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ABSTRACT 
 

Investigating a Model Reversed-Phase Liquid Chromatography Stationary Phase with 
Vibrationally Resonant Sum Frequency Generation Spectroscopy 

 
Arthur D. Quast 

Department of Chemistry and Biochemsitry, BYU 
Master of Science 

 
Reversed-phase liquid chromatography (RPLC) is a widely used technique for analytical 

separations but routinely requires empirical optimization. Gaining a better understanding of the 
molecular reasons for retention may mean more efficient separations with fewer trial and error 
runs to obtain optimized separations. Vibrationally resonant sum frequency generation          
(VR-SFG) is a surface specific technique that has allowed for in situ examination of model 
RPLC stationary phases under various solvent and pressure conditions. In order to improve on 
past work with model RPLC stationary phases two challenges had to be overcome. First, 
improved vibrational mode assignments of the C18 stationary phase were needed for proper 
understanding of this model system. Second, the synthesis of back-surface reference mirrors used 
in these VR-SFG experiments allowed us to better correct the relative intensities of the various 
spectral peaks present in typical spectra. After examination of model RPLC systems under 
various conditions, we have found that these model substrates have a significant amount of 
interference from nonresonant signal. This interference of resonant and nonresonant signals on 
fused silica surfaces has not been previously examined and further studies of the model RPLC 
stationary phase must properly deal with the non-negligible nonresonant interference that is 
present. We have seen changes in the VR-SFG spectra of these model systems under a variety of 
conditions including elevated pressure, however the changes are mostly due to nonresonant 
interference. These spectral changes, although apparently not solely from structural changes, 
need to be investigated further to better understand the molecular basis of retention in model 
RPLC systems.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: reversed-phase liquid chromatography, sum frequency generation, vibrationally 
resonant sum frequency generation, back surface gold mirrors, variable time delay  
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Chapter 1 

Understanding the Molecular Basis of Retention in RPLC Systems 

1.1 RPLC: The Workhorse of Separations 

Analytical chromatography has been dominated for many years by reversed-phase liquid 

chromatography (RPLC).  Between 80 and 90% of all analytical separations involve the use of 

RPLC.1 It is hard to overstate the importance that RPLC has in modern separation science and its 

wide use in chemical separations is easily noted in any analytical laboratory. 

In general, RPLC includes any separation method that has a nonpolar stationary phase 

and a polar mobile phase. The stationary phase is commonly comprised of fused silica particles 

that have been functionalized with nonpolar hydrocarbon chains. These hydrocarbon chains are 

often identified by how many carbon atoms they contain in each fully saturated chain. Stationary 

phases coated with chains of one, five, or eighteen carbons would typically be designated as C1, 

C5, or C18 phases, respectively. The coated fused silica particles are then packed into a stainless 

steel column. Separations are then performed by flowing a mobile phase, containing the 

molecules to be separated, through the column.  

The most common mobile phase is typically comprised of water, acetonitrile, methanol, 

or a mixture of these solvents, although, other solvents are used in RPLC separations. Separation 

of analyte (or solute) molecules occurs as different molecules exhibit dissimilar affinities for the 

stationary phase. A molecule’s retention on the column is related, among other properties, to its 

hydrophobicity. Those molecules that leave, or elute, first are considered to be less retained by 

the column than those that elute later. So a very hydrophobic molecule is likely to elute much 

later than a molecule that is more hydrophilic in nature. 
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This simple system involving a nonpolar phase and a polar phase is the separation 

method of choice for two reasons. These coated particles that make up the stationary phase 

exhibit excellent mass transfer properties for solute molecules and they are relatively easy to 

make reproducibly. These stationary phases also exhibit excellent chemical stability at 

reasonable temperatures and near neutral pH. Although, there are some differences between 

similarly made stationary phases, for the most part, these phases can be readily reproduced and 

reused many times. With such a large variety of organic molecules being separated with RPLC, 

its dominance in the separations field is sure to continue for many years to come.  

1.2 Trial and Error: The Chromatographer’s Daily Struggle 

In spite of its regular use in separating compounds, RPLC has some difficulties that still 

persist. Some of these issues include the need for empirical optimization and day-to-day changes 

in retention times. Even with these problems, RPLC is a clear winner when it comes to being 

able to separate organic compounds. If however, these problems could be better understood and 

possibly eliminated, RPLC might be even more efficient that it is now. 

Chromatographers frequently need to calibrate their columns with standard mixtures and 

adjust the mobile phase composition to separate mixtures of molecules, even if they already 

know something about the properties of those molecules. This is far from the ideal situation in 

which the RPLC system is understood at a molecular level. Such an understanding may pave the 

way for more accurate RPLC systems where inexperienced users perform day-to-day 

separations. Instead of needing more expert chromatographers to run RPLC systems, it may be 

that the solution to these problems lies in understanding how retention occurs. 

 

 



 3 

1.3 Attempts at a Molecular Based Understanding: Theory and Models 

Because RPLC plays such an important role in analytical separations, there have been 

many efforts to understand retention of analyte molecules in reversed-phase columns at a 

molecular level. Since the invention of RPLC in the 1950’s,2 there has been notable work 

towards understanding how the interactions between the stationary phase, mobile phase, and 

analytes influence separations; however, more work is needed.  

To properly exploit the potential of RPLC, a sound molecular-based understanding of this 

system is a goal for many researchers. Dorsey and Dill published theoretical work more than two 

decades ago in an attempt to explain the retention of analytes on a typical RPLC column. 

Although much of their research has a different focus from this work’s main objective, one 

central idea that arises from Dorsey and Dill is that of the stationary phase’s interphase region 

where the stationary phase interacts with the mobile phase and solute molecules.3 The idea that 

the stationary phase’s long hydrocarbon chains exhibit an ordered structure with which solute 

molecules interact is central to understanding retention.  

These chains must exhibit some ordering because of 2 constraints placed on them by their 

attachment to the fused silica particles. The point of attachment means that the orientation at the 

surface must be limited. They must generally point away from the particle surface because they 

cannot extend into the solid support they are attached to.  Also, the presence of neighboring 

chains limits each chain’s conformation. A typical model of this structure at the solid/liquid 

interface is given in Figure 1.1, reproduced from Dorsey et al.1 This model in which the solute 

molecules are retained on the RPLC column as they adsorb on the surface or interact with spaces 

between chains is not the complete picture. These hydrocarbon chains are free to bend at various 

distances throughout the chain length.  
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Figure 1.2 shows typical C18 stationary phases bonded to fused silica through silanol 

linkages. This bonding is typical for RPLC stationary phases and occurs as a molecule such as 

trichlorooctadecylsilane loses a Cl group and bonds with a free silanol on the surface of the fused 

silica as in reaction 1.1: 

Cl2C18H37Si-Cl + Si-OH(surface) !  HCl + Cl2C18H37Si-O-Si(surface)  (1.1) 

The attached silane can undergo two additional reactions to produce a surface bonded C18 

group, where all three bonds with the C18 silane are between the chain and the surface or a 

polymeric phase, which is bonded to other C18 chains many times. It is easily seen that the 

simplistic view in Figure 1.1 is not the only possibility. The C18 chains in Figure 1.2 can also 

bend at methylene units, transforming the chains from an all trans configuration to one having 

any number of gauche defects or chinks in the chain. 

Another possible model of the stationary phase structure in which the stationary phase 

chains are allowed to bend and move is shown in Figure 1.3, from the same reference as Figure 

1.1. Here we see the ability of C18 chains to bend and “breathe” within the confines of the 

chemisorbed bonds to the surface. Another insight that this model provides is the ability of solute 

molecules to interact with the C18 chains, which change conformation when they interact with 

passing solute molecules in the mobile phase. This picture of the stationary phase as an 

interphase is a more modern picture of the structure of the RPLC interface. (Figure 1.3) 

1.4 Spectroscopic Investigations with Raman and IR: What We Have Learned 

Although these models are a good start to understanding the interplay between stationary 

phase structure changes and retention of solute molecules, they are still only conceptual models. 

In an effort to understand the changing structure of the stationary phase and how it is influenced 
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by the mobile phase, several researchers have used linear spectroscopic techniques, such as 

Raman and IR spectroscopy, that are able to examine the actual surface bonded C18 chains.  

Pemberton et al. used Raman spectroscopy to investigate common C18 stationary 

phases.4,5 By exposing RPLC packing material to typical pressures, solvent compositions, buffer 

compositions, and temperatures, these workers were able to observe changes in stationary phase 

structure with different experimental conditions. This work is important because it actually 

examined the stationary phase after it had been exposed to typical LC conditions, although it was 

not in situ. One of the most interesting parts of this work was the observation that polar solvents 

seemed to induce a more ordered C18 structure, while nonpolar solvents had the opposite effect 

of opening up the C18 chains. These changes in C18 chain ordering were determined by 

examining the energy shifts of methylene stretches in the Raman spectra. Although these 

changes seem to agree with theory, the apparent shifts and spectral changes are very subtle to the 

average observer.  
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Figure 1.1.  A simplistic interpretation of the RPLC stationary phase as a (a) picket; (b) fur; or 

(c) stack structure. Reproduced with permission from publisher.1



 7 

 

Figure 1.2.  The basic stationary phase structure in RPLC is made of long alkyl chains that are 

bound to the bulk silica surface through silanol linkages (Si-O-Si).                     (a) Monomeric 

C18 stationary phase; (b) Surface bound polymeric C18 stationary phase; (c) Polymerized 

densely packed C18 stationary phase. 

   

a b c 
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Figure 1.3.  The interphase model shows a changing stationary phase with the presence of solute 

molecules. Reproduced with permission from publisher.1
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Infrared spectroscopy has also been used to investigate the structure of the RPLC 

interface.6 Sander et al. investigated the degree of surface coverage of polymeric C18 stationary 

phases coated under different conditions and noted that as the surface coverage increased the 

conformational order also increased. This observation was made using the amplitude of the high-

energy methylene antisymmetric stretch and the methylene wag mode. The changes seen in 

Sander’s work also agree with theoretical models and seem to be more apparent than Perberton’s 

Raman work. 

Raman and IR spectroscopy are undoubtedly versatile and useful techniques, but they 

also have the same inherent disadvantage. RPLC separations are surface-specific. The mass 

transfer that occurs between the stationary and mobile phases is at the stationary phase surface 

and so Raman and IR spectroscopy are not the most ideal for probing surface phenomena, 

because they are not particularly sensitive to surface structural changes. Additionally the full 

RPLC retention story should be told while the stationary phase is being exposed to typical RPLC 

conditions, in situ. We cannot assume that whatever changes occur in the stationary phase while 

under solvents at elevated pressures will still exist when the solvent and pressure are gone.  

The most relevant study of the RPLC stationary phase should use a technique that is both 

surface specific and can be used in situ. Vibrationally resonant sum frequency generation (VR-

SFG) is ideal for this work.7 VR-SFG meets both of the above criteria while also being a 

coherent technique, meaning it does not scatter in any direction and the produced light has the 

same phase. Another advantage that VR-SFG has over Raman and IR spectroscopy is that it is 

sensitive to molecular orientation. 
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1.5 VR-SFG: An Inherently Interface Specific Technique 

SFG is a nonlinear optical technique that can be used to probe vibrational transitions of 

molecules ordered at an interface.8 SFG arises from the dielectric polarization: 

P(t)! ! (1)E(t)+ ! (2)E 2 (t)+ ! (3)E3(t)+...       (1.2) 

where χ is the material’s susceptibility to an electric field. E(t) is the electric field at a given 

instant in time. The first term in equation 1.2 gives rise to linear optical processes such as 

infrared and Raman transitions. The second term gives rise to second order nonlinear optical 

phenomena such as sum and difference frequency generation. The third term gives rise to higher 

order optical processes, which will not be discussed here. The intensity of SFG produced by a 

material is dependent on χ(2) and the two input electric fields E!1 , and E! 2 . 

 ISFG ! ! (2)E"1E" 2

2
        (1.3) 

ISFG, E!1 , and E! 2  are the intensity of the SFG and the electric fields of the ω1 and ω2, 

respectively.9 From equations 1.2 and 1.3, we see that the SFG beam is dependent on the square 

of the intensities of the two fundamental light pulses that combine to form the SFG pulse.  

