroxyoct-5-enoate (162). Ester 161 ($1.36 \mathrm{~g}, 3.75 \mathrm{mmol}$) was dissolved in dry THF (89 mL) and cooled under N_{2} to $0^{\circ} \mathrm{C}$. Tetra- n-butylammonium fluoride ($1.0 \mathrm{M} / \mathrm{THF}$, 4.5
$\mathrm{mL}, 4.5 \mathrm{mmol}$) was then added, and the solution stirred at $0{ }^{\circ} \mathrm{C}$ for 3 hours. Once starting material was consumed (TLC), the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(90$ $\mathrm{mL})$ and transferred to a separatory funnel. It was sequentially extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50$ mL) and EtOAc ($3 \times 75 \mathrm{~mL}$). The combined organize layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and purified by column ($20 \% \mathrm{EtOAc} /$ hexanes $\rightarrow 50 \% \mathrm{EtOAc} /$ hexanes $)$ to afford $0.795 \mathrm{~g}(85 \%)$ of $\mathbf{1 6 2}$ as a yellow oil. This compound was concentrated carefully at low vacuum due to its volatility. Data are: $\mathrm{TLC}_{\mathrm{R}}=0.08(15 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.51-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.27(\mathrm{q}, J 1=3.25 \mathrm{~Hz}, J 2=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.5,136.0,131.6,128.5,128.2,128.2,126.5,66.1,62.2,33.5,30.7,26.5$, 24.7, 14.1. HRMS found $248.1436[M]^{+}$, calcd 248.1436 for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}\right]^{+}$.

(Z)-benzyl 8-iodooct-5-enoate (163). Alcohol 162 ($370 \mathrm{mg}, 1.49 \mathrm{mmol}$) was dissolved in dry THF (22 mL) and cooled to $0^{\circ} \mathrm{C}$. Triphenylphosphine ($586 \mathrm{mg}, 2.23 \mathrm{mmol}$), imidazole (304 $\mathrm{mg}, 4.47 \mathrm{mmol}$), and iodine ($567 \mathrm{mg}, 2.23 \mathrm{mmol}$) were then added, and the reaction stirred at 0 ${ }^{\circ} \mathrm{C}$ for 1 hour. Once the starting material was consumed (TLC), the reaction was diluted with saturated aqueous sodium bisulfate $(25 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL})$. The layers were mixed and separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 75 \mathrm{~mL})$. The combined organic layers were then washed with brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The crude product was then purified by chromatography ($2.5 \% \mathrm{EtOAc} /$ hexanes) to afford 526 mg (98%) of $\mathbf{1 6 3}$ as a clear yellow oil. This compound was concentrated carefully at low vacuum due to its volatility. It was also concentrated and handled in darkness to prevent potential
decomposition. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.13(2.5 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $7.36(\mathrm{bs}, 5 \mathrm{H}), 5.51-5.34(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{q}, J 1=3.5 \mathrm{~Hz}$, $J 2=4.75 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.72(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.5,136.3,129.0,128.8,128.7,128.5,128.4,66.4,33.9,31.6,27.0,24.9$, 5.6.

(Z)-(8-(benzyloxy)-8-oxooct-3-enyl)triphenylphosphonium iodide (158). Iodide 163 (509 mg , 1.42 mmol) was dissolved in acetonitrile (21 mL). Triphenylphosphine ($745 \mathrm{mg}, 2.84 \mathrm{mmol}$) was then added, and the solution was brought and stirred at reflux for 20 hours. Once $\mathbf{1 6 3}$ had been consumed (TLC), the crude material was cooled and diluted further with 150 mL of acetonitrile. This material was then extracted with hexanes ($12 \times 25 \mathrm{~mL}$), transferred to a tared flask, and concentrated to produce 878 mg (quant.) of $\mathbf{1 5 8}$ as a deep yellow syrup. To react adequately with coupling aldehydes, $\mathbf{1 5 8}$ must also be dried overnight using the apparatus shown in Figure 7.1 above. Even when stored under argon atmosphere at low temperature, this salt decomposes slowly to unidentified products over two to three weeks. This material can also be purified chromatographically $\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, though it still remains unclear whether doing so inhibits later coupling reactivity. Data are: $\mathrm{TLC} \mathrm{R}_{f}=0.73\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.85-7.79(\mathrm{~m}, 9 \mathrm{H}), 7.73-7.65(\mathrm{~m}, 6 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.67-5.62$ $(\mathrm{m}, 1 \mathrm{H}), 5.41-5.36(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.77-3.72(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.2,135.3$,
$135.6,130.7,128.6,128.5,128.1,126.8,126.7,118.0,117.4,66.0,33.4,26.7,24.3,22.9,20.2$,
14.2. HRMS was negative.

7.5.5. Coupling with Trans-Cinnamaldehyde

(5Z,8Z,10E)-benzyl 11-phenylundeca-5,8,10-trienoate (165). Prior to reaction, Wittig salt 158 was thoroughly dried by repeated dilution/re-concentration in dry 1:1 THF: toluene, followed by overnight subjection to the apparatus depicted in figure 7.1 above. $\mathbf{1 5 8}(189 \mathrm{mg}, 0.30 \mathrm{mmol})$ was then dissolved in dry THF (2.03 mL) and cooled under N_{2} to $-78^{\circ} \mathrm{C}$. Methyllithium was them added, which turned the solution dark yellow. The reaction was stirred 5 minutes at -78 ${ }^{\circ} \mathrm{C}$, then warmed and stirred at $-25^{\circ} \mathrm{C}$ for 30 minutes. Toluene (2.03 mL) was then added, and the solution was re-cooled to $-78{ }^{\circ} \mathrm{C}$. Trans-cinnamaldehyde $\mathbf{1 6 4}(0.025 \mathrm{~mL}, 0.203 \mathrm{mmol})$ was then added, and the solution stirred at $-78^{\circ} \mathrm{C}$ for 5 minutes. It was then warmed to $-40^{\circ} \mathrm{C}$ and stirred for 1 minute, at which time HMPA $(0.331 \mathrm{~mL})$ was added. The reaction continued stirring, warming gradually to $-10{ }^{\circ} \mathrm{C}$ over two hours, until cinnamaldehyde consumption was observed (TLC). The reaction was subsequently quenched by addition of 25% aqueous ammonium acetate $(10 \mathrm{~mL})$, followed by water $(10 \mathrm{~mL})$. The suspension was transferred to a separatory funnel, and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added. The layers were mixed and separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed
with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and then purified by chromatography ($20 \% \mathrm{EtOAc} /$ hexanes). This afforded 59 mg of clean 165 (84%) as a yellow oil. Data are: TLC $\mathrm{R}_{f}=0.6\left(20 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.42(\mathrm{~d}, J=4 \mathrm{~Hz} 2 \mathrm{H}), 7.37-7.28$ (m, 6H), $7.26(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}$, $J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.38(\mathrm{~m}, 3 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.00(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.16$ $(\mathrm{dd}, J 1=3.75 \mathrm{~Hz}, J 2=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 170.8$, $134.9,133.5,130.0,128.0,126.8,126.4,126.0,126.0,125.9,125.6,125.6,124.9,123.8,121.5$, 63.6, 31.1, 24.0, 23.9, 23.7, 22.2. HRMS found $346.1932[\mathrm{M}]^{+}$, calcd 346.1932 for $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2}\right]^{+}$.

