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ABSTRACT 

 

Size-Based Separation of Bioparticles Using 

Planar Nanofluidic Devices 

 

Jie Xuan 

Department of Chemistry and Biochemistry, BYU 

Doctor of Philosophy  

 

Nanofluidic devices are structures having at least one dimension in the submicron range, 

which is of the same order of magnitude as the sizes of biomolecules and bioparticles such as 

proteins and viruses. As a result, size-selective separations are important applications for 

nanofluidics. Well-defined micro or nano device structures fabricated via micromachining have 

greatly reduced sample consumption and enabled separations in a parallel fashion, promising 

significant speed and resolution advantages over conventional size separation techniques, such as 

gel electrophoresis and size exclusion chromatography. In collaboration with others, I have 

developed a size separation method using nanofluidic devices consisting of an array of parallel 

planar nanochannels with varying heights. Separation of nanoparticles is accomplished by simply 

flowing a liquid suspension of the particles through the nanochannels via capillary action. When 

a mixture of particles arrives at an interface, where the channel steps from a deeper to a 

shallower segment, larger particles become trapped and smaller particles pass through, thereby 

achieving separation. In this dissertation, I demonstrated the successful trapping of polymer 

nanobeads and two types of virus capsids (30 nm hepatitis B virus capsids and 120 nm herpes 

simplex virus type 1 capsids) using nanochannels with two different channel height segments. 

Furthermore, I studied the fractionation of nanoparticles in nanochannels with three different 

channel height segments. The effects of surfactants and an alternating current electric field on 

particle distribution were investigated, both of which aided in the prevention of channel 

clogging. Most recently, I applied the nanosieving method for separating lipoproteins, which are 

important in the diagnosis of cardiovascular disease. Promising results were obtained, indicating 

that the major lipoprotein classes, including intermediate density lipoproteins (IDL, 23-35 nm), 

low-density-lipoproteins (LDL, 18-25 nm) and high-density-lipoproteins (HDL, 5-12 nm), may 

eventually be fractionated using three-segment nanochannels. To successfully fractionate 

lipoprotein mixtures, characterization of flow dynamics in three-segment nanochannels, 

passivation of the surface to prevent nonspecific protein adsorption, application of an electric 

field to help particles overcome an energy barrier, and use of multi-color fluorescent labeling to 

assist detection are required. I studied the channel passivation performance of polyethylene 

glycol (PEG) and used dual-color fluorescence detection for the separation of a binary protein 

mixture. Finally, I fabricated channels with monotonically changing barrier heights and 

demonstrated differential trapping of polymer beads. The data trend followed a slit model 

derived from a model developed by Giddings for size exclusion chromatography.  
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Chapter 1. Introduction 

 

1.1 Size separation of biomolecules and bioparticles using micro/nanofabricated structures 

 A wide range of techniques are traditionally used as size characterization tools, which all 

have their limitations. Using dynamic light scattering (DLS),
1 

accurate measurements become 

extremely difficult for samples containing a broad particle size distribution, large aggregates, or 

contaminants. Conventional electron microscopy techniques, such as transmission electron 

microscopy (TEM),
2
 allow the direct visualization of nanoparticles, including their sizes, shapes 

and degrees of aggregation. However, TEM must be operated under vacuum conditions. Also, 

sample preparation for TEM is time-consuming, and usually leads to sample alteration during 

drying. Size separation techniques based on chromatography and field flow fractionation (FFF) 

provide good resolution and are sensitive and non-destructive. However, size exclusion 

chromatography (SEC)
3,4

 is limited by possible sample loss caused by nonspecific sample-

column interactions and limited size separation range, depending on the pore size distribution of 

the SEC column. Hydrodynamic chromatography (HDC) overcomes most nonspecific 

interactions by using nonporous beads for column packing. It also allows a wider size separation 

range from 5 to 1200 nm.
5
 However, similar to DLS, HDC suffers from poor resolution. FFF 

separates macromolecules and particles based on interaction between analytes and a particular 

applied field. FFF can be used to fractionate particles ranging from 1 nm to 1 μm. However, FFF 

utilizes complex instrumentation and requires a skilled operator to obtain reproducible and 

reliable data.
6,7

  

 For purification and separation, polymer gels and membranes with various pore sizes 

have been extensively used as molecular sieve matrices. Unfortunately, the microscopic 
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structures of these systems are inherently random, which hinders both theoretical and 

experimental studies aimed at improving separations. Microfluidic systems for biomolecule size 

separation have generally adopted the same random nanoporous sieving materials
8-10

 and, hence, 

the same limitations.  

