Studies Toward the Synthesis of Lyconadin A and Cranomycin

Brad M. Loertscher
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Biochemistry Commons, and the Chemistry Commons

BYU ScholarsArchive Citation

Loertscher, Brad M., "Studies Toward the Synthesis of Lyconadin A and Cranomycin" (2013). All Theses and Dissertations. 4243.
https://scholarsarchive.byu.edu/etd/4243

Studies Toward the Synthesis

 of Lyconadin A and CranomycinBrad M. Loertscher

A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of

 Doctor of PhilosophySteven L. Castle, Chair
Merritt B. Andrus
Paul B. Savage
Joshua L. Price
Roger G. Harrison

Department of Chemistry and Biochemistry
Brigham Young University
August 2013

Copyright © 2013 Brad M. Loertscher
All Rights Reserved

ABSTRACT
Studies Toward the Total Synthesis of Lyconadin A and
Cranomycin
Brad M. Loertscher
Department of Chemistry and Biochemistry, BYU Doctor of Philosophy

Lyconadin A is a pentacyclic Lycopodium alkaloid isolated from the club moss Lycopodium companatum with anticancer activity. Our approach sought to incorporate a 7 -exo-6-exo acyl radical cyclization cascade to access the bicyclo[5.4.0]undecane framework of lyconadin A. Our studies created methodology for the synthesis of 5-alkyl and 3,5-dialkyl-6-carbomethoxy-2-pyridones and sterically demanding epoxide substrates. These epoxide substrates underwent an unanticipated Payne rearrangement.

Cranomycin is a potent antibiotic with antiprotozoal activity. Structurally it is a cyclopentane ring system with substitution at each carbon in the ring. Another interesting structural aspect is the existence of three contiguous quaternary stereocenters including two tertiary alcohols and a tert-alkylamine. Our strategy led to the development of a highly diastereoselective synthesis of vicinal tertiary diol systems. We have successfully synthesized the cyclopentenone system shown above, from which we hope to assemble cranomycin.

Keywords: epoxidation, pyridone synthesis, lyconadin A, tandem radical cyclization, tethered radical vinylation, Grignard addition, cranomycin

ACKNOWLEDGEMENTS

There have been many who have supported me in my research endeavors. First and foremost, I would like to thank my wife, Angela. She has shown remarkable understanding of my long hours and my anxiety at stressful times.

I would also like to thank my parents for teaching me the value of hard work.
I would like to thank Dr. Steven Castle for allowing me to join his research group. He has encouraged me when plans fail and works tirelessly to find solutions to difficult problems.

I have had the privilege to work with some great individuals in the Castle group, only a few of which I can thank here. Yu Zhang did much of the early studies for lyconadin A. I would like to thank Nathan Wilde, Phil Young, Patrick Evans, and Ankur Jalan for their contributions to this work.

I would also like to thank members of my committee: Dr. Andrus, Dr. Savage, Dr. Price, and Dr. Harrison for their guidance and suggestions.

Finally, I would like to thank Brigham Young University Department of Chemistry and Biochemistry for a fantastic opportunity to pursue a Ph.D. For financial support I would like to acknowledge the Roland K. Robins fellowship, the BYU Cancer Research Center, and BYU Graduate Studies.

TABLE OF CONTENTS

Abstract ii
Acknowledgements iii
List of Figures vii
List of Schemes viii
List of Tables x
Chapter 1. Lyconadin A Introduction 1
1.1 Lycopodium Alkaloids. 1
1.2 Lyconadin A. 2
1.3 Smith Group Synthesis 3
1.4 Sarpong Group Synthesis 4
1.5 Fukuyama Group Synthesis 6
1.6 Radical Cyclization Cascade and Epimerization Model Studies 7
1.7 Pyridone Annulation Model Study. 9
1.8 References 11
Chapter 2. Synthetic Strategies Toward Lyconadin A 15
2.1 Introduction 15
2.2 Retrosynthesis 15
2.3 Sequential Epoxide Opening Route 16
2.4 Simpler Epoxidation, Ring Opening Route 20
2.5 Shorter Iodide Synthesis and Myers Alkylation 21
2.6 Conclusion 22
2.7 References 22
Chapter 3. Cranomycin Introduction 25
3.1 Introduction 25
3.2 Hanessian Group Synthesis 26
3.3 Johnson Group Synthesis 28
3.4 Other Synthesis Attempts 29
3.5 Conclusion 31
3.6 References 32
Chapter 4. Early Cranomycin Studies 34
4.1 Retrosynthesis 34
4.2 Tethered Radical Vinylation Model 35
4.3 N-Arylation Model 36
4.4 Tethered Aminohydroxylation Model 37
4.5 Aziridination Model 37
4.6 Early Synthetic Route to Methyl Ketone 39
4.7 Conclusion 39
4.8 References 39
Chapter 5. Progress Towards the Total Synthesis of Cranomycin 42
5.1 Successful Synthesis of Ketone Substrates 42
5.2 Grignard Additions 43
5.3 Intramolecular Aldol Reaction 47
5.4 Desilylation and Aziridination 48
5.5 Conclusion 50
5.6 References 51
Chapter 6. Experimental Section 53
6.1 General Experimental Details 53
6.2 Experimental procedures and spectral data. 53
6.3 References 112
6.4 Spectra 113

LIST OF FIGURES

Figure 1.1. Representative compounds of the major classes of lycopodium alkaloids. 2

Figure 1.2. Lyconadins A-F. ... 3
Figure 3.1 Structures of cranomycin and pactamycin. ... 25
Figure 5.1. Diagnostic nOes of aldol products. .. 48

LIST OF SCHEMES

Scheme 1.1. Smith and Beshore's total synthesis of lyconadin A 4
Scheme 1.2. Synthesis of lyconadin A by Sarpong and co-workers. 6
Scheme 1.3. Total synthesis of lyconadin A by Fukuyama and co-workers. 7
Scheme 1.4. Model study of the 7-exo-6-exo radical cyclization cascade. 8
Scheme 1.5. Successful formation of enone 42. 9
Scheme 1.6. Epimerization of bicyclo[5.4.0]undecane skeleton in the model system. 9
Scheme 1.7. Early pyridone annulation attempts. 10
Scheme 1.8. Successful pyridone annulation sequence. 11
Scheme 2.1 Retrosynthesis of lyconadin A. 16
Scheme 2.2 Synthesis of triether 74 16
Scheme 2.3. Synthesis and attempted ring opening of 77. 17
Scheme 2.4. Attempted protection of $\mathbf{7 3}$ and silyl cleavage/migration. 17
Scheme 2.5. Successful incorporation of NAP ether in epoxide 83. 18
Scheme 2.6. Alternative synthesis of epoxide $\mathbf{8 3}$. 18
Scheme 2.7. Possible outcomes for epoxide opening of $\mathbf{8 3}$. 19
Scheme 2.8 Plausible mechanisms for Payne rearrangement of epoxide 83. 19
Scheme 2.9. Epoxide formation from undesired ring opening product $\mathbf{8 9}$ 20
Scheme 2.10. Synthesis of iodide 101. 21
Scheme 2.11. Shorter synthesis of desired iodide 106. 21
Scheme 2.12 Attempted Myers' alkylation with iodide 106. 22
Scheme 3.1 Synthesis of epoxide 118. 27
Scheme 3.2 Completion of total synthesis of pactamycin by Hanessian and co-workers 28
Scheme 3.3 Johnson synthesis of pactamycin. 29
Scheme 3.4 Isobe synthesis of pactamycin core. 30
Scheme 3.5 Knapp synthesis of oxygenated pactamycin core. 31
Scheme 3.6 Looper epoxide opening strategy for pactamycin. 31
Scheme 4.1 Retrosynthetic analysis of cranomycin. 35
Scheme 4.2 Tethered radical vinylation model study 36
Scheme 4.3 N -arylation model study. 37
Scheme 4.4 Tethered aminohydroxylation model study 37
Scheme 4.5 Aziridine opening in model system 38
Scheme 4.6 Attempted synthesis of ketone of type $\mathbf{1 5 9}$. 39
Scheme 5.1 Synthesis of ketone 187a and attempted Grignard addition 43
Scheme 5.2 Debenzylation reactions of 188a 45
Scheme 5.3 Assignment of relative configuration. 45
Scheme 5.4. Assignment of relative configuration of $\mathbf{1 8 8 f}$. 46
Scheme 5.5. Rationale for stereocontrol. 46
Scheme 5.6. Synthesis of enone 197 47
Scheme 5.7 Selective desilylation and attempted aziridination conditions. 49
Scheme 5.8 Aziridination with $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}$. 49
Scheme 5.9 Nitrene-mediated aziridination of model substrate and attempted aziridination of 198.50
Scheme 5.10 Attempted aziridination of oxime $\mathbf{2 0 0}$. 50
Scheme 5.11 Alternative aziridination protocol. 50

LIST OF TABLES

Table 4.1 AZA-MIRC model study 38
Table 5.1 Grignard addition with additives. 43
Table 5.2 Optimization of Grignard reaction for improved dr. 44

Chapter 1. Lyconadin A Introduction

1.1 Lycopodium Alkaloids

The genus Lycopodium is a diverse group of moss-like plants that produce a wide variety of alkaloids. Lycopodium species are non-flowering and reproduce with spores instead of seeds. They grow cone-shaped strobili at the tips of their branches, which give them a club shape and the moniker club mosses. ${ }^{1}$

Bödeker was the first to isolate a Lycopodium alkaloid and named it lycopodine in 1881. ${ }^{2}$ He reported a specious molecular formula, which was corrected in 1938 by Achmatowicz and Uzieblo, upon isolation of two novel alkaloids (clavatine and clavatoxine). ${ }^{3}$ Since 1940, Ayer and co-workers gave considerable attention to isolation, structural determination, biogenesis, and chemical synthesis of Lycopodium alkaloids. ${ }^{4}$ In the late 1980 s it was shown that some Lyopodium alkaloids have potent acetylcholine esterase inhibition activity. ${ }^{5}$ Of particular note was huperzine A, a potential treatment for Alzhiemer's disease and myasthenia gravis. ${ }^{6}$ This promising bioactivity has encouraged further study of the isolation and synthesis of Lycopodium alkaloids.

To date, over 200 Lycopodium alkaloids have been discovered. ${ }^{1,4}$ The Lycopodium alkaloids are divided into four classes, each named after specific Lycopodium alkaloids except for the miscellaneous class. The lycopodine class is characterized by the lycopodane skeleton (Figure 1.1). The lycodine class is comprised of dinitrogen alkaloids that contain a pyridine or pyridone ring. The fawcettimine class contains a tetracyclic skeleton including a five-membered ring, two six-membered rings, and a seven-membered ring. The fourth class is a miscellaneous
group (represented by phlegmarine) consisting of alkaloids that are structurally distinct from the other classes. ${ }^{4}$

lycopodine lycopodine class

lycodine lycodine class

fawcettimine fawcettimine class

phlegmarine
miscellaneous class

Figure 1.1. Representative compounds of the major classes of lycopodium alkaloids.
Despite the promising activity of Lycopodium alkaloids, very few biological studies have been performed. Lycopodium species are scarce and grow slowly in specific locales. They have not been successfully cultivated and even tissue culture has proven difficult. Fortunately, total synthesis can provide these alkaloids in amounts needed for further biological evaluation. ${ }^{7-9}$ Total synthesis of these diverse compounds pushes the limits of synthetic chemistry and can lead to development of useful methodology.

1.2 Lyconadin A

Lyconadin A (1, Figure 1.2) is a Lycopodium alkaloid of the miscellaneous class that was isolated in 2001 by Kobayashi and co-workers from the club moss Lycopodium complanatum. ${ }^{10}$ Lyconadins B-F (2-6) have also been isolated and characterized. ${ }^{11}$ Each is a pentacyclic dinitrogenous alkaloid that bears either a δ-lactam or an α-pyridone ring, except in the case of lyconadin F, which has an open-chain amide in place of the pyridone. Other noteworthy structural features include a cis-fused bicyclo[5.4.0]undecane system and six stereocenters, four of which are contiguous. The bicyclo[5.4.0]undecane system observed in lyconadins A, B, C, and F is presumably derived by rearrangement of the phlegmarine skeleton. ${ }^{11 \mathrm{c}}$ Lyconadins D and E lack the bicyclo[5.4.0]undecane skeleton and do not bear a strong resemblance with the other members of the lyconadin family.

Lyconadin $\mathrm{A}(\mathbf{1})$

Lyconadin B (2)

Lyconadin C (3)

Lyconadin D (4): $\mathrm{R}=\mathrm{Me}$
Lyconadin $\mathrm{E}(5): \mathrm{R}=\mathrm{H}$

Lyconadin F (6)

Figure 1.2. Lyconadins A-F.
Biological screening revealed cytoxicity of $\mathbf{1}$ against murine lymphoma L1210 and human epidermoid carcinoma KB cells $\left(\mathrm{IC}_{50}=0.46 \mu \mathrm{~g} / \mathrm{mL}\right.$ and $1.7 \mu \mathrm{~g} / \mathrm{mL}$, respectively). ${ }^{10}$ Additionally, $\mathbf{1}$ promotes nerve growth factor biosynthesis in 1321 N 1 human astrocytoma cells. ${ }^{11 a}$ In light of these useful biological properties and the intriguing chemical structure, lyconadin A has received considerable attention from synthetic chemists. The Smith, ${ }^{12}$ Sarpong, ${ }^{13}$ and Fukuyama ${ }^{14}$ groups have each completed the total synthesis of lyconadin A. A brief summary of these syntheses and model studies towards the synthesis of $\mathbf{1}$ from our research group will be described below. ${ }^{15}$

1.3 Smith Group Synthesis

The key steps of Smith and Beshore's total synthesis of lyconadin A are summarized in Scheme 1.1. ${ }^{12}$ The first transformation was the union of hydrazone $\mathbf{8}$ and iodide $\mathbf{1 0}$ (prepared respectively from known monoester 7 and from known acid 9$)^{16}$, which was accomplished by treatment of 8 with butyllithium in the presence of hexamehtylphosphoramide (HMPA) and addition of iodide $\mathbf{1 0}$ followed by acidic cleavage of the silyl ethers and hydrolysis of the hydrazone to afford $\mathbf{1 1}$ as a mixture of diastereomers. Oxidation and acid-promoted Michael addition delivered diketone $\mathbf{1 2}$, which contained the undesired stereochemistry at C-12, prompting removal of the Cbz group and epimerization to afford hydrochloride salt 13. Attempts to remove the hydroxyl group via reductive amination failed, presumably because the required iminium ion would be too strained due to its inclusion in a bridged polycyclic ring system. To
circumvent this issue, Smith and Beshore converted $\mathbf{1 3}$ into olefin $\mathbf{1 4}$ by a six-step sequence of routine manipulations. The desired $\mathrm{C}-\mathrm{N}$ bond at $\mathrm{C}-13$ was formed via iodoamination. A fourstep sequence (oxidation, β-ketoester formation, dehalogenation, and alkylation) was followed by pyridone annulation to afford lyconadin A (1). The synthesis was accomplished in 34 steps with 27 steps in the longest linear sequence from commercially available starting materials with an overall yield of 1.4%.

Scheme 1.1. Smith and Beshore's total synthesis of lyconadin A.

1.4 Sarpong Group Synthesis

The synthesis of lyconadin A by Sarpong and co-workers contained some interesting transformations. Sarpong and co-workers began with the pyridone ring intact, masked as the 2 methoxy pyridine derivative 17 (prepared from 2-methoxy-6-methylpyridine and N, N dibromodimethylhydantoin (DBDMH) in 97% yield, see Scheme 1.2). ${ }^{13}$ The union of $\mathbf{1 7}$ with vinylogous ester 18 was achieved by a Stork-Danheiser reaction in 64% yield, then tricyclic
ketone $\mathbf{2 0}$ was constructed via cross-metathesis and a subsequent intramolecular Heck reaction. The ketone was selectively reduced to direct the hydrogenation of the 7 -membered ring. Afterwards, the alcohol was reoxidized, delivering ketone 21. Saegusa-Ito oxidation ${ }^{17}$ followed by 1,4-addition with $\mathrm{Me}_{2} \mathrm{CuLi}$ afforded ketone 22. To avoid epimerization, the ketone was reduced and protected to furnish ester 23. Saponifcation and a subsequent Curtius rearrangement delivered carbamate 24. MOM deprotection was followed by oxidation, hydrogenolysis, and reductive amination to construct tetracycle 25. At this point, Sarpong and co-workers attempted several oxidative coupling conditions, all of which formed a complex mixture. Finally, they found that treatment of $\mathbf{2 5}$ with n-BuLi formed lithium dianion $\mathbf{2 6}$ which was oxidized by iodine to deliver desired pentacyclic intermediate 27. ${ }^{13 \mathrm{~b}}$ Cleavage of the methyl ether with NaSEt afforded lyconadin A in 18 steps and 5.8% overall yield from commercially available starting materials. Despite some inefficiency caused by two necessary reduction/oxidation sequences, this is a particularly powerful method for accessing several miscellaneous Lycopodium alkaloids.

Scheme 1.2. Synthesis of lyconadin A by Sarpong and co-workers.

1.5 Fukuyama Group Synthesis

Fukuyama and co-workers have reported the most recent total synthesis of lyconadin A. ${ }^{14}$ They began with known enone 28, which is prepared from (+)-pulegone in 65% yield over 4 steps (Scheme 1.3). ${ }^{18}$ A one-pot acetal formation/Diels-Alder process ${ }^{20}$ is followed by acetal cleavage and reductive amination with benzyl amine to selectively deliver amine 29. Tricycle 30 was constructed via an aza-Prins reaction. For synthetic convenience, the N-benzyl group was swapped for an N-Boc group and subsequent cyclopropanation afforded dihalide 31. N-Boc cleavage was followed by refluxing in pyridine to deliver tetracycle 32, which contains the entire lyconadin A skeleton except for the pyridone moiety. Lithium-halogen exchange and treatment with trisyl azide and acetic acid converted halide $\mathbf{3 2}$ into azide 33. Release of molecular nitrogen was promoted under acidic conditions to afford enone 34. Michael addition of the enolate generated from sulfoxide 35 produced compound 36, which furnished lyconadin A (1) upon
treatment with methanolic HCl . The Fukuyama synthesis of lyconadin A is the shortest to date being 15 steps from (+)-pulegone in 12% overall yield.

Scheme 1.3. Total synthesis of lyconadin A by Fukuyama and co-workers.

1.6 Radical Cyclization Cascade and Epimerization Model Studies

While analyzing the structure of lyconadin A , we realized that the bicyclo[5.4.0]undecane system could potentially be constructed via a 7-exo-6-exo radical cyclization cascade. Typically 7-exo radical cyclization is slow ${ }^{20}$ and only proceeds in special cases. ${ }^{21}$ However, Boger and coworkers demonstrated that tethering acyl radicals to an aromatic ring allows 7-exo cyclizations to proceed. ${ }^{22}$ Evans, ${ }^{23}$ Bonjoch, ${ }^{24}$ and Ryu ${ }^{25}$ have also discovered other useful 7-exo radical cyclizations. To our knowledge there were no examples of cascade reactions that incorporated 7exo acyl radical cyclizations prior to our model studies.

To learn whether a tandem 7-exo-6-exo radical cyclization was feasible, we prepared diene 38 from 1-isochromanone 37 in 18 steps (Scheme 1.4). ${ }^{26}$ Gratifyingly, treatment of the phenyl selenoester generated an acyl radical that afforded tricycle 39 as a single isomer. The use of tris(trimethylsilyl)silane (TTMSS) is crucial for this transformation, presumably because the
hydrogen atom transfer from this reagent is slower than that from $\mathrm{Bu}_{3} \mathrm{SnH}$. 7-exo-5-exo tandem cyclizations are also possible. Further investigations revealed that the trans-fused ring system is formed exclusively, regardless of the configuration or the size of the secondary alcohol. This prompted us to investigate suitable epimerization conditions to construct the cis-fused system (39 $\rightarrow 40$).

Scheme 1.4. Model study of the 7-exo-6-exo radical cyclization cascade.
Initially, we sought to exploit the presence of the carbonyl for the epimerization via kinetically controlled protonation of the enolate by a hindered proton source such as butylated hydroxytoluene (BHT). Unfortunately, this only resulted in recovery of starting material. Quenching of the enolate with $\mathrm{D}_{2} \mathrm{O}$ incorporated deuterium in the trans-fused ring system, suggesting that the enolate was generated, but protonation only favors the trans-fused product. We then explored a hydroxyl-directed hydrogenation of an enone as an alternative.

Attempts to oxidize 39 to the enone directly via treatment with IBX^{27} and $\mathrm{IBX} \cdot \mathrm{MPO}^{28}$ gave no reaction, even at elevated temperatures. Treatment of ketone 39 with LDA and TMS-Cl successfully formed the silyl enol ether but the attempted oxidation of the intermediate with $\mathrm{IBX} \cdot \mathrm{MPO}^{29}$ or $\mathrm{Pd}(\mathrm{OAc})_{2}{ }^{17,30}$ was unsuccessful. Fortunately, quenching of the enolate of $\mathbf{3 9}$ with diphenyldiselenide formed selenide 41 in moderate yield (Scheme 1.5). The selenide was then oxidized by $\mathrm{H}_{2} \mathrm{O}_{2}$ to generate enone 42 .

Scheme 1.5. Successful formation of enone 42.
In order to direct hydrogenation to the correct face of the alkene we needed to invert the configuration of the silyl ether. This inversion would be unnecessary for our lyconadin A synthesis since we would design it to have the correct configuration of the silyl ether prior to the radical cyclization step (see Chapter 2). Desilylation and subsequent Mitsunobu reaction afforded p-nitrobenzoate 43 (Scheme 1.6). Enone formation was followed by KCN-catalyzed transesterification to afford alcohol 44. Hydrogenation with cationic rhodium failed, but was successful when Crabtree's catalyst was implemented, delivering cis-fused bicycle 45. Thus, we felt confident that we would be able to epimerize the trans-fused ring system in the total synthesis of lyconadin A.

Scheme 1.6. Epimerization of bicyclo[5.4.0]undecane skeleton in the model system.

1.7 Pyridone Annulation Model Study

Another important process for our lyconadin A synthesis was the pyridone annulation sequence. I played a minor role in this study, although most of this work was performed by Yu Zhang. ${ }^{31}$ Initially, we tried to adapt the Kozikowski pyridone annulation protocol which entails
condensation of a ketone, methyl propiolate, and ammonia ${ }^{33}$ to a model system matching the lyconadin A substitution pattern. However, attempted use of benzylamine instead of ammonia and of methyl pyruvate (46) as the ketone resulted in the methyl ester being placed at C-5 of the pyridone rather than the desired C-6 position (see 48, Scheme 1.7). This presumably occurs because methyl pyruvate does not participate in the reaction. To circumvent this issue, we preformed propiolamide 49 and pyrrolidine enamine 50 and heated them in the presence of p toluenesulfonic acid to deliver pyridone 51. Unfortunately, attempts to employ substituted pyrrolidine enamines instead of $\mathbf{5 0}$ failed to give any product.

46

48

49

50

51

Scheme 1.7. Early pyridone annulation attempts.
Upon failure to adapt the Kozikowski protocol, we found that Donohoe had also developed a useful pyridone annulation sequence. ${ }^{33}$ Donohoe's protocol would need to be altered, since it employs ring closing metathesis (RCM), an unsuitable transformation for our lyconadin A synthesis (see Chapter 2). To this end, we prepared methyl glyoxylate (52) via ozonolysis of dimethyl maleate ${ }^{32}$ and converted it to tosylimine $\mathbf{5 3}$ by reaction with tosyl isocyanate. ${ }^{34} \mathrm{~A}$ Mannich reaction of this imine with silyl ketene thioacetal 54a (prepared from S-methyl thiobutanoate by treatment with LiHMDS and TMS-Cl) afforded tosylamide 55a in high yield and in $6: 1 \mathrm{dr} .{ }^{31}$ We also explored the Mannich reaction with $\mathbf{5 4 b}$, which proceeded with a modest decrease in yield and an appreciable drop in diastereoselectivity. The decrease in dr is irrelevant, as these stereocenters will be destroyed later in the pyridone annulation. Acylation of 55a proceeded smoothly but the same transformation was sluggish for $\mathbf{5 5 b}$. Cyclization was achieved
by a Reformatsky-type condensation, a transformation inspired by a Claisen-type condensation reported Hashimoto and co-workers. ${ }^{35}$ Elimination of the tosyl group ${ }^{33}$ and subsequent desulfurization with Lindlar's catalyst and triethylsilane ${ }^{36}$ afforded pyridones 59a and 59b.

Scheme 1.8. Successful pyridone annulation sequence.
With a viable route to access an appropriately substituted pyridone moiety, we were confident we could proceed with our synthesis of lyconadin A. Our efforts toward this endeavor will be explained in Chapter 2.