7.5.6. Completing the Synthesis

(S,5Z,8Z,10E,14Z)-benzyl 12-(benzyloxy)icosa-5,8,10,14-tetraenoate (159). Prior to reaction, Wittig salt $\mathbf{1 5 8}$ was thoroughly dried by azeotropic distillation with 1:1 THF/toluene (3x) and then overnight subjection to the apparatus depicted in Figure 7.1 above. $158(684 \mathrm{mg}, 1.10$ $\mathrm{mmol})$ was then dissolved in dry THF $(4.9 \mathrm{~mL})$ and cooled under N_{2} to $-78^{\circ} \mathrm{C}$. Methyllithium $\left(1.6 \mathrm{M} / \mathrm{Et}_{2} \mathrm{O}, 0.92 \mathrm{~mL}, 1.47 \mathrm{mmol}\right)$ was then added, which turned the solution dark yellow. The reaction was stirred 5 minutes at $-78^{\circ} \mathrm{C}$, then warmed to $-40^{\circ} \mathrm{C}$ and stirred 30 minutes. Dry toluene $(4.9 \mathrm{~mL})$ was then added, and then stirring solution was cooled back down to $-78{ }^{\circ} \mathrm{C}$. At this stage, a solution of aldehyde $\mathbf{1 3 3}(210 \mathrm{mg}, 0.735 \mathrm{mmol}, 1.0$ equiv) in dry THF (4.9 mL) was
added by cannula. The resulting mixture was then stirred at $-78^{\circ} \mathrm{C}$ for 5 minutes, then warmed to $-40^{\circ} \mathrm{C}$ and stirred 1 minute. HMPA was then added, and the entire solution was stirred at -40 ${ }^{\circ} \mathrm{C}$, warming gradually to $-10^{\circ} \mathrm{C}$ over two hours. Complete consumption of $\mathbf{1 3 3}$ did not occur (TLC); nevertheless, the reaction was quenched by adding 25% aqueous ammonium acetate (15 $\mathrm{mL})$ and water (10 mL). The suspension was then extracted with dichlormethane ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and purified by column (100% hexanes $\rightarrow 2.5 \% \mathrm{EtOAc} /$ hexanes). This afforded 123 mg of $\mathbf{1 5 9}$ (33\%) as a yellow oil. Data are: $\operatorname{TLC} \mathrm{R}_{f}=0.38(5 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-7.32(\mathrm{~m}, 6 \mathrm{H})$, $7.26-7.25(\mathrm{~m}, 4 \mathrm{~h}), 6.50-6.44(\mathrm{~m}, 1 \mathrm{H}), 6.03-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J 1=3.75 \mathrm{~Hz}, J 2=4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.48-5.37(m, 5H), $5.10(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=5.75 \mathrm{~Hz}), 3.84(\mathrm{q}, J 1=3.75$ $\mathrm{Hz}, J 2=3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.2 .88(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.11(\mathrm{q}, J 1=3.25$ $\mathrm{Hz}, J 2=3.75 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.4,138.8,136.1,134.1,134.0,132.1,130.3,130.1$, $130.0,129.3,129.9,128.7,128.6,128.4,128.3,128.2,128.2,128.0,124.8,79.7,70.1,66.1,33.7$, $33.6,31.9,30.9,29.2,27.5,26.6,24.7,24.6,22.6,14.1$. HRMS found $500.3291[\mathrm{M}]^{+}$, calcd 500.3290 for $\left[\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{3}\right]^{+}$. Optical rotation data: $[\alpha]_{\mathrm{D}}^{23}=-17.54^{\circ}\left(\mathrm{c} 2.17, \mathrm{CHCl}_{3}\right)$.

(S,5Z, $8 Z, 10 E, 14 Z$)-benzyl 12-hydroxyicosa-5,8,10,14-tetraenoate (166). Compound 159 (57 $\mathrm{mg}, 0.114 \mathrm{mmol}, 1$ equiv) was dissolved in dry dichloromethane (1.14 mL) and cooled under N_{2} to $-78{ }^{\circ} \mathrm{C}$. Boron trichloride ($1 \mathrm{M} /$ toluene, $0.137 \mathrm{~mL}, 0.137 \mathrm{mmol}, 1.2$ equiv) was then added
dropwise, and the solution stirred at $-78^{\circ} \mathrm{C}$ for 1 hour. It was then warmed to $-20^{\circ} \mathrm{C}$ and stirred for an additional hour. The reaction never completely consumed $\mathbf{1 5 9}$ (TLC); nevertheless, it was quenced by adding brine $(2 \mathrm{~mL})$ and dichloromethane $(10 \mathrm{~mL})$. The layers were mixed and separated, and the aqueous layer was then extracted with dichlormethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and purified by column (100% hexanes $\rightarrow 2.5 \% \mathrm{EtOAc} /$ hexanes). This afforded 15 mg of $\mathbf{1 6 6}$ (32\%) as a yellow oil. Data are: $\operatorname{TLC} \mathrm{R}_{f}=0.22(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.38-7.32(\mathrm{~m}$, $3 H), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.16-6.11(\mathrm{~m}, 1 \mathrm{H}), 6.06-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.67-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.33(\mathrm{~m}$, $4 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{q}, J 1=3.75 \mathrm{~Hz}, J 2=7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.34(\mathrm{~m}, 2 \mathrm{H})$, $2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{q}, J 1=3.75 \mathrm{~Hz}, J 2=2.75 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 2 \mathrm{H})$, 1.36-1.26(m, 8H), $0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.4,136.1,133.0$, $132.1,128.6,128.2,127.7,124.8,82.0,33.7,33.5,31.9,29.7,27.4,24.7,24.7,22.5,14.1$; HRMS found $410.2821[\mathrm{M}]^{+}$, calcd 410.2821 for $\left[\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3}\right]^{+}$. Optical rotation data: $[\alpha]_{\mathrm{D}}{ }^{23}=-$ $1.33^{\circ}\left(\mathrm{c} 0.75, \mathrm{CHCl}_{3}\right)$.

12-(S)-HETE (11). Compound $\mathbf{1 6 6}$ ($15 \mathrm{mg}, 0.037 \mathrm{mmol}, 1$ equiv) was dissolved in dry THF $(2.6 \mathrm{~mL})$ and cooled under N_{2} to $0^{\circ} \mathrm{C} .1 \mathrm{~N} \mathrm{LiOH}(0.73 \mathrm{~mL}, 0.73 \mathrm{mmol}, 20$ equiv) was then added, followed by methanol $(0.313 \mathrm{~mL}, 0.117 \mathrm{M})$. The solution was stirred 2.5 hours. It was then quenched with dry ice, concentrated, and diluted with EtOAc $(10 \mathrm{~mL})$ and a pH 5.0 buffer solution. The layers were mixed and separated. The aqueous layer was then extracted with

EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Efforts to purify by column chromatography were unsuccessful. However, the crude material did test positive by HRMS: found $320.2351[\mathrm{M}]^{+}$, calcd 320.2351 for $\left[\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}\right]^{+}$.

7.6. Procedures from Chapter 6

7.6.1. Selected Substrate Preparations

Phenethyl 2-(naphthalen-2-yl)acetate (177). 2-napthaleneacetic acid ($2.0 \mathrm{~g}, 10.74 \mathrm{mmol}, 1.2$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26.85 \mathrm{~mL}, 0.4 \mathrm{M})$ and was cooled, stirring under N_{2}, to $0{ }^{\circ} \mathrm{C}$.

Once the acid had dissolved, phenethanol ($1.07 \mathrm{~mL}, 8.95 \mathrm{mmol}, 1.0$ equiv), diisopropylethylamine ($2.34 \mathrm{~mL}, 13.43 \mathrm{mmol}, 1.5$ equiv), and N, N-dimethylaminopyridine ($164 \mathrm{mg}, 1.34 \mathrm{mmol}, 0.15$ equiv) were added. This suspension was stirred five minutes, at which time was added 1-ethyl-3-(3dimethylaminopropyl) carbodiimide hydrochloride (EDCI, $2.57 \mathrm{~g}, 13.43 \mathrm{mmol}, 1.5$ equiv). The reaction stirred 22.5 hours, warming from $0^{\circ} \mathrm{C}$ to RT. Once the phenethanol was consumed (TLC), the reaction crude was diluted with water $(20 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(120 \mathrm{~mL})$. The layers were mixed and separated, and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The organic layers were combined and were washed sequentially with $3 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(30 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, and saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$. The organic layers were then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The crude material was purified by column chromatography ($7 \% \mathrm{EtOAc} /$ hexanes) to afford $2.26 \mathrm{~g}(87 \%)$ of product 177 as a white solid. Data are: $\mathrm{TLC} \mathrm{R}_{\mathrm{f}}=$ $0.8(30 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.85-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.50$
$-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 2H), $3.78(\mathrm{~s}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 171.5,137.7,133.5$, $132.5,131.5,128.9,128.4,128.2,128.0,127.7,127.7,127.4,126.5,126.1,125.8,65.4,41.7$, 35.0; HRMS found $291.1318[\mathrm{M}+\mathrm{H}]^{+}$, calcd 291.1307 for $\left[\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2}\right]^{+}$.