 In contrast, carefully designed regular micro/nanostructures via micro/nanofabrication 

provide unique capability in biomolecule analysis by improving control over the molecular 

sieving process. The traditional high-performance techniques of liquid chromatography (LC) and 

capillary electrophoresis (CE) are being miniaturized for efficient, high speed separations.
11

 

Advantages of miniaturization are low reagent consumption and fast analysis. As separation 

technologies move from microfluidics to nanofluidics, device dimensions begin to have a 

significant influence on the behavior of the system.
12,13

 By definition, nanofluidics rely on 

structures that have at least one dimension between 1 nm and 100 nm, which is of the same order 

of magnitude as the sizes of biomacromolecules such as DNA and proteins. Consequently, size 

separation becomes a suitable application for nanofluidics. As the channel dimensions approach 

the particle size, unique phenomena and separation mechanisms are being discovered. For 

example, due to the large surface-to-volume ratio, it has been shown that fluid transport in 

nanochannels is different from common understanding at the macroscale.
14-17

 Well-defined 

micro/nanostructures can be precisely designed and fabricated with sub-10 nm resolution.
18-21

 

Downscaling of device dimensions not only enhances the realization of the “lab-on-a-chip” 

concept, where sample injection, analysis, detection and signal processing are integrated onto a 

single chip,
22-25

 but more importantly, the deterministic networks of micro/nanostructures 

provide insights into separation processes, such that better speed and resolution can be achieved.  
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 In the early 1990s, the group of Austin
26

 pioneered the use of microfabricated post arrays 

(0.15 μm-high posts, 1 μm diameter and 2 μm center-to-center spacing) to replace the gel matrix 

for DNA analysis. Since then, a variety of micro/nanofluidic structures have been developed that 

utilize different separation mechanisms. The goals of this chapter are to summarize these designs 

(described here in three categories according to architecture, i.e., micro/nanopillar array 

structures, nanoplane gap structures and artificial nanoporous membranes), and to discuss their 

separation mechanisms and applications. 

 

1.2 Micro/nanofabricated pillar array structures 

1.2.1 Miniaturized DNA electrophoresis 

 DNA conformational and electrophoretic behavior. DNA fragments are considered 

randomly coiled polymers with radius of gyration given by  

Rg = (bL/6)
1/2

       (1.1) 

where b = 100 nm is the Kuhn length and L is the contour length (L = number of base pairs × 

0.34 nm).
27

 When a long DNA molecule is driven into a gel, the DNA chain can hook around the 

gel fibers, forming a U-shape in the direction of the electric field, and then relax into a more 

compact state.
28,29 

 This periodic conformational change was observed in both macroscopic 

agarose gel electrophoresis and nanopillar arrays.   

 Agarose gel electrophoresis is one the most common techniques used to determine the 

size of DNA. It is essentially a sieving process in which DNA molecules migrate through a 

cross-linked network by an electrophoretic force. Both the size and conformation of the DNA 

affect how fast it moves inside the gel. Under a uniform electric field, small molecules migrate 

more quickly than larger ones at rates that are proportional to their sizes. This linear relationship 
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between size and migration rate is only accurate for DNA molecules smaller than 40 kbp.
30 

For 

longer DNA, the efficiency of agarose gel electrophoresis decreases substantially due to 

irreversible trapping of DNA in the gel fibers.
31 

In 1984, Schwartz and Cantor
32 

introduced the 

method of macroscopic pulsed-field gel electrophoresis (PFGE), which was used for separating 

long DNA. However, PFGE takes hours to days to separate long DNA. The fractionation process 

is ill-understood due to the inhomogeneous gel structure. To address the challenging problem of 

separating long DNA and to better understand the sieving mechanism, miniaturized systems 

were developed with the hope to eventually replace their macroscopic counterparts. 

 Depending on the relationship between average pore size (a) and radius of gyration (Rg) 

of DNA molecules, DNA electrophoretic behavior can be classified into three regimes: Ogston 

sieving, entropic trapping and reptation. When a > Rg, DNA molecules are fractionated by 

Ogston sieving. Their mobilities can be described by the Ogston-Morris-Rodbard-Chrambach 

model.
33-35 

When a ≈ Rg, the separation regime is entropic trapping because DNA molecules can 

freely coil into large pores, whereas there is an entropic cost for them to enter smaller pores. 

When a < Rg, the DNA molecules migrate by “reptation” i.e., a reptile-like, snaking action 

through the pores.  

 Pulsed-field gel electrophoresis. The first miniaturization of PFGE for separating DNA 

was conducted in a two-dimensional array of circular micropillars,
 36

 taking advantage of a 

switchback mechanism first suggested by Southern et al.
37

 In strong fields (E ~ 10 V/cm), DNA 

molecules are stretched into a linear form when the fields are aligned along one of the axes of the 

array. Different results were observed when acute and obtuse angles between the fields were 

used. When pulsing using acute angles, all molecules zigzagged through the array at 

approximately the same speed, and no fractionation was observed. However, when the fields 
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alternated through obtuse angles, molecules backtracked along the previous path led by their tail 

ends. Since longer molecules retraced longer paths than shorter ones, fractionation according to 

molecular weight took place (Fig. 1.1). The authors investigated an angle of 120 degrees, so the 

design was referred to as a hexagonal array. Using this geometry, λ DNA (48.5 kbp) and T4 

DNA (165.6 kbp) were separated in ~ 10 s, several orders of magnitude faster than by using 

conventional techniques.
38

 It is worth mentioning that, to eliminate entanglement of large DNA 

around the posts, the device adopted entropic trapping
39

 in low dc fields for sample injection, 

which helped collect and launch the molecules in a narrow zone and reduced zone broadening.  