1.6 VR-SFG: A Coherent Probe 

One notable advantage that SFG has over linear techniques is that SFG uses two coherent 

pulses of light to produce a third coherent pulse, which is easier to collect and detect. For SFG to 

occur, two frequencies of light, ω1 and ω2, combine at an interface to produce ωSFG at the sum of 

the two input frequencies: 

  (1.4) 

Because both energy and momentum are conserved with the SFG pulse, the angle at which the 

pulse leaves the sample can be known if the incident angles of ω1 and ω2 are also known (Figure 

1.4). If we write the x-momentum of the SFG beam as the sum of the x-momenta of E1 and E2, 

!1 + ! 2 = !SFG
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then we have: 

     (1.5) 

where θ1, θ2, and θSFG are the angles of incidence and reflection of ω1, ω2, and ωSFG, 

respectively. Equation 1.5 is easily rearranged to yield θSFG: 

 !SFG =
cos!1("1 cos!1 +"2 cos!2 )

"SFG

      (1.6) 

1.7 The Second Order Non-linear Susceptibility, χ(2) 

In addition to energy and momentum being conserved, SFG can only be produced at an 

interface as a result of phase matching conditions arising from the 3rd rank tensor, χ(2). Where χ(2) 

is a 27-element tensor that describes the nonlinear susceptibility in a given 3-dimensional space 

(Figure 1.5).8 If the space that is described by χ(2) is isotropic, meaning there is no preferred 

direction, then all 27 elements of χ(2) are identically zero.  

In an anisotropic space, like an interface, some of the elements become zero and some do 

not. Let us consider an arbitrary surface, and on that surface we place the Cartesian coordinates 

of x, y, and z (Figure 1.6). We define z to be parallel with the surface normal. If we perform a 

180° rotation about the z-axis, we can see that the vectors x and y become –x and –y (Figure 

1.6a). This means that elements of the χ(2) tensor which have an odd number of x’s or y’s must be 

zero for an azimuthally symmetric interface. If we pick χ(2)
(xyy) then the only way this element 

can equal χ(2)
(-x)(-y)(-y) is if χ(2)

(xyy) = χ(2)
(-x)(-y)(-y) = 0. By similar inspection, we find that χ(2)

 reduces 

from 27 elements to only 13.  

If we then perform a 90° rotation about the z-axis (Figure 1.6b) then we see that x = y 

and x = –y. This operation yields 6 relationships: χ(2)
xyz= χ(2)

yxz , χ(2)
xzy= χ(2)

yzx, χ(2)
xxz= χ(2)

yyz, 

χ(2)
xzx= χ(2)

yzy, χ(2)
zxx= χ(2)

zyy, and χ(2)
zxy= χ(2)

zyx.  If a mirror plane including the z-axis is 

considered, we see that the vectors x and –y transform to y and –x, as well as the vectors –x and 

!1 cos "1 + ! 2 cos " 2 = !SFG cos "SFG
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–y transform to x and y (Figure 1.6c). This reasoning leads to χ(2) being reduced to only 7 non 

zero terms, only 4 of which are independent.  

Now that we understand which elements of χ(2) can be nonzero, we will discuss how we 

represent these elements in a laboratory frame of reference. Plane polarized light that includes 

the z-axis is defined to be p polarized, and plane polarized light that is perpendicular to the z-axis 

is defined to be s polarized. This analysis is true of any interface and demonstrates the allowed 

polarizations for SFG that result in the χ(2) tensor being nonzero.  

In summary, the usefulness of SFG and its ability to generate signal from these buried 

interfaces results from the isotropic symmetry of bulk materials being broken at interfaces. The 

non-linear susceptibility, a third rank tensor, is equal to zero if the probed environment is 

isotropic, and is nonzero if the environment is anisotropic. The anisotropic second order non-

linear susceptibility, χ(2), has 7 non-vanishing elements which correspond to the allowed 

combinations of χ(2): χzzz, χxzx= χyzy, χzxx= χzyy, and χxxz=χyyz. These allowed polarizations are by 

convention listed in descending order of energy and are hereafter referred to as ppp, sps, pss, and 

ssp.  
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Figure 1.4. Energy and momentum are conserved as ω1 and  ω2 combine on an interface to 

produce ωSFG at incident angles of θ1 and θ2 as well as θSFG which is reflected. 
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Figure 1.5. The second order nonlinear susceptibility χ(2) with 27 elements. χ(2) is a 3rd rank 

tensor describing the nonlinear susceptibility in 3 dimensions. 
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Figure 1.6. An arbitrary interface/surface with a coordinate axis on top. (a) 180° rotation about z 

axis, (b) 90° rotation about z axis (c) mirror plane including the z axis. 
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1.8 VR-SFG: Energy Diagram 

Understanding that VR-SFG arises from interfaces and that it is a coherent source of 

light, we can now examine how these two pulses of light, ω1 and ω2, mix at a surface and 

provide useful molecular information. Let ω1 and ω2 be an infrared and visible pulse, ωIR and 

ωvis. If we imagine a molecule at the interface, where ωIR and ωvis mix spatially and temporally, a 

resonant vibrational transition can be excited. This occurs when the IR pulse is the same 

frequency as the molecular vibration. The excited molecule then interacts with the visible electric 

field. This can be thought of as exciting the molecule from the ground vibrational state, a, to an 

excited vibrational state, b, with ωIR (Figure 1.7). This excited molecule is then again excited to a 

virtual state, c, with ωvis, which then decays in an antistokes Raman fashion to produce a 

coherent SFG pulse at the sum of the two fundamental energies. We can imagine this transition 

as a vibrational excitation and then an antistokes Raman scattering event. However, it is better to 

consider this to be a concerted transition instead of happening sequentially. 

A resonant enhancement of the VR-SFG pulse is obtained if these transitions caused by 

the visible and infrared pulses overlap with real states. Equation 1.6 explicitly states this10 

! ijk
(2) ! !NR + N

a µi c a µ j b b µk c
(h"SFG "Eca " i#ca )(h" IR "Eab " i#ab )(h"vis "Ebc " i#bc )a,b,c

$    (1.6) 

here, N is the number density of surface molecules; h is Plank’s constant; Eca, Eab, and Ebc are the 

energies of the transitions in the visible, infrared, and visible, respectively; µ is the dipole 

operator; and Γ is the line width for each of the transitions. The subscripts on χ are the input (j,k) 

and output (i) fields having any combination of Cartesian coordinates (x,y,z). !NR is the 

nonresonant portion of the 2nd order nonlinear susceptibility. If we use electromagnetic fields that 
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have energies close to the resonant transitions of surface molecules, then the denominator in the 

summation term becomes small and ! ijk
(2) becomes resonantly enhanced. 

This resonant enhancement is exploited heavily in the field of VR-SFG, although usually 

only two of the three states are real as in Figure 1.7. Equation 1.7 illustrates the most typical use 

of VR-SFG. 

ISFG ! !NR
(2) + !R

(2) 2 = BNRe
i" +

Aq
#IR "#q " i#qq

$
2

    (1.7) 

BNR is the amplitude of the nonresonant contribution; eiΦ states the interference of the resonant 

and nonresonant signals with the phase factor Φ; and the terms Aq, νq, and Γq are the amplitude, 

center frequency, and half-height, half-line-width, respectively, of resonant features having 

Lorentzian line shapes. When we excite these vibrational transitions through VR-SFG, we obtain 

an up-converted vibrational spectrum of the molecule at the interface. By subtracting the energy 

of the visible pulse from the SFG pulse energy, we can easily visualize this visible SFG spectrum 

as an infrared spectrum.  

1.9 Orientation Analysis of VR-SFG Spectra 

When the infrared pulse is overlapped with the CH stretching region of surface molecules 

at the RPLC interface, we can obtain the relative orientation of these C18 chains. This is 

accomplished by comparing the relative intensities of the various modes observed with VR-SFG. 

For a RPLC stationary phase, there are four stretching modes that are typically used when 

determining molecular orientation. These modes are the methyl symmetric, r+; the methyl 

antisymmetric, r−; the methylene symmetric, d+; and the methylene antisymmetric, d−, stretching 

modes. The absence of the d+ and d− modes indicates that the C18 chain is in an all trans 

configuration, such as the structure in Figure 1.2. When these modes have large amplitudes in the 
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VR-SFG spectrum, this indicates that the C18 chain has a number of gauche defects, and we 

consider this to show disorder in the stationary phase structure. 

 The methyl modes can be used to determine the terminal methyl tilt angle. Let us imagine 

an electric field that is parallel to the surface normal. If the symmetric transition dipole moment 

for the methyl group is parallel to this electric field, then it oscillates well with the electric field. 

The antisymmetric dipole transition is perpendicular to this electric field and is not excited. We 

can examine further tilt angles of the C18 chain and how the tilt affects the excitation of the 

terminal methyl group. Figure 1.8 is reproduced from a study involving self assembled 

monolayers (SAM’s) of octadecanethiol (ODT) on gold.11 By taking the ratio of r+ and r−, we can 

determine the tilt angle of the C18 chain having an all trans configuration. 
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Figure 1.7.  The energy level diagram for IR-VIS SFG involving a, b, and c as two real states 

and a virtual state, respectively. The SFG signal is produced as an infrared and a visible pulse 

mix at an interface in a concerted non-linear fashion.
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Figure 1.8. The VR-SFG amplitudes of the terminal methyl group stretches change as the C18 

chain’s tilt angle moves with respect to the surface normal.11
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1.10 Interference of !NR with !R  

 Recently, researchers working with VR-SFG have had to sort out what effect, if any, the 

nonresonat portion of the SFG signal may have on their claim that VR-SFG can be used for 

absolute orientation analysis. Lagutchev et al. observed that if the visible pulse was delayed after 

the infrared pulse, then the large nonresonant signal arising from a gold surface coated with ODT 

could be suppressed.12 This suppression led to resonant peaks being much better resolved than in 

previous spectra in which the nonresonant signal from the gold surface was not suppressed.  

 In Lagutchev’s work, they used an ultra fast broadband laser (~130 femtosecond pulse 

duration), which was split to produce a temporally asymmetric narrowband visible pulse and a 

broadband infrared pulse. When these two pulses were overlapped temporally and spatially, they 

combined to produce a VR-SFG spectrum of the ODT SAM’s on gold. These spectra show both 

broad nonresonant response from the gold and narrow resonant response from the C18 chains. 

When the visible pulse was delayed to arrive after the infrared pulse, the nonresonant signal was 

eliminated completely from the resultant SFG spectra. However, the resonant signal arising from 

the surface bonded ODT chains has much longer lifetime. This longer lifetime allowed for the 

visible pulse to interact with the vibrationally excited molecules within the mode lifetime to 

produce a resonant-only VR-SFG spectrum.  

 Figure 1.9 illustrates this principle of a short-lived nonresonant signal and a longer lived 

vibrational resonance. This figure also shows the free induction decay of the resonant signal and 

the asymmetric visible pulse interacting with the resonant and nonresonant portions of the free 

induction decay. Because the nonresonant decay is virtually instantaneous, delaying the visible 

pulse eliminates the nonresonant signal from the overall VR-SFG spectrum.  
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Figure 1.9 also shows how cutting out, or apodizing, the beginning of the free induction 

decay not only eliminates the nonresonant signal, but the delay also cuts out the initial portion of 

the resonant free induction decay. Unfortunately, if we apodize the combined 

resonant/nonresonant free induction decay, we also apodize the resonant time domain spectrum. 

This apodized resonant time domain response does not contain all the information we would 

need to determine the actual frequency domain spectrum, and we realize that eliminates our 

ability to determine the absolute orientation of the surface molecules. The interference of 

resonant and nonresonant signals is unfortunate because we cannot separate the two signals 

easily. 

 Even with this resonant/nonresonant interference, VR-SFG spectra can still be 

used to obtain information about how the RPLC structure might change. If we delay the 

visible pulse after the IR, we can probe the resonant signal independent from the 

nonresonant signal, and determine if this resonant signal is changing in response to 

experimental conditions. Doing this eliminates our ability to say what the absolute 

orientation is, but we avoid the corrupting nonresonant signal contribution to our VR-

SFG spectra. This technique of nonresonant suppression is relatively new, and its use is 

only possible if the two input pulses have a pulse duration on the same time scale as the 

resonant free induction decay.  
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Figure 1.9. Resonant and nonresonant free induction decays as a function of time. The technique 

of time delay SFG is based on nonresonant background suppression developed by Laguchtev et 

al.12 By delaying the visible pulse until after the fast decaying nonresonant signal has decayed 

substantially, we can probe the resonant-only free induction decay. Various times after the free 

induction decay allow resonant modes of different lifetimes and phases to be examined. 

