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ABSTRACT 

Advanced Data Analysis Tools and Multi-Instrument Material Characterization 

Bhupinder Singh 
Department of Chemistry and Biochemistry, BYU 

Doctor of Philosophy 

My dissertation focuses on (i) the development of new analysis tools and methodologies 
for analyzing X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass 
spectrometry (ToF-SIMS) data, and (ii) the comprehensive characterization of materials 
(nanodiamonds) using a multi-instrument approach. Chapter 1 contains (i) a discussion of the 
two techniques I focused on most in my work: XPS and ToF-SIMS, (ii) a discussion of the 
common chemometrics techniques used to analyze data from these methods, and (iii) the 
advantages/rationale behind the multi-instrument characterization of materials. Chapter 2 
describes various good practices for obtaining reasonable peak fits in XPS, which can also be 
applied to peak fitting data from different techniques. To address the issue of user 
subjectivity/bias in XPS peak fitting, I introduce two less biased mathematical functions for 
characterizing XPS narrow scans, namely the equivalent width (EW) and the autocorrelation 
width (AW). These functions are discussed in Chapters 3 and 4. In Chapter 5, I then introduce 
uniqueness plots as simple and straightforward graphical tools for assessing the quality of XPS 
peak fits and for determining whether fit parameters are correlated. This tool is extensively used 
in spectroscopic ellipsometry, and the mathematics behind it is known in XPS. However, to the 
best of my knowledge, this graphical tool has never been applied to XPS. ToF-SIMS data 
analysis is somewhat challenging due to the enormous amounts of data that are collected, and 
also the matrix effect in SIMS. This amount of information is significantly increased when depth 
profiles are performed on samples. Chapter 6 discusses a new chemometrics tool that I introduce 
for analysis of complex data sets, with emphasis on XPS and ToF-SIMS depth profiling data. 
The new approach is called the Information Content (IC) or entropy, which is adapted from 
Claude Shannon’s work on Information Theory. Chapter 7 then contains a presentation of the 
comprehensive characterization of five nanodiamond samples used to manufacture particles for 
liquid chromatography. The advantages of a multi-instrument approach for material 
characterization and the lack of comprehensive material characterization in the literature are 
emphasized. To the best of my knowledge this is the most comprehensive characterization of 
nanodiamonds that has been reported in the literature. Chapter 8 presents conclusions of my 
work and future work. This thesis also contains six appendices. Appendix 1 contains an article 
from a scientific magazine that I wrote to highlight the importance and applications of the EW 
and AW to characterize XPS narrow scans. Appendices 2-5 are application notes I wrote on 
separations I performed on a nanodiamond based HPLC column. Finally, Appendix 6 describes 
the ToF-SIMS analysis of the tungsten species in the nanodiamond samples characterized in 
Chapter 7. 

Keywords: XPS, ToF-SIMS, equivalent width, autocorrelation width, uniqueness plot, 
information content, multi-instrument material characterization 
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Chapter 1: Introduction to XPS and ToF-SIMS, including their data analysis, and 

the multi-instrument characterization of materials 

1.1 Introduction 

Material characterization and analysis play a central role in the advancement of a wide 

range of materials, including semiconductor devices,1-4 materials for separation science,5-13 data 

storage devices,14-18 biomaterials,19, 20 and hydrophobic coatings.13, 21-25 In this regard, a comment 

from the National Materials Advisory Board (NMAB) on materials characterization, which was 

written some time ago, is still relevant and insightful: “Characterization describes those features 

of the composition and structure (including defects) of a material that are significant for a 

particular preparation, study of properties, or use, and suffice for the reproduction of the 

material.”26, 27 For many materials, the most important area of interest is its surface because the 

surface interacts directly with its surroundings vis-à-vis its physical and chemical properties.26, 28-

31 For example, the outer monolayer (0.1 – 1 nm) of a material often plays a central role in 

catalysis, biological signaling and transport, separation science, and sensors. For other 

applications, such as semiconductor manufacturing, it is often critical to know the distribution of 

elements in a material as a function of depth into it.32-34 A knowledge of surfaces also aids in our 

understanding of corrosion, adhesion, wettability, and device failure.35 Fortunately, there is a 

wide suite of surface analytical techniques available to scientists, which have become available 

as a result of technological improvements in the fields of vacuum technology, optics, lasers, 

electronics, and computer science.29  

A thorough understanding of materials leads to the development of desired surface 

chemistries suited to specific applications, as well as to other advances in material properties. It 
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is nearly impossible to completely characterize a material using just one characterization 

technique. Each of the commonly used methods views a material in a somewhat limited way, 

shedding light on a certain property/characteristic of the same. Therefore, comprehensive 

material characterization requires a multi-instrumental approach. This has been one of the major 

focuses of the Linford group at Brigham Young University.5, 6, 14, 18, 36 

Some of the analytical tools that are extensively used in the Linford group at BYU 

include X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry 

(ToF-SIMS), spectroscopic ellipsometry (SE), water contact angle goniometry, atomic force 

microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy 

(TEM), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). This 

dissertation focuses primarily on two of these methods, which are two of the most commonly 

used surface analytical techniques: XPS and ToF-SIMS. My major contribution as a graduate 

student has been in developing new tools for the analysis of XPS and ToF-SIMS data. I have also 

carefully characterized a set of different nanodiamond samples using these and other 

instrumental techniques. In the remainder of this Introduction, I will now discuss XPS and ToF-

SIMS in detail. I will then describe various data processing tools that can be used for XPS and 

ToF-SIMS data analysis. This will be followed by a discussion of the multi-instrument 

characterization of materials. 

1.2 X-ray photoelectron spectroscopy (XPS) 

XPS is one of the most commonly used surface analytical techniques,28, 37-40 as evidenced 

by the fact that it receives in excess of 10,000 citations in the literature per annum.41 A basic 

schematic of XPS is given in Figure 1.1. An XPS instrument consists of an electron source, e.g., 
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a tungsten filament at ca. 10 kV relative to a metal anode, e.g., Al, Mg, or Ag, a monochromator, 

a flood gun source to compensate for charging of non-conductive samples, and a concentric 

hemispherical analyzer. XPS works by illuminating samples with X-rays, which eject core level 

electrons from elements near the surface of the material by the photoelectron effect. The kinetic 

energies of these ejected electrons are measured by a concentric hemispherical analyzer. These 

kinetic energies are then converted to binding energies, and XPS spectra are most often plotted 

as the number of counts obtained at each binding energy. XPS data can be collected either as 

survey scans (lower resolution over a wide binding energy range) or narrow scans that are 

collected at higher resolution (over a narrower binding energy range). In general, each element 

has a unique binding energy for its core level electrons and, hence, XPS helps to identify and 

quantify the elemental composition of surfaces. 37-39 

In XPS, electrons ejected (formed) in a material lose energy as they travel through it. 

Beyond three mean free paths, the electrons have a high probability of experiencing an inelastic 

scattering event, by which they lose energy. Therefore the maximum depth that XPS can probe is 

ca. three mean free paths, which is generally 5 – 10 nm. The following equation is the 

fundamental relationship in XPS:42 

ℎ𝜈 = 𝐸𝐾.𝐸. +  𝐸𝐵.𝐸. +  ɸ (1.1) 

which could be rewritten as 

𝐸𝐵.𝐸. = ℎ𝜈 −  𝐸𝐾.𝐸. −  ɸ (1.2) 

where ℎ𝜈 is the photon (X-ray) energy, 𝐸𝐾.𝐸. and 𝐸𝐵.𝐸. are the kinetic and binding energies of the 

electrons, respectively, and  ɸ is the spectrophotometer work function. The most commonly used 

photon energy is from an Al source: the Al kα line at 1486.7 eV. 
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Figure 1.1 Schematic of an X-ray photoelectron spectrometer (XPS). Here, θ is the take-off angle of the electrons.
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1.3 Time-of-flight secondary ion mass spectrometry (ToF-SIMS) 

 Static ToF-SIMS was developed by Alfred Benninghoven in the late 1960’s.43 His initial 

work on SIMS started at the University of Cologne (Köln), Germany, and further development of 

a dedicated instrument for static ToF-SIMS took place in the 1970’s when Benninghoven moved 

to the University of Münster.43 Mass spectrometry is one of the most important techniques for 

surface chemical analysis, providing elemental and isotopic compositions of materials, and 

aiding in structural elucidation of compounds.44-46 As Benninghoven stated: “Static SIMS 

supplies chemical information, which cannot be obtained by any other surface analytical 

technique. This is the most important reason for the wide and rapid growth in the analytical 

applications of Static SIMS.”43 Thus, SIMS is now widely used for the surface analysis of 

materials. 

 Figure 1.2 shows a general schematic of a static ToF-SIMS instrument. It consists of a 

primary ion source, which generates cluster ions, e.g., Bi3
2+ or massive clusters of argon atoms, 

or monatomic ions like Ga+ or Cs+. For minimal energy and time dispersion of secondary ions, 

the primary ion source is pulsed to sub-nanosecond widths, with a pulse separation of ca. 20 ns.44 

The primary ion beam is focused using electromagnetic lenses. A buncher is used to accelerate 

the lagging ions in a pulse so that all of the ions arrive at a surface within ca. 1 ns of each other. 

SIMS works by bombarding a sample with energetic primary ions, which initiates a cascade of 

collisions on the surface that results in sputtering of material from the sample. The sputtered 

material is composed of neutral species, electrons, and a small number of charged species, which 

are the secondary ions. To prevent sample charging, a flood gun illuminates the sample with 

short pulses of low energy electrons between the primary ion pulses. In the case of a ToF mass 

analyzer, the secondary ions are accelerated by applying a bias, which feeds them into a field-
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free drift tube. This application of bias helps ensure that all the ions initially have the same 

kinetic energy. Of course there is a spread in the initial kinetic energies of the ions, which gives 

some deviation in their energies when they enter the mass analyzer. Therefore, a reflectron (an 

ion mirror) is used to focus the ions that have the same m/z values but different kinetic energies 

so that they strike the detector at the same time. The time taken by these secondary ions to reach 

the detector is measured, and this time is converted into an m/z ratio using the following 

equations. First, the energy of the extracted ion is given as: 

 𝐸 = 𝑞𝑉 (1.3) 

where 𝐸 refers to the energy of the ion, and q (or z) is its charge, and V is the voltage with which 

it is pulsed. Of course this energy is equal to the kinetic energy of the ion, which gives: 

 1
2
𝑚𝑣2 = 𝑧𝑉 

(1.4) 

where 𝑚 is the mass of the ion and 𝑣 is its velocity. Rearranging this equation gives: 

 𝑚
𝑧

=
2𝑉
𝑣2

 
(1.5) 

velocity, 𝑣, is distance (𝑑) divided by time (𝑡). Inserting this relationship into Equation 1.5 then 

yields: 

 𝑚
𝑧

=
2𝑉𝑡2

𝑑2
 

(1.6) 
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This equation demonstrates that the mass-to-charge (𝑚
𝑧

) ratio of the ion is directly proportional to 

the square of the time it takes to reach the detector. Lighter species reach the detector earlier and 

heavier species later. 

 Ion detection can be performed with a microchannel plate, a scintillator, and a 

photomultiplier tube (PMT) in series. The microchannel plate is usually made from a highly 

resistive material, and is used to convert the ion beam into a pulse of electrons. It consists of a 

parallel array of ca. 10 μm diameter microchannels separated by ca. 15 μm. The thickness of the 

microchannel plate is around 2 mm. A single particle arriving at the surface produces significant 

gain – it generates ca. 1000 electrons at the other face of the microchannel plate (see Figure 1.3). 

Thus, this device allows for single particle detection. This pulse of electrons hits the scintillator, 

which absorbs its energy and emits a flash of light. These photons strike the PMTs, which 

produces an electrical pulse.
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Figure 1.2. Schematic of a static ToF-SIMS instrument.  
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Figure 1.3. Schematic and functioning of a SIMS detector. 
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  The ion detection scheme discussed above assumes one electrical impulse for each ion 

that strikes the detector. This scenario becomes complicated when more than one ion strikes the 

detector at the same time, or if an ion strikes the detector before the detector can recover from a 

previous strike. In these cases, the ions produce a single electrical pulse, or no signal at all, 

which lead to an underestimation of the signal. Of course, this problem is insignificant for very 

low signals, but it becomes increasingly important for larger secondary ion yields. Under these 

conditions, it may be desirable to correct the data, which is typically done by applying a Poisson 

correction. Siméon-Denis Poisson was a French mathematician who derived the distribution that 

bears his name. This distribution gives the probability of a given number of discrete events 

happening in a defined time interval, provided that these events occur with a known average rate 

and are independent of the time of the previous event.47 The Poisson distribution is given by: 

 
𝑓(𝑘, 𝜆) =

𝑒−𝜆𝜆𝑘

𝑘!
 

(1.7) 

  Here, 𝑘 is the number of discrete events in a given time interval, e.g., the number of ions 

striking the detector in a given time interval, and 𝜆 is the expected number of events in the time 

interval, which is simply the total number of events divided by the total time, i.e., in ToF-SIMS, 

𝜆 is the total number of counts divided by the data acquisition time. Thus, using the Poisson 

distribution, one can determine the distribution of random events (number of ions predicted to 

strike the detector surface), i.e., how often one would expect no ion, one ion, two ions, etc. This 

correction can be applied to intense SIMS peaks that in all likelihood have been underestimated. 

It goes without saying that it is always better to deal with uncorrected data than to change it 

mathematically. Accordingly, if one is working in a high signal regime that requires the Poisson 
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correction, it may be better to lower the primary ion current, which will result in a lower 

secondary ion yield that does not require correction. 

 Benninghoven and coworkers were among the very first that worked on developing static 

SIMS for surface analysis.48, 49 Before that, dynamic SIMS was the widely used variant of the 

technique. Static and dynamic SIMS differ in the primary ion dose delivered to the surface, and 

therefore the depth of surface analyzed. In dynamic SIMS, the surface receives in access of 1013 

ions/cm2 which results in significant surface sputtering, i.e., depth profiling. Dynamic SIMS has 

found immense application in the depth profiling of semiconductors to measure their dopant 

profiles.43, 50, 51 Obviously, dynamic SIMS is both destructive and insensitive to surfaces.45 In 

static SIMS, the surface is bombarded with a relatively low dose of primary ions (1011 - 1013 

ions/cm2), which is known as the static regime. Under static conditions, the probability of the 

same spot being reanalyzed (struck twice) by the beam is negligible, “no spot on the surface 

should receive more than one primary ion strike.”43 This helps to keep the majority of the 

surface unaffected by the effects of sputtering. Hence, the surface over which a spectrum is 

collected in static SIMS is essentially pristine. With regards to the depth sensitivity of static 

SIMS, Benninghoven noted that: “…over 95 % of the secondary particles originate from the top 

two layers of the solid.”43 This capability of static SIMS has made it the technique of choice for 

comprehensive chemical and structural elucidation of the top few atomic layers of a sample. In 

the early 80’s, static SIMS began to find immense application in the analysis of organic and 

polymer materials, especially after the development of charge neutralization techniques.52, 53  

  In spite of its remarkable versatility and importance, SIMS has some drawbacks. One of 

them is that ion yields are very strongly affected by surface chemistry and, hence, SIMS is not 

generally a quantitative technique. The strong effect of the surface/matrix on ion yield is known 
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as the matrix effect of SIMS. For example, the yield of Na+ from a sample of sodium chloride 

(NaCl) will be much higher than the Na+ signal from pure sodium metal because the sodium is 

already in an ionic state in NaCl. Therefore, SIMS and XPS, which is quantitative, are highly 

complementary techniques. Second, SIMS, in its various modes, can yield too much information 

about a sample.54 This is especially true in its imaging modes where it collects a complete mass 

spectrum per pixel. A typical scan might consist of 128 x 128 pixels, yielding ca. 16,000 spectra. 

Obviously, this quantity of data could require weeks to comprehensively analyze.  

1.4 Chemometrics techniques 

 

1.4.1 XPS Data Analysis 

The literature shows various methodologies for XPS data analysis,55 which include 

traditional peak fitting of the XPS peak envelope, the use of the Fourier transform,56 and taking 

derivatives of the spectra.57, 58 In particular, derivatives of XPS spectra have been used by 

Pavlath and Millard to efficiently determine peak positions in a curve fitting analysis.57 

However, in general, taking the derivative of a spectrum increases the noise in it and often 

requires some type of smoothing. Indeed, the derivative approach fails to provide peak positions 

for complex peak envelopes that consist of numerous overlapping peaks. The Fourier transform 

and derivative approaches are not widely used by the community. By far the most commonly 

used data analysis approach in XPS is peak fitting. 

Apart from determining surface elemental compositions, XPS is important for finding the 

chemical states of the elements it detects, and this analysis is done through peak fitting. For 

example, a carbon 1s peak envelope can often be peak fitted to five different chemical states 

attributable to C-C (C(0)), C-O (C(I)), C=O (C(II)), O=C-O (C(III)), along with shake-up peaks 
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(π – π* transitions).59-62 This information about functional groups is vital for understanding a 

surface, and therefore for devising new surface and material chemistries for specific 

applications.41 Peak fitting involves (i) subtracting/fitting the background caused by inelastically 

scattered electrons, and (ii) resolving the various chemical states that constitute the peak 

envelope.63 I will now discuss the challenges associated with each of these steps: 

Background approximation for XPS peak envelopes 

**The choice of background approximation poses a challenge for attaining good quality 

peak fits.63, 64 For simpler spectra, a linear background approximation can be a reasonable first 

choice. However, XPS spectra often show greater complexity because the ejected photoelectrons 

lose energy while traveling through the substrate, causing significant backgrounds. These 

backgrounds depend on the substrates that are analyzed, and care should be taken to choose the 

appropriate background approximation. To address the issue of complex background shapes, 

several more sophisticated approximation methods are frequently employed. The most common 

of these are the Shirley65 and Tougaard66-68 backgrounds. There are several reports in the 

literature that describe modified versions of these backgrounds,63, 69, 70 which speaks of a general 

lack of agreement on their merits and deficiencies. As noted in the CasaXPS software manual, 

“The truth is that none of the background types on offer are correct and therefore selection of 

one background type over another is essentially chosen as the least wrong rather than the most 

right.”71 In summary, one is never entirely sure of one’s choice of background, although with 

some care and experience, quite good peak fitting results can often be obtained. 

 

 

**This paragraph has been reproduced with permission from (Bhupinder Singh, Ronald Hesse, and Matthew R. 
Linford), Vacuum Technology and Coating, December, 2015: p. 22-29 
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Resolving (overlapping) chemical states in the XPS peak envelope 

Once a background correction has been applied, peak fitting involves specifying the 

number of constituent peaks in the overall peak envelope, and then placing reasonable and well 

informed constraints on their positions, heights, widths, asymmetries, and Gaussian : Lorentzian 

(G:L) ratios. A reasonable knowledge of both the sample being tested and its preparation, along 

with a thorough literature search, helps to place reasonable constraints on the above-mentioned 

parameters. Once reasonable constraints are applied, one allows the software to optimize the fit 

parameters. Of course, the fewest possible parameters should be chosen for any given fit. The 

resulting fit envelope is the sum of the constituent components (peaks), which correspond to the 

various chemical states of the material. Modern software is capable of identifying the quality of a 

fit through a comparison of the experimental and fit envelopes. The difference between the two, 

i.e., the inability of the fit envelope to match the experimental peak envelope, is determined as a 

fit error. The chi-squared (χ2) values, the Abbe criterion, and the peak residuals can be used to 

determine and even quantify the goodness of a fit.  

A low error implies a good fit, by which we mean close agreement between one’s 

experimental data and the corresponding fit, e.g., a low χ2 value. However, a close fit between 

model and experimental results does not guarantee that a fit is reasonable. For example, one 

might allow a large number of parameters to float in one’s model, which should give a low χ2 

value, but a high degree of correlation between fit parameters. Accordingly, one might ask: how 

does one know if one’s peak fitting is correct? As noted by Sherwood, there is not, in general, a 

unique solution to fitting XPS narrow scans.72 Of course, very simple scans may show good 

uniqueness, but peak fitting for more complex spectra is challenging. Thus, one proceeds using 

one’s experience, reliance on sound principles, the experience of others (literature research), and 
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common sense. Often, naive users and, on occasion, even more experienced practitioners allow 

numerous parameters to float, which may, again, yield, a low χ2 value, but a completely 

unreasonable fit. I discuss various good practices for performing XPS peak fits in Chapter 2 of 

this thesis.  

 To address the issue of subjectivity in XPS peak fitting, I have introduced mathematical 

functions to characterize XPS narrow scans. These include the equivalent width and the 

autocorrelation width, which are compared to the variance and (of course) the standard deviation. 

These new XPS data analysis tools were published as two separate papers in the Journal of 

Electron Spectroscopy and Related Phenomena, 59, 60 and are discussed in Chapters 3 and 4. I 

also wrote an article in Vacuum Technology & Coating magazine that illustrates the mathematics 

of equivalent width and autocorrelation width, and their applicability to XPS narrow scans. This 

is discussed in Appendix 1. 

 Chapter 5 of this thesis discusses uniqueness testing applied to XPS narrow scans. 

Uniqueness testing has been extensively used in spectroscopic ellipsometry to determine the 

quality of a fit, and to see if fit parameters are correlated. However, to the best of my knowledge, 

this graphical tool has never been used in XPS. Of course, the mathematical analysis and 

calculation of fit parameter correlation is known and carried out in SE and XPS data analysis.73, 

74 However, as noted, the uniqueness plot, which is a useful and powerful graphical tool that can 

be very easily interpreted has not been applied to XPS data analysis. There are many examples of 

poor XPS peak fits in the literature. This type of tool could rather easily prevent some of these 

mistakes from occurring. 
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1.4.2 ToF-SIMS Data Analysis 

The problem of dealing with massive quantities of data/information, especially in ToF-

SIMS, can be approached by using chemometrics techniques,6, 54, 75-80 which are pattern 

recognition tools that help to identify and group similar spectra, e.g., samples or pixels. Two of 

the most commonly used chemometrics tools for ToF-SIMS data analysis are principal 

components analysis (PCA)81 and cluster analysis.  

In PCA, each data set, e.g., spectrum, can be considered to be a single point in a 

hyperspace, where, in effect, PCA rotates the axes of the coordinate system to capture the largest 

amount of the variation in the data points (spectra). The new (rotated) axes are termed principal 

components (PCs). The axis that captures the greatest degree of variation in the data is the first 

principal component, PC1. PC2 then captures the next largest amount of variation in the data, 

etc. The projections of the original data points onto the new, rotated axes (PCs) are called scores, 

and the contributions of the original axes (variables) to the PCs are called loadings. Scores plots 

often identify trends and clustering of spectra, while loadings plots reveal the chemical bases for 

the differences between the spectra observed in scores plots. Obviously, PCA maintains the 

orthogonality of the original axes. When there is some degree of correlation between the 

peaks/information within spectra, which occurs for many data sets, PCA often results in a 

significant reduction in the number of variables (PCs) required to describe a data set.82 

PCA is widely employed. It is often the first chemometrics tool used to analyze a data set, 

and the combination of scores and loadings plots can be powerful. Nevertheless, PCA scores and 

loadings plots, which often involve negative values (peaks), can be difficult for the uninitiated to 

interpret. Cluster analysis is also used to identify similarities and differences between spectra. 

Cluster analysis uses a different algorithm than PCA, where, fundamentally, it involves finding 
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the distances between data points (vectors) in a hyperspace, connecting (clustering) the data 

points based on the distances between them, and then representing these distances in the form of 

a plot called a dendrogram. While a PCA model will generally include most of the information in 

a data set (the remainder of it is often noise), cluster analysis considers all of the data. 

Dendrograms can be easier to interpret than scores and loadings plots, although they lack the 

chemical information provided by loadings plots. Nevertheless, in the case of complex, varied 

spectra, they too can be challenging to interpret. Thus, because both techniques may struggle to 

fully and easily explain the variation in complex data sets, analyses based on different algorithms 

that ‘view’ the data differently can be important.75, 79, 80 And of course, different data sets will 

often be better suited to different chemometrics methods. 

 It follows from this discussion that there is room for additional statistical analysis tools 

based on new algorithms that may ‘perceive’ data in new ways. Chapter 6 discusses the 

important issues concerning the analysis of complex data, using examples of ToF-SIMS and XPS 

depth profiles. There, I focus on three chemometrics techniques that can be used to analyze 

whole spectra. The first tool I discuss is principal components analysis (PCA).81 The second tool 

is cluster analysis. The third data analysis tool I discuss is new. It is the information content (IC), 

or entropy, of a spectrum. This approach comes out of the groundbreaking work of Shannon,83, 84 

who applied the statistical thermodynamics definition of entropy to signal/communication 

theory. Here I take Shannon’s approach back into the physical sciences, calculating the IC of 

spectra and using the resulting values to determine where changes are taking place in spectra. 

Each chemometrics method is applied to the same four data sets: the ToF-SIMS depth profile of 

ca. 100 nm of plasma polymerized C3F6 on Si, the ToF-SIMS depth profile of ca. 100 nm of 

plasma polymerized PNIPAM (poly(N-isopropylacrylamide)) also deposited on a Si substrate, 
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the XPS depth profile of a film of SiO2 on Si, and the XPS depth profile of a film of Ta2O5 on 

Ta.  

1.5 Multi-instrument material characterization of nanodiamonds used in high 

pressure liquid chromatography (HPLC) 

Silica-based particles have dominated the HPLC market for decades, showing high 

separation efficiencies within a relatively limited range of mobile phase pH values and 

temperatures.85 Under acidic conditions (pH < 2), siloxane bonds between silane adsorbents in 

bonded phases and the underlying silica are prone to hydrolysis, and under basic conditions (pH 

> 8) the silica support dissolves.85-90  Elevated temperatures accelerate these degradation 

modes.87, 88, 91-93 Considering the advantages of separations performed at elevated temperatures 

and extremes of pH, and the inherent instability of silica under these conditions, it has become 

important to evaluate alternative stationary phases for liquid chromatography. 

***Diamond exhibits exceptional mechanical stability, even at high pressures, 12, 94-98 is 

hydrolytically stable over the entire pH range,12, 85, 94-96 shows excellent chemical inertness12, 85, 

98, 99 and outstanding thermal stability,12, 95, 97, 98 has a low coefficient of thermal expansion,12 

does not shrink or swell in aqueous or organic solvents,94-97 and provides a solid platform for 

chemical modification at its surface.94, 97, 98  Accordingly, various researchers have become 

interested in diamond as an alternative stationary phase and/or support for liquid 

chromatography,96, 97, 100 including those in the Linford group at Brigham Young University.36, 85, 

99, 101 The superficially porous particles developed at BYU are made by the alternating deposition 

of poly(allylamine) (PAAm) and nanodiamond (ND) onto carbon core particles in a layer-by-

layer (LbL) fashion.85, 101 Each LbL assembly is terminated with a layer of PAAm that is 

functionalized and cross-linked with a mixture of 1,2-epoxyoctadecane and 1,2,7,8-
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diepoxyoctane. The resulting mixed-mode particles show weak anion exchange (WAX) and 

hydrophobic properties, where the dominant mode of these particles depends on the mobile 

phase pH.36, 101 These particles have been steadily improved, showing efficiencies up to 112,000 

N/m with a reduced plate height, h of 2.22.36 As expected, the resulting columns are stable under 

harsh conditions: 120 °C and pH 11.3, and have good selectivity, e.g., pull apart critical pairs of 

acidic herbicides at pH 2 and separate basic pharmaceuticals at pH 12.102-104  

***Extensive characterization of a material increases one’s understanding of it in a way that 

should lead to product improvement.5, 18 As discussed earlier, there is no stand-alone technique 

that can comprehensively characterize a material and, therefore, comprehensive material 

characterization involves a multi-instrument approach. Chapter 7 discusses the multi-instrument 

characterization of five different nanodiamond (ND) samples that were used to make core shell 

particles for HPLC. The nanodiamonds were characterized by a suite of techniques including X-

ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-

SIMS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), transmission 

electron microscopy (TEM), electron energy loss spectroscopy (EELS), X-ray diffraction 

(XRD), inductively coupled plasma-mass spectrometry (ICP-MS), and Brunauer-Emmett-Teller 

(BET) surface area analysis. Chemometrics techniques were employed to better understand the 

ToF-SIMS data. To the best of my knowledge, this is the most comprehensive characterization 

study of nanodiamonds undertaken to date. This chapter emphasizes the lack of comprehensive 

characterization of nanomaterials reported in the literature, and presents this study as a 

model/exemplary approach to nanomaterial characterization. 

***These paragraphs are reproduced from (Bhupinder Singh, Stacey J. Smith, David S. Jensen, Hodge F. Jones, 
Andrew E. Dadson, Paul B. Farnsworth, Richard Vanfleet, Jeffrey K. Farrer, and Matthew R. Linford) Analytical 
and Bioanalytical Chemistry, accepted for publication, 2015. 
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I also worked on developing applications, understanding the mechanisms of retention and 

probing reproducibility of nanodiamond-based HPLC columns. Appendix 2 presents the 

application of these diamond-based mixed mode columns to separate acidic herbicides. 

Appendix 3 shows the comparison of these diamond-based columns to their commercial 

counterparts, especially for separation of critical pairs of acidic herbicides. Appendix 4 reports 

on their retention mechanism, and Appendix 5 presents the reproducibility and stability of these 

diamond-based columns, respectively. Appendix 2-5 were published as commercial application 

notes on diamond-analytics.com. 
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Chapter 2: Good Practices for XPS (and Other Types of) Peak Fitting. Use Chi 

Squared, Use the Abbe Criterion, Show the Sum of Fit Components, Show the 

(Normalized) Residuals, Choose an Appropriate Background, Estimate Fit 

Parameter Uncertainties, Limit the Number of Fit Parameters, Use Information 

from Other Techniques, and Use Common Sense * 

2.1 Introduction 

Some form of peak fitting or data modeling is used to analyze the results from most 

surface and materials characterization methods. For example, most spectroscopic ellipsometry 

studies involve at least some data modeling.1-6 In this column we will focus on peak fitting in X-

ray photoelectron spectroscopy (XPS), which is an indispensable part of XPS narrow scan 

analysis.7 As we have discussed previously, XPS is a widely used surface characterization 

technique that probes the upper ca. 5 – 10 nm of a surface.8-12 XPS yields the elemental 

compositions of materials, along with information about the oxidation states of the elements in 

them. Peak fitting in XPS often helps determine the fraction of an element in a certain oxidation 

state.13 This information can be vital for understanding a surface or a material. However, peak 

fitting in XPS generally suffers from at least some user bias/subjectivity. Accordingly, it is 

important to apply sound principles in one’s peak fitting efforts. Unfortunately, the literature 

contains quite a few examples of poor fitting of XPS narrow scans. On a more positive note, 

there are also good examples of peak fitting from a number of research groups. It is useful to be 

able to discern between the better fits and the less reasonable ones.  

 

 

*This chapter has been reproduced with permission from (Bhupinder Singh, Ronald Hesse, and Matthew R. 
Linford), Vacuum Technology and Coating, December, 2015: p. 22-29 
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In this article we will discuss the following principles for good peak fitting: 

(i) Use chi squared 

(ii) Use the Abbe criterion 

(iii) Show the sum of your fit components with your original data  

(iv) Show the (normalized) residuals 

(v) Choose an appropriate background 

(vi) Estimate the fit-parameter uncertainties (if available in your software)14 

(vii) Constrain one’s fit parameters reasonably, and also limit the number of fit parameters 

(viii) Consider information from other techniques, and also other narrow scans within ones’ 

analysis 

(ix) Use common sense 

2.2 Theory 

We introduce here the mathematical formulas for chi squared, the (normalized) residuals, 

and the Abbe criterion. These peak-fit quantities have been discussed in detail in a series of 

publications by Hesse and coworkers, and others.7, 15-17  

2.2.1 Chi squared (𝜒2) 

The chi squared (𝜒2) quantity gives a measure of the goodness of fit between a set of 

experimental data points, M(i), and the sum of the fit components/peaks used to model that data, 

),( piS  , where the �⃗� vector is the set of parameters upon which the fit components depend. As 

we can see in Equation 2.1, 𝜒2 is calculated in a point-by-point fashion by squaring the 

difference between each data point, M(i), and the value of the fit at that same point: ),( piS  : 
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Here, N is the number of experimental data points collected and fit. Obviously, we want 

the fit at each point to be as close as possible to the experimental data, i.e., we want 

 to be as small as possible at each value of i. Thus, smaller values of 𝜒2 

correspond to better fits to the experimental data. Note that (i) 𝑀(𝑖) − 𝑆(𝑖, �⃗�) is squared in the 

formula for 𝜒2 to ensure that positive and negative deviations between the fit and the original 

data do not cancel each other in the summation (we account for all the differences between the 

original data and the fit to it by squaring them), and (ii) the [𝑀(𝑖) − 𝑆(𝑖, �⃗�)]2 term is normalized 

by the magnitude of the experimental data point: 𝑀(𝑖), i.e., a difference between the data point 

and the fit: 𝑀(𝑖) − 𝑆(𝑖, �⃗�) will matter more in 𝜒2 if 𝑀(𝑖) is small.  

2.2.2 The reduced chi squared (𝜒2∗) value 

The reduced chi squared value (𝜒2∗) may also be used to assess goodness of fit: 
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(2.2) 

This is simply 𝜒2 divided by N – P, where P is the number of independent fit parameters. 

Clearly, N – P ≈ N for N >> P. 
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2.2.3 The Residual 

Technically, the residual is simply the difference between the fit and the experimental 

data point at the same point: 

 )(),()( iMpiSiR −=
  (2.3) 

Normalized residuals, 𝑅𝑁(𝑖), are normalized to the value of 𝑀(𝑖) as follows: 
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(2.4) 

Note that Equation 2.4 is essentially the square root of the argument in the summation in 

Equation 2.1. The percent residual has also been used by various researchers: 

 %𝑅(𝑖) = 𝑆(𝑖,𝑝)−𝑀(𝑖)
𝑀(𝑖)

∗ 100 (2.5) 

2.2.4 The Abbe Criterion 

The Abbe criterion is another figure of merit that helps assess the quality of a peak fit. It 

is given by: 

 
𝐴𝑏𝑏𝑒 =  

1
2
∑ [𝑅(𝑖 + 1) − 𝑅(𝑖)]2𝑁−1
𝑖=1

∑ [𝑅(𝑖)]2𝑁
𝑖=1

 
(2.6) 

Here, R(i) and R(i + 1) refer to the residuals of the fit at the ith and (i + 1)th data points, 

respectively. In essence, the Abbe criterion tells a user how the residuals of a fit are distributed. 

Let’s consider two possibilities. First, imagine that the residuals of a fit consistently have the 

same value. This would occur if the calculated fit were always above or below the measured data 
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points by a fixed amount. Clearly this situation is undesirable. Now, if R(i) = R(i + 1) for the N – 

1 data points considered in Equation 2.6, Abbe = 0. Next, let’s consider the possibility that R(i) = 

-R(i +1) for the N – 1 data points in Equation 2.6. In other words, each subsequent residual has 

the same magnitude, but a sign opposite to the previous residual. A little math shows that 

Equation 2.6 approaches a value of two here. This situation is also undesirable. In summary, we 

would not want the fit to our data to be consistently above or below it (Abbe = 0), and we should 

be suspicious if we find that our residuals are anticorrelated, i.e., of the same magnitude, but 

alternating in sign (Abbe  2). It turns out that for random noise and statistically distributed 

residuals, Abbe ≈ 1. This value of unity for the Abbe criterion is the desired value for this 

parameter, and significant deviations from it suggest issues with a data fit. 
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Figure 2.1 Two-component peak fit of a simulated spectrum on a polynomial background. Black: 
spectrum, red: sum of curves, green: individual components, blue: background, grey: residuals (below the 
fitted spectrum). The fit components are the product of Gaussian and Lorentzian peaks. The background 
function was calculated in parallel to the peak fit. 
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Figure 2.2 Two-component peak fit of a simulated spectrum on a polynomial background. Black: 
spectrum, red: sum of curves, green: individual components, blue: background, grey: residuals (below the 
fitted spectrum). The fit components are convolutions of Gaussian and Lorentzian peaks (Voigt 
functions). The background function was calculated in parallel to the peak fit. 
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2.3 Good practices for peak fitting 

2.3.1 Use chi squared 

Sherwood et al. mentioned that reporting chi squared values for a single spectrum is often 

not very informative.7 However, reporting chi squared values for different fits applied to the 

same spectrum, or for fits to different, but related, spectra, can provide useful information. 

Figures 2.1 and 2.2 show two different simulated fits to a single simulated spectrum. Figure 2.1 

shows a rather poor fit to the data – there are clear deviations between the original ‘spectrum’ 

(black) and the sum of the fitted peaks (red). Figure 2.2 shows much better peak fitting. The 

goodness of these fits (or lack thereof) in Figures 2.1 and 2.2 is clearly reflected in their 𝜒2∗ 

values, which are 6.75 (higher) and 1.09 (much lower), respectively. In summary, chi squared 

values can be useful for assessing the goodness of a fit. 

2.3.2 Use the Abbe criterion 

The Abbe criterion is also useful for determining the quality of a fit. It is particularly 

helpful for identifying fits that are consistently above or below their corresponding experimental 

data. Figure 2.1 shows a fit that entirely misses the experimental data (either above or below it) 

in various places. Accordingly, its Abbe criterion is quite low (0.15). In contrast, Figure 2.2 

shows a fit that follows its experimental data quite well. It has an Abbe criterion close to unity 

(1.03), which, again, is the most desirable value of this parameter for a good peak fit. 
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2.3.3 Show the sum of your fit components with your original data  

We will begin with a quote from Sherwood, who observed: “Curve fitting … has the 

advantage that an observer can clearly see how the summation of the fitted data compares to the 

original experimental data. It is very unfortunate that this advantage is often negated by authors 

who do not show the summation of the fitted data, but only the component peaks, thus depriving 

the reader of their work of any means of assessing the quality of their fit.”7 We echo his 

sentiment. From time to time we also see fits to XPS narrow scans in the Literature that only 

show the individual components (peaks) of the fit without their summation. Again, this leaves 

the reader without adequate information to judge the quality of the fit. Figures 2.1 and 2.2 follow 

the preferred course. Each figure shows two fitted peaks, and also the sum of these peaks, which 

can be directly and easily compared to the ‘experimental’ data. Also shown in the fits are the 

baselines that were used, which is clearly advisable as well. The fit shown in Figure 2.1 is 

inadequate, which is reflected in the sum of the peaks in Figure 2.1. In contrast, the sum of the 

peaks in Figure 2.2 shows that they fit the experimental data much better. 