 In another study combining entropic trapping and a pulsed-electric field, DNA molecules 

were inserted into a densely packed (80 nm diameter, 135 nm spacing) nanopillar array (an 

entropically unfavorable region) and separated according to size by the fact that shorter 

molecules moved fully inside the region, while longer molecules straddled across the interface.
40 

When the field was switched off, the longer molecules were observed to recoil entirely out of the 

array to increase their configurational entropy while shorter molecules remained within the pillar 

array, thereby becoming separated. The same nanostructure used in the entropic recoil separation 

was first used for DNA mobility characterization in a constant field.
41

 

 Pulsed-field electrophoresis of DNA in a hexagonal array can be tuned via three factors: 

pulse duration (frequency), field strength and post size. In the previous examples, the pulse times 

and field strengths remained the same throughout one separation. As a result, all molecules 

moved in the direction as defined by the net electric field. If asymmetric fields of varying 

frequency were used, DNA molecules could be sorted in different directions according to size, 

resembling the separation of white light in a prism. Therefore, such a device was named a DNA 

prism. The prism (2 μm diameter, 2 μm spacing and 2 μm tall) separated 61-209 kbp DNA  
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Figure 1.1 Pulsed-field electrophoresis of different-size DNA in a hexagonal array. The fields were 

alternated along the channels formed at 120˚ by the posts in the array. Longer molecules spent most time 

retracing the path and, as a result, did not proceed forward whereas shorter molecules moved forward 

unhindered, thereby achieving separation (reprinted with permission from Ref. 38. Copyright 2001 

American Chemical Society). 
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molecules in 15 s with a resolution of ~ 13% (Fig. 1.2).
42 

The authors discovered that separation 

depended on pulse duration; however, the correlation between them was not clear. Similarly, 

using a self-assembled colloidal nanoarray (330 nm silica beads), Zeng showed separation of 

four DNA fragments in the range of 2-50 kbp.
43

 This work furthered the understanding of size 

and frequency dependency of separations using a DNA prism, and presented guidance for 

choosing proper conditions to separate DNA of certain sizes. 

 Clogging and hooking onto the posts are two common problems associated with using 

nanopillars for pulsed-field electrophoresis of DNA. Also, DNA molecules do not always stay 

uniformly extended in a hexagonal array and, thus, do not always retrace the same paths. More 

studies are required to address these issues. 

 DNA electrophoresis in a direct current electric field. Early work established the 

foundation of using micro/nanopillar arrays to replace gels or polymers for fractionating DNA 

molecules in a dc field by measuring their electrophoretic mobilities as a function of length.
26,41 

Later, Baba et al. demonstrated two types of separations using different nanostructures.
44 

The 

first sieve type nanostructure (S-type) had a regular pillar array (150 nm diameter, 100 nm 

spacing). Experiments showed smaller molecules moved faster than larger ones in an S-type 

separation. However, large DNA (48 kbp) became easily clogged in this sieve and sometimes 

were fragmented by hooking on to pillars. To solve these problems, a second type of structure 

wasdeveloped on the basis of SEC (SEC-type). This structure was constructed of narrow and 

wide gaps (400 nm narrow gaps and 1070 nm wide gaps). Molecules smaller than the narrow 

gaps diffused into both gaps, while molecules larger than the narrow gaps could not enter them 

and, thus, moved only through the larger gaps. As a result, the larger molecules eluted first, 

followed by the smaller ones. The SEC-type structure solved clogging and breakup problems  
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Figure 1.2 (A) Schematic diagram showing the behavior of small and large DNA molecules in a DNA 

prism under asymmetric fields. At t0, small and large molecules move at the same speed in a high field. 

Then at t1, their migration directions are reversed along a low field rotated at 120˚. When the original 

field is reapplied at t2, the large molecule resumes its previous path while the small molecule starts a new 

path. (B-D) Fluorescence images of continuous DNA separation under different field strengths and 

frequencies. Four DNA species were used, including (1) 61 kb, (2) 114 kb, (3) 158 kb and (4) 209 kb. (B) 

DNA separation into only two bands under a low field. (C) Fully resolved DNA separation using a high 

field. (D) DNA sample fractions collected through different channels into different reservoirs (reprinted 

by permission from Macmillan Publishers Ltd: Nature Biotechnology Ref. 42, copyright 2002). 
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because large DNA could move smoothly through the wide gaps. Using these devices, DNA 

molecules with sizes of 2, 5 and 10 kbp were clearly separated into bands. 

 Nanopillar structures inside a microchannel have proven their performance as novel 

sieving matrices. Unlike conventional DNA electrophoresis, where long DNA can only be 

separated in an alternating field, quartz-made nanopillar (500 nm diameter, 1 μm spacing) 

channels were used to fractionate 48.5 and 165.6 kbp DNA in a 380-μm-long region in 10 s 

using 100 V/cm (Fig. 1.3).
45 

It was confirmed that smaller molecules moved faster than larger 

ones, indicating that the nanopillars worked as a sieving matrix. Interestingly, it was discovered 

that efficient separations could be achieved by adjusting the nanopillar diameter and spacing 

based on the gyration radii of the DNA molecules. Many other factors, such as nanopillar 

geometry and array patterns, affect the performance of nanopillar chips. Simulations and 

experimental results showed that suppression of electroosmosis was a crucial factor in achieving 

high resolution.
46 

For fixed pillar diameter and spacing, two different distributions of nanopillars, 

tilted and square, were studied.
47 

Conformational changes in the DNA were observed in arrays 

with a square distribution, however, no separation was achieved. Nanopillars with a tilted 

distribution worked effectively as sieves for size separation of DNA. It was concluded that 

reptile behavior of DNA
48,49 

in nanopillar arrays was an important factor for successful 

separation. Nanopillar arrays with a hexagonal configuration embedded in a microchannel were 

reported for long DNA separation in microchip capillary electrophoresis.
50-52 

A novel nanofence 

array provided the same resolving power of a hexagonal nanopost array by ensuring efficient 

collision between the molecules and the posts, and further improvement in resolution was 

expected.
53 

 A variety of simulations and experimental studies have been conducted on the separation  
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Figure 1.3 Fluorescence micrographs showing the migration of single (A) λ DNA and (B) T4 DNA in a 