Reproduced with permission from publisher.
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1.11 VR-SFG: Past RPLC Studies 

Several researchers in this past decade have realized the potential that VR-SFG has when 

examining the stationary phase structure of the RPLC interface. Work at Brigham Young 

University that preceded mine has been invaluable. Those readers seeking an in-depth 

understanding of past work with VR-SFG and the model RPLC system are recommended to the 

graduate work of Brent Horn and Robert Baker, which has been an excellent source of 

knowledge for me.13,14 Of the published literature available, Marie Messmer’s group at Lehigh 

University did extensive ambient pressure work aimed towards understanding the stationary 

phase structure with SFG.15-20 It would be difficult and unnecessary to review all of the work that 

has been done with the RPLC system probed by VR-SFG. However, a brief introduction is 

important background for present and future work with the model RPLC system.  

Figure 1.10 displays VR-SFG spectra from mixed polymeric C18/C1 stationary phases 

coated onto fused silica slides with different monolayer surface coverages.15 We examine here 

the denser coated 8.0 µmol/m2 surface coverage, which is more typical of the work that will be 

discussed in later chapters, and which represents polymeric C18. When this monolayer is 

exposed to air, they observed two prominent peaks at ~2945 cm−1 and ~2878 cm−1, which are 

identified as r+ and a vaguely defined Fermi mode. These two peaks in the ssp polarization 

combination are typical for well ordered all trans polymeric C18 interfaces.21 When these 

stationary phases were exposed to acetonitrile or water, they observed a change in relative 

intensities of the two peaks and increased presence of the r− mode at ~2955 cm−1, indicating the 

reorientation of the stationary phase in the solvents vs. exposure to air. However, there seems to 

be no effect by either acetonitrile or water to dramatically change the stationary phase structure 

with different solvents.  
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The presence of a great deal of order in these polymeric C18 stationary phases would 

seem to indicate that the alkyl chains do not simply collapse when placed in contact with 

solvents. From this study at ambient pressures, we can conclude that solute molecules 

encountering this interface would not “see” a collapsed “spaghetti” of C18 chains, but instead a 

well ordered system that has well packed all trans alkyl chains at a slight tilt from the surface 

normal. If the system had been greatly disordered, the VR-SFG signal would have been weak 

with a possibility of strong methylene modes present. 

Messmer’s group could not have suppressed the nonresonant signal that may have 

interfered with their resonant signal interpretations. It is not immediately clear that their 

interpretations of the VR-SFG spectra were incorrect. More appropriately stated, the presence of 

nonresonant interference in the spectra they collected is possible and, by inference, the ability to 

assign absolute orientation for the RPLC stationary phase may be suspect. However, any spectral 

changes, however subtle, are likely an indication that the RPLC interface was changing in some 

way.15  

 This early work with the RPLC interface occurred a decade ago and is very helpful for 

determining the influence of ambient pressure solvent systems on the stationary phase at the 

RPLC interface. However, more work is needed to examine how this model chromatographic 

system responds to more relevant LC conditions, including elevated pressures. Using VR-SFG, 

we will attempt to properly examine the model RPLC interface exposed to typical RPLC 

conditions, such as elevated pressure with different mobile phases.  

 
 



 26 

 

 

Figure 1.10 VR-SFG spectra of polymeric C18 monolayers coated onto fused silica examined 

under air, d-3 acetonitrile, and d-2 water.15 (�) indicates a surface coverage of 8.0 µmol/m2 and 

(☐) indicates surface coverage of 4.5 µmol/m2. Reproduced with permission from publisher.
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1.12 VR-SFG: Present Work 

Figure 1.11 is a representation of the current set-up used to obtain VR-SFG spectra. Our 

VR-SFG system is based on an ultrafast (130 femtosecond pulse duration), high power (~2.7 

Watts average power) Ti:sapphire laser (Integra from Quantronix lasers).22 A more in-depth 

description of this set-up is given in Chapter 3. Briefly, a broadband 790 nm laser with a 

repetition rate of 1 kilohertz is split into two beams. One beam is directed into a pair of Fabry-

Pérot etalons that spectrally narrow the 790 nm beam and produce a temporally asymmetric 

visible pulse. The other portion of the original beam is used to pump an optical parametric 

amplifier (OPA), which converts the 790 nm light to a tunable broadband infrared beam centered 

at 2900 cm-1. These two beams are temporally and spatially overlapped onto our samples, and 

the VR-SFG beam produced is directed into a monochromator and a CCD for detection.  

We sought to improve the current understanding of model RPLC stationary phases. Using 

VR-SFG, we can probe this interface under in situ conditions typical of RPLC separations. Most 

importantly, we sought to understand if the stationary phase structure changed dramatically when 

exposed to elevated pressures. Before we could do this work, we had several problems to 

resolve. To properly interpret VR-SFG spectra, vibrational mode assignments must be properly 

made. Additionally, observed peak intensities must be corrected to yield actual peak intensities. 

Additionally, resonant/nonresonant interference must be properly understood. To accomplish 

these goals a variety of experiments were carried out.  

Current literature assignments of the various C18 modes are at times vague and 

confusing. We have improved these mode assignments using isotopic substitution experiments 

with the typical RPLC stationary phases, octadecyltrichlorosilane (OTS) and 

chlorodimethyloctadecylsilane (ODMS). Isotopic substitution of the terminal methyl group was 
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necessary to separate the methyl modes from the methylene modes because they overlapped in 

the spectra. Using data from Fourier transform infrared spectroscopy, density functional theory 

calculations, and time delay VR-SFG, the five common peaks that we observe in our sample 

spectra were identified.23,12  

The second step in properly interpreting VR-SFG spectra was to intensity correct the 

spectra. The intensities of the different observed modes in our VR-SFG are not the actual 

intensities because the IR intensity profile is not the same over the entire output frequency range. 

These intensities must be corrected with the actual broadband IR intensity profile. To correct 

relative peak intensities, the actual IR intensity profile used in our VR-SFG experiments had to 

be determined. This was done using home-made gold mirrors that essentially up-convert the IR 

pulse through the SFG process.24 Because these mirrors have a nonresonant-only response, the 

resultant spectra can be used to determine the actual IR intensity profile for each experiment. 

Once the sample spectra were intensity corrected, the actual resonant mode frequencies and 

identities were determined. 

We were then able to understand structural information and determine the influence that 

the resonant/nonresonant interference has on our model RPLC interfaces. Investigation of our 

VR-SFG spectra at different delay times resulted in a better understanding of how to deal with 

the very real contributions that the nonresonant background has with the resonant molecular 

modes in our samples.  

These experiments and their conclusions are described in subsequent chapters, and they 

will hopefully provide researchers with a better foundation for future work to understand the 

molecular basis for retention in model RPLC systems using VR-SFG. An improved 

understanding of the RPLC stationary phase and its structural changes in response to 
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experimental conditions may allow chromatographers to make more informed decisions on how 

best to perform separations.  This knowledge-based approach will hopefully increase efficiency 

and make separations more of a science than an art. 
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Figure 1.11.  The VR-SFG set-up used in model RPLC experiments with a visible delay stage 

that allows for time delayed VR-SFG spectra.
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Chapter 2 

Improved Assignment of Vibrational Modes for Surface-Bound 

Alkylsilanes 

2.1 Background 

Structural determination of the C18 stationary phase is obtained through comparison of 

relative peak amplitudes and areas in the resultant VR-SFG spectrum. In order to fit SFG spectra 

and properly assign vibrational peaks in the SFG spectra, it is necessary to properly assign the 

five vibrational modes that may be excited in this region. The possible vibrational modes are: the 

CH2 symmetric stretch (d+), CH3 symmetric stretch (r+), the CH2 antisymmetric stretch (d−), the 

Fermi resonance mode, and the CH3 antisymmetric stretch (r−).  

The symmetric and antisymmetric modes are relatively easy to assign but assignment of 

the Fermi resonance mode has been difficult because of its more complex origins. Fermi mixing 

can only occur if the two modes that mix are of the same symmetry and have similar energies.1 

At first glance, the terminal methyl group of the C18 silanes would appear to be of C3v 

symmetry. This would seem to indicate that only groups of C3v symmetry could mix, meaning 

we should assign the Fermi mode to the symmetric stretch and bend.  

However, the terminal methyl group is not isolated. This means that the molecule 

formally belongs to the Cs point group. With symmetry of Cs, the C18 silane can couple any of 

the modes because they are not completely orthogonal to each other. In other words, entirely 

isolated vibrational modes do not exist. This makes determining the mode assignments of this 

molecule more an issue of finding which vibration is the primary component of an observed 

mode.  
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In the literature, this Fermi mode is assigned to the Fermi resonance of CH3 symmetric 

stretch with possibly a small contribution from CH2 asymmetric stretch.2 This is confusing, 

because this mode has otherwise been assigned to the CH3 symmetric stretch and the overtone of 

the CH3 symmetric bend.3,4 Both assignments cannot be correct, and a definitive assignment is 

necessary to understand the C18 chain structure. 

 In order to clear up this confusion, we have worked to produce a deutero-substituted 

terminal methyl group of formula Cl3SiC18H34D3. By deuterating the methyl group, the methyl 

stretch frequencies will be red-shifted when examined by vibrational spectroscopy.5 If this 

shifting results in the absence of the Fermi peak in the C-D stretch region, it is a good indication 

that it was indeed coupled to the methylene stretch. However, if there are three active modes in 

the C-D region, then the Fermi modes are a coupling of a CH3 stretch and the overtone of a CH3 

bend.  

 To supplement the experimental data, I performed density functional theory calculations 

on (OH)3SiC10H18D3 and CD3I. These molecules were chosen because they provide insights into 

our C18 silane, while being small enough for cheap computations. The calculated energies for 

these molecules are not absolutely the same as those observed experimentally in vibrational 

spectra because of the overestimation in the energies that results from variational theory. These 

computations do however provide useful ordering of mode assignments. 

2.2 Experimental and Computational Methods 

2.2.1 Synthesis of Deutero-Substituted Molecules  

Note: This work was highly collaborative. The Castle lab performed all of the organic 

synthesis, which is included here as a helpful reference to those interested in knowing exactly 
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how every part of this work was accomplished. I am very grateful for the Castle group’s year of 

work that resulted in this synthesis. 

Convergent synthesis of trichloro-(18,18,18-(trideuterio))-(octadecyl)silane was 

accomplished in a 10-step longest linear sequence from two commercially available 

monoprotected diols (Scheme 2.1). In this method 10-(benxyloxy)decan-1-ol 1 was converted to 

aldehyde 2 under Swern conditions.6 Also, 7-((tert-butyldimethylsilyl)oxy)hetan-1-ol) 3 was 

subjected to Appel conditions7 to afford the iodide, and then converted to the corresponding 

Wittig salt 4.7 Initial attempts to react 2 and 4 to yield alkene 5 were unsuccessful. We suspected 

that treating the salt with butyllithium was not affording the requisite ylide. We hypothesized 

that the large, nonpolar tail of our wittig salt caused it to form reverse micelles around water 

droplets, hindering the sterically bulky base from penetrating to deprotonate the phosphonium 

salt. We, therefore, elected to employ methyllithium, a much smaller base, and dry our wittig salt 

for 3 days in vacuo; using these conditions, we successfully synthesized alkene 5. 

 Desilyation of 5, with tosylate, and copper-promoted coupling8 with d3-

methylmagnesium iodide afforded 6, which was then hydrogenated to yield 7. Our initial plan 

was to form another tosylate, and then eliminate to yield alkene 8. However, our attempts were 

met with low yields and difficult separations. A literature search revealed that tosylates will 

undergo substitution with tert-butoxide to yield the tert-butyl ether.9 We therefore elected to 

convert the alcohol to an iodide instead, using Appel conditions. We then eliminated the 

subsequent iodide to yield alkene 8 with an 85% yield over two steps.  This alkene was easily 

converted to silane 9 via hydrosilylation using trichlorosilane and chloroplatinic acid.10 

Production of D3 octadecyldimethylchlorosilane (D3 ODMS) involved the use of 

dimethylchlorosilane (HMe2SiCl) in the last step instead of trichlorosilane. 
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Scheme 2.1. Complete synthesis of monomeric and polymeric C18 silanes with a deuterated 

terminal methyl group. 
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2.2.2 Sample Preparation for Spectroscopic Characterization 

2.2.2a FTIR Analysis 

 IR absorbance spectra were collected on a Nicolet 6700 FT-IR (Thermo Scientific) 

spectrometer with a resolution of 1 cm−1 and 164 scans. Neat spectra of five compounds were 

collected: D3H32C18, D3H34C18Cl3Si, D3H34C18(CH3)2ClSi, H37C18Cl3Si, and H37C18(CH3)2ClSi. 

The neat compounds were placed on NaCl plates (1” round by 1/8” thick). Uncoated salt plates 

were used as our sample blanks. 