1.8 References

(1) For recent reviews of Lycopodium alkaloids see (a) Kobayashi, J.; Morita, H. The Alkaloids Chem. Biol. 2005, 61, 1-57. (b) Hirasawa, Y.; Kobayashi, J.; Morita, H. Heterocycles 2009, 77, 679-729.
(2) Bödeker, K. Justus Liebigs Ann. Chem. 1881, 208, 363-367.
(3) Achmatowicz, O.; Uzieblo, W. Rocz. Chem. 1938, 18, 88-95.
(4) Ma, X.; Gang, D. R. Nat. Prod. Rep. 2004, 21, 752-772.
(5) (a) Tang, X. C.; Han, Y. F.; Chen, X. P.; Zhu, X. D. Acta Pharmacol. Sin. 1986, 7, 507-511.
(b) Tang, X. C.; Sarno, P. D.; Sugay, K.; Giacobini, E. J. Neurosci. Res. 1989, 24, 276-285.
(6) (a) Kozikowski, A. P.; Tüeckmantel, W. Acc. Chem. Res. 1999, 32, 641-650. (b) Bai, D. L.; Tang, X. C.; He, X. C. Curr. Med. Chem. 2000, 7, 355-374. (c) Tan, C. H.; Zhu, D. Y. Zhongguo Tianran Yaowu 2003, 1, 1-7.
(7) (a) Freeberg, J. A.; Wetmore, R. H. Phytomorphology 1957, 7, 204-217. (b) Freeberg, J. A.; Wetmore, R. H. Phytomorphology 1967, 17, 78-91.
(8) Dwyer, T.; Waegel, A. S. Acta Hortic. 2004, 631, 181-185.
(9) Yang, H.; Carter, R. G.; Zakharov, L. N. J. Am. Chem. Soc. 2008, 130, 9238-9239.
(10) Kobayashi, J.; Hirasawa, Y.; Yoshida, N.; Morita, H. J. Org. Chem. 2001, 66, 5901-5904.
(11) (a) Ishiuchi, K.; Kubota, T.; Hoshino, T.; Obara, Y.; Nakahata, N.; Kobayashi, J. Bioorg. Med. Chem. 2006, 14, 5995-6000. (b) Ishiuchi, K.; Kubota, T.; Ishiyama, H.; Hayashi, S.; Shibata, T.; Kobayashi, J. Tetrahedron Lett. 2011, 52, 289-292. (c) Ishiuchi, K.; Kubota, T.; Ishiyama, H.; Hayashi, S.; Shibata, T.; Mori, K.; Obara, Y.; Nakahata, N.; Kobayashi, J. Bioorg. Med. Chem. 2011, 19, 749-753.
(12) (a) Beshore, D. C.; Smith, A. B., III J. Am. Chem. Soc. 2007, 129, 4148-4149. (b) Beshore, D. C.; Smith, A. B., III J. Am. Chem. Soc. 2008, 130, 13778-13689.
(13) (a) Bisai, A.; West, S. P.; Sarpong, R. J. Am. Chem. Soc. 2008, 130, 7222-7223. (b) West, S. P.; Bisai, A.; Lim, A. D.; Narayan, R. R.; Sarpong, R. J. Am. Chem. Soc., 2009, 131, 11187-11194.
(14) (a) Nishimura, T.; Unni, A. K.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2011, 133, 418-419. (b) Nishimura, T.; Unni, A. K.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2013, 135, 3243-3247.
(15) For a more detailed account on pyridone annulation attempts, see Zhang, Y. Progress Towards Total Synthesis of Lyconadin A. PhD. Dissertation, Brigham Young University, 2010.
(16) Acid 9 was prepared from (4S)-4,5-dihydroxy-valeric acid- γ-lactone in 62% yield over 2 steps. See Kottirsch, G.; Metternich, R. Eur. Patent EP 0560730 B1, 1996.
(17) Ito, Y.; Hirao, T.; Saegusa, T. J. J. Org. Chem. 1978, 43, 1011-1013.
(18) Fleming, I.; Maiti, P.; Ramarao, C. Org. Biomol. Chem. 2003, 1, 3989-4004.
(19) (a) Nilsson, B. L.; Overman, L. E.; Read de Alaniz, J.; Rohde, J. M. J. Am. Chem. Soc. 2008, 130, 11297-11299. (b) Altman, R. A.; Nilsson, B. L.; Overman, L. E.; Read de Alaniz, J.; Rohde, J. M.; Taupin, V. J. Org. Chem. 2010, 75, 7519-7534.
(20) (a) Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. Rev. 1999, 99, 1991-2070. (b) Boger, D. L.; Israel J. Chem. 1997, 37, 119-129.
(21) Lang, S.; Corr, M.; Muir, N.; Khan, T. A.; Murphy, J. A.; Payne, A. H.; Williams, A. C.; Tetrahedron Lett. 2005, 46, 4027-4030.
(22) Boger, D. L.; Matvink, R. J. J. Org. Chem. 1988, 53, 3377-3379.
(23) (a) Evans, P A.; Roseman, J. D. J. Org. Chem. 1996, 61, 2252-2253. (b) Evans, P. A.; Raina, S. Ahsan, K. Chem. Commun. 2001, 2504-2505. (c) Evans, P. A.; Manangan, T.; Rheingold, A. L. J. Am. Chem. Soc. 2000, 122, 11009-11010. (d) Evans, P. A.; Manangan, T. Tetrahedron Lett. 1997, 38, 8165-8168. Evans, P. A.; Manangan, T. J. Org. Chem. 2000, 65, 4523-4528.
(24) (a) Quirante, J.; Vila, X.; Escolano, C.; Bonjoch, J. J. Org. Chem. 2002, 67, 2323-2328. (b) Quirante, J.; Escolano, C.; Bonjoch, J. Synlett 1997, 179-180.
(25) (a) Ryu, I.; Miyazato, H.; Kuriyama, H.; Matsu, K.; Tojino, M.; Fukuyama, T.; Minakata, S.; Komatsu, M. J. Am. Chem. Soc. 2003, 125, 5632-5633. (b) Tojino, M.; Otsuka, M.; Fukuyama, T.; Matsubara, H.; Schiesser, C. H.; Kuriyama, H.; Miyazato, H.; Minakata, S.; Komatsu, M.; Ryu, I. Org. Biomol. Chem. 2003, 1, 4262-4267.
(26) Grant, S. W.; Zhu, K.; Zhang, Y.; Castle, S. L. Org. Lett. 2006, 8, 1867-1870.
(27) Nicolaou, K. C; Montagnon, T.; Baran, P. S.; Zhong, Y. L. J. Am. Chem. Soc. 2002, 124, 2245-2258.
(28) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem. Int. Ed. 2002, 41, 993-996.
(29) Snyder, S. A.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 740-742.
(30) Hu, X.; Tu, Y. Q.; Zhang, E.; Gao, S.; Wang, S.; Wang, A.; Fan, C.; Wang, M. Org. Lett. 2006, 8, 1823-1825.
(31) For a more detailed account on the pyridone annulation attempts see the dissertation of Yu Zhang (ref. 15) and Zhang, Y.; Loertscher, B. M.; Castle, S. L. Tetrahedron 2009, 65, 6584-6590.
(32) Kozikowski, A. P.; Reddy, E. R.; Miller, C. P.; J. Chem. Soc. Perkin. Trans. 1 1990, 195197.
(33) Donohoe, T. J.; Fishlock, L. P.; Procopiou, P. A. Org. Lett., 2008, 10, 285-288.
(34) Hamley, P.; Holmes, A. B.; Kee, A.; Ladduwahetty, T.; Smith, D. F. Synlett 1991, 29-30.
(35) Hashimoto, Y.; Konishi, S.; Kikuchi, S. Synlett 2004, 1264-1266.
(36) Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497-4513.

Chapter 2. Synthetic Strategies Toward Lyconadin A

2.1 Introduction

In the synthesis of lyconadin A, we sought to apply our model studies of 7-exo-6-exo tandem radcial cyclization and pyridone annulation. This chapter includes discussion of our overall strategy, retrosynthetic analysis, and our attempts to follow that plan.

2.2 Retrosynthesis

Our retrosynthetic analysis of lyconadin A (1) is shown in Scheme 2.1. Trialkylation of ammonia with trimesylate $\mathbf{6 0}$ would form the pentacyclic structure of lyconadin A. Alternatively, this process could be performed sequentially. Mesylate $\mathbf{6 0}$ could be derived by the epimerization of tricycle 61 via the protocol discussed in Chapter 1. Generation of an acyl radical from phenylselenoester 62 should construct tricycle 61 via 7-exo-6-exo tandem radical cyclization (see Section 1.6). ${ }^{1}$ In turn, pyridone 62 could be furnished from thioester 63 by our pyridone annulation sequence (see Section 1.7). ${ }^{2}$ Thioester 63 could be afforded from olefin 64 via epoxidation and two consecutive regioselective epoxide openings with a vinyl nucleophile. We thought that the Shi protocol for asymmetric epoxidation by fructose-derived ketones would be suitable for alkene 64. ${ }^{3,4}$ In theory, the ring opening reaction would be directed by the bulky trityl group. ${ }^{5}$ Subsequent detritylation and dehydration of the resulting diol would form a monosubstituted epoxide, which could be opened with a vinyl nucleophile to form the diene moiety of 63 . Olefin 64 would be formed selectively by the union of $(+)$-pseudoephedrine amide 65 and iodide 66 and routine functional group manipulations.

Scheme 2.1 Retrosynthesis of lyconadin A.

2.3 Sequential Epoxide Opening Route

A number of protecting group sets were investigated and these are discussed in greater detail elsewhere. ${ }^{6}$ Prior to my involvment in the project, we were targeting an olefin of type $\mathbf{6 4}$ with benzyl and TBDPS ethers as protecting groups. First, allylic iodide $\mathbf{6 6}$ was prepared from known alcohol 67^{7} via mesylation and subsequent iodination (Scheme 2.2). Methyl γ hydroxybutyrate ($\mathbf{6 9})^{8}$ was then united with (+)-pseudoephedrine to afford amide 70 in high yield. TBDPS protection delivered amide 71. Alkylation of 71 with 66 according to the Myers protocol ${ }^{9}$ delivered 72 in high yield. Reductive cleavage of the chiral auxiliary with lithium amidotrihydroborate ${ }^{10}$ afforded alcohol 73 in 96% ee according to HPLC analysis. The configuration of $\mathbf{7 3}$ was assumed to be consistent with other Myers alkylation reactions. ${ }^{9}$ Benzylation furnished triether 74.

Scheme 2.2 Synthesis of triether 74.

Asmymmetric epoxidation of $\mathbf{7 4}$ was slow and required excess amounts of ketone $\mathbf{7 5},{ }^{11}$ presumably because decomposition of the ketone was more rapid than epoxidation of the olefin (Scheme 2.3). The epoxide configuration was assigned based on the spiro transition state proposed by Shi and co-workers. ${ }^{11}$ Attempted ring openings of epoxide 76 either resulted in recovery of starting material or debenzylation byproducts. This prompted us to replace the benzyl ether with a more robust protecting group: 2-naphthylmethyl (NAP). Unfortunately, NAP protection of $\mathbf{7 3}$ produced triether $\mathbf{7 8}$ in varying yields, with byproducts derived from silyl migration and/or silyl ether cleavage.

Scheme 2.3. Synthesis and attempted ring opening of 77.

Scheme 2.4. Attempted protection of 73 and silyl cleavage/migration.
Hoping that a more robust TIPS ether would be less prone to silyl migration, we synthesized amide 79 from 70. Fortunately, the yield of the Myers alkylation was unaffected by this minor alteration to the substrate. Removal of the chiral auxiliary showed that the enantioselectivity of the alkylation was also unaffected. Gratifyingly, NAP protection proceeded without detrimental silyl migration and/or cleavage. Shi epoxidation of this triether substrate was low-yielding (ca. 8%), and the ring opening of that epoxide did not proceed, so the TIPS moiety was swapped for a TBDPS group to afford triether 78. Epoxidation of alkene 78 did proceed, albeit in varying yields. We posited that the unreliable epoxidation outcome was caused by the
substrate's poor solubility in the reaction medium. Thus, epoxidation of alcohol $\mathbf{8 2}$ afforded epoxy alcohol 84 in a reproducible yield and subsequent TBDPS protection proceeded without intramolecular opening of the epoxide to afford epoxide 83. Attempts to decrease the amount of ketone resulted in lower yields (30-40\% at $30 \mathrm{~mol} \%$ loading), suggesting that the organocatalyst still fails to turn over in the reaction conditions despite the decreased steric hindrance of $\mathbf{8 2}$.

Scheme 2.5. Successful incorporation of NAP ether in epoxide 83.

Scheme 2.6. Alternative synthesis of epoxide 83.
With epoxide 83 in hand, we proceeded with epoxide opening. Exploration of many copper(I) salts led to the discovery that $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}{ }^{12}$ was most suitable for epoxide opening (Scheme 2.7). Initially, we believed that epoxide $\mathbf{8 3}$ had opened to deliver alcohol $\mathbf{8 5}$. However, closer inspection of the spectral data led us to realize that an additional proton signal was found in the $1-2 \mathrm{ppm}$ range and a signal was missing from the $3-5 \mathrm{ppm}$ range. These data are also inconsistent with the other possible regioisomer (86). The product was later determined to be alcohol 87 a or $\mathbf{8 7 b}$, by continuing with our planned synthetic route (vide infra). This unanticipated product is presumably formed by Payne rearrangement of 83. It is interesting to note that the trityl group is retained in this transformation. The rearrangement probably occurs because both C-2 and C-3 are too hindered for nucleophilic attack. Two possible mechanisms for
the formation of $\mathbf{8 7}$ are shown in Scheme 2.8. Lewis acid activation is followed by attack of the oxygen attached to the trityl group to form a highly reactive cationic oxirane species (88). Ring opening of 88 then should deliver alcohol 87 a. Alternatively, the trityl group could migrate to the epoxide ${ }^{13}$ to afford epoxonium ion 89. The Payne rearrangement could then occur and the resultant epoxide would then open to afford $\mathbf{8 7 b}$. Due to the limited amount of $\mathbf{8 7}$ that we had available after prolonged storage, we were unable to further characterize it and cannot assign the position the trityl group without ambiguity.

Scheme 2.7. Possible outcomes for epoxide opening of $\mathbf{8 3}$.

Scheme 2.8 Plausible mechanisms for Payne rearrangement of epoxide 83.
For further evidence of formation of $\mathbf{8 7 a}$ or $\mathbf{8 7 b}$, we decided to proceed with our plan to remove the trityl group and dehydrate the resultant diol. We reasoned that if the desired product (85) had formed, we should observe 3 proton signals in the NMR in the $2-3 \mathrm{ppm}$ range as is consistent with mono-substituted oxiranes. The Payne rearrangement product (87) would only have 2 proton signals in the $2-3 \mathrm{ppm}$ range, which would be consistent with a disubstituted epoxide. The undesired regioisomer (86) would form an oxetane and would be spectroscopically distinguishable from the epoxides formed from 85 and 87 .

Detritylation of the epoxide opening product ($\mathbf{8 7} \mathbf{a}$ or $\mathbf{8 7 b}$) was accomplished with BCl_{3} at $-30{ }^{\circ} \mathrm{C}$. ${ }^{14}$ Once again, data were not consistent for the diols that would be formed upon detritylation of $\mathbf{8 5}$ and 86, but fit well with diol 91. Treatment of diol 91 with NaH and 1-(2,4,6triisopropylbenzenesulfonyl)imidazole (N-TrisIm) afforded a disubstituted epoxide as a single diastereomer. ${ }^{15}$ We have assigned the configuration for the epoxide as 92, since the bulky sulfonyl group is more likely to attach at the less hindered alcohol. The discovery of the unanticipated Payne rearrangement prompted us to investigate an alternative route to thioester 63.

Scheme 2.9. Epoxide formation from undesired ring opening product 89.

2.4 Simpler Epoxidation, Ring Opening Route

We decided to pursue a simpler substrate for the epoxidation. Epoxidation of $\mathbf{6 7}$ proceeded smoothly with catalytic loading of 75. Encouraged by this result, we continued with CuI-mediated ring opening in a mixed $\mathrm{Et}_{2} \mathrm{O}-\mathrm{THF}$ solvent system to deliver diol $\mathbf{9 4}$ as a single isomer. ${ }^{16}$ Monobenzylation of $\mathbf{9 4}$ furnished alcohol $\mathbf{9 5}$, which was detritylated to afford diol $\mathbf{9 6}$. Dehydration afforded epoxide 97, unfortunately with inversion of the secondary alcohol (see Section 2.5). Epoxide opening of 97 and subsequent TIPS protection afforded 99. Debenzylation under Birch conditions released primary alcohol 100, which was converted to iodide $\mathbf{1 0 1}$ via Appel substitution. Myers alkylation attempts exhausted our supply of iodide 101. The lengthy synthesis of iodide $\mathbf{1 0 1}$ prompted us to find a shorter route.

Scheme 2.10. Synthesis of iodide 101.

2.5 Shorter Iodide Synthesis and Myers Alkylation

Fortunately, we found a useful precedent beginning with hex-5-en-2-yn-1-ol ${ }^{17}$ (102, Scheme 2.11). Alkyne $\mathbf{1 0 2}$ is reduced by lithium aluminum hydride, epoxidized by the Sharpless protocol, and opened with good regioselectivity. ${ }^{18}$ The mixture of diols is treated with sodium periodate to ease separation of the regioisomers affording diol 103. Monotosylation and silylation delivered diene 105, which underwent substitution with NaI at reflux to afford iodide 106. Comparison of $\mathbf{1 0 6}$ with 101 showed that these two compounds were diastereomers. The inversion probably occurred in the dehydrative epoxide formation $(\mathbf{9 5} \boldsymbol{\rightarrow} \mathbf{9 6})$. This reaction sequence was easily increased to gram-scale, facilitating the synthesis of iodide 106.

Scheme 2.11. Shorter synthesis of desired iodide 106.
With a good supply of iodide 106 available, we decided to attempt the Myers alkylation. Unfortunately, all attempts have only resulted in recovery of starting material even when the reaction mixture is refluxed. Presumably the difficulty of this transformation is caused by the
combination of a bulky enolate and a sterically demanding iodide. Perhaps replacement of the TIPS group with a smaller TBS group would allow the transformation to occur. Another possibility is to run the reaction in 2-methyltetrohydrofuran to allow a higher reflux temperature. Unfortunately, our research focus has shifted to another project and we have not been able to explore the alkylation further at this point in time.

Scheme 2.12 Attempted Myers' alkylation with iodide 106.

2.6 Conclusion

Our attempted synthesis of lyconadin A pushed the limits of the Shi epoxidation, requiring superstoichiometric quantitites of the chiral ketone. Ring opening of these epoxides also demonstrates the limitation of epoxide ring opening reactions, which led us to seek an alternative route in our lyconadin A synthesis. While we have not successfully worked through these challenges, knowing the limits of epoxidation and ring opening will be helpful to others.

2.7 References

(1) Grant, S. W.; Zhu, K.; Zhang, Y.; Castle, S. L. Org. Lett. 2006, 8, 1867-1870.
(2) See Chapter 1 and Loertscher, B. M.; Castle, S. L. Tetrahedron 2009, 65, 6584-6590.
(3) (a) Shi, Y. Acc. Chem. Res. 2004, 37, 488-496. (b) Frohn, M.; Shi, Y. Synthesis 2000, 1979-2000.
(4) (a) Wong, O. A.; Shi, Y. Top. Curr. Chem. 2010, 291, 201-232. (b) Wong, O. A.; Shi, Y. Chem. Rev. 2008, 108, 3958-3987.
(5) (a) Taber, D. F.; Green, J. H.; Geremia, J. M. J. Org. Chem. 1997, 62, 9342-9344. (b) Yang, C.-G.; Wang, J.; Jiang, B. Tetrahedron Lett. 2002, 43, 1063-1066. (c) Watanabe, B.; Yamamoto, S.; Sasaki, K.; Nakagawa, Y.; Miyagawa, H. Tetrahedron Lett. 2004, 45, 27672769. (d) Roulland, E.; Ermolenko, M. S. Org. Lett. 2005, 7, 2225-2228.
(6) For greater detail on other attempted routes see (a) Zhang, Y. Progress Towards Total Synthesis of Lyconadin A. PhD. Dissertation, Brigham Young University, 2010. (b) Loertscher, B. M.; Zhang, Y.; Castle, S. L. Beilstein J. Org. Chem. 2013, 9, 1179-1184.
(7) Hernandez, A.-I.; Balzarini, J.; Karlsson, A.; Camarasa, M.-J.; Perez-Perez, M.-J. J. Med. Chem. 2002, 45, 4254-4263
(8) Gannett, P. M.; Nagel, D. L.; Reilly, P. J.; Lawson, T.; Sharpe, J.; Toth, B. J. Org. Chem. 1988, 53, 1064-1071.
(9) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496-6511.
(10) Myers, A. G.; Yang, B. H.; Kopecky, D. J. Tetrahedron Lett. 1996, 37, 3623-3626.
(11) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224 11235.
(12) Marfat, A.; McGuirk, P. R.; Helquist, P. J. Org. Chem. 1979, 44, 3888-3901.
(13) (a) Bartlett, P. A.; Green, F. R. III J. Am. Chem. Soc. 1978, 100, 4585-865. (b) Cabral, N. L. D.; Thiessen, L. J. H.; Doboszewksi, B. Nucloesides, Nucleotides Nucleic Acids 2008, 27, 931-948.
(14) Jones, G. B.; Hynd, G.; Wright, J. M.; Sharma, A. J. Org. Chem. 2000, 65, 263-265.
(15) Smith, A. B., III; Doughty, V. A.; Sfouggatakis, C.; Bennett, C. S.; Koyanagi, J.; Takeuchi, M. Org. Lett. 2002, 4, 783-786.
(16) Tius, M. A.; Fauq, A. H. J. Org. Chem. 1983, 48, 4131-4132.
(17) Hex-5-en-2-yn-1-ol is commercially available but is more economically prepared from propargyl alcohol and allyl bromide in quantitative yield in water under basic conditions. See Bieber, L. W.; da Silva M. F. Tetrahedron Lett. 2007, 48, 7088-7090.
(18) Ma, S.; Ni, B. Chem.-Eur. J. 2004, 10, 3286-3300.

Chapter 3. Cranomycin Introduction

3.1 Introduction

Cranomycin (108, Figure 3.1) is an aminocyclitol antibiotic isolated in 1964 from a culture broth of Streptomyces SE-801. ${ }^{1,2}$ Later, it was isolated from two other Streptomyces species and named PD $113,618^{3}$ and 7-deoxypactamycin. ${ }^{4}$ The latter name refers to its structural relationship with pactamycin (109), ${ }^{5-8}$ which exhibits broad spectrum cytotoxicity. ${ }^{8,9}$ The cyclopentane core of cranomycin is densely functionalized, bearing substituents at every carbon atom. Other interesting features of $\mathbf{1 0 8}$ include three contiguous quaternary stereocenters consisting of a tert-alkylamine and two tertiary alcohols.

Cranomycin (108), $\mathrm{R}=\mathrm{H}$
Pactamycin (109), R = OH

Figure 3.1 Structures of cranomycin and pactamycin.
Pactamycin inhibits protein synthesis by interaction with rRNA. ${ }^{10}$ Given its structural similarity to pactamycin, cranomycin is likely to have a similar mode of action. Recent biological studies have shown that $\mathbf{1 0 8}$ is active against Trypanosoma brucei brucei $\left(\mathrm{IC}_{50}=0.9\right.$ $\mathrm{nM})$ and Plasmodium falciparum $\left(\mathrm{IC}_{50}=0.4 \mathrm{nM}\right)$, the protozoa that respectively cause African sleeping sickness and malaria. ${ }^{11}$ Pactamycin is also active against these diseases but has an 8fold decrease in its antitrypanosomal activity and a 40 -fold decrease in its antimalarial activity. While $\mathbf{1 0 8}$ and $\mathbf{1 0 9}$ are excluded from clinical use because of their cytotoxicity, they can serve as lead structures for the development of new therapies for sleeping sickness and malaria. In fact,

Mahmud and co-workers have demonstrated that the 7-demethyl congener of $\mathbf{1 0 8}$ (produced via biosynthetic and genetic engineering techniques) conserves antimalarial activity but has decreased cytotoxicity. ${ }^{12}$ An efficient total synthesis of $\mathbf{1 0 8}$ would complement Mahmud's work by providing access to other cranomycin analogs. Methodology developed in the synthesis of 108 would also be valuable to others who seek to synthesize compounds with many functional groups in a congested system. Thus, cranomycin is an ideal target for total synthesis.

No synthetic studies targeting cranomycin directly have been published, but many groups have proposed synthetic routes toward pactamycin. Progress has been reported by the Isobe, ${ }^{13}$ Knapp, ${ }^{14}$ and Looper ${ }^{15}$ groups. Hanessian and co-workers were the first to successfully construct 109 from threonine in 34 steps. ${ }^{16}$ Earlier this year, Johnson and co-workers disclosed a much shorter synthesis of $\mathbf{1 0 9} .{ }^{17}$ This chapter will summarize these two ground-breaking syntheses and discuss some of the attempts by groups mentioned above.

3.2 Hanessian Group Synthesis

Hanessian and co-workers began the synthesis of pactamycin with L-threonine (110, Scheme 3.1) by formation of oxazoline $\mathbf{1 1 1} .^{18}$ Condensation of the enolate generated from 111 with acrolein $\mathbf{1 1 2}$ was followed by TES protection to afford 113. Reduction of the benzyl ester to an aldehyde, methylation, oxidation, and ozonolysis furnished γ-diketone 114. A Mukaiyamatype intramolecular aldol reaction and subsequent dehydration provided enone 115. Epoxidation proceeded efficiently, giving α-epoxide 116. Attempts to prepare the desired β-epoxide were successful, but this configuration led to decomposition in subsequent steps. Thus, they proceeded with epoxide 116, seeking to invert the configuration of the epoxide at a later stage. Luche reduction, triflation, and $\mathrm{S}_{\mathrm{N}} 2$ displacement delivered azide 117. Selective cleavage of the TES
ether, oxidation, methylation, and desilylation afforded epoxy diol 118. At this stage, they were ready to invert the configuration of the epoxide.

Scheme 3.1 Synthesis of epoxide 118.
The inversion of the epoxide was accomplished by Lewis-acid promoted Payne rearrangement of $\mathbf{1 1 8}$ to create a transient terminal epoxide intermediate which is opened by addition of acetic acid (Scheme 3.2). Acetate removal, silylation, and dehydrative epoxide formation afforded 119, an intermediate whose crystal structure allowed unambiguous assignment of all stereocenters. $\mathrm{Yb}(\mathrm{OTf})_{3}$-mediated ring opening with aniline $\mathbf{1 2 0}$ delivered intermediate 121 in high yield. Oxazoline cleavage, desilylation, and acetonide formation allowed successful carbamoylation of the tert-alkylamine. Without the acetonide in place the tertiary hydroxyl group on the β-face of the cyclopentane ring interfered with carbamoylation, forming a bridged carbamate. Removal of the p-methoxybenzoyl (PMBz) group, dihydroxylation, oxidative cleavage, and acetonide removal released tetraol 124. Ketene esterification of $\mathbf{1 2 4}$ with 125 and subsequent reduction afforded pactamycin. Despite the length of this synthesis, it is achieved in notably high overall yield (0.8% over 34 steps).

118

119

Scheme 3.2 Completion of total synthesis of pactamycin by Hanessian and co-workers.

3.3 Johnson Group Synthesis

Johnson and co-workers recently published the total synthesis of pactamycin. ${ }^{17}$ This synthesis differs significantly from their previous approach which required a late stage installation of the amino group at C-2, a transformation that they were unable to accomplish. ${ }^{19}$ This prompted them to install the amino group at an early stage. The N, N-dimethyl urea moiety was introduced by formation of the diazo compound 127 derived from acetylacetone (126) and trapping of the Rh carbenoid with $\mathrm{Me}_{2} \mathrm{NCONH}_{2}$. An intramolecular Mannich reaction between 128 and imine 129 was mediated by cinchonidine (130) to afford 131 in 70% yield and high ee. Fortunately, monoreduction of $\mathbf{1 3 1}$ by lithium tri(tert-butoxy)aluminum hydride (LTBA) proceeded with great selectivity in $>10: 1$ ratio favoring $\mathbf{1 3 2}$ over the three other diastereomers, a notable transformation. Formylation, ozonolysis and intramolecular aldol condensation afforded
enone 134. Fortunately, the intramolecular aldol reaction proceeded by epimerization at C-2. Epoxidation was followed by silylation to afford 135. The remaining steps and intermediates share some similarities with the Hanessian synthesis of pactamycin. Grignard addition and $\mathrm{Sc}(\mathrm{OTf})_{3}$-mediated epoxide opening with 3 -acetylanaline furnished 137. The synthesis was completed by desilylation, ketene esterification, and hydrogenation. Thus, total synthesis of pactamycin was achieved in 17 steps with an overall yield of 1.9%.

127

Scheme 3.3 Johnson synthesis of pactamycin.

3.4 Other Synthesis Attempts

Besides these completed syntheses of pactamycin, several research groups have tried their hand at the synthesis of 110. The attempts by the Isobe, Knapp, and Looper groups are described below.

Isobe and co-workers attempted to synthesize the pactamycin from glucose-derived aldehyde $\mathbf{1 3 8} .{ }^{13 \mathrm{~b}}$ Reaction of $\mathbf{1 3 8}$ with N-phenylhydroxylamine produced dipole 139, which upon refluxing formed aziridine 140. This intermediate presumably forms via Baldwin rearrangement of the isoxazoline formed by [3+2]-dipolar cycloaddition. Unfortunately, later steps revealed that the configuration of the aziridine was reversed from what is required to synthesize pactamycin.

Scheme 3.4 Isobe synthesis of pactamycin core.
Knapp and co-workers performed epoxidation on advanced intermediate $\mathbf{1 4 1}$ (prepared from 2-methylcyclopent-2-en-1-one in 10 steps). ${ }^{14}$ Ley-Griffith oxidation formed enone 143. Reaction of the tertiary alcohol with 2-nitrobenzenesulfonate afforded oxazolidinone 144. This transformation established a $\mathrm{C}-\mathrm{N}$ bond at $\mathrm{C}-3$ with a configuration opposite what is required for pactamycin. Knapp asserts that this nitrogen is bound for C-2, but does not elaborate how it would be shifted to that position. They proceeded by formation of triflate 145. Stille crosscoupling and enol ether hydrolysis then delivered ketone 147 , the oxygenated core of pactamycin. Knapp and co-workers also performed model studies for installation of the C-1 amino group. As it has been several years since the Knapp group has reported on the synthesis of 147, it is unclear if those model studies were adaptable for further elaboration to the natural product.

Scheme 3.5 Knapp synthesis of oxygenated pactamycin core.
Looper's approach to pactamycin involves epoxide opening of $\mathbf{1 4 9}$ mediated by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} .{ }^{15}$ Lewis-acid activation of the epoxide is presumably followed by intramolecular attack of the adjacent benzoyl group. The nearby PMP-amide carbonyl oxygen displaces the benzoyl group to form oxazoline 150. Acyl migration then delivers 151. This interesting transformation allows access to a highly advanced intermediate in the pactamycin synthesis in only 14 steps from L-threonine.

Scheme 3.6 Looper epoxide opening strategy for pactamycin.

3.5 Conclusion

Pactamycin and cranomycin are powerful antibiotic compounds with complex structures.
We have discussed several approaches for the synthesis of pactamycin. To our knowledge, no
synthetic approaches that target cranomycin directly have been disclosed. Our strategy toward cranomycin will be discussed in Chapters 4 and 5.