2-(naphthalen-1-yl)ethyl 2-(naphthalen-2-yl)acetate (Table 6.1, entry 11). Following the above procedure for 177, substituting 2-(naphthalen-1-yl)ethanol (obtained by reducing 1naphthylacetic acid with DIBAL-H) for phenethanol, the crude material was purified by column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give the product with a 56% yield. Data are: $\mathrm{TLC}_{\mathrm{f}}=$ $0.8(30 \% \mathrm{EtOAc} / \mathrm{hexanes}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.13(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.78$ $(\mathrm{m}, 6 \mathrm{H}), 7.76-7.30(\mathrm{~m}, 7 \mathrm{H}), 4.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 171.9,134.2,133.9,133.8,132.9,132.4,131.8,129.2,128.6,128.4$, $128.1,128.0,127.8,127.4,126.5,126.2,126.0,125.8,123.9,65.3,41.9,32.5$.

2,2-diphenylethyl 2-(naphthalen-2-yl)acetate (Table 6.1, entry 12). Following the above procedure for $\mathbf{1 7 7}$, substituting 2,2-diphenylethanol for phenethanol, the crude material was purified by column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give the product with an 85% yield. Data are: $\mathrm{TLC} \mathrm{R}_{\mathrm{f}}=0.68(30 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.93-7.91$
(m, 1H), $7.84-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.347 .28(\mathrm{~m}, 11 \mathrm{H}), 4.79(\mathrm{~d}, J=$ $3.75 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 171.7,141.3$, $133.8,132.8,131.7,128.9,128.6,128.5,128.4,128.1,128.0,127.7,127.1,126.4,126.2,67.5$, 50.2, 41.9.

7.6.2. General Procedure for Racemic Aryl Acetate Alkylations

(土)-Phenethyl 2-(naphthalen-2-yl)pent-4-enoate (Table 6.1, entry 10). Phenethyl 2-(naphthalen-2-yl)acetate 177 ($50 \mathrm{mg}, 0.172 \mathrm{mmol}, 1.0$ equiv) and tetra- n-butylammonium bromide ($6.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.12$ equiv) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL}, 0.1 \mathrm{M})$. This solution was cooled, while stirring under N_{2}, to $0^{\circ} \mathrm{C}$. Allyl bromide ($73 \mu \mathrm{~L}, 0.86 \mathrm{mmol}, 5.0$ equiv) was then added, and the solution continued stirring for an additional 10 minutes, whereupon $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($116 \mathrm{mg}, 0.689 \mathrm{mmol}, 4.0$ equiv) was added. The reaction vessel was sealed under N_{2} and continued stirring for 16 hours, warming from $0^{\circ} \mathrm{C}$ to RT. Once compound $\mathbf{1 7 7}$ was consumed (TLC), the reaction crude was diluted with water (10 mL) and diethyl ether $(30 \mathrm{~mL})$. The layers were mixed and then separated, and the organic layer was washed with saturated aqueous NaCl (1 x 10 mL). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and purified by column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to afford 58 mg (97%) of the product as a yellow oil. Data are: $\operatorname{TLC~R} \mathrm{R}_{\mathrm{f}}=0.42(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.82-7.78$ $(\mathrm{m}, 3 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{dd}, J 1=$
$4 \mathrm{~Hz}, J 2=11 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.5,142.6,137.7,136.2$, 133.1, 132.7, 128.8, 128.4, 128.3, 127.9, 127.6, 126.8, 126.4, 126.1, 125.9, 125.9, 112.3, 65.3, 50.2, 41.1, 35.0, 22.7; HRMS found $345.1864[\mathrm{M}+\mathrm{H}]^{+}$, calcd 345.1849 for $\left[\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2}\right]+$; enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): $5 \% \mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23{ }^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 12.16 \mathrm{~min}, R$ $12.78 \mathrm{~min}, 48.96$: 51.04 er .

7.6.3. General Procedure for Asymmetric Aryl Acetate Alkylations

(R)-phenethyl 2-(naphthalen-2-yl)pent-4-enoate (Table 6.1, entry 10). Phenethyl 2-

(naphthalen-2-yl)acetate $\mathbf{1 7 7}$ ($50 \mathrm{mg}, 0.172 \mathrm{mmol}, 1.0$ equiv) and catalyst $\mathbf{6 1}(17 \mathrm{mg}, 0.0172 \mathrm{mmol}$, 0.1 equiv) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (pre-chilled to $-40^{\circ} \mathrm{C}, 1.75 \mathrm{~mL}, 0.1 \mathrm{M}$). This solution was then stirred at $-40^{\circ} \mathrm{C}$ under N_{2}. Allyl bromide ($73 \mu \mathrm{~L}, 0.86 \mathrm{mmol}, 5.0$ equiv) was added, and the solution continued stirring for an additional 10 minutes, whereupon $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(116 \mathrm{mg}, 0.689$ mmol, 4.0 equiv) was added. The reaction vessel was then sealed with a rubber stopper under N_{2}, and the mixture continued stirring for 23 hours at $-40^{\circ} \mathrm{C}$. When compound 177 was consumed (TLC), the reaction crude was diluted with water (10 mL) and diethyl ether (30 mL). The layers were mixed and separated, and the organic layer was washed with saturated aqueous $\mathrm{NaCl}(10$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and then passed through 20 mL of silica gel packed into a 30 M filter cup that was fitted onto an evacuated filter flask (eluent: $\mathrm{Et}_{2} \mathrm{O}, 250$ $\mathrm{mL})$. The filtrate was transferred to a pre-weighed RB flask, concentrated, and then left under high vacuum for 3 h , giving 56 mg (99\%) of product as a yellow oil. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.53(2 \times 5 \%$

EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.85-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, \mathrm{Jl}=3.5 \mathrm{~Hz}, J 2=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 5.77$ $-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.82$ $(\mathrm{m}, 3 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.3,137.7,135.9,135.2,133.4$, $132.7,128.9,128.4,128.4,127.9,127.6,126.9,126.4,126.2,125.9,125.9,117.1,65.3,51.6$, 27.3, 35.0; HRMS found $331.1692[\mathrm{M}+\mathrm{H}]^{+}$, calcd 331.1620 for $\left[\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{2}\right]^{+}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5\% $\mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (minor) $12.89 \mathrm{~min}, R$ (major) $13.41 \mathrm{~min}, 22.23$: $77.78 \mathrm{er}, 56 \%$ ee.

7.6.4. Selected Alkylations

(土)-2-(naphthalen-1-yl)ethyl 2-(naphthalen-2-yl)pent-4-enoate (Table 6.1, entry 11). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), the crude material was purified by column chromatography (20\% EtOAc/hexanes) to give the product as a white solid. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.77\left(20 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 8.03(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 5 \mathrm{H})$, $7.23(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.44-$ $4.39(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{t}, J=3.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.92-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.57(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.4,135.9,135.2,133.8,133.5,133.4,132.7,132.0$, $128.8,128.4,127.9,127.7,127.4,127.1,127.0,126.2,126.2,125.9,125.6,125.4,123.6,117.1$,
64.8, 51.7, 37.4, 32.1; HRMS found $381.1701[\mathrm{M}+\mathrm{H}]^{+}$, calcd 381.1849 for $\left[\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{2}\right]^{+}$; enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): $5 \% \mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23{ }^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 15.53 \mathrm{~min}, R$ $16.19 \mathrm{~min}, 48.76$: 51.24 er.

(R)-2-(naphthalen-1-yl)ethyl 2-(naphthalen-2-yl)pent-4-enoate (Table 6.1, entry 11).

 Following general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), the crude material was purified by column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to give the product as a white solid with a 78% yield. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.78(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.03(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.51-$ $7.40(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.96(\mathrm{~m}$, 2H), $4.44-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{t}, J=3.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.92-3.29(\mathrm{~m}, 1 \mathrm{H})$, $2.63-2.57(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.4,135.9,135.2,133.8,133.5,133.4$, $132.7,132.0,128.8,128.4,127.9,127.7,127.4,127.1,127.0,126.2,126.2,125.9,125.6,125.4$, 123.6, 117.1, 64.8, 51.7, 37.4, 32.1; HRMS found $381.1701[\mathrm{M}+\mathrm{H}]^{+}$, calcd 381.1849 for $\left[\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{2}\right]^{+}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): $5 \% \mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (minor) $13.79 \mathrm{~min}, R$ (major) $14.47 \mathrm{~min}, 20.05: 79.05,59 \%$ ee.
(土)-2,2-diphenylethyl 2-(naphthalen-2-yl)pent-4-enoate (table 6.1, entry 12). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), the crude material was purified by column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to give the product as a white solid. Data are: $\mathrm{TLC} \mathrm{R}_{\mathrm{f}}=0.82$ ($20 \% \mathrm{EtOAc} /$ hexanes); enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5\% EtOH/hexane, $0.5 \mathrm{~mL} / \mathrm{min}$, $23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 20.79 \mathrm{~min}, R 21.52 \mathrm{~min}, 42.98: 57.02 \mathrm{er}$.