2.2.2b VR-SFG Analysis 

 Trichloro(octadecyl)silane (≥90%), water, acetone, and methanol were obtained from 

Sigma-Aldrich. Chloroform was obtained from EMD chemicals. Dichloromethane and sulfuric 

acid (technical 93%) were obtained from Mallinckrodt. Hydrogen peroxide (30%) was obtained 

from Fischer Scientific. All solvents were HPLC grade and used as received. Rinsing water was 

obtained from a ultrapure Millipore Milli-Q RG water system with a resistivity of 18 MΩ-cm.  

Fused silica discs of 1” diameter and 1/8” thickness were obtained from Quartz Scientific. The 

discs were sonicated in chloroform for ~1 min and then placed in 120°C piranha solution (3:1 

sulfuric acid and hydrogen peroxide) for 1 h. (Note: Piranha solution is very corrosive and 

extreme care must be used when handling.) The discs were then rinsed with copious amounts of 

water, acetone, chloroform, and dichloromethane and placed in a beaker with 100 mL of 

dichloromethane. This cleaning procedure is required to remove any organic contamination that 

may confuse the spectroscopic measurements. A 1-mL of trichloro(octadecyl)silane (for 

polymeric OTS samples) was added to the solution before sealing in a nitrogen purged glove box 

and shaking for 24 h. The discs were then removed from the solution and immediately rinsed 

with copious amounts of dichloromethane, acetone, water, acetone, and chloroform, followed by 
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sonication for 1 min in chloroform. The discs were again rinsed with chloroform, acetone, water, 

acetone, and then stored in either methanol or ultrapure 18 MΩ water from a Millipore system. 

This procedure was based on work by Messmer and co-workers.2 The octadecyldimethylsilane 

(ODMS) and dimethylsilane (DMS) samples were treated exactly as described above except that 

they were not immersed in a reaction solution. Instead fused silica flats were dried and 

sandwiched with a few drops of ODMS or DMS in between two flats. These flats were then 

placed on a hot plate heated to 100 °C and 25 °C for the ODMS and DMS samples, respectively, 

for 15 min.11 The samples were then separated and cleaned as described above. All samples were 

stored in ultrapure water until use. A Ramé-hart model 100-00 goniometer was used to obtain 

water contact angles averaging ~109° and ~101° for OTS and ODMS surfaces, respectively. 

2.2.3 VR-SFG System 

Set-up and Instrumentation: The vibrationally resonant sum-frequency generation (VR-

SFG) spectroscopy system is based on an amplified Ti:sapphire laser system (Quantronix, 

Integra C) that produces 3 mJ per pulse at 1 kHz. The pulse durationwas ~130 fs. The beam is 

split, with the majority pumping a broad band IR optical parametric amplifier (Quantronix, 

TOPAS-C) to produce ~22 µJ with a bandwidth of 250 cm−1 IR light centered in the C-H stretch 

region, around 2900 cm−1. A germanium filter removes any remaining visible light from the 

OPA. The remaining light passes through a Fabry-Pérot etalon to provide the spectrally narrow 

(10 cm−1) visible pulse at 792 nm. Visible pulse energy was 20 µJ, with the visible beam 

defocused sufficiently to prevent damage to the sample. Polarization control of both the IR and 

visible beams is accomplished with periscopes. In all experiments, the IR beam was p-polarized, 

and the visible beam was s-polarized. This input combination only produces s-polarized SFG, 

which was rotated 90 ° by a half waveplate for optimal detection by the spectrometer (Andor 
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Shamrock) and CCD (Andor iDus). An optical filter was also placed before the spectrometer to 

remove any reflected or scattered visible light. 

2.2.4 Computational Methods 

Computations were performed using the NWChem 6.0 software package.12 Optimized 

geometries and vibrational frequencies for CD3I were determined with 32 functions in a 

LANL2DZ ECP basis set under renormalized density-functional theory (RDFT) with the density 

functional theory (DFT) combined function of a Becke, three-parameter, Lee-Yang-Parr 

(B3LYP) hybrid. Optimized (OH)3SiC10H18D3 geometry, and vibrational frequencies were 

obtained using 32 functions with a 6-31G* basis set under renormalized density-functional 

theory (RDFT) with the density functional theory (DFT) combined function of B3LYP hybrid.  

2.3 Results and Discussion 

2.3.1 FTIR Spectra 

 FTIR spectra of five different compounds were obtained: D3H32 alkene precursor, the two 

D3 substitued silanes, D3H34 OTS and D3H40 ODMS, as well as the fully hydrogenated silanes, 

H43 ODMS and H37 OTS. Figure 2.1 shows the FTIR spectra of these five compounds in the CH 

stretch region.  

2.3.1a CH Stretching Region 

These spectra are dominated by CH2 stretches because there are seventeen (for polymeric 

OTS) methylene units for each methyl unit, making the absorption by methylene units much 

more pronounced. These methylene stretches are easily identified from the D3H32 alkene shown 

in 2.1a because this molecule does not contain a CH3 moiety. The lower energy mode is readily 

assigned to d+ at ~2850 cm−1 and d− at ~2920 cm−1. Further confirmation of the D3H32 alkene is 

seen by the sp2 peak at ~3076 cm−1. Figure 2.1b displays the spectrum for D3H34 OTS, which 
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does not contain a CH3 moiety and also lacks structure outside of the methylene modes. Figure 

2.1c, d, e all have CH3 moieties and show additional symmetric and antisymmetric modes on the 

blue side of the methylene modes. 

2.3.1b CD Stretching Region 

Inspection of these molecules in the CD stretch region is even more informative 

(Figure 2.2). The stretches from 2000-2300 cm−1 can be attributed to CD stretches because the 

undeuterated compounds (Figure 2.2d, e) do not have any noticeable features in this range. We 

observe three modes in the D3H32 alkene (Figure 2.2a) which can again be assigned to the lower 

energy r+ at ~2073 cm−1. And on the high energy side, we observe an asymmetric peak assigned 

to r- at ~2210 cm−1. 

We also observe a peak in the D3H34 OTS spectrum at 2250 cm−1, which also apears in 

trichlorosilane (Cl3SiH) spectra. We, therefore, attribute this peak to the SiH stretch. 

Contamination of our D3H34 OTS compound with the polymerized trichlorosilane produces the 

broad feature that occurs at ~2250 cm−1.13 The broadening in the Si-H peak is likely due to the 

polymerization of the trichlorosilane. The Si-H environment is varied and different enough to 

yield many different modes, which leads to a smearing out of these peaks in the condensed 

phase.  

The absence of the Si-H peak in the D3 ODMS is further evidence of the contaminated 

product, because the synthesis for the D3 ODMS reagent concludes with the addition of 

dimethylchlorosilane to D3 octadecene. Even though the dimethylchlorosilane contains an Si-H 

bond, it is less likely to appear in FTIR spectra. This is because the final hydrolyzed monomeric 

silane can only dimerize. This would leave leftover dimethylchlorosilane to be rinsed away with 
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cleaning of the final product before making the neat film FTIR samples, and we would not see 

Si-H peaks in the ODMS samples.  

2.3.1c Fingerprint Region 

The fingerprint region for these molecules is shown in Figure 2.3. Although this region is 

rich in information, we only highlight a few features. The CD3 bending is observed around 

~1050 cm−1 only in the deuterated compounds. The peak at 1235 cm−1 is attributed to the CH3 

symmetric bending mode attached to the silicon atom at the base of the C18 chain.14 The CH3 

bending occurs just below 1500 cm−1, with the methylene bending modes making it difficult to 

identify.  

2.3.2 DFT Calculations 

Density functional theory calculations help to further identify the CD3 stretching modes. 

It should be noted that the actual frequencies are too high, but the order of energies for the 

different modes is correct. Because DFT is a variational approach, the calculated energies must 

be greater than or equal to the real energy.  

Table 2.1 shows DFT calculations for two molecules, D3H18C10Si(OH)3 and CD3I. From 

these calculations, we can identify some general trends for molecules with a CD3 moiety. The 

bending modes occur at energies of about half that of the stretch modes. The doubly degenerate 

antisymmetric methyl stretch has a wider spacing between the two degenerate methyl 

antisymmetric stretches in the long chain silane vs. the close spacing of the degenerate modes in 

the D3 iodomethane. 
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Figure 2.1. FTIR Spectra in the CH Stretching region. Note the sp2 peak at ~3076 cm−1 in the 

alkene precursor. (a) D3H32 Alkene (b) D3H34 OTS (c) D3H40 ODMS (d) H43 ODMS (e) H37 

OTS. 
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Figure 2.2. FTIR Spectra in the CD Stretching region. (a) D3H32 Alkene (b) D3H34 OTS (c) 

D3H40 ODMS (d) H43 ODMS (e) H37 OTS. 
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Figure 2.3. FTIR Spectra in the fingerprint region. (a) D3H32 Alkene (b) D3H34 OTS (c) D3H40 

ODMS (d) H43 ODMS (e) H37 OTS. 
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Table 2.1. Peak assignments of C10 D3 silane and CD3I from calculations. The order of peak 

assignments in the table corresponds to similar trends in FTIR data for the D3 containing 

molecules. 

 DFT Data  

 C10 D3 silane (cm−1) CD3I (cm−1) 

Symm methyl bend 1160 993 

Asymm methyl bend (gj=2) 1104 1082 

 1100 1082 

Symm methyl stretch 2185 2221 

Asymm methyl stretch 

(gj=2) 

2297 2396 

 2304 2396 
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2.3.3 VR-SFG Spectra: ssp vs. sps 

Figure 2.4 shows the VR-SFG spectra of H37 OTS in two polarization combinations in 

the CH stretch region. The densely packed silane on a fused silica flat has two sharp peaks in the 

ssp combination at ~2880 cm−1 and ~2950 cm−1, which are commonly assigned to the symmetric 

methyl stretch and the “Fermi mode.” However, the sps polarization combination only shows 

one peak at ~2960 cm−1, usually attributed to the antisymmetric stretch of the terminal methyl 

group.4 

2.3.4 Variable Time Delay VR-SFG Spectra: ssp  

Delaying the visible pulse at various intervals after the IR pulse allows us to probe 

different parts of the resonant free induction decay. By examining the free induction decay at 

different points, we can see changes in relative intensities of the peaks. These changes are a 

result of the different vibrational mode lifetimes and phases. In Figure 2.5, the spectrum at 

optimal pulse overlap is highly convoluted by overlapping peaks. Careful examination of Figures 

2.4 and 2.5 show at least 5 peaks.15,16 From low to high energy, these modes occur at about: 2860 

cm−1, 2884 cm−1, 2930 cm−1, 2950 cm−1, and 2963 cm−1. Figures 2.4 and 2.5 are more than 

adequate for identifying these 5 peaks.  

2.3.5 VR-SFG of ODMS and DMS 

  Figure 2.6 shows the VR-SFG spectra of ODMS and DMS. The spectrum of ODMS is 

very complicated and it is difficult to identify well-resolved peaks. The C18 chain in the ODMS 

molecule should have the same 5 peaks observed for the OTS spectrum with the addition of basal 

methyl groups. Examining the DMS spectrum can identify these basal methyl groups. We expect 

the basal methyl groups to have a symmetric stretch, a possible Fermi mode, and an 

antisymmetric stretch.  
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Figure 2.4. VR-SFG spectra in the CH Stretching region with the sample exposed to air. (a) ssp 

combination H37 OTS, (b) sps combination H37 OTS. 
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Figure 2.5. Time delayed spectra showing 5 peaks that are identified in an H37 OTS spectrum. 

(Red) ssp 0 s delay exposed to solvent, (Blue) ssp 2.54 ps delay exposed to air.  

  



 49 

 

Figure 2.6. VR-SFG of silanes on fused silica in the ssp polarization combination. (Red) 

Chlorodimethylsilane; (Blue) ODMS. 
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2.4 Additional Discussion and Conclusions 

Using information obtained through FTIR spectroscopy, DFT calculations and different 

polarization combinations of VR-SFG, we were able to logically assign the CH stretches in a 

typical VR-SFG spectrum of C18 silanes on fused silica flats. The symmetric modes occur at 

lower energies than the antisymmetric modes for both methyl and methylene groups (See DFT 

calculations). We are also confident about the relative position of the methylene modes, which 

are lower in energy than the methyl modes.  