3.6 References

(1) Kondo, S.; Shiumura, M.; Sezaki, M.; Sato, K.; Hara, T. J. Antibiot. Ser. A. 1964, 17, 230233.
(2) Hara, T.; Niida, T.; Sato, K.; Kondo, S.; Noguchi, T.; Kohmoto, K. J. Antibiot. Ser. A. 1964, 17, 266.
(3) Hurley, T. R.; Smitka, T. A.; Wilton, J. H.; Bunge, R. H.; Hokanson, G. C.; French, J. C. J. Antibiot. 1986, 39, 1086-1091.
(4) Dobashi, K.; Isshiki, K.; Sawa, T.; Obata, T.; Hamada, M.; Naganawa, H.; Takita, T.; Takeuchi, T.; Umezawa, H. Bei, H.; Zhu, B.; Tong, C.; Xu, W. J. Antibiot. 1986, 39, 17791783.
(5) Argoudelis, A. D.; Jahnke, H. K.; Fox, J. A. Antimicrob. Agents Chemother 1962, 191-167.
(6) Wiley, P. F.; Jahnke, H. K.; MacKellar, F.; Kelly, R. B.; Argoudelis, A. D. J. Org. Chem. 1970, 35, 1420-1425.
(7) Duchamp, D. J. Abstracts, American Crystallographic Association Winter Meeting, Albuquerque, NM, 1972, 23.
(8) Bhuyan, B. K.; Dietz, A.; Smith, C. G. Antimicrob. Agents Chemother. 1962, 184-190.
(9) White, F. R. Canc. Chemother. Rep. 1 1962, 24, 75-78.
(10) Mankin, A. S. J. Mol. Biol. 1997, 274, 8-15.
(11) (a) Otoguro, K.; Iwatsuki, M.; Ishiyama, A.; Namatame, M.; Nishimura-Tukashima, A.; Shibahara, S.; Kondo, S.; Yamada, H.; Omura, S. J. Antibiot. 2010, 63, 381-384. (b) Iwatsuki, M.; Nishihara-Tsukashima, A.; Ishiyama, A.; Namatame1, M.; Watanabe, Y.;

Handasah, S.; Pranamuda, H.; Marwoto, B.; Matsumoto, A.; Takahashi, Y.; Otoguro, K.; Ōmura, S. J. Antibiot. 2012, 65, 169-171.
(12) (a) Lu, W.; Roongsawang, N.; Mahmud, T. Chem. Biol. 2011, 18, 425-431. (b) Almabruk, K. H.; Lu, W.; Li, Y.; Aburgreen, M.; Kelly, J. X.; Mahmud, T. Org. Lett. 2013, 15, 16781681.
(13) (a) Tsujimoto, T.; Nishikawa, T.; Urabe, D.; Isobe, M. Synlett 2005, 433-436. (b) Matsumoto, N.; Tsujimoto, T. Nakazak, A.; Isobe, M.; Nashikawa, T. RSC Adv. 2012, 2, 9448-9462.
(14) Knapp, S.; Yu, Y. Org. Lett. 2007, 9, 1359-1362.
(15) Haussner, T. J.; Looper, R. E. Org. Lett. 2012, 14, 3632-3635.
(16) (a) Hanessian, S.; Vakiti, R. R.; Dorich, S.; Banerjee, S.; Lecomte, F.; DelValle, J. R.; Zhang, J.; Deschênes-Simard, B. Angew. Chem. Int. Ed. 2011, 50, 3497-3500. (b) Hanessian, S.; Vakiti, R. R.; Dorich, S.; Banerjee, S.; Deschênes-Simard, B. J. Org. Chem. 2012, 77, 9458-9472.
(17) Malinowski, J. T.; Sharpe, R. J.; Johnson, J. S. Science, 2013, 340, 180-182.
(18) (a) Reddy, L. R.; Fournier, J.-F.; Reddy, B. V. S.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 8974-8976. (b) Soukup, M.; Wipf, E. H.; Leuenberger, H. G. Helv. Chim. Acta 1987, 70, 232-236.
(19) Malinowski, J. T.; McCarver, S. J.; Johnson, J. S. Org. Lett. 2012, 14, 2878-2881.

Chapter 4. Early Cranomycin Studies

4.1 Retrosynthesis

In our retrosynthetic analysis of cranomycin (109, Scheme 4.1), we thought that a late stage ketene esterification ${ }^{1}$ of triol 152 followed by hydrogenation with Raney nickel ${ }^{2}$ would afford the natural product. Inspired by the work of Friestad and co-workers, ${ }^{3}$ we would construct 152 via tethered radical vinylation of bromovinylsilane 153 and proceed with urea formation and carbamate hydrolysis. N -arylation ${ }^{4}$ of cyclic carbamate $\mathbf{1 5 4}$ would deliver 153. Carbamate $\mathbf{1 5 5}$ could be converted to $\mathbf{1 5 4}$ by oxime formation, intramolecular transesterification of the carbamate, azide reduction and Cbz protection. We considered tethered aminohydroxylation (TA) as a method to install a $\mathrm{C}-\mathrm{N}$ bond at $\mathrm{C}-3,{ }^{5}$ but model studies (vide infra) discouraged us from pursuing this route. We also contemplated intramolecular aza-Michael addition for installation of the arylamino group at $\mathrm{C}-3,{ }^{6}$ but this provides the additional challenge of electrophilic amination at C-2, which proved difficult for Johnson and co-workers. ${ }^{7}$ We finally decided that stereoselective aziridination ${ }^{8}$ of enone $\mathbf{1 5 6}$ and subsequent opening with azide ${ }^{8 b}$ would be a suitable strategy. Enone 156 would be constructed via an intramolecular aldol cyclization of γ-ketoaldehyde 157 , which would be prepared from 158 through routine functional group manipulations. Triether 158 could be furnished by 1,2-addition to ketone 159. We envisioned that judicious selection of protecting groups would control the diastereoselectivity of the Grignard addition. It was especially important for us to use orthogonal protecting groups to allow selective deprotection of the primary alcohols at various stages of the synthesis (e.g. 158 $\rightarrow 157$ and $\mathbf{1 5 7} \rightarrow \mathbf{1 5 6}$). We thought 1,3-dihdyroxyacetone dimer would be an appropriate starting material to access ketones of type 159. ${ }^{9}$

Scheme 4.1 Retrosynthetic analysis of cranomycin.
This chapter will discuss model studies of the tethered radical vinylation, N -arylation, and aziridination, as well as our preliminary results from an early tethered aminohydroxylation model. An early synthetic route to ketones of type 159 will also be included.

4.2 Tethered Radical Vinylation Model

The crucial tethered radical vinylation step was a top priority for our model studies. We thought that an O-benzyloxime ether would be an appropriate radical acceptor, although related work employed hydrazones as the radical acceptors. Radical addition to an O-benzyloxime acceptor has the added benefit of forming a nucleophilic N-benzyloxy amino group which would allow selective formation of the N, N-dimethylurea moiety. Perusal of the literature led us to α-hydroxy ketone $\mathbf{1 6 0},{ }^{10}$ which we easily converted to oxime $\mathbf{1 6 1}$ (see Scheme 4.2). Reaction of

161 with chlorodimethylvinylsilane provided silyl ether $\mathbf{1 6 2}$. Unsurprisingly, treatment of $\mathbf{1 6 2}$ with PhSH and AIBN in cyclohexane at elevated temperatures failed to deliver any of the desired vinylation product, presumably because the ketoxime radical acceptor is less electrophilic than the hydrazones used by Friestad and co-workers. Treatment of the crude mixture with KF returned oxime 161. Fortunately, Friestad and co-workers had also employed a bromovinylsilane tether in cases where the vinylsilane failed. ${ }^{3 b}$ Installation of the bromovinylsilane tether proceeded smoothly to afford 163. In this case the radical cyclization proceeded to completion and subsequent desilylation afforded amino alcohol 164. This study suggests that we could use a tethered radical vinylation approach to install the tert-alkylamine of cranomycin.

Scheme 4.2 Tethered radical vinylation model study.

4.3 N -Arylation Model

Our strategy requires N-arylation in the presence of an oxime ether. We were uncertain if this group would survive the transformation. We synthesized known oxazolidinone $\mathbf{1 6 5}^{11}$ and converted it into oxime ether 166 (see Scheme 4.3). Gratifyingly, N-arylation with 3'-bromoacetophenone (167) using Trehan's protocol proceeded smoothly to afford $\mathbf{1 6 8}$ without any evident cleavage of the oxime ether. This allows us to differentiate the carbonyl of the cyclopentanone ring and the acetophenone moiety without using additional protecting groups. If necessary, other ligands ${ }^{12}$ could be explored for the N -arylation process in the total synthesis.

Scheme 4.3 N -arylation model study.

4.4 Tethered Aminohydroxylation Model

We were concerned that an oxime ether would not survive aminohydroxylation. As a tethered aminohydroxylation model study, we synthesized enone $\mathbf{1 6 9}^{13}$ and converted it to carbamate $\mathbf{1 7 0}$ in 3 steps. ${ }^{14}$ Treatment of $\mathbf{1 7 0}$ with potassium osmate did not cleave the oxime ether and did deliver the desired oxazolidinone (171) in low yield, however the majority of the product is derived from N-O cleavage, suggesting that the TA reaction is slow. This could potentially be remedied by modifiying the leaving group, but we decided to pursue a different approach.

Scheme 4.4 Tethered aminohydroxylation model study.

4.5 Aziridination Model

It occurred to us that an aza-Michael ring closure (AZA-MIRC) would be a suitable method for installation of the C-2 and C-3 amino groups. We found an AZA-MIRC protocol for acyclic enones that is followed by a ring opening protocol to prepare oxazolidinones in a formal aminohydroxylation. ${ }^{13}$ It was unclear if this process was suitable for cyclic systems, so we performed the reaction on 2-cyclopenten-1-one (173). The AZA-MIRC reaction failed and further exploration led us to a process that employs chiral amine salt catalysts. ${ }^{8}$ We would be
relying on substrate control for diastereoselectivity, so we explored a racemic AZA-MIRC process with butylamine or pyrrolidine in combination with benzoic acid (see Table 4.1). Butylamine failed to deliver any product, but results were much better when pyrroldine was employed for the reaction. We also explored several carbamates, and found that TrocNHOMs (entries 6 and 7) gave the best results. We also found that AcOH could be used instead of benzoic acid, although the conversion appeared to be slower in this case.

Entry	amine (20 mol\%)	acid (30 mol\%)	carbamate (1.1 Equiv.)	Result
1	BuNH2	$\mathrm{PhCO}_{2} \mathrm{H}$	BocNHOTs	N.R.
2	pyrrolidine	$\mathrm{PhCO}_{2} \mathrm{H}$	BocNHOTs	7.1\% yield
3	BuNH_{2}	$\mathrm{PhCO}_{2} \mathrm{H}$	CbzNHOMs	N.R.
4	pyrrolidine	$\mathrm{PhCO}_{2} \mathrm{H}$	CbzNHOMs	trace 174
5	BuNH_{2}	$\mathrm{PhCO}_{2} \mathrm{H}$	TrocNHOMs	N.R.
6	pyrrolidine	$\mathrm{PhCO}_{2} \mathrm{H}$	TrocNHOMs	73\% yield
7	pyrrolidine	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	TrocNHOMs	48\% yield

Table 4.1 AZA-MIRC model study.
As a continuation of the model study, we first explored the conversion of aziridine $\mathbf{1 7 4}$ to oxazolidinone $\mathbf{1 7 5}$ by treatment with iodide (see Scheme 4.5). Unfortunately, this resulted in reduction at C-2 to afford carbamate 176. However, ring opening with azide under acidic conditions proceeded smoothly to afford $\mathbf{1 7 7}$, providing us with a method to install the C-2 and C-3 amino groups of cranomycin.

Scheme 4.5 Aziridine opening in model system.

4.6 Early Synthetic Route to Methyl Ketone

We initially began our synthesis of cranomycin by targeting a ketone of type 159. To this end, we converted 1,3-dihydroxyacetone dimer (178, Scheme 4.6) into cyanohydrin $\mathbf{1 7 9}$ using Giese's protocol. ${ }^{9 a}$ Methylation and subsequent acidic hydrolysis of the orthoester delivered ketone 180. We were able to protect the primary alcohol of $\mathbf{1 8 0}$ successfully with either a TBDPS or benzyl group, but we were unable to realize the transformation to $\mathbf{1 8 1}$ by this methodology. We explored hydrolysis of cyanohydrin 179 and attempted differentiation of the primary alcohols, but we were unable to methylate the resultant cyanohydrin, presumably due to steric hindrance from the adjacent TBS group. This required us to modify our strategy to access ketones of type 159. Our successful route will be discussed in Chapter 5.

Scheme 4.6 Attempted synthesis of ketone of type 159.

4.7 Conclusion

We performed a series of model studies to assess the feasibility of late stage transformations in our proposed cranomycin synthesis. After some experimentation, we were able to determine suitable conditions for key transformations, increasing our confidence that we would be able to synthesize cranomycin. A detailed account of our progress on the cranomycin synthesis will be discussed in Chapter 5.

4.8 References

(1) (a) Hanessian, S.; Vakiti, R. R.; Dorich, S.; Banerjee, S.; Lecomte, F.; DelValle, J. R.; Zhang, J.; Deschênes-Simard, B. Angew. Chem. Int. Ed. 2011, 50, 3497-3500. (b)

Hanessian, S.; Vakiti, R. R.; Dorich, S.; Banerjee, S.; Deschênes-Simard, B. J. Org. Chem. 2012, 77, 9458-9472.
(2) (a) Chiara, J. L.; Destabel, C.; Gallego, P.; Marco-Contelles, J. J. Org. Chem. 1996, 61, 359-360. (b) Keck, G. E.; Wager, T. T.; McHardy, S. F. Tetrahedron 1999, 55, 1175511772.
(3) (a) Friestad, G. K.; Massari, S. E. J. Org. Chem. 2004, 69, 863-875. (b) Friestad, G. K.; Jiant, T.; Mathies, A. K. Tetrahedron 2007, 63, 3964-3972.
(4) Mallesham, B.; Rajesh, B. M.; Reddy, P. R.; Srinivas, D.; Trehan, S. Org. Lett. 2003, 5, 963-965.
(5) (a) Donohoe, T. J.; Bataille, C. J. R.; Gattrell, W.; Kloesges, J.; Rossignol, E. Org. Lett. 20
(6) (a) Kang, Q.; Zhang, Y. Org. Biomol. Chem. 2011, 9, 6715-6720 (b) Donohoe, T. J.; Chughtai, M. J.; Klauber, D. J.; Griffin, D.; Campbell, A. D. J. Am. Chem. Soc. 2006, 128, 2514-2515.
(7) Malinowski, J. T.; McCarver, S. J.; Johnson, J. S. Org. Lett. 2012, 14, 2878-2881.
(8) (a) De Vincentiis, F.; Bencivenni, G.; Pesciaioli, F.; Mazzanti, A.; Bartoli, G.; Galzerano, P.; Melchiorre, P. Chem. Asian J. 2010, 5, 1652-1656. (b) Menjo, Y.; Hamajima, A.; Sesaki, N.; Hamada, Y. Org. Lett. 2011, 13, 5744-5747.
(9) (a) Peukart, S.; Giese, B. J. Org. Chem. 1998, 63, 9045-9051. (b) Müller, S. N.; Batra, R.; Senn M.; Giese, B.; Kisel, M.; Shadyro, O. J. Am. Chem. Soc. 1997, 119, 2795-2803.
(10) Yamamoto, Y.; Matsumi, D. Chem. Commun. 1998, 875-876.
(11) Kim, E. J.; An, K. M.; Ko, S. Y.; Bull. Korean Chem. Soc. 2006, 27, 2019-2022.
(12) (a) Phillips, D. P.; Zhu, X.-F.; Lau, T. L.; He, X.; Yang, K.; Liu, H. Tetrahedron Lett. 2009, 50, 7293-7296. (b) Chen, Y.-J.; Chen, H.-H. Org. Lett. 2006, 8, 5609-5612. (c) Morán-

Ramallal, R.; Liz, R.; Gotor, V. Org. Lett. 2008, 10, 1935-1938. (d) Mino, T.; Harada, Y.;
Shindo, H.; Sakamoto, M.; Fujita, T. Synlett 2008, 614-620. (e) Nandakumar, M. V. Adv. Synth. Catal. 2004, 346, 954-958.
(13) Hudon, J.; Cernak, T. A.; Ashenhurst, J. A.; Gleason, J. L. Angew. Chem. Int. Ed. 2008, 47, 8885-8888.
(14) We would like to acknowledge Braden Leigh for perfoming this reaction sequence.

Chapter 5. Progress Towards the Total Synthesis of Cranomycin

With our model studies complete, we were able to pursue the total synthesis of cranomycin. As mentioned in Chapter 4, we were unable to adapt Giese's protocol for the synthesis of ketone $\mathbf{1 8 1}$. We decided to pursue an alternative method to access this key compound. This chapter contains an account of the successful synthesis of several ketone intermediates. It also includes a summary of the progress that we have currently made towards the synthesis of cranomycin.

5.1 Successful Synthesis of Ketone Substrates

We examined a different strategy to access the hindered methyl ketone substrate. We began with monosilylation of $\mathbf{1 7 8}$ to afford hydroxyketone $\mathbf{1 8 2}$ according to a known procedure. ${ }^{1}$ Then, we explored several benzylation conditions including benzyl 2,2,2-trichloroacetimidate $(\mathrm{Bn}-\mathrm{TCAI}) / \mathrm{TfOH},{ }^{2} \mathrm{AgO} / \mathrm{BnBr},{ }^{3}$ and the Dudley benzylation protocol. ${ }^{4}$ None of these transformations were successful, instead resulting in desilylation. Fortunately, Grignard addition to $\mathbf{1 8 2}$ delivered $\mathbf{1 8 4}$ in good yield. After much experimentation, we found that monobenzylation of diol 184 worked best when performed in DMF that was warmed from $-40{ }^{\circ} \mathrm{C}$ to $-20{ }^{\circ} \mathrm{C}$. Silylation and ozonolysis then afforded ketone 187a. We then attempted Grignard addition to 187a, but the reaction only returned starting material even when refluxed for several hours, an unsurprising result considering the congestion around the carbonyl. Clearly, we needed to use an additive to allow the Grignard reaction to proceed.

Scheme 5.1 Synthesis of ketone 187a and attempted Grignard addition.

5.2 Grignard Additions

Since it has been shown to improve the outcome of 1,2-additions for sterically demanding ketone substrates, we attempted the Grignard addition with $\mathrm{CeCl}_{3} .{ }^{5}$ However, the transformation was unsuccessful. We also found examples that used $\mathrm{ZnCl}_{2}{ }^{6}$ and homogeneous lanthanide additives. ${ }^{7} \mathrm{ZnCl}_{2}$ allowed a trace amount of conversion, but the reaction appeared to stall after a few hours. $\mathrm{CeCl}_{3} \cdot 2 \mathrm{LiCl}$ (prepared in our lab), improved the yield of the transformation somewhat. Fortunately, use of $\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}$ (commercially available as a solution in THF) allowed the reaction to proceed to completion, affording adduct $\mathbf{1 8 8}$ a in good yield.

		MgBr , THF additive	
187a		188a	
Entry	Additive	Yield	dr
1	CeCl_{3}	0\%	N.A.
2	ZnCl_{2},	trace	N.A.
3	$\mathrm{CeCl}_{3}{ }^{\circ}$	13\% (by NMR)	2:1
4	$\mathrm{LaCl}_{3} \cdot 2$	94\%	2:1

Table 5.1 Grignard addition with additives.

Seeking to improve the diastereoselectivity of the reaction, we prepared ketones $\mathbf{1 8 7 b} \mathbf{b} \mathbf{g}$ (Table 5.2). ${ }^{8}$ Changing protecting groups alone did not have a significant impact on the diastereomeric ratio (dr) of products formed, except in the case of ketone $\mathbf{1 8 7 f}$. We found that running the reaction in a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{THF}$ improved dr in all cases except for ketone 187b. Since the synthesis of $\mathbf{1 8 7}$ a was most convenient, we explored further dilution of the reaction mixture with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and found that a $15: 1$ mixture delivered adduct $\mathbf{1 8 8 a}$ with excellent dr.

Table 5.2 Optimization of Grignard reaction for improved dr.
To determine the relative configuration of 188a, we decided to selectively cleave the benzyl ether. When we explored debenzylation with $\mathrm{Na} / \mathrm{NH}_{3}, \mathbf{1 8 9}$ was formed via silyl migration with no trace of the desired product (see Scheme 5.2). Debenzylation by transfer hydrogenolysis mediated by $\mathrm{Pd}(\mathrm{OH})_{2}$ in the presence of CaCO_{3} and 1-methyl-1,4-cyclohexadiene ${ }^{10}$ gave a significantly higher yield, although silyl migration still occurred occasionally. Diol 190 was
easily converted to acetonide 191 to assign the relative configuration of the vicinal tertiary diol (see Scheme 5.3).

With the relative configuration of $\mathbf{1 8 8 a}$ assigned, we turned our attention to the removal of the benzyl group. Although the benzyl ether was already successfully removed via transfer hydrogenolysis, the process is not well-suited for large scale reactions because of the use of excess $\mathrm{Pd}(\mathrm{OH})_{2}$ and 1-methyl-1,4-cyclohexadiene as the costly hydrogen source. Therefore, the more economical γ-terpinene was explored as the hydrogen source in transfer hydrogenolysis. Gratifyingly, conversion to diol 190 was successful even with a decreased loading of $\mathrm{Pd}(\mathrm{OH})_{2}$ (see Scheme 5.6). However, this reaction suffered from poor reproducibility, giving the silyl migration for reasons that are not currently understood by our group. Fortunately, debenzylation with pentamethybenzene as a cation scavenger and BCl_{3} as a Lewis acid ${ }^{9}$ gave more consistent results.

Scheme 5.2 Debenzylation reactions of 188a.

Scheme 5.3 Assignment of relative configuration.

We also performed a similar reaction sequence with both isomers of $\mathbf{1 8 8 f}$ (Scheme 5.4). After considerable experimentation, we found that BCl_{3} in the presence of pentamethylbenzene effected the MOM deprotection in high yield. ${ }^{9}$ Diols 192 and epi-192 were converted into acetonides 193 and epi-193. NOESY spectra of these compounds confirmed that the diastereoselectivity for $\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}$-promoted 1,2 -addition to $\mathbf{1 8 7 f}$ was similar to that for addition to $\mathbf{1 8 7 a}$.

Scheme 5.4. Assignment of relative configuration of $\mathbf{1 8 8 f}$.
Improved selectivity by dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ suggests that chelation control ${ }^{11}$ may be involved. A rationale for the observed diastereoselectivity is shown in Scheme 5.5. Nucleophilic addition occurs on the less-hindered face of 1,3-chelate \mathbf{A} to deliver 188a. When THF is employed as the only solvent in the reaction, a less-selective non-chelated addition process may become competitive due to disruption of \mathbf{A} by THF. The presence of two chelating groups in 187b allows a competitive 1,2-chelated intermediate, which may explain why good selectivity was not achieved even when the reaction was run in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{THF}$ mixtures.

Scheme 5.5. Rationale for stereocontrol.

5.3 Intramolecular Aldol Reaction

Oxidation of $\mathbf{1 9 0}$ was cleanly performed by treatment with IBX in DMSO. Ozonolysis originally resulted in decomposition of $\mathbf{1 9 4}$. We found that stirring olefin 194 under a stream of ozone rather than bubbling ozone directly into the solution prevented the formation of undesired byproducts. We attempted several conditions for the intramolecular aldol reaction. Basic conditions (NaOH , $\mathrm{NaOMe}, \mathrm{KO} t$ - Bu , etc.) caused unproductive decomposition of 195. A Mukaiyama-type cyclization ${ }^{12}$ afforded 196 and epi-196 as well as a minor amount of enone 197. The transformation worked best when reaction time was short (ca. 5 min), as prolonged reaction times resulted in lower yields. The NOESY spectra of 196, epi-196, and 197 provided further evidence of the relative configuration of the tertiary diol centers (see Figure 5.1). The mixture of 196 and epi-196 was converted to 197 by $\mathrm{DBU} / \mathrm{MsCl}$.

Scheme 5.6. Synthesis of enone 197.

196

epi-196

197

Figure 5.1. Diagnostic nOes of aldol products.
Somewhat disappointed by the low yield for dehydration of 196 to 197, we tried other conditions including $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{TsCl}$, which was sluggish and required excess TsCl to proceed to completion, which complicated purification. Employing MsCl in combination with $\mathrm{Et}_{3} \mathrm{~N}$ led to significant amounts of unidentified byproducts. Since $\mathrm{DBU} / \mathrm{MsCl}$ gave the best result, we decided to carry on with those conditions for the time being.

5.4 Desilylation and Aziridination

In order to ensure good diastereoselectivity for the aziridination reaction and to facilitate further steps in the synthesis, removal of the primary TBS protecting group is required. $\mathrm{HF} \cdot \mathrm{py},{ }^{13}$ 10-CSA, ${ }^{14}$ PPTS, ${ }^{15} \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O},{ }^{16} \mathrm{NaIO}_{4},{ }^{17}$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} / \mathrm{I}_{2}{ }^{18}$ all failed to deliver the desired product. $\mathrm{NH}_{4} \mathrm{~F}^{19}$ effected the transformation, but delivered a complex mixture of products. Fortunately, stirring 197 in $\mathrm{AcOH}-\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(3: 1: 1)$ at $80^{\circ} \mathrm{C}^{20}$ cleanly afforded 198. Our initial attempts to purify 196 on silica gel failed, but we found that it was stable to Florisil®. When applied to diol 196 these same conditions were able to dehydrate and selectively remove the primary TBS group in a single step. We attempted aziridination on crude $\mathbf{1 9 8}$ by the conditions found in our model study (see Chapter 4.5), but the reaction failed to proceed. We realized that we would need to consider alternative conditions for aziridination of 198.

Scheme 5.7 Selective desilylation and attempted aziridination conditions.
We posited that increased steric demand of $\mathbf{1 9 8}$ could prevent aziridination by (1) blocking iminium ion formation or (2) blocking Michael-addition. Using a smaller ammonium salt should allow the iminium ion formation. Increased reaction temperature should allow the Michael-addition to occur as well, so long as the carbamate did not decompose in the process. These conditions were run on the model substrate first to ensure that they were viable for the transformation. We found that $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}$ was a suitable salt for the transformation. We then set up the reaction with 198 and ran it from it up to $55^{\circ} \mathrm{C}$ in 10 degreee increments and monitored the reaction by NMR (Scheme 5.8). This reaction has not afforded any aziridine.

Scheme 5.8 Aziridination with $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}$.
As we searched in the literature, we found that nitrenes have successfully been used for aziridination of enones. ${ }^{21}$ While aziridination was successful on the model compound it was not effective when the same conditions were applied to 198 . We then found that Lebel and colleagues employed copper(II) catalysts for toxyloxycarbamates tethered to allylic alcohols. ${ }^{22}$ We converted the ketone to oxime $\mathbf{2 0 0}$ by heating enone $\mathbf{1 9 8}$ in pyridine with $\mathrm{BnONH}_{2} \cdot \mathrm{HCl}$
(Scheme 5.10). At this stage we have two possible pathways to pursue. We can attempt to protonate the oxime to allow it to undergo an AZA-MIRC reaction (see Scheme 5.10), or we can pursue Lebel's intramolecular aziridination conditions (see Scheme 5.11).

Scheme 5.9 Nitrene-mediated aziridination of model substrate and attempted aziridination of 198.

Scheme 5.10 Attempted aziridination of oxime 200.

Scheme 5.11 Alternative aziridination protocol.

5.5 Conclusion

Our strategy for the cranomycin synthesis has allowed us to construct enone 198, the core structure of cranomycin. We are currently pursuing studies to form $\mathrm{C}-\mathrm{N}$ bonds at $\mathrm{C}-2$ and $\mathrm{C}-3$, which should bring us closer to completing the first total synthesis of cranomycin.