500-nm-spaced nanopillar channel at 7 V/cm. (C) Plot of the horizontal DNA radii (Rl) versus time, 

which indicates that T4 DNA formed a U-shape while λ DNA retained a spherical conformation 

(reprinted with permission from Ref. 45. Copyright 2004 American Chemical Society.). 
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mechanisms in micro/nanopillar arrays.
54-59 

An excellent discussion of these various models is 

given in a review by Dorfman.
60 

The general theory is that, in a post array, when the spacing 

between the obstacles is smaller than Rg, DNA separation takes place by biased reptation.
61 

When the spacing is larger than Rg, the separation is affected by the collisions between the 

molecules and the posts, which induce conformational changes.
57-59

  

1.2.2 Diffusion sorting (Brownian ratchets) 

 Brownian motion is the random movement of particles in a solution. By taking advantage 

of the fact that molecules diffuse laterally as they migrate, Duke and Austin
62 

and Ertas
63

 

proposed that a regular lattice of asymmetric obstacles can be constructed to permit Brownian 

motion essentially in only one direction, guiding the diffusing molecules in specific directions 

depending on their diffusion coefficients (Fig. 1.4). Since small molecules diffuse faster than 

large molecules, a mixture of particles can be sorted based on size.  

 There are two types of Brownian ratchets:  thermal (also referred to as one-dimensional 

time-dependent) and steric (also referred to as two-dimensional geometrical). In a thermal 

ratchet, the particles are subjected to a time-varying asymmetric potential. When the potential is 

switched on, the particles are driven by electrophoretic force or pressure;
64

 whereas, when the 

potential is switched off, the particles diffuse freely. This approach has been demonstrated as an 

effective method to separate particles according to size.
65-67

 On the other hand, in a steric ratchet 

(developed by Duke and Austin, and Ertas), particles are driven by a time-independent potential 

where D is the particle diffusion coefficient, υ is the electrophoretic drift velocity and a is the 

barrier gap size. It was suggested that, for a particular array geometry (rectangular obstacles set 

at an angle of 45º to the direction of the applied potential), good resolution could be obtained in 

the range of 0.02 < D/υa < 0.3. Experiments showed that ~100 kbp DNA molecules
68,69

 and  



12 
 

 

Figure 1.4 Schematic diagram showing how diffusion sorting works in a sieve consisting of a regular 

lattice of rectangular obstacles. Molecules are driven by an electric field. A molecule which passes gap A 

visits the parabolic shaded area and subsequently goes to B or B+. Small, fast-diffusing molecules have a 

higher probability of reaching B+ than large molecules (reprinted with permission from Ref. 62. 

Copyright 1998 by The American Physical Society.). 
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phospholipids
70

 could be fractionated in such devices. However, there was a discrepancy 

between the theoretical and experimental D/υa values. Later, it was discovered
71 

that particles 

much smaller than the barrier gap were poorly fractionated. An array with a gap size of 1 μm 

failed to deflect DNA molecules ten times smaller (411 bp, 117 nm). Effective fractionation in 

asymmetric arrays requires the molecular size to be comparable to the barrier gap size. 

One of the limitations of the Brownian ratchet technique is that it is an inherently slow process 

because it relies on diffusion, and only a low flow rate (2 μm/s) can be used. Furthermore, 

particles must be injected at the same point, so the overall throughput is low. In order to reduce 

the analysis time and improve the performance of a ratchet with a given array geometry, the 

electrophoretic flow direction was tilted at a small angle relative to the array axis (Fig. 1.5), 

which resulted in higher fractionation speed because more diffusing molecules were ratcheted at 

each step in the array. Using a 12-mm-long array, DNA molecules of 48.5 and 164 kbp were 

separated with resolution and speed improvements of 3 and 10 times, respectively.
72 

 In principle, Brownian ratchet arrays are not limited to DNA separations, but should also 

be applicable to proteins. Electron-beam lithography and nanoimprint lithography can produce 

features as small as 10 nm,
20

 which is on the same order of magnitude as the size of proteins. 

However, such small pathways can be easily clogged. Therefore, the practicality of applying this 

technique to separate proteins is questionable. 

 In addition to diffusivity-dependent ratchet systems, recent studies have shown that 

molecules with the same D/υa, but different molecular structures, can be separated by combining 

the self-spreading phenomenon
73,74

 with the Brownian ratchet mechanism. Without requiring an 

external bias, Motegi et al.
75

 demonstrated the use of a self-spreading lipid bilayer to induce 

different diffusivities in protein complexes (CTB-GM1) that had different configurations. They  
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Figure 1.5 Schematic diagram illustrating a Brownian ratchet device in which the electrophoretic flow 

direction is tilted at an angle of θtilt with respect to the array axis to achieve higher fractionation speed 

(reprinted with permission from Ref. 72. Copyright 2003 American Chemical Society.). 
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proposed a new geometrical model to explain the exceptionally high D/υa value and high 

separation angle observed. 