(R)-2,2-diphenylethyl 2-(naphthalen-2-yl)pent-4-enoate (Table 6.1, entry 12). Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), the crude material was purified by column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to give the product as a white solid with a 78% yield. Data are: $\mathrm{TLC}_{\mathrm{R}}^{\mathrm{f}}=0.78(20 \% \mathrm{EtOAc} /$ hexanes $)$; retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): $2.5 \% \mathrm{EtOH} /$ hexane, 0.5 $\mathrm{mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S (minor) $20.65 \mathrm{~min}, R$ (major) $21.31 \mathrm{~min}, 23.2$: $76.8,54 \%$ ee.

7.6.5. Racemic Alkylation Products From Table 6.3

(\pm)-phenethyl 4-methyl-2-(naphthalen-2-yl)pent-4-enoate (Table 6.3, entry 2). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting 3-bromo-2-methyl propene for allyl bromide, the crude material was purified by column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give the product as a white solid with an 89% yield. Data are: $\mathrm{TLC} \mathrm{R}_{\mathrm{f}}=0.45(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.83-7.78(\mathrm{~m}$, 3H), 7.73 (s, 1H), $7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=9.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{dd}, J 1=4$ $\mathrm{Hz}, J 2=11 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.5,142.6,137.7,136.2$, 133.1, 132.7, 128.8, 128.4, 128.3, 127.9, 127.6, 126.8, 126.4, 126.1, 125.9, 125.9, 112.3, 65.3, 50.2, 41.1, 35.0, 22.7; HRMS found $345.1864[\mathrm{M}+\mathrm{H}]^{+}$, calcd 345.1849 for $\left[\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2}\right]^{+}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): $5 \% \mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23{ }^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 13.89 \mathrm{~min}, R$ $14.83 \mathrm{~min}, 48.89$: 51.11 er.

(土)-(E)-phenethyl 5,9-dimethyl-2-(naphthalen-2-yl)deca-4,8-dienoate (Table 6.3, entry 3).

Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting geranylbromide for allyl bromide, the crude material was purified by column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to give the target compound as a clear colorless oil with a 71% yield. Data are: $\operatorname{TLC} \mathrm{R}_{\mathrm{f}}=0.54\left(10 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.83$ $-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.05$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-$ $2.81(\mathrm{~m}, 3 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.9,137.9,137.9,136.6,133.6,132.8,131.6,129.1,128.6$, $128.4,128.5,127.8,127.9,126.6,126.3,126.0,124.3,121.0,65.4,52.3,39.9,35.2,32.1,26.8$, 25.9, 17.9, 16.4; HRMS found $427.2636[\mathrm{M}+\mathrm{H}]^{+}$, calcd 427.2631 for $\left[\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{2}\right]^{+}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): $2.5 \% \mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 9.38 \mathrm{~min}, R$ 9.68 min, 49.58 : 50.42 er.

(土)-phenethyl 3-(4-bromophenyl)-2-(naphthalen-2-yl)propanoate (Table 6.3, entry 4).
Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above),
substituting 4-bromobenzyl bromide for allyl bromide, the crude material was purified by column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to give the target compound as a white solid with a 91% yield. Data are: $\mathrm{TLC} \mathrm{R}_{\mathrm{f}}=0.46(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) 7.81$ $-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=3.75 \mathrm{~Hz}$, $2 \mathrm{H}), 7.14(\mathrm{bs}, 3 \mathrm{H}), 6.98(\mathrm{~m}, 4 \mathrm{H}), 4.24(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{t}, J=11$ $\mathrm{Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J 1=3.5 \mathrm{~Hz}, J 2=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 173.2,138.2,137.8,135.8,133.6,132.9,131.6,130.9,129.0,128.7,128.6,128.1,127.8$, $127.2,126.7,126.5,126.2,126.0,120.6,96.4,65.6,53.8,39.1,35.1$; HRMS found 459.0905 $[\mathrm{M}+\mathrm{H}]^{+}$, calcd 459.0954 for $\left[\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{BrO}_{2}\right]^{+}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): $2.5 \% \mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23{ }^{\circ} \mathrm{C}, \lambda=$ 254 nm , retention times: $S 26.5 \mathrm{~min}, R 27.3 \mathrm{~min}, 51.81: 48.19 \mathrm{er}$.

(\pm)-phenethyl 3-(4-tert-butylphenyl)-2-(naphthalen-2-yl)propanoate (Table 6.3, entry 5).

Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting p-tertbutylbenzyl bromide for allyl bromide, the crude material was purified by column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to give the target compound as a white solid with a 97% yield. Data are: $\operatorname{TLC~R}_{\mathrm{f}}=0.49(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $7.83-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.07(\mathrm{~m}$, $5 \mathrm{H}), 6.98(\mathrm{~d}, J=1.75 \mathrm{~Hz}, 2 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{dd}, J 1=2 \mathrm{~Hz}$, $J 2=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J 1=3.5 \mathrm{~Hz}, J 2=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.3,149.2,137.7,136.3,136.0,133.4,132.7,128.8,128.6$, $128.4,128.4,127.9,127.6,126.9,126.4,126.1,126.0,125.9,125.3,65.3,53.8,39.0,35.0,34.4$, 31.4; HRMS found $437.2471[\mathrm{M}+\mathrm{H}]^{+}$, calcd 437.2475 for $\left[\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{O}_{2}\right]^{+}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5\% $\mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 14.85 \mathrm{~min}, R 15.65 \mathrm{~min}, 47.17$: 52.83 er.

(土)-phenethyl 3-(biphenyl-2-yl)-2-(naphthalen-2-yl)propanoate (Table 6.3, entry 6).
Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting o-phenyl benzyl bromide for allyl bromide, the crude material was purified by column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to give the target compound as a white solid with an 88% yield. Data are: $\mathrm{TLC} \mathrm{R}_{\mathrm{f}}=0.46(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $7.76-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 9 \mathrm{H}) 7.02(\mathrm{~d}, J=4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{t}, J=7.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J 1=2.5$ $\mathrm{Hz}, J 2=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J 1=1 \mathrm{~Hz}, J 2=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.3,142.6,141.7,137.9,136.5,136.3,133.5,132.7,130.4,130.2,129.4$, $129.2,129.0,128.5,128.5,128.3,128.0,127.7,127.6,127.2,126.7,126.6,126.2,126.0,125.9$, 65.4, 52.7, 37.5, 35.1; HRMS found $457.2188[\mathrm{M}+\mathrm{H}]^{+}$, calcd 457.2162 for $\left[\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{2}\right]^{+}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H
column): $5 \% \mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 13.03 \mathrm{~min}, R$ $14.17 \mathrm{~min}, 50.1: 49.9$ er.

(\pm)-phenethyl 2,3-di(naphthalen-2-yl)propanoate (Table 6.3, entry 7). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting 2-bromomethyl naphthalene for allyl bromide, the crude material was purified by column chromatography (10% EtOAc/hexanes) to give the target compound as a white solid with a 96% yield. Data are: TLC $\mathrm{R}_{\mathrm{f}}=0.77(4 \times 5 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.83-7.76(\mathrm{~m}, 5 \mathrm{H}), 7.73-$ $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.27(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 3 \mathrm{H})$, $6.92(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J 1=2.25 \mathrm{~Hz}$, $J 2=11.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J 1=3.5 \mathrm{~Hz}, J 2=10 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=2.75 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 172.7,137.1,136.1,135.5,132.9,132.9,132.2,131.7,128.2,127.9,127.8$, $127.4,127.3,127.1,127.1,127.1,126.9,126.9,126.4,125.8,125.6,125.4,124.9,64.8,53.3$, 39.2, 34.4; HRMS found $431.2005[\mathrm{M}+\mathrm{H}]^{+}$, calcd 431.2005 for $\left[\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{2}\right]^{+}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5\% $\mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 26.575 \mathrm{~min}, R 29.543 \mathrm{~min}$, 50.4 : 49.6 er.