5.6 References

(1) Bálinta, J.; Egria, G.; Kolberta, A.; Dianóczkyb, C.; Fogassya, E.; Novákb, L.; Poppec, L. Tetrahedron: Asymmetry 1999, 10, 4017-4028.
(2) Tang, G.; Tian, H.; Ma, D. Tetrahedron 2004, 60, 10547-10552.
(3) Matsutani, H.; Ichikawa, S.; Yaruva, J. Kusumoto, T.; Hiyama, T. J. Am. Chem. Soc. 1997, 119, 4541-4542.
(4) Poon, K. W. C.; Dudley, G. B. J. Org. Chem. 2006, 71, 3923-2927.
(5) (a) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 4392-4398. (b) Bartoli, G.; Marcantoni, E.; Marcolini, M.; Sambri, L. Chem. Rev. 2010, 110, 6104-6143.
(6) M. Hatano, O. Ito, S. Suzuki, K. Ishihara, J. Org. Chem., 2010, 75, 5008-5016.
(7) Krasovskiy, A.; Kopp, F.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 497-500.
(8) See supporting information of Loertscher, B. M.; Young, P. R.; Evans, P. R.; Castle, S. L. Org. Lett. 2013, 15, 1930-1933.
(9) Okano, K.; Okuyama, K.-i.; Fukuyama, T.; Tokuyama, H. Synlett 2008, 1977-1980.
(10) Smith, A. B., III; Lin, Q.; Doughty, V. A.; Zhuang, L.; McBriar, M. D.; Kerns, J. K.; Boldi, A. M.; Murase, N.; Moser, W. H.; Brook, C. S.; Bennett, C. S.; Nakayama, K.; Sobukawa, M.; Trout, R. E. L. Tetrahedron 2009, 65, 6470-6488.
(11) (a) Leitereg, T. J.; Cram, D. J. J. Am. Chem. Soc. 1968, 90, 4019-4026. (b) Still, W. C.; Schneider, J. A. Tetrahedron Lett. 1980, 21, 1035-1038. (c) Reetz, M. T.; Kesseler, K.; Jung, A. Tetrahedron Lett. 1984, 25, 729-732. (d) Keck, G. E.; Castellino, S. J. Am. Chem. Soc. 1986, 108, 3847-3849. Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc. 1988,

110, 2506-2526. (f) Carreira, E. M.; Kvaerno, L. Classics in Stereoselective Synthesis; Wiley-VCH: Weinheim, 2009; pp 29-37.
(12) (a) Hanessian, S.; Vakiti, R. R.; Dorich, S.; Banerjee, S.; Lecomte, F.; DelValle, J. R.; Zhang, J.; Deschênes-Simard, B. Angew. Chem. Int. Ed. 2011, 50, 3497-3500. (b) Hanessian, S.; Vakiti, R. R.; Dorich, S.; Banerjee, S.; Deschênes-Simard, B. J. Org. Chem. 2012, 77, 9458-9472.
(13) Gao, D.; O’Doherty, G. A. Org. Lett. 2010, 12, 4752-3755.
(14) Johnson, H. W. B.; Majumder, U.; Rainier, J. D. J. Am. Chem. Soc. 2005, 127, 848-849.
(15) Ghosh, A. K.; Gong, K. Org. Lett. 2007, 9, 1437-1440.
(16) Reddy, C. R.; Dharmapuri, G.; Rao, N. N. Org. Lett. 2009, 11, 5730-5733.
(17) Li, J.; Menche, D. Synthesis 2009, 1904-1908.
(18) Bartoli, G.; Bosco, M.; Marcantoni, E.; Sambri, L.; Torregiani, E. Synlett 1998, 209-211
(19) Ohyoshi, T.; Miyazawa, Y.; Aoki, K.; Ohmura, S.; Asuma, Y.; Hayakawa, I.; Kigoshi, H. 2011, 13, 2160-2163.
(20) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190-6191.
(21) (a) Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P. A. Synthesis 2001, 1975-1978. (b) Fioravanti, S.; Mascia, M. G.; Morreale, A.; Pellacani, L.; Tardella, P. A. Eur. J. Org. Chem. 2002, 4071-4074. (c) Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P. A. J. Org. Chem. 2002, 67, 4972-4974. (d Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P. A. Eur. J. Org. Chem. 2003, 4549-4552. (e) Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P. A. Synlett 2004, 1083-1085.
(22) Lebel, H.; Lectard, S.; Parmentier, M. Org. Lett. 2007, 9, 4797-4800.
(23) Qin, L.; Zhou, Z.; Wei, J.; Yan, T.; Wen, H. Synth. Commun. 2010, 40, 642-646.

Chapter 6. Experimental Section

6.1 General Experimental Details.

Dichloromethane, dimethylformamide, dimethylsulfoxide, pyridine, tetrahydrofuran, benzene, toluene, and triethylamine were dried by passage through a solvent drying system containing cylinders of activated alumina. ${ }^{1}$ Other solvents and reagents were purchased from commercial vendors and used without purification. Flash chromatography was carried out using 60-230 mesh silica gel. ${ }^{1} \mathrm{H}$ NMR spectra were acquired on a 500 MHz spectrometer with chloroform (7.27 ppm) as internal reference. Signals are reported as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), br s (broad singlet), m (multiplet). Coupling constants are reported in hertz (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a spectrometer operating at 125 MHz with chloroform (77.23 ppm) as internal reference. Infrared spectra were obtained on an FT-IR spectrometer. Mass spectral data were obtained using ESI techniques.

6.2 Experimental procedures and spectral data.

(E)-(((4-iodobut-2-en-1-yl)oxy)methanetriyl)tribenzene (66). Triethylamine $(5.40 \mathrm{~mL}, 3.94 \mathrm{~g}, 39.0 \mathrm{mmol})$ and methanesulfonyl chloride $(1.50 \mathrm{~mL}, 2.22 \mathrm{~g}, 19.4 \mathrm{mmol})$ were added successively to a solution of alcohol $67^{2}(4.2904 \mathrm{~g}, 13.9847 \mathrm{mmol})$ in anhydrous THF $(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The resultant mixture was warmed to rt and stirred for 4 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. NOTE: The procedure below was performed in the dark as the product is light sensitive. The
crude mesylate was dissolved in acetone $(100 \mathrm{~mL})$ and treated with $\mathrm{NaI}(5.7464 \mathrm{~g}, 38.337 \mathrm{mmol})$. The resultant mixture was refluxed under Ar for 18 h in the dark. The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, and the volatiles were removed in vacuo. The remaining aqueous layer was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, and the combined organic layers were washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (500 mL of $\mathrm{SiO}_{2}, 0-2 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded iodide $\mathbf{6 6}(4.0037 \mathrm{~g}, 9.0927 \mathrm{mmol}$, $70 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.46-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$, 7.26-7.23 (m, 3H), 6.12-6.05 (m, 1H), $5.80(\mathrm{dt}, J=15.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.62(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H})$; HRMS (ESI) $m / z 441.0732\left(\mathrm{MH}^{+}, \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{OIH}^{+}\right.$requires 441.0710).

4-Hydroxy-N-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N-

methylbutanamide (70). A solution of $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $2.10 \mathrm{~mL}, 3.36 \mathrm{mmol}$) was added to an ice-cooled suspension of $\mathrm{LiCl}(810.7 \mathrm{mg}, 19.12 \mathrm{mmol})$ and $(1 \mathrm{~S}, 2 \mathrm{~S})-(+)-$ pseudoephedrine ($1.0534 \mathrm{~g}, 6.3754 \mathrm{mmol}$) in anhydrous THF (40 mL), and the suspension was stirred at $0^{\circ} \mathrm{C}$ under Ar for 30 min . Then, a solution of methyl 4-hydroxybutanoate ${ }^{3}$ ($\mathbf{6 9}, 1.5062$ $\mathrm{g}, 12.750 \mathrm{mmol})$ in anhydrous THF (8 mL) was added to the mixture, and it was warmed to rt and stirred under Ar for 3 h . The reaction was quenched by the addition of $0.5 \mathrm{~N} \mathrm{NaOH}(20 \mathrm{~mL})$, and the volatiles were removed in vacuo. The residue was extracted with $\mathrm{CHCl} 3-\mathrm{iPrOH} 3: 1(4 \times$ 25 mL), and the combined organic layers were washed with brine (100 mL), dried (Na2SO4), and concentrated in vacuo. Flash chromatography (200 mL of $\mathrm{SiO} 2,3-10 \% \mathrm{MeOH}$ in CH 2 Cl 2 gradient elution) afforded $70(1.5416 \mathrm{~g}, 6.1338 \mathrm{mmol}, 96 \%)$ as a brown oil: ${ }^{1} \mathrm{H} \mathrm{NMR}(\mathrm{CDCl} 3$, 500 MHz , mixture of rotamers, data for major rotamer) $\delta 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.59(\mathrm{dd}, \mathrm{J}=13.8$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.74-3.66(\mathrm{~m}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.55-2.41(\mathrm{~m}, 2 \mathrm{H})$,
$1.93-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(\mathrm{CDCl} 3,125 \mathrm{MHz}$, mixture of rotamers, data for major rotamer) $\delta 173.8,142.2,127.5(2 \mathrm{C}), 126.7,126.1(2 \mathrm{C}), 75.0,61.9,57.7,29.7,27.8$, 26.4, 13.6; IR (film) $v_{\text {max }} 3376,2937,1614,1482,1453,1407,1049 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z $274.14082\left(\mathrm{MNa}+, \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}+\right.$ requires 274.14136).

N-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N-methyl-4(triisopropylsilyloxy) butanamide (79). A solution of 70 ($294.5 \mathrm{mg}, 1.172 \mathrm{mmol}$) in anhydrous DMF (1.6 mL) at rt under Ar was treated with imidazole ($199.4 \mathrm{mg}, 2.929 \mathrm{mmol}$) and TIPS-Cl ($390 \mu \mathrm{~L}, 351 \mathrm{mg}, 1.82 \mathrm{mmol}$). The resultant mixture was stirred at rt for 24 h , and the reaction was quenched by the addition of brine $(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ $\mathrm{mL})$, and the combined organic layers were washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (50 mL of $\mathrm{SiO}_{2}, 5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ elution) afforded 79 ($477.7 \mathrm{mg}, 1.172 \mathrm{mmol}$, quant.) as a yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$, mixture of rotamers) $\delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.59-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{~s}$, $3 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.06-0.96(\mathrm{~m}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$, mixture of rotamers) $\delta 175.3,142.6,128.3$ (2C), 127.6, 126.5 (2C), 76.4, $62.4,58.3,30.6,28.4$, $26.8,18.0$ (6C), 14.4, 12.0 (3C); IR (film) $v_{\max } 3388,2942,2865,1623,1463,1405,1105,1067$ cm^{-1}; HRMS (ESI) $m / z 430.27546\left(\mathrm{MNa}^{+}, \mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{SiNa}^{+}\right.$requires 430.27479).

(S,E)-N-((1S,2S)-1-Hydroxy-1-phenylpropan-2-yl)-N-methyl-2-(2-(triisopropylsilyloxy)ethyl)-6-(trityloxy)hex-4-enamide (80). A solution of n - BuLi (1.6 M in hexane, $1.50 \mathrm{~mL}, 2.41 \mathrm{mmol}$) was added to a suspension of LiCl (flame-dried, 294.9 mg ,
$6.9558 \mathrm{mmol})$ and $i-\operatorname{Pr}_{2} \mathrm{NH}(370 \mu \mathrm{~L}, 263.9 \mathrm{~g}, 2.6084 \mathrm{mmol})$ in anhydrous THF $(2.8 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$ under Ar. The resulting suspension was stirred at $-78^{\circ} \mathrm{C}$ under Ar for 10 minutes, then warmed to $0{ }^{\circ} \mathrm{C}$, stirred for 5 min , cooled to $-78^{\circ} \mathrm{C}$, and treated with an ice-cooled solution of 79 $(472.6 \mathrm{mg}, 1.1593 \mathrm{mmol})$ in anhydrous THF (1.4 mL). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ under Ar for 1 h , at $0^{\circ} \mathrm{C}$ for 15 min , and at rt for 5 min . It was then cooled to $0^{\circ} \mathrm{C}$ and treated with allylic iodide 66 ($578.9 \mathrm{mg}, 1.3147 \mathrm{mmol}$). The resultant mixture was stirred at $0{ }^{\circ} \mathrm{C}$ under Ar for 2.5 h . The reaction was quenched by the addition of sat aq $\mathrm{NH}_{4} \mathrm{Cl}(18 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(18 \mathrm{~mL})$, and the mixture was extracted with EtOAc $(3 \times 40 \mathrm{~mL})$. Flash chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{MeOH}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ elution) afforded $\mathbf{8 0}(609.1 \mathrm{mg}, 0.8459 \mathrm{mmol}, 73 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 500 MHz , mixture of rotamers) $\delta 7.45-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.20(\mathrm{~m}, 17 \mathrm{H}), 5.74-5.60(\mathrm{~m}, 2 \mathrm{H})$, 4.65-4.62 (m, 1H), 4.48 (br s, 1H), 3.81-3.77 (m, 2H), 3.69-3.65 (m, 1H), 3.60-3.52 (m, 2H), 3.13-3.09 (m, 1H), 2.97 and $2.95(2 \mathrm{~s}, 3 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.05(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 178.0,144.5(3 \mathrm{C})$, $142.9,131.1,129.1$ (2C), 128.9 (2C), 128.6, 128.5 (6C), 128.0 (6C), 127.7, 127.2 (3C), 87.0, $76.4,64.9,61.1,60.8,58.1,38.6,36.1,35.7,18.4$ (6C), 14.9, 12.3 (3C); IR (film) $v_{\max } 3388$, 2942, 2865, 1623, 1463, 1405, 1366, $1105 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 742.42604\left(\mathrm{MNa}^{+}\right.$, $\mathrm{C}_{46} \mathrm{H}_{61} \mathrm{NO}_{4} \mathrm{SiNa}^{+}$requires 742.42621).

(S,E)-2-(2-(Triisopropylsilyloxy)ethyl)-6-(trityloxy)hex-4-en-1-ol

(81). A flame-dried round bottom flask containing anhydrous THF (200 mL) at $-78^{\circ} \mathrm{C}$ under Ar was treated with $i-\operatorname{Pr}_{2} \mathrm{NH}(10.3 \mathrm{~mL}, 7.44 \mathrm{~g}, 72.97 \mathrm{mmol})$ followed by $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $42.0 \mathrm{~mL}, 67.2 \mathrm{mmol}$). The resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , at $0^{\circ} \mathrm{C}$ for 5 min ,
and then cooled to $-78{ }^{\circ} \mathrm{C}$. Borane-ammonia complex $(90 \%, 2.38 \mathrm{~g}, 69.4 \mathrm{mmol})$ was added to the mixture in one portion, and it was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min , then at rt for 20 min . The mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and treated dropwise with a solution of $\mathbf{8 0}(12.5 \mathrm{~g}, 17.4 \mathrm{mmol})$ in anhydrous THF (127 mL). The resulting mixture was stirred at rt under Ar for 50 min , then cooled to $0{ }^{\circ} \mathrm{C}$ and treated with sat aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, and the combined organic layers were washed with brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}\right.$ in hexanes elution) afforded $\mathbf{8 1}(8.83 \mathrm{~g}, 15.8 \mathrm{mmol}, 91 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $7.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.84-5.78(\mathrm{~m}, 1 \mathrm{H})$, $5.74-5.69(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=5.5$ Hz, 2H), 3.60-3.56 (m, 1H), 3.49 (br s, 1H), 2.63-2.21 (m, 1H), 2.17-2.09 (m, 1H), 1.88-1.84 $(\mathrm{m}, 1 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.16(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 144.6$ (3C), 130.8, 129.0 (7C), 128.1 (6C), 127.2 (3C), 87.1, 66.2, 65.2, 62.5, 39.9, 35.6, $35.3,18.3$ (6C), 12.2 (3C); IR (film) $v_{\max } 3415,2941,2865,1490,1448,1381,1098,1055 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 576.38523\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{36} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 576.38675).

(S,E)-tert-Butyl((3-((naphthalen-2-ylmethoxy)methyl)-7-

 (trityloxy)hept-5-en-1-yl)oxy)diphenylsilane (78). A solution of 81 ($500 \mathrm{mg}, 0.895 \mathrm{mmol}$) in anhydrous DMF-THF $1: 1(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar was treated with $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $72.0 \mathrm{mg}, 1.80 \mathrm{mmol}$) followed by 2 -(bromomethyl)naphthalene ($297 \mathrm{mg}, 1.34$ mmol). The resultant mixture was stirred at $0{ }^{\circ} \mathrm{C}$ under Ar for 12 h , then treated with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers werewashed with brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 2 \% \mathrm{EtOAc}\right.$ in hexanes elution) afforded the triether ($\left.557 \mathrm{mg}, 0.797 \mathrm{mmol}, 89 \%\right)$ as a colorless oil.

A solution of the obtained triether ($557 \mathrm{mg}, 0.797 \mathrm{mmol}$) in anhydrous THF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar was treated with TBAF (1.0 M in THF, $1.80 \mathrm{~mL}, 1.80 \mathrm{mmol}$). The resultant mixture was stirred at rt under Ar for 8 h . then treated with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 8 \mathrm{~mL})$. The combined organic layers were washed with brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 35 \% \mathrm{EtOAc}\right.$ in hexanes elution) afforded alcohol $82(411 \mathrm{mg}, 0.757 \mathrm{mmol}, 95 \%)$ as a colorless oil.

A solution of $\mathbf{8 2}(411 \mathrm{mg}, 0.757 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar was treated with $\mathrm{Et}_{3} \mathrm{~N}(150 \mu \mathrm{~L}, 109 \mathrm{mg}, 1.08 \mathrm{mmol})$, DMAP ($22.0 \mathrm{mg}, 0.180 \mathrm{mmol}$), and TBDPS-Cl $(260 \mu \mathrm{~L}, 275 \mathrm{mg}, 1.00 \mathrm{mmol})$. The resultant mixture was stirred at rt under Ar for 24 h. The reaction was quenched by the addition of sat aq $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$, and the combined organic layers were washed with brine $(4 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 2 \% \mathrm{EtOAc}\right.$ in hexanes elution) afforded 78 ($411.8 \mathrm{mg}, 0.527 \mathrm{mmol}, 70 \%$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.85-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.48-$ $7.21(\mathrm{~m}, 24 \mathrm{H}), 5.71-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.64-5.59(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{dt}, J=6.6,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.54(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.98$ $(\mathrm{m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ; 144.5(3 \mathrm{C}), 136.3,135.7$ (2C), 134.1, 133.4, 133.0, 130.6, 129.7 (2C), 128.8 (4C), 128.7, 128.2, 128.2, 128.0, 127.9 (4C), 127.8, 127.7 (6C), 127.0 (6C), 126.3, 126.1, 125.8 (3C), 73.2, 73.0, 65.1, 62.2, 60.5, 35.5, 34.6, 34.1, 27.0 (3C), 19.3; IR (film) $v_{\max } 3055,2929,2856,1489,1448,1428,1372,1265,1110 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z
$798.43376\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{54} \mathrm{H}_{56} \mathrm{O}_{3} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 798.43370). 79 was obtained in 94% ee as analysed by HPLC (Chiralcel OD-H, 99.2:0.8 hexane: $i-\operatorname{PrOH} 1 \mathrm{~mL} / \mathrm{min} ; t_{\mathrm{R}}=6.7 \mathrm{~min}$ (major), $7.9 \min ($ minor $)$).

tert-Butyl((R)-4-(naphthalen-2-ylmethoxy)-3-(((2R,3R)-3-(trityloxymethyl)oxiran-2-yl)methyl)butoxy)diphenylsilane (83). A solution of alkene 78 $(128.6 \mathrm{mg}, 0.1646 \mathrm{mmol})$ in dimethoxymethane $/ \mathrm{CH}_{3} \mathrm{CN}(2: 1,1.86 \mathrm{~mL})$ was treated sequentially with a $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{CH}_{3} \mathrm{COOH}$ buffer solution $(1.12 \mathrm{~mL}), \mathrm{Bu}_{4} \mathrm{NHSO}_{4}(1.5 \mathrm{mg}, 0.0044 \mathrm{mmol})$, and ketone $76(52.0 \mathrm{mg}, 0.201 \mathrm{mmol})$. A solution of $\mathrm{Oxone}{ }^{\circledR}(161.2 \mathrm{mg}, 0.2622 \mathrm{mmol})$ in 4×10^{-4} M aq Na_{2} EDTA $(0.62 \mathrm{~mL})$ and a 1.47 M aq KOH solution $(0.62 \mathrm{~mL})$ were added simultaneously and dropwise to this mixture at the same rate. The resulting suspension was stirred at rt for 5 hr , and an additional quantity of ketone $75(52.0 \mathrm{mg}, 0.201 \mathrm{mmol})$ was added. Then, a solution of oxone ${ }^{\circledR}(161.2 \mathrm{~g}, 0.2622 \mathrm{mmol})$ in $4 \times 10^{-4} \mathrm{M}$ aq Na_{2} EDTA $(0.62 \mathrm{~mL})$ and a 1.47 M aq KOH solution (0.62 mL) were once again added simultaneously and dropwise to this mixture at the same rate. The resulting suspension was stirred at rt for 4 h and then extracted with EtOAc $(3 \times 5$ $\mathrm{mL})$. The combined organic layers were washed with brine $(3 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{EtOAc}\right.$ in hexanes elution) afforded $\mathbf{8 3}$ ($115.0 \mathrm{mg}, 0.144 \mathrm{mmol}, 72 \%$) as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.83-7.71(\mathrm{~m}$, $4 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 8 \mathrm{H}), 7.41-7.21(\mathrm{~m}, 16 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.45(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{dd}, J=10.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=11.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.90-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 143.9$ (3C), 136.0, 135.5 (2C), 133.8, 133.2, 132.9, 129.6 (2C), 128.7
(4C), 128.1 (4C), 127.9, 127.8 (6C), 127.7, 127.6 (6C), 127.0 (3C), 126.2, 126.0, 125.75, 125.67, 86.7, $73.10,73.08,64.7,61.8,57.2,55.0,34.2,34.1,33.8,26.9$ (3C), 19.2; IR (film) $v_{\max } 2928$, 1448, 1427, $1110 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 814.43165\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{54} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 814.42861).

(R)-4-(Naphthalen-2-ylmethoxy)-3-(($(2 R, 3 R)-3-$
(trityloxymethyl)oxiran-2-yl)methyl)butan-1-ol (84). A solution of Oxone ${ }^{\circledR}$ (260.8 mg , $0.4242 \mathrm{mmol})$ in $4 \times 10^{-4} \mathrm{M}$ aq Na_{2} EDTA $(1.5 \mathrm{~mL})$ and a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(246.4 \mathrm{mg}, 1.7829$ $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ were added simultaneously and dropwise by syringe pump over 6 h to a suspension of alcohol $\mathbf{8 2}(166.8 \mathrm{mg}, 0.3073 \mathrm{mmol})$, ketone $\mathbf{7 5}(159.1 \mathrm{mg}, 0.6160 \mathrm{mmol})$, and $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(2.3 \mathrm{mg}, 0.0068 \mathrm{mmol})$ in dimethoxymethane $-\mathrm{CH}_{3} \mathrm{CN}(2: 1,3.1 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}-$ AcOH buffer ${ }^{3}(2.1 \mathrm{~mL})$ at rt in an open flask. The resultant mixture was stirred at $0^{\circ} \mathrm{C}$ for an additional 2 h then was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ $10 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (40 mL of $\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}$ in hexanes elution) afforded epoxide $84(121.6 \mathrm{mg}, 0.2176 \mathrm{mmol}, 71 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 7.84-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 8 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 10 \mathrm{H}), 4.69(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.67(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=9.5$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.88(\mathrm{~m}, 1 \mathrm{H})$, $2.85(\mathrm{dt}, J=5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.58(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 143.8(3 \mathrm{C}), 135.3,133.2,133.0,128.6$ (6C), 128.3, 127.9, 127.8 (6C),
127.7, 127.1 (3C), 126.6, 126.1, 125.9, 125.7, 86.8, 73.8, 73.5, 64.5, 60.9, 57.1, 55.0, 35.7, 34.7, 24.3; HRMS (ESI) $m / z 559.2822\left(\mathrm{MH}^{+}, \mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{H}^{+}\right.$requires 559.2843).
tert-Butyl((R)-4-(naphthalen-2-ylmethoxy)-3-(((2R,3R)-3-(trityloxymethyl)oxiran-2yl)methyl)butoxy)diphenylsilane (83, prepared from 84). $\mathrm{Et}_{3} \mathrm{~N}(210 \mu \mathrm{~L}, 152 \mathrm{mg}, 1.51 \mathrm{mmol})$, DMAP ($25.8 \mathrm{mg}, 0.211 \mathrm{mmol}$), and TBDPS-Cl $(360 \mu \mathrm{~L}, 381 \mathrm{mg}, 1.38 \mathrm{mmol})$ were added successively to a solution of epoxy alcohol $\mathbf{8 4}(589.4 \mathrm{mg}, 1.0549 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2}. The resultant mixture was stirred at rt for 18 h . The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (100 mL of $\mathrm{SiO}_{2}, 1-2 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded epoxide $83(840.9 \mathrm{mg}, 1.0549 \mathrm{mmol}$, quant.) as a colorless oil. Spectral data were identical to those reported above in the preparation of $\mathbf{8 3}$ from $\mathbf{7 8}$.

(4S,5R,7R)-9-(tert-Butyldiphenylsilyloxy)-7-((naphthalen-2-ylmethoxy)methyl)-5- (trityloxy)non-1-en-4-ol (87a or 87b). A mixture of $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}(23.2$ $\mathrm{mg}, 0.113 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{~S}(51 \mu \mathrm{~L})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(0.51 \mathrm{~mL})$ at $-15{ }^{\circ} \mathrm{C}$ under Ar was treated with vinylmagnesium bromide (1.0 M in THF, $0.34 \mathrm{~mL}, 0.34 \mathrm{mmol}$). The resultant mixture was stirred at $-15^{\circ} \mathrm{C}$ for 30 min and at $0^{\circ} \mathrm{C}$ for 30 min . A solution of epoxide $\mathbf{8 3}$ (45.0 $\mathrm{mg}, 0.0565 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added dropwise to the mixture. The resultant mixture was warmed to rt and stirred under Ar for 18 h . The reaction was quenched by the addition of brine $(0.5 \mathrm{~mL})$. The mixture was extracted with EtOAc $(3 \times 3 \mathrm{~mL})$, and the combined organic layers were washed with brine $(1 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in
vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.$ in hexanes elution) afforded $87(37.8 \mathrm{mg}$, $0.0458 \mathrm{mmol}, 81 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.84-7.65(\mathrm{~m}, 8 \mathrm{H}), 7.50-$ $7.43(\mathrm{~m}, 9 \mathrm{H}), 7.41-7.23(\mathrm{~m}, 15 \mathrm{H}), 5.77(\mathrm{ddd}, J=17.4 \mathrm{~Hz}, 10.7 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (ddd, $J=$ $17.4 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (ddd, $J=10.7 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58$ (s, 2H), 3.73$3.67(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.27$ (m, 2H), $1.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 144.0(3 \mathrm{C}), 142.0,136.4,135.8$ (2C), $134.3,133.5,133.2,129.7$ (2C), 129.0 (4C), 128.2 (2C), 128.0 (4C), 127.9 (6C), 127.8 (6C), 127.3 (2C), 126.4, 126.2, 125.9 (3C), 114.2, 75.5, 73.6, 73.5, 73.3, 69.7, $62.3,35.6,35.0,34.8$, 34.7, 27.1 (3C), 19.4; IR (film) $v_{\max } 3056,2929,2857,1599,1489,1448,1427,1088,1032$ cm^{-1}; HRMS (ESI) m/z $842.45747\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{56} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 842.45991).

(4S,5R,7R)-9-(tert-Butyldiphenylsilyloxy)-7-((naphthalen-2-
ylmethoxy)methyl)non-1- ene-4,5-diol (91). A solution of $\mathrm{BCl}_{3}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 65 \mu \mathrm{~L}, 0.065$ mmol) was added dropwise to a solution of alcohol $\mathbf{8 7 a}$ or $\mathbf{8 7 b}(54.9 \mathrm{mg}, 0.0665 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at $-35^{\circ} \mathrm{C}$ under Ar. The resultant mixture was stirred at $-35^{\circ} \mathrm{C}$ for 30 min , and the reaction was quenched by the addition of $\mathrm{MeOH}(2.0 \mathrm{~mL})$. The suspension was poured into sat aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (10 mL of $\mathrm{SiO}_{2}, 20 \%$ EtOAc in hexanes elution) afforded diol 91 (32.1 $\mathrm{mg}, 0.0551 \mathrm{mmol}, 83 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.86-7.75(\mathrm{~m}, 4 \mathrm{H})$, $7.68-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 4 \mathrm{H}), 5.73(\mathrm{dd}, J=17.1$
$\mathrm{Hz}, 10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=17.1 \mathrm{~Hz}, 5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=10.7 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}$, $2 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=19.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.87-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 140.6,136.0,135.6$ (4C), 134.0 (2C), 133.3, 133.0, 129.6 (2C), 128.1, $127.9,127.7,127.6$ (4C), 126.3, 126.1, 125.83, 125.78, 115.3, 76.0, 73.1, 68.9, 68.8, 62.0, 35.4, $34.5,34.0,26.9$ (3C), 25.0, 19.2; IR (film) $v_{\max } 3418,2930,2857,1471,1427,1389,1110 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z $605.30492\left(\mathrm{MNa}+, \mathrm{C}_{37} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{SiNa}^{+}\right.$requires 605.30576).