2.3.4 Show the (normalized) residuals 

Figures 2.1 and 2.2 contain plots of the residuals to the fits. In Figure 2.1, the residuals, 

and also the discrepancy between the experimental data and the fit envelope, clearly show why 

the Abbe criterion is close to zero. In Figure 2.2, the residuals reveal why the Abbe criterion is 

close to unity. Note that (i) in many cases it probably doesn’t matter too much whether one 

shows 𝑅, 𝑅𝑁, or %𝑅 (what matters, is that the residuals be presented in some form), and (ii) 

when the fit is quite good, it may be difficult to see the discrepancy between the experimental 

data and the sum of the fit components – the residuals can be helpful here.  
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2.3.5 Choose an appropriate background 

This has been discussed in Chapter 1, under section 1.4.1. 

2.3.6 Estimate the fit-parameter uncertainties 

Hesse and coworkers have emphasized the calculation of uncertainties in fit parameters 

as an error estimation tool to understand the robustness of fit model parameters.14, 15 The 

calculation of uncertainty (∆𝑝𝑖) of a parameter (𝑝𝑖) stems from the approximation that near the 

minimum of the plot of 𝜒2(�⃗�) vs. 𝑝𝑖, the curve has a parabolic shape. To generate this plot, one, 

in essence, selects different values of 𝑝𝑖, where for each of these values the other fit parameters 

are optimized such that an optimal value for 𝜒2(�⃗�) is obtained. Under these circumstances, we 

accept the following definition of ∆𝑝𝑖:18 

 𝜒2 (𝑝𝑖 +  ∆𝑝𝑖) =  𝜒2(𝑝𝑖) + 1 (2.7) 

This equation, again a definition, states that a change of 𝑝𝑖 by ∆𝑝𝑖, leads to a change in 𝜒2(𝑝𝑖) of 

1. Taylor series expansions are extensively used in numerical analysis.19 Accordingly, the left 

side of Equation 2.7 is expanded as a truncated (three-term) Taylor series as follows: 

 
𝜒2 (𝑝𝑖 +  ∆𝑝𝑖) =  𝜒2(𝑝𝑖) +  

𝜕𝜒2

𝜕𝑝𝑖
|𝑝0∆𝑝𝑖 +  

1
2
𝜕2𝜒2

𝜕𝑝𝑖2
|𝑝0(∆𝑝𝑖)2 

(2.8) 
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Figure 2.3 Plots of 𝜒2(𝑝) vs. 𝑝𝑖 showing different curvatures. The uncertainty in parameter 𝑝2 is less than 
the uncertainty in parameter 𝑝1 because its corresponding parabola is narrower (has a higher degree of 
curvature). This figure has been adapted from R. Hesse, T. Chasse, P. Struebel, R. Szargan. “Error 
estimation in peak-shape analysis of XPS core-level spectra using UNIFIT 2003: how significant are the 
results of peak fits?” Surf. Interface Anal. 2004; 36; 1373-1383. 
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Because the curve in question is assumed to be parabolic in form, its first derivative (𝜕𝜒
2

𝜕𝑝𝑖
) is zero 

at its minimum. Thus, Equation 2.8 reduces to: 

 
𝜒2(𝑝𝑖 +  ∆𝑝𝑖) =  𝜒2(𝑝𝑖) +  

1
2
𝜕2𝜒2

𝜕𝑝𝑖2
|𝑝0(∆𝑝𝑖)2 

(2.9) 

Now, combining Equations 2.7 and 2.9 we obtain: 

 
𝜒2(𝑝𝑖) + 1 =  𝜒2(𝑝𝑖) +  

1
2
𝜕2𝜒2

𝜕𝑝𝑖2
|𝑝0𝜎

2(𝑝𝑖) 
(2.10) 

where we have now equated (∆𝑝𝑖)2 to 𝜎2(𝑝𝑖), which is the variance of the fit parameter 𝑝𝑖. 

Cancelling identical terms in Equation 2.10 and performing a little algebra then leads to: 

 
𝜎(𝑝𝑖) =  �

2

(𝜕
2𝜒2
𝜕𝑝𝑖2

)
 

(2.11) 

Thus, in Equation 2.11 we see that the curvature of 𝜒2(𝑝𝑖), which is 𝜕
2𝜒2

𝜕𝑝𝑖2
, is inversely 

related to the standard deviation of 𝑝𝑖. In other words, a small degree of curvature in 𝜒2(𝑝𝑖) (a 

flat parabola) leads to a large uncertainty (𝜎(𝑝𝑖)) in 𝑝𝑖. Conversely, a high degree of curvature in 

𝜒2(𝑝𝑖) (a narrow parabola) gives lower uncertainty to 𝑝𝑖. Another way of looking at this is to say 

that if we change the parameter 𝑝𝑖, and 𝜒2(𝑝𝑖) rises sharply, there is little uncertainty in the 

value of 𝑝𝑖. Figure 2.3 illustrates these concepts. Here we see two plots of 𝜒2 vs. 𝑝𝑖 that share the 

same minimum value. Both are parabolic in shape near their minima, and one (the curve for 𝑝2) 

is narrower than the other. Also marked on this plot is the point at which 𝜒2(𝑝𝑖) has increased in 

value by 1. Clearly, this change in 𝜒2(𝑝𝑖) takes place with a smaller uncertainty (∆𝑝2) for the 
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narrower curve. In other words, the uncertainty associated with 𝑝2 is less than that associated 

with 𝑝1 because the parabola associated with it has a higher curvature. 

In this analysis of uncertainties, it is also important to understand if there is any 

correlation between fit parameters. For this determination, a Hessian matrix (H) is constructed. 

The Hessian matrix contains the partial derivatives of 𝜒2(𝑝𝑖) as follows: 

 

𝐇 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜕

2𝜒2

𝜕𝑝12
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𝜕𝑝1𝜕𝑝2
⋯
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⋯
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⎥
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⎥
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(2.12) 

We note that the diagonal elements of this matrix are of the form 𝜕
2𝜒2

𝜕𝑝𝑖2
, while the off-

diagonal elements are of the form 𝜕
2𝜒2

𝜕𝑝𝑖𝜕𝑝𝑗
, with i ≠ j. Here, the off-diagonal elements of this 

matrix indicate the degree of correlation between the fit parameters 𝑝𝑖 and 𝑝𝑗. One way to see 

this is to write 𝜕
2𝜒2

𝜕𝑝𝑖𝜕𝑝𝑗
 as 𝜕

𝜕𝑝𝑖
(𝜕𝜒

2

𝜕𝑝𝑗
). That is, we see that if the derivative 𝜕𝜒

2

𝜕𝑝𝑗
 is independent of 𝑝𝑖, 

i.e., the two parameters are uncorrelated, then 𝜕
2𝜒2

𝜕𝑝𝑖𝜕𝑝𝑗
 vanishes.  

Now, assuming the off-diagonal elements of the Hessian matrix (Equation 2.12) are zero, 

we can calculate the uncertainties (𝜎(𝑝𝑖)) by inverting H as follows:  

 𝑩 =  𝑯−1 (2.13) 
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where B is referred to as the error matrix. The inverse of a diagonal matrix, i.e., a matrix that has 

non-zero elements only along its diagonal, can be calculated by inspection – in the inverse, each 

element along the diagonal is the reciprocal of the corresponding element in the original matrix. 

Thus, from Equations 2.11 and 2.13 we obtain:  

 𝜎(𝑝𝑖) =  �2𝑏𝑖𝑖 (2.14) 

The reader who is interested in detailed calculations and additional analysis of these uncertainties 

is referred to Hesse’s paper on this topic.15 

2.3.7  Constrain one’s fit parameters reasonably, and also limit the number of fit parameters 

Inexperienced XPS users sometimes make a common mistake, which is to allow too 

many parameters to float (vary) in their modeling. This reminds us of a short dialogue in the 

Pixar movie “The Incredibles”. Mrs. Parr (Elastigirl) is trying to explain to her son Dash why he 

can’t go out for track (run on the track team at his school). In the course of the conversation, she 

says to him: “Everyone’s special, Dash.” He replies by saying: “Which is another way of saying 

no one is.” By analogy, if you try to make every parameter in your fit special, i.e., you let every 

parameter float/vary in the fit, you may find out that none of your parameters is special, i.e., has 

any real meaning. Figures 2.4a and 2.4b illustrate these principles nicely. In Figure 2.4a, we 

show a reasonable fit of a C 1s narrow scan that was taken from some lightly oxidized carbon 

nanotubes. These oxidized carbon nanotubes have been used as scaffolds in the preparation of 

microfabricated thin layer chromatography plates.20-22 The peaks in Figure 2.4a corresponding to 

reduced carbon, C(0), and carbon in its various oxidation states, C(I), C(II), and C(III),13 were 

constrained to have the same width, and the width of the peak corresponding to the higher 
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binding energy shake-up peak was constrained relative to the other peak widths. The spacings 

between the peaks were also constrained relative to the C(0) peak, where the distances between 

these peaks were based on literature values. The Gaussian-Lorentzian ratios were the same for all 

the peaks.9, 23 This same set of parameters/approach could be applied to a series of similar C 1s 

spectra to study the differences between them. The fit in Figure 2.4a shows a 𝜒2∗ value (as 

reported by our instrument software) of 2.11 and a value for the Abbe criterion (we calculated 

this separately) of 0.15. 

As evidenced by the reduced chi squared and Abbe criterion values, there is probably 

some room for improvement in the fit to the data in Figure 2.4a, i.e., the peak positions, widths, 

and/or Gaussian:Lorentzian ratios might be tweaked somewhat to improve things. Of course, for 

all of these parameters in this optimization we would want to stay within chemically reasonable 

limits. Figure 2.4b shows the wrong way to approach this problem. Here, no constraints were 

placed on the peaks – all of the parameters floated. While this extra flexibility allowed the 

software to create a peak envelope that more closely matched the experimental data (the 𝜒2∗ 

value decreased to 0.85 and the Abbe criterion value increased to 0.76), this fit is entirely 

inappropriate and unphysical. For example, one would never expect the different peaks for 

reduced and oxidized carbon to have such radically different widths. In addition, the spacings 

between these peaks are inconsistent with literature values.  

In summary, it is a bad idea to allow a large number of fit parameters to float in a peak 

fitting exercise. Obviously, another important way to show restraint in a peak fit is to use the 

fewest possible number of parameters that can be reasonably justified. 
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Figure 2.4 C 1s narrow scans from an oxidized CNT forests peak fitted to 5 components: (a) using 
reasonable constraints on their peak heights, widths, positions, and their Gaussian: Lorentzian ratios, and 
(b) letting all the peak parameters float. Black: experimental data, red: sum of fit components. The 
residuals to the fits are shown at the top of the panels. 
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2.3.8 Consider information from other techniques, and also other narrow scans within ones’ 

analysis 

Other information about a material can help guide XPS peak fitting. For example, one 

should know, at least approximately, how many peaks to place in a fit to a C 1s narrow scan, as 

well as their positions, if one knows the chemical structure of the polymer one is analyzing. Of 

course, in the case of block copolymers, one may find preferential migration of one block to the 

surface, which clearly creates an exception to the previous statement. But, in general, good prior 

knowledge about the structure of a material can be very helpful in guiding a peak fit. Note that 

this prior knowledge may include an understanding of how the sample was prepared/processed. 

Useful information can also come from other narrow scans in the same analysis. For 

example, the component peaks in fits to C 1s spectra from materials that are rich in sp2 carbon 

are expected to show asymmetry if the carbonaceous material is conductive. Without 

understanding this, it might be tempting to assume that this tail to higher binding energies is due 

to oxygen in one’s sample. That is, if one sees asymmetry/tailing on a C 1s signal, but there is no 

corresponding oxygen (or other electronegative element) in the sample, it would be inappropriate 

to introduce peaks corresponding to oxidized carbon.  

We have repeatedly emphasized the importance of the multi-instrument analysis of 

materials.24, 25 For example, we regularly analyze materials by XPS, time-of-flight secondary ion 

mass spectrometry (ToF-SIMS), spectroscopic ellipsometry (SE), wetting, scanning electron 

microscopy (SEM), and atomic force microscopy (AFM), combining the results from these 

techniques to create a coherent and complete picture of a surface or material. An analysis 

becomes particularly compelling when results from the different techniques reinforce and agree 
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with each other. Thus, information from a different analytical technique can help guide a peak 

fit, and vice versa. 

2.3.9 Use common sense 

In the peak fits in Figures 2.1 and 2.2, we used a lower chi squared value and an Abbe 

criterion value closer to unity as evidence for an improved peak fit. However, in Figures 2.4a and 

2.4b we did exactly the opposite – the chi squared value dropped and the Abbe criterion value 

moved closer to one when we removed the constraints on our peak fit parameters, creating a 

physically unreasonable peak fit. Is there a contradiction here? Shouldn’t a decrease in reduced 

chi squared and an increase in the Abbe criterion towards unity always indicate the same thing 

(either a better or a worse peak fit)? The answer is no. Quite simply, we have to use our common 

sense here. We need to realize that within the context of each of these two analyses (that of 

Figures 2.1 and 2.2, and that of Figures 2.4a and 2.4b) the change in chi squared and Abbe 

criterion values mean different things. Peak fitting is not the type of exercise that should be 

undertaken without some careful thought, and probably consultation with the literature.  

2.4 Conclusions 

 We have discussed a series of reasonable principles that, if followed, should lead to 

improved peak fits. While it may not be appropriate to apply every tool to every fit, many peak 

fits could benefit from a little more rigor. 

We end with a brief anecdote that reemphasizes the importance of thinking carefully 

about one’s work. My PhD advisor Dr. Matthew R. Linford is an editor for Applied Surface 

Science. In a recent meeting he attended with Henrik Rudolph, the Editor-in-Chief of the journal, 

he heard Henrik say (in reference to manuscripts submitted to the journal): “If something seems 
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fishy, it probably is.” Similarly, we should trust our intuition, looking broadly and holistically at 

any peak fit we perform, so that if we see something that appears inappropriate or out of place 

we realize that it probably is, and then act to fix it. 

Author Contributions: A good fraction of this chapter is based on R.H.'s previous 

publications.[14- 17] B.S. and M.R.L. wrote most of this document, also contributing their own 

thoughts and ideas. R.H. provided Figures 2.1 - 2.3. 
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Chapter 3: The Equivalent Width as a Figure of Merit for XPS Narrow Scans* 

3.1 Abstract 

X-ray photoelectron spectroscopy (XPS) is a widely used surface analytical tool that 

provides information about the near surface regions of materials. And while indispensable for 

XPS data analysis, peak fitting of narrow scans is often a fairly subjective exercise. Herein we 

introduce the equivalent width (EW) as an additional and less subjective figure of merit for XPS 

narrow scans. We believe that this parameter will prove particularly useful for analyzing series 

of similar or nominally identical spectra, perhaps as a component of an expert software system 

for the machine interpretation of spectra. It also appears to be useful, shedding light on the 

chemical state of materials, when additional information about a sample is known. The EWXPS is 

simply defined as the area of a narrow scan divided by the height of the maximum of its peak 

envelope. To limit any ambiguity in EWXPS for a series of spectra, we may also list the peak 

position of the maximum of the envelope (PEmax). The potential usefulness and limitations of the 

EWXPS and PEmax parameters are demonstrated by their application to the narrow scans of: (i) 

four sets of ozone-treated carbon nanotubes (EWXPS ~ 2.11 – 2.16 eV for a Shirley background, 

and up to 2.88 eV for no background, PEmax ~ 284.4 – 284.5 eV), (ii) a series of silicon wafers 

with different oxide thicknesses (EWXPS ~ 1.5 – 2.8 eV, PEmax ~ 99 – 103 eV), (iii) hydrogen-

terminated silicon before and after derivatization with pentyl groups, and after annealing of the 

pentyl-modified material (EWXPS ~ 0.7 – 1.0 eV, PEmax ~ 25.9 – 26.1 eV), and (iv) five 

nanodiamond samples, where three of the spectra showed charging (EWXPS ~ 2.6 – 4.9 eV, PEmax 

~ 272.7 – 293.9 eV). In this final example, EWXPS was plotted against PEmax to identify  

*This chapter has been reproduced with permission from (Bhupinder Singh, Daniel Velázquez, Jeff Terry,
and Matthew R. Linford), Journal of Electron Spectroscopy and Related Phenomena, 2014. 197(0): p. 56-63 
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the region corresponding to the materials that showed the least charging. EWXPS and PEmax 

appear to correlate with the expected chemistries of all the systems studied. We calculate EWXPS 

using a Shirley baseline and with no baseline at all. In setting the baseline limits for EWXPS, we 

consider the derivative of C 1s narrow scans. We also show the application of EWXPS to single, 

fitted components within a narrow scan.  

3.2 Introduction 

XPS is a quantitative, surface sensitive technique that is extremely important for 

understanding surface chemistries.1 It is a core electron spectroscopy that functions by 

illuminating a sample with X-rays and then measuring the kinetic energies of the ejected 

photoelectrons. These kinetic energies are then converted into binding energies that are plotted as 

survey (lower resolution) or narrow (higher resolution) spectra. Peak fitting of XPS narrow scans 

often plays a central role in revealing chemical information about a surface or material. 

However, peak fitting almost always involves at least some degree of user bias/subjectivity. 

Fortunately, this is not a significant issue in a number of cases. Well-understood and/or relatively 

simple materials often yield narrow scans that can be well fit and interpreted, especially by 

experienced practitioners and when additional information, such as process knowledge, is 

available. However, narrow scans of more complex materials can be difficult to fit, and these 

problems become particularly severe when inexperienced users apply too many fit parameters to 

their data without having a solid rationale for their choices. But even competent practitioners 

appear to struggle with challenging peak fitting problems. As Sherwood emphasized in his paper 

on peak fitting XPS narrow scans: “there is never a unique solution to fitting the data”.2 As an 

additional example, Wepasnick and co-workers fitted the same C 1s narrow scan of oxidized 

carbon nanotubes using peak parameters from two previously published fits.3-5 They showed that 
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the overall fits to the signals were good in both cases. However, in one fit the signal due to 

carboxyl groups was 5.9% and in the other 11.0%. Clearly this is a substantial discrepancy that 

significantly changes one’s understanding of this material.  

The signal processing literature contains different methods for characterizing functions.6 

One of the more straightforward of these is the equivalent width (EW) of a function (see Figure 

3.1a), which is simply defined as the total area of a function divided by its central ordinate: 

 
𝐸𝑊 =

∫ 𝑓(𝑥)𝑑𝑥∞
−∞
𝑓(0)

 
(3.1) 

That is, one can represent a function, f(x), as a rectangle with the same area, ∫ 𝑓(𝑥)𝑑𝑥∞
−∞ , 

and height, f(0) (the central ordinate of the function), as the original function, where the width of 

this rectangle is the equivalent width (EW) of the function. Of course, the EW would be 

undefined for a function that passes through the origin, and it would have limited meaning for a 

function that is substantially shifted from the origin such that f(0) is small compared to other 

values of f(x). While we are not aware of the application of the EW to XPS, it has been applied to 

other spectroscopic techniques. As Bracewell notes: “… the equivalent width of a spectral line is 

defined as the width of a rectangular profile which has the same central intensity and the same 

area as the line.”6 In particular, the concept of the EW has been widely used by astronomers.7-9 

That is, many astronomical signals will show a continuous background with intermittent 

absorption lines that are described by their EWs. There are also other definitions of the widths of 

functions,6 but Equation 3.1 appears to offer the simplest definition with the most 

straightforward interpretation. 
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Figure 3.1 Graphical illustrations of (a) the EW of a general function, f(x), and (b) the EWXPS of a C 1s 
XPS narrow scan calculated with respect to a user defined baseline. 
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Herein we propose a slightly modified form of the EW as a figure of merit for XPS 

narrow scans (EWXPS): 

 𝐸𝑊𝑋𝑃𝑆 = 𝑃𝑒𝑎𝑘 𝐴𝑟𝑒𝑎
𝑃𝑒𝑎𝑘 𝐻𝑒𝑖𝑔ℎ𝑡

    (3.2) 

where ‘Peak Area’ in Equation 3.2 is the area of an XPS peak above a user-defined baseline, 

which will typically be a Shirley,10 Tougaard,11 or linear background, and the ‘Peak Height’ is 

the height of the maximum point in the peak envelope, as measured from the background or 

other reference point. We also consider here the calculation of EWXPS from narrow scans that 

have not been corrected for their backgrounds. The definition for EWXPS in Equation 3.2 differs 

only modestly from the definition of EW in Equation 3.1 in that (i) EW uses the entire area of a 

function, both positive and negative regions, while EWXPS only considers the area of a peak in 

question above a user-defined background or between user-defined limits, where this area will 

always be positive, and (ii) the denominator of the EW function is the central ordinate of the 

function, while that of EWXPS is the height of the maximum of the peak envelope, as measured 

from its background. 

 In our exploration of EWXPS as a figure of merit for XPS narrow scans, we found that 

there are some cases in which there may be some ambiguity in it. Accordingly, we recommend 

that the energy at the maximum of the peak envelope (PEmax) also be recorded (see Figure 3.1b). 

Both EWXPS and PEmax should be sensitive to changes in the chemical states of surface species, 

and they should involve less user bias than traditional peak fitting. Additional insight into a 

series of materials may be obtained by plotting the EWXPS and PEmax parameters against each 

other. 
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Here we apply EWXPS and PEmax to four problems that illustrate the usefulness of this 

methodology. The first application is to four C 1s narrow scans of ozone-treated carbon 

nanotubes, which, like the spectrum discussed by Wepasnick and coworkers,3 are challenging to 

peak fit unambiguously. We show a correlation between the EWXPS of these narrow scans and 

their XPS oxygen-to-carbon ratios. As expected, the EWXPS increases as the CNTs are oxidized, 

and the PEmax values stay nearly constant. We next follow the oxidation of silicon via Si 2p 

narrow scans, i.e., from silicon shards with different oxide thicknesses. In this example, starting 

with the EWXPS of the bulk Si peak, and with increasing oxidation, we first observe an increase 

and then an asymptotic decrease in the EWXPS of the Si narrow scans. Here the EWXPS is also 

applied to the peak fitted bulk silicon and oxide signals in these spectra. While EWXPS is not a 

single-valued function for this process, any ambiguity is removed by referencing the PEmax 

values for these spectra, which changes substantially from the signal of the silicon substrate to 

that of a heavily oxidized surface. In the third case, we consider Si 2p narrow scans collected 

with synchrotron radiation of hydrogen-terminated Si(111) before and after its modification with 

pentyl groups, and then after annealing of the pentyl-terminated surface. Same EWXPS values 

were obtained for the Si 2p narrow scans of hydrogen-terminated Si (Si-H) and pentyl-

terminated silicon. The pentyl-terminated silicon is then annealed, and new signals from the 

resulting 7x7 reconstruction appear that broaden the Si 2p signal. This change is reflected in the 

greater EWXPS for this surface. However, as expected, the PEmax values for all three materials 

remain similar because these spectra are dominated by their bulk Si signals. Finally, we discuss 

five C 1s narrow scans from five different nanodiamond samples. Our interest in nanodiamond 

stems from the work some of us have done in making nanodiamond-containing core-shell 

particles for liquid chromatography.12-14 Three of these five samples showed significant 
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charging. EWXPS vs. PEmax were plotted for these spectra. In this plot, the ‘good’ C 1s narrow 

scans corresponded to the lowest EWXPS values and the most reasonable PEmax values. 

There have been many efforts to understand and fit XPS data. In this vein, we are trying 

to provide another means of rapidly comparing XPS narrow scans. For example, Tougaard has 

studied changes in baselines in XPS spectra and how they relate to surface structure.15 However, 

the purpose of this article is not to encourage scientists to peak fit their XPS data less. Peak 

fitting is an indispensable part of XPS data analysis and will continue to be so for the foreseeable 

future. Rather, we are proposing another methodology that: (i) should be complementary to 

traditional peak fitting, (ii) will often involve much less user bias than traditional peak fitting, 

(iii) should be helpful in comparing and understanding different XPS narrow scans, (iv) is 

mathematically straightforward, and (v) may have unique applications, such as in quality control.  

3.3 Experimental  

3.3.1 Samples  

Four sets of XPS narrow scans were evaluated. 

1) Carbon 1s narrow scans from four ozone-treated carbon nanotube (CNT) forests. These 

spectra were previously taken as part of a study on infiltrated, CNT-templated thin layer 

chromatography plates.16-18 

2) Silicon surfaces with different oxide thicknesses. Native oxide terminated silicon shards 

(ca. 1.5 x 1.5 cm2) were plasma cleaned for 2 minutes in a Harrick plasma cleaner (PDC-

32G) and air oxidized at 900 °C in a ThermolyneTM benchtop muffle furnace from 

Thermo Scientific for varying amounts of time. The different oxide thicknesses created in 

this manner were determined by spectroscopic ellipsometry (SE) (M-2000 instrument 
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from the J.A. Woollam Co., Lincoln, NE, ca. 200 – 1000 nm spectral range). Optical 

constants for silicon and silicon oxide from the instrument software were used to model 

the silicon substrate and the oxide. In this analysis, a normal fit was performed to get the 

thickness of the oxide layer. XPS analyses of all five samples were performed using a 

Surface Science SSX-100 X-ray photoelectron spectrometer (serviced by Service 

Physics, Bend, OR) with a monochromatic Al Kα source (1486.7 eV) and a 

hemispherical analyzer. Narrow scans were recorded with a spot size of 500 µm x 500 

µm, resolution: 3, number of scans: 20 and step size of 0.065 eV. Peaks were referenced 

to the O 1s peak taken at 532.0 eV. This signal appeared as a single, shoulderless peak.  

3) Si 2p narrow scans from hydrogen-terminated Si(111) before and after modification with 

pentyl groups, and after annealing of the pentyl-modified material. These spectra have 

been previously published.19-21 These spectra were originally collected at the Stanford 

Synchrotron Radiation Laboratory on Beam Line 8-1 (BL 8-1) using a Toroidal Grating 

Monochromator (TGM). BL 8-1 was equipped with a low energy electron diffraction 

analyzer (LEED) and a double pass cylindrical mirror analyzer (CMA). The photon 

energy was 130 eV. As the original data were not readily available, Plot Digitizer 

(http://plotdigitizer.sourceforge.net) was used to generate it from a pdf copy of the data as 

it appeared in Jeff Terry’s dissertation.20  

4) C 1s narrow scans of five different types of nanodiamond. Sample preparation consisted 

of preparing a slurry of the nanodiamond in ultrapure water, placing a few droplets of this 

slurry on a clean piece of a Si wafer, and placing this surface over a hot plate to evaporate 

the water. This procedure resulted in a thin, uniform film of nanodiamond. The XPS 

instrument and settings of these analyses were the same as in Example 2. 
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3.3.2 Calculation of EWXPS  

The EWXPS was calculated as follows (see Figure 3.2): 

1) A background, e.g., linear, Shirley, or no background at all, was defined. If a series of 

narrow scans from related materials is to be compared, it will obviously be advantageous 

to choose the backgrounds and limits of integration in the same way. Some of the C 1s 

narrow scans described herein were differentiated numerically using Microsoft Excel to 

better determine the limits for integration/peak fitting. For all the data collected at BYU, 

Shirley backgrounds were determined using the instrument software. For the data 

previously obtained at the synchrotron, Shirley backgrounds were calculated in Microsoft 

Excel. 

2) The height of the function was calculated as the height of the maximum of the peak 

envelope above the background. 

3) The peak was numerically integrated, where each data point contributed an area equal to 

its height above the background multiplied by the step size in eV between data points. 

While this approach is adequate in this paper for demonstrating the concepts outlined 

herein, there are obviously more sophisticated methods for numerically integrating 

functions.22 If the spectra are particularly noisy it may be advantageous to smooth them 

before performing this analysis. 

4)  The EWXPS was calculated as the quotient of the peak area and the peak height. 
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Figure 3.2 Illustration of the numerical integration of a peak for the calculation of the EWXPS parameter of 
an XPS narrow scan. The actual spacing between data points is much smaller than suggested here. 
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3.4 Results and Discussion 

3.4.1  Example 1. Ozone-treated CNT forests     

Carbon nanotube (CNT) forests were treated with ozone (O3) as part of a study to make 

microfabricated, CNT-templated thin layer chromatography plates.16 Prior to O3 treatment, the 

CNTs showed no oxygen by XPS.23 After ozone treatment, an O 1s signal became apparent in 

the survey scans, and the C 1s narrow scans broadened in a way that suggested multiple chemical 

states for carbon. As was the case for the Wepasnick work noted above,3 these scans are difficult 

to fit well. For example, there is a natural asymmetry to the main carbon peak, there is a shake-

up signal, and the carbon appears to be in multiple oxidation states, probably as C-O, C=O, and 

carboxyl groups.4, 5, 24-28 The rather low intensities of all of these components, except the main 

peak, add to the complexity of these spectra, i.e., accurately determining the concentrations of all 

of these low intensity components using only the narrow scans would be very challenging. 

Figures 3.3a – c shows three of the four C 1s narrow scans of ozone-treated CNT forests 

considered in this work. The C 1s spectrum of the fourth sample was essentially the same as 

these spectra and is not shown. As noted above, the C 1s narrow scans of these materials are 

complex – any peak fitting is expected to be challenging. They are also quite similar to each 

other so differentiating between them is expected to be challenging. By XPS, these samples 

showed ca. 3.7 – 5.0 at. % oxygen. In a first attempt to apply the EWXPS to these C 1s spectra, 

the beginning and ending points for Shirley baselines were chosen as the points on either side of 

the peak envelope where the spectra appear to flatten. Figure 3.3d shows a plot of the EWXPS 

values of these C 1s narrow scans plotted against their O/C ratios, which were determined from 

the corresponding XPS narrow scans using Shirley backgrounds. In spite of the complexity of 
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these C 1s spectra and their obvious similarity, there is good correlation between the EWXPS 

values and the amount of oxygen in the samples. As expected, the PEmax values for these spectra 

remain nearly constant, i.e., the relatively low amounts of oxygen in these materials suggests that 

the main carbon peak should remain in a roughly constant position. 

In addition to the analysis with EWXPS and PEmax that led to Figure 3.3, we also 

undertook a more sophisticated analysis of the data to decrease the degree of user bias, although 

we believe that any bias in the use of EWXPS and PEmax is already quite low. This analysis also 

demonstrates the robustness of the EWXPS parameter, i.e., we show that essentially the same 

trends are obtained when different approaches to data processing are utilized. We approached 

these analyses by reasoning that while the spectra would be expected to differ on their higher 

binding energy sides because of different amounts of chemically shifted carbon, the lower energy 

regions of the spectra, especially to the lower energy side of the peak maximum, would be 

expected to be very similar because they should be almost exclusively a result of unreacted 

carbon in the CNTs. In these approaches, the spectra were first numerically differentiated using 

both the definition of the derivative and a well-known five-point formula29:  

 
𝑓′(𝑥0) =

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)
ℎ

 
(3.3) 

 
𝑓′(𝑥0) =  

1
12 ℎ

[𝑓(𝑥0 − 2ℎ) − 8𝑓(𝑥0 − ℎ) + 8𝑓(𝑥0 + ℎ) − 𝑓(𝑥0 + 2ℎ)] 
(3.4) 
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Figure 3.3 (a) – (c) C 1s XPS narrow scans of three carbon nanotube (CNT) samples: 1, 2, and 3. (d) Plot 
of EWXPS (  ) and PEmax (  ) as a function of the oxygen-to-carbon ratio for these and one other similar 
sample. 
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In these equations, x0 is the point in question and h is the distance between equally spaced 

points in a spectrum, e.g., x0 + h and x0 – h are the points around the point x0. In addition to 

differentiating a function, the five-point formula has the effect of smoothing it (see Figure 3.4). 

This is clearly advantageous because the two-point formula is more strongly affected by noise in 

the data. Obviously there are many ways to handle these spectra – the data might be smoothed 

before differentiation and/or other functions for their differentiation might be considered – the 

purpose of this particular analysis is not to suggest a best method for identifying reference points 

in XPS spectra. The minimum in these derivative spectra are expected to correspond to the 

inflection points on the lower energy side of the maxima in the C 1s spectra (see Figure 3.5a). 
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Figure 3.4 Derivative of the C 1s narrow scan of CNT Sample 1 using (a) the definition of derivative and 
(b) the five-point formula given in the text. 
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After differentiating the spectra, either the minima in the resulting derivative curves, e.g., 

Point A in Figure 3.5a, or the points half way between the minimum and the zero level, e.g., 

Point B on Figure 3.5a, were used as references. Because Points A and B were rather close 

together, ca. 0.6 eV apart, the beginning point of the background was taken -3.0 eV from the 

reference point, and the ending point +11.0 eV from the same point, regardless of which 

reference point was employed (A or B). These limits were chosen so that the baseline contructed 

from them would reasonably capture the area under the C 1s curve. Using these beginning and 

ending points, two types of backgrounds were considered: a Shirley background and no 

background at all, i.e., in this latter approach, all the counts between the end points were used. 

This ‘no background’ approach will allow changes in the background to be better accounted for 

in the EWXPS function. Overall, this latter approach is expected to be the least biased, and the 

plot of the EWXPS vs. the oxygen-to-carbon ratio in the ‘no background’ approach showed the 

highest degree of correlation (see Figure 3.5b). However, the correlations are still very good for 

the Shirley backgrounds, whether used in the standard background fitting methodology (Figure 

3.3d) or derivative (Figure 3.5c) approaches. The data shown herein (Figure 3.5) are obtained 

with reference to the minimum in the derivative curve (Point A in Figure 3.5a). The results 

obtained from the halfway point, e.g., Point B in Figure 3.5a, are almost as good as those 

obtained when the minimum point (Point A) was the reference point. The raw data are shown in 

Table 3.1. Again, it speaks to the robustness of the EWXPS parameter that very similar 

correlations to the O/C ratio are obtained for different baselines and different limits of 

integration. 
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Figure 3.5 (a) Derivative obtained with a five-point formula (Equation 3.4) of the C 1s narrow scan below 
it, where this scan corresponds to CNT Sample 1 in Figure 2. (b – c) EWXPS values plotted against their 
corresponding oxygen-to-carbon ratios from XPS analyses. The minimum in each derivative curve, e.g., 
Point ‘A’ in panel (a), was used as the reference point for integrating each peak envelope. In (b), the data 
were analyzed without a background, and in (c), a Shirley background was employed. 
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Table 3.1 EWXPS (eV) values of CNT samples calculated under various conditions to test the robustness 
of the method. 

 

 

 

Note on the significant figures in this document. We certainly do not claim that the numbers reported 
herein have significance to the number of significant figures reported in most cases below. We simply 
report here the output from our calculations. 

 

 

 

  

Sample 

# O/C 

Ref. Pt. ‘B’ 

No 

background 

Ref. Pt. ‘A’ 

No 

background 

Standard 

fitting 

method 

Ref. Pt. ‘B’ 

Shirley 

background 

Ref. Pt. ‘A’ 

Shirley 

background 

1 0.03858 2.738 2.778 2.110 2.105 2.109 

2 0.04611 2.775 2.816 2.144 2.140 2.143 

3 0.05170 2.824 2.864 2.164 2.159 2.163 

4 0.05314 2.832 2.873 2.163 2.157 2.161 
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3.4.2 Example 2. Thermally grown oxide on silicon shards 

Native oxide terminated silicon wafers were plasma cleaned and then air oxidized at 900 

°C for 1, 2, 3, 4, and 5 minutes. The samples were labeled SiNO (untreated, native oxide-

terminated silicon wafer) and 1 – 5 corresponding to the number of minutes they were oxidized. 

Spectroscopic ellipsometry (SE) showed a reasonable correlation between the increase in oxide 

thickness and the oxidation time; the fits to a simple oxide-silicon model, as determined by the 

mean squared error (MSE), were reasonable (see Table 3.2). 

Figures 3.6 (a-c) shows plots of the Si 2p narrow scans of samples SiNO, 3, and 5, 

respectively. These spectra show a peak at ca. 99 eV that corresponds to bulk Si and another at 

ca. 103 eV attributed to oxidized silicon. The EWXPS parameters for these spectra were 

calculated using Shirley backgrounds. As expected, the EWXPS values are highest for the narrow 

scans that showed relatively intense Si and SiO2 peaks, i.e., the presence of two nearly equal 

peaks gives a lower value for the height of the EWXPS function, compared to the total area of the 

peak envelope. As the samples were increasingly oxidized, and a single SiO2 peak became 

dominant, the EWXPS parameter appeared to drop asymptotically (see Figure 3.6d). To explore 

the use of the EWXPS parameter, we also peak fitted the six narrow scans to two unconstrained 

Gaussian: Lorentzian (G:L) peaks. For both components (the bulk Si peak and the SiO2 peak), 

the best G:L ratio was nearly the same: 85:15. Accordingly, this ratio was used for the peak 

fitting reported herein. The EWXPS was calculated for each of these components. For samples 

SiNO and 1 – 4, the average EWXPS for the bulk Si peak was 1.54 ± 0.06 eV, showing good 

sample-to-sample consistency (the fifth scan was not considered because of the significant 

attenuation of the Si signal through the thicker oxide layer above it). For samples SiNO and 1 – 5, 

the average EWXPS value of the SiO2 peak was 2.13 ± 0.08 eV, also showing good sample-to-
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sample consistency for this parameter (see Table 3.3). These values are plotted in Figure 3.6d for 

comparison to the other data points. It might be expected that EWXPS values for oxides, such as 

SiO2, would be greater than for the bulk elemental Si peak. Sherwood similarly found that the 

oxide peak was wider than the metal peak on superficially oxidized aluminum, perhaps because 

of greater vibrational broadening in the oxide.2 Peak broadening can also be an indication of 

structural disorder in materials.30-32 
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Figure 3.6 (a) Si 2p narrow scan of a native oxide terminated Si wafer. (b – c) Representative Si 2p 
narrow scans of silicon shards with different thicknesses of oxide. (d) EWXPS values plotted as a function 
of oxide layer thickness (nm) of complete peak envelopes ( ), and also the average EWXPS values from 
peaks corresponding to the Si substrate ( ) and the SiO2 overlayer ( ). Error bars are the standard 
deviations of these measurements. Also shown are corresponding PEmax values ( ). SiNO refers to native 
oxide terminated silicon. 
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Table 3.2 Oxide growth on silicon shards as measured by spectroscopic ellipsometry. 