1.2.3 Deterministic lateral displacement (DLD) 

 This method of separation was first developed by Huang et al.
76

 and utilizes the 

asymmetric bifurcation of laminar flow through an array of obstacles to separate particles by 

their hydrodynamic sizes. In a DLD device, each row of obstacles is slightly offset laterally with 

respect to the previous row to create equivalent migration paths for all particles of a given size 

(Fig. 1.6). The basic separation principle is called “bumping.” Particles smaller than a critical 

size follow the fluid flow direction and travel in a zigzag mode, whereas particles larger than the 

critical size are deflected by the post array and eventually become laterally displaced 

(displacement mode). The critical size, Dc, at which the transition between the two modes 

occurs, was empirically deduced by Davis
77

  

Dc,n = 1.4dNn
-0.48

      (1.2) 

where d is the spacing (center to center) between the posts, Nn is the periodicity, given by Nn = 

1/∆n (∆n is the relative shift between the adjacent rows). The angle at which the particles are 

deflected can be calculated as tan
-1

(∆n/d).
78

     

 The difference between the Brownian ratchet and DLD mechanisms is that for a 

Brownian ratchet, separation depends on diffusion and, thus, only works for small particles such 

as proteins and DNA, which are affected by Brownian motion, whereas in a bump array, 

separation depends on a deterministic process (hydrodynamic effects), and higher flow velocity 

can be used to achieve better resolution. Using a bump array, Huang et al.
76

 demonstrated that 

both hard spheres (polystyrene beads) and soft spheres (bacterial artificial chromosomes) were 

fractionated rapidly with a resolution as low as 10 nm, which is better than hydrodynamic  
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Figure 1.6 Mechanisms of particle separation via deterministic lateral displacement (DLD). (A) In a DLD 

device, each row of obstacles is slightly offset laterally with respect to the previous row. (B) Small 

particles follow the laminar flow streams and stay in the same lane. (C) Large particles are continuously 

deflected by the post array and become laterally displaced (From Ref. 76. Reprinted with permission from 

AAAS). 
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chromatography and quasi-elastic laser light scattering. Based on this work, Davis et al.
79

 

investigated three different types of arrays:
 
single array, chirped array and cascade array, each of 

which has a different mode of separation and a different dynamic range (maximum particle size 

that can flow through the array without clogging). White blood cells, red blood cells, platelets 

and plasma were successfully separated from whole blood with no dilution at flow velocities of 

1000 μm/s and volumetric flow rates up to 1 μL/min. Since then, cell sorting has become a major 

application of DLD devices.
78,80-86

 In addition to polymer beads, DNA and cells, the technique 

has also been used for continuous-flow separation of bacteria,
87

 fungal spores
88

 and parasites.
89 

These objects cover a broad size range from 100 nm
90

 to 30 μm. 

 For separation of samples with a broad size distribution, Beech and Tegenfeldt
91

 

demonstrated a DLD device fabricated from polydimethylsiloxane (PDMS) which could be 

deformed to change the critical size during the separation. Recently, Loutherback et al.
92,93

 

reported that changing the post shape from circular to triangular increased the dynamic range of 

DLD arrays. For the same gap width, an array using triangular posts could separate smaller 

particles, thereby reducing clogging. Circular post arrays use a single-direction flow, while 

triangular post arrays use an oscillating flow. In addition to the two transport modes discovered 

for the circular post array, a third possible behavior was observed only in an array with triangular 

posts. When a particle fell between two critical sizes, it underwent a net displacement relative to 

the flow after one cycle of flow direction, whereas a particle outside that window showed no net 

displacement. It was recommended that triangular instead of circular posts should be employed 

for future DLD designs. Novel operating conditions could include the integration of 

dielectrophoresis
94

 or gravity.
95

  

 



18 
 

1.3 Nanoplane gap structures 

1.3.1 Entropic trapping and Ogston sieving 

 As mentioned briefly earlier, when the mean pore size is commensurate with the radius of 

gyration of a DNA molecule (a ≈ Rg), the sieving process is in the entropic trapping regime. 

When a flexible DNA molecule is placed in an environment containing different-sized pores, 

there is a competition between distribution of the chain among different pores and squeezing of 

the entire chain into a single pore.  In order to squeeze into a narrow region, the DNA molecule 

must overcome an entropic energy barrier resulting from the limited configurational freedom as 

it passes through. The concept of entropic trapping was first reported in the context of gel 

electrophoresis.
96

 However, the theoretical results from these studies also apply directly to 

micro/nanostructures.
97 

 Although entropic trapping exists in micropillar arrays,
 40,98

 nanoplane gap structures are 

more suitable for studying the mechanism because the thin entropic traps can be easily 

microfabricated to the sizes of the DNA molecules, which are typically in the sub-100 nm 

range.
99

 Han et al. demonstrated entropic trapping of long DNA in a dc field using a structure 

consisting of thousands of alternating shallow (ds = 90 nm) and deep (dd = 1 μm) regions.
100

 A 

unique aspect of this type of entropic trapping is that the electrophoretic mobilities of DNA 

molecules increase with molecular weight. Molecules overcome the energy barrier by stretching 

through the constrictions. Longer molecules move faster because they have a larger contact area 

with the thin gap regions and have higher probability of forming a loop and escaping.  