((R)-4-((2R,3R)-3-Allyloxiran-2-yl)-3-((naphthalen-2-
ylmethoxy)methyl)butoxy)(tert- butyl)diphenylsilane (92). A solution of $\mathbf{9 1}$ ($13.5 \mathrm{mg}, 0.0232$ $\mathrm{mmol})$ in anhydrous THF $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar was treated with $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $1.9 \mathrm{mg}, 0.0475 \mathrm{mmol}$). The resultant mixture was stirred at rt for 30 min , then cooled to $0{ }^{\circ} \mathrm{C}$ and treated with 2,4,6-triisopropylbenzenesulfonyl imidazole ($8.5 \mathrm{mg}, 0.0254 \mathrm{mmol}$). The mixture was stirred at rt for 2 h , treated with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, and extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography ($\mathrm{SiO} 2,6 \% \mathrm{EtOAc}$ in hexanes elution) afforded $92(11.3 \mathrm{mg}, 0.0200 \mathrm{mmol}, 86 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.86-7.75(\mathrm{~m}$, $4 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.49(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H})$, 5.77-5.71 (ddd, $J=17.5 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.75-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{dd}, J=7.3 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.66-2.65 (m, 1H), 1.89-1.87 (m, 1H), 1.75-1.52 (m, 4H), 1.51-1.44 (m, 1H), 1.30-1.26 (m, $1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 137.54,137.47,135.6(2 \mathrm{C}), 134.0,133.3$,
$132.9,129.6$ (4C), 128.1, 127.9, 127.7, 127.6 (4C), 126.2, 126.1, 125.8, 125.7 (2C), 116.5, 73.1, $73.03,72.96,62.0,55.0,54.9,35.2,35.1,34.4,26.9$ (3C), 19.2; IR (film) $v_{\max } 2929,2856,2359$, 1472, 1428, 1362, $1111 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z $582.3411\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{37} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 582.3398).

((2R,3R)-3-((trityloxy)methyl)oxiran-2-yl)methanol (93). A solution of Oxone ${ }^{\circledR}(1.8690 \mathrm{~g}, 3.0401 \mathrm{mmol})$ in $4 \times 10^{-4} \mathrm{M} \mathrm{Na}_{2} E D T A(11.2 \mathrm{~mL})$ and a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.7659 \mathrm{~g}, 12.7552 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(11.2 \mathrm{~mL})$ were added simultaneously and dropwise by syringe pump over 4.5 h to a solution of alcohol $67(679.4 \mathrm{mg}, 2.0562 \mathrm{mmol})$, ketone $75(170.7$ $\mathrm{mg}, 0.6609 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NHSO}_{4}(13.5 \mathrm{mg}, 0.0397 \mathrm{mmol})$ in $\mathrm{DMM}^{2}-\mathrm{CH}_{3} \mathrm{CN}(2: 1,22.3 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{AcOH}$ buffer $^{3}(14.9 \mathrm{~mL})$. The resultant mixture was stirred for an additional 30 min then $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$ were added. The aqueous layer was extracted with $\mathrm{EtOAc}(3 \times$ $40 \mathrm{~mL})$. Combined extracts were washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 5-20 \%\right.$ EtOAc in hexanes gradient elution) afforded of epoxy alcohol 93 ($683.4 \mathrm{mg}, 1.9727 \mathrm{mmol}, 96 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 7.47-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 3.97-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.61(\mathrm{~m}$, $1 \mathrm{H}), 3.38(\mathrm{dd}, J=10.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.11(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.46(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 143.7$ (3C), 128.6 (6C), 127.9 (6C), 127.1 (3C), 87.0, 63.6, 61.2, 55.8, 54.4; HRMS (ESI) m/z $364.1912\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{NH}_{4}{ }^{+}\right.$requires 364.1907).

(2S,3S)-4-(trityloxy)-2-vinylbutane-1,3-diol (94). A solution of vinylmagnesium bromide (0.8 M in THF, $9.5 \mathrm{~mL}, 7.600 \mathrm{mmol}$) was added to a suspension of
$\mathrm{CuI}(25.8 \mathrm{mg}, 0.1430 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ under Ar and the resultant mixture was immediately cooled to $-25^{\circ} \mathrm{C}$. Epoxide 93 ($880.4 \mathrm{mg}, 2.5414 \mathrm{mmol}$) was added as a solution in anhydrous $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ via cannula. The resultant mixture was stirred at $-25^{\circ} \mathrm{C}$ for 18 h then was quenched with basified $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{pH} 8.5,20 \mathrm{~mL})$ and extracted with EtOAc ($3 \times$ $100 \mathrm{~mL})$. Combined extracts were washed with brine $(3 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (150 mL of $\mathrm{SiO}_{2}, 10-30 \%$ EtOAc in hexanes gradient elution) afforded diol $94(894.1 \mathrm{mg}, 2.3876 \mathrm{mmol}, 94 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz},\right) \delta 7.43-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 3 \mathrm{H}), 5.46$ (ddd, $J=$ $17.3 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.02$ (m, 2H), 3.82-3.74 (m, 2H), 3.65-3.60 (m, 1H), 3.30 (dd, $J=9.7 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=9.7 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}$, $J=6.9 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 143.7(3 \mathrm{C}), 135.1$, 128.6 (6C), 127.9 (6C), 127.2 (3C), 118.4, 87.0, 73.5, 66.0, 65.2, 48.7; HRMS (ESI) m / z $392.2223\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{NH}_{4}{ }^{+}\right.$requires 392.2220).

(2S,3S)-3-((benzyloxy)methyl)-1-(trityloxy)pent-4-en-2-ol (95). NaH (60% dispersion in mineral oil, $92.7 \mathrm{mg}, 2.3175 \mathrm{mmol}$) was added to a solution of diol 94 (434.1 $\mathrm{mg}, 1.1592 \mathrm{mmol})$ in anhydrous DMF (12 mL) at $0{ }^{\circ} \mathrm{C}$ under Ar. The resultant mixture was cooled to $-70{ }^{\circ} \mathrm{C}$ and $\operatorname{BnBr}(150 \mu \mathrm{~L}, 218.1 \mathrm{mg}, 1.2629 \mathrm{mmol})$ was added. The mixture was stirred for 30 min at $-70{ }^{\circ} \mathrm{C}$ then was warmed to $-15^{\circ} \mathrm{C}$ over 3 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. Combined extracts were washed with brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (75 mL of $\mathrm{SiO}_{2}, 2-5 \%$ EtOAc in hexanes gradient elution) afforded alcohol 95 (279.7 mg ,
$0.6020 \mathrm{mmol}, 52 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.45-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.33-$ $7.21(\mathrm{~m}, 14 \mathrm{H}), 5.66$ (ddd, $J=17.3 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ (dd, $J=10.4 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{dd}, J=9.6$ $\mathrm{Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.55$ (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 143.9$ (3C), 138.0, 136.2, 128.7 (6C), 128.4, 127.8 (8C), 127.6 (3C), 127.0 (2C), 117.2, 86.6, 73.3, 72.2, 71.5, 65.8, 46.7; HRMS (ESI) m/z $482.2660\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}\right.$, $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{NH}_{4}{ }^{+}$requires 482.2690).

(2S,3S)-3-((benzyloxy)methyl)pent-4-ene-1,2-diol (96). Formic acid (3 mL) was added to a solution of alcohol $95(200.0 \mathrm{mg}, 0.4305 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ at rt . The resultant mixture was stirred for 5 min then washed with saturated aq $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. Combined extracts were washed with brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (20 mL of $\mathrm{SiO}_{2}, 20-50 \%$ EtOAc in hexanes gradient elution) afforded diol $96(88.2 \mathrm{mg}, 0.3968 \mathrm{mmol}$, $92 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.70-5.61(\mathrm{~m}, 1 \mathrm{H})$, $5.17(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.82-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.63$ (m, 3H), $3.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.4 \mathrm{~Hz}, 5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 137.4,134.9,128.6$ (2C), 128.0, 127.7 (2C), 118.2, 74.2, 73.6, 72.8, 64.9, 46.4; HRMS (ESI) m/z $223.1335\left(\mathrm{MH}^{+}, \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{H}^{+}\right.$requires 223.1329).

(R)-2-((S)-1-(benzyloxy)but-3-en-2-yl)oxirane (97). NaH (60\% dispersion in mineral oil, $49.1 \mathrm{mg}, 1.2282 \mathrm{mg}$) was added to a solution of diol $96(91.0 \mathrm{mg}, 0.4094 \mathrm{mmol})$ in anhydrous THF $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resultant suspension was warmed to rt and stirred for 30 min. 2,4,6-triisopropylbenzenesulfonyl imidazole ($150.6 \mathrm{mg}, 0.4503 \mathrm{mmol}$) was added neat and the resultant mixture was stirred for 2.5 h at rt . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(10$ $\mathrm{mL})$ and extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. Combined extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (25 mL of $\mathrm{SiO}_{2}, 0-2 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) afforded epoxide $97(78.4 \mathrm{mg}, 0.3838 \mathrm{mmol}, 94 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.83(\mathrm{ddd}, J=17.5 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.63 (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.28-$ $2.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 138.3,134.9,128.4(2 \mathrm{C}), 127.6(3 \mathrm{C}), 117.4,73.2$, 70.9, 52.5, 46.4, 46.0; HRMS (ESI) m/z $205.1589\left(\mathrm{MH}^{+}, \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{H}^{+}\right.$requires 205.1223).

(3S,4S)-3-((benzyloxy)methyl)hepta-1,6-dien-4-ol (98). A solution of vinylmagnesium bromide (0.8 M in $\mathrm{THF}, 950 \mu \mathrm{~L}$) was added to a suspension of $\mathrm{CuI}(21.7 \mathrm{mg}$, $0.1139 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(7.0 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ under Ar. The resultant mixture was immediately cooled to $-25^{\circ} \mathrm{C}$ and a solution of epoxide $97(77.5 \mathrm{mg}, 0.3794 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ was added. The resultant mixture was stirred at $-25^{\circ} \mathrm{C}$ for 1.5 h . The reaction was quenched with basified $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(\mathrm{pH} 8.5(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$.

Combined extracts were washed with brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (15 mL of $\mathrm{SiO}_{2}, 0-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded alcohol 98 ($71.7 \mathrm{mg}, 0.3086 \mathrm{mmol}, 81 \%$) as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.39-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 5.93-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.08(\mathrm{~m}, 4 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.80-3.75$ $(\mathrm{m}, 1 \mathrm{H}), 3.71-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.19-$ $2.11(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 137.7, 136.0, 135.1, $128.5(2 \mathrm{C}), 127.8,127.7$ (2C), 117.7, 117.4, 73.5, 73.0, 72.7, 49.1, 39.6; HRMS (ESI) m/z $233.1531\left(\mathrm{MH}^{+}, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{H}^{+}\right.$ requires 233.1536).

(((3S,4S)-3-((benzyloxy)methyl)hepta-1,6-dien-4-yl)oxy)triisopropylsilane (99). To a solution of alcohol $98(71.0 \mathrm{mg}, 0.3056 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at rt under Ar was added 2,6-lutidine ($70 \mu \mathrm{~L}, 64.4 \mathrm{mg}, 0.6010 \mathrm{mmol}$) and TIPS-OTf ($120 \mu \mathrm{~L}, 136.3$ $\mathrm{mg}, 0.4449 \mathrm{mmol})$. The resultant mixture stirred at rt for 4 h . The reaction was quenche with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (20 mL of $\mathrm{SiO}_{2}, 0-2 \% \mathrm{EtOAc}$ in hexanes) afforded diether $99(118.7 \mathrm{mg}, 0.3054 \mathrm{mmol}, 100 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.35-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.94-5.79(\mathrm{~m}, 2 \mathrm{H}), 5.13-5.00(\mathrm{~m}, 4 \mathrm{H}), 4.43(\mathrm{~d}, J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 5.1 \mathrm{~Hz}, 1 \mathrm{H}) 3.67-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.67-$ $2.60(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 138.6,137.8$, $135.1,128.2$ (2C), 127.5 (2C), 127.4, 117.0, 116.4, 73.0, 72.9, 70.1, 48.8, 39.2, 18.20 (6C), 12.83 (3C); HRMS (ESI) m/z $406.3153\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{NH}_{4}{ }^{+}\right.$requires 406.3136$)$.

(2S,3S)-3-((triisopropylsilyl)oxy)-2-vinylhex-5-en-1-ol (100). Na metal ($36.0 \mathrm{mg}, 1.5659 \mathrm{mmol}$) was added to a 3-neck flask containing liquid $\mathrm{NH}_{3}(c a .20 \mathrm{~mL}$) under Ar at $-78^{\circ} \mathrm{C}$. The solution became dark blue. A solution of diether $99(86.9 \mathrm{mg}, 0.2236 \mathrm{mmol})$ in anhydrous THF (2.5 mL) was added and the resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by addition of $\mathrm{MeOH}(5 \mathrm{~mL})$ and NH_{3} was evaporated under a stream of N_{2} as the solution warmed to rt. The resultant mixture was partitioned in a sep funnel with $\mathrm{H}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. Combined extracts were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (10 mL of $\mathrm{SiO}_{2}, 0-1 \%$ EtOAc in hexanes) afforded alcohol $100(53.0 \mathrm{mg}, 0.1775 \mathrm{mmol}, 79 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 5.97-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.68-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.07(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{dd}$, $J=10.0 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.80(\mathrm{~m}, 3 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.09-1.05$ $(\mathrm{m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 135.8,135.3,117.7,117.0,74.0,67.3,50.8,39.8,17.9$ (6C), 11.7 (3C); HRMS (ESI) m/z $299.2378\left(\mathrm{MH}^{+}, \mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiH}^{+}\right.$requires 299.2401).

(((3R,4S)-3-(iodomethyl)hepta-1,6-dien-4-yl)oxy)triisopropylsilane (101). Triphenylphosphine ($34.1 \mathrm{mg}, 0.1300 \mathrm{mmol}$), imidazole ($17.7 \mathrm{mg}, 0.2600 \mathrm{mmol}$) and $\mathrm{I}_{2}(33.0$ $\mathrm{mg}, 0.1300 \mathrm{mmol})$ were added successively to a solution of alcohol $100(13.6 \mathrm{mg}, 0.0456 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CN}(3: 1,1.0 \mathrm{~mL})$ under Ar at rt and the resultant mixture was stirred for 5 h . The reaction was quenched with saturated aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times$ $10 \mathrm{~mL})$. Combined extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated n
vacuo. Flash chromatography (10 mL of $\mathrm{SiO}_{2}, 100 \%$ hexanes elution) afforded iodide 101 (17.0 $\mathrm{mg}, 0.0416 \mathrm{mmol}, 91 \%)$ as a white solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.84-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.64$ (ddd, $J=17.2 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (ddd, $J=17.2$ $\mathrm{Hz}, 1.8 \mathrm{~Hz}, 0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{td}, J=7.6 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 2 \mathrm{H})$, 2.80-2.73 (m, 1H), 2.65-2.58 (m, 1H), 1.79-1.73 (m, 1H), 1.08-1.05 (m, 21H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 136.8,136.7,118.8,117.3,66.6,51.0,43.1,39.6,18.0$ (6C), 12.0 (3C); HRMS (ESI) m/z $409.1475\left(\mathrm{MH}^{+}, \mathrm{C}_{17} \mathrm{H}_{33} \mathrm{IO}_{2} \mathrm{SiH}^{+}\right.$requires 409.1418).

(2S,3R)-3-hydroxy-2-vinylhex-5-en-1-yl 4-methylbenzenesulfonate (104).
A solution of $\mathrm{TsCl}(987.8 \mathrm{mg}, 5.1812 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.2 \mathrm{~mL})$ was added over 5 h via syringe pump to a solution of diol $\mathbf{1 0 3}^{4}(614.0 \mathrm{mg}, 4.3179 \mathrm{mmol})$ and anhydrous $\mathrm{Et}_{3} \mathrm{~N}$ (900 $\mu \mathrm{L}, 653.4 \mathrm{mg}, 6.4572 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ at $10{ }^{\circ} \mathrm{C}$ under Ar. The resultant mixture was stirred at $10{ }^{\circ} \mathrm{C}$ for an additional 17 h . The reaction was quenched with ice-cold $\mathrm{H}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. Combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentratred in vacuo. Flash chromatography (160 mL of $\mathrm{SiO}_{2}, 10-15 \% \mathrm{EtOAc}$ in hexanes) afforded tosylate $\mathbf{1 0 4}(923.1 \mathrm{mg}, 3.1145 \mathrm{mmol}, 72 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.82-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.69-5.59(\mathrm{~m}, 1 \mathrm{H})$, 5.19-5.09 (m, 4H), $4.25(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{td}$, $J=8.3 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 144.8,134.6,134.1,132.8,129.8$ (2C), 128.0 (2C), 119.2, 118.9, 70.7, 69.3, 49.2, 39.3, 21.6; HRMS (ESI) m/z $297.1164\left(\mathrm{MH}^{+}, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{SH}^{+}\right.$requires 297.1155).
(2S,3R)-3-((triisopropylsilyl)oxy)-2-vinylhex-5-en-1-yl
methylbenzenesulfonate (105). To a solution of alcohol $\mathbf{1 0 4}(92.2 \mathrm{mg}, 0.3111 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ under N_{2} at rt was successively added 2,6-lutidine ($70 \mu \mathrm{~L}, 66.7 \mathrm{mg}$, $0.6221 \mathrm{mmol})$ and TIPS-OTf $(120 \mu \mathrm{~L}, 136.3 \mathrm{mg}, 0.4449 \mathrm{mmol})$. The mixture stirred for 5 h then additional 2,6-lutidine ($40 \mu \mathrm{~L}, 36.8 \mathrm{mg}, 0.3434 \mathrm{mmol}$) and TIPS-OTf $(40 \mu \mathrm{~L}, 45.5 \mathrm{mg}, 0.1483$ mmol) were added. After stirring an additional 2 h the reaction was quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. Combined extracts were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (30 mL of $\mathrm{SiO}_{2}, 0-5 \%$ EtOAc in hexanes) afforded diene $\mathbf{1 0 5}(125.2 \mathrm{mg}, 0.2765 \mathrm{mmol}, 89 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.78-5.69$ (m, 1H), 5.65 (ddd, $J=17.4 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-4.99(\mathrm{~m}, 4 \mathrm{H}), 4.23(\mathrm{dd}, J=9.6 \mathrm{~Hz}$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.54(\mathrm{~m}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 21 \mathrm{H}) ;$ HRMS (ESI) m/z $470.2786\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}\right.$, $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SSiNH}_{4}{ }^{+}$requires 470.2755).

(((3R,4R)-3-(iodomethyl)hepta-1,6-dien-4-yl)oxy)triisopropylsilane (106). $\mathrm{NaI}(114.0 \mathrm{mg}, 0.7606 \mathrm{mmol})$ was added to a stirring solution of tosylate $\mathbf{1 0 5}(125.2 \mathrm{mg}, 0.2765$ mmol) in anhydrous DMF (2.0 mL) under Ar. The mixture was heated and stirred at $80^{\circ} \mathrm{C}$ for 6 h. The mixture was cooled to rt, diluted with ice-cold $\mathrm{H}_{2}(5 \mathrm{~mL})$ and extracted with hexanes ($3 \times$ $10 \mathrm{~mL})$. Combined extracts were washed with saturated aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$,
and concentrated in vacuo to obtain iodide $106(82.1 \mathrm{mg}, 0.2010 \mathrm{mmol}, 73 \%)$ as a white solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.89-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{ddd}, J=17.3 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.18(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.05(\mathrm{~m}, 3 \mathrm{H}), 4.00-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=9.8 \mathrm{~Hz}$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}),(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 4.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.53-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 21 \mathrm{H}) ;$ HRMS (ESI) m/z $409.1479\left(\mathrm{MH}^{+}, \mathrm{C}_{17} \mathrm{H}_{33} \mathrm{IO}_{2} \mathrm{SiH}^{+}\right.$requires 409.1418).

2-hydroxy-2-methylcyclopentan-1-one O-benzyl oxime (161). To a solution of hydroxyketone $\mathbf{1 6 0}$ ($46.3 \mathrm{mg}, 0.4059 \mathrm{mmol})$ in anhydrous pyridine $(2.5 \mathrm{~mL})$ at rt under Ar was added $\mathrm{BnONH}_{2} \cdot \mathrm{HCl}$. The mixture stirred at rt for 1 h , then was diluted with $10 \% \mathrm{HCl}(5$ $\mathrm{mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. Combined extracts were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (12 mL of $\mathrm{SiO}_{2}, 2-6 \%$ EtOAc in hexanes gradient elution) afforded oxime $161(69.8 \mathrm{mg}, 0.3185 \mathrm{mmol}, 78 \%)$, a yellow oil as a mixture of diastereomers. Data for major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.38-$ $7.34(\mathrm{~m}, 5 \mathrm{H}), 5.11(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.39$ $(\mathrm{m}, 1 \mathrm{H}), 2.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.03-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 168.0,138.1,128.5$ (2C), 128.2 (2C), 127.9, 77.4, 76.1, 40.6, 26.6, 26.0, 20.5; HRMS (ESI) m/z $220.1367\left(\mathrm{MH}^{+}, \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{H}^{+}\right.$requires 220.1332).

2-((dimethyl(vinyl)silyl)oxy)-2-methylcyclopentan-1-one O-benzyl oxime (162). A solution of alcohol $161(64.7 \mathrm{mg}, 0.2953 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar was treated successively with $\mathrm{Et}_{3} \mathrm{~N}(60 \mu \mathrm{~L}, 43.6 \mathrm{mg}, 0.4305 \mathrm{mmol})$ and
chlorodimethylvinylsilane ($50 \mu \mathrm{~L}, 44.2 \mathrm{mg}, 0.3663 \mathrm{mmol}$). The resultant mixture was stirred at rt for 4 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. Combined extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (10 mL of $\mathrm{SiO}_{2}, 0-2 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded silyl ether $162(59.6 \mathrm{mg}, 0.1964 \mathrm{mmol}, 67 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.40-$ $7.28(\mathrm{~m}, 5 \mathrm{H}), 6.08(\mathrm{dd}, J=20.4 \mathrm{~Hz}, 14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=14.8 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J$ $=20.3 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.45(\mathrm{~m}, 1 \mathrm{H})$, $2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.12$ (s, 3H), $0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 166.2,139.5,138.3,131.5,128.3$ (2C), 128.2 (2C), 127.6, 79.8, 75.9, 42.7, 26.8, 25.0, 20.3, 0.0, -0.1 ; HRMS (ESI) m/z 321.1964 $\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 321.1993).

2-(((1-bromovinyl)dimethylsilyl)oxy)-2-methylcyclopentan-1-one $\quad \mathbf{O}$ -
benzyl oxime (163). A solution of alcohol 161 ($129.8 \mathrm{mg}, 0.5923 \mathrm{mmol}$) in anhydrous benzene $(3.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar was treated successively with $\mathrm{Et}_{3} \mathrm{~N}(100 \mu \mathrm{~L}, 72.6 \mathrm{mg}, 0.7175 \mathrm{mmol})$, DMAP ($7.2 \mathrm{mg}, 0.0592 \mathrm{mmol}$), and (1-bromovinyl)chlorodimethylsilane solution ($c a .43 \mathrm{wt} \% \mathrm{in}$ benzene, $330 \mu \mathrm{~L}, 141.9 \mathrm{mg}, 0.7111 \mathrm{mmol})$. The resultant mixture was allowed to warm to rt as it stirred for 16 h . The resultant mixture was filtered through a silica gel plug and the filter cake was rinsed with hexanes-EtOAc $(5: 1,20 \mathrm{~mL})$. The filtrate was washed with brine $(10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford 163 (216.4 mg, 0.5923 $\mathrm{mmol}, 100 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.24(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-$
$2.50(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H})$, $1.46(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 399.1085\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}\right.$, $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BrNO}_{2} \mathrm{SiNH}_{4}{ }^{+}$requires 399.1098).

(1R*,2S*)-2-((benzyloxy)amino)-1-methyl-2-vinylcyclopentan-1-ol (164). A solution of vinylsilane $163(142.1 \mathrm{mg}, 0.3889 \mathrm{mmol})$ in anhydrous benzene (20 mL) was deoxygenated by bubbling N_{2} through it for 30 min . The solution was heated to reflux and a deoxygenated solution of $\operatorname{AIBN}(31.9 \mathrm{mg}, 0.1943 \mathrm{mmol})$ and $\mathrm{Bu}_{3} \mathrm{SnH}(130 \mu \mathrm{~L}, 142.7 \mathrm{mg}$, 0.4904 mmol) in benzene (5 mL) was added by syringe pump over 10 h . The reaction was refluxed an additional 10 h , at which point TLC confirmed consumption of the starting material. A solution of TBAF was added and reflux continued an additional 4 h . The reaction mixture was filtered through a silica gel plug and the filtrate was concentrated in vacuo. Flash chromatography (30 mL of $\mathrm{SiO}_{2}, 5-10 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded alcohol $164(75.0 \mathrm{mg}, 0.3032 \mathrm{mmol}, 78 \%)$ contaminated with some tin components. Data for $164:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.05(\mathrm{dd}, J=17.7 \mathrm{~Hz}, 11.1 \mathrm{H}, 1 \mathrm{H}), 5.47$ (br s, $1 \mathrm{H}), 5.39(\mathrm{dd}, J=11.1 \mathrm{H}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=17.7 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) 4.71$ (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ;$ HRMS (ESI) $m / z 265.1930\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{NH}_{4}{ }^{+}\right.$requires 265.1911).

2,2,2-trichloroethyl (1R*,5R*)-2-oxo-6-azabicyclo[3.1.0]hexane-6-
carboxylate (174). 2-Cyclopentene-1-one (173, $25 \mu \mathrm{~L}, 24.5 \mathrm{mg}, 0.2984 \mathrm{mmol})$ was added to a
solution of pyrroldine ($5 \mu \mathrm{~L}, 4.26 \mathrm{mg}, 0.0600 \mathrm{mmol}$) and benzoic acid $(11.1 \mathrm{mg}, 0.0910 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1.0 \mathrm{~mL})$ at rt under air. The resultant mixture became pink in color as it stirred for 30 min, then TrocNHOMs ($86.1 \mathrm{mg}, 0.3005 \mathrm{mmol}$) was added. After stirring an additional 10 min , $\mathrm{NaHCO}_{3}(51.6 \mathrm{mg}, 0.6142 \mathrm{mmol})$ was added and the resultant mixture was stirred for 36 h . The mixture was filtered through a medium glass frit and concentrated in vacuo. Flash chromatography (10 mL of $\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}$ in hexanes elution) afforded aziridine 174 (59.7 $\mathrm{mg}, 0.2191 \mathrm{mmol}, 73 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.77(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.70(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.47(\mathrm{~m}$, 1H), 2.22-1.99 (m, 3H); HRMS (ESI) $m / z 271.9614\left(\mathrm{MH}^{+}, \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{NO}_{3} \mathrm{H}^{+}\right.$requires 271.9643).

2-(((tert-Butyldimethylsilyl)oxy)methyl)-3-methylbut-3-ene-1,2-diol (184). A solution of isopropenylmagnesium bromide (0.57 M in THF, $4.3 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added to a solution of hydroxyketone $182(145.7 \mathrm{mg}, 0.7130 \mathrm{mmol})$ in anhydrous THF $(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and at rt for 1 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with EtOAc $(4 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (25 mL of $\mathrm{SiO}_{2}, 5-15 \%$ EtOAc in hexanes gradient elution) afforded diol $184(143.5 \mathrm{~g}, 0.5823 \mathrm{mmol}, 82 \%$ yield $)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.05(\mathrm{~s}$, $1 \mathrm{H}), 4.99(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=11.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J$ $=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=11.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 145.0,112.4,76.8,67.0,66.1,25.8$
(3C), 19.4, 18.2, -5.54, -5.55; IR (film) $v_{\max } 3418,2929,2858,1644,1471,1256,1092,1428$, 1113, $1092 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 247.1707\left(\mathrm{MH}^{+}, \mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiH}^{+}\right.$requires 247.1724).