 

 

  

Sample 

# 

Duration of 

oxidation 

Initial oxide 

thickness (nm) MSE 

Final oxide 

thickness (nm) MSE 

Growth 

(nm) 

Native 

oxide - 1.922 ± 0.0101 2.909 - - - 

1 1 min 1.825 ± 0.0139 3.891 3.667 ± 0.0126 3.584 1.842 

2 2 min 1.810 ± 0.0138 3.894 3.481 ± 0.0141 3.847 1.671 

3 3 min 1.833 ± 0.0135 3.988 4.158 ± 0.0141 3.712 2.325 

4 4 min 1.809 ± 0.0135 3.801 5.441 ± 0.0141 3.765 3.632 

5 5 min 1.849 ± 0.0134 3.479 8.217 ± 0.0134 3.509 6.368 
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Table 3.3 EWXPS and PEmax values of entire Si 2p envelopes and the individual bulk Si and SiO2 peaks 
from peak fitting the Si 2p envelopes of silicon samples with different oxide thicknesses. 

 

 

 

 

 

 

 

 

  

Sample # 

EWXPS 

Bulk Si 

 

PEmax 

Bulk Si 

EWXPS 

SiO2 

 

PEmax 

SiO2 

EWXPS 

Si 2p 

envelope 

PEmax 

Si 2p 

envelope 

Native 

oxide 1.594 

 

99.49 2.266 

 

103.05 2.421 

 

99.42 

1 1.541 98.82 2.080 103.29 2.875 103.23 

2 1.587 98.44 2.141 103.30 2.849 103.30 

3 1.548 98.34 2.141 103.26 2.524 103.27 

4 1.442 97.63 2.107 102.82 2.248 102.88 

5 1.167 98.56 2.039 103.62 2.049 102.69 
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Unlike the previous example, where we observed a steady increase in EWXPS with an 

increase in the oxygen-to-carbon ratio, the EWXPS of the Si 2p envelope first increases as the 

silicon is initially oxidized, and then decreases asymptotically with increasing oxide layer 

thickness (see Figure 3.6d and Table 3.3).33 According, EWXPS is not expected to be a single-

valued function for this process. However, the combination of the PEmax and EWXPS parameters 

in the analysis of this system clearly improves this situation. For example, we observe the 

expected, large difference between the PEmax values for spectra dominated by the bulk Si signal 

(PEmax ~ 99 eV) and for spectra dominated by the oxide signal (PEmax ~ 103 eV).  

3.4.3 Example 3. Hydrogen-terminated Si(111) and its derivatives  

Spectra from three different modified Si(111) surfaces were considered: (i) hydrogen 

terminated silicon (Si(111)-H), (ii) pentyl-terminated silicon (Si(111)-C5) that was derived from 

Si(111)-H, and (iii) Si(111)-C5 that had been annealed at 700 ºC, (Si(111)-C5/700º). The EWXPS 

values for the Si(111)-H and Si(111)-C5 surfaces were both 0.72 eV. This result is consistent 

with Terry and coworkers’ previous report of these spectra.19, 21 However, after the Si(111)-C5 

surface was annealed, the resulting Si(111)-C5/700º surface showed a significantly increased 

EWXPS value of 1.04 eV. This value is consistent with the shoulder on the peak envelope at 

higher KE attributable (see Figure 3.7c) to surface states from the Si(111)-(7 x 7) 

reconstruction.34 The PEmax values of the three spectra differed by only ~ 0.1 eV, which was 

again consistent with the prior work (see Figure 3.7), i.e., the spectra are dominated by the bulk 

Si signal.19 
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Figure 3.7 XPS narrow scans of (a) hydrogen terminated silicon (Si-H), (b) pentyl-terminated silicon (Si-
5), and (c) Si-5 annealed at 700 ºC (Si-5_700). (d) graph of EWXPS (  ) and PEmax ( ). 
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3.4.4 Example 4. Sample charging  

Five different nanodiamond samples were analyzed by XPS. Three of the resulting C 1s 

narrow scans are presented in Figure 3.8. Good spectra, by which we mean C 1s narrow scans 

that do not show significant broadening and/or artifacts, e.g., Figure 3.8a, were only obtainable 

from two of the samples. Figures 3.8b and 3.8c show C 1s narrow scans from samples that 

charged, where the same unusual/distorted shapes, i.e., the low energy shoulders on the peaks, 

were also found in the other peaks in the corresponding spectra. The EWXPS and PEmax values for 

the five uncorrected C 1s narrow scans from these samples were determined, and these two 

parameters were plotted against each other (see Figure 3.8d). The dotted lines in this figure are 

guides to the eye for the following observations. The two points inside the dotted line correspond 

to good, narrow, C 1s spectra that did not show artifacts. They have the lowest EWXPS values, 

and their PEmax values are not grossly shifted from the value expected for a hydrocarbon (~285.0 

eV). The remaining three points in the plot correspond to spectra that showed artifacts. Their 

EWXPS values were either substantially higher than those of the good samples and/or they 

showed extreme PEmax values because of either sample charging or failed attempts at charge 

compensation. Like the other data shown in this work, these results are not intended to represent 

an exhaustive study of this material system. Rather, they suggest that the EWXPS and PEmax 

parameters may be useful in identifying charged or otherwise outlying spectra, where the ‘space’ 

created by plotting these two parameters against each other may show regions corresponding to 

‘good’ and ‘bad’ spectra.  
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Figure 3.8 XPS C1s narrow scans of nanodiamonds that (a) showed a reasonable peak envelope, and (b – 
c) showed artifacts due to non-uniform charge compensation. (d) Graph of the EWXPS vs. PEmax values 
from the C 1s narrow scans of five nanodiamond samples. The red dotted line is a guide to the eye. 
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3.5 Conclusions 

In the four examples presented herein, EWXPS and PEmax behave in chemically/physically 

reasonable ways; EWXPS and PEmax are responsive to surface chemistry and sample charging. 

They appear to play a complementary role to peak fitting in XPS narrow scan analysis, i.e., 

traditional peak fitting is richer in chemical information than EWXPS and PEmax, but it also 

appears to be more susceptible to user bias. Consider, for example, the dozen or so parameters 

(peak positions, peak widths, peak heights, Gaussian-Lorentzian ratios, the Gaussian-Lorentzian 

fit function, the asymmetry of the C-C peak, etc.), that would need to be selected and fit, beyond 

those needed to define a baseline, for the complex C 1s spectra of the oxidized CNTs discussed 

herein. Unlike peak fitting, where one attempts to break up a signal into its components, EWXPS 

and PEmax characterize entire peak envelopes. The resulting values for a series of spectra can be 

plotted against each other. In addition to their usefulness in comparing entire narrow scans, they 

can also be applied to individual, peak-fitted components within a spectrum. The EWXPS can be 

determined without a user-defined baseline, where one only needs to select two endpoints, which 

further reduces any user bias. We suggest that EWXPS and PEmax should be considered as 

additional tools for understanding, comparing, and validating XPS narrow scans. For example, 

these parameters could be used in place of the qualitative analysis commonly performed on 

narrow photoemission scans. They may also prove valuable as components of an expert software 

system for the machine interpretation of spectra. 
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Chapter 4: Comparison of the Equivalent Width, the Autocorrelation Width, and 

the Variance as Figures of Merit for XPS Narrow Scans* 

4.1 Abstract 

X-ray photoelectron spectroscopy (XPS) is widely used in surface and materials 

laboratories around the world. It is a near surface technique, providing detailed chemical 

information about samples in the form of survey and narrow scans. To extract the maximum 

amount of information about materials it is often necessary to peak fit XPS narrow scans. And 

while indispensable to XPS data analysis, even experienced practitioners can struggle with their 

peak fitting. In our previous publication, we introduced the equivalent width (EWXPS) as both a 

possible machine automated method, one that requires less expert judgment for characterizing 

XPS narrow scans, and as an approach that may be well suited for the analysis of complex 

spectra. The EWXPS figure of merit was applied to four different data sets. However, as 

previously noted, other width functions are also regularly employed for analyzing functions. 

Here we evaluate two other width functions for XPS narrow scan analysis: the autocorrelation 

width (AWXPS) and the variance (σ2
XPS). These widths were applied to the same four sets of 

spectra studied before: (a) four C 1s narrow scans of ozone-treated carbon nanotubes (CNTs) 

(EWXPS: ~2.11 – 2.16 eV, AWXPS: ~3.9 – 4.1 eV, σ2
XPS: ~5.0 – 5.2 eV, and a modified form of 

σ2
XPS, denoted σ2*

XPS: ~ 6.3 – 6.8 eV), (b) silicon wafers with different oxide thicknesses 

(EWXPS: ~1.5 – 2.9 eV, AWXPS: ~2.28 – 4.9, and σ2
XPS: ~ 0.7 – 4.9 eV), (iii) hydrogen-

terminated silicon surfaces, before and after modification with pentyl groups, and after annealing 

of the pentyl-terminated surface (EWXPS: ~ 0.7 – 1.0 eV, AWXPS: ~1.2 – 1.6 eV, and σ2
XPS:  

*This chapter has been reproduced with permission from (Bhupinder Singh, Daniel Velázquez, Jeff Terry, and 
Matthew R. Linford), Journal of Electron Spectroscopy and Related Phenomena, 2014. 197(0): p. 112-117 
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~0.12 – 0.19 eV), and (iv) C 1s narrow scans from five different nanodiamond samples, three of 

which showed charging (EWXPS: ~2.6 – 4.8 eV, AWXPS: ~3.8 – 6.9 eV, and σ2
XPS: ~1.6 – 4.2 

eV). All three of the width functions showed similar trends, except in the case of the C 1s spectra 

of the CNT samples, which were the most complex spectra evaluated, where σ2
XPS showed poor 

correlation with the corresponding O/C ratios. Accordingly, we favor EWXPS and AWXPS. EWXPS 

is advantageous because it is conceptually simple, giving the most intuitive results. AWXPS has 

the advantage of not requiring the user to specify the height of the function at its maximum, 

which will be affected by noise. Because these functions are based on different mathematical 

operations/algorithms, best practices may involve the calculation of both widths for a set of 

narrow scans. The standard deviation, σXPS, i.e., the square root of the variance, was also 

examined. As expected, it gave results similar to σ2
XPS. 

4.2 Introduction 

X-ray photoelectron spectroscopy (XPS) is an indispensable analytical tool for 

surface/material characterization. Indeed, an ISI Web of Science search on the terms ‘X-ray 

photoelectron spectroscopy’ or ‘XPS’ for papers published in 2013 identified more than 11,000 

publications.1, 2 XPS is a quantitative, near surface characterization tool that operates by 

illuminating a sample with X-rays.3 The kinetic energies of the photoelectrons generated in the 

technique are measured by the instrument and converted into binding energies that identify the 

elements in the sample. XPS spectra are obtained as either lower resolution survey scans or 

higher resolution narrow scans. Peak fitting is a central part of the analysis of XPS narrow scans 

because, as noted by Sherwood, the widths of the peaks and the chemical shifts observed for 

different oxidation states of many elements are often quite similar.4  
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In our previous publication,5 we discussed some of the limitations of traditional XPS 

peak fitting. We noted that while many analysts practice peak fitting with care and competence, 

the literature also contains many examples of poorly fit narrow scans. But even when peak fitting 

is practiced in a reasonable way, some ambiguity remains. And of course this ambiguity 

increases when a large number of adjustable parameters, sometimes of necessity, are used in a 

fit. With regard to peak fitting, we again quote Sherwood who said: “there is never a unique 

solution to fitting the data.”4 For example, Wepasnick and coworkers fitted a C 1s narrow scan of 

oxidized carbon nanotubes (CNTs) to the fitting parameters of similar spectra reported 

previously in two different papers.6-8 Both sets of parameters provided good, overall fits to the 

data. However, with one set of parameters the fraction of carboxyl groups in the material was 

5.9%, and in the other 11.0%. This is more than a trivial difference.  

To help address these issues, we introduced the equivalent width for XPS narrow scans 

(EWXPS) as a figure of merit that would potentially require less user intervention/be less biased 

than traditional peak fitting. We showed the effectiveness of the EWXPS in the analysis of 

complex C 1s spectra from oxidized CNTs, which were similar to the data considered by 

Wepasnick. The equivalent width (EW) has previously been used in other areas of spectroscopy 

to characterize spectral lines. For example, the astronomy community regularly uses it to 

characterize peaks in their spectra.9-11 The classical definition of the EW is the area of a function, 

f(x), divided by its central ordinate, f(0): 

 
𝐸𝑊 =

∫ 𝑓(𝑥)𝑑𝑥∞
−∞
𝑓(0)

 
(4.1) 
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Thus, the EW models a function as a rectangle with the same area, ∫ 𝑓(𝑥)𝑑𝑥∞
−∞ , and 

height, f(0), as the original function. Of course, Equation 4.1 is undefined for functions that pass 

through the origin, and makes little sense for functions that are well separated from the origin 

such that f(0) is small. Accordingly, we introduced a slightly modified form of Equation 4.1 for 

application to XPS narrow scans, which we named EWXPS: 

 𝐸𝑊𝑋𝑃𝑆 =
𝑃𝑒𝑎𝑘 𝐴𝑟𝑒𝑎
𝑃𝑒𝑎𝑘 𝐻𝑒𝑖𝑔ℎ𝑡

 (4.2) 

where the ‘Peak Area’ is the area of an XPS peak above a user-defined background and ‘Peak 

Height’ is the height of the peak envelope maximum, also measured from the background. We 

also recommended that the binding energy at the maximum of the peak envelope (PEmax) be 

recorded with EWXPS to avoid any ambiguity in the interpretation of the data. We used EWXPS 

and PEmax to characterize four sets of XPS narrow scans,5 which will again be used in this study. 

All of the results of the previous analyses were consistent with the expected chemistries of these 

materials.  

Our previous publication focused exclusively on the equivalent width of an XPS narrow 

scan (EWXPS) as a rather unbiased measure of its width. However, we noted that the EW is not 

the only measure of the width of a function.5 Indeed, two other important widths of functions are 

the autocorrelation width and the variance.12 In this work we describe these two widths, which 

we refer to herein as AWXPS and σ2
XPS, respectively. We apply these widths to the same four sets 

of XPS narrow scans that were analyzed in our previous publication, and compare the results 

obtained with these widths to those from the EWXPS. As was the case for EWXPS, AWXPS 

performed well in all cases. σ2
XPS performed well for three of the sample sets, but failed for the 

most complex set. Accordingly, we favor EWXPS and AWXPS. EWXPS is advantageous in that 
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both its mathematical definition and results are straightforward – easier to understand. AWXPS is 

advantageous because it does not require the user to calculate the height of the maximum of the 

peak envelope. The standard deviation, σ, was also evaluated as a width function, but it was 

found to be even less useful than the variance.  

4.2.1 The Autocorrelation Width and the Variance  

The autocorrelation of a real function, f, is defined as: 

 
ℎ(𝑥) = 𝑓 ⋆ 𝑓 =  � 𝑓(𝑢)𝑓(𝑢 − 𝑥)𝑑𝑢

∞

−∞
 

(4.3) 

For those not familiar with this mathematics, it is worth emphasizing that, on the left side 

of Equation 4.3 ‘x’ plays the role of a variable (in h(x)), and that on the right side of Equation 4.3 

it plays the role of a constant, i.e., within the integral. In an autocorrelation, one considers every 

possible shift, x, of a copy of a function with respect to the function itself, where for each shift of 

amount x, the two functions, f(u) and f(u – x), are multiplied together and the area of the product 

function is recorded as the value of h(x). Finally we note in passing that (i) all autocorrelations 

are even functions, i.e., whether a function is shifted a certain amount to the right or the same 

amount to the left with respect to itself the answer is the same, and (ii) the maximum in an 

autocorrelation function is at x = 0, i.e., at no shift.  

The autocorrelation width of a real function is given by the following equation:12 

 
𝑊𝑓∗𝑓 =  

∫ (𝑓 ⋆ 𝑓)𝑑𝑥∞
−∞
𝑓 ⋆ 𝑓 |0

=  
(∫𝑓𝑑𝑥)2

∫ 𝑓2𝑑𝑥
=
∫ ℎ(𝑥)𝑑𝑥∞
−∞
ℎ(0)

= 𝐴𝑊𝑋𝑃𝑆 
(4.4) 
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Here, the numerator (∫ (𝑓 ⋆ 𝑓)𝑑𝑥∞
−∞ ) is just the integral, the area, of the complete 

autocorrelation function, and the denominator (𝑓 ⋆ 𝑓 |0) is the autocorrelation function evaluated 

at x = 0, which is just the integral of the square of the function. That is, 𝑊𝑓∗𝑓 is really just the 

equivalent width of the autocorrelation function, h(x), i.e., it is the area of h(x) divided by its 

height, h(0). Thus, we define AWXPS according to Equation 4.4 in terms of the area and squared 

area of a narrow scan, i.e., (∫𝑓𝑑𝑥)2

∫𝑓2𝑑𝑥
. There are, however, some important differences between the 

EW and 𝑊𝑓∗𝑓 (AWXPS) of a function. First, in its classical definition, EW is dependent on the 

position of a function along the x-axis, while 𝑊𝑓∗𝑓 is independent of that position. Second, there 

is no need to specially define the height of the integral of the autocorrelation function, i.e., the 

height of the function is given by 𝑓 ⋆ 𝑓 |0 = ∫𝑓2𝑑𝑥 = h(0), while the height of EWXPS needs to 

be specified. Third, one would in general expect the autocorrelation width of a function to be 

larger than its EW because the autocorrelation of a function should be broader than the original 

function. As we will show, AWXPS can be directly applied to an XPS narrow scan, where as 

before, a background may or may not be applied to the data.  

The spread in a set of data points is often measured by its variance, σ2, given by: 

 
𝜎2 =  

∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1

𝑁 − 1
 

(4.5) 

where the xi values here represent the data points, �̅� is the mean value of the data set, and N is the 

number of data points. Of course the square root of the variance is the standard deviation, σ. To 

calculate σ2 of an XPS narrow scan, we use the following equation for �̅�: 
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�̅� =

∑(𝑐𝑜𝑢𝑛𝑡𝑖 ∗ 𝑥𝑖)
∑𝑐𝑜𝑢𝑛𝑡𝑖

 
(4.6) 

where 𝑥𝑖 refers to the binding energy (eV) at a particular point and counti refers to the number of 

counts at that binding energy. The following formula can then be used to calculate the variance 

of an XPS peak envelope, σ2
XPS: 

 
𝜎𝑋𝑃𝑆2 =

∑(𝑐𝑜𝑢𝑛𝑡𝑖 ∗ (�̅� − 𝑥𝑖)2)
∑𝑐𝑜𝑢𝑛𝑡𝑖 − 1

 
(4.7) 

Note that for the large numbers of counts typically encountered in an XPS narrow scan, 

∑𝑐𝑜𝑢𝑛𝑡𝑖 − 1 ≈  ∑𝑐𝑜𝑢𝑛𝑡𝑖. 

The EWXPS and other width functions considered herein are utilized to measure the 

breadth of the envelope of a photoelectron spectrum. This envelope can change with sample 

changes (physical and chemical) and systematic problems such as charging. These functions are 

not designed to determine the components of the spectrum as in peak fitting13 or principle 

component analysis.14 Indeed, the EW and related functions are to be utilized in concert with the 

elemental analysis obtained from the core levels, and perhaps with regard to data from other 

characterization tools, to understand the nature of the peak width changes that are observed. 

Thus, these envelope functions allow the user to develop an understanding of chemical changes 

without the need for fitting. In particular, this approach should be valuable in the analysis and 

comparison of sets of very complex spectra where peak fitting is challenging. In addition, the 

width functions can identify spectral changes that show systematic errors, such as for charging. 
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4.3 Experimental 

The same narrow scans used in our previous publication5 on the EWXPS are also used in the 

present study (see Chapter 3.3).  

4.4 Results  

In this work we consider the application of two new width functions to XPS narrow scans: 

the autocorrelation width (AWXPS) and the variance (σ2
XPS). To evaluate these figures of merit, 

we apply them to the same four sets of narrow scans that were studied with the EWXPS in our 

previous publication.5 

4.4.1 Data Set 1. Ozone-treated CNT forests     

Figure 4.1a-c shows the EWXPS, AWXPS, and σ2
XPS values of the C 1s spectra of four 

different samples of ozone-treated carbon nanotubes that had oxygen contents of 3.7 – 5.0 at. %. 

Shirley backgrounds15 were first determined for all four spectra after which the different widths 

were calculated. As discussed previously,5 with increased sample oxidation, a general 

broadening (increase in width) of the C 1s peak envelopes is expected. As previously reported, 

EWXPS correlates quite well to the oxygen contents of the samples (correlation coefficient, R, of 

0.989, see Figure 4.1a). AWXPS followed the same trend and gave a similar correlation 

coefficient of 0.982 (see Figure 4.1b). Surprisingly, the σ2
XPS values (see Figure 4.1c) appeared 

to be poorly correlated to the oxygen contents of the samples, i.e., they showed a substantially 

lower correlation to the O/C ratio (R = 0.661).  

In an effort to understand the unexpected σ2
XPS values for this set of CNT samples, we 

took a closer look at the equation for σ2
XPS (Equation 4.7). Due to the natural asymmetry of the C 
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1s peak, we found that the �̅� values for the four samples were different from their corresponding 

PEmax values (see Table 4.1). The value of �̅� in Equation 4.7 is expected to have a significant 

effect on the final result. However, the value of �̅� should also depend on how the data are 

processed, e.g., how the baseline is determined. Accordingly, we took the maximum of the peak 

envelope (PEmax) as the reference point, obtaining a modified form of σ2
XPS that we denote as 

σ2*
XPS in which we replace �̅� with PEmax: 

 
𝜎𝑋𝑃𝑆2∗ =

∑(𝑐𝑜𝑢𝑛𝑡𝑖 ∗ (𝑃𝐸𝑚𝑎𝑥 − 𝑥𝑖)2)
∑𝑐𝑜𝑢𝑛𝑡𝑖 − 1

 
(4.8) 

Figure 4.1d shows the graph of σ2*
XPS plotted against the oxygen-to-carbon ratios for the 

CNT samples. The correlation with the XPS O/C ratio is a little better (R = 0.7493), but the 

results are still not nearly as good as those obtained with the EWXPS and AWXPS. Again, it is 

quite clear that the variance is sensitive to the value of �̅� (PEmax) in Equations 4.7 and 4.8, and 

that determining the appropriate value of this parameter may be challenging. 
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Figure 4.1 (a) EWXPS, (b) AWXPS, (c) σ2
XPS, and (d) σ2*

XPS widths of C 1 s narrow scans of four CNT 
samples plotted as a function of their oxygen-to-carbon ratios. 
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Table 4.1 EWXPS, AWXPS, σ2

XPS, σ2*
XPS, PEmax, and 𝒙� values for four different ozone-treated CNT samples. 

 

 

 

Note on the significant figures in this document. We certainly do not claim that the numbers reported 
herein have significance to the number of significant figures reported in most cases below. We simply 
report here the output from our calculations. 

  

CNT sample O/C EWXPS 

(eV) 

AWXPS 

(eV) 

σ2
XPS 

(eV) 

σ2*
XPS 

(eV) 

PEmax 𝒙� 

1 0.03858 2.1103 3.9295 5.1250 6.4176 284.5 285.67 

2 0.04611 2.1439 3.9797 5.0337 6.2652 284.6 285.71 

3 0.0517 2.1641 4.0638 5.2185 6.7620 284.4 285.71 

4 0.05314 2.1627 4.0707 4.2819 6.8037 284.4 285.71 
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4.4.2 Data Set 2. Silicon samples with different oxide thicknesses   

The second set of spectra consisted of native oxide terminated silicon (SiNO) and five 

different SiNO surfaces that had been heated in the air at 900 °C for 1, 2, 3, 4, and 5 min. The 

samples are labeled according to the number of minutes they were oxidized. As before,5 the Si 2p 

narrow scans were peak fitted to two signals, one attributed to the silicon substrate and the other 

to the surface oxide layer, and the AWXPS and σ2
XPS values of these ‘Bulk Si’ and ‘SiO2’ 

component peaks were also calculated. Figure 4.2 shows the EWXPS, AWXPS, and σ2
XPS values 

for the complete narrow scans and their average ‘Bulk Si’ and ‘SiO2’ components as a function 

of the oxide thicknesses of the samples, which was measured by spectroscopic ellipsometry. The 

numerical values for these widths are given in Table 4.2. Qualitatively, all three measures of 

width gave similar results. That is, the widths of the average ‘Bulk Si’ and ‘SiO2’ peaks were 

low, and the widths of the samples with substantial ‘Bulk Si’ and ‘SiO2’ contributions were 

higher. Ultimately, as the oxide thicknesses increased, the width values decreased asymptotically 

to that of the ‘SiO2’ sample. In all cases, the widths of the SiNO narrow scans were greater than 

the widths of ‘SiO2’ peak, which was consistent with the previous (EWXPS) results. The σ2
XPS 

arguably provides the best results. As the oxide layer thickness increases, σ2
XPS shows a 

minimum at the ‘bulk’ SiO2 value. In contrast, for the other two width functions, the ‘bulk’ SiO2 

value is a little higher than those for the oxidized samples. 
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Figure 4.2 (a) EWXPS, (b) AWXPS, and (c) σ2
XPS of Si 2p spectra from Si wafers with varied oxide 

thicknesses. The ‘Bulk Si’ peaks (circles) were calculated as the average width of the ‘Bulk Si’ peak 
component of the SiNO sample and samples 1 – 4. Sample 5 was excluded due to significant attenuation 
of the bulk Si signal. The ‘SiO2’ peaks (triangles) were calculated as the average from the ‘SiO2’ peak 
components of all the samples. 
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Table 4.2 EWXPS, AWXPS and σ2
XPS values of the bulk Si and SiO2 peaks obtained from peak fitting the Si 

2p envelopes of silicon samples that had been oxidized for different amounts of time. 

 

 

 

 

 

 

 

 

 

 

 

  

 EWXPS EWXPS AWXPS AWXPS σ2
XPS σ2

XPS 

Si Sample Si SiO2 Si SiO2 Si SiO2 

SiNO 1.5940 2.2660 2.3707 3.3327 0.7423 1.1999 

1 1.5410 2.0800 2.2875 3.0818 0.7369 1.1250 

2 1.5870 2.1410 2.3538 3.1655 0.7518 1.1495 

3 1.5480 2.1410 2.2944 3.1664 0.6958 1.1417 

4 1.4420 2.1070 2.1270 3.1219 0.5183 1.1232 

5 1.1670 2.0390 1.7108 3.0218 0.2790 1.0497 

       
Average 1.5424 2.1290 2.2867 3.1483 0.6890 1.1310 

Standard 

deviation 

0.0608 0.0775 0.0963 0.1056 0.0978 0.0488 
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4.4.3 Data Set 3. Hydrogen-terminated Si(111) and its derivatives  

As in our previous work, Si 2p narrow scans of three different modified Si(111) surfaces 

were analyzed: (a) hydrogen terminated silicon (Si(111)-H), (b) Si(111)-H modified with pentyl 

groups (Si(111)-C5), and (c) Si(111)-C5 annealed at 700 °C (Si(111)-C5/700°). All three widths 

(EWXPS, AWXPS, and σ2
XPS) were calculated and showed similar results (see Figure 4.3). In all 

cases, (i) the widths of the  narrow scan from the Si(111)-H and Si(111)-C5 samples were nearly 

the same, and (ii) the width of the narrow scan from Si(111)-C5/700° was substantially greater. 

Again, the annealing of the Si(111)-C5 surface led to the formation of the Si(111)-(7 x 7) 

reconstruction, which produced a shoulder in the spectrum that broadened the narrow scan. In 

summary, these width functions ‘see’ the two similar spectra as similar and the broadened 

spectrum as wider. 

4.4.4 Data Set 4. Sample charging  

The C 1s spectra from five different nanodiamond samples were analyzed. Two of the 

narrow scans looked very reasonable, while three of them showed significant broadening and/or 

artifacts due to sample charging. Figure 4.4 shows the EWXPS, AWXPS, and σ2
XPS values for these 

spectra plotted against their PEmax values, where these PEmax values were obtained after the 

attempted instrumental charge compensation, but before any correction of the binding energy 

scale. In all three cases, the ‘good’ spectra (circled in the figure) showed lower width values. 

They also showed PEmax values in a range that is more reasonable for a C 1s spectrum from an 

uncharged sample. Overall, the results from these three width functions are quite similar, 

although the discrimination between the ‘good’ and ‘bad’ samples/regions appears to be 

somewhat greater for EWXPS and AWXPS than for σ2
XPS.  
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Figure 4.3 (a) EWXPS, (b) AWXPS, and (c) σ2
XPS widths of Si 2p spectra of three different modified Si(111) 

surfaces: hydrogen terminated silicon (Si(111)-H, Si-H), Si(111)-H modified with pentyl groups (Si(111)-
C5, Si-H-C5), and Si(111)-C5 annealed at 700 °C (Si(111)-C5/700°, Si-H-C5-700). 
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Figure 4.4 (a) EWXPS, (b) AWXPS, and (c) σ2
XPS values of C 1s spectra of five different nanodiamond 

samples. The dotted red lines are guides to the eye to distinguish the two samples that did not charge and 
that showed good peak shapes from the samples that charged and showed artifacts. 
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4.4.5 The Standard Deviation 

We also explored the standard deviation (σ) as a possible figure of merit for XPS narrow 

scans (σXPS). These functions are given by the following equations:  

 
𝜎 =  �

∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1
𝑁 − 1

 
(4.9) 

 
𝜎𝑋𝑃𝑆 = �

∑(𝑐𝑜𝑢𝑛𝑡𝑖 ∗ (�̅� − 𝑥𝑖)2)
∑𝑐𝑜𝑢𝑛𝑡𝑖 − 1

 
(4.10) 

 

where xi, �̅�, N, and counti have the same meanings given them in Equations 4.6 – 4.8. In general, 

and as expected, σXPS performed similarly to σ2
XPS. It worked well with Examples 2 and 3, failed 

for Example 1, and did not perform quite as well as σ2
XPS in Example 4. We conclude that σ2

XPS 

is a better analytical tool than σXPS. Figure 4.5 compares results for σXPS and σ*XPS, which is the 

square root of  σ2*XPS (Equation 4.8). 

4.5 Discussion 

 The EWXPS values for the four sets of spectra studied here were all reasonable – this was 

reported previously. The EWXPS figure of merit has the advantage of being easy to understand 

and explain. It is also computationally simple – just the area of a function divided by its height. 

The AWXPS figure of merit does not provide the approximate width of the original function as the 

EWXPS does. Rather it is the equivalent width of the autocorrelation of the function, which will 

be broader than the function from which it is derived. Thus it is a somewhat more abstract 

measure of width. Fortunately there is a simple formula for AWXPS (see Equation 4.4), and it has 
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the advantage of not requiring the user to specify the height of the function, where this 

specification will be sensitive to noise. In this sense, it is arguably less biased than EWXPS. In the 

examples reviewed herein, AWXPS and EWXPS show essentially the same effectiveness. 

Variances are so widely used in science and technology that even though the σ2
XPS width 

may be a little more difficult to calculate than the other two widths, there should be no barrier to 

its adoption. σ2
XPS performed a little better than EWXPS and AWXPS in Example 2, about the same 

in Example 3, arguably not quite as well in Example 4, and very poorly in Example 1. Fixing the 

center point of the σ2
XPS function improved the results in Example 1, but not nearly to the level 

of the EWXPS and AWXPS results. Therefore, σ2
XPS appears to be a less robust width parameter 

than EWXPS and AWXPS. Overall, σXPS appears to be even less effective for analysis of XPS 

narrow scans. 
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Figure 4.5 (a) σXPS and (b) σXPS∗  values of C 1s spectra from oxidized CNT samples as a function of their 
oxygen-to-carbon ratios; σXPS value of (c) Si 2p narrow scans collected from a series of oxidized silicon 
surfaces, plotted as a function of their oxide layer thickness, (d) Si 2p narrow scans from various modified 
silicon surfaces, and (e) σXPS values plotted as a function of PEmax for C 1s spectra collected from various 
nanodiamond samples. 
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We have emphasized that EWXPS, AWXPS, and σ2
XPS should constitute a less biased 

approach to XPS narrow scan analysis. However, we again acknowledge conventional peak 

fitting of XPS narrow scans as indispensable for gathering chemical information about a sample. 

Indeed, conventional peak fitting will remain important in spite of the fact that it is sometimes 

done poorly and/or an analysis may require a relatively large number of adjustable parameters. 

Conventional peak fitting breaks XPS peak envelopes into constituent peaks. Our width function 

approaches characterize the entire peak envelope. Recording PEmax with these widths also helps 

one to understand chemical changes taking place in a material. Possible applications/uses of 

EWXPS, AWXPS and σ2
XPS include: 

a) Capturing the similarity and variation between series of narrow scans. 

b) Quality control of materials. 

c) Being part of an expert/automated system for peak/spectrum analysis. We have 

included a flow chart in Figure 4.6 that might be used, at least in part, in such cases. 

d) Analysis of very complex samples. EWXPS and AWXPS were able to pick up subtle 

differences in the complex spectra of oxidized CNTs, nicely correlating the results to 

their oxygen-to-carbon ratios. 

e) As a complementary method to conventional peak fitting that could provide a rather 

unbiased check on results. 

Some of us have spent years performing chemometrics analyses of moderately complex 

data sets – mostly positive and negative ion static SIMS spectra.16-22 After a reasonable amount 

of practice, we have concluded that it is generally advisable to apply more than one 

chemometrics tool to a data set. That is, we will often perform at least two of the following 

analyses: principle components analysis (PCA), cluster analysis (CA), and/or multivariate curve 
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resolution (MCR) when we wish to study/explore the chemical variation between samples. Our 

experience has been that the different analyses almost always separate/differentiate our spectra in 

similar ways even though they are based on considerably different mathematical algorithms. 

When we see reasonable agreement between different analyses, we have more confidence in our 

conclusions. Clearly we do not have as much experience with the three width functions proposed 

in this paper. However, the results described herein suggest that it may also be wise to apply 

more than one width function to a set of narrow scans. As noted, our preferred functions are the 

EWXPS and AWXPS functions. 

4.6 Conclusions 

We have evaluated three width functions: the equivalent width (EWXPS), the 

autocorrelation width (AWXPS), and the variance (σ2
XPS), for their abilities to 

analyze/characterize/differentiate XPS narrow scans. In three out of the four examples studied, 

all three of the width functions seemed to capture and correlate with the chemical and charging 

variations between samples in a reasonable way. In the case of the quite challenging C 1 s 

narrow scans of lightly oxidized CNTs, σ2
XPS failed to deliver reasonable results. The standard 

deviation, σXPS, appeared to be even less effective than σ2
XPS. EWXPS stood out as being 

straightforward, robust, sensitive, and easy to calculate and understand. AWXPS seemed to give 

very similar results to EWXPS – like EWXPS it worked for all four materials. While a little more 

abstract, AWXPS has the advantage of being insensitive to noise in a spectrum, which can affect 

EWXPS results. It may be advantageous to use more than one width function in the analysis of a 

set of XPS narrow scans to validate results. Here we would recommend the EWXPS and AWXPS. 
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Figure 4.6 Flow chart depicting a possible analysis approach for using the width functions. 
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4.8 Data Archiving 

The raw data of the sets of narrow scans analyzed in this contribution will be submitted to 

Surface Science Spectra for archiving for the community.  
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Chapter 5: Using a Simple Graphical Tool, Uniqueness Plots, to Avoid Peak Fit 

Parameter Correlation in X-ray Photoelectron Spectroscopy 

5.1 Abstract 

Data modeling and peak fitting are essential tools for the analysis of X-ray photoelectron 

spectroscopy (XPS) narrow scans. However, in general, peak fitting is subject to at least some 

measure of user bias. This problem deepens, especially in the case of novice practitioners who 

tend to employ too many fit parameters and/or fail to apply reasonable constraints to them. 

Under these conditions, fit parameters are often correlated, and therefore lacking in statistical 

meaning. The mathematical determination of correlation among XPS fit parameters has been 

reported in the literature. This statistical analysis is also used in the modeling of spectroscopic 

ellipsometry (SE) data. However, the SE community also employs a useful graphical tool, the 

uniqueness plot, to identify correlation between fit parameters. In these plots, the error of a fit is 

plotted as a function of the value of a particular fit parameter that is systematically fixed to 

values about its optimal value. Where results are unique, a parabola-like curve with significant 

curvature is obtained. On the flip side, a completely unreasonable peak fit, with correlated fit 

parameters, yields a horizontal line, i.e. the same (low) error is obtained for all values of the fit 

parameters in question. Herein, we introduce the uniqueness plot to the XPS community as a 

simple and straightforward graphical tool for assessing peak fitting results. We explore this 

approach with two data sets: a C 1s narrow scan from ozone-treated carbon nanotube forests and 

an Si 2p narrow scan from an air oxidized silicon wafer. We consider various scenarios for each 

of these data sets in which different numbers of fit parameters are varied. The resulting 

uniqueness plots are as expected, showing parabolic curves when more reasonable numbers of fit 

parameters and constraints are applied, and giving horizontal lines where too many fit parameters 
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are used without appropriate constraints. This latter case implies statistically meaningless results. 