 In a nanofilter array, the separation resolution depends on the electric field strength. At 

very low electric fields, the electrophoretic force is not strong enough to help molecules 

overcome the entropic energy barrier. Therefore, DNA molecules are trapped indefinitely. This 



19 
 

fact can be used to control sample injection.
39

 Low fields provide better resolution, but lead to 

slow separation.
101,102

 In order to perform parallel analyses, a device with two identical nanofilter 

arrays (15 mm long, ds = 75–100 nm, dd = 1.5–3 μm) was fabricated. Two different DNA 

samples (5–50 kbp) were analyzed simultaneously in ~30 min.
101

 Unlike traditional PFGE where 

only a low dc range (1–10 V/cm) can be used, separation was still observed at 128 V/cm.  

 In entropic trapping, the conformational freedom of the molecules is limited and they 

must deform to pass through the thin gap regions.
98,103

 On the other hand, in Ogston sieving, the 

molecules retain their coiled conformations as they move through the pores (Fig. 1.7). However, 

their configurational freedom is limited due to steric repulsion from the wall. This results in a 

configurational entropic energy barrier, which the molecules must overcome in order to pass 

through any shallow regions.
104

 Small molecules move faster than large molecules in an Ogston 

sieve. Using a nanofilter array, size separation of SDS-protein complexes (cholera toxin subunit, 

11.4 kDa; lectin phytohemagglutinin-L, 120 kDa; and low density human lipoprotein, 179 kDa) 

was achieved in 4 min with a separation length of 5 mm at 90 V/cm, and small DNA molecules 

(50-766 bp) were fractionated in 10 min at 70 V/cm.
105

 Fu et al. demonstrated the distinct 

transition from Ogston sieving to entropic trapping using DNA molecules in the size range from 

0.5–8 kbp in a ds = 73 nm nanofilter array. It was clearly shown that, in the Ogston sieving 

region, the mobility decreased as the molecular weight increased; in the entropic trapping 

regime, the mobility increased with DNA length.
106 

Compared to other miniaturized systems,
42

 

DNA analysis using a nanofilter array has the disadvantages of slow separation and, hence, low 

throughput.  A separation can take up to hours, although it is still much faster than conventional 

PFGE.  

 The sample processing rate can be increased by simply upscaling the channel depths to  
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Figure 1.7 (a) Schematic diagram illustrating the partitioning of rod-like DNA molecules between the 

deep and shallow regions of a nanofilter. (b) Free-energy landscape of a DNA molecule as it moves 

across a nanofilter. (c) SEM image of a nanofilter consisting of alternating deep (300 nm) and shallow (55 

nm) regions of equal length (1 μm) (reprinted with permission from Ref. 106. Copyright 2006 by The 

American Physical Society.). 

 



21 
 

create high aspect ratio (depth-to-width ratio) nanochannels.
107

 Anisotropic KOH etching 

provided an attractive method for fabrication of such nanochannels.
108

 In order to resolve the low 

volume throughput limitation, Fu et al. developed a two-dimensional anisotropic nanofilter array 

(ANA) operated with two orthogonal electric fields for continuous-flow separation.
109

 The 

structural anisotropy in the 2D nanofilter caused molecules of different size, charge or 

hydrophobicity to follow different trajectories. Broad size ranges of DNA (50 bp – 23 kbp) and 

proteins (10 – 400 kDa) were fractionated in a few minutes. Both entropic trapping and Ogston 

sieving were demonstrated.
107,109,110

 

1.3.2 Size exclusion separation 

 The concept of size exclusion applies to situations where particles are not able to pass a 

restriction due to steric hindrance and become excluded by size. DNA molecules can elongate 

and reptate through pores smaller than their Rg. However, rigid polymer beads, viruses and 

proteins in their natural states usually cannot be separated via entropic trapping or by a reptation 

mechanism. Some interesting systems were designed on the basis of size exclusion for trapping 

and separation of these target analytes.  

 PDMS nanochannels with tunable cross-sections permit multiple modes of nanofluidic 

sieving and trapping within a single device for a given sample.
111

 Reversible channel 

deformation provided size selectivity; when a force was applied, the channel trapped particles 

consistent with the cross-sectional size, and the particles were released upon removal of the 

applied force.  A simple method to operate nanofluidic devices without the use of an external 

field utilized capillary action and evaporation effects to drive flow inside the channels.
112

 The 

structures consisted of an array of parallel planar nanochannels. Each channel contained one or 

two height steps. The tall segments were below 200 nm and the short segments were in the range 
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of 10–100 nm, according to the size distribution of the sample to be analyzed. The trapping of 

120 and 30 nm polymer beads and virus capsids was demonstrated. One limitation of the 

technique is that capillary action was not sufficient to overcome the configurational entropic 

barrier imposed by Ogston sieving. The channels were easily clogged due to the keystone effect. 

Surfactant and AC agitation were required in order to reduce channel clogging.
113

 However, it 

was concluded that this one-dimensional design was not suitable for separating complex 

mixtures. A very similar size fractionation method was reported using a single 

micro/nanochannel containing a height step. The operating principle was based on application of 

shear-driven flow, which was generated by mechanically moving the bottom half of a flat-

rectangular channel past the top half.
114, 115

 Size separations of mixtures of polymer beads and 

cells were demonstrated.  