(土)-phenethyl 2-(naphthalen-2-yl)propanoate (Table 6.3, entry 8). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting iodomethane for allyl bromide, the crude material was purified by column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give the target compound as a white solid with an 85% yield. Data are: $\mathrm{TLC} \mathrm{R}_{\mathrm{f}}=0.46(10 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.85-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J 1=3.5 \mathrm{~Hz}, J 2=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 2 \mathrm{H}), 4.36-$ $4.27(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.86(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 174.6,138.1,137.9,133.7,132.8,129.1,128.6,128.5,128.0,127.8,126.6$, 126.4, 126.3, 126.0, 126.0, 65.5, 45.9, 35.2, 18.6; HRMS found $305.1559[\mathrm{M}+\mathrm{H}]^{+}$, calcd 305.1536 for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2}\right]^{+}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): $5 \% \mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 16.74 \mathrm{~min}, R 19.09 \mathrm{~min}, 50.39: 49.67 \mathrm{er}$.

7.6.6. Recrystallization Data from Table 6.3

(R)-phenethyl 2-(naphthalen-2-yl)pent-4-enoate (Table 6.3, entry 1). Following the general procedure for asymmetric aryl acetate alkylations (section 7.6 .3 above), the product was isolated after filtration and was analyzed (without further purification) by chiral HPLC (DAICEL

Chiralpak AD-H column, $5 \% \mathrm{EtOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$), giving the following retention times: $S 12.64 \mathrm{~min}, R 13.20 \mathrm{~min}, 26.98: 73.02 \mathrm{er}, 46 \%$ ee. The product was then reconcentrated in vacuo and dissolved in a minimal amount of warm 1:1 $\mathrm{Et}_{2} \mathrm{O}$ /hexanes. It was capped under argon and cooled in solution overnight in the freezer, giving precipitated product by the next day. This was filtered to afford $36 \mathrm{mg}(63 \%)$ of the title compound as a white, crystalline solid. The material was deemed pure by NMR and was reanalyzed by chiral HPLC. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.53$ (5% EtOAc/hexanes 2 x$) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.85-$ $7.78(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J 1=3.5 \mathrm{~Hz}, J 2=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-$ $7.16(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.27(\mathrm{~m}$, $2 \mathrm{H}), 3.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 173.3,137.7,135.9,135.2,133.4,132.7,128.9,128.4,128.4,127.9,127.6,126.9,126.4$, 126.2, 125.9, 125.9, 117.1, 65.3, 51.6, 27.3, 35.0; HRMS found $331.1692[\mathrm{M}+\mathrm{H}]^{+}$, calcd 331.1620 for $\left[\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{2}\right]+$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): $5 \% \mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 12.10 \mathrm{~min}, R 12.59 \mathrm{~min}, 3.77: 96.23 \mathrm{er}, 93 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-41^{\circ}(\mathrm{c} 0.267$, CHCl_{3}). The absolute configuration of the major enantiomer was deduced as R based on evidences presented below.

1. 3-methyl-2-bromo propene, $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O},-40^{\circ} \mathrm{C}, 61$ ($10 \mathrm{~mol} \%$),
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23 \mathrm{H}: 86 \%, 57 \%$ ee
2. Recryst. $1: 1 \mathrm{Et}_{2} \mathrm{O} /$ hex. $68 \%, 86 \%$ ee

(R)-phenethyl 4-methyl-2-(naphthalen-2-yl)pent-4-enoate (Table 6.3, entry 2). Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting

3-methyl-2-bromo propene for allyl bromide, the crude product was obtained as a yellow oil (86\%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5\%EtOH/hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$): S (minor) $12.80 \mathrm{~min}, R$ (major) $13.64 \mathrm{~min}, 21.49: 78.51 \mathrm{er}$, 57% ee. After recrystallization in $1: 1 \mathrm{Et}_{2} \mathrm{O}$ /hexanes, as described above, the product was obtained as a white, crystalline solid (68\%) giving the following chiral HPLC data (same column/conditions): S (minor) $11.27 \mathrm{~min}, R$ (major) $12.01 \mathrm{~min}, 7.22$: 92.78, 85.6% ee. Data are: TLC $\mathrm{R}_{\mathrm{f}}=0.45(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.83-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.73$ $(\mathrm{s}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.28(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{dd}, J 1=4 \mathrm{~Hz}, J 2=$ $11 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.5,142.6,137.7,136.2,133.1$, 132.7, 128.8, 128.4, 128.3, 127.9, 127.6, 126.8, 126.4, 126.1, 125.9, 125.9, 112.3, 65.3, 50.2, 41.0, 35.0, 22.7; HRMS found $345.1864[\mathrm{M}+\mathrm{H}]^{+}$, calcd 345.1849 for $\left[\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2}\right]^{+} ;[\alpha]_{\mathrm{D}}{ }^{24}=-38^{\circ}$ (c $0.183, \mathrm{CHCl}_{3}$).

(R,E)-phenethyl 5,9-dimethyl-2-(naphthalen-2-yl)deca-4,8-dienoate (Table 6.3, entry 3).

Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting geranyl bromide for allyl bromide, the crude product was obtained as a yellow oil (90\%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 2.5\%
$\mathrm{EtOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$): S (minor) $10.52 \mathrm{~min}, R$ (major) $11.08 \mathrm{~min}, 20.55$: 79.45 er, 59% ee. After recrystallization in pure hexanes at $-78^{\circ} \mathrm{C}$, the product was obtained as
a white, crystalline solid (68\%) and gave the following chiral HPLC data (same column/conditions): S (minor) $11.4 \mathrm{~min}, R$ (major) $11.95 \mathrm{~min}, 15.16: 84.84,70 \%$ ee. Data are: TLC $\mathrm{R}_{\mathrm{f}}=0.54(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.83-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.71$ $(\mathrm{s}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.00(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.81(\mathrm{~m}, 3 \mathrm{H}), 2.58-$ $2.52(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 173.9,137.9,137.9,136.6,133.6,132.8,131.6,129.1,128.6,128.4,128.5,127.8,127.9$, $126.6,126.3,126.0,124.3,121.0,65.4,52.3,39.9,35.2,32.1,26.8,25.9,17.9,16.4$; HRMS found $427.2636[\mathrm{M}+\mathrm{H}]^{+}$, calcd 427.2631 for $\left[\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{2}\right]^{+} ;[\alpha]_{\mathrm{D}}{ }^{24}=-54^{\circ}\left(\mathrm{c} 0.167, \mathrm{CHCl}_{3}\right)$.

(R)-phenethyl 3-(4-bromophenyl)-2-(naphthalen-2-yl)propanoate (Table 6.3, entry 4).

Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting 4-bromobenzyl bromide for allyl bromide, the crude product was obtained as a yellow oil (94\%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 2.5\% $\mathrm{EtOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$): S (minor) $26.39 \mathrm{~min}, R$ (major) $27.12 \mathrm{~min}, 26.27$: $73.73 \mathrm{er}, 47.5 \%$ ee. After recrystallization in $1: 1 \mathrm{Et}_{2} \mathrm{O} /$ hexanes, as described above, the product was obtained as a white, crystalline solid (67\%) giving the following chiral HPLC data (same column/conditions): S (minor) $28.84 \mathrm{~min}, R$ (major) $29.65 \mathrm{~min}, 1.32: 98.68,97 \%$ ee. Data are: TLC $\mathrm{R}_{\mathrm{f}}=0.46(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) 7.81-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{~s}$, $1 \mathrm{H}), 7.48-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{bs}, 3 \mathrm{H}), 6.98$
$(\mathrm{m}, 4 \mathrm{H}), 4.24(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J l=$ $3.5 \mathrm{~Hz}, J 2=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.3,138.2$, $137.8,135.8,133.6,132.9,131.6,130.9,129.0,128.7,128.6,128.1,127.8,127.2,126.7,126.5$, 126.2, 126.0, 120.5, 96.4, 65.6, 53.8, 39.1, 35.1; HRMS found $459.0905[\mathrm{M}+\mathrm{H}]^{+}$, calcd 459.0954 for $\left[\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{BrO}_{2}\right]^{+} ;[\alpha]_{\mathrm{D}}{ }^{24}=-71^{\circ}\left(\mathrm{c} 0.65, \mathrm{CHCl}_{3}\right)$.

(R)-phenethyl 3-(4-tert-butylphenyl)-2-(naphthalen-2-yl)propanoate (Table 6.3, entry 5).

Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting p-tertbutylbenzyl bromide for allyl bromide, the crude product was obtained as a yellow oil (96.5\%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5\% $\mathrm{EtOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$): S (minor) $14.83 \mathrm{~min}, R$ (major) $15.57 \mathrm{~min}, 14.73$: 85.27 er, 71% ee. After recrystallization in $1: 1 \mathrm{Et}_{2} \mathrm{O} /$ hexanes, as described above, the product was obtained as a white, crystalline solid (72\%) giving the following chiral HPLC data (same column/conditions): S (minor) $15.29 \mathrm{~min}, R$ (major) $16.10 \mathrm{~min}, 0.08$ er : 99.02, 99% ee. Data are: $\mathrm{TLC} \mathrm{R}_{\mathrm{f}}=0.49(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $(\mathrm{CDCl} 3,500 \mathrm{MHz}) \delta 7.83-7.78(\mathrm{~m}, 3 \mathrm{H})$, $7.73(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=3.75 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=1.75$ $\mathrm{Hz}, 2 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{dd}, J 1=2 \mathrm{~Hz}, J 2=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ $(\mathrm{dd}, J 1=3.5 \mathrm{~Hz}, J 2=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(\mathrm{CDCl} 3,125$ $\mathrm{MHz)}$ ס 173.3, 149.2, 137.7, 136.3, 136.0, 133.4, 132.7, 128.8, 128.6, 128.4, 128.4, 127.9, 127.6, $126.9,126.4,126.1,126.0,125.9,125.3,65.3,53.8,39.0,35.0,34.4,31.4 ;$ HRMS found 437.2471 $[\mathrm{M}+\mathrm{H}]+$, calcd 437.2475 for $\left[\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{O}_{2}\right]^{+} ;[\alpha]_{\mathrm{D}}{ }^{24}=-61^{\circ}\left(\mathrm{c} 0.0983, \mathrm{CHCl}_{3}\right)$.

1. o-phenylbenzyl bromide

2. Recryst. 1:1 $\mathrm{Et}_{2} \mathrm{O} /$ hex. $81 \%, 92 \%$ ee

(R)-phenethyl 3-(biphenyl-2-yl)-2-(naphthalen-2-yl)propanoate (Table 6.3, entry 6).

Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting o-phenylbenzyl bromide for allyl bromide, the crude product was obtained as a yellow oil (94\%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5\% $\mathrm{EtOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$): S (minor) $12.81 \mathrm{~min}, R$ (major) $13.87 \mathrm{~min}, 5.62$: $94.38 \mathrm{er}, 89 \%$ ee. After recrystallization in $1: 1 \mathrm{Et}_{2} \mathrm{O} /$ hexanes, as described above, the product was obtained as a white, crystalline solid (81\%) giving the following chiral HPLC data (same column/conditions): S (minor) $12.34 \mathrm{~min}, R$ (major) $13.72 \mathrm{~min}, 3.87: 96.13,92 \%$ ee. Data are: TLC $\mathrm{R}_{\mathrm{f}}=0.46(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.76-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.67-$ $7.63(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 9 \mathrm{H}) 7.02(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.92(\mathrm{~m}$, $2 \mathrm{H}), 4.20-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{t}, J=7.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J 1=2.5 \mathrm{~Hz}, J 2=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.20(\mathrm{dd}, J 1=1 \mathrm{~Hz}, J 2=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $173.3,142.6,141.7,137.9,136.5,136.3,133.5,132.7,130.4,130.2,129.4,129.2,129.0,128.5$, $128.5,128.3,128.0,127.7,127.6,127.2,126.7,126.6,126.2,126.0,125.9,65.4,52.7,37.5$, 35.1; HRMS found $457.2188[\mathrm{M}+\mathrm{H}]^{+}$, calcd 457.2162 for $\left[\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{2}\right]^{+} ;[\alpha]_{\mathrm{D}}{ }^{24}=-35^{\circ}(\mathrm{c} 0.716$, $\left.\mathrm{CHCl}_{3}\right)$.

(R)-phenethyl 2,3-di(naphthalen-2-yl)propanoate (Table 6.3, entry 7). Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting 2bromomethyl naphthalene for allyl bromide, the crude product was obtained as a yellow oil (96\%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5\% EtOH/hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$): S (minor) $29.49 \mathrm{~min}, R$ (major) $31.82 \mathrm{~min}, 18.62: 81.38 \mathrm{er}$, 63% ee. After recrystallization in $1: 1 \mathrm{Et}_{2} \mathrm{O} /$ hexanes, as described above, the product was obtained as a white, crystalline solid (73\%) giving the following chiral HPLC data (same column/conditions): S (minor) $34.59 \mathrm{~min}, R$ (major) $37.63 \mathrm{~min}, 2.86: 97.14,94 \%$ ee. Data are: TLC R ${ }_{\mathrm{f}}=0.77(4 \times 5 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.83-7.76(\mathrm{~m}, 5 \mathrm{H})$, $7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.27(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}$, $3 \mathrm{H}), 6.92(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J 1=2.25$ $\mathrm{Hz}, J 2=11.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J 1=3.5 \mathrm{~Hz}, J 2=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.746(\mathrm{t}, J=2.74 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 172.7,137.1,136.1,135.5,132.9,132.9,132.2,131.7,128.2,127.9$, $127.8,127.4,127.3,127.1,127.1,127.1,126.9,126.9,126.4,125.8,125.6,125.4,124.9,64.8$, 53.3, 39.2, 34.4; HRMS found $431.2005[\mathrm{M}+\mathrm{H}]^{+}$, calcd 431.2005 for $\left[\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{2}\right]^{+} ;[\alpha]_{\mathrm{D}}{ }^{24}=-64^{\circ}$ (c $0.11, \mathrm{CHCl}_{3}$).

(R)-phenethyl 2-(naphthalen-2-yl)propanoate (Table 6.3, entry 8). Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting iodomethane for allyl bromide, the crude product was obtained as a yellow oil (100\%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5\% EtOH/hexanes, $0.5 \mathrm{~mL} / \mathrm{min}$, $23{ }^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$): S (minor) $15.39 \mathrm{~min}, R$ (major) $17.48 \mathrm{~min}, 22.38: 77.62 \mathrm{er}, 55 \%$ ee. After recrystallization in 1:1 $\mathrm{Et}_{2} \mathrm{O}$ /hexanes, as described above, the product was obtained as a white, crystalline solid (71\%) giving the following chiral HPLC data (same column/conditions): S (minor) $15.62 \mathrm{~min}, R$ (major) $17.76 \mathrm{~min}, 4.08: 95.92,92 \%$ ee. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.46(10 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.85-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.41(\mathrm{dd}, \mathrm{Jl}=3.5 \mathrm{~Hz}, J 2=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 2 \mathrm{H}), 4.36-$ $4.27(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.86(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 174.6,138.1,137.9,133.7,132.8,129.1,128.6,128.5,128.0,127.8,126.6$, 126.4, 126.3, 126.0, 125.9, 65.5, 45.9, 35.2, 18.6; HRMS found $305.1559[\mathrm{M}+\mathrm{H}]^{+}$, calcd 305.1536 for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2}\right]^{+} ;[\alpha]_{\mathrm{D}}{ }^{24}=-25^{\circ}\left(\mathrm{c} .1666, \mathrm{CHCl}_{3}\right)$.

(\pm)-phenethyl 2-(6-methoxynaphthalen-2-yl)pent-4-enoate (185). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting substrate $\mathbf{1 8 4}$ (described in section 7.6 .7 below) for $\mathbf{1 7 7}$, the crude material was purified by column
chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to give the product as a white solid. Data are: $\mathrm{TLC} \mathrm{R}_{\mathrm{f}}=$ $0.57(30 \% \mathrm{EtOAc} / \mathrm{hexanes}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.71(\mathrm{dd}, J 1=4.5 \mathrm{~Hz}, J 2=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=4.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{bs}, 2 \mathrm{H}), 7.09-7.07(\mathrm{~m}$, $2 \mathrm{H}), 5.77-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{t}, \mathrm{J}=8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.94-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.57(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 173.5, 157.7, 137.7, 135.3, 133.8, 133.6, 129.4, 128.9, 128.9, 128.4, 127.2, 126.7, 126.4, 126.4, 119.0, 117.0, $105.5,65.3,55.3,51.4,37.4,35.0$; HRMS found $360.1725[\mathrm{M}+\mathrm{H}]^{+}$, calcd 360.1725 for [$\left.\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{3}\right]+$; enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): $3 \% \mathrm{EtOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: $S 29.35$ $\min , R 32.03 \mathrm{~min}, 50.1$: 49.9 er.