We advocate that the ability to generate uniqueness plots be part of XPS instrument software 

packages, which will help XPS practitioners validate their peak fitting results. 

5.2 Introduction 

X-ray photoelectron spectroscopy (XPS) is a very widely used surface characterization 

technique, as evidenced by the fact that, as of late, the technique has been receiving 

approximately 10,000 citations per year.1-3 XPS quantifies the elemental compositions of the 

near surface regions of samples, revealing the chemical states of the elements in them, often via 

peak fitting.4, 5 However, peak fitting can be a somewhat subjective and challenging exercise.6 

To address the issue of peak fit uncertainty, we recently introduced the equivalent width and 

autocorrelation width as relatively less biased figures of merit for XPS narrow scans.7, 8 These 

width functions were shown to be sensitive to chemical changes in a variety of materials. As an 

example of peak fit uncertainty, Wepasnick and coworkers peak fitted a C 1s narrow scan from 

oxidized carbon nanotubes (CNTs) using the parameters from two previously published fits.9-11 

In both cases, the overall fits were good. However, the fraction of the carboxyl, C(III),12 signal in 

the fits differed substantially: ca. 6% and 11.0%. This difference, nearly a factor of 2, could 

certainly change one’s understanding of this material.  

There are a number of possible pitfalls in XPS peak fitting/data analysis. These include 

(i) using an inappropriate background, (ii) adding in too many peaks and/or fit parameters, and 

(iii) failing to evaluate the quality of one’s fit by using tools such as chi squared (𝜒2), the 

reduced chi squared (χ2*), the summation of individual fit components, the Abbe criterion, etc.13, 

14 A particularly common error, especially among inexperienced practitioners, is the addition of 
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too many peaks/fit parameters and/or the failure to constrain them appropriately. When too many 

parameters can vary (float) in a fit, correlation is often present between them, which means that 

they lack meaning, i.e., have high standard deviations. The degree of correlation can be 

identified mathematically through the Hessian matrix, H 
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(5.1) 

where parameters, e.g., p1 and p2, are correlated if the mixed partial derivatives of 𝜒2 (the off-

diagonal elements of this matrix) are non-zero.13 

Peak fitting, per se, is not performed in the analysis of spectroscopic ellipsometry (SE) 

data. However, the work up of SE and XPS data are similar in that both involve the fitting of 

multiple parameters, and that when a large number of fit parameters are present in a modeling 

exercise they can be correlated. In practice, ‘correlation’ means that when a particular parameter 

changes, the other parameters in the fit can change in a compensatory way, giving the same error 

to the fit. Thus, correlated parameters lack meaning. The SE and XPS communities are well 

aware of the mathematical calculation of parameter correlation, including the parabolic 

relationship that is often found between chi squared and a given fit parameter.13, 15, 16 However, 

in the analysis of SE data, correlation is also identified through the use of uniqueness plots, 

which are graphical tools that can be easily interpreted.17-19 
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In a uniqueness plot, the error to the fit is plotted as a function of one of the variables (fit 

parameters), where this parameter is repeatedly fixed to different values about its optimal value, 

while the remaining fit parameters are allowed to vary (float) in the model. That is, for each 

fixed value of the parameter, the error of the fit is calculated and plotted. If the error in the fit 

rises as the parameter in question is varied, in general in a parabolic fashion,13 the fit is deemed 

to be unique. However, if the fit parameter can be systematically varied and the error of the fit 

stays constant, there is no ‘uniqueness’ to the fit. This means that any value of the parameter will 

give the same result (the same error), which clearly means that the fit parameter is meaningless. 

Figure 5.1 shows an example of an SE uniqueness plot. It consists of SE data collected from a ca. 

500 nm film of silicon dioxide (SiO2) on silicon. The data were modeled in standard fashion20, 21 

using four layers: (i) the silicon substrate (it was assumed to be optically opaque), (ii) an Si/SiO2 

interface layer (the optical constants from the software were used), (iii) an SiO2 layer modeled 

with a Cauchy dispersion relationship, and (4) a roughness layer that was modeled using a 

Bruggeman effective medium approximation (BEMA).  

In the first approach, reasonable constraints were applied to the model, i.e. the optical 

constants of the Si substrate were taken from the instrument software and fixed, the thickness of 

Si/SiO2 interface layer was fixed at 1 nm and its optical constants were also taken from the 

software, and the SiO2 layer was modeled by fitting the ‘A’ and ‘B’ terms of the Cauchy 

dispersion relationship. The thickness of the SiO2 layer was also allowed to vary. For the BEMA, 

the void and SiO2 fractions were fixed at 50 % each and the thickness of this roughness layer was 

allowed to float. Using this approach, the optimum thickness of the SiO2 layer was determined to 

be 511 nm. Accordingly, we probed the uniqueness of our results by varying the SiO2 thickness 

from 500 – 530 nm, recording the mean square error (MSE) of the fit at each value of the 
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thickness. Figure 5.1 shows the resulting uniqueness plot (plot of MSE vs. SiO2 thickness), 

which showed a parabola form. This plot implies a unique result because the errors increase as 

we vary the thickness of the SiO2 layer from its optimal value. For the second approach, the 

model was unconstrained, i.e. the optical constants of the Si substrate, the optical constants of the 

Si/SiO2 interface and its thickness, the void fraction of the roughness layer, and its optical 

constants, were all allowed to float, along with all the parameters in the first approach. As 

expected, Figure 5.1 shows a non-unique result here. That is, the error of the fit does not change 

when the thickness of the SiO2 layer is varied, i.e., the thickness of the SiO2 layer has no 

meaning. Clearly, the uniqueness plots in Figure 5.1 constitute a simple, straightforward, and 

valuable graphical tool that can aid both the novice and experienced SE practitioner to pinpoint 

unreasonable peak fitting efforts.  

It has been well observed that peak fitting is indispensable for XPS narrow scan 

analysis.3, 7, 8 In this study we apply the concept of the uniqueness plot to the fitting of XPS 

narrow scans. The purpose of this study is to illustrate the use of a graphical tool that can aid 

XPS practitioners in identifying when their peak fitting approaches are inappropriate, i.e., when 

their peak fit parameters are correlated and therefore lacking in meaning. We emphasize that the 

uniqueness plot is most useful in identifying poor peak fitting efforts, as opposed to better ones. 

Indeed, because there are (i) quite a few examples of questionable peak fitting on XPS data in the 

literature, and (ii) the popularity of XPS has increased dramatically over the recent years,2, 3 we 

believe that this tool will be of use to inexperienced and experienced practitioners alike. Those 

that are inexperienced will quickly identify unconstrained, inappropriate models, and those who 

are more experienced will quickly confirm that their models are more reasonable. To 

demonstrate this approach, we fit various narrow scans, including the C 1s spectrum of an ozone-
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treated carbon nanotube forest (CNT) and the Si 2p spectrum from an air-oxidized silicon 

substrate. The uniqueness approach performed as expected – parabolic uniqueness plots were 

obtained when a limited number of fit parameters were employed and more shallow curves, or 

horizontal lines, were observed when larger numbers of unconstrained parameters were 

employed. Both reduced chi squared (χ2*) and Abbe criterion values were explored in these plots. 

The uniqueness plot is considered to be a standard feature of SE data analysis software. We 

recommend that this feature similarly be added to XPS fitting programs to aid the user in 

understanding the validity of his/her peak fitting.  
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Figure 5.1 Uniqueness fit showing the MSE as a function of the fixed SiO2 layer thickness for 
spectroscopic ellipsometry data collected of an Si/SiO2 sample. The first approach involves reasonable 
constraints on the fit parameters. In the second approach, the fit parameters are unconstrained. 
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5.3 Experimental 

Two different sets of XPS data were employed in the present study: 

(a) A C 1s narrow scan from an ozone-treated carbon nanotube (CNT) forest, with an oxygen 

content of 3.7 at. % by XPS. This CNT spectrum was previously collected as part of a 

study on infiltrated, CNT-templated thin layer chromatography plates.22 

(b) An Si 2p narrow scan of a native-oxide terminated silicon shard23 (ca. 1.5 x 1.5 cm2) that 

was air oxidized for one minute at 900 °C in a ThermolyneTM benchtop muffle furnace 

from Thermo Scientific. The resulting oxide layer was 3.58 nm by SE. The optical 

constants of Si and SiO2 for the SE modeling of this material were obtained from the 

instrument software. 

Instrument settings: 

 XPS analyses of the CNT sample and silicon substrate were performed using a Surface 

Science SSX-100 X-ray photoelectron spectrometer (serviced by Service Physics, Bend, OR) 

with a monochromatic Al Kα source (1486.7 eV) and a hemispherical analyzer. Narrow scans 

were recorded with a spot size of 500 µm x 500 µm, resolution: 3 (nominal pass energy 100 eV), 

number of scans: 20 and step size of 0.065 eV. The CNT spectrum was referenced to the main C 

1s peak in the narrow scan, which was taken at 284.6 eV, and the silicon spectrum was 

referenced to the O 1s peak taken at 532.0 eV. This latter signal appeared as a single, 

shoulderless peak. Peak fitting was done in our instrument software, and fits were optimized 

based on a minimization of the χ2*. All of the backgrounds used in the fits reported in this work 

are of the Shirley type.24 
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SE data were collected on an M-2000 instrument from the J.A. Woollam Co., Lincoln, 

NE, over a wavelength range of ca. 200 – 1700 nm. For Figure 5.1, the data were range selected 

from 300 – 400 nm. When a wider wavelength window was used with an unconstrained model 

the time necessary for the software to generate the uniqueness plot was extremely long. 

5.4 Theory of Error Estimation Tools 

The error estimation tools employed herein are the reduced chi squared (χ2*) and Abbe 

criterion values. These error estimation tools help determine the quality of a fit vis-à-vis the 

difference between the experimental data and the modeled (fit) envelope. The fit envelope is the 

sum of the individual fit components in a model.  

The chi squared value is defined by the following equation: 

 
𝜒2(𝑝��⃗ ) = �

[𝑀(𝑖)− 𝑆(𝑖,𝑝��⃗ )]2

𝑀(𝑖)

𝑁

𝑖=1
 

(5.2) 

Where, M(i) and ),( piS 

 refer to the values of the experimental data and fit at a given point. The 

vector, �⃗�, contains the fit parameters used in the model. The difference between the experimental 

data and fit envelope is squared at each data point and then normalized to the value of the 

experimental data point. The reduced chi squared value is defined as: 

 
𝜒2∗(𝑝��⃗ ) =

𝜒2(𝑝��⃗ )
𝑁−𝑃 

(5.3) 

where N is the number of data points and P is the number of fit parameters employed. 
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Obviously, a lower value of χ2 or 𝜒2∗ implies a better fit. However, as Sherwood 

clarified,4 χ2 is of greatest value when it is reported for a series of peak fits on the same spectrum, 

or when applied to similar spectra.  

The residuals, R(i), of a fit are given by S(i,�⃗�) – M(i). 

The Abbe criterion is defined as: 

 
𝐴𝑏𝑏𝑒 =  

1
2
∑ [𝑅(𝑖 + 1) − 𝑅(𝑖)]2𝑁−1
𝑖=1

∑ [𝑅(𝑖)]2𝑁
𝑖=1

 
(5.4) 

Where R(i + 1) and R(i) refer to the residuals at the (i + 1)th and ith data points, respectively. An 

Abbe criterion of zero indicates that the fit envelope consistently misses the experimental peak 

envelope by a fixed amount, i.e., R(i) = R(i + 1). An Abbe criterion value of two is obtained for 

anti-correlated residuals. When the residuals are statistically distributed as random noise, the 

Abbe criterion is unity. This latter scenario is the ideal one. 

Finally, it is vital to use common sense when peak fitting XPS narrow scans.4, 14 For 

example, the Abbe criterion and χ2* values can be excellent in the case of a meaningless fit where 

too many parameters are allowed to vary. 

5.5 Results and Discussion 

To show the usefulness of uniqueness plots in XPS narrow scans analysis, we consider 

narrow scans that are peak fitted with and without a reasonable number of constraints. As will be 

shown below, as the number of unconstrained fit parameters increases, the uniqueness of the fits 

decreases. 

5.5.1 Ozone-treated CNT sample (varying C-C peak width) 
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In this section we will describe: 

a. A reasonable peak fit to a C 1s narrow scan from ozone-treated CNTs 

b. The systematic variation of a parameter in this fit (the width of the C-C peak) to generate 

uniqueness plots, where the number of parameters constrained in the fits was gradually 

decreased until no constraints were applied to it. 

The reasonable peak fit of the narrow scan was obtained as follows. According to theory, 

the C 1s narrow scan was fit to a series peaks that represent: (i) carbon bonded to carbon (and 

obviously hydrogen), denoted C-C (this peak was initially placed at ca. 284.6 eV, but then 

allowed to float – we designate its variable position as x eV), (ii) carbon bonded to one oxygen 

atom C-O at x + 1.5 eV, (iii) carbonyl carbon C=O at x + 2.7 eV, and (iv) carboxyl carbon O-

C=O at x + 3.9 eV. These peaks could also be designated by the oxidation states of the carbon 

they represent: C(0), C(I), C(II), and C(III), respectively.7 In addition, as would be appropriate 

for this aromatic material, a shake-up peak was included at x + 6.5 eV. All peak widths were 

constrained to have the same value, except the shake-up peak, which had double the width of the 

other peaks. All the peaks were symmetric and modeled as Gaussian-Lorentzian (G:L) sum 

functions,5 where the G:L ratio of the peaks varied in the fits, but the same G:L ratio was 

maintained for all the peaks. The heights of all the peaks were allowed to float. Of course these 

assignments, and all those considered in this work, are semi-empirical in nature. Figure 5.2a 

shows the optimal fit obtained through this approach, which gave a C-C peak width of 1.37 eV 

and a G:L ratio of 93%. 

In a uniqueness fit, one fit parameter is systematically fixed to different values about its 

optimal value, while the other parameters are allowed to float to obtain the best possible fit. This 

is illustrated graphically in Figures 5.2b – d. Here, the width of the C-C peak (C(0)) is given 
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values of 1.0, 1.2, and 1.9 eV. In this particular case, the only parameter that was allowed to float 

was the G:L ratio of the C-C peak – obviously one would not expect changes in the G:L ratio to 

fully compensate for such large changes in the C-C peak width. The lack of fit in Figures 5.2b – 

d, is clearly shown in the residuals. That is, in Figure 5.2a, the best fit, the residuals suggest a 

reasonable fit, but substantially larger residuals are observed for the non-optimal peak widths.  

A more quantitative way of describing the quality of the fits in Figure 5.2 is through 

χ2*and/or Abbe criterion values (see section on ‘Theory of Error Estimation Tools’ above). 

Figure 5.3a shows a plot of the χ2* values for the fits in Figure 5.2 plotted as a function of the 

width of the C-C peak (the black squares). Also included in this plot are the χ2* values 

corresponding to C-C peaks with widths that were systematically varied from 0.8 to 2.0 eV. This 

plot is a uniqueness plot. Its parabolic shape indicates that there is uniqueness, or meaning, to the 

C-C peak width in the modeling approach taken for Figure 5.2. As expected, the minimum error 

(χ2* value) is obtained at the optimal value of the C-C peak width. Figure 5.3b also shows the 

Abbe criterion values as a function of the peak width for the fits in Figure 5.2 (see again black 

squares). Here, we see a maximum value for the Abbe criterion values (values closer to unity) at 

the optimal C-C peak width. Then, as the peak width deviates from its best value, the Abbe 

criterion values drop, which is consistent with the more pronounced residuals in Figure 5.2 for 

the less optimal C-C peak widths.  

To demonstrate the use of uniqueness plots in XPS peak fitting, the constraints on the fit 

parameters for the fit represented in Figure 5.2 were increasingly relaxed (see Table 5.1). The 

resulting uniqueness plots for each set of conditions were then plotted in Figure 5.3. The general 

result here was that as the constraints on the fit were removed, the curves in the χ2* vs. C-C peak 

width plot became increasingly flat – they fan out and show less curvature, while the minimum 
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value in χ2* drops somewhat. Finally, when all the constraints are removed from the fit 

(Approach 8), a horizontal line is obtained (dark green hexagons). This flat line means that the 

C-C peak width can be varied over a wide range of values, and that for each of these values the 

other parameters in the fit can compensate for any change in it, always yielding the same, low 

error. In other words, for this unconstrained approach, the C-C peak width, and presumably all 

the other fit parameters, lack any statistical meaning.  

Figure 5.4 shows four examples of the peak fitting from Approach 8 (the unconstrained 

approach). Here we see four fits that show equally low χ2* values (low residuals), but with 

significantly different peak/fit components, e.g., the fit components/peaks obviously have 

different positions and widths (the G:L ratios of the peaks also differed within each fit). The 

positions and widths of the peaks in these fits are clearly unreasonable. For example, it is hard to 

imagine how the light blue and dark blue peaks in Figure 5.4a, which have very different widths, 

could be justified chemically. In addition, the shake-up signals have become excessively broad in 

all the spectra. The high Abbe criterion values in Figure 5.3b for Approach 8 are consistent with 

the low residuals for the fits in Figures 5.4a – d. Indeed, the Abbe criterion (Equation 5.4) is very 

sensitive to small, consistent deviations between the fit envelope and experimental data. To some 

degree, the traces in Figure 5.3b are a reversal of those in Figure 5.3a. Where the χ2* vs. C-C 

peak width traces are parabolic, the Abbe criterion vs. C-C peak width plots are Gaussian in 

form. Also, the horizontal line at the bottom of Figure 5.3a corresponds to the approximately 

horizontal line at the top of Figure 5.3b. In summary, both plots appear to give similar 

information, although the χ2* vs. fit parameter plot appears to be more useful. 
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Figure 5.2 (a) Peak fitting of a C 1s narrow scan of ozone-treated CNTs obtained using Approach 1 (the 
most constrained approach considered, see Table 5.1) showing the optimal peak width value of 1.37 eV. 
(b – d) Poorer peak fits for constrained C-C peak widths of 1.00, 1.20, and 1.90 eV, respectively. The 
black traces at the top of each panel represent the residuals to the fits. 

 



121 
 

 

 

Figure 5.3 Uniqueness plots for the fits to a C 1s narrow scan of ozone-treated CNTs using the eight approaches described in Table 5.1. See also 
Figures 5.2 and 5.4. Plots of (a) reduced chi squared and (b) the Abbe criterion value vs. a fit parameter (the C-C peak width) that was fixed to 
specific values. 
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Table 5.1 Approaches used to generate the eight uniqueness plots in Figure 5.3. The number of fixed 
parameters was decreased proceeding from Approach 1 to Approach 8. All fits were to the C 1s spectrum 
of ozone-treated CNTs shown in Figures 5.2 and 5.4, and are based on changing the width of the C-C 
peak. 

 

Approach Fixed Floated in the Fit 

Varied in the Uniqueness 

Test 

1 

All peak positions, peak widths, 

peak heights and Gauss % (except 

C-C Gauss %) Gauss % of C-C peak 

The peak width of the 

C-C peak 

2 

All peak positions, peak widths, 

and peak heights Gauss % of all peaks 

The peak width of the 

C-C peak 

3 

All peak positions, peak widths, 

and peak heights (except C-C 

peak) 

Gauss % of all peaks, and 

peak height of C-C peak 

The peak width of the 

C-C peak 

4 

All peak positions, and peak 

widths 

Gauss % and peak heights of 

all peaks 

The peak width of the 

C-C peak 

5 

All peak positions, and peak 

widths (except shake-up peak) 

Gauss %, peak heights of all 

peaks, and peak width of 

shake-up peak 

The peak width of the 

C-C peak 

6 All peak positions 

Gauss %, peak heights, and 

peak widths of all peaks 

The peak width of the 

C-C peak 

7 

All peak positions (except C-C 

peak) 

Gauss %, peak heights, and 

peak widths of all peaks, peak 

position of C-C peak 

The peak width of the 

C-C peak 

8 Nothing 

All Gauss %, peak heights, all 

peak positions, and all peak 

widths 

The peak width of the C-C 

peak 
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Figure 5.4 (a) Peak fitting of a C 1s narrow scan of ozone-treated CNTs obtained using Approach 8 (the 
least constrained approach considered, see Table 5.1) showing the optimal peak width value of 1.37 eV. 
(b – d) Equally unreasonable peak fits for constrained C-C peak widths of 1.00, 1.20, and 1.90 eV, 
respectively. The black traces at the top of each panel represent the residuals to the fits. 
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5.5.2 Ozone treated CNT sample (varying C-O peak position) 

To further illustrate the properties of uniqueness plots, we peak fitted the same C 1s 

narrow scan of oxidized CNTs used in the previous example (see Figures 5.2 and 5.4), while 

varying the C-O peak position instead of the C-C peak width. The optimal C-O peak position had 

been determined to be 286.07 eV (see Figure 5.2a). Accordingly, the C-O peak position was 

systematically varied (and fixed at each point) at 285.50 – 286.50 eV in increments of 0.05 eV, 

and the χ2* and Abbe criterion values were calculated at each of these values. Eight peak fitting 

approaches were considered (see Table 5.2), where they again ranged from a most constrained 

(Approach 1) to a least constrained (Approach 8) approach. As expected, in the plot of χ2* vs. the 

C-O peak position, the most constrained approach yielded the curve (parabola) with the highest 

curvature. Then, as the constraints on the fit were relaxed, the uniqueness plots showed less 

curvature (they fanned out), and the unconstrained approach showed the lowest χ2* value (see 

Figure 5.5a) with extremely low curvature. This latter result again illustrates that for a 

significantly unconstrained model the fit parameters are statistically meaningless. Figure 5.5b 

shows a uniqueness plot with the Abbe criterion value as the figure of merit. As before (see 

Figure 5.3), it shows an approximately inverse relationship to the plot in Figure 5.5a.
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Figure 5.5 Uniqueness plots for the fits to a C 1s narrow scan of ozone-treated CNTs using the eight approaches described in Table 5.2. See also 
Figures 5.2 and 5.4. Plots of (a) reduced chi squared and (b) the Abbe criterion value vs. a fit parameter (the C-O peak position) that was fixed to 
specific values.
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Table 5.2 Approaches used to generate the eight uniqueness plots in Figure 5.5. The number of fixed 
parameters was decreased proceeding from Approach 1 to Approach 8. All fits were to the C 1s spectrum 
of ozone-treated CNTs shown in Figures 5.2 and 5.4, and are based on changing the position of the C-O 
peak. 

 

Approach Fix Float Varied 

1 

All peak positions, peak widths, 

peak heights and Gauss % (except 

C-O Gauss%) Gauss % of C-O peak 

The peak position of 

the C-O peak 

2 

All peak positions, peak widths, 

and peak heights Gauss % of all peaks 

The peak position of 

the C-O peak 

3 

All peak positions, peak widths, 

and peak heights (except C-C peak) 

Gauss % of all peaks, and peak 

height of C-C peak 

The peak position of 

the C-O peak 

4 All peak positions, and peak widths 

Gauss % and peak heights of all 

peaks 

The peak position of 

the C-O peak 

5 

All peak positions, and peak widths 

(except C-C) 

Gauss %, peak heights of all 

peaks, and peak width of C-C 

peak 

The peak position of 

the C-O peak 

6 All peak positions 

Gauss %, peak heights, and 

peak widths of all peaks 

The peak position of 

the C-O peak 

7 

All peak positions (except shake-up 

peak) 

Gauss %, peak heights, and 

peak widths of all peaks, peak 

position of shake-up peak 

The peak position of 

the C-O peak 

8 Nothing 

All Gauss %, peak heights, all 

peak positions, and all peak 

widths 

The peak position of 

the C-O peak 
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5.5.3 Air-oxidized silicon substrate 

In this example we generate uniqueness plots by fitting a Si 2p narrow scan obtained 

from an air-oxidized silicon surface that had a final oxide thickness of 3.58 nm. We consider two 

different scenarios: peak fitting to two and to five peaks.25 

Si 2p narrow scan fit to two peaks: varying the SiO2 peak width 

The Si 2p spectrum was initially fit to two peaks: one corresponding to the bulk Si 

material at ca. 99 eV, and the other corresponding to the SiO2 film at ca. 103 eV (see Figure 5.6). 

The only constraint on this fit was that the G:L ratios of the peaks were constrained to have the 

same value. The optimal peak width of the SiO2 peak (1.84 eV) was 1.35 times the width of bulk 

Si peak, which is in accord with literature reports. Again, the purpose of this initial fit was to 

obtain values about which the fit parameters could be varied in uniqueness plots. Seven 

uniqueness plots were generated using the approaches described in Table 5.3 that were based on 

varying the SiO2 peak width from 1.00 – 2.20 eV in increments of 0.05 eV. Figure 5.7 shows the 

resulting uniqueness plots (χ2* and Abbe criterion vs. SiO2 peak width). Interestingly, but not 

surprisingly, uniqueness is obtained for all seven approaches. That is, fitting a Si 2p XPS peak 

envelope with two obvious components to two peak components significantly limits the chances 

of getting unreasonable results. For both the χ2* and Abbe criterion vs. SiO2 peak width plots, the 

two most constrained approaches (Approaches 1 and 2) give the most unique results (the tightest 

parabola-like or Gaussian-like curves, respectively), while the less constrained approaches 

(Approaches 3 – 7) give the broader curves. 
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Table 5.3 Approaches used to generate the seven uniqueness plots in Figure 5.7. The number of fixed 
parameters was decreased proceeding from Approach 1 to Approach 7. All fits were to the Si 2p spectrum 
from a sample of air-oxidized silicon (see Figure 5.6), and are based on changing the width of the SiO2 
peak. 

 

Approach Fix Float Varied 

1 

All peak positions, peak widths, 

peak heights and Gauss % (except 

SiO2 peak Gaussian %) Gauss % of SiO2 peak 

The peak width of SiO2 

peak 

2 

All peak positions, peak widths, 

and peak heights Gauss % of all peaks 

The peak width of SiO2 

peak 

3 

All peak positions, peak widths, 

and peak heights (except SiO2 

peak peak) 

Gauss % of all peaks and peak 

height of SiO2 peak 

The peak width of SiO2 

peak 

4 

All peak positions, and peak 

widths 

Gauss % and peak heights of 

all peaks 

The peak width of SiO2 

peak 

5 

All peak positions, and peak 

widths (except Si peak) 

Gauss % and peak heights of 

all peaks, and peak width of Si 

peak 

The peak width of SiO2 

peak 

6 Peak position of Si peak 

Gauss % and peak heights of 

all peaks, peak width of Si 

peak, and peak position of 

SiO2 peak 

The peak width of SiO2 

peak 

7 Nothing 

All Gauss %, peak heights, all 

peak positions and peak 

widths 

The peak width of SiO2 

peak 
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Figure 5.6 Optimal fit to an Si 2p narrow scan using two components: a bulk Si and an oxidized Si peak. 
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Figure 5.7 Uniqueness plots for the fits to an Si 2p narrow scan of an oxidized silicon wafer (see Figure 5.6). Plots of (a) reduced chi squared and 
(b) the Abbe criterion value vs. a fit parameter (the SiO2 peak width) that was fixed to specific values.



131 
 

Si 2p envelope peak fit to five peaks: varying the SiO2 peak width 

In this example, the Si 2p spectrum in Figure 5.6 was fit to five peaks (see Figure 5.8). 

These corresponded to a bulk Si peak, and four peaks that represented various forms of oxidized 

silicon, i.e., SiOx with x ranging from 1 to 4, where x represents the average number of oxygen 

atoms around each silicon atom and not the bulk stoichiometry of the material.25 In the initial, 

reasonable, fit to the narrow scan, the bulk Si and SiO1 peak positions were allowed to float. The 

peak positions of the SiO2, SiO3 and SiO4 components were constrained with respect to the SiO1 

peak position, where a 0.6 eV binding energy shift was applied for each oxygen atom attached to 

Si. This approach was previously taken by Alexander et al.25 The widths and G:L ratios of the 

bulk Si and SiO1 peaks were allowed to float, and the widths and G:L ratios of the SiO2, SiO3 

and SiO4 peaks were constrained to be the same as that of the SiO1 peak. All the peak heights 

floated. From this fit, the optimal peak width of the SiO2 peak was 1.32 eV.  

Using the eight approaches described in Table 5.4, which varied from most 

constrained/fewest number of fit parameters (Approach 1) to least constrained/largest number of 

fit parameters (Approach 8), uniqueness plots were obtained based on χ2* and Abbe criterion 

values (see Figure 5.9). In these plots, the width of the SiO2 peak was systematically varied from 

0.8 to 2.0 eV. The trends are similar to what was observed in the previous examples. Again, the 

uniqueness plots based on the χ2* value fanned out and flattened as the number of fit parameters 

increased (Figure 5.9a), with the least constrained approach showing nearly a horizontal line. 

These changes appeared in an approximately inverted fashion for the plot of the Abbe criterion 

(Figure 5.9b).  
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Table 5.4 Approaches used to generate the eight uniqueness plots in Figure 5.9. The number of fixed 
parameters was decreased proceeding from Approach 1 to Approach 8. All fits were to the Si 2p spectrum 
from a sample of air-oxidized silicon (see Figures 5.6 and 5.8), and are based on changing the width of 
the SiO2 peak. 

 

Approach Fix Float Varied 

1 

All peak positions, peak widths, 

peak heights and Gauss % (except 

SiO2 peak Gaussian %) Gauss % of SiO2 peak 

The peak width of SiO2 

peak 

2 

All peak positions, peak widths, 

and peak heights Gauss % of all peaks 

The peak width of SiO2 

peak 

3 

All peak positions, peak widths, 

and peak heights (except SiO2 

peak height) 

Gauss % of all peaks and peak 

height of SiO2 peak 

The peak width of SiO2 

peak 

4 

All peak positions, and peak 

widths 

Gauss % and peak heights of 

all peaks 

The peak width of SiO2 

peak 

5 

All peak positions, and peak 

widths (except SiO3 peak) 

Gauss % and peak heights of 

all peaks, and peak width of 

SiO3 peak 

The peak width of SiO2 

peak 

6 All peak positions 

Gauss % and peak heights, 

and peak widths of all peaks 

The peak width of SiO2 

peak 

7 

All peak positions (except SiO2 

peak position) 

Gauss % and peak heights of 

all peaks, peak width of Si 

peak, and peak position of 

SiO2 peak 

The peak width of SiO2 

peak 

8 Nothing 

All Gauss %, peak heights, all 

peak positions and peak 

widths 

The peak width of SiO2 

peak 
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Figure 5.8 Optimal fit to an Si 2p narrow scan using five components: a bulk Si peak and four oxidized Si 
peaks denoted SiOx, with x = 1 to 4.
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Figure 5.9 Uniqueness plots for the fits to a Si 2p narrow scan from an oxidized silicon wafer using the eight approaches described in Table 5.4. 
See also Figure 5.8. Plots of (a) reduced chi squared and (b) the Abbe criterion value vs. a fit parameter (the SiO2 peak width) that was fixed to 
specific values.
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5.6 Conclusions 

XPS has become increasingly common and important over the past few years. However, 

its popularity appears to have attracted some novice practitioners that may lack necessary 

training to adequately perform peak fits. Herein, we have demonstrated the usefulness of 

uniqueness plots in the analysis of XPS narrow scans using diverse sets of data and fitting 

approaches. The usefulness of uniqueness plots is well established in the spectroscopic 

ellipsometry community. Uniqueness plots are simple and straightforward graphical tools that 

XPS practitioners can use to identify inappropriate peak fits, and also help confirm more 

acceptable ones. These plots show that for relatively simple narrow scans that can be fit to a few 

components/peaks, the chances of getting unreasonable peak fits is rather low. Of the two types 

of uniqueness plots discussed herein, the χ2* vs. fit parameter plot seems to be the more 

straightforward to interpret. In these plots, the degree of curvature of the parabola-like curves is 

proportional to the uniqueness of the fit – a high degree of curvature implies a unique fit, and a 

lower degree of curvature (at its extreme, a horizontal line) implies a fit in which there is a high 

degree of fit parameter correlation. That is, a uniqueness plot without significant curvature, i.e., a 

horizontal line, is a strong indication of an inappropriate peak fit, whereas uniqueness plots with 

significant curvature are expected for good fits, but do not necessarily confirm them. Uniqueness 

plots based on the Abbe criterion bear an approximately inverse relationship to those based on 

χ2*. We recommend that, in the future, XPS peak fitting software packages contain the capability 

of generating these plots. 
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Chapter 6:  Information Content / Entropy as a Statistical / Chemometrics Tool 

for Analyzing Complex Data Sets, with Application to XPS and ToF-SIMS Depth 

Profiles 

6.1 Abstract 

Advanced scientific research often involves the measurement and analysis of multiple 

variables related to a system. This information may include complex spectra, often from different 

instruments. Various multivariate analysis tools, for example principal components analysis 

(PCA) and cluster analysis are frequently employed to interpret and compare complex data sets. 

While indispensable for advanced statistical analysis, these multivariate tools are somewhat 

arcane, and difficult for a naive user to understand. This leaves room for exploration of alternate 

statistical tools based on different algorithms. Information theory was first put forward by 

Shannon Claude in 1948, which revolutionized the digital world. Herein, we employ the 

information theory to calculate the information content (IC) of complex data sets by treating 

them as probability distributions. IC analysis is undertaken on complex, yet interesting depth 

profiling data collected via X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary 

ion mass spectrometry (ToF-SIMS). It helps to differentiate the information rich interfacial layer, 

which is composed of signals from the superficial and substrate layer. PCA and cluster analysis 

was also performed on the data sets and results compared to that from IC analysis. It was 

observed that although PCA and cluster analysis tend to show similar groupings/separations of 

various data sets, it was the IC analysis that gave the most straightforward interpretation. IC 

analysis provides a way to quantify information in complex spectra in units of bits. Another 

advantage of IC analysis is that we could compare data from various different techniques as IC is 

in the same units. This would help to evaluate materials in multi-dimensions.  
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6.2 Introduction 

Two of the most popular and important surface analytical techniques, which are central to 

the chemical analysis of materials, are X-ray photoelectron spectroscopy (XPS)1, 2 and time-of-

flight secondary ion mass spectrometry (ToF-SIMS).3, 4 XPS is currently receiving in excess of 

10,000 citations in the literature per annum,1 and for complex, patterned materials, static and 

dynamic ToF-SIMS is unsurpassed in its ability to provide near surface and bulk information, 

respectively.5-8 Both, XPS and ToF-SIMS can provide significant amounts of information about 

surfaces, where this amount of information is increased substantially when depth profiling is 

performed. 

In a traditional analysis of an XPS or ToF-SIMS depth profile, one might plot the signal 

from one element or perhaps the ratio of two signals as a function of sputtering time (depth into a 

material) to determine the compositions of layers. For example, in a depth profile through a thin 

film of SiO2 on Si, one might plot the oxygen signal from the corresponding O 1s XPS narrow 

scans, or perhaps the O/Si ratios determined from the O 1s and Si 2p narrow scans, as a function 

of sputter time. Certainly, at some level, this is not unreasonable, and useful insights into a 

material can be gained in this way. However, this approach will typically miss important 

chemical information about a material. For example, it overlooks any evolution in the chemical 

(oxidation) states of the probed materials as a function of depth.9 In the case of ToF-SIMS, 

simply focusing on a peak or two in the spectra in a depth profile omits the vast majority of the 

information collected.  

Various multivariate, statistical analytical tools are frequently used to simplify and 

understand these complex data sets. Two of the most widely used are principal components 

analysis (PCA) and cluster analysis.10, 11 PCA is perhaps the most widely used 
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chemometrics/bioinformatics tool.12-14 It has been extensively used for comparing spectra. In this 

study, we discuss the important issue of the analysis of complex data, using examples of XPS 

and ToF-SIMS depth profiles. Apart from PCA and cluster analysis, we explore a new data 

analysis tool. It is the information content (IC), or entropy, of a spectrum. This approach comes 

out of the groundbreaking work of Shannon,15 who applied the statistical thermodynamics 

definition of entropy to signal/communication theory. Here we take Shannon’s approach back 

into the physical sciences, calculating the IC of spectra and using the resulting value to determine 

where changes are taking place in a series of them. Chapter 1 (section 1.3.2) contains a brief 

introduction to PCA and cluster analysis.  

Information theory was powerfully influenced by Claude Shannon, who developed a 

mathematical description for communication through the application of the entropy function 

from statistical thermodynamics.15 Based on his proposal, the information in a signal is 

quantified and referred to as entropy, or equivalently as information content (IC), which is a 

measure of the ultimate (data) compression a signal can undergo. Over the past six decades, 

researchers have appreciated the potential and power of his theory, applying it to data storage, 

data compression, digital communication, and more specifically for MP3s, JPEGs, mobile 

phones, optical communications, satellite communication, space exploration programs, 

plagiarism detection, pattern recognition/detection, etc.16-21 Shannon’s theory profoundly 

influenced our world, as evidenced by the fact that his initial paper has been cited nearly 75,000 

times. 
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In statistical thermodynamics, the entropy of mixing for an ideal solution is given by: 

 Δ𝑆𝑚𝑖𝑥 = −𝑅�𝑋𝑘 ln𝑋𝑘

𝑐

𝑘=1

 (6.1) 

where R is the gas constant, and the Xk values are the mole fractions of the components to be 

mixed. Alternatively, the Gibbs formula for entropy is: 

 Δ𝑆 = −𝑘𝐵�𝑝𝑖 ln(𝑝𝑖)
𝑖

 (6.2) 

Where kB is Boltzman’s constant, and pi is the probability that a microstate will be sampled. 

Taking his lead from these types of equations, Shannon proposed the following formula to 

describe the entropy of a communication signal: 

 𝐻(𝑥𝑖) = −�𝑝(𝑥𝑖) ∗ 𝑙𝑜𝑔2𝑝(𝑥𝑖)
𝑛

𝑖=1

 (6.3) 

where the signal is considered to be a probability distribution with p(xi) the probability of 

observing a signal at a certain channel, and the sum of the probabilities for a signal summing to 

unity. Equation 6.3 uses the base 2 logarithm, and, accordingly, the final result is given in units 

of ‘bits’. 