 Stavis et al. presented the first three-dimensional nanofluidic structure with the ability to 

resolve nanoparticle size differences.
116,117

 This structure took advantage of the “binning” 

mechanism, where particles with diameter, D, in the range of ds < D < dd were excluded from 

regions with depths d ≤ ds. Proof-of-principle experiments demonstrated the size separation 

capability of structures with staircase function surface topographies. A prototype device had a 

maximum depth of ~ 620 nm, a minimum depth of ~ 80 nm, and an average step size of ~ 18 nm. 

A bimodal nanoparticle mixture was separated in ~ 10 s within a 100-μm channel width. The 

nanoscale confinement effects on DNA were also investigated. The separation resolution was 

defined by the nanofluidic step size, which could be further improved via patterning narrower 

steps. 
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1.4 Artificial nanoporous membranes 

 Membrane permeation is a simple and easy-to-implement technique for particle 

separation. It has been widely used for gas separation, sample filtration/preconcentration and 

sensing.
118-120

 The transport selectivity of a membrane can be engineered for different properties 

including charge, size and chemical interactions. An ideal membrane-based “molecular filter” 

should have uniform pore-size distribution throughout the entire thickness of the membrane, 

allow high analyte flux and have good mechanical and chemical stability. Depending on the 

relationship between the membrane thickness and pore size, nanoporous membranes can be 

categorized into two types: nanochannel arrays, if the membrane thickness is larger than the 

diameter of the pores, and nanopores or nanosieves, if the membrane thickness is on the same 

order as (or smaller than) the pore diameter. Nanochannels typically are more mechanically 

robust, whereas nanopores are characterized by lower flow resistance and higher flux. 

 The production of membranes via track-etching techniques (i.e., irradiation or chemical 

etching) was proposed approximately a half century ago.
121

 Track-etched polymeric membranes 

have a very narrow pore size distribution. The pore diameter can range from 10 nm to tens of 

micrometers. Jirage et al. demonstrated nanofiltration (<2 nm) of the small molecules, pyridine 

and quinine, by combing track-etched polycarbonate filters with cylindrical 30 nm pores and 

gold nanotubules. By using sufficiently long plating time, the pore size of the Au nanotubules 

embedded in the membranes was reduced to less than 1 nm.
122

 Kuo et al. used nuclear track-

etched polycarbonate membrane arrays with pore sizes of 200 nm or 15 nm to interface fluidic 

layers in a 3D microchip electrophoresis system.
123,124

 Separation and selective collection of 

amino acids were demonstrated. The flexibility of analyte transfer was demonstrated by 

nonselective and mass-selective transport of dextrans via adjustment of the pore parameters. 
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Most track-etched membranes are made of polymer with a thickness of, at least, several 

micrometers.
125

 Vlassiouk et al. reported a 100 nm thick silicon nitride (SiN) membrane 

prepared by ion track-etching.
126

 The porosity was controlled by the number of irradiating ions, 

whereas the pore size could be tuned between ~ 10 and 50 nm depending on the etching time. 

These membranes could differentiate small dyes of different charges and proteins of different 

sizes. 

 Micro/nanofabricated membranes have the potential to advance biomolecule separation 

processes by offering more precisely controlled structures and allowing the optimization of 

membrane parameters including porosity, pore geometry and pore surface chemistry.
127

 The first 

ultrathin (~10 nm) SiN membrane was created using focused-ion beam (FIB) etching, which 

gave uniform pores of 25 nm or less than 10 nm.
128

 However, this process was too slow for high 

volume manufacturing. Striemer et al. reported the first use of an ultrathin (15 nm) porous 

nanocrystalline silicon (pnc-Si) membrane with pore sizes from 5 nm to 25 nm for size- and 

charge-based separations.
129

 It was discovered that the pore size could be tuned by varying the 

annealing temperature, making pnc-Si membranes ideal for size-selective separation of large 

biomolecules, such as DNA and proteins. Fractionations of gold nanoparticles and proteins were 

demonstrated with better than 5 nm resolution.
130

 Theoretical analysis was performed by 

comparing the separation results with one- and three-dimensional models of diffusion through 

15-nm membranes.
131

 The models predicted that the molecularly thin membranes should have 

better resolution than thicker membranes with the same pore diameters and porosities.  

 In the work mentioned above, it was observed that SiN membranes only blocked 

similarly charged molecules and permitted the passage of oppositely charged molecules. 

Therefore, they can be functionalized to separate similarly sized molecules on the basis of 
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charge. For instance, using the same fabrication procedures, Osmangeyoglu et al. developed a 

thin (0.7 – 1 μm) nanoporous anodic alumina membrane with pore sizes from 20 nm to 30 nm.
132

 

Electrostatic sieving was explored for separation of bovine serum albumin (BSA) and bovine 

hemoglobin (BHb), which have similar molecular weights, but different isoelectric points. At a 

pH equal to the pI of BSA, the neutral molecules did not interact electrostatically with the 

membrane surface and diffused through the pores easily, whereas BHb, which has a different pI, 

diffused more slowly due to interactions with the membrane and the electrical double layer at 

low ionic strength. The molecular permeability can also be controlled through chemical 

interactions. Li and Ito characterized the size-exclusion properties of polystyrene-

poly(methylmethacrylate) diblock copolymers (PS-b-PMMA) that contained nanopores with 12 

nm-ferritin using an electrochemical approach.
133

 The nanopores were modified with 

polyethylene glycol to reduce nonspecific adsorption.  