(R)-Phenethyl 2-(6-methoxynaphthalen-2-yl)pent-4-enoate (185). Following the general procedure for racemic aryl acetate alkylations (section 7.6.3 above), substituting substrate $\mathbf{1 8 4}$ (described in section 7.6 .7 below) for $\mathbf{1 7 7}$, the crude product was obtained as a yellow oil (100\%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5\% $\mathrm{EtOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$): S (minor) $29.34 \mathrm{~min}, R$ (major) $32.34 \mathrm{~min}, 28.57$: 71.43 er, 43% ee. After recrystallization in $1: 1 \mathrm{Et}_{2} \mathrm{O} /$ hexanes, as described above, the product was obtained as a white, crystalline solid (62\%) giving the following chiral HPLC data (same column/conditions): S (minor) $29.17 \mathrm{~min}, R$ (major) $32.07 \mathrm{~min}, 7.57$: $92.43,85 \%$ ee. Data are: TLC $\mathrm{R}_{\mathrm{f}}=0.37(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.71(\mathrm{dd}, J 1=4.5 \mathrm{~Hz}, J 2=$
$8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.39$ (d, $J=4.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.16$ (m, 4H), 7.14 (bs, 2 H$), 7.09-$ $7.07(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$, $3.77(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.57(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\delta 173.5,157.7,137.7,135.3,133.8,133.6,129.4,128.9,128.9,128.4,127.2,126.7,126.4,126.4$, $119.0,117.0,105.5,65.3,55.3,51.4,37.4,35.0$; HRMS found $360.1725[\mathrm{M}+\mathrm{H}]^{+}$, calcd 360.1725 for $\left[\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{3}\right]^{+}$.

7.6.7. Total Synthesis of (S)-Naproxen

2-(6-methoxynaphthalen-2-yl)-1-morpholinoethanethione. 6-methoxy-2-acetylnaphthalene ($1.0 \mathrm{~g}, 4.99 \mathrm{mmol}, 1.0$ equiv), sulfur (precipitated USP, $319 \mathrm{mg}, 9.99 \mathrm{mmol}, 2.0$ equiv), and p toluenesulfonic acid ($15 \mathrm{mg}, 0.074 \mathrm{mmol}, 0.015$ equiv) were dissolved in morpholine (1.3 mL , $14.98 \mathrm{mmol}, 3.0$ equiv) and stirred at reflux $\left(\sim 130^{\circ} \mathrm{C}\right)$ to form a deep red mixture, which continued for ~ 45 hours. Once the starting material was consumed (TLC), the reaction mixture was cooled to RT, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and wash sequentially with saturated aqueous NaHCO_{3} (1×10 $\mathrm{mL})$ and saturated aqueous $\mathrm{NaCl}(1 \times 10 \mathrm{~mL})$. The organic layer was concentrated and purified by column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to afford 1.47 g (98%) of the target compound as a yellow/gray solid. Data are: $\operatorname{TLC} \mathrm{R}_{\mathrm{f}}=0.36(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 7.74-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 4.41-4.33$ $(\mathrm{m}, 2 \mathrm{H}), 3.98-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.66(\mathrm{~m}, 6 \mathrm{H}), 3.37(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.8,133.7,130.9,129.2,129.1,127.6,126.5,126.2,119.3,105.8$, $66.5,66.2,55.4,50.9,50.7,50.3$; HRMS found $302.1258[\mathrm{M}+\mathrm{H}]^{+}$, calcd 302.1209 for
$\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}\right]^{+}$. [Note: An alternative procedure for this compound was successfully employed using 1.2 equivalents of sulfur (precipitated USP) and 3.28 equivalents of morpholine, with no p toluenesulfonic acid added. Otherwise following the same conditions (including temperature, time, and workup) the crude product was taken on to the next step without any purification. The crude yield was $123 \%(1.855 \mathrm{~g})$.

2-(6-methoxynaphthalen-2-yl)acetic acid. 2-(6-methoxynaphthalen-2-yl)-1-morpholinoethanethione ($283 \mathrm{mg}, 0.939 \mathrm{mmol}, 1.0$ equiv) was diluted with $8 \% \mathrm{w} / \mathrm{w} \mathrm{NaOH}$ in $1: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ $(187 \mathrm{~mL}, 0.005 \mathrm{M})$ and was stirred at reflux $\left(\sim 130^{\circ} \mathrm{C}\right)$, gradually forming a yellow solution. After 5 hours, the reaction mixture was cooled to RT, was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 50 \mathrm{~mL})$ and transferred to a separatory funnel. The layers were mixed and separated (the organic layer being discarded), and the aqueous layer was transferred to a 1 L beaker, where it was lowered to pH 4 with 50% aqueous AcOH . Once it had reached pH 4 , the solution was concentrated, transferred again to a separatory funnel, and was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The layers were mixed and separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated, giving 209 mg (103% crude yield) of the target compound as a light-tan solid. The material was rinsed with hexanes and taken on to the next step without further purification. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.00(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR (Acetone $\left.d_{6} / \mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.69(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=4.25 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (Acetone $d_{6} / \mathrm{CDCl}_{3}$, $125 \mathrm{MHz}) \delta 171.6,156.8,132.9,129.1,128.2,128.2,127.3,126.9,126.1,118.1,104.8,54.1$, 39.9; HRMS found $216.0786[M]^{+}$; calcd 216.0786 for $\left[\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}\right]^{+}$. [Note: An alternative procedure for this compound was successfully employed using the same conditions, except that
acidification was done with 1 NHCl to pH 2.0 . This gave the final product as a yellow solid with an 88% yield $(0.951 \mathrm{~g})$.

Phenethyl 2-(6-methoxynaphthalen-2-yl)acetate (184). Following procedure for $\mathbf{1 7 7}$ (section 7.6.1 above), 250 mg (1.16 mmol) of 2-(6-methoxynaphthalen-2-yl)acetic acid was converted to ester 184. Following column purification ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$), 274 mg of $\mathbf{1 8 4}$ (74%) were obtained as a white solid. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.51(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 7.66(\mathrm{dd}, J 1=1.25 \mathrm{~Hz}, J 2=4.75 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=4.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-$ $7.17(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.71(\mathrm{~m}, 4 \mathrm{H}), 4.29(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 171.7,157.7,137.8,133.7,129.3,129.2,129.0,128.5$, $128.0,127.9,127.1,126.6,119.0,105.6,65.4,55.3,41.5,35.1$; HRMS found $321.1481[\mathrm{M}+\mathrm{H}]^{+}$, calcd 321.1485 for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{3}\right]^{+}$.

(土)-phenethyl 2-(6-methoxynaphthalen-2-yl)propanoate (187). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting iodomethane for allyl bromide, 51 mg of product $(\mathbf{\pm}) \mathbf{- 1 8 7}(98 \%)$ were obtained as a white solid. Data are: $\mathrm{TLC}_{\mathrm{f}}$ $=0.62(20 \%$ EtOAc/hexanes $),{ }^{1} \mathrm{H}$ NMR $\delta 7.69-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J 1=3.5$ $\mathrm{Hz}, J 2=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 5 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.33-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.82(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13}{ }^{1} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
$\delta 174.8,157.8,137.9,135.8,133.9,129.5,129.1,129.7,128.5,127.3,126.6,126.5,126.2,119.1$, 105.7, $65.4,55.5,45.7,35.2,18.6$; HRMS found $335.1318[\mathrm{M}+\mathrm{H}]^{+}$, calcd 335.1641 for $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{3}\right]^{+}$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): $5 \% \mathrm{EtOH} /$ hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$, retention times: S $19.89 \mathrm{~min}, R 23.70 \mathrm{~min}, 49.65$: 50.35 er.