A classic example of Shannon’s formula comes from the toss of a fair coin, which, of 

course, has a probability, p, of ½ for occurrences of either heads or tails. Inserting these 

probabilities into Shannon’s formula gives: 

 𝐻𝑓𝑎𝑖𝑟 𝑐𝑜𝑖𝑛 = −�
1
2
𝑙𝑜𝑔2

1
2

+
1
2
𝑙𝑜𝑔2

1
2
� = 1 𝑏𝑖𝑡 (6.4) 
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However, in the case of an unfair coin that would always give either heads or tails, the pi 

values are 1 and 0, which, in Shannon’s formula, give: 

 𝐻𝑢𝑛𝑓𝑎𝑖𝑟 𝑐𝑜𝑖𝑛 = −(0𝑙𝑜𝑔20 + 1𝑙𝑜𝑔21) = 0 𝑏𝑖𝑡 (6.5) 

where we have taken: 0 log 0 = 0, which is true in the limit of pi  0. The entropies (information 

contents) for all such possibilities (through Equation 6.3), ranging from a completely fair coin to 

an entirely unfair one, yield the classic plot shown in Figure 6.1. Clearly, the entropy 

(uncertainty) in the measurement is greatest for a fair coin with pheads = ptails = ½, and it goes to 

zero for an entirely unfair coin for which the outcome of the coin toss is certain. Alternatively, 

we can interpret the entropies of the coin tosses in Equation 6.3 as saying that it requires one bit 

of information (a zero or a one) to represent the outcome of a fair coin toss (Equation 6.4), while 

it does not require any bit of information to represent the outcome of the entirely unfair coin for 

which the outcome is always known (Equation 6.5).  

In this work we take Shannon’s formula and bring it back into science as a tool for data 

analysis. In particular, we consider a spectrum or a data set to be a probability distribution that 

can be inserted into Equation 6.3. We have chosen to use ‘IC’ (information content) to refer to 

the results from Equation 6.3, and not H, which can be confused with enthalpy. We provide 

multiple examples of the use of the IC function for data analysis. In particular, it seems well 

suited for analyzing depth profiles in surface and interface analysis, as well as for 

clustering/analyzing samples from data taken from different instruments. For these IC analyses, 

spectra, such as those from X-ray photoelectron spectroscopy (XPS) and time-of-flight 

secondary ion mass spectrometry (ToF-SIMS), are first normalized by dividing each energy or 

m/z value by the sum of all the values in the corresponding spectrum. The resulting 
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‘probabilities’ are then entered into Equation 6.3. This procedure also works well with selected 

peaks from spectra. As is evident from Equation 6.3, a larger entropy value typically points to a 

more complex data set, i.e., one that has a larger number of peaks of comparable size, while a 

spectrum that may be strongly dominated by one peak, such that pi approaches 1, will have a 

lower IC. Obviously, Shannon’s use of the base 2 logarithm in Equation 6.3 is not necessary here 

– other bases should work equally well for differentiating spectra. However, for consistency with 

information theory, we will use the base 2 logarithm here, i.e., the units of all entropy (IC) 

calculations made herein will be ‘bits’.  
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Figure 6.1 Information content for probabilities from coins that will never yield a desired outcome (p = 
0), to a fair coin that gives even odds of heads or tails (p = ½), to an entirely unfair coin that has complete 
certainty associated with the outcome (p = 1). 
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6.3 Experimental 

The following data sets are employed in the study: 

6.3.1 XPS depth profiling of Si/SiO2 and Ta/Ta2O5 samples 

XPS measurements were performed with a Physical Electronics Quantera scanning X-ray 

microprobe instrument. This system uses a focused monochromatic Al Kα X-ray (1486.7 eV) 

source for excitation and a spherical section analyzer. The instrument has a 32 element 

multichannel detection system. A 70 W, 200 μm X-ray spot was used for the sputter depth 

profiles. The X-ray beam is incident normal to the sample and the photoelectron detector is at 

45° off-normal. High energy resolution spectra were collected using a pass-energy of 69.0 eV 

with a step size of 0.125 eV.  For the Ag 3d5/2 line, these conditions produced a FWHM of 0.91 

eV. The sample experienced variable degrees of charging.  Low energy electrons at ca. 1 eV, 20 

μA, and low energy Ar+ ions were used to minimize this charging. Ar+ ions at 2kV were used for 

the depth profiles with an ion gun incident angle of 45°, polar angle of 60°, and azimuthal angle 

of 90°. A total of 54 and 37 sputter cycles were performed on the Si/SiO2 and Ta/Ta2O5 samples 

respectively. 

6.3.2 ToF-SIMS depth profiling 

Two ToF-SIMS depth profiling samples were employed for the IC analysis: (i) ca. 100 

nm of C3F6 and (ii) ca. 100 nm of PNIPAM (poly(N-isopropylacrylamide)) deposited on Si 

substrates. Samples were prepared by plasma deposition of C3F6 and poly(N-

isopropylacrylamide) (PNIPAM) onto clean 1 cm x 1 cm shards of silicon. Silicon wafers were 

cleaned by soaking in DI water overnight, followed by sonicating twice in acetone, methanol, 

and dichloromethane.  Plasma deposition was carried out in a custom built RF plasma system. 
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Deposition of C3F6 was at 150 mTorr at 5 W for 20 min, and deposition of PNIPAM was at 140 

mTorr at 5 W for 15 min. ToF-SIMS depth profiling was carried out in non-interlaced mode 

using a ToF-SIMS V instrument (ION-TOF GmbH, Münster, Germany) with 25 kV Bi3+ as the 

analytical beam and 20 keV C60
++ as the sputter beam. Spectra were acquired from a 100 μm x 

100 μm area in the center of the sputter crater using a Bi3+ current of 0.09 pA, with a total dose 

per analysis cycle of 1 x 1011 ions/cm2. Sputtering was done over a 500 μm x 500 μm area with a 

current of 0.62 nA, with a dose of 7.7 x 1012 ions/cm2 per sputter cycle. A total of 24 spectra 

were collected during the depth profiling study. Charge neutralization was carried out using an 

electron flood gun that was pulsed after each analysis/sputter cycle.  

6.3.3 Nanodiamond ToF-SIMS and ICP characterization 

Five nanodiamond samples: unwashed, doubly, and triply washed Advanced Abrasives 

(AA) (50 nm), International Technology Center (ITC) (50 nm), and Adamas Nanotechnologies 

(5 nm) were characterized via ToF-SIMS and ICP.22 The acquisition parameters for the 

instruments are the same as those used in Chapter 7. 

6.3.4 Chemometrics analyses 

Principal components analysis (PCA) and cluster analysis of the ToF-SIMS and XPS data 

were performed using the PLS Toolbox, version 7.9.3 (Eigenvector Research, Inc., Wenatchee, 

WA, USA) in MATLAB, version R2014b (Natick, MA). The raw peak areas were organized 

row-wise in a data matrix. The data were preprocessed by mean centering, a column operation. 

As the data were collected using the same instrument settings during a depth profile, there was 

no need for normalization. Also, the data were not autoscaled, as this would give equal weights 

to the noisy regions of the spectra and the peaks of interest. For the IC analyses, the data were 
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treated as a probability distribution and arranged column-wise in a matrix. The probability of 

occurrence of signal (count) at each m/z (for ToF-SIMS), and binding energy (eV for XPS) was 

calculated as the respective signal divided by the sum of all the signals in the respective column. 

Using these probabilities, the IC of each spectrum was calculated using Equation 6.3.   

6.4 Results and Discussion 

6.4.1 Understanding the Entropy Function: ICs of Fabricated Spectra 

To illustrate the properties of the IC function, Equation 6.3, it was applied to a series of 

mock spectra. Figure 6.2a shows the ICs of three flat baselines. Here, these functions (horizontal 

lines) have constant values. Accordingly, the probability of any point occurring must be the 

same, i.e., it is 1/N, where N is the number of data points, and the sum of the probabilities is 1. 

(The bottom line in Figure 6.2a at y = 0 is, admittedly, a somewhat artificial scenario. If the 

probabilities here are zero everywhere, then IC = 0. However, technically speaking, Equation 6.3 

should not be applied to this, or any, series of zeros because the sum of these probabilities is not 

unity – there is no probability distribution here. In general, real measurements show signals 

and/or have noise/uncertainty.)  

𝐼𝐶 = −�
1
𝑁
∗ 𝑙𝑜𝑔2

1
𝑁

= 9.9658 (𝑓𝑜𝑟 𝑁 = 1000 )
𝑁

𝑖=1

 
(6.6) 

Figure 6.2b shows the IC values for three functions that contain one, two, or three spikes 

of equal amplitude. Normalization gives the first function a probability of 1 for the spike, and 

probabilities of zero everywhere else. These values yield ICi = 0, which is analogous to the 

situation for the entirely unfair coin considered above. For the second spectrum, normalization 
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gives two spikes of equal magnitude, i.e., equal probability of ½, which gives ICii = 1. This 

situation is analogous to that of the fair coin toss. For the three spikes of equal probability in 

Figure 6.2b, we obtain, as expected, a higher information content of 1.585: 

 𝐼𝐶 = −∑ 1
𝑁
∗ 𝑙𝑜𝑔2

1
𝑁

= 1.585𝑁
𝑖=1  (𝑓𝑜𝑟 𝑁 =  3) (6.7) 

Thus, increasing the number of features in a spectrum generally increases its IC value. 

Figure 6.2c shows two noisy baselines, which differ only by a multiplicative constant. When 

normalized, they have the same values (probabilities), therefore they have the same IC values. 

Figure 6.2d shows three functions. The first (i) is a rather narrow peak on a flat baseline. This 

spectrum has a relatively low IC value. The second function (ii) is broader, and, as expected, it 

has a larger IC value. The third function is the same as a second, except that it has a shoulder at 

its left side. As expected, this shoulder increases the IC value of the function. Figure 6.2e (i) 

shows a peak with a relatively low amount of noise, and its IC value. The peak above it is 

identical to the first, with the exception that it is even noisier. Accordingly, this spectrum has a 

higher IC value. Finally, a third spectrum (Figure 6.2e (iii)) was created by taking every third 

data point in the second spectrum (Figure 6.2e (ii)). As expected, this spectrum shows a lower IC 

value. That is, in general (i) noisier spectra have higher IC values (this is admittedly 

counterintuitive – as analytical chemists we think of an increase in noise as a loss of 

information), and (ii) there is, in general, an increase in IC with an increasing number of data 

points (this follows from Equation 6.3).  Finally, Figure 6.2f shows two spectra and their IC 

values. As expected, the spectrum represented by the dashed line shows broader peaks and has a 

somewhat higher IC value. This figure also indicates that the IC value of a combined spectrum 
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containing the peaks from both spectra would be higher than the IC values of the individual 

spectra. This final panel segues into our discussion of the IC function in depth profiling. 
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Figure 6.2 Information content tutorial. Understanding IC values and trend using mock spectra. 
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6.4.2 Applications of the IC Function to Depth Profiling 

Depth profiling is an important method for understanding solid materials. For example, it 

is extensively used to determine the profiles of dopants in semiconductors,23-26 which is critical 

information for the integrated circuit industry. In a typical depth profile, a surface is first 

analyzed by a surface sensitive technique, such as XPS or ToF-SIMS. A small amount of the 

material is then removed with an ion beam, which can be applied in such a way that it 

sputters/ablates the material in a rather homogeneous fashion. The surface sensitive analysis is 

then repeated, which is followed by removal of another small amount of material from the 

surface. This process can be continued, usually in an automated fashion. If the surface (really the 

bottom of the crater) is imaged in two dimensions after each ablation, a three-dimensional map 

of the material can be created. Alternatively, and very commonly, a single measurement of the 

material is made at each depth. Figure 6.2f is reminiscent of a common situation one encounters 

in depth profiling through layered materials. Here, to a first approximation, one might expect a 

series of nearly identical spectra from a film followed by a different series of nearly identical 

spectra from the next layer or substrate. In general, one would expect the IC values of these two 

sets of spectra to differ, e.g., XPS peaks from oxidized metals are generally wider than those 

from reduced metals.27 A plot of IC value vs. spectrum number for such a depth profile would 

then indicate the position of the interface between the film and the substrate at the change in the 

IC value. However, interfaces are rarely perfectly smooth, and the act of depth profiling 

(sputtering) typically roughens/broadens interfaces. Accordingly, an interface will often show 

spectral features from both of the materials that surround it (see Figure 6.2f (i + ii)), and 

therefore a higher IC value than those of the materials around it. Thus, an increase in IC value 
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can indicate the presence of the interface. We will encounter this scenario in the examples that 

follow, as well as a few others.  

Example 1. Depth profiling through SiO2 on Si by XPS: Si 2p and O 1s narrow scans 

Figure 6.3a shows a series of XPS Si 2p narrow scans from a depth profile of an SiO2 

film on an Si substrate. The first two scans appear to be a little different from those that follow 

them. It is not unusual for the first scan or two in a depth profile to be different from subsequent 

scans because of surface contamination or other differences between the surface and bulk of a 

material. These first two scans are followed by a series of very similar scans that, based on their 

peak position, clearly correspond to SiO2.28 The interface between the SiO2 and bulk Si is then 

reached. As suggested above, this region appears to show signals due to both SiO2 and Si. This 

interface region is then followed by a series of uniform signals from the Si substrate.  

A PCA analysis of the data in Figure 6.3a was performed. And while almost all of the 

variation in the data was captured by PC1 (ca. 99%), it became apparent after examining the plot 

of the scores on PC1 and PC2 (Figure 6.3b) that this second PC would also be helpful in 

explaining the data. Accordingly, Figure 6.3b shows the first two points (spectra) clustered 

together (they would not form a unique cluster if only the scores on PC1 were considered), a 

cluster of the next spectra (3 – 20) that correspond to the SiO2 overlayer, a series of separated 

points that correspond to spectra 21-29, which seem to follow a trajectory through the plot and 

come from the interface between the two materials, and a cluster of points (spectra 30 – 54) that 

correspond to bulk Si. A cluster analysis was then performed on the data, which showed the 

same general features as the PCA: two fairly large clusters for the bulk SiO2 and Si spectra that 

the first two spectra are different from the subsequent spectra, and a series of spectra that do not 
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fit into either cluster that correspond to the interface region. As an additional guide to these 

analyses, as well as those discussed below, the individual Si 2p spectra in Figure 6.3a are plotted 

in Figure 6.4.  

Figures 6.3d shows the plot of the IC values of the spectra in Figure 6.3a vs. spectrum 

number. This plot is dominated by a peak that corresponds to the interface region between the 

SiO2 and Si that has flat regions to the left and right of it with slightly different IC values that 

correspond to the SiO2 film and Si substrate, respectively. As expected, the first two narrow 

scans have different IC values than those that follow. And while it is certainly true that PCA and 

cluster analyses allow an interpretation of the data that is consistent with the depth profile of 

SiO2 on Si, it is, at least in our opinion, the IC analysis that shows this most clearly. Indeed, in 

this work we consistently found it easier to interpret depth profile results with IC plots, and to 

then apply those results to PCA and cluster analyses. Finally, Figure 6.3e shows the finite 

difference of each point in Figure 6.3d. The finite difference is closely related to the derivative 

and will be helpful in revealing trends in some of the IC plots below. Note that, technically 

speaking, the entity plotted in the IC plots shown herein is the backward difference: 𝛻f(x) = f(x) 

– f(x – h), i.e., 𝛻f(x) = ICn – ICn-1 or the value of the current point minus the value of the 

previous point, and not the finite difference: Δf(x) = f(x + h) – f(x), i.e., Δf(x) = ICn+1 – ICn, 

which is the value of the subsequent point minus the value of the current point. Ultimately, the 

backward difference was used here because the peaks in the resulting plots appeared to better 

correlate with the transitions in the IC data. Nevertheless, we expect that any reasonable 

difference or derivative-like function, including numerical derivatives that involve more than two 

data points and that smooth the data, will also work equally well or better in some 

circumstances.29 
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Figure 6.5a shows a plot of the O 1s narrow scans from the same Si/SiO2 depth profile 

considered in Figures 6.3 and 6.4. These spectra come sequentially from the outer surface of the 

material, the SiO2 film, the interface region, and the bulk Si. Beyond the interface, the O 1s 

signal has disappeared – there is no oxide in the bulk and the spectra contain only noise. By 

considering two PCs, PCA (see Figure 6.5b) again shows a progression through the outer surface 

region of the material, the SiO2, the interface region, and finally the bulk. The cluster analysis 

can be similarly interpreted. However, the IC and finite difference IC analyses again appear to 

provide a more straightforward description of the process. The IC analysis (Figure 6.5d) shows a 

small difference between the first two data points and those that follow, a steady increase in the 

IC values of the next set of points from about 5.7 – 5.9, an abrupt jump from ca. IC = 5.9 – 6.8, 

which occurs at the Si/SiO2 interface, and a plateau at high IC that corresponds to a lack of signal 

(just noise) from the O 1s spectra of the bulk Si. The IC and finite difference IC plots suggest 

that some change is taking place in the oxygen signals over the course of the depth profile 

through the SiO2. This is consistent with a steady decrease in the O 1s/Si 2p area ratio in this 

depth profile (see Figure 6.6). We notice that there is no peak in this spectrum that signals the 

presence of the interface, which is a result of the noisy O 1s narrow scans from the bulk Si 

representing a maximum in the IC for this system (vide supra). Accordingly, the finite difference 

of the IC plot is even more helpful in identifying the transition regions in this material. It clearly 

identifies the air-SiO2 and SiO2-Si interfaces. Overall, the same conclusions can be drawn here. 

With some skill/practice in chemometrics and manipulation of the raw data, the PCA and cluster 

analyses reveal the expected trends in the spectra. However, they appear to be more obvious in 

the IC analyses (Figures 6.5d – e). 
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Figure 6.3 XPS depth profiling study of SiO2/Si substrate: (a) 3-D graph of all 54 Si 2p spectra, (b) scores 
plot of PCA analysis on the data, (c) cluster analysis on the data set, and (d) IC values and (e) finite 
difference IC as a function of spectrum number. 
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Figure 6.4 Si 2p spectra collected during the XPS depth profiling of SiO2 on an Si substrate. Spectra 50-
54 are very similar to spectra 43-49 and, hence, not included here. 
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Figure 6.5 XPS depth profiling study of SiO2/Si substrate: (a) 3-D graph of all 54 O 1s spectra, (b) scores 
plot of PCA analysis on the data, (c) cluster analysis on the data set, and (d) IC values and (e) finite 
difference IC as a function of spectrum number. 
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Figure 6.6 Oxygen-to-silicon ratio as a function of spectrum number during the XPS depth profiling study 
of SiO2/Si substrate. 
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Example 2. Depth profiling through Ta2O5 on Ta by XPS: Ta 4f and O 1s Narrow Scans 

Figure 6.7 shows a depth profile through a film of Ta2O5 on Ta. The series of spectra in 

Figure 6.7a show a known phenomenon that is not observed in Figure 6.3, which is that the Ar+ 

sputtering of this oxide reduces it. Accordingly, there is a substantial broadening of the oxide 

peaks towards lower binding energy. The first two spectra in this series show the oxide most 

prominently. They are then followed by spectra with broad signals that show both oxidized and 

metallic components. We then come to the interface region, and finally the signals from the Ta 

substrate. Once again, with some work and interpretation, the PCA and cluster analysis provide 

interpretations that are consistent with these results. However, the IC analysis again appears to 

provide this information in a more straightforward way. The first two scans, and to a small 

degree the third one, have lower IC values than those of the oxide that follow, which show high 

IC values because of their breadth. There is then a decrease in the IC value at the interface 

region, which is followed by the lower IC values for the bulk Ta. The combination of the 

changes in the IC values (Figure 6.7d) and the peaks in the finite difference IC plot (Figure 6.7e) 

clearly indicate the presence of two interfaces in this depth profile. 

Figure 6.8 shows the O 1s narrow scans that correspond to the Ta 4f spectra in Figure 6.7. 

The PCA and cluster analyses of these narrow scans are (again) somewhat complex to interpret, 

although arguably consistent with a depth profiling through the material. Once again, the IC plot 

in Figure 6.8d and finite difference IC plot in Figure 6.8e are easier to interpret. They suggest 

two main transitions – one at the air-Ta2O5 interface and the other at the Ta2O5-Ta interface. As 

was the case for the O 1s signals in Figure 6.5, the O 1s signals that show only noise have the 

highest IC values. In addition, as observed in Figures 6.5 and 6.7, the IC values of the film 
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change somewhat over the course of the depth profile, indicating that some change in the 

material is taking place.  

Example 3. Depth profiling through a plasma polymerized film of C3F6 on an Si substrate by 

ToF-SIMS 

A film of C3F6 was deposited onto a silicon substrate by plasma polymerization, and then 

depth profiled by ToF-SIMS. Figure 6.9a shows the resulting positive ion spectra from m/z 0 to 

150. These spectra show a considerable amount of complexity through about scan 20, after 

which they become less complex. PCA and cluster analysis of these spectra suggest that the first 

spectrum is different from the subsequent ones, that spectra 2 – 16 cluster (with subclusters 

containing spectra 2 – 9 and 10 – 16), and that there is then, perhaps, a transition region followed 

by spectra from the substrate. The IC plots again appear to be easier to interpret. There is a 

transition at the beginning of the depth profile, a region of nearly constant IC values that 

corresponds to the polymer, and finally a transition region in which the IC value initially 

increases and then drops towards the IC value of the substrate. The lower IC value of the 

substrate is expected because of the decreased complexity of its spectrum. Note that (i) the 

increased IC value at the polymer-substrate interface suggests peaks from both entities in the 

spectra, and (ii) the IC analysis did not pick up the clustering of the spectra from the polymer, 

i.e., employing more than one chemometrics tool is often important for thoroughly understanding 

a data set. This problem was also approached by considering a set of 19 selected peaks from the 

spectra, instead of the entire spectra. The results obtained were very similar to those in Figure 

6.9d-e and are shown in Figure 6.10a-b. 
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Figure 6.7 XPS depth profiling study of Ta2O5/Ta substrate: (a) 3-D graph of all 37 Ta 4f spectra, (b) 
scores plot of PCA analysis on the data, (c) cluster analysis on the data set, and (d) IC values and (e) finite 
difference IC as a function of spectrum number. 
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Figure 6.8 XPS depth profiling study of Ta2O5/Ta substrate: (a) 3-D graph of all 37 O 1s spectra, (b) 
scores plot of PCA analysis on the data, (c) cluster analysis on the data set, and (d) IC values and (e) finite 
difference IC as a function of spectrum number. 
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Example 4. Depth profiling through a plasma polymerized film of PNIPAM on an Si substrate by 

ToF-SIMS 

Figure 6.11 describes a ToF-SIMS depth profile through a plasma polymerized film of 

PNIPAM on silicon. Here, 19 peaks were selected from the spectra and plotted in Figure 6.11a. 

The qualitative view of the selected peaks is that they contain a fair amount of complexity at the 

beginning of the depth profile, and less towards the end of it. A PCA analysis of these spectra is 

rather challenging to interpret – it does not show clear clustering/transitions that would indicate a 

depth profile. The cluster analysis appears to give results that are more consistent with a depth 

profile, although the resulting dendrogram remains fairly complex. In contrast, the IC analysis 

again seems to more effectively identify the key regions of the depth profile. In particular, it 

shows (i) a small difference between scans 1 and 2 and those that follow it (these differences are 

more apparent in the PCA and cluster analyses), (ii) a flat region that corresponds to the polymer, 

(iii) a rising transition region beginning around scan 13 that identifies the polymer-silicon 

interface, and (iv) a decrease in the IC values as they approach those of the substrate. Changes in 

peak intensity are consistent with these chemical changes. For example, peaks at m/z 44.05 and 

44.98 are attributable to the polymer layer and substrate layer (SiOH+), respectively, and in 

spectra 14 – 17, the intensity of the m/z 44.05 peak, which has a mass excess and should be 

organic, decreases while the intensity of the m/z 44.98 peak, which has a mass deficit and should 

be inorganic, increases. The transition region in Figure 6.11d is also clearly present in the finite 

difference IC plot. Finally, this analysis was repeated with the entire spectra from m/z 0 – 150 

(not just selected peaks). The results were similar to those shown in Figures 6.11d-e, and are 

shown in Figures 6.12a-b. 
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Figure 6.9 ToF-SIMS depth profiling study of C3F6/Si substrate: (a) 3-D graph of all 24 ToF-SIMS 
positive ion spectra, (b) scores plot of PCA analysis on the data, (c) cluster analysis on the data set, and 
(d) IC values and (e) finite difference IC as a function of spectrum number. 
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Figure 6.10 (a) IC values and (b) finite difference IC as a function of spectrum number for ToF-SIMS 
depth profiling of C3F6 polymer layer over Si substrate. A total of 19 peaks were selected from each 
spectrum. 
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Figure 6.11 ToF-SIMS depth profiling study of PNIPAM/Si substrate: (a) 3-D graph of all 24 ToF-SIMS 
positive ion spectra, (b) scores plot of PCA analysis on the data, (c) cluster analysis on the data set, and 
(d) IC values and (e) finite difference IC as a function of spectrum number. 
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Figure 6.12 (a) IC values and (b) finite difference IC as a function of spectrum number for ToF-SIMS 
depth profiling of PNIPAM polymer layer over Si substrate. Entire spectra from m/z 0 till 150 were 
considered for the analysis. 
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Other uses of the IC function 

The full characterization of a surface or a material usually requires the application of 

multiple analytical techniques,30-34 and IC analysis appears to be well suited for clustering the 

resulting materials based on their spectra. For example, we recently characterized a set of 

nanodiamond samples from different vendors (Adamas, ITC, and AA (Advanced Abrasives)) 

using a suite of analytical techniques, which included positive ion ToF-SIMS, negative ion ToF-

SIMS, and inductively coupled plasma (ICP).22, 35 A series of peak areas was selected from each 

of these spectra/analyses, and their IC values were determined. Figure 6.13a shows a plot of the 

IC values for the positive and negative ion ToF-SIMS spectra for the nanodiamond samples. This 

plot, which is similar in format to a PCA scores plot, shows a clear difference between the 

Adamas samples, the AA uncleaned and ITC samples (clustered), and the AA double wash and 

AA triple wash samples (clustered). When a third dimension is included (the IC of the ICP 

results), the ITC samples are seen to be significantly different from the AA samples (see Figure 

6.13b). Figure 6.13a shows very low IC values for the positive ion spectra of the Adamas 

samples (< 0.25 bits), while the other samples showed IC values of ca. 2.5 – 3.0 bits. This 

suggests that the positive ion spectra of the Adamas samples are not as complex as the other 

positive ion spectra. Analysis of the Adamas positive ion ToF-SIMS spectra shows that they are 

dominated by a peak from sodium (Na+, p = 0.98), which explains their low IC values. Similarly, 

the AA samples have very low IC values (see Figure 6.13b). The ICP analyses of these materials 

showed large amounts of tungsten (~ 1000 ppm; p = 0.83 – 0.94), which explains their small IC 

values. Of course different methods for scaling such sets of peaks could be investigated to give 

them greater complexity. We have applied this type of IC analysis to data from other materials 
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and obtained similar separations between spectra. When more than three variables (IC values) 

are considered in this type of analysis, a radar chart might be employed.  

We recently described the equivalent width (EWXPS) and autocorrelation width (AWXPS) as 

figures of merit for XPS narrow scans (see Chapters 3 and 4).2, 36 We compare the EWXPS and 

AWXPS values to IC values for a series of C 1s narrow scans collected from four oxidized CNT 

samples. As shown in Figure 6.14, IC analysis gives similar results to these other functions. 
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Figure 6.13 (a) Combining IC values from positive and negative ion mode ToF-SIMS analysis of five 
different nanodiamond samples. (b) Combining IC values from ICP, and positive and negative ion mode 
ToF-SIMS. 
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Figure 6.14 Comparison of (a) AWXPS (eV), (b) EWXPS (eV), and (c) IC (bits) values as a function of 
oxygen-to carbon ratio of a set of ozone primed CNT forests 
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6.5 Conclusions 

The information content has been explored as a tool for classifying and clustering spectra 

and analytical data. In its direct and derivative forms, it appears to more easily show transitions 

in depth profiles. It also appears to cluster/separate data in a manner similar to classical PCA 

scores plots. Further work on the IC function will include application to additional complex data 

sets, and a more fundamental, statistical analysis of it. 
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Chapter 7:  Multi-Instrument Characterization of Five Nanodiamond Samples: A 

Thorough Example of Nanomaterial Characterization* 

7.1 Abstract 

Here we report the most comprehensive characterization of nanodiamonds (ND) yet undertaken. 

Five different NDs from three different vendors were analyzed by a suite of analytical 

techniques, including X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion 

mass spectrometry (ToF-SIMS), inductively coupled plasma – mass spectrometry (ICP-MS), 

diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, X-ray diffraction (XRD), 

transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Brunauer-

Emmett-Teller (BET) surface area measurements, and particle size distribution (PSD) 

measurements. XPS revealed the elemental compositions of the ND surfaces (83 – 87 at. % C, 

and 12 – 14 at. % O) with varying amounts of N (0.4 – 1.8 at. %), Si (0.1 – 0.7 at. %), and t (0.3 

at. % only in samples from one vendor). ToF-SIMS and ICP showed metal impurities (Al, Fe, 

Ni, Cr, etc. with unexpectedly high amounts of W in one vendor’s samples: ca. 900 ppm). PCA 

were performed on the ToF-SIMS and ICP data. DRIFT showed key functional groups (–OH, 

C=O, C-O, and C=C). BET showed surface areas of 50 – 214 m2/g. XRD and TEM revealed 

PSD (bimodal distribution and a wide PSD, 5 – 100 nm, for one vendor’s samples). XRD also 

provided particle sizes (2.7 – 27 nm) and showed the presence of graphite. EELS gave the sp2/sp3 

contents of the materials (37 – 88 % sp3). PSD measurements were performed via differential 

sedimentation of the particles (mean particle size ca. 17 – 50 nm). This comprehensive 

understanding should allow for improved construction of nanodiamond-based materials.  

*This chapter is reproduced from (Bhupinder Singh, Stacey J. Smith, David S. Jensen, Hodge F. Jones, Andrew E.
Dadson, Paul B. Farnsworth, Richard Vanfleet, Jeffrey K. Farrer, and Matthew R. Linford) Analytical and 
Bioanalytical Chemistry, accepted for publication, 2015 
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7.2 Introduction 

Nanoparticles have emerged as important building blocks for many advanced materials. 

Indeed, for years, all things ‘nano’ have been hot topics in science and engineering. For example, 

a Web of Science search showed that the terms ‘nanomaterial’, ‘nanoparticle’, or ‘nanostructure’ 

were mentioned less than 100 times in publications in 1990, but that these terms appeared in 

almost 45,000 publications in 2011.1 This is a remarkable increase. With this large number of 

publications has come an enormous number of schematics/cartoons that illustrate and explain the 

use of these nanoparticles/nanomaterials. Accordingly, in a slightly derogatory, but also 

humorous, way, some have referred to areas of nanotechnology as ‘cartoonland’. At least in part, 

this is because the schematics accompanying these studies often show idealizations of 

nanocomponents that are combined into nanodevices and nanostructures, while the underlying 

complexity of these materials and their connectivity is ignored. Indeed, it is becoming increasing 

recognized that many nanomaterials are extremely complex. For example, their surfaces are 

often highly heterogeneous, composed of multiple crystal faces, defects, impurities, and 

chemical functional groups. This complexity also extends to their interiors. It follows that 

nanoparticles and nanomaterials from different research groups or vendors can be dramatically 

different from each other, where the exact compositions of these materials can have profound 

implications for nanomedicine/toxicology/environmental applications, etc.2, 3 With the increasing 

recognition of the complexity of many, if not most, nanomaterials, a call has come for their more 

exhaustive characterization.1, 4, 5 Because current surface and material analytical techniques 

generally have specific strengths and capabilities, as well as weaknesses and deficiencies, full 

characterization of a material will rarely be done with a single instrument; it will almost always 

require a suite of techniques employed at a high level. At present there are many studies in the 
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literature that only show, at best, moderate characterization of the nanomaterials described in 

them, which may limit the concrete conclusions that can be drawn from them. 

Extensive, multi-instrument characterization of a material increases one’s understanding 

of it in a way that should lead to improvements in the devices that contain it.6, 7 Accordingly, we 

have undertaken the present study to improve the performance of some of our nanodiamond-

based superficially porous particles for high performance liquid chromatography (HPLC). To the 

best of our knowledge, this is the most comprehensive study of nanodiamond that uses the 

broadest array of relevant analytical tools that has been undertaken to date. We believe that this 

as an exemplary/model study that might be viewed and used as a benchmark for nanomaterial 

characterization. Nanodiamond samples from multiple vendors were analyzed. To obtain their 

elemental compositions, surface areas, particle size distributions, and to understand the 

functional groups present at their surfaces, the materials were characterized by X-ray 

photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), 

diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), transmission electron 

microscopy (TEM), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), 

inductively coupled plasma-mass spectrometry (ICP-MS), and Brunauer-Emmett-Teller (BET) 

surface area analysis. To better understand the ToF-SIMS data, multivariate analyses (principal 

component and cluster analyses) of the spectra were performed. The unusual perspective that is 

obtained through these multiple techniques has led to unexpected findings and insights into these 

materials. 

The mechanical and chemical properties that make diamond a material of choice for 

liquid chromatography are discussed in Chapter 1 (section 1.5). Apart from Dr. Linford’s group 

at BYU, Nesterenko and coworkers have also worked extensively on nanodiamond based liquid 
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chromatography phases. 8, 9, 12, 24 As part of their latest work, they have emphasized the issue of 

metal impurities in nanodiamonds and the lack of robust/reliable analytical methods for their 

determination. In particular, they recently developed a direct infusion ICP-MS protocol for 

reliable determination of metal impurities in nanodiamond samples.25 The ICP work described 

herein is based on their approach. Nanodiamond has also shown promise in the biological arena 

due to its ease of surface functionalization, and ability to conjugate with biomolecules, where 

nanodiamonds are generally considered to be biocompatible.26, 27 These properties make 

nanodiamonds suitable for applications that include biosensors, cell imaging, fluorescent bio-

labeling, drug delivery, protein purification, and separations.26, 28, 29 For many of these purposes, 

functionalized diamond particles have been prepared.14, 15, 30-37 

In 2011, Shenderova et al. noted that the “Detailed and unambiguous characterization of 

the surface structure of detonation nanodiamond (DND) particles remains one of the most 

challenging tasks for the preparation of chemically functionalized nanodiamonds.”38 Thus, it is 

no wonder that there have been reports on the characterization of diamond nanoparticles in the 

literature. Nevertheless, those we are aware of rely on relatively few analytical techniques.39-43 

Thus, we emphasize again that (i) the present study appears to be the most comprehensive 

undertaken to date, (ii) we believe it will serve as an exemplary study for the characterization of 

other nanomaterials, and (iii) the use of nanomaterials is increasing in electronics, health, 

medicine, energy production, etc., where the use and application of these materials will certainly 

be advanced by their more thorough characterization. 

7.3 Materials and Methods 

7.3.1 Reagents and Materials.  
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Table 7.1 Nanodiamonds characterized in the present study. 

 

Sample # Vendor Size 

(nm) 

Abbreviation 

1 Advanced Abrasives (AA) Corporation, 

Pennsauken, NJ 08110 

50 AA 50 nm unwashed 

2 Advanced Abrasives Corporation, 

Pennsauken, NJ 08110 

50 AA 50 nm double 

wash 

3 Advanced Abrasives Corporation, 

Pennsauken, NJ 08110 

50 AA 50 nm triple 

wash 

4 International Technology Center (ITC), 

Raleigh, NC -27709 

50 ITC 50 nm 

5 Adamas Nanotechnologies, Inc., Raleigh, 

NC 27617 

5 Adamas 5 nm 
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Table 7.1 identifies the sources, sizes, and abbreviations used herein for the 

nanodiamonds characterized in the present study. Three different samples were procured from 

Advanced Abrasives Corporation (AA). These samples were nominally identical in size, but 

differed in the degree to which they had been leached with acid to remove metal impurities. In 

particular, the ‘AA 50 nm unwashed’ sample was not leached, the ‘AA 50 nm double wash’ 

sample was treated twice with a proprietary acid wash, and the ‘AA 50 nm triple wash’ sample 

was treated thrice with the same wash. We have previously used nanodiamond from Advanced 

Abrasives to make core-shell particles.14, 17, 18 As a comparison to the 50 nm Advanced Abrasives 

samples, a different 50 nm sample was procured from ITC. And finally, to study a material that 

should be substantially different from the 50 nm samples, a 5 nm sample from Adamas 

Technologies was also analyzed. All nanodiamond samples were procured as liquid suspensions. 

The AA and ITC samples are high pressure high temperature (HPHT) nanodiamonds, which 

were milled, whereas the Adamas diamonds are detonation nanodiamonds. High purity water (18 

MΩ resistance) was obtained from a Milli-Q Water System (Millipore, Billerica, MA). 

7.3.2 XPS 

X-ray photoelectron spectroscopy (XPS) measurements were performed using a Surface 

Science SSX-100 X-ray photoelectron spectrometer (serviced by Service Physics, Bend, OR), 

with a monochromatic Al Kα source (1486.7 eV) and a hemispherical analyzer. An electron flood 

gun was employed for charge compensation. Survey scans were recorded as follows: spot size: 

800 x 800 μm2, resolution: 4 (pass energy 150 eV), number of scans: 4, and step size: 1 eV. 