Unfortunately, the presence of the Fermi mode leads many researchers to believe that it 

can arise from apparently several combinations of modes. Although this assumption is not stated 

explicitly in the literature, different research groups assign the same peak to different 

combinations, leading us to assume that no absolute identification of the source of the Fermi 

mode has been made.4, 17  

The C18 silane symmetry is reduced to the Cs point group. With Cs symmetry, any two 

modes could interact in a Fermi fashion if the energies match. In fact, as we work to identify the 

Fermi mode in the C18 silane, it should be noted that it’s presence is not likely only from the 

interaction of two modes. More correctly stated, the Fermi mode may be a combination of all the 

vibrational modes of similar energies in the Cs molecule. However, we can identify the major 

contributors to the Fermi mode.  

Using the FTIR data from the D3 substituted silanes made in house, we are able to 

definitively state that the Fermi mode does not arise from a combination of the methylene and 

the methyl modes. This is because the CD region of the deutero-substituted molecules contains 

three peaks, not only two. The asymmetric lineshape of one of these peaks identifies it as the 
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doubly degenerate antisymmetric methyl stretch, which is split in the long chain silane. The low 

energy symmetric stretch is also seen with the addition of a third peak in between the two 

stretches. This additional peak must be the Fermi mode, and its presence in the deutero-

substituted molecule means that it cannot be a coupling of the methyl modes with the methylene 

modes. The isotopic substitution should eliminate the Fermi mode if it were due to the methyl 

and methylene modes.  

We also note that the Fermi mode occurs at about the same frequency as the doubled 

methyl bend modes. This is confirmed in the fingerprint region of the D3 substituted molecules 

as well as the DFT calculations. From these two observations, we can now identify the source of 

the Fermi mode to be the coupling of the methyl stretch with the overtone of the methyl bend. 

 However, is this due to the combination of symmetric bend with antisymmetric stretch, 

symmetric stretch with symmetric bend, or antisymmetric bend with antisymmetric stretch? To 

answer this question, a densely packed H37 OTS coated fused silica flat was investigated with 

different polarization combinations of VR-SFG. Densely packed C18 OTS SAM’s have two 

sharp peaks in the CH stretch region in air under the ssp combination. Both peaks are equally 

intense and were identified as the symmetric methyl stretch and the Fermi mode. In the densely 

packed phase, we expect that the terminal methyl group would have a net tilt, relative to the 

surface normal, close to 0°. The lack of prominant methylene modes indicates an all-trans 

configuration.  

In a polarization combination with the electric field of the IR pulse parallel to the plane of 

incidence, we would expect the symmetric methyl stretch and bend to be excited. A polarization 

combination perpendicular to the plane of incidence would then excite the antisymmetric methyl 

stretch and bend. Indeed we observe two sharp peaks in the ssp combination, and those two 
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peaks dissappear in the sps combination, leaving only a very weak methyl antisymmetric stretch 

to be observed. Because we see this loss of the Fermi mode in the sps combination, we can say 

with reasonable certainty that this mode is due to the symmetric stretch with the overtone of the 

symmetric bend.          

 We also note that the methyl symmetric stretch and the Fermi mode for orientational 

analysis are of limited usefullness because these two peak amplitudes are actually a mixing of 

the methyl symmetric stretch with the overtone of the methyl symmetric bend. As these two 

states mix they “borrow” intensity from each other meaning the weaker mode is amplified and 

the stronger mode is attenuated. This intensity borrowing corrupts the true intensities and reduces 

our confidence in determining molecular orientation.  

 After numerous DFT calculations and experiments using FTIR and SFG, we have 

assigned the C-H stretching region of C18 polymeric and monomeric silanes. The Fermi mode 

that occurs at ~2124 cm−1 is attributed to the coupling of the methyl symmetric bend overtone 

with the methyl symmetric stretch. Using the data from SFG and FTIR we can now assign all the 

observed modes in the C-H stretch region to be the symmetric/antisymmetric methyl/methylene 

modes (4 modes) and the Fermi resonance mode. Figure 2.7 is a reproduction of Figure 2.5 and 

is included as a reference to identify the various modes present in VR-SFG spectra of the 

polymeric C18 stationary phase. Using the identified peaks from the OTS spectra and the 

additional information from the DMS spectrum we can also identify the likely vibrational modes 

present in a VR-SFG spectrum of ODMS molecules (Figure 2.8). This proper assignment 

eliminates the ambiguity of these peak assignments for these C18 silanes as well as eliminates 

the confusion with long chain alkanes having similar moieties.   

 



 53 

 

Figure 2.7. Reproduced Figure 2.5 with the five observed modes labeled. Time delayed spectra 

showing 5 peaks that are identified in an H37 OTS spectrum. (Red) ssp 0 ps delay exposed to 

solvent, (Blue) ssp 1.27 ps delay exposed to air. 
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Figure 2.8. VR-SFG of silanes on fused silica in the ssp polarization combination. (Red) 

Chlorodimethylsilane; (Blue) ODMS. 
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Chapter 3 

Back-Surface Gold Mirrors for Vibrationally Resonant Sum-Frequency 

(VR-SFG) Spectroscopy Using 3-Mercaptopropyltrimethoxysilane as an 

Adhesion Promoter 

Note: This work was published in the June 2011 issue of Applied Spectroscopy.1 I would 

like to thank Feng Zhang for performing the work with principal components analysis, XPS, 

TOF-SIMS, ellipsometry, and goniometry. This paper, as published, represents an exhaustive 

analysis of back-surface gold reference mirrors for VR-SFG intensity correction. Permission 

from the publisher has been obtained to reprint this paper with minor modifications. 

3.1 Introduction 

Metal mirrors have a long history in spectroscopy, with gold, silver, and aluminum 

mirrors most commonly used. Commercial front-surface metal mirrors offer high reflectivity in 

the visible and the near infrared (NIR) portions of the spectrum; protected gold mirrors can have 

overall reflectivity of >90% in the 600 nm – 20 µm range, making them useful deep into the IR. 

Not all spectroscopic applications can utilize front-surface mirrors, however. For example, for 

spectroscopic monitoring of a reaction chamber with multiple optical passes, conventional 

mirrors could be susceptible to corrosion or oxidation. In this case, back-surface mirrors would 

be more effective; the substrate would serve as a window to the chamber and also protect the 

mirror surface. Unfortunately, options for back-surface metal mirrors are limited because of the 

poor adhesion of these metals to silicon, fused silica, or BK7 substrates. For gold mirrors, a 

chromium, nickel, or titanium adhesion layer is typically applied between the gold and the 

substrate, which limits the usefulness of the mirror to its front surface; these other metals do not 
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have the desired reflectivity of gold or silver. The ability to make durable metal mirrors with no 

metal adhesion layer would allow for highly reflective front and back surfaces.  

The applications of back-surface metal mirrors most relevant to our research are the in 

situ monitoring of reversed-phase liquid chromatography (RPLC) stationary phases and probing 

buried polymer interfaces. We use the nonlinear optical technique of vibrationally resonant sum-

frequency generation (VR-SFG) spectroscopy in this effort.2 VR-SFG allows one to obtain 

structural information from buried interfaces in situ under various experimental conditions. In 

this method, two laser beams are incident on the sample. The first is a narrow-band visible pulse 

and the second is a broadband IR pulse, centered in the CH stretch region at ca. 2900 cm−1.3 The 

two beams mix at the interface, generating a third beam at the sum of the two incident 

frequencies. The selection rules of this process dictate that only molecules at the interface 

produce an SFG signal, where resonant enhancement with the vibrational modes of the 

molecules at the interface provides information about their structures. 

Because our IR source is broadband, the measured intensity of each vibrational mode 

must be corrected for the IR intensity profile. The IR profile is typically obtained by 

upconversion with the visible pulse on a reference material, such as GaAs or a noble metal, 

commonly gold. Assuming that the reference material has a purely nonresonant response, the 

reference SFG spectrum can be used to intensity-correct subsequent spectra. When probing 

buried interfaces, it is advantageous to have the reference material in the same physical location 

as the interface being probed to account for all optical effects of the substrate or other materials. 

The ideal reference material for our applications is therefore a back-surface gold mirror. 

Our work imposes three requirements for a reference mirror: it must have high back-

surface reflectivity, be free of spectral interference, and be durable. Gold can be thermally 
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evaporated onto fused silica flats without a chromium adhesion layer, creating a back-surface 

mirror, but unfortunately these mirrors are not durable because of the poor adhesion of gold to 

the substrate. An adhesion layer of some kind is necessary to improve durability,4,5,6 but the layer 

must also cause little or no spectral interference. One candidate molecule is 3-

mercaptopropyltrimethoxysilane (MCPTMS), a bifunctional silane that can bind to the fused 

silica substrate with the methoxy groups, leaving a thiol group for bonding with metals such as 

gold, silver, copper, or platinum.7 (See Figure 3.1) MCPTMS has been used for multiple 

applications, including gold film adhesion,8-17 and characterization of MCPTMS monolayers, 

with and without attached gold, suggests they will work well as a component of back-surface 

mirrors.18-20 The main question to be addressed is whether the monolayer of MCPTMS between 

the substrate and the mirror surface will significantly affect the reflectivity of the metal in the 

spectral region of interest. 
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Figure 3.1. Schematic of the process to fabricate back-surface mirrors. Deposition of the 

MCPTMS onto a clean fused silica surface is followed by thermal deposition of gold.
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In this paper, we describe the fabrication of durable back-surface gold mirrors with 

chemical vapor deposited 3-mercaptopropyltrimethoxysilane (MCPTMS) as a molecular 

adhesion layer. We also report spectroscopic characterization of the buried interface and 

demonstrate the usefulness of these mirrors as references for VR-SFG spectroscopy.  

3.2 Experimental Methods 

HPLC grade chloroform was obtained from EMD Chemicals (Gibbstown, NJ), sulfuric 

acid (technical, 93%) from Mallinckrodt (Phillipsburg, NJ), hydrogen peroxide (30%) from 

Fischer Scientific (Waltham, MA), and MCPTMS from Gelest (Morrisville, PA). All materials 

were used as received. Rinsing water was obtained from a Millipore Milli-Q RG water system 

with a resistivity of 18 MΩ-cm.  Nitrogen was obtained from Airgas and used as received. Fused 

silica discs of 1” diameter and 1/8” thickness were purchased from Chemglass Life Sciences 

(Vineland, NJ). Single polished, 600 µm thick silicon (100) pieces (Montco Silicon 

Technologies, Spring City, PA) were run in the same batches as the fused silica discs for detailed 

surface characterization. 

The fused silica discs were sonicated in chloroform for ca. 1 min. To more fully clean the 

discs and generate free silanols for silane attachment, the discs were then immersed in 120 °C 

piranha solution (3:1 concentrated sulfuric acid and 30% hydrogen peroxide) for 2 h. (Note: 

Piranha solution is very corrosive and extreme care must be used when handling it. Organic 

matter may react explosively on contact with it.) The discs were then rinsed with copious 

amounts of water and stored in water. Before coating, the discs were dried under a stream of dry 

nitrogen. Coating with MCPTMS took place in a Yield Engineering System (Lawrenceville, CA) 

chemical vapor deposition oven (YES 1224P) that had been internally plasma cleaned and 

purged/seasoned with MCPTMS.21  
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Three processes were explored to determine the best deposition procedure. All were 

performed at 150 °C. In the first process, 1 mL of liquid MCPTMS was added to the evacuated 

chamber of the YES oven for 5 min. The second process was the same as the first, but the discs 

were left in the nitrogen-purged oven for 15-20 min after coating. The third process used the 

same method as the first but was followed by the introduction of 0.3 mL of liquid water for 5 

min. After removal of each set of MCPTMS-coated surfaces from the oven, the discs were 

immediately immersed in high purity water to protect them from contamination while awaiting 

gold deposition.  

Prior to gold deposition, discs were taken from a water storage bath and dried under a 

stream of dry nitrogen. Approximately 90 nm of gold (.9999 purity) was then thermally 

evaporated onto the discs, after which they were removed and stored for testing. Gold deposition 

took place in the Integrated Microfabrication Lab at BYU. Samples were tested for gold 

adhesion with the “Scotch tape” test; a piece of tape was attached to the gold surface and peeled 

away.  

To more fully characterize the fabrication procedures, three batches of 5 x 5 mm2 pieces 

of silicon (100) wafers were cleaned and coated with MCPTMS under the same conditions as the 

fused silica discs, but these pieces were not coated with gold. The MCPTMS coated silicon 

samples were characterized by contact angle goniometry (model 100-00, Ramé-Hart Instrument 

Co., Netcong, NJ) to probe surface wetting, time-of-flight secondary ion mass spectrometry 

(ToF-SIMS) (model TOF-SIMS IV, ION-TOF GmbH, Münster, Germany) for surface mass 

spectrometry, X-ray photoelectron spectroscopy (XPS) (Surface Science SSX-100, Surface 

Science Laboratories, Mountain View, CA) for surface elemental composition, atomic force 

microscopy (AFM) (Veeco Dimension V Scanning Probe Microscope, Plainview, NY) for 
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surface roughness, and spectroscopic ellipsometry (M-2000D, J.A. Woollam Co., Lincoln, NE) 

for film thickness. 