1-(Benzyloxy)-2-((tert-butyldimethylsilyloxy)methyl)-3-methylbut-3-en-2-ol
(185). $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $18.0 \mathrm{mg}, 0.450 \mathrm{mmol})$ was added to a solution of diol 184 (54.1 mg, 0.220 mmol) in anhydrous DMF (2 mL) at $-40^{\circ} \mathrm{C}$ under Ar. The resultant mixture was stirred at $-40{ }^{\circ} \mathrm{C}$ for 1 h , then treated dropwise with benzyl bromide $(26.0 \mu \mathrm{~L}, 37.4 \mathrm{mg}$, $0.219 \mathrm{mmol})$ and stirred at $-20^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(5$ mL), diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$, and the combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (10 mL of $\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}$ in hexanes elution) afforded $185(53.7 \mathrm{mg}, 0.160 \mathrm{mmol}, 73 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}$, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 145.9,138.2,128.3$ (2C), 127.7 (2C), 127.6, 112.2, 76.5, 73.6, 72.8, 66.0, 25.8 (3C), 19.7, 18.2, -5.48, -5.50; IR (film) $v_{\max } 3419,2928,2857,1673,1497,1387,1257,1093 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z $337.2139\left(\mathrm{MH}^{+}, \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiH}^{+}\right.$requires 337.2193).

5-((Benzyloxy)methyl)-2,2,3,3,8,8,9,9-octamethyl-5-(prop-1-en-2-yl)-4,7-dioxa-3,8-disiladecane (186). 2,6-Lutidine ($180 \mu \mathrm{~L}, 166 \mathrm{mg}, 1.55 \mathrm{mmol}$) and TBS-OTf ($180 \mu \mathrm{~L}$, $207 \mathrm{mg}, 0.784 \mathrm{mmol})$ were added successively to a solution of alcohol $\mathbf{1 8 5}(106.2 \mathrm{mg}, 0.3156$ $\mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.2 \mathrm{~mL})$ at rt under Ar. The resulting mixture was stirred for 18 h , then treated with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (25 mL of $\mathrm{SiO}_{2}, 2-3 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes gradient elution) afforded triether 186 ($133.0 \mathrm{mg}, 0.2950 \mathrm{mmol}, 93 \%$) as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-7.25$ $(\mathrm{m}, 5 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}$, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $0.06(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 147.0,138.3,128.2(2 \mathrm{C})$, 127.7 (2C), 127.4, 112.0, 79.8, 73.4, 72.7, 66.6, 26.0 (3C), 25.9 (3C), 20.0, 18.7, 18.3, -2.7, -2.8, $-5.55,-5.56$; IR (film) $v_{\max } 3090,3032,2928,2885,2856,1644 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z $451.3080\left(\mathrm{MH}^{+}, \mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 451.3058$)$.

4-(Benzyloxy)-3-(tert-butyldimethylsilyloxy)-3-((tert-butyldimethylsilyloxy)

methyl) butan-2-one (187). A stream of ozone was bubbled into a solution of alkene $\mathbf{1 8 6}$ $(1.1172 \mathrm{~g}, 2.4782 \mathrm{mmol})$ and 1 drop of Sudan IV (concentrated solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) in 5% $\mathrm{H}_{2} \mathrm{O} /$ acetone $(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ until the solution became colorless. The mixture was purged with Ar for 5 min then was dilted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ an extracted with EtOAc $(3 \times 100 \mathrm{~mL})$.

Combined extracts were washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (120 mL of $\mathrm{SiO}_{2}, 2-3 \%$ EtOAc in hexanes gradient elution) afforded ketone $\mathbf{1 8 7 a}(1.0799 \mathrm{~g}, 2.3850 \mathrm{mmol}, 96 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $7.36-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$, $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $125 \mathrm{MHz}) \delta 212.0,137.8,128.3(2 \mathrm{C}), 127.7(2 \mathrm{C}), 127.6,85.4,73.5,72.6,66.3,27.7,25.9(3 \mathrm{C})$, 25.8 (3C), 18.6, 18.3, -2.9, -3.0, -5.6, -5.7; IR (film) $v_{\max } 2955,2929,2857,1721,1472,1253$, $1111 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $m / z 453.2815\left(\mathrm{MH}^{+}, \mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 453.2851).

5-((Benzyloxy)methyl)-8,8,9,9-tetramethyl-5-(prop-1-en-2-yl)-2,4,7-trioxa-8-siladecane (S1).
Sodium iodide ($4.8 \mathrm{mg}, 0.032 \mathrm{mmol}$), N, N-diisopropylethylamine ($130 \mu \mathrm{~L}, 96.5 \mathrm{mg}, 0.746$ $\mathrm{mmol})$, and chloromethyl methyl ether ($25.0 \mu \mathrm{~L}, 26.5 \mathrm{mg}, 0.329 \mathrm{mmol}$) were added successively to a solution of alcohol $185(48.5 \mathrm{mg}, 0.144 \mathrm{mmol})$ in 1,2-dichloroethane $(2.0 \mathrm{~mL})$. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ for 5 d . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with sat aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10$ mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (10 mL of $\mathrm{SiO}_{2}, 2 \%$ $\mathrm{Et}_{2} \mathrm{O}$ in hexanes elution) afforded triether $\mathbf{S} 1(48.7 \mathrm{mg}, 0.128 \mathrm{mmol}, 89 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.69(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=$
$9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.70(\mathrm{~m}, 2 \mathrm{H}) 3.69(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 143.1,138.5,128.2$ (2C), 127.6 (2C), 127.4, 114.9, $91.9,81.9,73.5,70.3,63.8,55.9,25.8$ (3C), 19.3, 18.2, -5.5, -5.6; IR (film) $v_{\max } 3090,3066$, 3031, 2954, 2928, 2885, 2856, 1644, 1497, 1472, 1107, $1034 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 398.2685$ $\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 398.2721).

4-(Benzyloxy)-3-((tert-butyldimethylsilyloxy)methyl)-3-(methoxymethoxy)butan-2-

one (187b). A solution of triether $\mathbf{S} 1(408.3 \mathrm{mg}, 1.073 \mathrm{mmol})$ and pyridine ($170 \mu \mathrm{~L}, 167 \mathrm{mg}$, $2.11 \mathrm{mmol})$ in acetone $-\mathrm{H}_{2} \mathrm{O}(95: 5,10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with a drop of Sudan IV (saturated solution in acetone), and ozone was bubbled through until the pink solution became colorless. It was purged with Ar for 5 min , and then diluted with EtOAc $(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (25 mL of $\mathrm{SiO}_{2}, 2-3 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes gradient elution) afforded ketone 2d (391.5 mg, $1.023 \mathrm{mmol}, 95 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-$ $7.28(\mathrm{~m}, 5 \mathrm{H}), 4.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}$, $3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 209.7$, $137.8,128.3$ (2C), 127.69 (2C), 127.68, 92.7, $85.8,73.6,69.1,63.2,56.2,26.9,25.7$ (3C), 18.1, -$5.74,-5.75$; IR (film) $v_{\max } 2929,2886,2857,1722,1472,1409,1389,1256,1109,1035 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 400.2514\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 400.2546).

6-(Benzyloxymethyl)-8,8-diethyl-2,2,3,3-tetramethyl-6-(prop-1-en-2-yl)-4,7-dioxa-
3,8-disiladecane (S2). 2,6-Lutidine ($210 \mu \mathrm{~L}, 194 \mathrm{mg}, 1.81 \mathrm{mmol}$) and TES-OTf ($240 \mu \mathrm{~L}, 281$ $\mathrm{mg}, 1.06 \mathrm{mmol})$ were added successively to a solution of alcohol $\mathbf{1 8 5}(237.8 \mathrm{mg}, 0.7066 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The resultant mixture was warmed to rt and stirred for 2 h . The reaction was quenched with sat aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Crude $\mathbf{S} 2(318.5 \mathrm{mg}, 0.7065 \mathrm{mmol}$, quant.) was used directly in the next reaction without further purification: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.36$ $7.32(\mathrm{~m}, 5 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 3 \mathrm{H})$, $1.77(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.59(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.034(\mathrm{~s}, 3 \mathrm{H}), 0.029$ (s, 3H) $;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 147.1,138.4,128.1$ (2C), 127.8 (2C), 127.4, 111.9, 79.7, $73.4,72.8,66.7,30.9,25.9$ (3C), 19.9, 7.2 (3C), 6.5 (3C), $-5.53,-5.55$; IR (film) $v_{\max } 2954$, 2930, 2875, 1455, 1255, 1098, $1007 \mathrm{~cm}^{-1} ; \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 468.3482\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}\right.$, $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{NH}_{4}{ }^{+}$requires 468.3324).

4-(Benzyloxy)-3-((tert-butyldimethylsilyloxy)methyl)-3-(triethylsilyloxy)butan-2-one

(187c). A solution of alkene $\mathbf{S} 2(318.5 \mathrm{mg}, 0.7065 \mathrm{mmol})$ and anhydrous pyridine $(110 \mu \mathrm{~L}, 108$ $\mathrm{mg}, 1.37 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was treated with a drop of Sudan IV (saturated solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and ozone was bubbled through until the solution became colorless. It was purged with Ar for 5 min , then treated with $\mathrm{Me}_{2} \mathrm{~S}(570 \mu \mathrm{~L}, 482 \mathrm{mg}, 7.76 \mathrm{mmol})$.

The resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and at rt for 18 h . Flash chromatography (35 mL of $\mathrm{SiO}_{2}, 2-3 \%$ EtOAc in hexanes gradient elution) afforded ketone $\mathbf{1 8 7}$ (187.8 mg , $0.4148 \mathrm{mmol}, 59 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.86(\mathrm{~s}$, $9 \mathrm{H}), 0.63(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 211.8$, $137.8,128.3$ (2C), 127.7 (2C), 127.6, 85.0, 73.5, 72.5, 66.4, 27.1, 25.8 (3C), 18.3, 7.1 (3C), 6.4 (3C), $-5.60,-5.65$; IR (film) $v_{\max } 3065,3032,2955,2876,1721,1462,1415,1361,1349,1254$, 1190, $1112 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 453.2863\left(\mathrm{MH}^{+}, \mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 453.2851).

1-(tert-Butyldiphenylsilyloxy)-3-hydroxypropan-2-one (S3). TBDPS-Cl ($6.80 \mathrm{~mL}, 7.19 \mathrm{~g}, 26.2 \mathrm{mmol}$) was added by syringe pump $(0.6 \mathrm{~mL} / \mathrm{h})$ to a solution of dihydroxyacetone dimer ($7.0312 \mathrm{~g}, 78.1 \mathrm{mmol}$) and imidazole ($2.6775 \mathrm{~g}, 39.3 \mathrm{mmol}$) in anhydrous DMF (90 mL) at rt under Ar. The resultant mixture was stirred at rt for 18 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed with brine $(3 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (1000 mL of $\mathrm{SiO}_{2}, 5-15 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded hydroxyketone $\mathbf{S 3}^{6}$ (7.3227 g, $22.3 \mathrm{mmol}, 85 \%$) as a colorless, viscous oil.

1-(Benzyloxy)-3-(tert-butyldiphenylsilyloxy)propan-2-one (S4). Triflic acid ($3.0 \mu \mathrm{~L}, 5.1 \mathrm{mg}$, 0.034 mmol), was added to a solution of hydroxyketone $\mathbf{S 3}(77.4 \mathrm{mg}, 0.236 \mathrm{mmol})$ and benzyl 2,2,2-trichloroacetimidate ($87.0 \mu \mathrm{~L}, 118 \mathrm{mg}, 0.468 \mathrm{mmol}$) in anhydrous cyclohexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1, 2.4 mL) at $0^{\circ} \mathrm{C}$ under Ar. The resultant mixture was warmed to rt and stirred for 18 h . The mixture was filtered, washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (10 mL of $\mathrm{SiO}_{2}, 5-10 \%$ EtOAc in hexanes gradient elution) afforded ketone $\mathbf{S 4}(66.4 \mathrm{mg}, 0.159 \mathrm{mmol}, 67 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.61(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.46-7.29(\mathrm{~m}, 11 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H})$, $4.33(\mathrm{~s}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 206.7,137.1,135.5$ (4C), 134.8 (2C), 130.0 (2C), 128.5 (2C), 128.0 (2C), 127.9 (4C), 127.7, 73.4, 73.2, 68.7, 26.7 (3C), 19.2; IR (film) $v_{\max } 3070,2931,2857,1740,1428,1114 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 436.2245\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}\right.$, $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNH}_{4}{ }^{+}$requires 436.2302).

1-(Benzyloxy)-2-((tert-butyldiphenylsilyloxy)methyl)-3-methylbut-3-en-2-ol (S5). A

 solution of isopropenylmagnesium bromide (0.57 M in THF, $950 \mu \mathrm{~L}, 0.542 \mathrm{mmol}$) was added to a solution of ketone $\mathbf{S 4}(66.4 \mathrm{mg}, 0.159 \mathrm{mmol})$ in anhydrous THF $(2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and at rt for 1.5 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with EtOAc $(4 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (20 mL of $\mathrm{SiO}_{2}, 1-6 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes gradient elution) afforded alcohol $\mathbf{~} 5$ ($44.1 \mathrm{mg}, 0.0957 \mathrm{mmol}, 60 \%$) as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.66-7.63(\mathrm{~m}$, $4 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 11 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}$, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$$145.7,138.1,135.72$ (2C), 135.68 (2C), 133.14, 133.10, 129.82, 129.80, 128.4 (2C), 127.77 (2C), 127.76 (2C), 127.72 (2C), 127.66, 112.5, 76.9, 73.6, 72.8, 66.6, 26.9 (3C), 19.6, 19.4; IR (film) $v_{\text {max }} 3558,3070,3049,2930,2857,1589,1471,1454,1428,1113 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z $478.2799\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 478.2772).

5-(Benzyloxymethyl)-2,2,3,3,9,9-hexamethyl-8,8-diphenyl-5-(prop-1-en-2-yl)-4,7-

dioxa-3,8-disiladecane (S6). A solution of alcohol $\mathbf{S 5}$ ($145.9 \mathrm{mg}, 0.3167 \mathrm{mmol}$), TBDMSBEZA^{7} ($496.0 \mathrm{mg}, 1.592 \mathrm{mmol}$), and $\mathrm{PyH} \cdot \mathrm{OTf}(14.8 \mathrm{mg}, 0.0646 \mathrm{mmol})$ in benzotrifluoride $(3.2$ mL) was stirred at $100^{\circ} \mathrm{C}$ under Ar for 3 d . The mixture was filtered through cotton (rinsed with 20 mL of EtOAc), and the filtrate was concentrated in vacuo. Flash chromatography (20 mL of $\mathrm{SiO}_{2}, 1-2 \%$ EtOAc in hexanes gradient elution) afforded triether $\mathbf{S 6}(114.5 \mathrm{mg}, 0.1992 \mathrm{mmol}$, 63%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 11 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 146.7,138.2,135.74$ (2C), 135.71 (2C), 133.51, 133.47, 129.52, 129.50, 128.2 (2C), 127.9 (2C), 127.53 (2C), 127.52 (2C), 127.4, 112.4, 79.8, $73.5,72.7,66.9,26.8$ (3C), 26.0 (3C), 19.9, 19.2, 18.7, -2.6, -2.9; IR (film) $v_{\max } 2955,2929,2856,1472,1251,1113 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 592.3665\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{NH}_{4}{ }^{+}\right.$requires 592.3637).

4-(Benzyloxy)-3-(tert-butyldimethylsilyloxy)-3-((tert-butyldiphenylsilyloxy)methyl)

butan-2-one (187d). A stream of O_{3} gas was bubbled into A solution of alkene $\mathbf{S 6}(112.0 \mathrm{mg}$, $0.1948 \mathrm{mmol})$ and pyridine $(40.0 \mu \mathrm{~L}, 39.3 \mathrm{mg}, 0.497 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.9 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$ was treated with a drop of Sudan IV (saturated solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and ozone was bubbled through until the solution became colorless. It was purged with Ar for 5 min and treated
with $\mathrm{Et}_{3} \mathrm{~N}(270 \mu \mathrm{~L}, 196 \mathrm{mg}, 1.94 \mathrm{mmol})$. The resultant mixture was warmed to rt , stirred for 1 h , and concentrated in vacuo. Flash chromatography (20 mL of $\mathrm{SiO}_{2}, 2-3 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded ketone $\mathbf{2 e}(105.5 \mathrm{mg}, 0.1829 \mathrm{mmol}, 94 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.62(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.22(\mathrm{~m}, 11 \mathrm{H}), 4.43$ (s, 2H), $3.86(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}$, $9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 210.8,137.7,135.74$ (2C), 135.73 (2C), 132.9, 132.8, 129.74, 129.70, 128.2 (2C), 127.7 (2C), 127.6 (4C), 127.5, 85.0, $73.5,72.2,66.8,27.1,26.8$ (3C), 25.9 (3C), 19.1, 18.6, $-2.8,-3.1$; IR (film) $v_{\max } 3071,2955$, 2930, 2892, 2857, 1721, 1472, 1428, 1253, 1114, $1028 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z} 594.3425$ $\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{34} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{NH}_{4}{ }^{+}\right.$requires 594.3429).

1-(tert-Butyldimethylsilyloxy)-3-methoxymethoxypropan-2-one
(S7). $\quad N, N-$ diisopropylethylamine ($2.30 \mathrm{~mL}, 1.71 \mathrm{~g}, 13.2 \mathrm{mmol}$) and chloromethyl methyl ether ($430 \mu \mathrm{~L}$, $455.8 \mathrm{mg}, 5.661 \mathrm{mmol}$) were added successively and dropwise to a solution of hydroxyketone 182 ($897.9 \mathrm{mg}, 4.394 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt under Ar. The resultant mixture was stirred at rt for 18 h , then quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (100 mL of $\mathrm{SiO}_{2}, 2.5-$ 7.5% EtOAc in hexanes gradient elution) afforded ketone $\mathbf{S 7}(790.8 \mathrm{mg}, 3.184 \mathrm{mmol}, 72 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H})$, $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 207.0,96.5,70.5,68.2,55.7,25.7$ (3C),
18.2, -5.6 (2C); IR (film) $v_{\max } 2954,2930,2894,2857,1741,1254,1153,1007,1063 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 266.1755\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{11} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 266.1782).

9,9,10,10-Tetramethyl-6-(prop-1-en-2-yl)-2,4,8-trioxa-9-silaundecan-6-ol (S8). A solution of isopropenylmagnesium bromide (0.57 M in THF, $5.40 \mathrm{~mL}, 3.08 \mathrm{mmol}$) was added to a solution of ketone $\mathbf{S} 7(224.0 \mathrm{mg}, 0.9018 \mathrm{mmol})$ in anhydrous THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. The resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , then warmed to rt and stirred for an additional 2 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (30 mL of $\mathrm{SiO}_{2}, 2-6 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded alcohol $\mathbf{S 8}(242.1 \mathrm{mg}, 0.8335 \mathrm{mmol}, 92 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.65$ $(\mathrm{d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 145.8,112.2,96.9,76.3,70.9,66.1,55.2,25.7$ (3C), 19.5, 18.1, $-5.60,-$ 5.62; IR (film) $v_{\max } 3465,2954,2930,2885,2858,1645,1472,1254,1111,1046 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $m / z 291.2006\left(\mathrm{MH}^{+}, \mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiH}^{+}\right.$requires 291.1986).

6-(tert-Butyldimethylsilyloxy)-9,9,10,10-tetramethyl-6-(prop-1-en-2-yl)-2,4,8-trioxa-

9-silaundecane (S9). Pyridine ($180 \mu \mathrm{~L}, 177 \mathrm{mg}, 2.23 \mathrm{mmol}$) and TBS-OTf ($250 \mu \mathrm{~L}, 288 \mathrm{mg}$, $1.09 \mathrm{mmol})$ were added successively to a solution of alcohol $\mathbf{S 8}(216.1 \mathrm{mg}, 0.7440 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar . The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to rt for 18 h , then treated with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (20 mL of $\mathrm{SiO}_{2}, 1-2 \%$ EtOAc in hexanes gradient elution) afforded triether $\mathbf{S 9}(177.8 \mathrm{mg}$, $0.4393 \mathrm{mmol}, 59 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H})$,
$4.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 146.7,112.1,97.1,79.6$, $70.3,66.2,55.5,26.0(3 C), 25.9$ (3C), 19.7, 18.7, 18.3, $-2.6,-2.7,-5.5,-5.6$; IR (film) $v_{\max } 2955$, 2929, 2857, 1472, 1252, 1111, $1049 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 405.2881\left(\mathrm{MH}^{+}, \mathrm{C}_{20} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$ requires 405.2851).

3,4-bis((tert-Butyldimethylsilyl)oxy)-3-((methoxymethoxy)methyl)butan-2-one (187e).

A solution of alkene $\mathbf{S 9}(184.4 \mathrm{mg}, 0.4556 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.6 \mathrm{~mL})$ was treated with a drop of Sudan IV (saturated solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and ozone was bubbled through until the solution became colorless. It was purged with Ar for 5 min , then treated dropwise with $\mathrm{Et}_{3} \mathrm{~N}$ (640 $\mu \mathrm{L}, 465 \mathrm{mg}, 4.59 \mathrm{mmol}$). The resulting orange solution was warmed to rt , stirred for 1 h , and concentrated in vacuo. Flash chromatography (20 mL of $\mathrm{SiO}_{2}, 2-3 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded ketone $\mathbf{1 8 7 e}(158.3 \mathrm{mg}, 0.3892 \mathrm{mmol}, 85 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}$, $3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 211.8,96.9,85.4$, $70.4,66.3,55.5,27.7,25.9$ (3C), 25.8 (3C), 18.6, 18.3, $-2.8,-2.9,-5.6,-5.7$; IR (film) $v_{\max } 2954$, 2929, 2885, 2858, 1723, 1472, 1254, 1153, 1114, $1049 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 407.2611\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{19} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{H}^{+}$requires 407.2644).

Diisopropylethylamine ($11.9 \mathrm{~mL}, 8.83 \mathrm{~g}, 68.3 \mathrm{mmol}$) and chloromethyl methyl ether (3.10 mL , $3.29 \mathrm{~g}, 40.8 \mathrm{mmol})$ were added successively to a solution of hydroxyketone $\mathbf{S 3}(4.481 \mathrm{~g}, 13.6$ $\mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ at rt under Ar. The resultant mixture was stirred at rt for 18 h. The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100$ $\mathrm{mL})$. The combined organic layers were washed with brine $(150 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (60 mL of $\mathrm{SiO}_{2}, 2-6 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded ketone $\mathbf{S 1 0}(4.37 \mathrm{~g}, 11.7 \mathrm{mmol}, 86 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 7.64(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 6 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H})$, $3.35(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 206.4,135.5(4 \mathrm{C}), 132.3(2 \mathrm{C}), 130.1$ (2C), 127.9 (4C), $96.5,70.5,68.7,55.7,26.7$ (3C), 19.2; IR (film) $v_{\max } 3071,3050,2932,2892$, 2858, 1740, 1589, 1472, 1428, 1152, 1113, $1061 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 390.2106\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}\right.$, $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{SiNH}_{4}{ }^{+}$requires 390.2095).

10,10-dimethyl-9,9-diphenyl-6-(prop-1-en-2-yl)-2,4,8-trioxa-9-silaundecan-6-ol (S11).

A solution of isopropenylmagnesium bromide (0.57 M in $\mathrm{THF}, 30.0 \mathrm{~mL}, 17.1 \mathrm{mmol}$) was added to a solution of ketone $\mathbf{S 1 0}(3.0792 \mathrm{~g}, 8.27 \mathrm{mmol})$ in anhydrous THF $(25 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , allowed to warm to rt , and stirred at rt for 1 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine (200 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (300 mL of $\mathrm{SiO}_{2}, 4-6 \%$ EtOAc in hexanes gradient elution) afforded alcohol S11 (2.9687 g, $7.16 \mathrm{mmol}, 87 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.67-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H})$, $5.00(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}$,

3H), $2.93(\mathrm{~s}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 145.6,135.7(2 \mathrm{C})$, 135.6 (2C), 133.03, 132.96, 129.79, 129.78, 127.7 (4C), 112.6, 97.1, 76.7, 71.1, 66.6, 55.4, 26.8 (3C), 19.5, 19.3; IR (film) $\nu_{\max } 3562,3450,3071,2931,2858,1472,1428,1113,1045 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 432.2582\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 432.2565).

6-(tert-Butyldimethylsilyloxy)-10,10-dimethyl-9,9-diphenyl-6-(prop-1-en-2-yl)-2,4,8-trioxa-9-silaundecane (S12). Pyridine ($570 \mu \mathrm{~L}, 560 \mathrm{mg}, 7.08 \mathrm{mmol}$) and TBS-OTf (1.48 mL , $1.70 \mathrm{~g}, 6.44 \mathrm{mmol})$ were added successively to a solution of alcohol $\mathbf{S 1 1}(2.0053 \mathrm{~g}, 4.84 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The resultant mixture was stirred at rt under Ar for 3 d . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (200 mL of $\mathrm{SiO}_{2}, 2-10 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded triether $7(1.4148 \mathrm{~g}, 2.68 \mathrm{mmol}, 55 \%)$ and recovered alcohol S12 (432.4 mg, 1.04 mmol , $22 \%)$ as colorless oils. For 7: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.72(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.69$ (dd, $J=7.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 6 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}$, $3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 146.4,135.8(4 \mathrm{C}), 133.44,133.42,129.64,129.62,127.60(2 \mathrm{C}), 127.58$ (2C), 112.6, 97.2, 79.7, 70.4, 66.7, 55.7, 26.9 (3C), 26.1 (3C), 19.9, 19.3, 18.7, $-2.4,-2.7$; IR (film) $v_{\max } 3072$, 2930, 2857, 1472, 1428, 1251, 1113, $1048 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 546.3427\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}\right.$, $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{NH}_{4}{ }^{+}$requires 546.3429).

3-((tert-Butyldimethylsilyl)oxy)-4-((tert-butyldiphenylsilyl)oxy)-3-

((methoxymethoxy)methyl)butan-2-one (187f). A stream of ozone was bubbled into a solution of alkene $\mathbf{S 1 2}(759.5 \mathrm{mg}, 1.436 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ until the solution
became blue in color. The solution was purged with Ar for 5 min , then treated with $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}$, $1.4520 \mathrm{~g}, 14.349 \mathrm{mmol}$). The resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , allowed to warm to rt , stirred at rt for 1 h , and concentrated in vacuo. Flash chromatography (80 mL of SiO_{2}, $2-3 \%$ EtOAc in hexanes gradient elution) afforded ketone $\mathbf{1 8 7 f}(649.9 \mathrm{mg}, 1.224 \mathrm{mmol}, 85 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.63(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=7.9$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.53(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51,(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}) 3.28$ $(\mathrm{s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 210.9,135.8(4 \mathrm{C}), 132.8,132.7,129.79,129.77,127.66$ (2C), 127.65 (2C), 96.9, 85.2, $70.0,67.1,55.6,27.5,26.8$ (3C), 25.9 (3C), 19.1, 18.6, -2.7, -2.9; IR (film) $v_{\max } 3072,3050$, 2930, 2858, 1722, 1472, 1428, 1114, $1048 \mathrm{~cm}^{-1} ; \operatorname{HRMS}(E S I) m / z 531.2957\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{H}^{+}$requires 531.2957).