Narrow scans were recorded as follows: spot size: 500 x 500 μm2, resolution: 3 (pass energy 100 

eV), number of scans: 20, and step size: 0.065 eV.  Peaks were referenced to the C 1s 

hydrocarbon signal taken at 284.6 eV. The instrument software provided atomic compositions 
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based on peak areas from narrow scans. Samples for XPS were prepared on silicon wafers. The 

wafers were rinsed with ultrapure water, but no effort was made beyond this to clean the 

adventitious hydrocarbon layer on them that made them moderately hydrophobic. Droplets of 

slurries of nanodiamond particles beaded up to a small extent, but did not fully wet these 

surfaces or run off them. Wafers with droplets on them were placed on a hot plate to evaporate 

the solvent, leaving a thin, uniform film of nanodiamonds. 

7.3.3 ToF-SIMS 

Samples for ToF-SIMS and XPS were prepared in the same manner. Static time-of-flight 

secondary ion mass spectrometry (ToF-SIMS) was performed on a TOF-SIMS IV instrument 

(ION-TOF GmbH, Münster, Germany) with a 25 keV Ga+ source over a 150 x 150 μm2 sample 

area. An electron flood gun was used for charge compensation. The analyses were performed 

within the static limit, i.e., analyzed regions saw 5 - 7 x 1011 ions/cm2. For each sample, two 

spots were analyzed in positive ion mode and two spots in the negative ion mode. Care was taken 

not to analyze the same area twice.  

7.3.4 ICP-MS 

Inductively coupled plasma – mass spectrometry (ICP-MS) was performed using an 

Agilent Technologies 7800 ICP-MS, equipped with an Agilent SPS-4 autosampler (Santa Clara, 

CA). As ICP-MS is very sensitive, the nanodiamond slurries were diluted 1000 times with 

ultrapure water to attain final concentrations of ca. 0.005 wt. %. The metal concentrations at 

these dilutions were expected to be in the ppb regime. These diluted slurries were directly 

injected into the ICP and ultrapure water was used as the blank.25 The slurry samples were well 

shaken just before they were injected into the ICP-MS to homogenize them. Standard solutions 
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(in the ppb regime) of various metals were used to generate calibration curves. All 

concentrations were solution based (vol/vol). Details concerning the standard solutions are in 

Table 7.2. The instrument parameters were: RF power: 1540 W, peristaltic pump: 0.1 rpm, 

plasma gas: argon (15 L/min), integration time: 0.1 sec. 

7.3.5 DRIFT 

Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy measurements were 

performed on a Thermo-Scientific Nicolet 6700 FTIR spectrometer (Waltham, MA). The 

following were the analysis parameters used: resolution: 4 cm-1, number of scans: 512, 

apodization: Happ-Genzel, and final format: absorbance. Samples for FTIR were prepared by 

evaporating the solvent from the respective nanodiamond slurries to obtain chunks/flakes of 

nanodiamonds, which were ground in a mortar and pestle to yield a fine powder. The 

nanodiamond powders were diluted with two parts of potassium bromide (KBr) by weight per 

part nanodiamond and analyzed. 

7.3.6 TEM / EELS 

Imaging and diffraction patterns were obtained using an FEI Tecnai F30 transmission 

electron microscope (TEM, Hillsboro, Oregon) operated at 300 keV. Electron energy loss 

spectroscopy (EELS) was performed on an FEI Tecnai F20 TEM, equipped with an FEG source 

operated at 200 keV. To prepare the samples, the nanodiamond slurries were diluted 50 times 

with ultrapure water and a drop of the diluted slurry was placed on a TEM grid and allowed to 

evaporate. 
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Table 7.2 Compositions and dilutions of the standard solutions used to make ICP calibration curves. 

 

Standard 

solution # 

Composition Dilutions used 

1 10000 ppm W, 

100 ppm of Mo, Nb, Sb, Si, Ti 

10, 1000, 5000 and 10000 ppb of W  

0.1, 1, 10, 50, and 100 ppb of Mo, Nb, Sb, Si, 

and Ti in ultrapure water 

2 10000 ppm Co, 

100 ppm Cu, Fe, K, Mg, Mn, 

Na, Ni, Pb, Se, Sr, Tl, Zn, Ag, 

Al, As, B, Ba, Ca, Cd, Cr 

1, 10, 100, and 1000 ppb of Co 

0.1, 1, 10, 50, and 100 ppb of other metals in 

ultrapure water 

3 1000 ppm Fe 1, 10, 50, 100, and 1000 ppb of Fe in ultrapure 

water 

4 1000 ppm Zn 1, 10, 100, 1000 ppb of Zn in ultrapure water 
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7.3.7 XRD 

X-ray diffraction (XRD) data were collected using a PANalytical X’Pert Pro 

diffractometer (Westborough, MA) with a Cu X-ray source (λ = 1.54 Å) and an X’Celerator 

detector. Data were collected from 15 – 150° 2θ using a step size of 0.017° 2θ with an 80 s/step 

collection time. Automatic slits were used to maintain an 8 mm beam footprint on the thin layer 

(0.1 mm) of each sample throughout the entire angular range, thereby fulfilling the constant 

volume requirement for quantitative analysis. XRD data for a LaB6 standard (NIST) were 

collected using the same experimental conditions in order to characterize the instrumental peak 

broadening. Profile fits of the data were performed using the PANalytical Highscore Plus 

software. The integral breadths of the peaks determined from these fits (corrected for the 

instrumental peak broadening) were used in average Williamson-Hall plots (Langford method) to 

estimate the crystallite size and microstrain for each sample. 

7.3.8 BET 

BET was performed on a Micromeritics (Norcross, GA) TriStar II Surface Area and 

Porosity System. The nanodiamond slurries were dried and chunks/flakes of the resulting 

material were ground into a fine powder with a mortar and pestle. Prior to analysis, the samples 

were degassed under nitrogen for 24 hours at 200 ºC. 

7.3.9 Particle size distribution 

Particle size distributions (PSD) were determined using a disc centrifuge system, Model 

DC24000 (CPS Instruments, Prairieville, LA). This technique operates on the principle of 

differential sedimentation of particles in a fluid. The operating parameters were: disc speed: 

24000 rpm; calibration standard diameter: 0.377 μm; calibration standard density: 1.385 g/mL; 
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nanodiamond (ND) density: 3.51 g/mL; ND refractive index: 2.41; fluid density: 1.055 g/mL; 

fluid refractive index: 1.36; and number of data points: 1338-1354.  

7.3.10 Chemometrics techniques 

Principal components analysis (PCA) and cluster analysis of the ToF-SIMS data were 

performed using the PLS_Toolbox version 7.9.3 (Eigenvector Research, Inc., Wenatchee, WA, 

USA) in MATLAB version R2014b (Natick, MA). The raw peak areas were organized row-wise 

in a data matrix. The data were preprocessed by normalization (a row operation in which each 

peak area from a sample was divided by the sum of the peak areas for that sample) and 

autoscaling (a column operation in which the data corresponding to a certain m/z value were 

mean centered and then divided by the standard deviation of the values). 

7.4 Results and Discussion 

7.4.1 XPS 

XPS probed the surface elemental compositions of the nanodiamonds. As expected, the 

samples were comprised mostly of carbon and oxygen. Figures 7.1a-e show survey scans from 

AA 50 nm unwashed, AA 50 nm doubly washed, AA 50 nm triply washed, ITC 50 nm, and 

Adamas 5 nm nanodiamond samples. All five spectra show strong C 1s and O 1s signals, 

suggesting oxidized carbon at the nanodiamond surfaces. Table 7.3 summarizes the elemental 

compositions of the samples as obtained from XPS narrow scans. Along with carbon and 

oxygen, low levels of nitrogen and silicon are present to varying degrees in all the samples. The 

AA samples also showed relatively high levels of tungsten (W), where the presence of W was 

unexpected, and its source is unknown. Only the Adamas 5 nm material showed Na (ca. 1 at. %).  
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Figure 7.1 XPS survey scans of nanodiamond samples: (a) AA 50 nm unwashed, (b) AA 50 nm double 
washed, (c) AA 50 nm triple washed, (d) ITC 50 nm, (e) Adamas 5 nm and (f) peak fitting of AA 50 nm 
triple washed C 1s spectrum. Note: The residuals shown in Fig 1f are calculated as the counts in the 
experimental peak envelope minus the counts in the peak fitting envelope. 
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Table 7.3 Elemental compositions (at. %) of the nanodiamond samples, as determined by XPS. 

 

Metals AA 50 nm 

unwashed 

AA 50 nm 

double 

washed 

AA 50 nm 

triple 

washed 

ITC  50 nm Adamas 5 

nm 

C 1s 82.7 83.4 84.7 86.7 82.6 

O1s 13.2 12.1 11.8 12.1 14.0 

N1s 1.5 1.3 0.9 0.4 1.8 

Si 2p 0.3 0.3 0.3 0.7 0.1 

W 4f 0.4 0.3 0.3 0 0 

Cl 2p 0 1.0 0.5 0.2 0.5 

Na 1s 0 0 0 0 1.0 

O/C ratio 0.1596 0.1447 0.1388 0.1391 0.1692 
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While some samples charged, good C 1s narrow scans were obtained from the AA 

unwashed and triply washed samples. These spectra were peak fitted to four signals that 

corresponded to (1) aliphatic C-H (284.6 eV, C(0)), (2) C-O (286.1 eV, C(I)), (3) C=O (287.3 

eV, C(II)) and (4) C(O)=O (288.5 eV, C(III)).44 In general, there are many possible adjustable 

parameters in the fitting of a complex XPS peak envelope. Accordingly, care should be taken to 

ensure that the final results are reasonable/believable.45 Thus we fitted both narrow scans in the 

same way, constraining all the peak widths to be the same in each scan. In addition we used 

100% Gaussians line shapes. Peaks with Lorentzian character gave poorer fits, which suggested 

a fair degree of heterogeneity in the surfaces46. In addition, we constrained the peak positions to 

the values given above, and used only symmetric peaks. Under these conditions, good fits (low 

chi-squared values/low residuals) were obtained. The peak fitting of the C 1s spectrum from the 

unwashed AA sample is shown in Figure 7.1f, and the corresponding results from both AA 

samples are summarized in Table 7.4. This table indicates that the carbon in these nanodiamond 

samples is 11 – 15% oxidized, where these oxidized moieties presumably correspond to alcohols 

and/or ethers, aldehydes and/or ketones, and carboxylic acids and/or esters. The triple washed 

particles show more oxidized carbon than the unwashed material, i.e., they show significantly 

more carbon in its +1 and +3 oxidation states and comparable amounts of carbon in its +2 

oxidation state.44 These results will be discussed below vis-à-vis the analysis of the DRIFT 

spectra.  
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Table 7.4 Peak fitting results of C 1s narrow scans of AA unwashed and triple washed samples. 

Sample Aliphatic 

C-H (%) 

C-O 

(%) 

>C=O 

(%) 

-O-C=O- 

(%) 

AA  unwashed  50 nm 88.8 4.8 4.6 1.8 

AA triple washed 50 nm 84.9 8.0 3.9 3.1 
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The C 1s narrow scans of the other samples showed artifacts due to charging and were 

not considered for peak fitting.47 Nevertheless, all of the narrow scans, including those that 

charged, were of sufficient quality to conclude that no shake-up signals (π→π*) were present. 

Turgeon et al. studied mixtures of polystyrene and polyethylene. They showed that no shake-up 

signal was observable unless the amount of aromatic carbon in the mix was more than ca. 30%.48 

If their results can be generalized, we can conclude that there is less than 30% aromatic (sp2) 

carbon in our nanodiamond materials. This analysis is relevant because XRD suggests that some 

of the nanodiamond samples contain some graphitic carbon (vide infra).  

7.4.2 ToF-SIMS 

ToF-SIMS is complementary to XPS, showing higher sensitivity: ppm to ppb for some 

species vs. 0.1-1.0 at. % for XPS. In general, it also provides more chemical information than 

XPS. Both of these capabilities were used in the SIMS analysis of our nanodiamonds. Results are 

summarized in Table 7.5. Because the matrix effect of SIMS makes quantitation difficult, the 

entries in Table 7.5 are based on raw peak areas. A strong iron signal was present in the AA 50 

nm unwashed sample. As expected, the iron peak then decreased in the double and then triple 

washed samples. The ITC 50 nm sample also showed a large iron peak. Consistent with the XPS 

results, the Adamas 5 nm sample showed a strong Na+ signal. Significant chromium and 

aluminum signals were present in the Adamas 5 nm and ITC 50 nm samples, respectively. 

Smaller peaks corresponding to other elements, e.g., silicon, potassium, calcium, titanium, etc., 

were also observed in the samples.  
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Table 7.5 Summary of the metals detected by ToF-SIMS (comparison based on raw peak areas). 

 

Metals AA 50 nm 

unwashed 

AA 50 nm 

double washed 

AA 50 nm 

triple washed 

ITC  

50 nm 

Adamas 

5 nm 

Sodium (Na+) + + + + ++ 

Magnesium (Mg+) - - - + - 

Aluminum (Al+) + + + ++ + 

Silicon (Si+) + + + + - 

Potassium (K+) + + + + + 

Calcium (Ca+) - + + + - 

Titanium (Ti+) - - - + - 

Chromium (Cr+) + + + + ++ 

Manganese (Mn+) - - - + - 

Iron (Fe+) ++ + + ++ + 

Tungsten (W+) - - - - - 

(‘+’ refers to element being present; ‘++’ refers to relatively high peak area; ‘-’ denotes element being 
absent) 
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Interestingly, the samples showing tungsten by XPS (see Figure 7.1), showed no W+ 

signal by positive ion SIMS. However, the corresponding negative ion analysis revealed 

substantial signals at m/z 230 – 235 and at m/z 246 – 251. Based on the natural abundances and 

intensities of the different isotopes of tungsten, these values and peak intensities appeared to 

correspond to WO3
- and WO4H- (see Figure 7.2). However, this assignment could not explain 

either the peaks at m/z 233 and 235 in the proposed WO3
- envelope, or the peaks at m/z 246 and 

250 in the proposed WO4H- envelope. A much better fit to the data was obtained when these 

unexplained peaks were assumed to be due to WO3H- and WO4
-, respectively. Thus, the two 

series of peaks in Figure 7.2 at ca. 230 – 235 and 246 – 251 appear to correspond to 

combinations of signals from WO3
- and WO3H-, and WO4

- and WO4H-, respectively. Details of 

this analysis are included in Appendix 6. Similar to the results for W, small signals from Se and 

Mo in their oxidized forms, e.g., SeO4
- and MoO3

-, were observable in the AA samples. 

The XPS narrow scans of W (see Figure 7.3) provide additional evidence for the presence 

of oxidized tungsten. Here, the W 4f peaks are shifted by ca. +4 eV compared to the position 

expected for metallic tungsten (31 eV). This result is clearly consistent with tungsten bonded to 

multiple oxygen atoms.49 These XPS and SIMS results again reveal the complementary nature of 

these techniques.  
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Figure 7.2 Negative mode ToF-SIMS spectra of oxidized tungsten species in the nanodiamond samples 
(a) AA 50 nm unwashed, (b) AA 50 nm double washed, (c) AA 50 nm triple washed, (d) ITC 50 nm and 
(e) Adamas 5 nm. 
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Figure 7.3 XPS W 4f narrow scans of (a) AA 50 nm untreated and (b) AA 50 nm triple washed samples. 
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SIMS spectra can be very complex, which can make them difficult to compare. For this 

reason, chemometrics methods, i.e., advanced statistical/pattern recognition tools, have often 

been applied to SIMS spectra.50-53 Two frequently used tools are principal components analysis 

(PCA) and cluster analysis. As previously noted, two spots were analyzed by SIMS on each 

sample at each polarity. Accordingly, from the positive ion analysis, 10 data sets were subjected 

to PCA. The first two principal components (PCs) in this analysis, PC1 and PC2, capture 53.4% 

and 27.4% of the variation in the data, respectively. On the resulting two-dimensional plot of the 

scores on PC1 vs. PC2 (Figure 7.4a), the data separate well into three groups, each of which 

corresponds to one of the vendors of the samples. This analysis suggests that the materials from 

the different vendors are quite different from each other. The loadings plots for PC1 and PC2 

(see Figure 7.5a-b) help reveal the source of chemical variation between these data points 

(spectra). On the average, the materials that have negative scores on PC1, i.e., the Adamas 

material and to a lesser extent the ITC nanodiamonds, are richest in Na+, Mg+, Al+, Ti+, and Mn+, 

while those with the most positive scores, i.e., the AA samples, are richer in a series of light 

hydrocarbon fragments, as well as H+, NH4
+, H3O+, Si+, K+, Ca+, Cr+, and Fe+. The ITC samples 

had positive scores on PC2 (see Figure 7.4a), which suggested that they were, on the average, 

richer in Mg+, Al+, Ti+, and Mn+. In contrast, the Adamas samples showed negative scores on 

PC2, indicating that they were richer in Na+ and Cr+. PC 3 also captured a moderately large 

fraction of the variation in the data (15.5%), and this PC nicely separated the unwashed AA 

samples from the AA double and triple washed materials (see Figure 7.4b). As expected, the 

loadings on PC3 showed more Fe+ for the unwashed (unleached) AA samples (see Figure 7.5c). 

Clearly this PCA analysis can separate the spectra into four distinct groups that correspond to 

vendor and chemical treatment. A plot of the Q residuals vs. Hotelling T2 for this data showed 



198 
 

that all of the spectra fell within 95% confidence limits. A PCA analysis of the negative ion 

spectra was similarly performed. Figure 7.6a shows the scores plot of PC1 vs PC2 which is able 

to separate the samples into three groups corresponding to samples from three different vendors. 

With three PCs, the PCA analysis of the negative ion SIMS data separated the data into five 

distinct groups. This is quite well shown in the scores plot of PC1 vs PC3 (see Figure 7.6b). The 

loadings plot for PC1 (see Figure 7.7a) indicates that the ITC and Adamas spectra show strong 

O- and Cl- signals, while the AA samples show stronger signals from almost all of the other ions 

considered in the analysis, which included WO3
-, WO4H-, SeO4

-, and MoO3
-. In general 

agreement with these results, XPS showed no chlorine for the AA untreated sample, which had 

the highest positive value in the scores plot. The loadings plot on PC3 (see Figure 7.7c) was 

helpful for understanding the source of variation between the different AA samples. The AA 

double and triple washed samples were richer in WO3
-, WO4H-, Cl-, F-, etc., whereas the AA 

untreated sample was richer in SeO4
-, MoO3

-, CN-, etc.  Similar results were obtained from XPS, 

which showed chlorine in the AA double and triple washed samples. XPS also showed 

decreasing N 1s signals from the AA untreated to the AA double and triple washed samples. This 

was elegantly picked up by PCA, which showed a maximum signal for CN- in the uncleaned AA 

sample.  

When two or more chemometrics techniques that depend on different algorithms yield the 

same result, one can be more certain in that finding.52-54 Accordingly, cluster analysis was also 

used to compare the spectra. The resulting dendrograms for the positive and negative ion ToF-

SIMS data (see Figure 7.8) showed clustering of the different samples. The fact that the PCA and 

cluster analyses show similar clustering/differentiation of the samples is a confirmation of the 

application of chemometrics to this problem.  
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Figure 7.4 PCA scores plots of positive ion SIMS data of nanodiamonds, (a) PC 1 vs. PC 2 and (b) PC 1 
vs. PC 3. The dashed blue line represents a 95% confidence limit for the distribution of the data points in 
the plane. The red circles are guides to the eye. 
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Figure 7.5 Loadings plots from the positive ion ToF-SIMS analysis of nanodiamonds of (a) PC 1, (b) PC 
2, and (c) PC 3. 
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Figure 7.6 Scores plot of negative ion ToF-SIMS analysis of nanodiamond samples: (a) PC1 vs. PC2, and 
(b) PC1 vs. PC3. 
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Figure 7.7 Loadings plot of (a) PC1, (b) PC2, and (c) PC3 of negative ion ToF-SIMS analysis of the 
nanodiamond samples. 
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Figure 7.8 Dendrograms representing cluster analyses of ToF-SIMS (a) positive and (b) negative ion 
spectra obtained for nanodiamonds. 
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7.4.3 ICP-MS 

Unlike XPS and ToF-SIMS, ICP is a bulk analytical technique. It allows quantitative 

elemental concentrations of a material to be determined. Since metal ions are known to cause 

tailing in liquid chromatography,6, 55-57 and because NDs have high surface areas and are present 

in high abundance in the shells of our core-shell HPLC particles, an understanding of the metal 

content of these materials is important. Table 7.6 shows the results for 12 elements from ICP 

analyses of the nanodiamond samples. Consistent with the XPS results that indicated significant 

tungsten (see Table 7.3 and Figure 7.1), ICP shows very high signals for this element in the AA 

samples (ca. 900 ppm). In contrast, in the ITC and Adamas samples, W is present at the ca. 8 

ppm level. Iron was present at quite a high level in the unwashed AA sample. As expected, the 

Fe signal in the AA samples decreases substantially as they are washed. SIMS and ICP give 

somewhat different results for Fe in the ITC and Adamas NDs. Both techniques predict that a 

moderate amount of Fe is present in these materials, however, by ICP, the Fe signal is quite a bit 

higher for the Adamas ND, while its SIMS signal appears to be weaker. Two possible 

explanations for these phenomena are that (i) the ITC shows more iron at its surface than in the 

bulk, i.e, results from a bulk technique are being compared to those from a surface technique, or 

(ii) the matrices of the two NDs are different enough that their ToF-SIMS signals cannot be well 

compared. In contrast to the other NDs, the ITC sample showed a considerable amount of 

aluminum, and the Adamas sample showed a great deal of chromium. In general, the AA 

samples have the highest concentrations of metal impurities (see Figure 7.9). As noted above, 

Mo containing ions are present in the negative ion ToF-SIMS spectra of the AA samples which 

is present at the ca. 10 ppm level in the AA samples and at a much lower level in the ITC and 
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Adamas materials. As expected, the concentrations of Fe, and Mo decrease as the AA ND is 

washed, where the most significant drop in concentration occurs after the first wash.  

Interestingly, washing causes the concentrations of some elements, including Ni, Ti, and 

W, to increase. These results suggest that the proprietary acid wash may be a source of 

contamination to the NDs. The radar plot of these ICP results (Figure 7.9) shows similar patterns 

for the three AA samples, and different patterns for the other two types of NDs. PCA was also 

performed on the ICP data, where nearly 98% of the variation in the data was captured by the 

first two PCs. Figure 7.10a represents PCA data on the scores plot of PC 1 vs. PC2 which shows 

three distinct groups. AA unwashed, double and triple washed samples were in a single group. 

Adamas and ITC samples were well separated from all the AA samples. The loadings plot of 

PC1 (see Figure 7.10b) indicates that the ITC sample, and to a smaller extent the Adamas 

material are rich in Ti, Mn, Ni, K, Ca, Co and Al, therefore having negative scores on PC1. From 

this analysis, the AA samples seem to be rich in W and Mo. The loadings on PC 2 reveal that the 

Adamas sample is separated from the AA and ITC samples due to higher amounts of Fe, Cr and 

Cu (see Figure 7.10c). All the samples (spectra) fell within 95 % confidence limits on the plot of 

the Q residuals vs. Hotelling T2 for this data. 

The limits of detection (LOD) were automatically calculated by the software using 

background equivalent concentrations. The concentrations of the 12 elements listed in Table 7.6 

are greater than their respective quantitation limits (see Table 7.7). Because we were performing 

direct infusion of nanodiamond slurries into the ICP-MS, there were no sample preparation steps 

involved, e.g., acid digestion. Therefore no significant loss of elements was expected. We also 

performed spike and recovery determinations under the same operating conditions while spiking 
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the nanodiamond samples with 100 ppb of Zn. The different samples showed recoveries of 93 - 

98 % (see Table 7.8). 
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Table 7.6 Amounts of various metal impurities (ppm) with standard deviations (S.D.) in nanodiamond 
samples quantified via ICP-MS. 

 

Sample AA 50 nm 

unwashed 

AA 50 nm 

double washed 

AA 50 nm 

triple washed 

ITC 50 nm Adamas 5 nm 

 ppm S.D. ppm S.D. ppm S.D. ppm S.D. ppm S.D. 

Aluminum (Al) 0.85 0.03 0.72 0.07 0.93 0.02 15.54 0.38 0.852 0.002 

Chromium (Cr) 1.87 0.07 1.19 0.03 1.31 0.02 0.25 0.01 38.9 0.6 

Copper (Cu) 0.59 0.02 0.343 0.005 0.393 0.003 0.048 0.006 1.32 0.07 

Iron (Fe) 52.0 0.9 11.7 0.5 10.13 0.16 4.5 0.3 22.3 0.5 

Manganese (Mn) 0.25 0.01 0.192 0.005 0.24 0.01 1.616 0.009 0.163 0.004 

Molybdenum (Mo) 11.09 0.15 7.49 0.03 5.59 0.02 0.139 0.009 0.0435 0.0017 

Nickel (Ni) 1.11 0.02 1.34 0.02 1.86 0.02 0.579 0.009 0.20 0.01 

Potassium (K) 6.15 0.59 6.98 0.16 7.39 0.46 6.47 0.13 6.31 0.19 

Titanium (Ti) 0.79 0.07 1.15 0.02 1.79 0.11 3.01 0.06 0.42 0.02 

Tungsten (W) 832.9 4.2 895.2 17.3 964.2 9.4 9.14 0.05 6.95 0.04 

Calcium (Ca) 10.2 0.48 8.8 1.13 8.94 0.89 8.07 0.26 8.32 0.47 

Cobalt (Co) 0.54 0.02 0.34 0.01 0.419 0.009 0.18 0.01 0.151 0.006 
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Table 7.7 Limits of Quantitation (LOQ) for elements detected via ICP-MS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Elements Limit of Quantitation (ppb) 

Aluminum (Al) 0.157 

Potassium (K) 4.40 

Calcium (Ca) 5.71 

Titanium (Ti) 0.089 

Chromium (Cr) 0.068 

Manganese (Mn) 0.007 

Iron (Fe) 1.69 

Cobalt (Co) 0.013 

Nickel (Ni) 0.049 

Copper (Cu) 0.030 

Molybdenum (Mo) 0.029 

Tungsten (W) 0.001 
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Table 7.8 Spike and recovery data for Zinc using same experimental conditions. The LOQ for Zinc was 
1.13 ppb. 

 

Sample Recovery (ppb) 

AA 50 nm unwashed 97.48 ± 3.03 

AA 50 nm double washed 97.97 ± 5.25 

AA 50 nm triple washed 92.46 ± 0.75 

ITC 50 nm 97.65 ± 4.72 

Adamas 5 nm 97.28 ± 1.78 
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Figure 7.9 Radar plotshowing normalized, linearly scaled quantities of various metal impurities in the 
nanodiamond samples, as determined by ICP-MS. A value of unity in this figure corresponds to 15.54 
ppm for Al, 38.9 ppm for Cr, 1.32 ppm for Cu, 52.0 ppm for Fe, 1.616 ppm for Mn, 11.09 ppm for Mo, 
1.86 ppm for Ni, 7.39 ppm for K, 3.01 ppm for Ti and 964.2 ppm for W, 10.2 ppm for Ca, and 0.54 ppm 
for Co.
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Figure 7.10 PCA of ICP data (except tungsten) from nanodiamond samples.  (a) Scores plot, Loadings on 
PC 1 (b) and PC 2 (c). 
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7.4.4 DRIFT 

Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was performed on 

all the ND samples to understand the organic functional groups on/in them. The XPS analyses of 

these materials (vide supra) indicated the presence of oxidized carbon. Consistent with these 

results, DRIFT (see Figure 7.11) showed absorption bands attributable to –OH stretches from 

alcohols and/or carboxylic acids at ca. 2500 – 3600 cm-1, stretches attributable to C=O groups at 

around 1750 cm-1, and less well defined C-O stretches at 1000 – 1250 cm-1.33, 42, 43, 58, 59 The 

spectra also showed peaks at approximately 1630 cm-1, which may be due to C=C stretches from 

aromatic carbon.43 These latter stretches would be consistent with the graphitic carbon observed 

by TEM (vide infra). This understanding is useful because complex surface chemistries like 

those suggested by this analysis should contribute to band broadening in HPLC. 
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Figure 7.11 FTIR spectra of (a) AA 50 nm unwashed, (b) AA 50 nm double washed, (c)AA 50 nm triple 
washed, (d) ITC 50 nm and (e) Adamas 5 nm samples. 
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7.4.5 XRD  

Figure 7.12a-e shows the XRD patterns of the AA unwashed 50 nm, AA 50 nm double 

washed, AA 50 nm triple washed, ITC 50 nm, and Adamas 5 nm samples, respectively. The 

standard pattern for diamond included for comparison with each sample confirms the presence of 

crystalline diamond (sp3 carbon) in the samples. A small amount of graphite (sp2 carbon) was 

also found in each of the samples (see Figure 7.13). In the 50 nm AA and ITC samples, the 

relative amounts of crystalline diamond and crystalline graphite could be quantified through 

Rietveld refinement.  Accordingly, Table 7.9 shows the relative percentages of diamond and 

graphite in each of the AA and ITC samples. The XRD pattern for each sample was also 

analyzed quantitatively via profile fitting to gain insight into the size and crystallinity of each 

sample.  Both small crystallite sizes and strain in the crystal lattice (microstrain) tend to broaden 

diffraction peaks. Fortunately, these effects manifest different angular dependencies, and 

Williamson-Hall plots (which combine the Scherrer formula for size broadening and the Stokes 

and Wilson equation for strain broadening) provide a method for deconvolving the contributions 

of size and strain to the peak broadening. Table 7.9 also gives the size and strain contributions 

for the different samples under study. The strain contributions were negligible compared to the 

size contributions, but the plots were greatly improved by including both. As expected from the 

inverse relationship between crystallite size and peak width, the Adamas samples showed 

broader peaks (see Figure 7.12e) than the AA and ITC samples (see Figures 7.12a-d). However, 

for all samples, the XRD size estimates are noticeably smaller than the anticipated 50 nm and 5 

nm sizes. This means that the coherence length of the crystalline lattice is smaller than the 

particle size, which indicates a degree of imperfection in the crystallinity of the samples. Because 

the microstrain parameters are so small, this may indicate multiple domains per particle. 
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Figure 7.12 XRD diffraction patterns of nanodiamond samples: (a) AA 50 nm unwashed, (b) AA 50 nm 
double washed, (c) AA 50 nm triple washed, (d) ITC 50 nm, and (e) Adamas 5 nm. Patterns in red are the 
diamond reference. 
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Figure 7.13 XRD diffraction patterns of nanodiamond samples: (a) AA 50 nm unwashed, (b) AA 50 nm 
double washed, (c) AA 50 nm triple washed, (d) ITC 50 nm, and (e) Adamas 5 nm. Patterns in red are the 
graphite reference. 
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In generating profile fits of the XRD patterns for quantitative analysis, we encountered 

some noteworthy challenges. First, the peak shapes of all of the nanodiamond samples were 

unusual; they were not initially well modeled by pseudo-Voigt functions (a combination of 

Gaussian and Lorentzian functions) typically used to model the shape of diffraction peaks. In the 

Adamas 5 nm sample, large undulations in the baseline around 45 and 80° 2θ further 

complicated the peak shape analysis. We attributed these undulations to amorphous graphite in 

the samples, and by including very broad ‘amorphous’ peaks at these locations we greatly 

improved the profile fits, though the peak shapes were still unusually Lorentzian. For the other 

larger nanodiamond samples, the Lorentzian shape of the peaks was even more pronounced. 

After much consideration, we concluded that these extreme Lorentzian peak shapes could be due 

to a bimodal distribution of crystallite sizes; it appeared that each peak consisted of contributions 

from a group of smaller particles (creating a broad base at each peak) and a group of larger 

particles (creating an unusually tall and sharp maximum for the breadth of the base). 

Accordingly, the profile fits for all the AA and ITC samples were markedly improved by using 2 

sets of peaks to model the data. In essence, each diffraction peak was modeled as a combination 

of one tall/sharp peak and one short/broad peak constrained to be centered at the same angle. 

This approach did not drastically alter the sizes estimated for the larger particles (compared to 

those obtained from the single peak model), but it did drastically improve the profile fit. TEM 

analyses later confirmed the bimodal size distribution of these samples, validating the models 

used in the XRD analyses.  
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Table 7.9 Size and strain contributions, and relative sp2 and sp3 content of nanodiamonds calculated via 
XRD. 

 

Sample Size 

(nm) 

Strain 

(%) 

sp3 content 

(diamond) % 

sp2 content 

(graphite) % 

AA 50 nm unwashed 27.0(7) 0.00(4) 99.4 0.6 

AA 50 nm double washed 21.0(3) 0.00(4) 92.7 7.3 

AA 50 nm triple washed 25.0(2)  0.00(2) 84.7 15.3 

ITC 50 nm 19.0(3) 0.00(5) 98.8 1.2 

Adamas 5 nm 2.7(1) 0.0(5) - - 

 

Note: The relative diamond (sp3) and graphite (sp2) ratios were calculated using Rietveld analysis. The 
Rietveld analysis couldn’t be performed on the Adamas sample owing to its smaller size. 
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7.4.6 TEM 

TEM is an important tool for characterizing nanoparticles. In particular, it provides 

information about the crystallinity, shapes, and sizes of nanomaterials. A significant 

disadvantage of TEM is the small sample size analyzed, which might call into question the 

generality and interpretation of the results. Therefore, in the present study efforts were made to 

apply very homogeneous sample slurries to TEM grids, after which multiple spots were 

analyzed. Representative micrographs and diffraction patterns are shown in Figure 7.14. The first 

row in Figure 7.14 shows TEM diffraction patterns, which in all cases, according to a published 

report from Gruen et al. correspond to crystalline diamond.60 The Adamas sample shows hints of 

amorphous carbon. The micrographs in the second row of Figure 7.14 show a wide size 

distribution of the nanodiamonds in all the AA samples. In particular, there are ‘primary’ 

nanodiamond particles (~ 5 nm), particles that are a step larger than these (ca. 10 – 50 nm), and 

even some very large particles (ca. 100 nm). These results help to validate the hypothesis from 

XRD of a bimodal distribution in the nanodiamond samples. TEM indicates that the ITC sample 

contains very irregularly shaped nanodiamond with sharp edges, and significant amorphous 

contributions. The Adamas material appears as stacks of flat amorphous sheets, with probable 

embedded crystallites. The Adamas sample will be discussed in greater detail in the EELS 

section (vide infra). In order to examine the crystallites more closely, high-resolution TEM 

micrographs were obtained at ~620k magnification. This view revealed a prominent amorphous 

covering around the AA unwashed and double washed samples. The magnitude of this 

amorphous sheath was less for the AA triple washed material. It is important to emphasize again 

that these micrographs are representative of the general pattern that we observed with many 

images from the respective samples. The ITC sample appeared to be very amorphous with small 
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patches of crystallites embedded in the amorphous bulk material. The Adamas sample showed 

prominent graphite chains running through the sample with d-spacings of 0.1840 Å, which are 

very close to the reported d-spacing of the 102 plane of graphite (0.1799 Å). For all the samples, 

d-spacings for 111, 220 and 311 planes were recorded, which are well within 4 % of the reported 

d-spacing values (by Gruen et al.) for the corresponding planes of crystalline diamond (see Table 

7.10). The presence of graphitic carbon in a nanodiamond particle has implications for HPLC 

because graphitic carbon, e.g., Hypercarb/porous graphitic carbon,61 often causes peak tailing.  
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Figure 7.14 Diffraction patterns (first row), TEM micrographs (second row) and high resolution TEM 
micrographs (third row) of nanodiamond samples. 
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Table 7.10 Comparing the d-spacings of nanodiamond samples to those reported in the literature. 

 

Planes {111} Graphitic 

{102} 

{220} {311} 

Literature values 0.2059 0.1799 0.1261 0.1075 

AA unwashed 50 nm 0.2055  0.1258 0.1054 

AA double wash 50 nm 0.2074  0.1266 0.1087 

AA triple wash 50 nm 0.2139  0.1243 0.1066 

ITC 50 nm 0.2075  0.1275 0.1083 

Adamas 5 nm 0.2102 0.1840 0.1288 0.1101 
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7.4.7 EELS 

Once TEM and XRD indicated the presence of graphitic and amorphous regions in the 

samples, it became necessary to quantify the sp3 carbon content in these samples, which often 

serves as a measure of the quality of nanodiamonds. Electron energy loss spectroscopy (EELS) is 

an additional TEM based tool that probes the energy losses of transmitted electrons caused by 

excitations or energy transitions in the sample.  Excitation peaks from the sample are broadened 

by the incoming energy spread and thus there is great advantage to using an FEG (field emission 

gun) source. Electrons lost in inner shell ionization events can transition to empty electronic 

states in a material (subject to appropriate selection rules) with a corresponding loss of energy 

from the beam of electrons. Thus, the energy loss spectrum for a given inner shell transition 

maps the local density of empty states in the sample.  The empty state energies are a fingerprint 

of the bonding configuration and thus, for carbon, the hybridization.  In carbon, the 1s – π* and 

1s – σ* transitions are separated by several eV.  The 1s – π* transitions are only available in sp2 

material, and both the sp2
 and sp3 materials show 1s – σ* transitions.  Thus, while the presence of 

π* transitions indicates some sp2 material, it is the relative size of the π* and σ* transitions that 

indicate the sp2
 and sp3 fraction. 

Various models are used to quantify the sp3
 and sp2 content of carbonaceous materials 

from EELS data.62-64 We used a “two-window method” where the windows are centrally 

positioned on the major peaks (TWC), namely the 1s – π* and 1s – σ* peaks.63 Following 

previously published reports, we used two models to calculate the sp3 composition of the 

nanodiamond samples being studied.62, 64 The Berger et al. approach was named Model 1 and the 

Cuomo et al. approach was Model 2. For both models, an integral ratio (In) is derived from the 

EELS data, which is a ratio between the counts in the 1s – π* transition peak to counts in another 
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region of the data.  This integral ratio would be zero for a pure sp3 material and at a maximum 

for a pure sp2 material.  Thus, the sp2 fraction (Fsp2) is given by a comparison of the integral 

ratios of the unknown sample (n = u, unknown sample) to that of a 100 % sp2 carbon reference 

sample (n = r, reference sample).   