Our vibrationally resonant sum-frequency generation (VR-SFG) spectroscopy set-up is 

based on a Ti:sapphire laser (Quantronix, Integra C, East Setauket, NY) with pulse widths of 

~130 fs, 2.7 mJ per pulse and a repetition rate of 1 kHz. Most of the light enters a broad band IR 

optical parametric amplifier (Quantronix, TOPAS-C) to produce ca. 23 mJ of 250 cm−1 wide IR 

light centered at ca. 2900 cm−1. The other portion of visible light from the Ti:sapphire laser is 

spectrally narrowed using a Fabry-Pérot étalon to produce a narrow band (10 cm−1) visible pulse 

centered at ca. 792 nm. The polarizations of the visible and IR beams were s and p, respectively, 

resulting in s-polarized SFG. (All SFG spectra were collected in the s-SFG, s-visible, and p-IR 

polarization combination.) SFG signal was collected using a spectrometer (Andor Shamrock) and 

CCD (Andor iDus). A short-pass filter was used to remove the 792 nm light before detection. 

ToF-SIMS data from three Si samples created under the same conditions described above 

were characterized by principle component analysis (PCA)22 using software (the PLS_Toolbox) 

from Eigenvector Research (Wenatchee, WA). Peak areas of ten negative ions were selected: H−, 

C−, CH−, O−, OH−, C2H−, S−, SH−, SO2
−, SO3

−. A data matrix containing the data from each of 

nine samples in rows was created, and the data from each sample were normalized (a row 

operation) to remove the effects of different analytical conditions, such as analysis time, sample 

position in the instrument, fluctuations in instrument signal intensity, etc. The data were then 

mean centered (a column operation). After this pretreatment, PCA was performed on the matrix. 

Autoscaling (also a column operation), which is mean centering followed by division by the 

standard deviation of the data, was as also performed on the normalized data in the place of mean 

centering alone. 
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3.3 Results and Discussion 

3.3.1 Importance of Reference Spectra 

When using a reference material for VR-SFG spectroscopy, extreme care must be taken 

to ensure that the reference surface is not contaminated, as this will lead to erroneous results 

(vide infra). To illustrate how contamination of the reference material can affect the collected 

data, we simulated an SFG spectrum with two peaks at 2890 and 2842 cm−1, both with 

linewidths of 10 cm−1 and amplitudes of unity (Figure 3.2). We then corrected their intensities 

with IR profiles measured from two gold mirrors, where the actual IR spectrum was the same, 

coming from the same source. One of the profiles had a mostly Gaussian line shape, whereas the 

other had a dip at 2842 cm−1, likely due to contamination. The positions of the peaks in our 

simulated spectrum were chosen to line up with the maximum of the IR profile and the dip at 

2842 cm−1. When the simulated SFG spectrum is corrected for the broadband IR intensity 

profile, the relative intensities of the two modes change. However, the dip in one of the profiles 

leads to a further increase in the peak at 2842 cm−1. The corrected amplitudes are different by ca. 

20%, which would likely lead to a different interpretation of the structure of this interface. Even 

though it is possible to produce a fit to the IR profile and remove the features due to 

contaminants, this will also introduce some uncertainty in the relative intensities of spectral 

features.  Ultimately, the quality of the reference mirror affects the quality of the experimental 

data, hence the need for back-surface mirrors that are free of spectral contamination 
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Figure 3.2. (a) IR profiles from two gold mirrors, one that is mostly smooth across the spectrum 

(black) and one with a spectral interference feature at 2842 cm−1 (red). Also shown is a 

fabricated SFG spectrum (blue) with a peak that overlaps the feature at 2842 cm−1. (b) Fabricated 

SFG spectra corrected with the two IR profiles. The dip in the red spectrum leads to a corruption 

of the relative intensities in the corrected spectrum. 
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3.3.2 Unsuccessful Attempts to Make Stable Back-Surface Gold Mirrors 

In our first attempt to make back-surface gold mirrors, we did not use an adhesion layer. 

Fused silica discs were simply cleaned with an O2 plasma (18 W in a Harrick PDC-32G plasma 

cleaner, Ithaca, NY) and gold was thermally evaporated onto its surface. A protective layer of 

silicon nitride was added over the gold in an effort to improve its durability. This method was 

somewhat successful, although there were some inconsistencies in spectral features from mirror 

to mirror even within the same batch. (See Figure 3.3a.) Some of this inconsistency may arise 

from contamination of the surface prior to coating with gold. Although the gold deposition took 

place in a clean room facility, there was a delay of ca. 45 min between surface cleaning and gold 

deposition during which the samples were exposed to ambient air. One or two of these mirrors 

gave a smooth, roughly Gaussian profile, but most did not. The major problem with these 

mirrors, however, is that they all failed the “Scotch” tape test, which in spite of its simplicity is a 

stringent test of adhesion; transparent tape removed all the gold under it in a peel test.  
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Figure 3.3. VR-SFG spectra of (a) 4 back-surface gold mirrors with no MCPTMS; (b) back-

surface gold mirrors with MCPTMS that were exposed to air for ca. 45 min (black) or exposed to 

VUV light (red) before gold deposition.



 67 

In our next attempt, we used MCPTMS as the adhesion promoter. Discs were cleaned in 

piranha solution, coated with MCPTMS, and transported to the gold deposition chamber while 

exposed to the air. Figure 3.3b shows a typical SFG spectrum from this batch of mirrors. There 

are 3 noticeable features at 2845, 2890, and 2950 cm−1, indicating that there may be either 

contamination of the adhesion layer/surface or incomplete crosslinking of the MCPTMS. A few 

mirrors gave smooth spectra, but this fabrication procedure was not reliable. Nevertheless, all 

discs prepared in this manner exhibited excellent adhesion; all mirrors passed the peel test. 

In an attempt to remove the spectral features from the adhesion layer in the gold profile, a 

simple masking/etching process was attempted. Discs coated with MCPTMS were partially 

covered with a metal washer and exposed to 172 nm VUV (Resonance Ltd, Ontario, Canada) 

light for ca. 10 min prior to gold deposition. Exposure to VUV light and the concomitant ozone it 

produces was intended to oxidize or remove the MCPTMS layer in the center of the mirror and 

hence improve the spectral profile, while preserving the adhesion of the MCPTMS around the 

perimeter of the disc. This procedure was unsuccessful. The spectral profiles had two unwanted 

features at ca. 2845 cm−1 and ca. 2950 cm−1 (Figure 3.3b), probably due to VUV degradation 

products or other contamination. (The discs were exposed to air for ca. 15 min prior to gold 

deposition.) These discs also showed very poor adhesion of gold and failed the tape test with 

complete removal of the gold layer, even at the perimeter of the disc, presumably because of 

diffusion of ozone, reflection of the UV light under the masked area, or surface contamination.  

These attempts revealed some important considerations in the fabrication of back-surface 

mirrors. First, MCPTMS works well as an adhesion promoter. Second, it appears that a common 

problem with all these procedures is surface contamination caused by exposure to air. In the next 

round of experiments, greater attention was paid to surface cleanliness. 
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3.3.3 Successful Attempts to Make Stable Back-Surface Gold Mirrors 

Once we identified surface contamination as a possible problem in our fabrication 

procedures, we kept the cleaned and/or MCPTMS-coated discs immersed in ultrapure water 

between cleaning/coating procedures to minimize contamination from the air. Three processes 

were attempted, where again we took great care to keep the discs clean during all steps of the 

fabrication.  In the first process, MCPTMS was vapor deposited by CVD, and immediately after 

coating, the samples were immersed in water for transport to the gold evaporation system. In the 

second procedure, the MCPTMS-coated discs were left in the heated CVD system for an 

additional 15-20 min after coating in the hope that additional curing (cross-linking) might take 

place. In the third procedure, 0.3 mL of water was added to the system for 5 min after CVD of 

MCPTMS, again to promote cross-linking of chemisorbed MCPTMS molecules and remove 

residual methoxy groups. After the second and third MCPTMS coating procedures, the samples 

were again immediately immersed in water and kept under water until just prior to coating with 

Au. 

Table 3.1 shows surface characterization of the Si samples that underwent the three 

MCPTMS deposition procedures. The water contact angles and the ratio of S/Si from XPS are 

almost the same for all three processes, suggesting that similar amounts of MCPTMS were 

deposited. AFM roughness measurements showed that gas phase deposition of MCPTMS led to 

almost no roughening of the surfaces, i.e., all MCPTMS layers are nearly as flat as the bare 

(uncoated) silicon surface (0.103 ± 0.010 nm). Similar surfaces of excellent flatness have 

previously been observed in the CVD of 3-aminoproplytrimethoxysilane, 3-

aminopropyldimethylmethyoxysilane, and 3-aminopropyldiisopropylsilane on Si/SiO2 
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substrates.23 There was some variability observed in MCPTMS thickness, although all 

thicknesses point to deposition of monolayer quantities of MCPTMS.  

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was also used to 

characterize these surfaces. To better understand the resulting multivariate spectra, a principal 

components analysis (PCA) of the negative-ion ToF-SIMS data from these surfaces was 

performed. In the first analysis, the data were preprocessed by normalization followed by mean 

centering. PC1 captured 85.17% of the variation in the data and PC2 captured an additional 

14.04%. Based on the scores of the data points (spectra) on PC1 and PC2, the nine samples 

(three spectra from each of the three MCPTMS depositions) could not be separated. In the 

second analysis, autoscaling was used in the place of mean centering because it will allow the 

variations in the signals from the different ions to be equally important in the analysis, i.e., the 

analysis will not be dominated by the signals from ions with larger variances as is the case with 

mean centering – autoscaling is arguably a more appropriate preprocessing method for these 

data. As expected, for PCA of the autoscaled data, more PCs were required to capture the 

variation in the data: PC1, PC2, and PC3 accounted for 53.98%, 28.40%, and 16.43% of the 

variation in the data, respectively. Interestingly, this second analysis suggests a difference 

between the first three spectra, which came from the first MCPTMS deposition, compared to the 

other two (extra time or addition of water to the deposition chamber). Using a statistical test 

based on a null hypothesis, the scores on PC1 of the first three spectra were determined to be 

different from the remaining six spectra at a 99% confidence level. These results are interesting 

because they suggest that keeping the samples in the deposition chamber for a longer period of 

time has some effect on the samples, i.e., there may be some validity to the ellipsometry results 

obtained in Table 3.1.  



 70 

Representative VR-SFG spectra of the gold mirrors made with the MCPTMS adhesion 

promoter are shown in Figure 3.4. The mirrors previously prepared without an adhesion layer are 

included again for comparison. Note the absence of excess features in the region of the aliphatic 

CH stretch modes (2800 – 3000 cm−1). All three batches of mirrors made with MCPTMS exhibit 

similar spectra and appear to be consistent within each batch and from batch to batch. The 

variations between mirrors are likely due to small differences in fabrication and slight changes in 

alignment of the optical system.  

We are unable to say whether there are residual unreacted methoxy groups in the 

MCPTMS layer. The absence of methyl peaks in our spectra may result from two possibilities. 

Either the surface density of methoxy groups is too low, or they have no orientational order.  In 

either case, VR-SFG spectroscopy will not detect these groups. We also see no sign of methylene 

resonances from the C3 backbone of the MCPTMS. This is not surprising, given that the chains 

are short and likely not well-ordered, again making them effectively invisible to VR-SFG.  

The absence of peaks from the MCPTMS layer indicates the usefulness of these mirrors 

as a spectroscopic reference. All three types of mirrors also exhibit excellent gold adhesion, as 

determined with the tape test. Only after >20 min of exposure to O2 plasma followed by 

sonication in water and CHCl3 for >10 min each did the “Scotch” tape begin to remove the gold 

layer. Even after this harsh treatment, the amount of gold removed by the tape was minimal. 

3.3.4 Use as a Spectroscopic Reference 

Figure 3.5 shows VR-SFG spectra of octadecyltrichlorosilane (OTS), which is commonly 

used as a stationary phase in RPLC. The spectra have been corrected with IR profiles determined 

from each mirror in the four processes (1 w/o MCPTMS and the 3 with MCPTMS). The four sets 

of spectra have similar relative intensities. The largest differences in the peaks at ~2873 cm−1 and 
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~2936 cm−1 are given as a percentage in Table 3.2. The intensities from the batches with the 

silane adhesion layer differ by at most 5.5%; the gold mirrors with no adhesion layer show 10% 

variability. Not only does the MCPTMS improve the durability of the mirrors, it actually 

produces a better spectroscopic reference.  