10,10-Dimethyl-1,9,9-triphenyl-2,4,8-trioxa-9-silaundecan-6-one
(S13). $\quad N, N-$ diisopropylethylamine ($810 \mu \mathrm{~L}, 601 \mathrm{mg}, 4.65 \mathrm{mmol}$) and benzyl chloromethyl ether ($400 \mu \mathrm{~L}$, $450 \mathrm{mg}, 2.88 \mathrm{mmol}$) were added successively and dropwise to a solution of hydroxyketone 4 ($304.4 \mathrm{mg}, 0.9267 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.3 \mathrm{~mL}$) at rt under Ar. The resultant mixture was stirred at rt for 24 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}$ (5 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (80 mL of $\mathrm{SiO}_{2}, 2-10 \%$ EtOAc in hexanes gradient elution) afforded ketone $\mathbf{S 1 3}$ ($303.7 \mathrm{mg}, 0.6770 \mathrm{mmol}$, 73%) as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.63(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.28(\mathrm{~m}$,
$11 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 206.4,137.5,135.5$ (4C), 132.3 (2C), 130.1 (2C), 128.5 (2C), 127.93 (4C), 127.90 (2C), $127.8,94.7,70.7,69.9,68.7,26.7$ (3C), 19.2; IR (film) $v_{\max } 3070,2931,2890,2858,1740,1454$, 1167, 1113, $1028 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z $466.2351\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 466.2408).

10,10-Dimethyl-1,9,9-triphenyl-6-(prop-1-en-2-yl)-2,4,8-trioxa-9-silaundecan-6-ol

(S14). A solution of ketone $\mathbf{S 1 3}(117.3 \mathrm{mg}, 0.2615 \mathrm{mmol})$ in anhydrous THF (2.6 mL) was added to a solution of isopropenylmagnesium bromide (0.57 M in THF, $1.1 \mathrm{~mL}, 0.6270 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under Ar. The resultant mixture was warmed to rt and stirred for 30 min . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (20 mL of $\mathrm{SiO}_{2}, 2-6 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded alcohol S14 (113.0 mg, $0.2303 \mathrm{mmol}, 88 \%$) as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $7.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.27(\mathrm{~m}, 11 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.75$ $(\mathrm{d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 145.7,137.7,135.7$ (2C), 135.6 (2C), 133.1, 133.0, 129.81, 129.80, 128.4 (2C), 127.9 (2C), 127.74 (4C), 127.72, 112.7, 95.3, 76.8, 71.3, 69.6, 66.8, 26.9 (3C), 19.6, 19.3; IR (film) $v_{\max } 3452,2070,2931,2858,1645,1265,1471,1428,1113,1044 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 508.2904\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{SiNH}_{4}{ }^{+}\right.$requires 508.2878).

6-(tert-Butyldimethylsilyloxy)-10,10-dimethyl-1,9,9-triphenyl-6-(prop-1-en-2-yl)-

2,4,8-trioxa-9-silaundecane (S15). Anhydrous pyridine ($80.0 \mu \mathrm{~L}, 78.6 \mathrm{mg}, 0.993 \mathrm{mmol}$) and TBS-OTf ($80.0 \mu \mathrm{~L}, 92.1 \mathrm{mg}, 0.348 \mathrm{mmol}$) were added successively and dropwise to a solution of
alcohol $\mathbf{S 1 4}(59.8 \mathrm{mg}, 0.1219 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mu \mathrm{~L})$ at rt under Ar. The resultant mixture was stirred at rt under Ar for 18 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (10 mL of $\mathrm{SiO}_{2}, 2-4 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded triether $\mathbf{S 1 5}$ ($32.3 \mathrm{mg}, 0.05339 \mathrm{mmol}, 44 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 11 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H})$, $4.95(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.032(\mathrm{~s}, 3 \mathrm{H}), 0.026(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 146.4,137.9,135.75$ (2C), 135.74 (2C), 133.4 (2C), 129.6 (2C), 128.4 (2C), 127.8 (2C), 127.6 (2C), 127.5 (3C), 112.6, 95.3, 79.8, 70.8, 69.6, 66.9, 26.9 (3C), 26.0 (3C), 19.9, 19.3, 18.7, -2.4, -2.7; IR (film) $v_{\max } 3071,2930,2886,2857,1590,1472,1428$, $1251,1113 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 622.3771\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{NH}_{4}{ }^{+}\right.$requires 622.3742).

4-(Benzyloxymethoxy)-3-(tert-butyldimethylsilyloxy)-3-((tert-butyldiphenylsilyloxy)

methyl)butan-2-one ($\mathbf{1 8 7} \mathbf{g}$). A solution of alkene $\mathbf{S} 15$ ($37.4 \mathrm{mg}, 0.0618 \mathrm{mmol}$) and anhydrous pyridine ($20.0 \mu \mathrm{~L}, 19.6 \mathrm{mg}, 0.248 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(620 \mu \mathrm{~L})$ at $-78{ }^{\circ} \mathrm{C}$ was treated with a drop of Sudan IV (saturated solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and ozone was bubbled through until the solution became colorless. It was purged with Ar for 5 min and treated with $\mathrm{Et}_{3} \mathrm{~N}(90.0 \mu \mathrm{~L}, 65.3$ $\mathrm{mg}, 0.645 \mathrm{mmol})$. The resultant mixture was warmed to rt , stirred for 1 h , and concentrated in vacuo. Flash chromatography (5 mL of $\mathrm{SiO}_{2}, 2-3 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded ketone $\mathbf{1 8 7} \mathbf{g}(26.5 \mathrm{mg}, 0.0437 \mathrm{mmol}, 71 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.64$ $(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.28(\mathrm{~m}, 11 \mathrm{H}), 4.68(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=$
$10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.26(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $210.8,137.6,135.8$ (4C), 132.8, 132.7, 129.81, 129.79, 128.4 (2C), 128.0 (2C), 127.8, 127.69 (2C), 127.67 (2C), 94.8, 85.3, 70.3, 69.5, 67.2, 27.5, 26.8 (3C), 26.0 (3C), 19.2, 18.6, -2.7, -2.9; IR (film) $v_{\max } 3071,2930,2885,2857,1720,1472,1428,1114,1048 \mathrm{~cm}^{-1}$; (ESI) $\mathrm{m} / \mathrm{z} 624.3516$ $\left(\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{NH}_{4}{ }^{+}\right.$requires 624.3535).

(3R*,4S*)-5-(benzyloxy)-4-((tert-butyldimethylsilyl)oxy)-4-(((tert-
butyldimethylsilyl)oxy)methyl)-2,3-dimethylpent-1-en-3-ol (188a). A solution of $\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}$ (0.59 M in THF, $24.7 \mathrm{~mL}, 14.5730 \mathrm{mmol}$) was added to a solution of ketone $\mathbf{1 8 7 a}(1.32 \mathrm{~g}$, $2.9153 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the solution became cloudy. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . A solution of isopropenylmagnesium bromide $(0.57 \mathrm{M}$ in THF, $15.4 \mathrm{~mL}, 8.7780 \mathrm{mmol}$) was added dropwise and the resultant mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and volatiles were removed by rotary evaporation. The aqueous layer was extracted with EtOAc $(3 \times 125 \mathrm{~mL})$. Combined extracts were washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to afford 188a in $>20: 1 \mathrm{dr}$ as evidenced by ${ }^{1} \mathrm{H}$ NMR. Flash chromatography (150 mL of $\mathrm{SiO}_{2}, 2 \%$ EtOAc in hexanes) afforded alcohol $188 \mathrm{a}(1.3470 \mathrm{~g}, 2.7220 \mathrm{mmol}, 93 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.09(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (s, 1H), $4.95(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J$ $=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$, $0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 149.3,137.8,128.3$ (2C), 127.63 (2C), 127.61,
112.3, $92.9,81.0,78.8,73.8,70.6,62.8,56.0,25.8(3 C), 23.3,21.6,18.1,-5.7,-5.8$; Data for minor isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ $(\mathrm{s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.51(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 149.6,137.9,128.3$ (2C), 127.7 (2C), 127.6, $112.2,92.9,80.6,79.2,73.8,70.0,63.5,56.0,25.7$ (3C), 23.0, 21.7, 18.0, -5.81, -5.85; IR (film) $v_{\max } 3467,2928,2856,1472,1254,1070,1023 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 425.2719\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{SiH}^{+}$requires 425.2719).

5-(Benzyloxy)-4-((tert-butyldimethylsilyloxy)methyl)-4-(methoxymethoxy)-
2,3-dimethylpent-1-en-3-ol (188b). A solution of $\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}(0.59 \mathrm{M}$ in THF, $160 \mu \mathrm{~L}, 0.0944$ $\mathrm{mmol})$ was added to a solution of ketone $\mathbf{1 8 7 b}(7.3 \mathrm{mg}, 0.0191 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(260$ $\mu \mathrm{L}$) at $0^{\circ} \mathrm{C}$ under Ar , and the resultant mixture was stirred for 10 min . A solution of isopropenylmagnesium bromide (0.57 M in THF, $100 \mu \mathrm{~L}, 0.0570 \mathrm{mmol}$) was then added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 3 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford crude $\mathbf{1 8 8 b}$ in $1.6: 1 \mathrm{dr}$ as evidenced by ${ }^{1} \mathrm{H}$ NMR. Flash chromatography (2 mL of $\mathrm{SiO}_{2}, 2 \% \mathrm{EtOAc}$ in hexanes elution) afforded $\mathbf{1 8 8 b}$ (6.0 $\mathrm{mg}, 0.0141 \mathrm{mmol}, 74 \%$) as a 2.3:1 mixture of diastereomers that was a colorless oil. Data for major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.09(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=$
$10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 149.3,137.8,128.3(2 \mathrm{C})$, 127.63 (2C), $127.61,112.3,92.9,81.0,78.8,73.8,70.6,62.8,56.0,25.8$ (3C), 23.3, 21.6, 18.1, 5.7, -5.8; Data for minor isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.11(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.89$ $(\mathrm{s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 149.6,137.9,128.3(2 \mathrm{C})$, 127.7 (2C), 127.6, 112.2, $92.9,80.6,79.2,73.8,70.0,63.5,56.0,25.7$ (3C), 23.0, 21.7, 18.0, 5.81, -5.85; IR (film) $v_{\max } 3467,2928,2856,1472,1254,1070,1023 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z $425.2719\left(\mathrm{MH}^{+}, \mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{SiH}^{+}\right.$requires 425.2719).

5-(Benzyloxy)-4-((tert-butyldimethylsilyloxy)methyl)-2,3-dimethyl-4-(triethylsilyloxy)pent-1-en-3-ol (188c). A solution of $\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}(0.59 \mathrm{M}$ in THF, $160 \mu \mathrm{~L}$, $0.0944 \mathrm{mmol})$ was added to a solution of ketone $\mathbf{1 8 7} \mathbf{c}(8.3 \mathrm{mg}, 0.0183 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(260 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ under Ar , and the resultant mixture was stirred for 10 min . A solution of isopropenylmagnesium bromide (0.57 M in THF, $100 \mu \mathrm{~L}, 0.0570 \mathrm{mmol}$) was then added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 3 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford crude 188c in 7.7:1 dr as evidenced by ${ }^{1} \mathrm{H}$ NMR. Flash chromatography (2 mL of $\mathrm{SiO}_{2}, 2 \% \mathrm{EtOAc}$ in hexanes elution) afforded pure $\mathbf{1 8 8 c}$ ($6.9 \mathrm{mg}, 0.0139 \mathrm{mmol}, 76 \%$) as a mixture of diastereomers that was a colorless oil. Data for
major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.36-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.48$ $(\mathrm{d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J$ $=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 0.93-$ $0.87(\mathrm{~m}, 18 \mathrm{H}), 0.63-0.56(\mathrm{~m}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $149.2,137.6,128.3$ (2C), 128.1 (2C), 127.7, 112.0, 79.2, 79.1, 73.7, 70.9, 63.8, 25.9 (3C), 23.2, $21.8,18.3,7.1$ (3C), 6.4 (3C), $-5.6,-5.7$; IR (film) $v_{\max } 3481,2954,2876,1472,1256,1131$, $1071 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 495.3324\left(\mathrm{MH}^{+}, \mathrm{C}_{27} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 495.3320).

5-(Benzyloxy)-4-(tert-butyldimethylsilyloxy)-4-((tert-butyldiphenylsilyloxy) methyl)-2,3-dimethylpent-1-en-3-ol (188d). A solution of $\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}(0.59 \mathrm{M}$ in THF, 110 $\mu \mathrm{L}, 0.0649 \mathrm{mmol})$ was added to a solution of ketone $\mathbf{1 8 7 d}(7.4 \mathrm{mg}, 0.0128 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(180 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ under Ar , and the resultant mixture was stirred for 10 min . A solution of isopropenylmagnesium bromide (0.57 M in THF, $70 \mu \mathrm{~L}, 0.040 \mathrm{mmol}$) was then added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 3 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford crude $\mathbf{1 8 8 d}$ in $10: 1 \mathrm{dr}$ as evidenced by ${ }^{1} \mathrm{H}$ NMR. Flash chromatography (2 mL of $\mathrm{SiO}_{2}, 2 \%$ EtOAc in hexanes elution) afforded pure $\mathbf{1 8 8 d}$ ($7.8 \mathrm{mg}, 0.0126 \mathrm{mmol}, 98 \%$) as a mixture of diastereomers that was a colorless oil. Data for major isomer: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.66(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=7.9,1.2$ Hz, 2H), 7.45-7.20 (m, 11H), $5.21(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}$,

9H), $0.78(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 148.4,137.5$, 135.9 (2C), 135.7 (2C), 132.2, 131.9, 130.0, 129.6, 128.7 (2C), 128.2 (2C), 127.8 (2C), 127.7, 127.6 (2C), 112.4, 79.31, 79.28, 74.0, 71.6, 64.5, 26.8 (3C), 26.1 (3C), 24.0, 21.8, 19.1, 18.7, 2.2, -3.0; IR (film) $v_{\max } 3467,2954,2929,2857,1472,1428,1253,1114,1071 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 619.3645\left(\mathrm{MH}^{+}, \mathrm{C}_{37} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 619.3633).

4,5-bis(tert-butyldimethylsilyloxy)-4-((methoxymethoxy)methyl)-2,3-dimethylpent-1-en-3-ol (188e). A solution of $\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}(0.59 \mathrm{M}$ in $\mathrm{THF}, 250 \mu \mathrm{~L}, 0.148$ mmol, 4.9 equiv) was added to a solution of ketone $\mathbf{1 8 7 e}(12.2 \mathrm{mg}, 0.0300 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(410 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ under Ar , and the resultant mixture was stirred for 10 min . A solution of isopropenylmagnesium bromide (0.57 M in THF, $160 \mu \mathrm{~L}, 0.0912 \mathrm{mmol}, 3.0$ equiv) was then added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}$ (2 mL), diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 3 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford crude 188 e in $5.1: 1 \mathrm{dr}$ as evidenced by ${ }^{1} \mathrm{H}$ NMR. Flash chromatography (2 mL of $\mathrm{SiO}_{2}, 2 \% \mathrm{EtOAc}$ in hexanes elution) afforded pure $188 \mathrm{e}(12.1 \mathrm{mg}, 0.0269 \mathrm{mmol}, 90 \%)$ as a mixture of diastereomers that was a colorless oil. Data for major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H})$, $4.63(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}$, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H})$, $1.40(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 148.4,112.5,97.4,79.6,79.0,69.0,63.7,55.9,26.2$ (3C), 25.8 (3C),
23.9, 21.7, 18.8, 18.2, -2.0, -2.6, -5.7, -5.8; IR (film) $v_{\max } 3467,2929,2857,1472,1388,1254$, $1045 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $m / z 449.3098\left(\mathrm{MH}^{+}, \mathrm{C}_{22} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 449.3113).

($3 R^{*}, 4 S^{*}$)-4-(tert-Butyldimethylsilyloxy)-5-(tert-butyldiphenylsilyloxy)-4-((methoxymethoxy)methyl)-2,3-dimethylpent-1-en-3-ol (188f). A solution of $\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}$ (0.59 M in THF, $1.8 \mathrm{~mL}, 1.06 \mathrm{mmol}$) was added to a solution of ketone $\mathbf{1 8 7 f}(112.5 \mathrm{mg}, 0.212$ mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The resultant mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min , then treated with a solution of isopropenylmagnesium bromide $(0.57 \mathrm{M}$ in $\mathrm{THF}, 1.10$ $\mathrm{mL}, 0.627 \mathrm{mmol})$. The resultant mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , then treated with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford crude 3a in 19:1 dr as evidenced by ${ }^{1} \mathrm{H}$ NMR. Flash chromatography (15 mL of $\mathrm{SiO}_{2}, 2 \% \mathrm{EtOAc}$ in hexanes elution) afforded alcohol $\mathbf{1 8 8 f}(116.0 \mathrm{mg}, 0.203 \mathrm{mmol}, 96 \%)$ as a white solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.72-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 6 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.55$ (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.73(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.10$ $(\mathrm{s}, 9 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}),-0.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 148.1,135.83$ (2C), 135.75 (2C), 132.2, 131.9, 130.1, 130.0, 127.8 (2C), 127.7 (2C), 112.6, 97.5, 79.4, 79.1, 69.2, 64.3, 56.0, 26.9 (3C), 26.1 (3C), 24.1, 21.7, 19.1, 18.7, -2.2, -2.8; IR (film) $v_{\max } 3471$, 2930, 2888, 2857, 1472, 1428, 1249, 1114, $1045 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 573.3395\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{H}^{+}$requires 573.3426).

5-(Benzyloxymethoxy)-4-(tert-butyldimethylsilyloxy)-4-((tert-

 butyldiphenylsilyloxy)methyl)-2,3-dimethylpent-1-en-3-ol (188g). A solution of $\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}$ (0.59 M in THF, $260 \mu \mathrm{~L}, 0.153 \mathrm{mmol}$) was added to a solution of ketone $\mathbf{1 8 7} \mathbf{g}(18.9 \mathrm{mg}, 0.0311$ mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(260 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ under Ar , and the resultant mixture was stirred for 10 min . A solution of isopropenylmagnesium bromide (0.57 M in $\mathrm{THF}, 160 \mu \mathrm{~L}, 0.0912 \mathrm{mmol}$) was then added, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 3 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford crude $\mathbf{1 8 8 g}$ in $>19: 1 \mathrm{dr}$ as evidenced by ${ }^{1} \mathrm{H}$ NMR. Flash chromatography $\left(2 \mathrm{~mL}\right.$ of $\mathrm{SiO}_{2}, 1-4 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes gradient elution) afforded pure $\mathbf{1 8 8 g}$ ($18.4 \mathrm{mg}, 0.0284 \mathrm{mmol}, 91 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.71-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.27(\mathrm{~m}, 11 \mathrm{H}), 5.20(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}$, $1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.50(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.65(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), \quad-0.03(\mathrm{~s}$, $3 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 148.1,137.7,135.82(2 \mathrm{C}), 135.75$ (2C), 132.2, $132.0,130.05,130.00,128.4$ (2C), 127.8 (2C), 127.74 (2C), 127.72 (2C), 127.7, 112.6, 95.5, $79.5,79.1,69.8,69.6,64.5,27.0$ (3C), 26.1 (3C), 24.2, 21.7, 19.1, 18.7, -2.1, -2.7; IR (film) $v_{\max }$ 3471, 2930, 2886, 2858, 1472, 1428, 1114, $1047 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 671.3593\left(\mathrm{MNa}^{+}\right.$, $\mathrm{C}_{38} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}^{+}$requires 671.3558).1-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-3,4-dimethylpent-4-ene-2,3-diol (189). Ammonia ($c a .10 \mathrm{~mL}$) was condensed into a 3-neck flask equipped with a stir bar at $-78^{\circ} \mathrm{C}$. Sodium metal ($67.0,2.9143 \mathrm{mmol}$) was added and stirred until the solution became dark blue. A solution of alcohol $\mathbf{1 8 8 a}(28.3 \mathrm{mg}, 0.0572 \mathrm{mmol})$ in anhydrous THF ($200 \mu \mathrm{~L}$) was added and the resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . $\mathrm{MeOH}(10 \mathrm{~mL})$ was added and the ammonia was removed in vacuo. Flash chromatography (5 mL of $\mathrm{SiO}_{2}, 1-4 \%$ EtOAc in hexanes gradient elution) afforded diol $\mathbf{1 8 9}(15.5 \mathrm{mg}, 0.03830 \mathrm{mmol}, 67 \%)$ as a yellow oil: ${ }^{1} H$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.08(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H})$, $3.84(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=0.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 149.5,111.4,78.8,74.2,64.0,62.3,25.81$ (3C), 25.78 (3C), 22.6, 20.9, 18.1, 18.0, -5.5, -5.61, -5.63, -5.8; IR (film) $v_{\max } 3494,2955,2885,2858,2741$, 2712, 1639, 1471, 1390, 1362, 1331, 1255, 1191, 1082; HRMS (ESI) $m / z 405.2869\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}$requires 405.2851).

(2S*,3R*)-2-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy) methyl)-3,4-dimethylpent-4-ene-1,3-diol (190). A solution of $\mathrm{BCl}_{3}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}$, 0.2500 mmol) was added to a solution of triether $\mathbf{1 8 8 a}$ ($105.1 \mathrm{mg}, 0.2124 \mathrm{mmol}$), in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar over 10 min by syringe pump. The resultant mixture was
stirred at $-78^{\circ} \mathrm{C}$ for 30 min then diluted with THF $(1.0 \mathrm{~mL})$ and saturated aq $\mathrm{NaHCO}_{3}(250 \mu \mathrm{~L})$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min , at $0^{\circ} \mathrm{C}$ for 10 min , and at rt for 10 min then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Combined extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (10 mL of $\mathrm{SiO}_{2}, 0-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded diol $190(65.5 \mathrm{mg}, 0.1618 \mathrm{mmol}, 76 \%)$ as a yellow solid: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J$ $=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $0.17(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 148.9,112.7,80.3,79.2,66.5,65.2$, $26.2,25.8,23.9,21.6,18.7$ (3C), 18.2 (3C), $-2.1,-2.5,-5.70,-5.74$; IR (film) $v_{\max } 3384,2954$, 2930, 2892, 2857, 1471, 1254, 1093; HRMS (ESI) $m / z 405.2867\left(\mathrm{MH}^{+}, \mathrm{C}_{20} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 405.2851).

tert-butyl(((4R*,5S*)-5-((tert-butyldimethylsilyl)oxy)-2,2,4-trimethyl-4-(prop-1-en-2-yl)-1,3-dioxan-5-yl)methoxy)dimethylsilane (191). A solution of diol 190 (24.0 $\mathrm{mg}, 0.0593 \mathrm{mmol})$, 2,2-dimethoxypropane ($70 \mu \mathrm{~L}, 59.4 \mathrm{mg}, 0.5706 \mathrm{mmol}$), and PPTS (1.5 mg , $0.0060 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ was stirred at rt under Ar for 18 h . Solid NaHCO_{3} (10 mg) was added and the mixture was filtered through celite. The filtrate was concentrated in vacuo. Flash chromatography (3 mL of $\mathrm{SiO}_{2}, 1 \% \mathrm{EtOAc}$ in hexanes elution) afforded acetonide $191(13.9 \mathrm{mg}, 0.0313 \mathrm{mmol}, 53 \%)$ as a white solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.27(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}$, 9H), $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 148.3$,
$112.6,98.9,81.0,76.4,66.0,62.1,27.8,26.8,26.0$ (6C), 23.5, 21.6, 18.7, 18.5, -2.34, -2.35, $-5.43,-5.44 ; 2 \mathrm{D}{ }^{1} \mathrm{H}^{-13} \mathrm{C} \operatorname{HSQC} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.27 / 112.6,4.92 / 112.6,3.99 / 62.1$, $3.97 / 66.0,3.87 / 62.1,3.67 / 66.0,1.82 / 21.6,1.49 / 26.8,1.44 / 27.8,1.36 / 23.5,0.93 / 26.0,0.85 / 26.0$, $0.17 /-2.34,0.13 /-2.35,0.10 /-5.43,0.10 /-5.44 ; 2 \mathrm{D}{ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HMBC NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 5.27/81.0, 5.27/21.6, 4.92/81.0, 4.92/21.6, 3.99/98.9, 3.99/81.0, 3.99/62.1, 3.97/62.1, 3.87/98.9, $3.87 / 81.0,3.87 / 66.0,3.87 / 62.1,3.67 / 81.0,3.67 / 62.1,1.82 / 148.3,1.82 / 112.6,1.82 / 81.0$, $1.49 / 98.9,1.49 / 27.8,1.44 / 98.9,1.44 / 26.8,1.36 / 148.3,1.36 / 81.0,1.36 / 76.4,0.93 / 26.0,0.93 / 18.5$, $0.85 / 26.0,0.85 / 18.7$; NOE NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: irradiation of the signal at 5.27 enhanced the signals at $4.92(\mathrm{~s}), 3.97(\mathrm{w}), 3.87(\mathrm{~m}), 3.67(\mathrm{w}), 1.49(\mathrm{w}), 1.36(\mathrm{~m}), 0.85(\mathrm{w}), 0.17(\mathrm{w})$; irradiation of the signal at 4.92 enhanced the signals at 5.27 (s), $1.82(\mathrm{~m})$, and $0.85(\mathrm{w})$; irradiation of the signal at 3.99 enhanced the signals at 3.87 (s), 1.44 (w), and 1.35 (w); irradiation of the signal at 3.97 enhanced the signals at 3.67 (s), 1.82 (w), 1.44 (w), 1.36 (m), $0.93(\mathrm{w}), 0.85(\mathrm{w})$, and $0.10(\mathrm{w})$; irradiation of the signal at 3.87 enhanced the signals at $3.99(\mathrm{~s})$, $3.67(\mathrm{w}), 1.49(\mathrm{~m}), 0.93(\mathrm{w}), 0.85(\mathrm{w}), 0.17$ (w), $0.13(\mathrm{w})$; irradiation of the signal at 3.67 enhanced the signals at $3.97(\mathrm{~s}), 1.82(\mathrm{w}), 1.36(\mathrm{~m}), 0.93(\mathrm{w}), 0.85(\mathrm{w}), 0.17(\mathrm{w}), 0.13(\mathrm{w})$, and $0.10(\mathrm{w})$; irradiation of the signal at 1.82 enhanced the signals at 5.27 (w), 4.92 (s), 3.97 (w), $3.67(\mathrm{~m}), 1.49(\mathrm{~m}), 1.36(\mathrm{~s}), 0.93(\mathrm{w}), 0.85(\mathrm{~m}), 0.17(\mathrm{w}), 0.13(\mathrm{w})$, and $0.10(\mathrm{w})$; irradiation of the signal at 1.49 enhanced the signals at $3.87(\mathrm{~m}), 1.82(\mathrm{~m}), 1.44(\mathrm{~m}), 0.85(\mathrm{w})$, and $0.17(\mathrm{w})$; irradiation of the signal at 3.99 enhanced the signals at $3.99(\mathrm{~m}), 1.49(\mathrm{~s}), 1.36(\mathrm{~s}), 0.93(\mathrm{w}), 0.85$ (w), and $0.10(\mathrm{w})$; irradiation of the signal at 1.36 enhanced the signals at $3.99(\mathrm{w}), 3.97(\mathrm{~m})$, $3.67(\mathrm{~m}), 1.82(\mathrm{~m})$, and $1.44(\mathrm{~m})$; HRMS (ESI) $m / z 445.3159\left(\mathrm{MH}^{+}, \mathrm{C}_{23} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 445.3164).

($2 S^{*}, 3 R^{*}$)-2-(tert-Butyldimethylsilyloxy)-2-((tert-butyldiphenylsilyloxy) methyl)-3,4-dimethylpent-4-ene-1,3-diol (192). A solution of $\mathrm{BCl}_{3}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40 \mu \mathrm{~L}$, 0.040 mmol) was added to a solution of triether $\mathbf{1 8 8 f}(22.7 \mathrm{mg}, 0.0396 \mathrm{mmol})$ and pentamethylbenzene ($29.6 \mathrm{mg}, 0.200 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(800 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$ under Ar. The resultant mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then the reaction was quenched with sat aq $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (6 mL of $\mathrm{SiO}_{2}, 0-4 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded diol 192 ($17.1 \mathrm{mg}, 0.0323 \mathrm{mmol}, 82 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.70-$ $7.64(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 6 \mathrm{H}), 5.15(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J$ $=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=12.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.13(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}$, $3 \mathrm{H}),-0.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 148.9,135.8(2 \mathrm{C}), 135.7(2 \mathrm{C}), 132.2,132.0$, $130.2,130.1,128.0$ (2C), 127.9 (2C), 112.7, 80.2, 79.3, 66.9, 65.0, 26.9 (3C), 26.1 (3C), 24.1, 21.5, 19.1, 18.6, -2.3, -2.8; IR (film) $\nu_{\max } 3467,3072,3052,2954,2930,2858,1472,1428$, $1252,1114 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 529.3161\left(\mathrm{MH}^{+}, \mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 529.3164).