For our calculations, energy alignment was made by shifting all the 1s – π* peaks to be 

centered at 285 eV. The reference sample was the amorphous support carbon film with the 

reference spectra collected under similar conditions as the unknowns. The background was 

subtracted using a standard approach of interpolating from a pre-edge region of the spectra. The 

zero loss peak showed that the samples were sufficiently thin, hence, no efforts were made to 

deconvolute the multiple scattering from the carbon edge. We understand that the sp2 

contribution in the nanodiamond samples will be overestimated because of the underlying carbon 

support film. We never saw sp3 content greater than ~ 90 %. Thus, we estimate that our EELS 

measurements were overestimating the sp2 content by <10 % for the nanodiamond samples. The 

approach and conditions for all measurements were kept constant and hence the results should 

provide reasonable insight into our samples. The EELS spectra of all the nanodiamond samples 

and sp2 reference sample are given in Figure 7.15. 

Model 1: In Model 1, the integral ratio In is the area under 1s – π* (281-287.5 eV) divided 

by the sum of areas under 1s – π* and 1s – σ* (281-310 eV).  

 𝐼𝑛 =
𝐼𝜋𝑛 ∗

𝐼𝜋𝑛 ∗ + 𝐼𝜎𝑛 ∗
 (7.1) 

The sp2 fraction (Fsp2) is simply the ratio of the unknown and reference integral ratios. 
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 𝐹𝑠𝑝2 =
𝐼𝑢
𝐼𝑟

 
(7.2) 

The sp3 fraction is 1 minus the sp2 fraction. 

Model 2: In Model 2, the integral ratio and sp2 fraction formulas change.  The integral 

ratio is calculated as the ratio of the area under the 1s – π* (283-287 eV) peak to that of the 1s – 

σ* (288-303 eV) peak.  

 
𝐼𝑛 =

𝐼𝜋𝑛 ∗
𝐼𝜎𝑛 ∗

 
(7.3) 

The sp2 fraction is given by the following equation, 

 

𝐹𝑠𝑝2 =
4 𝐼𝑢𝐼𝑟

3 + 𝐼𝑢
𝐼𝑟

 

(7.4) 

where Equation 7.4 is based on the theoretical ratio of π* to σ* orbitals in sp2 and sp3 carbon.64 

Results are summarized in Table 7.11. The standard deviations of the values obtained using 

Models 1 and 2 were within 1.3 %. This speaks to the robustness of the models used. There is an 

increase in the sp3 content of the nanodiamonds as we go from the AA 50 nm unwashed to the 

double and triply washed samples. This might be attributed to the removal of the amorphous 

covering on the nanodiamond particles by the leaching step. The ITC 50 nm sample had the least 

sp3 contribution: ca. 36 %. The Adamas 5 nm sample had ca. 78 % sp3 content. This is somewhat 

contradictory to TEM analysis where the Adamas 5 nm micrographs appeared as distinct 
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contours of amorphous stacked flat sheets (see Figure 7.14). We believe that the Adamas sample 

contains large numbers of defects with tiny crystallites embedded in the bulk. Therefore, while 

the TEM images look amorphous, EELS analysis shows crystalline sp3 content in the Adamas 

samples.  

The results from EELS include crystalline (sp3) and amorphous (sp2) carbon, and are 

different from the ratios obtained via XRD Rietveld refinement analysis (see Table 7.9), i.e., the 

values reported in Table 7.9 are relative ratios of crystalline diamond (sp3 carbon) and crystalline 

graphite (sp2 carbon). For example, HR-TEM images indicated that the AA unwashed and 

double washed samples were covered in an amorphous sheath. This sheath would not be 

considered in the XRD analysis in part because it would appear as a broad diffusive peak and 

would be difficult to analyze. On the other hand, for the AA 50 nm triple washed sample, which 

had the thinnest covering of the amorphous sheath, the diamond (sp3) content via XRD (~ 85 %) 

was in reasonable agreement with the EELS determination (~ 88 %). Thus, EELS should provide 

more realistic sp2/sp3 values for our nanodiamond samples. As noted, XPS analysis showed no 

shake-up peaks in the C 1s narrow scans of the nanodiamonds, i.e., their sp2 contributions should 

be less than 30 %. However, this generalization probably only holds for a homogeneous material, 

not for a highly heterogeneous material like our nanodiamonds – it is possible that any shake-up 

peaks from sp2/aromatic carbon will be too broad and diffuse to be discernable. This could 

explain why the ITC 50 nm sample had a ca. 63 % sp2 contribution but did not show any shake-

up peak in its XPS narrow scan. 

The presence of sp2 carbon can lead to unwanted interactions and hinder the performance 

of nanodiamond-based HPLC particles. Therefore, EELS serves as a vital tool to determine the 

quality of the nanodiamonds being used. 
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Table 7.11 sp3 contribution in the nanodiamonds under study as calculated by EELS. 

 

Sample Model 1 Model 2 

AA 50 nm unwashed 73.56 71.67 

AA 50 nm double washed 84.97 84.13 

AA 50 nm triple washed 88.16 87.29 

ITC 50 nm 37.41 35.92 

Adamas 5 nm 77.9 77.60 
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Figure 7.15 EELS spectra of all five nanodiamond and sp2 reference samples. 
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7.4.8 BET 

BET analysis was performed on all of the powdered nanodiamond samples, the results of 

which are summarized in Table 7.12. Based on the particle sizes provided by XRD, theoretical 

surface areas of the nanodiamonds were calculated using the following equation 10  

𝑆 =
6
𝑟𝜌

(7.5) 

where S is the surface area of the nanodiamonds, r is the diameter of the diamond particles, and ρ 

is the density of the nanodiamonds. In these calculations, the density of the nanodiamonds was 

taken as 3.51 g/cm3.10 The above-mentioned equation does not take into account any aggregation 

of nanodiamond particles. The surface areas obtained from BET were within ca. 20 % of 

theoretical surface areas, except for the Adamas 5 nm particles. This result suggests a high 

degree of aggregation for the Adamas material, as was expected because of its small size. 
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Table 7.12 Theoretical surface areas of nanodiamonds being compared to the surface areas calculated via 
BET. 

 

Sample Surface area 

(m2/g) 

Theoretical surface 

area (m2/g) 

AA 50 nm unwashed 50.24 63.3 

AA 50 nm double washed 70.65 81.4 

AA 50 nm triple washed 54.27 68.4 

ITC 50 nm 110.51 89.96 

Adamas 5 nm 214.43 633.11 
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7.4.9 PSD 

PSD analysis was performed on the undiluted nanodiamond slurries, as they were 

received from the vendors. The mean particle sizes were determined to be 40.1 nm, 47.1 nm, 

50.2 nm, 43.3 nm, and 16.6 nm for AA 50 nm unwashed, AA 50 nm double washed, AA 50 nm 

triple washed, ITC 50 nm, and Adamas 5 nm samples, respectively. These mean values are based 

off of relative weight calculations from the plot of weight of particles vs. their diameters.  An 

elaborate distribution of size ranges of the nanodiamond samples are given in Table 7.13. The 

results from AA and ITC samples align well with the TEM findings, while the Adamas 5 nm 

results do not align well with the TEM and XRD findings. For Adamas, XRD gives a crystallite 

size of ~ 2.7 nm; TEM shows stacked sheets, possibly with large numbers of defects, and hence 

appearing to be amorphous in the micrographs; PSD gives an average particle size of 16.6 nm. 

PSD does pick up ~ 0.13 % of Adamas particles in the size range of 155 – 495 nm (which is a 

very small fraction). It may be that the smaller Adamas particles didn’t adhere to the TEM mesh, 

and/or that bigger particles selectively adhered to the TEM mesh.  These kinds of somewhat 

contradictory results are expected in the multi-instrument characterization of a material, where 

each technique will shed light on different properties of a sample. For example, in the particular 

case of the Adamas sample, XRD measures a crystallite size (2.7 nm) that doesn’t necessarily 

represent the particle size. That is, the crystallites may be embedded in the sheets observed in 

TEM, and/or surrounded by amorphous material and/or have high defects. However, PSD, 

contrary to these findings, gave an average particle size of 16.6 nm for the Adamas samples, with 

a tiny fraction of larger particles (probably the stacked sheets observed by TEM). Without the 

PSD measurements, we would have concluded that the Adamas particles were entirely present as 

crystallites embedded in stacked sheets. Now it appears that the Adamas sample is composed 
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almost entirely (~ 98.8 %) of particles in the size range of 13.2 - 27.4 nm (see Table 7.13), with a 

tiny fraction of them in large stacked sheets, possibly containing embedded, defective 

crystallites.  
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Table 7.13 PSD of the five nanodiamond samples under study. The columns represent the fraction (%) of 
particles within a specific size range. 

 

Size range 

(nm) 

AA 50 nm 

Unwashed 

AA 50 nm 

Double 

Washed 

AA 50 nm 

Triple 

Washed 

ITC 50 nm Adamas 5 nm 

10.0 - 15.0 4.62 2.88 2.44 (13.2 - 19.0 nm) 5.77 29.8 

15.0 - 22.0 13.46 8.79 8.05 (19.0 - 27.4 nm) 16.44  70.08 

22.0 - 33.0 21.86 16.92 15.38 (27.4 - 39.4 nm) 24.94 0 

33.0 - 48.0 28.97 25.88 24.41 (39.4 - 56.6 nm) 29.61 0 

48.0 - 71.0 24.67 30.91 30.43 (56.6 - 81.3 nm) 20.31 0 

71.0 - 105 6.35 14.18 18.02 (81.3 - 116.9 nm) 2.94 0 

105 - 155 0.07 0.42 1.21 0 0 

155 - 229 0 0.02 0.05 0 (155-227 nm) 0.01 

229 - 338 0 0.01 0.01 0 (227-336 nm) 0.05 

336 - 495 0 0 0 0 0.07 
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7.5 Conclusions  

The results from this study are summarized in the following table: 

 

 
*Comparison based on raw peak area; red color denotes greater peak areas as compared to others 

 

Technique AA 50 nm 
unwashed 

AA 50 nm 
doubly washed 

AA 50 nm 
triply washed 

ITC 50 nm Adamas 5 nm 

XPS All samples showed significant C 1s and O 1s peaks, implying oxidized carbon at their 
surfaces 

Low levels of nitrogen and silicon present in all the samples 
Tungsten present in all AA samples; narrow scans 

show oxidized W species 
 Sodium present 

ToF-SIMS* Na+, Al+, Si+, 
K+, Cr+, Fe+ 

Na+, Al+, Si+, 
K+, Ca+, Cr+, 

Fe+ 

Na+, Al+, Si+, 
K+, Ca+, Cr+, 

Fe+ 

Na+, Mg+, Al+, 
Si+, K+, Ca+, Ti+, 

Cr+, Mn+, Fe+ 

Na+, Al+, K+, 
Cr+, Fe+ 

No W+ signal present. Negative mode SIMS showed 
peak envelopes corresponding to WO3

-/WO3H-, and 
WO4

-/WO4H-. MoO3
- also present in all AA samples 

  

ICP-MS ~ 900 ppm of tungsten present in all AA samples  
Concentrations of Ni, Ti, and W increase with 

washing 
Concentrations of Fe, and Mo decrease with washing 

Maximum 
aluminum (~16 

ppm) 

Rich in 
chromium (~39 
ppm) and iron 

(~22 ppm) 
Iron 52 ppm Iron ~12 ppm Iron ~10 ppm   

DRIFT Complementary to XPS results, DRIFT shows stretches corresponding to –OH, C=O, and C-
O groups 

Presence of C=C stretches hint at graphitic carbon 
XRD 27 nm crystallite 

size 
21 nm 

crystallite size 
25 nm 

crystallite size 
19 crystallite 

size 
2.7 crystallite 

size 
Possible bimodal distribution of nanodiamonds   

All samples showed broader peaks corresponding to graphitic peaks 
TEM Wide size distribution confirmed hypothesis from 

XRD of bimodal size distribution;  
Amorphous sheath/covering present in all AA samples 

that seems to decrease with washing 

Irregular shaped, 
sharp edges 

Sheet-like 
structure; 102 

plane of 
graphite present 
graphitic chains 
present in the 

sample 
 Diffraction pattern of all samples show 111, 220, and 311 planes of crystalline diamond. 

Hints of amorphous carbon in all of the samples 
EELS ~74 sp3 carbon ~85 sp3 carbon ~88 sp3 carbon ~38 sp3 carbon ~78 sp3 carbon 
BET The theoretical surface area of all samples were compared with the surface areas obtained by 

BET. The results indicated excessive agglomeration of the Adamas sample because of their 
miniature size (~ 2.7 nm via XRD) 

PSD 
(Average 

particle size) 

40.1 nm 47.1 nm 50.2 nm 43.3 nm 16.6 nm 
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As is often the case in an extensive, multi-instrument analysis of a material, we have 

uncovered some unexpected compositions/properties/comparisons. Clearly these insights were 

gained as a result of a combination of analytical methods. No single technique can determine all 

of the properties of a material. Therefore, thorough material characterization consists of carefully 

choosing a suite of techniques that probe different aspects of a material, which is followed by 

appropriate data analysis and interpretation to draw reasonable conclusions. Based on the 

number and scope of the analytical techniques employed in the current study, we believe that this 

is the most comprehensive nanodiamond characterization study undertaken to date and that it can 

serve as an exemplary report for the community. The findings from this study are aimed at 

improving nanodiamond-based core-shell particles for HPLC.  
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Chapter 8: Conclusions 

8.1 Conclusions 

My graduate work was focused primarily in two areas: (a) the development of data 

analysis tools for X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass 

spectrometry (ToF-SIMS), and (b) the multi-instrument characterization of materials.  

To better analyze XPS narrow scans, I have introduced the equivalent width and 

autocorrelation width. These approaches have the potential to act as a tool that is less 

biased/subjective, but also complementary, to traditional peak fitting practices in XPS. 

Continuing the effort to improve XPS data analysis, I introduced the concept of uniqueness 

testing to XPS. Uniqueness tests are routinely performed in spectroscopic ellipsometry to 

confirm the absence of fit parameter correlation. However, to the best of my knowledge, no one 

has ever used this concept in XPS. I also discuss various reasonable practices for obtaining good 

peak fits in XPS. 

ToF-SIMS can generate enormous amounts of data, and the analysis of this data can be 

challenging. Therefore, various pattern recognition tools, i.e., chemometrics techniques, such as 

principal components analysis, cluster analysis, etc., have been used to help deal with this 

problem. In this dissertation, I have also introduced a new chemometrics technique known as the 

Information Content (IC). This technique has been derived from previous work by Claude 

Shannon on information theory. I show the applicability of IC to complex data sets from ToF-

SIMS and XPS. 

Dr. Linford’s group at BYU has worked extensively to manufacture nanodiamond-based 

particles for high performance liquid chromatography. The second part of my research work 

involved a comprehensive multi-instrument characterization of these nanodiamonds with the aim 
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of exploiting our understanding of these materials for product improvement. A diverse suite of 

relevant analytical tools was employed, including XPS, ToF-SIMS, inductively coupled plasma-

mass spectrometry (ICP-MS), scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), etc. 

8.2 Future Work 

In this work, I showed application of mathematical functions (the equivalent width (EW) 

and the autocorrelation width (AW)) for the characterization of XPS narrow scans using four 

different data sets. Future work in this area should be focused on using more complex data sets, 

both from XPS and also from other techniques to expand/demonstrate the use of these functions.  

I described here the first use of uniqueness plots in XPS. The manufacturers of XPS 

instruments, and others with XPS data analysis programs, should be contacted about the 

possibility of integrating this tool, and also the EW and AW into their software. 

I introduced Information Content (IC) as a new chemometrics technique for data analysis, 

specifically to characterize spectra. This tool should also be tested on more advanced/complex 

data sets, which might include ToF-SIMS imaging/depth profiling data. 

A primary goal of my dissertation work was to comprehensively understand materials via 

their multi-instrument characterization. I presented the nanodiamond characterization study in 

Chapter 7 as an exemplary study for nanomaterial characterization. The literature contains many 

examples of the under-characterization of materials that may limit the understanding of them in a 

way that prevents diagnosis of failure mechanisms and/or product improvement. Therefore, 

future work should focus on the multi-instrument characterization of other materials that have 

been developed for chromatography and sample preparation in the Linford lab. 



245 
 

Appendix A1:. An Introduction to the Equivalent Width and the Autocorrelation 

Width. Their Possible Applications in XPS Narrow Scan Analysis.* 

A1.1 Introduction 

The primary focuses of our research group at BYU are (i) the development of new 

materials for separation science, data storage, and surface protection, e.g., hydrophobic coatings, 

and (ii) the comprehensive characterization of these new materials using a suite of surface and 

bulk analytical tools, which includes the analysis of the data generated by these methods. Surface 

and data analysis help us understand the properties of our new materials and therefore explore 

possible applications for them. We are a little unusual in our research group because of our 

interest in very practical things, along with the science behind them.  

The primary purpose of this article is to explore two mathematical functions in the 

context of their applications to data analysis. These are the equivalent width and autocorrelation 

width functions. We will show their application to X-ray photoelectron spectroscopy (XPS) 

narrow scan analysis, although the use of these width functions has wider applicability. We have 

written a number of times in the past about XPS, and for good reason.1-3 XPS is being cited in 

excess of 10,000 time per year in the literature, which is far more citations than either Auger 

electron spectroscopy (AES) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) is 

currently receiving.3 One might say that XPS is currently the king of surface chemical analysis. 

However, we emphasize that ToF-SIMS becomes increasingly relevant and important as material 

complexity increases, and many materials, especially biological ones, are very complex. AES is 

extremely important for its small spot analytical capability (down to 10 nm!), which is roughly  

*This appendix has been reproduced with permission from (Bhupinder Singh and Matthew R. Linford), Vacuum 
Technology and Coating, October 2015: p. 22-29  
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three orders of magnitude smaller than the lateral resolution of most XPS systems. In other 

words, ToF-SIMS and AES play and will continue to play extremely important roles in surface 

and material analysis, each possessing strengths and capabilities that XPS does not. 

We wish to frame the problem of XPS narrow scan analysis in terms of a recent article by 

Wepasnick and coworkers.4 In their work, they peak fitted XPS C 1s narrow scans they had 

taken from oxidized carbon nanotubes (CNTs). As might be expected, they fitted their peak 

envelopes to components corresponding to C-C, C-O, C=O, and O-C=O, and also a shake up (π-

π*) signal. One can think about this series of carbon signals, which show increasing degrees of 

oxidation, as carbon taking the following oxidation states: C(0), C(I), C(II), and C(III), 

respectively.1 For their peak fitting, Wepasnick and coworkers employed two different sets of fit 

parameters they had taken from the literature.5, 6 Two things are significant from their analysis. 

First, they obtained a good fit in both cases; both sets of peaks adequately fit their experimental 

data. Second, however, the O-C=O or C(III) signal was 5.9% of the total peak area in one fit and 

11% of the fit in the other. This is more than a subtle difference between results. If one is 

interested in this functional group at a surface, where O-C=O, or C(III), presumably corresponds 

to surface carboxyl (–COOH) groups, one is not sure within a factor of two what the fraction of 

this group is. The carboxyl group is one of the most important in bioconjugate chemistry.7 For 

example, Figure A1.1 shows the activation of a carboxyl group using 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC), which is a common water soluble reagent used in 

bioconjugate chemistry, and it subsequent coupling to an amine. This particular reaction of an 

amine with this activated carboxyl group (or with any activated carboxyl group for that matter) is 

extremely important in bioconjugate and organic chemistry.
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Figure A1. 1 Activation of a carboxylic acid with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and its subsequent reaction with a 
primary amine to form an amide. In this reaction, a carboxylic acid and an amine are coupled together.
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Figure A1. 2 Graphical illustration of the equivalent width (EW) of a general function showing the height 
of the function at the origin, f(0), and the resulting EW of the function, which is the area of the function 
divided by f(0).  



249 
 

As we have noted, there is almost always some subjectivity associated with any XPS narrow 

scan fit.8 To address this issue, we recently published two papers that represent an 

unconventional approach to this problem. Before discussing this new direction, we wish to 

emphasize that we believe in peak fitting, we use it, and we will continue to employ it in our 

work. Peak fitting, when appropriately done, will remain the mainstay of XPS narrow scan 

analysis. But again, to address the issue of the subjectivity that is always present in these 

analyses, especially when there may be a considerable amount of complexity in a material, which 

may make it difficult to identify the peaks to be chosen for a fit, other approaches may be 

appropriate. In addition, a tool that can quickly spot differences between narrow scans may be of 

value. Accordingly, we have proposed that two mathematical functions: the equivalent width 

(EW) and the autocorrelation width (AW) may prove to be useful for some XPS narrow scan 

analyses.2, 3 

A1.2 Theory 

A1.2.1 The Equivalent Width (EW) 

The equivalent width (EW) is a mathematical function that is used to describe the width 

of a function. In its classic definition, it is simply the area of a function divided by its height at 

the origin (its central ordinate), as follows: 

 𝐸𝑊 =
∫ 𝑓(𝑥)𝑑𝑥∞
−∞
𝑓(0)

 (A1.1) 

If you think about this definition, you will see that the EW models a function as a 

rectangle, where the height of this rectangle is the value of the function at the origin, f(0). Figure 

A1.2 illustrates this definition for an arbitrary function. 
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Clearly, the EW is undefined for a function that passes through the origin, i.e., for f(0) = 

0, and it is also sensitive to any shifts of the function along the x-axis. To make this function 

more applicable to XPS narrow scans, we redefined it somewhat as follows: 

 
𝐸𝑊𝑋𝑃𝑆 =

𝑃𝑒𝑎𝑘 𝐴𝑟𝑒𝑎
𝑃𝑒𝑎𝑘 𝐻𝑒𝑖𝑔ℎ𝑡

 
(A1.2) 

Where ‘Peak Area’ refers to the area of an XPS narrow scan over a user-defined baseline (or no 

baseline at all) and between user-defined limits. ‘Peak height’ refers to the highest point in the 

peak envelope, as measured from the baseline.2 To remove any ambiguity in the EWXPS results, 

we further recommended that the user report the maximum of the peak envelope (PE), which we 

designated as PEmax. As we showed in our paper, both EWXPS and PEmax are quite sensitive to 

chemical changes in materials. In some cases, the use of these metrics may allow for a less 

biased analysis of narrow scans than traditional peak fitting. Figure A1.3 shows a C 1s narrow 

scan from oxidized carbon nanotubes that shows its EWXPS and PEmax values. 
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Figure A1. 3 Graphical illustration of the EWXPS and PEmax values of a C 1s XPS narrow scan. Figure 
adapted from Bhupinder Singh, Daniel Velásquez, Jeff Terry, Matthew R. Linford. ‘The Equivalent 
Width as a Figure of Merit for XPS Narrow Scans.’ Journal of Electron Spectroscopy and Related 
Phenomena. 2014, 197, 56 – 63. http://dx.doi.org/10.1016/j.elspec.2014.06.008. 
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A1.2.2 Convolution and (Auto)correlation 

We explained convolution in some detail in one of our previous VT&C columns.9 Here is 

a brief review of it again. The convolution of two functions, f(x) and g(x), is defined as: 

 
ℎ(𝑥) = 𝑓(𝑥) ∗ 𝑔(𝑥) = � 𝑓(𝑢)𝑔(𝑥 − 𝑢)𝑑𝑢

∞

−∞
 

(A1.3) 

There are several interesting things in this definition. First, the symbol for convolution is 

‘*’. This same symbol often denotes multiplication in computer science, but it obviously means 

something different here. Second, it is important to recognize that ‘x’ acts as a variable in h(x) 

and f(x)*g(x), while it is a constant in the integral on the right – we are integrating over the 

variable ‘u’, not ‘x’. One finds a similar situation in the Fourier integral. Third, the function g(x) 

is reversed, i.e., flipped around or reflected, in the integral in Equation A1.3. This is because ‘u’ 

is the variable in the integral, and we have ‘-u’ in g(x – u). Fourth, the constant ‘x’ in the integral 

acts to shift the reflected function g(x – u) to every possible position along the x-axis. 

(Mathematically, we might write: 𝑥 𝜖 ℛ, where 𝜖 means ‘is an element of’ and ℛ represents the 

real numbers.) Fifth, in a convolution we deal with two functions. We flip one of them around 

and shift it to every possible position along the x-axis, while leaving the other function where it 

was. At each of these shifts we multiply the two functions together and determine the resulting 

areas (integral). The value of the integral for a given shift, x, is the value of the convolution at 

that same point, i.e., h(x). It should be clear that calculating a convolution integral numerically 

can be a computationally expensive endeavor. 

Conveniently, it turns out that it does not matter which function is reversed and shifted in 

a convolution. The same answer is obtained either way. In other words: 
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 ) = 𝑓(𝑥) ∗ 𝑔(𝑥) = 𝑔(𝑥) ∗ 𝑓(𝑥) = � 𝑓(𝑢)𝑔(𝑥 − 𝑢)𝑑𝑢 = � 𝑔(𝑢)𝑓(𝑥 − 𝑢)𝑑𝑢
∞

−∞

∞

−∞
 (A1.4) 

Of course, a function can also be convolved with itself, which gives: 

 ℎ(𝑥) = 𝑓(𝑥) ∗ 𝑓(𝑥) = � 𝑓(𝑢)𝑓(𝑥 − 𝑢)𝑑𝑢
∞

−∞
 (A1.5) 

Here, again, one copy of the function, f(u), remains unchanged from the original function, 

f(x). The same function, f(u), is then reversed and shifted to every possible point, x, along the x-

axis, which gives us f(x – u) in Equation A1.5. 

We now discuss another operation/integral, which is similar to the one in Equation A1.5. 

This operation is also the result of a function acting on itself in an integral. It is the self-

correlation of a function. As we can see in Equation A1.6, the self-correlation (sc) is the same as 

a convolution, with the exception that the shifted function is not flipped around/reflected. That is, 

we multiply the original function, f(u), by a shifted copy of the same function, f(u – x), and 

record the integral of the product of the two functions as a function of the shift, x: 

 𝑠𝑐(𝑥) = 𝑓(𝑥) ⋆ 𝑓(𝑥) = � 𝑓(𝑢)𝑓(𝑢 − 𝑥)𝑑𝑢
∞

−∞
 (A1.6) 

Notice that we have a different symbol here for a correlation. Instead of the ‘*’ symbol 

we are now using the pentagram: ⋆. Again, we see that ‘x’ acts as a constant in the integral in 

Equation A1.6, while it is a variable in sc(x) and f(x)⋆f(x). We can abbreviate f(x)⋆f(x) as 𝑓 ⋆ 𝑓. 
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Figure A1. 4 (a) The function θ(u) e-u (blue line) and the same function shifted two units to the right: θ(u - 
2) e-(u – 2) (red line). θ(u), the unit step function, is defined in the text. (b) The same two functions as in (a) 
and their product (yellow-green line). 
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Figure A1.4 shows an example of multiplying a function by a shifted copy of itself. Obviously 

this represents a small part of the process that occurs in the self-correlation of a function. This 

function, g(u), (the blue line) is the product of a decaying exponential, e-u, and the unit step 

function: θ(u), where the unit step function is defined as: 

 θ(𝑢) = �0 𝑓𝑜𝑟 𝑢 < 0
1 𝑓𝑜𝑟 𝑢 ≥ 0

� (A1.7) 

We also see in Figure A1.4 a copy of the original function that has been shifted two units 

to the right: g(u – 2) = θ(u - 2) e-(u - 2) (red line). The product of these two functions, g(u)g(u – 2), 

is shown as the yellow-green line. The area under this yellow-green line represents the value of 

the self-correlation of the function g(u) at a shift of 2, i.e., sc(2). Once we have considered all 

possible shifts between the original function and its unreflected copy we will have generated its 

self-correlation function. 

An interesting property of the self-correlation function is that it is an even function. An 

even function is a function that is symmetric about the y-axis so that f(x) = f(-x). Thus, from 

Equation A1.6, sc(x) = sc(-x) so that:  

 𝑠𝑐(𝑥) = 𝑠𝑐(−𝑥) = � 𝑓(𝑢)𝑓(𝑢 − 𝑥)𝑑𝑢 = � 𝑓(𝑢)𝑓(𝑢 + 𝑥)𝑑𝑢
∞

−∞

∞

−∞
 (A1.8) 

This seems reasonable. That is, the definition of the self-correlation of a function 

(Equation A1.6) calls for a copy of the function to be shifted to every point along the x-axis. That 

is, since 𝑥 𝜖 ℛ, it does not matter whether we write f(u – x) or f(u + x) in Equations A1.6 and 

A1.8. 
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Yet another interesting property of the self-correlation function is that it is a maximum 

where there is no shift between the functions. That is, we can write: 

 
𝑠𝑐𝑚𝑎𝑥 = 𝑠𝑐(0) = � 𝑓(𝑢)𝑓(𝑢)𝑑𝑢

∞

−∞
 

(A1.9) 

That is, sc(x) ≤ sc(0) for all x.  

Ronald Bracewell’s masterful book on the Fourier transform contains a thorough discussion of 

all of these topics.10 A significant fraction of the notation in this article is the same as his.  

A1.2.3 The Autocorrelation Width (AW) 

The autocorrelation width (AW) of a function is defined as: 

 𝐴𝑊 = 𝑊𝑓∗𝑓 =  
∫ (𝑓 ⋆ 𝑓)𝑑𝑥∞
−∞
𝑓 ⋆ 𝑓 |0

=  
(∫𝑓𝑑𝑥)2

∫ 𝑓2𝑑𝑥
=
∫ ℎ(𝑥)𝑑𝑥∞
−∞
ℎ(0)

 (A1.10) 

This math may look pretty intense, but we think it can be explained in a pretty straightforward 

manner. In this equation, 𝑓 ⋆ 𝑓 represents the self-correlation function. Accordingly, ∫ (𝑓 ⋆∞
−∞

𝑓)𝑑𝑥 represents the area of this function. The denominator in Equation A1.10, 𝑓 ⋆ 𝑓 |0, then 

represents the value of the self-correlation function at x = 0 (where there is no shift between the 

function and its copy). Thus, the equivalent width and the autocorrelation width bear an 

important similarity. In both cases, they are simply the integral of a function, f(x) or 𝑓 ⋆ 𝑓, 

divided by the value of the function at the origin: f(0) or 𝑓 ⋆ 𝑓 |0. 

As noted, Equation A1.1 for the EW is undefined for a function that passes through the 

origin, so the value of the EW function can change if the function shifts along the x-axis. In 

contrast, the value of the autocorrelation width (Equation A1.10) is the same whether the 
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function is centered at the origin or shifted to some other location. The two functions in Figure 

A1.5 have different EW values but the same AW values. 

A little thought should convince one that the self-correlation of a function should produce 

a new function that is broader than the original one – think about how the tails of the two 

functions in Figure A1.5 would begin to overlap in a self-correlation some distance before the 

functions overlap (at x = 0 in Equation A1.6). Thus, according to the definitions of the EW and 

AW, the AW for a function should be broader than its EW. 

Finally, we note from Equation A1.10 that the autocorrelation width of a function can be 

easily calculated simply by dividing the square of the area of the function ((∫𝑓𝑑𝑥)2) by the area 

of the function squared (∫𝑓2𝑑𝑥). Additional details for performing these calculations are 

provided in our paper on this subject.2, 3 

A1.3 Applications of the EW and AW to XPS Data Analysis 

A1.3.1 Disclaimer 

The use of width functions, e.g., the EW and AW, is a somewhat new and radical 

approach for understanding and studying XPS narrow scans. Some purists out there might not 

like it too much. However, we think that this approach has a place at the table in XPS peak 

analysis. Our intention is not to supplant traditional peak fitting. Only moments before writing 

these words, we (Singh and Linford) were working on the traditional peak fitting of the C 1s 

spectra of some sputtered carbon films we had prepared. This fit had a Shirley background, a 

main carbon peak, multiple, smaller oxidized components, and peak positions and peak widths 

that were constrained relative to each other. We considered the Gaussian-Lorentzian ratios for 
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our peaks and compared the amount of oxygen predicted by the oxidized components of the C 1s 

narrow scan to the amount of oxygen predicted by the O 1s signal. This analysis led us to 

introduce some asymmetry into the peaks of one of the fits – in the narrow scan from the 

material we expected to show the highest degree of conductivity. When we were done we plotted 

the sum of the fit components with the original data and also the residuals to the fit. The results 

from this analysis were important for our understanding of this material. It is certainly true that 

many researchers could get more out of their current peak fitting efforts if they thought harder 

about them, reading the literature better, and applying more of the sound principles and lessons 

that have been outlined there. We recognize, however, after years of XPS data analysis, that not 

every set of narrow scans can be easily fit, especially in the case of complex materials with 

elements in multiple oxidation states and/or when insufficient information is available about 

one’s samples so that one does not know exactly how many peaks to include in a fit. We have 

also found that sometimes spectra look quite similar to each other, even if they differ in subtle 

ways that might be important. So perhaps the first use of the EW and AW functions could be to 

identify spectra that are different from each other, after which a traditional peak fitting could be 

performed. It seems like this type of analysis could also be used in automated spectral analysis 

for quality control. We are strong advocates in the multi-instrument characterization of surfaces 

and materials,11-13 as are a number of other researchers. The use of width functions might fit 

nicely into these types of analyses. For example, a polymeric surface that contains a diversity of 

functionality will often show a complex C 1s narrow scan. If this surface is treated with an 

oxygen plasma for increasing amounts of time, it, along with its C 1s narrow scan, will in general 

become increasingly more complex. (Air/oxygen plasma treatment of polymers is a well-known 

way to increase their surface energies and therefore the adhesion to them.) In conjunction with 
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other analytical techniques, which might include wetting, ToF-SIMS, Fourier transform infrared 

spectroscopy (FTIR), and atomic force microscopy (AFM), perhaps one might provide EW or 

AW values for the C 1s peak envelopes, noting, for example, that the change in the width of the 

peak envelope is as expected, e.g., the envelopes become wider as the sample is increasingly 

oxidized. It has been noted that chi squared values are often most meaningful for a set of peak 

fits applied to the same narrow scan.8 Similarly, the EW and AW may be particularly useful for 

comparing the peak envelopes of a series of related narrow scans. 

A1.3.2 Application of the EWXPS and AWXPS to the C 1s spectra of oxidized CNTs 

Figure A1.6 shows an example of the use of the EW function to the analysis of four C 1s 

narrow scans of ozone-treated CNT forests (three of the narrow scans are shown). These narrow 

scans are complex. They were collected as a part of study on microfabricated, CNT-templated 

thin layer chromatography (TLC) plates.14 The oxygen content in these four CNT samples varied 

from ca. 3.7 – 5.3 at. %. They clearly contain multiple fit components, some at fairly low levels. 

In addition, they are very similar to each other. A priori, one would expect that an increasing 

degree of oxidation of these materials would lead to increasingly wide C 1s envelopes. This is 

what was observed. As shown in Figure A1.6d, the EWXPS values for these narrow scans increase 

progressively with increasing O/C ratios in the materials. It should be emphasized that even 

though the oxygen content of these materials only changes to a relatively small degree and the 

resulting narrow scans are very similar, the EWXPS values for these scans change in the expected 

way. In addition, because most of the changes in these spectra are expected to occur on the 

higher binding energy side of the main peak – we are introducing oxidized carbon into the 

materials – the PEmax values of the samples are expected to be nearly constant. This is what was 

observed (see Figure A1.6d). As expected, the AWXPS values for these peak envelopes are larger 
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than the corresponding EWXPS values, while showing the same trend. (For consistency with the 

EWXPS, we will refer to the AW as AWXPS.) In summary, Figure A1.6d clearly shows that the 

EWXPS and AWXPS pick up subtle changes in the peak envelopes that correlate to the materials’ 

oxygen-to-carbon ratios. 