It also appears that the simplest procedure (Process 1) is the most effective. The variation 

in peak intensity in the corrected spectra is the least for this batch of mirrors. Use of additional 

heat or water does not lead to a more durable or spectroscopically uniform reference mirror. 

3.4 Conclusions 

We have produced and characterized gold mirrors fabricated with MCPTMS as an 

adhesion promoter. These mirrors have the advantage of not using the typical chromium 

adhesion film between the gold and fused silica, meaning they can be used as either front- or 

back-surface mirrors. We have also demonstrated the usefulness of these mirrors as a reference 

for VR-SFG studies of buried interfaces. There appears to be little or no interference in the 

nonresonant SFG profile from the adhesion layer. The MCPTMS adhesion layer also provides 

good long-term durability of the gold mirror.  

The use of MCPTMS may lead to greater availability of back-surface gold mirrors. 

Mirrors made in this fashion could be used in situations where contact with fused silica would be 

more advantageous than contact with gold. This method could be used with any substrate that 

has free silanol groups at the surface, such as fused silica, silicon, quartz or BK7 glass. Gold 

mirrors made with a MCPTMS adhesion layer should have high reflectance for other visible and 

near-IR spectroscopic applications. Usefulness further into the IR than about 2500 cm−1 is 

limited by absorbance in the fused silica substrate. Protection techniques, such as coating with 

MgF2, could also be used to further enhance the durability of these mirrors. 
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Table 3.1. Surface characterization of MCPTMS adhesion layers from three deposition 

processes.  Thickness as measured by spectroscopic ellipsometry. Water contact angle as 

measured with a contact goniometer.  S/Si ratio as measured by XPS.  Surface roughness as 

measured by AFM. 

Process Thickness Water contact angle S/Si ratio Roughness 

1 6.4 ± 0.1 Å 60° 0.19 ± 0.01 0.12 ± 0.00 nm 

2 10.6 ± 0.9 Å 60° 0.20 ± 0.01 0.10 ± 0.00 nm 

3 10.3 ± 2.3 Å 60° 0.19 ± 0.02 0.13 ± 0.03 nm 
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Figure 3.4. Measured IR profiles from each of the four types of gold mirrors: (a) without 

MCPTMS (4 mirrors), (b) MCPTMS (3 mirrors), (c) MCPTMS and heat (3 mirrors), (d) 

MCPTMS and water (3 mirrors). 
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Table 3.2. Variation in OTS peak intensity with different batches of back-surface gold mirrors. 

(Spectra were corrected for the profile of the broad-band IR source.) 

Wavenumber (cm−1) No MCPTMS Process 1 Process 2 Process 3 

2873 10.46 % 2.02 % 4.70 % 5.45 % 

2936 5.25 % 0.27 % 1.00 % 5.53 % 
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Figure 3.5. (a-d) VR-SFG spectra from a single OTS sample corrected with the IR profiles from 

each back-surface mirror in the four different batches (from Figure 4). (e) Averages of the 

corrected OTS spectra from each of the panels (a-d) plotted together. The differences in the 

corrected spectra are comparable to the noise level. 
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Chapter 4 

Understanding Stationary Phase Structure at the RPLC Interface with 

VR-SFG 

4.1 Introduction: VR-SFG and Nonresonant Interference 

Previous work to understand the structure of the RPLC stationary phase was mostly done 

with narrow band nanosecond VR-SFG systems. These systems provide relatively high signal-to-

noise and sub-wavenumber spectral resolution. Horn, Goates, and Bain worked ten years ago at 

Oxford University investigating model RPLC stationary phase structural changes under different 

solvent conditions at ambient pressures.1,2 Messmer and coworkers also worked with a similar 

VR-SFG system at Lehigh University in Pennsylvania. Messmer’s group worked to understand 

sample preparation, monolayer formation, solvent ordering,3 and stationary phase structural 

orientation. Both groups noted changes in the stationary phase structure under a variety of 

mobile phase compositions at ambient pressures. These changes were attributed to various 

degrees of ordering of the C18 chains as well as changing chain tilt angles.4 

While useful, work with these model RPLC systems at ambient pressures does not tell the 

complete story. Elevated pressures are typical in LC separations, and the stationary phase 

structure may have different conformations at various pressures. In situ work to understand the 

influence of stationary phase structure on retention should incorporate various mobile phase 

compositions as well as elevated pressures. In this chapter, I will examine the effect of 

nonresonant interference in VR-SFG spectra of model RPLC interfaces at ambient and elevated 

pressures. 
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One possible complication in VR-SFG spectra of the model RPLC interface not 

previously dealt with is the influence of nonresonant signal arising from the surface of model 

RPLC interfaces. The VR-SFG signal has two parts,  resonant and nonresonant. These two parts 

arise from the origin of the SFG signal shown in equation 4.1. 

ISFG! !NR
(2) 2 + !R

(2) 2 + 2 !NR
(2) 2 !R

(2) 2 cos ! ""(#)[ ]      (4.1) 

The second order non-linear susceptibility, ! (2) , has resonant and nonresonant parts, which 

interfere with each other depending on the phase term,
 
! !"(#)[ ] , where ϕ and δ(ω) are the 

phase terms of the resonant and nonresonant portions, respectively, of the SFG signal.5 This 

interference of resonant and nonresonant terms corrupts the real resonant amplitudes because we 

do not know the phase relationship of !NR
(2)

 
and !R

(2) . Because we are primarily interested in 

the resonant SFG signal, the nonresonant influence on the resonant SFG signal must be 

investigated.  

In equation 4.1, if the resonant or the nonresonant terms are zero, then the cross term is 

eliminated and we are left with either resonant or nonresonant signal alone. This brings up a very 

important question. Although much SFG work has been done on metallic substrates that produce 

a large amount of nonresonant signal, are there interfaces that exhibit negligible nonresonant 

signal in a region where resonant peaks are present?6 If the signal arising from the interface has 

negligible nonresonant response, then any signal generated from the surface should contain only 

resonant information. Our present work with fused silica is an ideal surface to test the hypothesis 

that fused silica has a weak nonresonant response. 
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We have examined several model RPLC interfaces with a broadband SFG instrument. 

This instrument allows us to probe the free induction decay of the resonant signal. By delaying to 

different points in the time domain, we can determine if changes in the overall SFG signal are 

due to the longer lived resonant modes or the short lived nonresonant interference with the 

resonant modes. When the two fundamental pulses impinge simultaneously on the surface, we 

call this “t = 0 s”. Visible delay after the start of the IR pulse on the sample is measured in 

picoseconds (ps). For example, if the visible pulse is delayed 1 ps after the IR pulse impinges on 

the surface, we would label the spectra as “t = 1 ps” or a “1 ps” delay. This approach is called 

time delay SFG, and it will allow us to determine if apparent structural changes are actually 

occurring.7 

We used time delay SFG to examine the polymeric OTS surface and the apparent 

structural changes observed in different solvent environments. In an effort to examine systems 

more relevant to RPLC we also examined this system at elevated hydrostatic pressures typical of 

pressures at the column outlet. Hopefully, by examining this specific system, we can improve 

future research to further investigate these model RPLC interfaces. 

4.2 Experimental 

Materials and VR-SFG Instrumentation: Described in detail in Chapter 2 

4.3 Results and Discussion 

4.3.1 Delay Stage Reproducibility 

To be confident that we can reproducibly move to different points in the time domain, we 

examined a polymeric OTS sample and a monomeric ODMS sample in air at two different delay 

settings 2.04 ps apart (all spectra were acquired with the ssp polarization combination). The 

delay was adjusted by moving a mechanical micrometer with markings measured in inches. The 
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screw was marked at 0.1”, 0.01”, and 0.001” increments and adjustments were only made on 

markings (there were no spectra taken in between marks on the delay stage). The 0 s delay stage 

setting was taken to be the point at which maximum nonresonant signal was obtained on a gold 

mirror. 

Figures 4.1 and 4.2 show the results of 10 spectra for each sample; 5 at a delay of 0 ps 

and 5 at a delay of 2.04 ps. Spectra at the same delay time were averaged together and the 

standard deviation of those five spectra was plotted with the averaged spectrum. The noise in the 

respective spectra is the same as in the plot of the standard deviation. The low noise at the same 

frequency as the resonant signal is a good check for the reproducibility of the delay stage 

because it suggests that the positioning error of the visible delay stage does not significantly 

affect the observed spectra.  

4.3.2 Changes in Polymeric Structure in Air at Various Visible Delays 

Figure 4.3 shows a polymeric sample exposed to air at different delay times. At a delay of 

0 s, there appear to be two strong peaks at 2885 cm−1 and 2950 cm−1. Notice that the relative 

intensities of the two peaks change with delay. The Fermi peak at 2950 cm−1 changes intensity 

and shape with delay from a more derivative line shape to a Gaussian line shape. This would 

seem to indicate the presence of a significant amount of nonresonant background interfering with 

the resonant signal. The apparent blue shift in the spectra is also attributed to the interference of 

the nonresonant background.  
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Figure 4.1. Polymeric ODS exposed to air. Repeatability of the delay stage positions is 

investigated at two positions. (Green) Average of 5 spectra at t = 0 s; (Red) standard deviation of 

5 spectra at t = 0 s; (Blue) average of 5 spectra at t = 2.04 ps; (Purple) standard deviation of 5 

spectra at t = 2.04 ps. 
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Figure 4.2. Monomeric ODMS exposed to air. Repeatability of the delay stage positions is 

investigated at two positions. (Green) Average of 5 spectra at t = 0 s; (Purple) standard deviation 

of 5 spectra at t = 0 s; (Blue) average of 5 spectra at t = 2.04 ps; (Red) standard deviation of 5 

spectra at t = 2.04 ps. 
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Figure 4.3. Polymeric ODS on fused silica investigated with a broadband VR-SFG system 

where the visible pulse has been delayed after the IR pulse. This sample was examined in air. 

(Blue) 0 ps; (Red) 1.86 ps; (Green) 2.04 ps; (Purple) 2.20 ps; (Turquoise) 2.4 ps; (Orange) 2.54 

ps.  
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The delayed spectra show at least 5 peaks present at different delay times. At a delay of 

2.20 ps, it is clear that the peak at ~2950 cm−1 is composed of at least three modes with different 

phases which interfere with each other to different extents. Figure 4.3 clearly shows the non-

negligible contribution of the nonresonant background with the resonant vibrational modes. This 

is very important because, if we interpreted the structure of the OTS monolayer at a delay of 0 s, 

we would have a dramatically different orientation than at a delay of 2.54 ps.  

None of these delayed spectra contain all of the information necessary to determine 

absolute molecular orientation. At 0 s, we should be able to determine absolute orientation from 

relative peak intensities, but we cannot because the nonresonant background interferes with the 

resonant signal and distorts the correct peak intensities. Unfortunately, at any later time when we 

exclude the nonresonant signal completely from our VR-SFG spectra, we have apodized the 

resonant free induction decay to the extent that absolute peak intensities are unknowable. The 

only possible way to account for resonant and nonresonant interactions would be to obtain 

spectra at multiple time delays and then use Fourier transform analysis and curve fitting to 

extract the resonant signal from the time domain spectra.8      

 In summary, nonresonant suppression changes the observed vibrational mode intensities. 

To be sure that we are only probing the resonant modes, we must suppress the nonresonant 

signal. This suppression eliminates the interference from the nonresonant response but it also 

reduces our confidence in molecular orientation. Without more exhaustive analysis, we can only 

say that changes in the stationary phase may be occurring. We cannot determine absolute 

orientation of surface molecules because of the nonresonant interference. 
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4.3.3 Changes in Polymeric Structure under Solvent at Ambient Pressure 

Figure 4.4 compares VR-SFG spectra of a sample that was stored in CD3OD and then 

examined in D2O at ambient pressures. These spectra also consist mainly of two peaks, one 

assigned to the symmetric methyl stretch mode at ~2884 cm−1 and a Fermi resonance at 

~2944 cm−1. The lack of significant methylene symmetric stretch signal at ~2866 cm−1 suggests 

that the alkyl chains are mostly all-trans and well ordered. Note also the different relative 

intensities of the 2884 cm−1 and 2944 cm−1 peaks. It would seem that there is a changing 

orientation of the polymeric OTS chains after 1.5 h immersion in D2O.  

To determine if these changes are the result of changing orientation or optical 

interference, we delayed the visible pulse relative to the IR pulse.4,5 If the delayed spectra also 

change with time and exposure to the D2O, this would suggest that the structure is changing. 