(S)-phenethyl 2-(6-methoxynaphthalen-2-yl)propanoate (187). Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting iodomethane for allyl bromide and catalyst 186 (described in section 7.6 .8 below) for catalyst 61, the crude product was obtained as a yellow oil (99\%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, $5 \% \mathrm{EtOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 23^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$): S (major) 18.06 \min , R (minor) $22.05 \mathrm{~min}, 81.93: 18.07 \mathrm{er}, 64 \%$ ee. After recrystallization in $1: 1 \mathrm{Et}_{2} \mathrm{O} /$ hexanes, as described above in section 7.6 .6 , the product was obtained as a white, crystalline solid (71\%) giving the following chiral HPLC data (same column/conditions): S (major) $17.94 \mathrm{~min}, R$ (minor) $22.07 \mathrm{~min}, 96.18: 3.82,92 \%$ ee. Data are: $\mathrm{TLC}_{\mathrm{f}}^{\mathrm{f}}=0.62(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.69-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J 1=3.5 \mathrm{~Hz}, J 2=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}$, $5 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.33-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.82$ (m, 2H), $1.55(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 174.8,157.8,137.9,135.8,133.9$, $129.5,129.1,129.7,128.5,127.3,126.6,126.5,126.2,119.1,105.7,65.4,55.5,45.7,35.2,18.6$; HRMS found $335.1318[\mathrm{M}+\mathrm{H}]^{+}$, calcd 335.1641 for $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{3}\right]^{+} ;[\alpha]_{\mathrm{D}}{ }^{24}=+29^{\circ}(\mathrm{c} 0.550$, CHCl_{3}). [Note: The absolute configuration of the major enantiomer was deduced as S based on
the following: (1) commercial (S)-Naproxen was converted to $\mathbf{1 8 7}$ (see below) and gave the same optical rotation and spectral data; (2) (S)-Naproxen made from synthetic 187 gave the same optical rotation and spectral data as a commercial sample (see below); (3) The major S enantiomer of $\mathbf{1 8 7}$ has a lower retention time than its R counterpart by chiral HPLC. Alkylation reactions run with catalyst 61, therefore, were presumed to give R-enriched products because their major enantiomers had higher retention times (chiral HPLC). S-product 187 gave positive optical rotation, while alkylation products from 61 gave negative.

(S)-phenethyl 2-(6-methoxynaphthalen-2-yl)propanoate (187). Following procedure for $\mathbf{1 7 7}$ (section 7.6.1 above), $1.5 \mathrm{~g}(6.51 \mathrm{mmol})$ of commercial (S)-Naproxen $12[(S)-(+)$-6-methoxy- $\alpha-$ methyl-2-naphthaleneacetic acid] was converted to 187 . After purification by column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes), 1.69 g of 187 (93\%) was isolated as a white crystalline solid. Data are: $\mathrm{TLC}_{\mathrm{f}}=0.62\left(20 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.76(\mathrm{~d}, J=4.25 \mathrm{~Hz}, 2 \mathrm{H})$, $7.71(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=4.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{bs}, 2 \mathrm{H}), 4.41-4.31(\mathrm{~m}, 2 \mathrm{H})$, $3.94(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{bs}, 2 \mathrm{H}), 1.64(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 174.6,157.7,137.8,135.7,133.8,129.4,129.1,129.0,128.4,127.2,126.5,126.3$, 126.1, 119.0, 105.6, 65.3, 55.3, 45.6, 35.1, 18.5; HRMS found $334.1569[\mathrm{M}]^{+}$, calcd 334.1569 for $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{3}\right]^{+} ;[\alpha]_{\mathrm{D}}{ }^{24}=+27.5^{\circ}\left(\mathrm{c} 1.018, \mathrm{CHCl}_{3}\right)$; the enantiomers' retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column, $5 \% \mathrm{EtOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}$,
$23{ }^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$): S (major) $18.67 \mathrm{~min}, R$ (minor) $22.22 \mathrm{~min}, 99.47: 0.53 \mathrm{er},>98 \%$ ee. These data match those of $\mathbf{1 8 7}$ made from 184 (above).

(S)-Naproxen (12). (S)-phenethyl 2-(6-methoxynaphthalen-2-yl)propanoate 187 (96 mg, 0.287 mmol, 1.0 equiv), $10 \% \mathrm{Pd} / \mathrm{C}(64 \mathrm{mg}, 0.667$ grams of Pd / C per gram of 187), palladium acetate (71 $\mathrm{mg}, 0.316 \mathrm{mmol}, 1.1$ equiv), and ammonium formate ($86 \mathrm{mg}, 1.36 \mathrm{mmol}, 4.76$ equiv) were dissolved in methanol ($6.5 \mathrm{~mL}, 0.0442 \mathrm{M}$). The mixture was then stirred at reflux $\left(\sim 65^{\circ} \mathrm{C}\right)$ for 17 hours. Once 187 was consumed (TLC), the reaction flask was cooled to RT. The crude suspension was filtered, and the filtrate was concentrated to form a white solid. This material was dissolved in chloroform (50 mL), and the organic layer was washed with 1 N aqueous $\mathrm{HCl}(10 \mathrm{~mL})$. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. It was then diluted and passed through 20 mL of silica gel packed into a 30M filter cup that was fitted onto an evacuated filter flask (eluent: 50\% EtOAc/hexanes, $250 \mathrm{~mL}+\sim 5$ drops AcOH). The filtrate was transferred to a pre-weighed flask and was concentrated by rotary evaporator. (Note: diluting and then evaporating this concentrated product a few times with cyclohexane azeotropically removes excess AcOH.) This gave $60 \mathrm{mg}(91 \%)$ of (S)-Naproxen (12) as a white, crystalline solid. Data are: TLC $\mathrm{R}_{\mathrm{f}}=0.10(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\delta 11.12(\mathrm{bs}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=5 \mathrm{~Hz}, 3 \mathrm{H}), 7.43(\mathrm{~d}, J=$ $4.25,1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{q}, J 1=3.5 \mathrm{~Hz}, J 2=7 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=$ $3.75 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 180.9,157.7,134.9,133.8,129.3,128.9,127.3$, $126.2,126.1,119.0,105.6,55.3,45.3,18.1 ;[\alpha]_{\mathrm{D}}{ }^{24}=+56^{\circ}\left(\mathrm{c} 0.767, \mathrm{CHCl}_{3}\right)$. Data for commercial (S)-Naproxen (12): ${ }^{1} \mathrm{H}$ NMR $\delta 11.29(\mathrm{bs}, 1 \mathrm{H}), 7.72$ - $7.70(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=4.25$, $1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{q}, J 1=3.75 \mathrm{~Hz}, J 2=7 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=3.5$
$\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 180.1,157.7,134.8,133.8,129.3,128.9,127.3,126.2$,
$126.1,119.1,105.5,55.3,45.2,18.2 ;[\alpha]_{\mathrm{D}}{ }^{24}=+64^{\circ}\left(\mathrm{c} 0.7667, \mathrm{CHCl}_{3}\right)$.

7.6.8. Synthesis of Catalyst 186

Hydrocinchonine. Following the procedure for hydrocinchonidine 68 (section 7.3.3 above), substituting $(+)$-cinchonine for (-)-cinchonidine, $1.73 \mathrm{~g}(87 \%)$ of product were isolated as an offwhite solid.

2,7-bis(hydrocinchoninium- N-methyl) naphthalene dibromide. Following the procedure described for compound 71 (section 7.3.3 above), substituting hydrocinchonine for hydrocinchonidine, $0.885 \mathrm{~g}(54 \%)$ of product were isolated as a light red solid.

2,7-bis $[O(9)$-allylhydrocinchoninium- N-methyl]naphthalene dibromide (186). Following the procedure for catalyst 61 (section 7.3.3 above), substituting 2,7-bis(hydrocinchoninium- N methyl) naphthalene dibromide for $71,0.297 \mathrm{~g}(31 \%)$ of product 186 were isolated as an orangecream solid. Data are: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$, with increased Fourier transfers): $\delta 9.03$ $(\mathrm{s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 2 \mathrm{H}), 8.34-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.27-8.23(\mathrm{~m}, 2 \mathrm{H}), 8.16-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.95$ $(\mathrm{m}, 2 \mathrm{H}), 7.87-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{bs}, 2 \mathrm{H}), 6.22-$ $6.16(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 5.36-5.13(\mathrm{~m}, 4 \mathrm{H}), 4.83(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 8 \mathrm{H}), 3.74-3.58(\mathrm{~m}, 3 \mathrm{H}), 2.97(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.53$ (bs, 4H), $1.22(\mathrm{bs}, 4 \mathrm{H}), 0.85(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H})$; large extraneous peaks: $\delta 3.33\left(\mathrm{H}_{2} \mathrm{O}\right.$ in DMSO$\left.d_{6}\right), 2.49\left(\right.$ DMSO- H_{x} in DMSO- d_{6}). HRMS found $413.2587[\mathrm{M}+2 \mathrm{H}]^{2+} / 2$; calcd 413.26 for $\left[\mathrm{C}_{56} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{2+} / 2$.

Selected NMR Spectra

180	160	140	120	100	80	60	40	20	0	ppu

Whaw wemb

| 180 | 160 | 140 | 120 | 100 | $B 0$ | 60 | 40 | 20 | 0 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

COCO2

 $\begin{array}{lllllllllll}200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 10\end{array}$