 

 

 

Figure A1. 5 A function at different positions along the x-axis, where the y-axis is indicated by the 
vertical dashed line. 
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Figure A1. 6 C 1s narrow scans from oxidized CNT samples with (a) 3.7 at. % oxygen, (b) 4.4 at. % 
oxygen, and (c) 4.9 at. % oxygen. (d) EWXPS, AWXPS, and PEmax values of four C 1s spectra of oxidized 
CNTs (three of which are shown in this figure) as a function of their XPS oxygen-to-carbon ratios. Figure 
adapted from Bhupinder Singh, Daniel Velásquez, Jeff Terry, Matthew R. Linford. ‘The Equivalent 
Width as a Figure of Merit for XPS Narrow Scans.’ Journal of Electron Spectroscopy and Related 
Phenomena. 2014, 197, 56 – 63. http://dx.doi.org/10.1016/j.elspec.2014.06.008. 
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A1.3.3 Application of the EWXPS and AWXPS to the Si 2p spectra of silicon surfaces with different 

oxide thicknesses 

Five silicon shards (ca. 1.5 x 1.5 cm2) were air plasma cleaned and then air oxidized for 

1, 2, 3, 4, or 5 minutes at 900 ºC to increase the thicknesses of their oxides. The new oxide 

thicknesses were measured by spectroscopic ellipsometry (SE). A native oxide-coated silicon 

wafer (SiNO) was also considered in this study. Other experimental details are given in our recent 

publications.2, 3 Figure A1.7 shows the Si 2p narrow scans of the SiNO sample, as well as for the 

silicon samples after 3 and 5 minutes of high temperature oxidation. While somewhat cluttery, 

Figure A1.7d shows the EWXPS, AWXPS, and PEmax values obtained from this study. Once again, 

in accord with theory, the AWXPS values for the silicon samples are greater than their 

corresponding EWXPS values. Interestingly, the EWXPS and AWXPS rise and then fall as the oxide 

thickness on the samples increases. This seems reasonable because (i) the Si 2p peak from the 

bulk silicon at ca. 99 eV will have a certain width (the width of this peak and the oxide peak 

were estimated by peak fitting the Si 2p envelopes to two peaks), (ii) one would expect the Si 2p 

peak from the oxide at ca. 103 eV to be broader than the bulk silicon peak, cf., in superficially 

oxidized aluminum the Al oxide peak is broader than the corresponding bulk peak, probably as a 

result of vibrational broadening,8 and (iii) when the bulk silicon and oxide peaks have 

comparable intensities one would expect the width of this peak envelope to be greater than the 

width of either component. Finally, there is a shift in the PEmax value for the samples. At lower 

oxide thickness, the PEmax value is closer to the peak maximum for the bulk silicon Si 2p peak, 

but at thicker oxide thickness the PEmax value is closer to the peak maximum for the oxide Si 2p 

peak signal. Again, the EWXPS and AWXPS analysis is consistent with the expected surface 

chemistry. 
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Figure A1. 7 Si 2p XPS narrow scans from (a) native oxide terminated silicon (SiNO), and silicon surfaces 
oxidized for (b) 3 minutes, and (c) 5 minutes. (d) EWXPS, AWXPS, and PEmax values of Si 2p spectra as a 
function of their oxide layer thickness. Figure adapted from Bhupinder Singh, Daniel Velásquez, Jeff 
Terry, Matthew R. Linford. ‘The Equivalent Width as a Figure of Merit for XPS Narrow Scans.’ Journal 
of Electron Spectroscopy and Related Phenomena. 2014, 197, 56 – 63. 
http://dx.doi.org/10.1016/j.elspec.2014.06.008.
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A1.3.4 Application of the EWXPS and AWXPS to the C 1s spectra from five different nanodiamond 

samples 

 The C 1s narrow scans in Figure A1.8 were collected as part of a multi-instrument 

characterization of various nanodiamond samples. We have used these nanodiamonds to make 

the shells of pellicular (core-shell) particles for liquid chromatography.15, 16 We could only obtain 

good C 1s scans from two of the samples (see, for example, Figure A1.8a). The other three 

samples charged, which resulted in artifacts in the spectra (see, for example, Figure A1.8b). In 

other words, we were unable to obtain good peak shapes for these samples, in spite of our 

attempts to deal with the charging issues by changing both our sample preparation and 

acquisition parameters. EWXPS and AWXPS values were plotted as a function of their PEmax 

values for the five samples that were analyzed. The red lines (ovals) are intended as a guide to 

the eye. Plotting these width functions vs their PEmax values provided a quick check on the 

quality of the spectra. Here, the best narrow scans (encapsulated by the red lines) have 

reasonable PEmax values (close to theoretical value of 284.6 eV), and lower AWXPS and EWXPS 

values – the samples that showed charging generally showed PEmax values that were significantly 

higher or lower than the expected values and/or higher EWXPS and AWXPS values. These results 

are in accord with the shapes of the C 1s peak envelopes (charged or uncharged) obtained for the 

samples. 
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Figure A1. 8 (a) A good C 1s narrow scan from a nanodiamond sample. (b) A bad C 1s narrow scan from 
a nanodiamond sample showing artifacts due to charging. EWXPS (c) and AWXPS (d) values of five 
different C 1s spectra collected from five different nanodiamond samples as a function of their PEmax 
values. Figure adapted from Bhupinder Singh, Daniel Velásquez, Jeff Terry, Matthew R. Linford. ‘The 
Equivalent Width as a Figure of Merit for XPS Narrow Scans.’ Journal of Electron Spectroscopy and 
Related Phenomena. 2014, 197, 56 – 63. http://dx.doi.org/10.1016/j.elspec.2014.06.008. 
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A1.4 Conclusions 

We have discussed herein two functions that we believe may be useful for XPS narrow 

scan analysis: the equivalent width (EWXPS) and the autocorrelation width (AWXPS). Both appear 

to be sensitive to surface/material chemistry and/or sample charging. We recommend the EWXPS 

and AWXPS as complementary tools to traditional peak fitting practices, as they may involve less 

bias in XPS narrow scan analysis. These functions may ultimately be used in XPS narrow scan 

quality control and automated spectrum analysis. 
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Appendix A2: Flare Mixed-Mode Column: Separation of 2,4-D, MCPA, and 

Dicamba* 

A2.1 Introduction 

2,4-D (2,4-dichlorophenoxyacetic acid), MCPA (2-methyl-4-chlorophenoxyacetic acid), 

and dicamba constitute a major portion of the broad leaf herbicides used in agriculture.1, 2 In 

addition, major agrochemical companies are planning to introduce 2,4-D and dicamba resistant 

crops into the market, which will be associated with increased use of these herbicides and may 

pose health and environmental risks.3-5 If present in 2,4-D formulations, MCPA, a close chemical 

analogue of 2,4-D, can ruin the growing seedlings of 2,4-D resistant crops. Unfortunately, 2,4-D 

and MCPA are a critical pair – difficult if not impossible to separate by conventional LC.1, 6 

Thus, it is important to have a method that can completely separate these analytes. Here we 

present a rapid, baseline separation of 2,4-D, MCPA, and dicamba on the Diamond Analytics 

Flare mixed-mode column. 

A2.2 Experimental 

 
General: Isocratic elution was used to separate a mixture of 2,4-D, MCPA, and dicamba. A mobile phase 

of water and acetonitrile had formic acid as an additive. Analytes were purchased from Sigma-Aldrich 

(St. Louis, MO).  

Chromatograph: Agilent 1290 Infinity Binary LC, DAD, ChemStation software 

Sample: ca. 2 µg/mL of 2,4-D, MCPA, and dicamba in a mixture of 1:1 (Acetonitrile and H2O) 

Column: Flare Mixed-Mode Column (4.6 × 3.3 mm, 4.0 μm) 

 

*This appendix has been reproduced with permission from (Bhupinder Singh, David S. Jensen, Andrew J. Miles, 
Andrew E. Dadson, and Matthew R. Linford), Diamond Analytics Application Note DA1000-A, 2013.  
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Injection volume: 2.0 μL 

Temperature: 60 °C 

Flow rate: 1.0 mL/min 

Detection: UV detection at 280 nm 

Mobile Phase:  

A: 1.5 % formic acid in H2O (pH 2.0) 

B: 1.5 % formic acid in Acetonitrile 

Elution: Isocratic: A:B :: 10:90 

A2.3 Results and Discussion 

2,4-D, MCPA, and dicamba were baseline separated in less than 2 minutes by isocratic 

elution on the Diamond Analytics Flare column, where 2,4-D and MCPA are a critical pair. 

Simple UV detection of the analytes at 280 nm was employed. The mobile phase was based on 

acetonitrile and water with formic acid as an additive. The aqueous mobile phase was at a 

relatively low pH (2.0). The Flare column can be used in a straightforward manner to separate 

these analytes. 
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Figure A2. 1 Isocratic separation of MCPA (-X = -CH3), 2,4-D (-X = -Cl), and dicamba (280 nm). 
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Appendix A3: Comparison of the Flare Mixed-Mode Column Against Commercial 

C18 and PFP Columns for the Separation of Critical Pairs of Acidic Herbicides* 

A3.1 Introduction 

Two significant critical pairs1-3 of acidic herbicides: 2,4-D and MCPA, and dichlorprop and 

mecoprop were separated with dicamba, which is another important herbicide, on the 

nanodiamond-based, core-shell, mixed-mode/C18 4 µm Flare column. The structures of these 

chemicals are given in Figure A3.1, where 2,4-D and MCPA, and dichlorprop and mecoprop differ 

by a CH3 group at the ‘Y’ position of the general structure of the molecules.  

The performance of the Flare column was compared to commercial C18 and PFP 

columns, which showed coelution of 2,4-D and MCPA, and of dichlorprop and mecoprop. 

Dicamba, another important acidic herbicide, was present in some of the test mixtures. 

A3.2 Results and Discussion 

EPA-Method 555 was employed with a commercial C18 column in an attempt to separate 

mixtures of (a) 2,4-D, MCPA and dicamba, and (b) dichlorprop and mecoprop. 

As shown in Figure A3.2, the commercial C18 column was unable to resolve 2,4-D from MCPA 

and dichlorprop from mecoprop, and dicamba eluted before 2,4-D and MCPA. 

Because of a previous report that showed the separation of various chlorinated analogues of 2,4-

D on a PFP column, but not of 2,4-D and MCPA or dichlorprop and mecoprop,4 the separation of 

these critical pairs was attempted on a commercial PFP column. 

*This appendix has been reproduced with permission from (Bhupinder Singh, David S. Jensen, Andrew J. Miles,
Andrew E. Dadson, and Matthew R. Linford), Diamond Analytics Application Note DA1000-B, 2013 
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Figure A3. 1 Structures of 2,4-D (X = Cl, Y = H), MCPA (X = CH3, Y = H), dichlorprop (X = Cl,  Y = 
CH3), mecoprop 2,4-D (X = CH3,  Y = CH3), and dicamba (on right). 
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Under the conditions that resolved the chlorinated analogues of 2,4-D from each other, 

the PFP column could not separate either 2,4-D from MCPA or dichlorprop from mecoprop (see 

Figure A3.3). These results provide further evidence for the difficulty associated with separating 

these compounds. Note that dicamba could be separated from 2,4-D and MCPA and that it again 

eluted before the critical pair. 

The separation of these critical pairs was again attempted on the C18 column, but this time 

using the conditions from the PFP column (see Separation Conditions 2 below). Coelution of the 

critical pairs again occurred, albeit at lower retention times. 

Finally, the Diamond Analytics Flare mixed-mode/C18 column was used to probe the 

analyte mixtures. Note that the Flare column was shorter and had larger particles than either of 

the comparison commercial columns. 

As shown in Figure A3.4, both 2,4-D and MCPA and also mecoprop and dichlorprop 

could be baseline separated. Both separations occurred in less than two minutes. The Flare 

column shows different selectivity than the C18 and PFP columns – dicamba elutes after 2,4-D 

and MCPA on the Flare column. The unique selectivity of the Flare mixed-mode column stems 

from its combination of amines and C18 chains. Indeed, as shown herein, neither C18 nor PFP 

groups alone is sufficient to separate 2,4-D and MCPA or mecoprop or dichlorprop, where these 

critical pairs differ by a single substituent that is ortho to and shielded by an acidic moiety. Thus 

it appears that an interaction between the carboxyl groups in the analytes and amines in the 

stationary phase facilitates the separation of the critical pairs.  
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Figure A3. 2 Attempted separations on a commercial C18 column of (a) MCPA, 2,4-D, and dicamba, and 
(b) dichlorprop and mecoprop. See Separation Conditions 1 below. 
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Figure A3. 3 (a) Attempted separation on a commercial PFP column of (a) MCPA, 2,4-D, and dicamba, 
and (b) dichlorprop and mecoprop. See Separation Conditions 2 below. 
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Figure A3. 4 Separation on a Diamond Analytics Flare mixed-mode column of (a) MCPA, 2,4-D, and 
dicamba, and  (b) dichlorprop  and mecoprop. See Separation Conditions 3 below. 
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A3.3 Conclusions 

Under two sets of conditions, a commercial C18 column failed to separate either 2,4-D 

and MCPA or mecoprop and dichlorprop. A commercial PFP column was also unable to separate 

these critical pairs. Both of these columns were longer and had smaller particles than the 

Diamond Analytics Flare mixed-mode column. In contrast, the Flare column baseline separates 

2,4-D and MCPA, and also mecoprop and dichlorprop. The Flare column shows different 

selectivity than the commercial columns. 

A3.4 Experimental 

Reagents: Analytes were purchased from Sigma-Aldrich (St. Louis, MO) 

Chromatograph: Agilent 1290 Infinity Binary LC, DAD, ChemStation software 

Sample: 2 µg/mL of 2,4-D, MCPA, dicamba, dichlorprop and/or mecoprop in 1:1 ACN:H2O. 

Columns: Diamond Analytics Flare Mixed-Mode (4.6 x 33 mm, 4.0 μm), commercial C18 (2.6 µm, 100 

Å, 4.6 x 50 mm), and commercial PFP (2.6 µm, 100 Å, 4.6 x 150 mm). 

Separation Conditions 

Separation Conditions 1 (EPA Method 555) 

Employed with the commercial C18 column. 

Injection volume: 2.0 μL 

Temperature: 30 °C 

Flow rate: 1.0 mL/min 

Detection: UV detection at 280 nm 

Mobile Phase:  
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A: 25 mM H3PO4 

B: Acetonitrile 

Elution: Gradient 

10 to 90 % B in 10 minutes 

Separation Conditions 2  

Employed with the commercial PFP and C18 columns. 

Injection volume: 2.0 μL 

Temperature: ambient 

Flow rate: 1.0 mL/min 

Detection: UV detection at 280 nm 

Mobile Phase:  

A: 0.1 % Formic acid in H2O 

B: 0.1 % Formic acid in Acetonitrile 

Elution: Gradient 

55 to 75 % B in 6 minutes 

Separation Conditions 3  

Employed with the Diamond Analytics Flare mixed-mode column. 

Injection volume: 2.0 μL 

Temperature: 60 °C 

Flow rate: 1.0 mL/min 

Detection: UV detection at 280 nm 

Mobile Phase:  

A: 1.5 % formic acid in H2O (pH 2.0) 
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B: 1.5 % formic acid in Acetonitrile 

Elution: Isocratic (10:90 :: A:B) 

A3.5 References 
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Appendix A4: Probing the Retention Mechanism of the Flare Mixed-Mode Column 

at Low pH via Acidic Herbicides with Different pKa Values* 

A4.1 Introduction 

The Diamond Analytics Flare core-shell column is made by depositing alternating layers 

of polyallyamine (PAAm) and nanodiamond on solid carbon core particles.1, 2 The final PAAm 

layer is reacted with 1,2-epoxyoctadecane and cross linked with 1,2,7,8-diepoxyoctane to 

produce a mixed-mode weak anion exchange (WAX)/C18 column.2 These diverse functionalities 

impart unique selectivity to the column. A number of classes of compounds have been 

successfully analyzed on the column, including the separation of critical pairs of acidic 

herbicides.3  

The present work is focused on understanding the retention mechanism of acids (acidic 

herbicides) as a function of their pKa values on the Flare column at low pH. In particular, 

gradient elution was used to separate 2,4-D (2,4-dichlorophenoxyacetic acid), MCPA (2-methyl-

4-chlorophenoxyacetic acid), 2,4-DB (4-(2,4-dichlorophenoxybutyric acid), MCPB (4-(4-chloro-

2-methylphenoxy) butanoic acid), dichlorprop, mecoprop and dicamba (see Figure A4.1). At 

high pH the elution order of the analytes is reversed. 

*This appendix has been reproduced with permission from (Bhupinder Singh, David S. Jensen, Andrew J. Miles,
Andrew E. Dadson, and Matthew R. Linford), Diamond Analytics Application Note DA1000-C, 2013 
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Figure A4. 1 Structures of various acidic herbicides. Dicamba is on the upper right. The X, Y, and Z 
groups in the table define the other analytes. 

 

  

Analyte X Y Z 
2,4-D Cl H - 

MCPA CH3 H - 
Dichlorprop Cl CH3 - 
Mecoprop CH3 CH3 - 

2,4-DB - - Cl 
MCPB - - CH3 
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A4.2 Experimental 

 
All analytes were purchased from Sigma-Aldrich (St. Louis, MO).  

Chromatograph: Agilent 1290 Infinity Binary LC, DAD, ChemStation software 

Sample: 2 mg/mL of 2,4-D, MCPA, 2,4-DB, MCPB, dichlorprop, mecoprop and/or dicamba in a mixture 

of 1:1 H2O:acetonitrile (ACN) 

Column: Flare Mixed-Mode Column (4.6 × 3.3 mm, 4.0 μm) 

Injection volume: 2.0 μL 

Temperature: 60 °C 

Flow rate: 1.0 mL/min 

Detection: UV detection at 280 nm 

Mobile Phase:  

A: 1.5 % formic acid in H2O, pH 2.0 

B: 1.5 % formic acid in ACN 

Elution: Gradient 

 40 to 60 % B in 6 minutes 
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Figure A4. 2 Separation of acidic herbicides on the Flare mixed-mode column. 
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Figure A4. 3 Dependence of retention factor (k) on the pKa values of the analytes. The colors of the 
symbols for the analytes correspond to the colors in Figure A4.2. 
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A4.3 Results and Discussion 

 
We first discuss the charge/protonation state of the Flare column and the acidic herbicide 

analytes at pH 2.0. The state of the column is simple to understand. At this low pH the amino 

groups on the Flare stationary phase are mostly protonated so the Flare column is strongly 

positively charged. To help us understand the protonation state of the acidic analytes, we use the 

Henderson-Hasselbach (H.-H.) equation. A description of the acid-base chemistry that leads to 

the H.-H. equation and a derivation of the equation itself are given in a Diamond Analytics app 

note on this topic.4 The H.-H. equation is: 

pH = pKa + log ([A-]/[HA]) 

where the pH is that of the mobile phase, the pKa is that of the analyte, [A-] is the concentration 

of the deprotonated analyte, and [HA] is the concentration of the protonated analyte. Of course 

the H.-H. equation, as presented here, applies more accurately to aqueous solutions. 

Nevertheless, it should help us estimate the degree of analyte deprotonation in the water/ACN 

mobile phase and thus analyte retention. 

Table A4.1 gives the pKa values of the acidic analytes considered herein and also the 

ratio of the deprotonated to protonated form of these analytes at the mobile phase pH as given by 

the H.-H. equation. The least acidic herbicides, i.e., MCPB and 2,4-DB, are almost entirely 

protonated at pH 2.0. In contrast, the most acidic herbicides, i.e., dichlorprop, 2,4-D, and 

dicamba have significant amounts of the analyte in the deprotonated form. 

The seven acidic herbicide analytes under consideration here were injected on the Flare 

column. As shown in Figures A4.2 and A4.3, the retention of these analytes is strongly 

influenced by their pKa values. That is, less acidic analytes with higher pKa values show less 
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retention – a smaller fraction of these analytes is deprotonated – they are mostly neutral – so they 

interact less with the positively charged stationary phase. For example, MCPB has the highest 

pKa value (4.5) of the analytes considered herein and elutes first. In contrast, the more acidic 

analytes with lower pKa values show greater retention – a larger fraction of these analytes is 

deprotonated so they interact more with the positively charged stationary phase. For example, 

dicamba has the lowest pKa value (1.87) of the analytes considered herein and elutes last. 

To illustrate that the retention mechanism of the Flare column is strongly pH dependent, 

dicamba, 2,4-D, and 2,4-DB were injected separately using a pH 12 mobile phase. We have 

previously shown that the Flare column acts in reversed phase mode (not ion exchange) under 

these conditions.5, 6 Accordingly, for these analytes we observed a reversal of the elution order 

that is in Figures A4.2 and A4.3. Dicamba was least retained (it is the most compact of the three 

analytes), followed by 2,4-D (it is a structural isomer of dicamba but more extended), followed 

by 2,4-DB (it has two more methylene units than 2,4-D). 
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Table A4. 1 pKa values of acidic herbicide analytes and an estimate of the ratio of deprotonated to 
protonated analyte ([A-]/[HA]) in the pH 2.0 mobile phase. 
 

 

 

 

 

 

  

Analytes pKa [A-]/[HA] 

MCPB 4.5 0.003 

2,4-DB 4.1 0.008 

Mecoprop 3.86 0.014 

MCPA 3.73 0.019 

Dichlorprop 3.0 0.100 

2,4-D 2.87 0.134 

Dicamba 1.87 1.349 
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Appendix A5: A Reproducibility Study with the Flare Mixed-Mode Column of 50 

Consecutive Injections at Elevated pH* 

A5.1 Introduction 

The Diamond Analytics Flare core-shell column offers unique selectivity for an array of 

analytes. As a mixed-mode (weak anion exchange/C18) column, it can be made more 

hydrophobic or more charged depending on the pH of the mobile phase.1 For example, at pH 2.0, 

the column has weak anion exchange properties, making separation of critical pairs of acidic 

herbicides possible.2 Working at the other end of the pH scale (ca. pH 12), the column behaves in 

reversed phase mode, separating triazine herbicides, amphetamines and tricyclic antidepressants 

(TCAs).3-5 The amphetamines and TCAs are bases that are best retained on a reversed phase 

stationary phase when they are deprotonated, i.e., under elevated pH conditions. 

The present work is focused on the stability and reproducibility of the Flare column at 

extremes of pH. For the high pH separations (pH 12), a complex test mixture (Test Mixture 1, 

see Figure A5.1) was prepared that contained acidic, basic, and neutral analytes. For the low pH 

analyses (pH 2), the test mixture contained dicamba and 2,4-dichlorophenoxyacetic acid (2,4-D) 

(Test Mixture 2, see Figure A5.2). During stability tests, % RSD values were recorded for 

various peak parameters, including retention times (tR), retention factors (k), tailing factors (Tf), 

efficiencies (N/m), and resolutions (Rs). 

*This appendix has been reproduced with permission from (Bhupinder Singh, Supriya S. Kanyal, David S. Jensen,
Andrew E. Dadson, and Matthew R. Linford), Diamond Analytics Application Note DA2000-A, 2013 
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Figure A5. 1 Names and structures of analytes in the test mixture. 

. 

 

 

 

Figure A5. 2 Names and structures of the analytes in Test Mixture 2. 
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A5.2 Experimental 

A5.2.1 Stability and reproducibility of the Flare column at high pH 

Fifty consecutive injections of Test Mixture 1 were made on the Flare column on Day 1 

to test the intra-day variability of the column (see Separation Conditions 1). After Day 1, 20 

injections were made per day for 6 consecutive days under the same conditions on the same Flare 

column to determine the inter-day variability. Around 2700* column volumes of the pH 12 

mobile phase were flushed through the column during the duration of this test.  

A5.2.2 Stability and reproducibility of the Flare column at low pH 

Approximately 5000* column volumes of a pH 2.0 mobile phase at 60 °C (see Separation 

Conditions 2) were flushed through the column, during which time Test Mixture 2 was 

periodically injected to monitor the column stability.  

* The column volume referred here is the geometrical column volume, πr2h (r and h denote the 

radius and length of the column respectively) 

If void volume was to be used instead of geometrical column volume, the figures would have 

changed to 4000 instead of 2700 column volumes and 7400 instead of 5000 column volumes. 

A5.2.3 General Separation Conditions 

Analytes: All analytes were purchased from Sigma-Aldrich (St. Louis, MO). 

Chromatograph: Waters 1525 Binary HPLC pump; Breeze 3.30 SPA software. 

Column: Diamond Analytics Flare Mixed-Mode column (4.6 x 33 mm, 4 μm) 

Injection volume: 5.0 μL 
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Elution: Isocratic  

Detection: UV detection at 254 nm 

Flow rate: 1.0 mL/min 

Separation Conditions 1 

To probe column stability at elevated pH 

Test Mixture 1:  ca. 2 mg/mL each of 2,4-D, propazine, ethylbenzene, nortriptyline, imipramine 

and amitriptyline in acetonitrile:water (1:1) 

Column temperature: 35 °C 

Mobile Phase: 70:30 premixed solution of aqueous phosphate buffer at pH 12: acetonitrile, 

prepared gravimetrically. 

Separation Conditions 2 

To probe stability at low pH 

Test Mixture 2:  ca. 0.5 mg/mL of 2,4-D and dicamba in acetonitrile:water (1:1) 

Temperature: 60 °C 

Mobile Phase: 10:90 (v/v) premixed solution of H2O:acetonitrile, with 1.5% formic acid as 

additive. 
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Figure A5. 3 Chromatograms corresponding to the 1st and 50th injections of the test mixture on the  
Flare column. 

 



295 
 

 

Figure A5. 4 Plot of (a) the retention factor (k) and efficiency (N/m) vs. number of injections for the 
analytes under study. (1 = 2,4-D, 2 = Propazine, 3 = Ethylbenzene, 4 = Nortriptyline, 5 = Imipramine, 6 = 
Amitriptyline) 
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A5.3 Results and Discussion 

A5.3.1 Intra-Day Reproducibility at high pH 

Figure A5.3 shows chromatograms of the first and fiftieth injections of Test Mixture 1 on 

day 1 on the Flare column. These chromatograms overlap extremely well and represent 640 

column volumes. All of the analytes showed good peak shapes, i.e., for propazine, ethylbenzene, 

nortriptyline, imipramine, and amitriptyline, the average tailing factors over the 50 injections 

were 1.31, 1.25, 1.79, 1.34, and 1.27, respectively. % RSD values were calculated for various 

peak parameters, including retention times, retention factors, tailing factors, efficiencies, and 

resolutions, all of which point to excellent intra-day reproducibility, i.e., in most cases % RSD 

values are below unity (see Table A5.1).  

Figures A5.4a and A5.4b further show that the retention factors and efficiencies for all 

the analytes remain essentially constant over the 50 injections. For the later eluting analytes, 

efficiencies range from ca. 50,000 – 70,000 N/m.  

A5.3.2 Inter-Day Reproducibility at high pH 

To determine the inter-day variability, the data from the first day (fifty consecutive 

injections) and from the next six days (twenty consecutive injections per day) were pooled and 

various peak parameters, including retention times, retention factors, tailing factors, efficiencies, 

and resolutions were recorded. Table A5.2 shows % RSD values for these different peak 

parameters, which are generally less than or equal to 5 %, suggesting good inter-day 

reproducibility for the Flare column.  
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Table A5. 1 Intra-day reproducibility results;6 % RSD values of various peak parameters for the analytes 
in Test Mixture 1 over 50 consecutive injections. tR = retention time, k = retention factor, N/m = 
plates/meter, Rs = resolution, Tf = tailing factor. 
 
 

 
 
 
 
 
  

Analyte tR k N/m Rs Tf 

Propazine 0.60 0.72 0.68 1.66 0.91 

Ethyl-benzene 0.60 0.57 0.59 0.30 1.37 

Nortriptyline 0.62 0.52 0.73 0.47 2.90 

Imipramine 0.60 0.46 1.07 0.59 1.82 

Amitriptyline 0.60 0.45 1.55 0.75 1.72 
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A5.3.3 Inter-Day Reproducibility at Low pH 

Figure A5.5 shows a separation of Test Mixture 2, using Separation Conditions 2 (at pH 

2.0). 5000 column volumes of the mobile phase were flushed through the column at 60 °C and % 

RSD values for tR and k are given in Table A5.3, which correspond to excellent stability of the 

column at low pH. Figure A5.6 shows plots of retention time and retention factor vs. column 

volume, which again show the solid stability of the Flare column at low pH. 
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Table A5. 2 Inter-day reproducibility results. % RSD values of various peak parameters for the analytes 
in Test Mixture 1 over a span of 7 days (50 injections on day 1 and 20 injections per day for the following 
6 days): tR = retention time, k = retention factor, N/m = plates/meter, Rs = resolution, Tf = tailing factor. 

 

 

 

  

Analyte tR k N/m Rs Tf 

Propazine 1.48 4.08 0.88 4.80 1.35 

Ethyl-benzene 1.10 2.68 1.75 1.65 3.41 

Nortriptyline 1.42 2.87 1.65 1.42 5.15 

Imipramine 1.65 2.96 2.88 1.16 4.23 

Amitriptyline 1.69 3.10 2.97 0.79 4.62 
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Figure A5. 5 Separation of the analytes in Test Mixture 2, using Separation Conditions 2. 
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Table A5. 3% RSD values for retention time (tR) and retention factors (k) of 2,4-D and dicamba for 
passage of 5000 column volumes of mobile phase through the Flare column using Separation Conditions 
2. 

 

  

Analyte tR k 

2,4-D 0.62 1.28 

Dicamba 0.88 1.26 
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Figure A5. 6 Plots of (a) retention time and (b) retention factor vs. column volumes for 2,4-D and 
dicamba at pH 2 on the Flare column. 
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Appendix A6: WO3
-/WO3H- and WO4

-/WO4H- Assignments to Negative ion ToF-

SIMS Spectra from Five Nanodiamond Samples Discussed in Chapter 7* 

A6.1 Introduction 

The negative ion ToF-SIMS analysis of the nanodiamond samples is shown in Figure 7.2 

(see Chapter 7). We observe two peak envelopes. The first peak envelope contains six peaks 

positioned at m/z 230 to m/z 235, and a second envelope has six peaks positioned from m/z 246 

to m/z 251. Initially, based on molecular weight estimates, the peak envelopes were attributed to 

WO3
- and WO4H-, respectively. To confirm that we were making reasonable assignments, we 

looked at the tungsten isotopes and their ratios. The following table gives the most stable 

tungsten isotopes. 

A6.2 Calculations 

Looking at the isotopic ratios of tungsten, it becomes clear that the initial assignment to 

the peak envelopes of WO3
- and WO4H- did not explain the peaks at m/z 233 and 235 in the 

proposed WO3
- envelope and the peaks at m/z 246 and 250 in the proposed WO4H- envelope. 

The next hypothesis was that the peak envelopes were a contribution of peaks due to WO3
- and 

WO3H-, and WO4
- and WO4H-. To prove our hypothesis, we calculated the contributions of each 

peak using the following equations. 

*This appendix is reproduced from the Supporting Information (Bhupinder Singh, Stacey J. Smith, David S. Jensen,
Hodge F. Jones, Andrew E. Dadson, Paul B. Farnsworth, Richard Vanfleet, Jeffrey K. Farrer, and Matthew R. 
Linford) Analytical and Bioanalytical Chemistry, accepted for publication, 2015. 

Tungsten (W) isotopes 182W 183W 184W 186W 

Relative Abundance 26.50% 14.31% 30.64% 28.43% 
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 (𝐼230,𝑊𝑂3) + (0) =  𝐼𝑇𝑜𝑡𝑎𝑙,230 

(𝐼231,𝑊𝑂3 =  𝐼230,𝑊𝑂3 ∗
14.31
26.50

) + (𝐼231,𝑊𝑂3𝐻) =  𝐼𝑇𝑜𝑡𝑎𝑙,231 

(𝐼232,𝑊𝑂3 =  𝐼230,𝑊𝑂3 ∗
30.64
26.50

) + (𝐼232,𝑊𝑂3𝐻 = 𝐼231,𝑊𝑂3𝐻 ∗  
14.31
26.50

)  =  𝐼𝑇𝑜𝑡𝑎𝑙,232 

(𝐼233,𝑊𝑂3 =  0) + (𝐼233,𝑊𝑂3𝐻 = 𝐼231,𝑊𝑂3𝐻 ∗  
30.64
26.50

)  =  𝐼𝑇𝑜𝑡𝑎𝑙,233 

(𝐼234,𝑊𝑂3 =  𝐼230,𝑊𝑂3 ∗
28.43
26.50

) + (𝐼234,𝑊𝑂3𝐻 = 0)  =  𝐼𝑇𝑜𝑡𝑎𝑙,234 

(𝐼235,𝑊𝑂3 =  0) + (𝐼235,𝑊𝑂3𝐻 = 𝐼231,𝑊𝑂3𝐻 ∗  
28.43
26.50

)  =  𝐼𝑇𝑜𝑡𝑎𝑙,235 

For the first peak envelope, the peak areas denoted by 𝐼𝑇𝑜𝑡𝑎𝑙,𝑛 were calculated based on 

these equations (where n stands for the m/z ratio). The peak area at each m/z is given as the sum 

of two contributions: area of peaks corresponding to WO3
- isotopes and WO3H- isotopes. 

To prove that the peak envelopes were in fact from contributions of WO3 and WO3H, we 

calculated the values of both peak components using the above equations, and then compared 

them to the experimental values (see Table A6.1). The errors were minimal for the possibility of 

both components together. 
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Table A6.  1 Calculated and experimental raw peak areas of WO3
- and WO3H- peak envelopes. 

 

 

  

m/z 230 231 232 233 234 235 
Experimental values 

Isotopes 182.00 183.00 184.00 185.00 186.00 187.00 
AA 50 nm uncleaned  9726.00 7124.00 12360.00 2245.00 10209.00 2190.00 
AA double cleaned  7780.00 5660.00 9673.00 1626.00 8366.00 1561.00 
AA triple cleaned  5816.00 4322.00 7189.00 1386.00 6513.00 1356.00 

WO3 contributions calculated 

 
182.WO3 183WO3 184WO3 185WO3 186WO3 187WO3 

AA 50 nm uncleaned  9726.00 5252.04 11245.46 0.00 10434.35 0.00 
AA double cleaned  7780.00 4201.20 8995.44 0.00 8346.62 0.00 
AA triple cleaned  5816.00 3140.64 6724.61 0.00 6239.58 0.00 

WO3H contributions calculated 
AA 50 nm uncleaned  0.00 1941.66 1048.50 2245.00 0.00 2083.07 
AA double cleaned  0.00 1406.30 759.40 1626.00 0.00 1508.72 
AA triple cleaned  0.00 1198.73 647.31 1386.00 0.00 1286.03 

Calculated total peak area (WO3 + WO3H contributions) 

 
182.00 183.00 184.00 185.00 186.00 187.00 

AA 50 nm uncleaned  9726.00 7193.70 12293.96 2245.00 10434.35 2083.07 
AA double cleaned 7780.00 5607.50 9754.84 1626.00 8346.62 1508.72 
AA triple cleaned 5816.00 4339.37 7371.93 1386.00 6239.58 1286.03 

Errors % (Calculated vs experimental values) 

 
182.00 183.00 184.00 185.00 186.00 187.00 

AA 50 nm uncleaned 0.00 -0.98 0.53 0.00 -2.21 4.88 
AA double cleaned 0.00 0.93 -0.85 0.00 0.23 3.35 
AA triple cleaned 0.00 -0.40 -2.54 0.00 4.20 5.16 

Errors (%) considering there is only WO3 and no WO3H contributions 
errors 182.WO3 183WO3 184WO3 185WO3 186WO3 187WO3 

AA 50 nm uncleaned 0.00 26.28 9.02 100.00 -2.21 100.00 
AA double cleaned 0.00 25.77 7.00 100.00 0.23 100.00 
AA triple cleaned 0.00 27.33 6.46 100.00 4.20 100.00 
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Similarly, for the second peak envelope, the following equations were used to calculate the 

contributions from the WO4 and WO4H peaks: 

(𝐼246,𝑊𝑂4) + (0) =  𝐼𝑇𝑜𝑡𝑎𝑙,246 

(𝐼247,𝑊𝑂4 =  𝐼246,𝑊𝑂4 ∗
14.31
26.50

) + (𝐼247,𝑊𝑂4𝐻) =  𝐼𝑇𝑜𝑡𝑎𝑙,247 

(𝐼248,𝑊𝑂4 =  𝐼246,𝑊𝑂4 ∗
30.64
26.50

) + (𝐼232,𝑊𝑂4𝐻 = 𝐼247,𝑊𝑂4𝐻 ∗  
14.31
26.50

)  =  𝐼𝑇𝑜𝑡𝑎𝑙,248 

(𝐼249,𝑊𝑂4 =  0) + (𝐼249,𝑊𝑂4𝐻 = 𝐼247,𝑊𝑂4𝐻 ∗  
30.64
26.50

)  =  𝐼𝑇𝑜𝑡𝑎𝑙,249 

(𝐼250,𝑊𝑂4 =  𝐼246,𝑊𝑂4 ∗
28.43
26.50

) + (𝐼250,𝑊𝑂4𝐻 = 0)  =  𝐼𝑇𝑜𝑡𝑎𝑙,250 

(𝐼251,𝑊𝑂4 =  0) + (𝐼251,𝑊𝑂4𝐻 = 𝐼247,𝑊𝑂4𝐻 ∗  
28.43
26.50

)  =  𝐼𝑇𝑜𝑡𝑎𝑙,251 

As in the first case, to prove that the peak envelopes were in fact from contributions of 

WO4
- and WO4H-, we calculated the values of both peak components using the above equations, 

and then compared them to the experimental values. The errors were minimal when we 

considered the possibility of both components present together (see Table A6.2). 



308 

Table A6.  2 Calculated and experimental raw peak areas of WO4
- and WO4H- peak envelopes. 

m/z 246 247 248 249 250 251 
Experimental values 

Isotopes 182 183 184 185 186 187 
AA 50 nm uncleaned 1 1741 8835 6052 9692 1921 8966 
AA double cleaned 1 1270 6739 4457 7070 1401 6636 
AA triple cleaned 1 1112 5771 3946 6581 1125 6204 

WO4 contributions calculated 
182 183 184 185 186 187 

AA 50 nm uncleaned 1 1741 940.14 2012.99 0 1867.797 0 
AA double cleaned 1 1270 685.8 1468.408 0 1362.494 0 
AA triple cleaned 1 1112 600.48 1285.724 0 1192.987 0 

WO4H contributions calculated 
182 183 184 185 186 187 

AA 50 nm uncleaned 1 0 8382.441 4526.518 9692 0 8992.936 
AA double cleaned 1 0 6114.719 3301.948 7070 0 6560.055 
AA triple cleaned 1 0 5691.792 3073.568 6581 0 6106.326 

Calculated total peak areas (WO4 + WO4H contributions) 
182 183 184 185 186 187 

AA 50 nm uncleaned 1 1741 9322.581 6539.508 9692 1867.797 8992.936 
AA double cleaned 1 1270 6800.519 4770.356 7070 1362.494 6560.055 
AA triple cleaned 1 1112 6292.272 4359.291 6581 1192.987 6106.326 

Errors % (Calculated vs experimental values) 
182 183 184 185 186 187 

AA 50 nm uncleaned 1 0 -5.51875 -8.05533 0 2.769528 -0.30042 
AA double cleaned 1 0 -0.91289 -7.03065 0 2.748441 1.144432 
AA triple cleaned 1 0 -9.03261 -10.4737 0 -6.0433 1.574371 

Errors (%) considering there is only WO4 and no WO4H contributions 
errors 182WO4 183 184 185 186 187 

AA 50 nm uncleaned 1 0 89.35891 66.73843 100 2.769528 100 
AA double cleaned 1 0 89.82342 67.0539 100 2.748441 100 
AA triple cleaned 1 0 89.59487 67.41704 100 -6.0433 100 

Errors (%) considering there is only WO4H and no WO4contributions 
182WO4H 183 184 185 186 187 

AA 50 nm uncleaned 1 100 5.12234 25.20624 0 100 -0.30042 
AA double cleaned 1 100 9.263699 25.91545 0 100 1.144432 
AA triple cleaned 1 100 1.372522 22.10929 0 100 1.574371 