Figure 4.5 displays spectra collected after the visible pulse was delayed 2.04 ps after the IR 

pulse. (Spectra in both Figures 4.4 and 4.5 at 0 h were collected within 5 min of each other, and 

1.5 h were also sequential measurements at the two delay settings.)  

The differences in the spectra of Figure 4.5 are within the noise level, and the apparent 

changes observed in Figure 4.4 seem to have disappeared. Because we are only probing resonant 

modes at this delay, we can be confident that the changes in Figure 4.4 were from the 

nonresonant signal. The source of these changes may be solvent exchange, which may change 

the interface, but I cannot be certain without further experiments. I can certainly say that the 

apparent changes in VR-SFG at a 0 s delay are not necessarily resonant changes.  

Although, previous work with polymeric C18 silanes yielded similar results as displayed 

here, the interpretations of the spectra are somewhat suspect.4 Previous researchers did not 
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employ time delay VR-SFG. It is very possible that any observed changes may have had more to 

do with the nonresonant signal than with actual structural changes in the stationary phase.  

4.3.4 Polymeric Stationary Phases at 900 psi in H2O 

To test whether hydrostatic pressure has an effect on the polymeric stationary phase we 

exposed a CD3OD stored sample to H2O at 900 psi. Figure 4.6 displays spectra from this sample 

initially and after 3 h of exposure to the higher pressure. Changes in the spectra are slight and 

within the noise level of the spectra, so any interpretations of a changing stationary phase under 

900 psi pressure in water would be difficult to make. There are certainly no dramatic changes in 

the observed spectra when exposed to elevated pressures. Figures 4.7 and 4.8 display the 

spectrum of a similarly treated OTS sample. The lack of large changes in the delayed spectra 

outside of noise indicates that the changes observed at ambient pressures are not occurring on the 

same time scale for pressurized samples.  
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Figure 4.4. Polymeric ODS on fused silica investigated with a broadband VR-SFG system 

where the visible pulse is optimally overlaped in time with the IR pulse. This sample was 

previously stored in CD3OD and then placed in a chamber with D2O to investigate possible 

structural changes with solvent environment. (Blue) O h; (Red) 1.5 h. 
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Figure 4.5. Polymeric ODS on fused silica investigated with a broadband VR-SFG system 

where the visible pulse has been delayed ~2.04 ps after the IR pulse. This sample was previously 

stored in CD3OD and then placed in a chamber with D2O to investigate possible structural 

changes with solvent environment. (Blue) O h; (Red) 1.5 h.  
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Figure 4.6. Polymeric ODS stored in CD3OD and then placed under D2O and immediately 

pressurized to 900 psi. (Blue) Initial ambient; (Red) after 3 h of hydrostatic pressure.  
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Figure 4.7. Polymeric OTS on fused silica investigated with a broadband VR-SFG system where 

the visible pulse is optimally overlapped in time with the IR pulse. Polymeric OTS stored in 

CD3OD and then placed under D2O and immediately pressurized to 900 psi. (Blue) Initial 

ambient; (Red) after 3 h of hydrostatic pressure. 
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Figure 4.8. Polymeric OTS on fused silica investigated with a broadband VR-SFG system where 

the visible pulse has been delayed ~2.03 ps after the IR pulse. Polymeric OTS stored in CD3OD 

and then placed under D2O and immediately pressurized to 900 psi. (Blue) Initial ambient; (Red) 

after 3 h of hydrostatic pressure. 
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There are, however, several features of interest in Figure 4.6. From high energy to low, 

we see an OH peak at ~3000 cm−1 that might be interfering with the resonant and nonresonant 

peaks at lower energies. To avoid this, we suggest that future work use D2O to shift this OD 

mode to much lower frequencies. Also, the presence of defined shoulders at ~2920 cm−1 and 

2850 cm−1 would seem to suggest the presence of disordered C18 chains in this sample having 

gauche defects. These features are also corrupted by the clear derivative lineshapes from the 

nonresonant interference. The long shoulder on the low energy side of the two prominent peaks 

in Figure 4.6 and the sharper drops on the high energy side would suggest that this sample has a 

significant amount of nonresonant signal, which likely corrupted the resonant signal. 

Other OTS samples seemed to have different amounts of nonresonant interference and 

gauche defects as well as observed changes even at elevated pressures. Under closer inspection 

of the pressure work that has been done with polymeric OTS, we also noted that the time 

between making the samples and using the samples varied drastically. We assumed that changes 

would occur independent of how old the samples were. This might not be true, and future work 

should focus on comparing samples with the same preparation history.  

4.3.5 Polymeric Stationary Phases at Pressures Above 900 psi  

Further work with more elevated pressures should be done because pressure studies are 

the most relevant for understanding any structural changes that may occur in typical RPLC 

separations. Some preliminary work to reach higher pressures more typical of the inlet pressures 

in an RPLC column has had mixed success. Samples made on 1” round 1/8” thick fused silica 

often broke at pressures of ~1000 psi in a sample cell designed by Robert Baker. Figure 4.9 

shows a different design using right angle prisms (Thorlabs part# PS611) in a larger sample cell 

that I helped to design. Using this pressure, cell I was able to reach hydrostatic pressures of 
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6500+ psi. One difficulty I encountered was getting light in and out. Subsequent improvements 

on this design might easily overcome this problem and investigating samples at very high 

pressures will then be possible.  

4.4 Conclusions 

In summary, the nonresonant interference in fused silica samples is not negligible and it 

complicates the determination of absolute orientation in two ways. One, the intensity of the SFG 

signal is proportional to the modulus-squared susceptibility. Squaring the susceptibility destroys 

the complex values in χ(2), which has both the imaginary and real parts of the resonant signal. 

Because both parts are necessary for proper analysis, orientation information is lost through the 

interference of resonant and nonresonant terms. Two, the cross term involving both nonresonant 

and resonant parts amplifies any nonresonant signal present at the interface. As a result, at t = 0 s 

we observe the interaction (constructive or destructive, depending on the relative phase 

relationship) of the resonant and nonresonant terms. Furthermore, it is impossible to separate the 

resonant and nonresonant responses when the visible and IR pulses are optimally overlapped. 

Only if we delay the visible pulse can we exploit the different free induction decays of 

the nonresonant and resonant signals and separate the resonant portion of the signal. This 

apodization destroys absolute orientation information because the entire free induction decay 

cannot be observed. The nonresonant signal is (1) unknown to us both in phase and amplitude 

and (2) different with a variety of surface conditions.  

These factors make absolute determination of surface structure very difficult using 

conventional VR-SFG techniques or data post processing. There are too many variables to 

account for, with the interactions of resonant and nonresonant signals, to really be sure about 

structural information from VR-SFG spectra. Data post-processing alone cannot extract the 
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necessary information to determine absolute molecular orientation. Even more important, we 

have shown that apparent changes in VR-SFG spectra are not necessarily resonant-only changes. 

Furthermore, changes in VR-SFG spectra should only be attributed to resonant features if we are 

sure that the nonresonant signal is not interfering with the resonant signal. 

Fortunately, this work has provided researchers with some very useful insights into the 

structure of the RPLC stationary phase exposed to typical LC conditions. We have found that the 

OTS stationary phase does not undergo dramatic structural changes when exposed to elevated 

pressures. We do need to be cautious when determining whether spectral changes are actually 

structural changes or just nonresonant interference with both the OTS and ODMS fused silica 

interfaces. Finally, the structure of the RPLC stationary phase may in fact change with different 

mobile phase compositions but the changes we have observed are more probably due to 

differences in mobile phase penetration into the stationary phase. The differences in solvent 

polarity and other properties may be the reason for differences in chromatographic retention 

times. Because of this work we have discovered that there are changes occurring at the RPLC 

interface with the stationary phase and mobile phase. This discovery adds importance to further 

work that may reveal the source of these changes. The relationship that these observed changes 

have with RPLC retention times may have profound significance to those seeking to understand 

the molecular basis for retention in model RPLC systems.  
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Figure 4.9. Newly designed pressure cell that holds Thorlabs right angle prism (part # PS611). 

This design was able to exceed hydrostatic pressures of 6500 psi. 
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Chapter 5 

Conclusions and Afterthoughts 

5.1 Structure of the RPLC Stationary Phase 

 When I started this work, I really just dove in, expecting to have great success. I soon 

learned that my results were confusing and inconsistent. I spent much of my first year on this 

project rethinking how I was doing things. The synthesis was my biggest challenge. After I 

refined the synthesis, I needed to get consistent results.  

Obtaining consistent results led me to re-examine how we made our gold reference 

mirrors. I was sure that making reliable reference mirrors would take a month at most. Ironically, 

after 6 months, I was able to make reliable gold mirrors and we published a paper describing the 

process. Then, I was sure that everything would work according to my plans.  

I got back to work and found that the literature wasn’t certain about peak assignments of 

the C18 groups. After collaborating with a number of students in the Castle group for about a 

year, they were able to make deuterated molecules that would allow me to assign the different 

modes of the C18 stationary phases. Thanks to the Castle group’s hard work, in a matter of 

weeks we were able to assign the various modes that are commonly observed in VR-SFG spectra 

of OTS bonded to fused silica. 

Unfortunately, it seemed that I was only part of the way there. New work in our lab 

showed that there was a significant amount of nonresonant interference in the spectra I collected. 

This had to be better understood before I could move forward. After spending several months 

redoing experiments, I felt better prepared to begin working toward describing the orientation of 

the stationary phase of the RPLC system. And then, when I felt that I was just starting to 

understand things, it was time to graduate and move on. 
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I am not saying that the journey to understanding this model RPLC system was not 

enjoyable. It certainly produced wonderful results for papers and improved understanding of VR-

SFG. I just did not expect these detours as I pushed to make sense of everything. Although, I feel 

that I have left a great deal of work for those that continue this work, I have been able to learn a 

few important things about this model RPLC system. 

I have learned that well ordered polymeric C18 stationary phases may be too densely 

packed for dramatic conformational changes when exposed to different solvents.  I typically 

observed two strong peaks in these model C18 systems. These two peaks changed in intensity 

with and without suppression when moved from air exposure to methanol or acetonitrile. 

However, under either solvent or a ratio of either solvent there do not seem to be dramatic 

changes in the spectra at ambient pressures or 900 psi.  

 The close packing of these C18 systems may confine the C18 chains so much that they 

are not able to change orientation. I suspect that mixed C1/C18 phases may be able to change 

orientation. Monomeric ODMS would also be a good system to work with because it has looser 

packing due to the basal methyl groups. 

5.2 Gold Mirrors 

 In retrospect, I could have designed a much cheaper and simpler method for making back 

surface mirrors. The 3-MCPTMS would have attached to a clean substrate having silanol 

functional groups if it was deposited in a regular vacuum oven. To do this, one would simply put 

a dish of 3-MCPTMS in the vacuum with clean substrates. These could then be removed and 

coated with thermally evaporated gold. An even better option might be to thermally evaporate 

silver onto these substrates. Silver mirrors have better reflectivity in the 2900 cm−1 region and 

they would be cheap to produce. They might tarnish on the front surface, but that surface could 
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be protected to prevent oxidation, and the back surface would already be protected from 

oxidation by the substrate.  

5.3 RPLC 

 Cleanliness was my biggest enemy when making C18 stationary phases. After several 

back and forth emails with Lauren Wolf, a Ph.D. student under Messmer, I learned that the way 

to get clean samples was to rinse with copious amounts of solvents and sonicate in solvents. 

Additionally, never allowing my samples to dry seemed to help keep them clean.  

 I confirmed that cleanliness was important by taking two sets of samples through the 

polymeric C18 coating process. One set was coated and cleaned as I have described earlier and 

never allowed to dry, rinsed with several solvents and cleaned with sonication. The other set was 

treated exactly the same way, but I did not add the C18 reagent to the methylene chloride 

reaction mixture. After analysis with goniometry and VR-SFG, I was able to confirm that this 

rigorous process was clean. Drying the samples in an oven, or letting them dry out at all, resulted 

in contamination and inconsistent results when examined with VR-SFG.  

5.4 Pressure Work 

 The best approach to getting light in and out of the high pressure prism mount may be to 

use a counterpropogating geometry like that describing Bain’s VR-SFG set-up at Oxford, and in 

Horn’s dissertation.1,2 Doing so would allow for small entrance and exit slits, key for high 

pressures and a more obvious geometry for locating the SFG beam.  

 I wish the best of luck to whomever continues this work. It was exciting and engaging for 

me, and I have learned a great deal through solving the problems that have arisen over the years. 
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