($2 S^{*}, 3 R^{*}$)-2-(tert-butyldimethylsilyloxy)-2-((tert-butyldiphenylsilyloxy)
methyl)-3,4-dimethylpent-4-ene-1,3-diol (epi-192). Prepared from a mixture of $\mathbf{1 8 8 f}$ and epi-
$\mathbf{1 8 8 f}(1: 2.8 \mathrm{dr}, 78.4 \mathrm{mg}, 0.137 \mathrm{mmol})$ using the same procedure outlined for the synthesis of $\mathbf{1 9 2}$. Afforded diol epi-192 (41.7 mg, $0.0788 \mathrm{mmol}, 58 \%$) as a colorless oil and $192(15.0 \mathrm{mg}, 0.0284$ $\mathrm{mmol}, 21 \%)$ as white film. Data for epi-192: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.69(\mathrm{dd}, J=8.0,1.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 6 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97(\mathrm{dd}, J=12.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=12.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, $1 \mathrm{H}), 3.60(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dd}, J=7.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}$, $3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 149.0$, 135.8 (2C), 135.7 (2C), 132.23, 132.21, 130.2, 130.1, 128.0 (2C), 127.9 (2C), 112.5, 80.5, 79.9, $66.9,64.3,27.0$ (3C), 26.1 (3C), 23.0, 21.6, 19.1, 18.8, -2.3, -2.6; IR (film) $v_{\max } 3423,3072$, 3052, 2958, 2931, 2893, 2857, 1472, 1428, 1251, $1114 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 529.3173\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}$requires 529.3164).

tert-Butyl(((4R*,5S*)-5-(tert-butyldimethylsilyloxy)-2,2,4-trimethyl-4-(prop-1-en-2-yl)-1,3-dioxan-5-yl)methoxy)diphenylsilane (193). A solution of diol 192 (5.4 $\mathrm{mg}, 0.010 \mathrm{mmol}$), 2,2-dimethoxypropane ($20.0 \mu \mathrm{~L}, 17.0 \mathrm{mg}, 0.163 \mathrm{mmol}$), and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.4$ $\mathrm{mg}, 0.002 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was stirred at rt for 1 h . The reaction was quenched with solid $\mathrm{NaHCO}_{3}(10 \mathrm{mg})$ and then filtered through Celite $\left(1.0 \mathrm{~mL}\right.$, rinsed with 10 mL of $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The filtrate was concentrated in vacuo. Flash chromatography (1.0 mL of $\mathrm{SiO}_{2}, 0-3 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded acetonide 193 ($3.8 \mathrm{mg}, 0.0067 \mathrm{mmol}, 65 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}$, $6 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=$
$12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H})$, $0.76(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 149.4,135.81$ (2C), 135.80 (2C), $132.90,132.86,129.9,129.8,127.7$ (4C), 111.3, $98.3,81.8,75.5,67.1,62.8,29.6$, 27.0 (3C), 25.9 (3C), $25.8,25.2,22.1,19.2,18.5,-2.4,-2.5 ; 2 D^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.66-7.64 / 135.81,7.66-7.64 / 135.80,7.47-7.39 / 129.9,7.47-7.39 / 129.8,7.44-$ $7.37 / 127.7,4.93 / 111.3,4.81 / 111.3,4.19 / 62.8,3.86 / 67.1,3.67 / 62.8,3.48 / 67.1,1.75 / 22.1$, $1.44 / 29.6,1.44 / 25.8,1.41 / 25.2,1.09 / 27.0,0.76 / 25.9,0.08 /-2.5,-0.09 /-2.4 ; 2 \mathrm{D}^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HMBC NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.66-7.64 / 135.81,7.66-7.64 / 135.80,7.66-7.64 / 132.90,7.66-$ $7.64 / 132.86,7.66-7.64 / 129.9,7.66-7.64 / 129.8,7.47-7.39 / 135.81,7.47-7.39 / 135.80,7.44-$ $7.37 / 132.90, \quad 7.44-7.37 / 132.86,7.44-7.37 / 132.90,7.44-7.37 / 127.7,4.93 / 149.4, \quad 4.93 / 81.8$, $4.93 / 22.1,4.81 / 81.8,4.81 / 22.1,4.19 / 98.3,3.86 / 62.8,3.67 / 98.3,3.67 / 81.8,3.67 / 75.5,3.48 / 81.8$, $3.48 / 75.5,3.48 / 62.8,1.75 / 149.4,1.75 / 111.3,1.75 / 81.8,1.44 / 149.4,1.44 / 98.3,1.44 / 29.7$, $1.44 / 25.8,1.41 / 81.8,1.41 / 75.5,1.09 / 27.0,1.09 / 19.2,0.76 / 25.8,0.76 / 18.5,0.08 / 18.5,0.08 /-2.4$, $-0.09 / 18.5,-0.09 /-2.5 ;$ NOE NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: irradiation of the signal at 4.93 enhanced the signals at $4.81(\mathrm{~s}), 3.86(\mathrm{~m}), 3.67(\mathrm{w}), 3.48(\mathrm{w}), 1.75(\mathrm{w}), 1.44(\mathrm{w}), 1.41(\mathrm{~s}), 0.76(\mathrm{w})$, and $0.08(\mathrm{w})$; irradiation of the signal at 4.81 enhanced the signals at $4.93(\mathrm{~s}), 1.75(\mathrm{~s})$, and $0.76(\mathrm{w})$; irradiation of the signal at 4.19 enhanced the signals at $7.66(\mathrm{w}), 3.86(\mathrm{w}), 3.67(\mathrm{~s}), 3.48(\mathrm{w})$, $1.44(\mathrm{~s}), 1.41(\mathrm{~m})$, and $1.09(\mathrm{w})$; irradiation of the signal at 3.86 enhanced the signals at $7.66(\mathrm{~m})$, $4.93(\mathrm{~s}), 4.19(\mathrm{w}), 3.48(\mathrm{~s}), 1.75(\mathrm{~m}), 1.41(\mathrm{~m}), 1.09(\mathrm{w})$, and $0.76(\mathrm{w})$; irradiation of the signal at 3.67 enhanced the signals at $7.64(\mathrm{w}), 4.93(\mathrm{w}), 4.19(\mathrm{~s}), 3.48(\mathrm{w}), 1.41(\mathrm{w}), 1.09(\mathrm{w}), 0.76(\mathrm{w})$, $0.08(\mathrm{w})$, and $-0.09(\mathrm{~m})$; irradiation of the signal at 3.48 enhanced the signals at $7.64(\mathrm{~m}), 4.93$ (w), $4.19(\mathrm{w}), 3.86(\mathrm{~s}), 3.67(\mathrm{~m}), 1.75(\mathrm{~m}), 1.41(\mathrm{w}), 1.09(\mathrm{w}), 0.76(\mathrm{~m}), 0.08(\mathrm{w})$, and $-0.09(\mathrm{~m})$; irradiation of the signal at 1.75 enhanced the signals at $4.81(\mathrm{~s}), 3.86(\mathrm{~m}), 3.48(\mathrm{~m}), 1.44(\mathrm{w})$,
$1.41(\mathrm{~m}), 0.75(\mathrm{~m}), 0.08(\mathrm{w}),-0.09(\mathrm{w})$; irradiation of the signal at 1.44 enhanced the signal at $4.19(\mathrm{~m})$; irradiation of the signal at 1.41 enhanced the signals at $4.93(\mathrm{~s}), 4.19(\mathrm{~m}), 3.87(\mathrm{~m})$, $1.75(\mathrm{~m}), 1.44(\mathrm{~m}), 1.09(\mathrm{w})$; IR (film) $\nu_{\max } 3077,3052,2958,2930,2893,2857,1472,1428$, 1378, 1246, 1190, 1159, 1113, $1072 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 569.3472\left(\mathrm{MH}^{+}, \mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$ requires 569.3477).

tert-Butyl(((4S**,5S*)-5-(tert-butyldimethylsilyloxy)-2,2,4-trimethyl-4-(prop-1-en-2-yl)-1,3-dioxan-5-yl)methoxy)diphenylsilane (epi-193). A solution of epi-192 ($41.7 \mathrm{mg}, 0.0788 \mathrm{mmol}$), 2,2-dimethoxypropane ($100 \mu \mathrm{~L}, 84.7 \mathrm{mg}, 0.813 \mathrm{mmol}$), and PPTS (2.3 $\mathrm{mg}, 0.0092 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at rt under Ar was stirred for 24 h . The reaction was quenched with solid $\mathrm{NaHCO}_{3}(20 \mathrm{mg})$ and then filtered through Celite $(1.0 \mathrm{~mL}$, rinsed with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The filtrate was concentrated in vacuo. Flash chromatography (4 mL of $\mathrm{SiO}_{2}, 0-3 \%$ EtOAc in hexanes gradient elution) afforded acetonide epi-193 (33.1 mg, $0.0582 \mathrm{mmol}, 74 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.69(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 6 \mathrm{H}), 4.89(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.11$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 146.3,136.3$ (2C), 135.9 (2C), 133.7, 133.0, 129.48, $129.45,127.40$ (2C), 127.36 (2C), 111.9, 98.2, 80.4, 74.6, 66.1, 59.3, 30.8, 27.2 (3C), 25.9 (3C), 24.5, 22.8, 21.0, 19.2, 18.6, -1.6, -2.3; 2D ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HSQC NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.73 / 136.3$, $7.69 / 135.9, \quad 7.44-7.36 / 129.48, \quad 7.44-7.36 / 129.45, \quad 7.41-7.32 / 127.40, \quad 7.41-7.32 / 127.36$,
$4.89 / 111.9,4.64 / 111.9,4.22 / 59.3,3.97 / 66.1,3.73 / 59.3,3.38 / 66.1,1.70 / 21.0,1.53 / 24.5$, $1.48 / 22.8,1.22 / 30.8,1.10 / 27.2,0.89 / 25.9,0.23 /-1.6,0.11 /-2.3 ; 2 \mathrm{D}{ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HBC NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.73 / 136.3,7.73 / 129.45,7.69 / 135.9,7.69 / 129.48,7.44-7.36 / 136.3,7.41-$ $7.32 / 133.0,7.41-7.32 / 127.40,7.41-7.32 / 127.36,4.89 / 146.3,4.89 / 80.4,4.89 / 21.0,4.64 / 80.4$, 4.64/21.0, 4.22/98.2, 4.22/80.4, 4.22/74.6, 4.22/66.1, 3.97/80.4, 3.73/80.4, 3.73/74.6, 3.73/66.1, $3.38 / 74.6,3.38 / 59.3,1.70 / 146.3,1.70 / 111.9,1.70 / 80.4,1.53 / 98.2,1.53 / 30.8,1.48 / 146.3$, $1.48 / 80.4,1.48 / 74.6,1.22 / 98.2,1.22 / 24.5,1.10 / 27.2,1.10 / 19.2,0.89 / 25.9,0.89 / 18.6,0.23 / 18.6$, $0.23 /-2.3,0.11 / 18.6,0.11 /-1.6 ;$ NOE NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: irradiation of the signal at 4.89 enhanced the signals at $4.64(\mathrm{~s}), 3.97(\mathrm{~m}), 3.38(\mathrm{w}), 1.48(\mathrm{~m}), 1.22(\mathrm{~m})$, and $0.89(\mathrm{w})$; irradiation of the signal at 4.64 enhanced the signals at $4.89(\mathrm{~s}), 3.97(\mathrm{w}), 3.38(\mathrm{w})$, and $1.70(\mathrm{~m})$; irradiation of the signal at 4.22 enhanced the signals at $7.73(\mathrm{w}), 7.69(\mathrm{w}), 3.97(\mathrm{w}), 3.73(\mathrm{~s}), 1.10(\mathrm{w}), 0.23$ (m), and $0.11(\mathrm{w})$; irradiation of the signal at 3.97 enhanced the signals at $7.73(\mathrm{~m}), 7.69(\mathrm{w})$, $4.89(\mathrm{~m}), 4.22(\mathrm{w}), 3.38(\mathrm{~s}), 1.22(\mathrm{w})$, and $1.10(\mathrm{w})$; irradiation of the signal at 3.73 enhanced the signals at $4.22(\mathrm{~s}), 1.53(\mathrm{~s}), 1.48(\mathrm{~s}), 0.89(\mathrm{w})$, and $0.23(\mathrm{~m})$; irradiation of the signal at 3.38 enhanced the signals at 7.73 (w), 7.69 (m), 4.89 (w), 4.64 (w), 4.22 (w), 3.97 (s), 1.70 (s), 1.10 (w), $0.89(\mathrm{w}), 0.11(\mathrm{~m})$; irradiation of the signal at 1.70 enhanced the signals at $4.64(\mathrm{~m}), 3.38$ $(\mathrm{m}), 1.48(\mathrm{~m}), 0.89(\mathrm{w})$, and $0.11(\mathrm{w})$; irradiation of the signal at 1.53 enhanced the signals at $3.73(\mathrm{~m}), 1.48(\mathrm{~m})$, and $1.22(\mathrm{~m})$; irradiation of the signal at 1.48 enhanced the signals at 4.89 (w) $3.73(\mathrm{~m}), 1.70(\mathrm{~m}), 1.53(\mathrm{~m}), 0.89(\mathrm{w})$, and $0.23(\mathrm{w})$; irradiation of the signal at 1.22 enhanced the signal at $1.53(\mathrm{~m})$; IR (film) $v_{\max } 3073,3052,2999,2956,2931,2885,2858,1473$, 1428, 1245, 1198, 1113, $1051 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 569.3472\left(\mathrm{MH}^{+}, \mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 569.3477).
(2S*,3R*)-2-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy) methyl)-3-hydroxy-3,4-dimethylpent-4-enal (194). 2-Iodoxybenzoic acid ($87.2 \mathrm{mg}, 0.3114$ $\mathrm{mmol})$ was added to a solution of diol $190(41.7 \mathrm{mg}, 0.1030 \mathrm{mmol})$ in anhydrous DMSO (3 mL) at rt under Ar. The resultant mixture was stirred for 18 h then was diluted with EtOAc (10 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford crude 194 (ca. $41.5 \mathrm{mg}, 0.1030 \mathrm{mmol}$) as a colorless oil. The crude material was used directly without further purification. Data for $194:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.88(\mathrm{~s}$, $1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.80(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}) \delta 203.6,147.3,113.8,85.0,78.7,65.8,26.1$ (3C), 25.8 (3C), 23.7, 21.0, 18.8, 18.4, -2.6, -$2.8,-5.69,-5.70$; IR (film) $v_{\max } 3476,2955,2930,2885,2857,1737,1471,1362,1255,1099$; HRMS (ESI) $m / z 403.2720\left(\mathrm{MH}^{+}, \mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 403.2694).

(2S*,3S*)-2-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy) methyl)-3-hydroxy-3-methyl-4-oxopentanal (195). A solution of aldehyde $\mathbf{1 9 4}$ (ca. 41.5 mg , 0.1030 mmol), pyridine ($20 \mu \mathrm{~L}, 19.6 \mathrm{mg}, 0.2473 \mathrm{mmol}$), and Sudan IV (1 drop of saturated solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was stirred under a stream of ozone gas until the indicator was discharged. The solution was purged with Ar for 5 min , treated with $\mathrm{Me}_{2} \mathrm{~S}(820 \mu \mathrm{~L}, 693.7 \mathrm{mg}, 11.1656 \mathrm{mmol})$. The resultant mixture was allowed to warm slowly to rt as it stirred for 18 h . The resultant solution was concentrated in vacuo to afford γ-ketoaldehyde

195 (ca. $41.7 \mathrm{mg}, 0.1030 \mathrm{mmol}$) as a yellow oil, which was used directly without further purification. Data for 195: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.19$ (s, 3H), $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 210.8,202.1,85.4,82.9,65.1$, 26.6, 25.96 (3C), 25.91 (3C), 21.3, 18.7, 18.5, $-2.76,-2.81,-5.7$ (2C); HRMS (ESI) m / z $405.2482\left(\mathrm{MH}^{+}, \mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 405.2487).

Intramolecular Aldol Cyclization. To a solution of azeotropically dried γ-ketoaldehyde 195 ($c a$. $41.7 \mathrm{mg}, 0.1030 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar was added N, N diisopropylethylamine ($50 \mu \mathrm{~L}, 37.1 \mathrm{mg}, 0.2870 \mathrm{mmol}$) and freshly distilled TMS-Cl $(7.0 \mu \mathrm{~L}, 6.0$ $\mathrm{mg}, 0.0554 \mathrm{mmol})$. The resultant mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min . A solution of $\mathrm{TiCl}_{4}(1.0$ M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \mu \mathrm{~L}, 0.100 \mathrm{mmol}$) was added rapidly (<5 seconds) and the solution was stirred for 2 min at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, stirred vigorously for 10 min . and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. Combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (6 mL of $\mathrm{SiO}_{2}, 1-10 \% \mathrm{EtOAc}$ in hexanes) afforded enone 197 ($4.4 \mathrm{mg}, 0.0114 \mathrm{mmol}, 11 \%$), diol 196 ($14.1 \mathrm{mg}, 0.0347 \mathrm{mmol}, 30 \%$) and diol epi-196 (4.8 mg , $0.0120 \mathrm{mmol}, 14 \%)$.

Data for
(2S*,3R*,4S*)-3-((tert-butyldimethylsilyl)oxy)-3-(((tert-butyldimethylsilyl)oxy)methyl)-2,4-dihydroxy-2-methylcyclopentan-1-one (196): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.40-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.04$ (s, 1H), $2.88(\mathrm{dd}, J=19.4 \mathrm{~Hz}, 8.9 \mathrm{~Hz}, 1 \mathrm{H}) 2.46$, (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=19.4 \mathrm{~Hz}, 4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 213.0,84.5,81.1,73.5,62.5,43.0,25.82$ (3C), 25.76 (3C), 18.6, 18.4, 18.2, $-2.5,-2.6,-5.8(2 \mathrm{C}) ; 2 \mathrm{D}{ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HSQC NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.40-4.34 / 73.5$, $4.01 / 62.5,3.92 / 62.5,2.88 / 43.0,2.34 / 43.0,1.21 / 18.6,0.90 / 25.82,0.86 / 25.76,0.17 /-2.5,0.17 /-$ 2.6,
$0.11 /-5.8,0.09 /-5.8 ; \operatorname{NOE} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: irradiation of the signal at $4.40-4.34$ enhanced the signals at 4.01 (w), 3.92 (w), 2.88 (s), 2.46 (w), 2.34 (w), 1.21 (m), 0.90 (w), 0.86 (w), and $0.17(\mathrm{~m})$; irradiation of the signal at 4.01 enhanced the signals at $3.92(\mathrm{~s}), 3.04(\mathrm{~m}), 1.21$ $(\mathrm{w}), 0.90(\mathrm{w}), 0.86(\mathrm{w}), 0.17(\mathrm{~m}), 0.11(\mathrm{~m})$, and $0.9(\mathrm{~m})$; irradiation of the signal at 3.92 enhanced the signals at $4.01(\mathrm{~s}), 1.21(\mathrm{~m}), 0.90(\mathrm{w}), 0.86(\mathrm{w}), 0.17(\mathrm{~m}), 0.11(\mathrm{w})$, and $0.09(\mathrm{w})$; irradiation of the signal at 2.88 enhanced the signals at 4.40-4.34 (s), $2.34(\mathrm{~s}), 1.21(\mathrm{~m})$, and 0.86 (m); irradiation of the signal at 2.34 enhanced the signals at $4.40-4.34$ (w) and 2.88 (s); irradiation of the signal at 1.21 enhanced the signals at 4.40-4.34(m), $0.86(\mathrm{w})$, and 0.17 (w); IR (film) $v_{\max } 3444,2955,2930,2886,2858,1755,1472,1468,1389,1361,1254,1158,1097$; HRMS (ESI) $m / z 405.2510\left(\mathrm{MH}^{+}, \mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 405.2487).

Data for (2S*, 3R*,4R*)-3-((tert-butyldimethylsilyl)oxy)-3-(((tert-butyldimethylsilyl)oxy)methyl)-2,4-dihydroxy-2-methylcyclopentan-1-one (epi-196): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.27-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}$, 1H), 2.713 (dd, $J=19.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.710(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=19.4 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31$ (s, 3H), 0.94 $(\mathrm{s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz) $\delta 214.1,82.3,79.7,70.7,66.1,42.7,26.0(3 C), 25.7$ (3C), 21.1, 18.6, 18.2, -1.7, $-2.4,-5.89,-$ 5.92; 2D ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.27-4.23 / 70.7,4.01 / 66.1,3.55 / 66.1$,
$2.713 / 42.7, \quad 2.50 / 42.7, \quad 1.31 / 21.1, \quad 0.94 / 26.0, \quad 0.86 / 25.7, \quad 0.26 /-2.4, \quad 0.18 /-1.7$, $0.05 /-5.89,0.03 /-5.92$; NOE NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: irradiation of the signal at 4.27-4.23 enhanced the signals at $4.01(\mathrm{w}), 3.55(\mathrm{~s}), 2.88(\mathrm{~s}), 2.713(\mathrm{~m}), 2.50(\mathrm{w}), 1.31(\mathrm{w}), 0.94(\mathrm{w}), 0.86$ (w), $0.18(\mathrm{w}), 0.05(\mathrm{w})$, and $0.03(\mathrm{w})$; irradiation of the signal at 4.01 enhanced the signals at $4.27-4.23(\mathrm{w}), 3.55(\mathrm{~s}), 2.710(\mathrm{~m}), 1.31(\mathrm{w}), 0.94(\mathrm{w}), 0.86(\mathrm{w}), 0.26(\mathrm{~m}), 0.18(\mathrm{~m}), 0.05(\mathrm{w})$, and $0.03(\mathrm{w})$; irradiation of the signal at 3.55 enhanced the signals at 4.27-4.23(s), $4.01(\mathrm{~s}), 2.88$ (w), $2.710(\mathrm{w}), 1.31(\mathrm{w}), 0.94(\mathrm{w}), 0.86(\mathrm{w}), 0.26(\mathrm{w}), 0.18(\mathrm{~m}), 0.05(\mathrm{w})$, and $0.03(\mathrm{w}) ;$ irradiation of the signal at 2.88 enhanced the signals at 4.27-4.23(m), 3.55 (w), $2.710(\mathrm{~m}$, inverted), $2.50(\mathrm{w}), 1.31(\mathrm{~m}), 0.94(\mathrm{~m}), 0.26(\mathrm{w})$, and $0.18(\mathrm{w})$; irradiation of the signal at 2.713 enhanced the signals at 4.27-4.23(s), $2.50(\mathrm{~s})$, and $0.86(\mathrm{w})$; irradiation of the signal at 2.50 enhanced the signals at 4.27-4.23(m), $2.88(\mathrm{~m}), 2.713(\mathrm{~s}), 1.31(\mathrm{~m})$, and $0.94(\mathrm{w})$; irradiation of the signal at 1.31 enhanced the signals at $2.88(\mathrm{~m}), 2.710(\mathrm{~m}), 0.94(\mathrm{w})$, and $0.26(\mathrm{w})$; IR (film) $v_{\max } 3446,2954,2930,2885,2858,1755,1472,1389,1362,1255,1138,1094$; HRMS (ESI) m / z $405.2522\left(\mathrm{MH}^{+}, \mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 405.2487).

Data for (4S,5S)-4-((tert-butyldimethylsilyl)oxy)-4-(((tert-butyldimethylsilyl)oxy)methyl)-5-hydroxy-5-methylcyclopent-2-en-1-one (197): ${ }^{1} \mathrm{H} \quad$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.19(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H})$, $0.03(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 206.3,158.7,132.6,84.4,82.7,65.5,25.7$ (3C), 25.6 (3C), 22.0, 18.3, 18.0, $-2.0,-2.3,-5.6,-5.7 ; 2 \mathrm{D}{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz})$ § 7.19/158.7, 6.36/132.6, 3.89/65.5, 3.59/65.5, 1.25/22.0, 0.91/25.7, 0.82/25.6, 0.19/-2.0,
$0.15 /-2.3,0.03 /-5.7,-0.02 /-5.6$; NOE NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: irradiation of the signal at 7.19 enhanced the signals at $6.36(\mathrm{~s}), 3.59(\mathrm{~m}), 1.25(\mathrm{w}), 0.91(\mathrm{w}), 0.82(\mathrm{w}), 0.19(\mathrm{~m}), 0.15(\mathrm{~m}), 0.03$ (w), and $-0.02(\mathrm{w})$; irradiation of the signal at 6.36 enhanced the signals at 7.19 (s), 1.25 (w), $0.91(\mathrm{w}), 0.82(\mathrm{w}), 0.19(\mathrm{w}), 0.15(\mathrm{w}), 0.03(\mathrm{w})$, and $-0.02(\mathrm{w})$; irradiation of the signal at 3.89 enhanced the signals at $3.59(\mathrm{~s}), 3.12(\mathrm{~m}), 1.25(\mathrm{w}), 0.91(\mathrm{~m}), 0.82(\mathrm{~m}), 0.19(\mathrm{~m}), 0.15(\mathrm{w}), 0.03$ (m), and $-0.02(\mathrm{w})$; irradiation of the signal at 3.59 enhanced the signals at $3.89(\mathrm{~s}), 0.91(\mathrm{w})$, $0.82(\mathrm{w}), 0.19(\mathrm{~m}), 0.15(\mathrm{w}), 0.03(\mathrm{w})$, and $-0.02(\mathrm{w})$; irradiation of the signal at 1.25 enhanced the signals at $7.19(\mathrm{~m}), 6.36(\mathrm{~m}), 3.89(\mathrm{~m}), 3.59(\mathrm{w}), 3.12(\mathrm{~s}), 0.91(\mathrm{~s}), 0.82(\mathrm{w}), 0.19(\mathrm{~m}), 0.15$ (s), $0.03(\mathrm{w})$, and $-0.02(\mathrm{w})$; IR (film) $v_{\max } 2337,2924,2853,1733,1463,1258,1129$; HRMS (ESI) $m / z 387.2407\left(\mathrm{MH}^{+}, \mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{H}^{+}\right.$requires 387.2381).

(4S*,5S*)-4-((tert-butyldimethylsilyl)oxy)-5-hydroxy-4-(hydroxymethyl)-5-methylcyclopent-2-en-1-one (198). A solution of diol 196 ($2.9: 1 \mathrm{dr}, 17.9 \mathrm{mg}, 0.0442 \mathrm{mmol}$) in AcOH-THF- $\mathrm{H}_{2} \mathrm{O}(3: 1: 1,5 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 3 days. The reaction was cooled to rt , diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. Combined extracts were washed with saturated aq $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (1.5 mL of Florisil®, $5-15 \%$ EtOAc in hexanes) afforded 198 ($7.5 \mathrm{mg}, 0.0275$ $\mathrm{mmol}, 62 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.31(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.25(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 206.8,160.9$, $131.8,84.4,82.9,67.0,25.7$ (3C), 23.3, 18.4, $-2.2,-2.4$; IR (film) $v_{\max } 3419,2928,2856,1716,1463$, 1361, 1255, 1132; HRMS (ESI) $m / z 273.1554\left(\mathrm{MH}^{+}, \mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{SiH}^{+}\right.$requires 273.1517.

6.3 References

(1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520.
(2) Hernandez, A.-I.; Balzarini, J.; Karlsson, A.; Camarasa, M.-J.; Perez-Perez, M.-J. J. Med. Chem. 2002, 45, 4254-4263
(3) Wang, Z.-X.; Shu, L.; Frohn, M.; Tu, Y.; Shi, Y. Org. Syn. 2009, Coll. Vol. 11, 183-188.
(4) Ma, S.; Ni, B. Chem.—Eur. J. 2004, 10, 3286-3300.
(5) Yamamoto, Y.; Matsumi, D. Chem. Commun. 1998, 875-876.
(6) Sharma, R.; Lee, J.; Wang, S.; Milne, G. W. A.; Lewin, N. E.; Blumberg, P. M.; Marquez, V. E. J. Med. Chem. 1996, 39, 19-28.
(7) Misaki, T.; Kurihar, M.; Tanabe, Y. Chem. Commun. 2001, 2478.

6.4 Spectra

\%

a
0
$\stackrel{\rightharpoonup}{*}$
ω

N
urdd 0

홍