 FIB and electron-beam lithography can generate structures with excellent uniformity. 

However, the processes are expensive and not suitable for large-scale production.
127,134,135

 

Montagne et al.
136

 demonstrated an inexpensive fabrication method for SiN membranes by 

combining block copolymer (BCP) self-assembly and conventional microfabrication techniques. 

Size-based filtration experiments were conducted with dextrans of different molecular weight, 

achieving good selectivity. In addition to 2D membranes, Randall et al.
137

 fabricated 3D 

membranes shaped as cubes with five porous faces and one open face, and used them for size-

selective sampling. Compared to 2D flat membranes, the 3D membranes had a greater surface-

to-volume ratio. As these membranes were moved though liquids, they retained nanobeads and 

cells.  
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1.5 Nanosieves based on size exclusion 

1.5.1 Device design and operation mechanism 

 I have been working within a group to develop a simple nanosieving method utilizing 

capillary action. In this work, three types of nanosieving devices were developed and tested, 

including two-segment nanochannels (channels with two different height segments), three-

segment nanochannels (channels with three different height segments) and tapers (channels with 

monotonically increasing height segments). An individual nanofluidic chip contains an array of 

two hundred parallel nanochannels. Each channel is approximately 1.2 mm long and 15 μm 

wide. The spacing between every two nanochannels is approximately 25 μm. There is one 

reservoir fabricated at the tall end of the channels for sample injection and one formed at the 

short end of the channels for waste. Both have the size of 8 mm × 0.2 mm × 0.005 mm (length × 

width × depth). Fig. 1.8 shows an example of a completed two-segment nanofluidic device, and 

the microscopic view displays the interface between the tall and short segments.     

 Separation of particle mixtures using one of the devices is accomplished by placing a 

drop of microliter-sized sample into the injection reservoir and allowing it to flow through by 

capillary action (Fig. 1.9). Once the channels are filled, particles continue to migrate towards the 

exit due to carrier liquid evaporation from the channel ends. Particles are separated based on a 

simple sieving concept that, when the particle size is smaller than the pore size, they pass 

through the channels with no retention, whereas, when the particle size is larger than the pore 

size, they are trapped. Filtration of particles on a nanoscale level does not always occur as 

predicted; even when pores are large enough to pass all particles, some percentage is often 

retained. This is because the sieving process is essentially a partitioning equilibrium. There exists  
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Figure 1.8 (Top) photograph of a completed two-segment device next to a U.S. quarter; (bottom left) 

microscopic view displaying the nanochannel array and the reservoirs; (bottom right) magnified view 

showing the interface between tall and short segments. 

 



28 
 

 

Figure 1.9 Schematic illustrating separation and detection of particles in two-segment nanochannels. 
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a statistical distribution coefficient, which depends on the molecule size and pore size. This is 

discussed in detail in later chapters of this dissertation (section 2.3).  

 Trapping or separation of fluorescently derivatized analytes was recorded with a CCD 

camera interfaced with a fluorescence microscope (Fig. 1.9). Illumination was provided by an 

LED that passed through a filter cube. Images were acquired sequentially at a rate of 1.33 frames 

per second. Trapping was quantified by measuring the changes in fluorescence signal intensity 

for particles accumulated at the interfaces or at the ends of the serially linked nanochannels over 

the trapping period. Image acquisition and data analysis were performed using Image J software. 

All trapping data were normalized to the maximum fluorescence intensity. If not otherwise 

mentioned, each trapping or separation measurement reported in this dissertation was repeated at 

least two times each using three different nanofluidic chips, for a minimum of 6 total replicates. 

1.5.2 Generation of liquid flow 

 Nanochannels have an extremely large surface-to-volume ratio, which results in 

prominent capillary action. The wetting properties of the channel walls play a crucial role in the 

capillary filling of nanochannels. Most reported nanofluidic systems fabricated by micro- and 

nanolithography are based on hydrophilic materials (silica in this case) and have rectangular 

cross-sections. The earliest study on capillary phenomena was accomplished by Washburn in the 

1920s,
138

 which predicted that the position of the moving meniscus during filling (l) is 

proportional to the square root of the filling time (t
1/2

). However, various studies have shown that 

the actual capillary flow rate in nanochannels is lower than that predicted theoretically.
139-141

 

This observation has been attributed to electroviscosity effects,
139,142

 or to variation in dynamic 

contact angle.
143 
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 The Washburn scaling law is based on the balance between a constant wetting force 

provided by the capillary pressure, which pulls the liquid into the channels, and a fluidic why 

resistance that is proportional to the propagated length, L. The Young-Laplace equation can be 

used to describe the pressure drop across the free surface of the meniscus:  

)/1/1( 21 RRp        (1.3) 

where γ represents the surface tension of the liquid in air, and R1 and R2 are the principal radii of 

curvature. In the case of a planar nanochannel with a rectangular cross-section, where the 

channel height, h, is much smaller than the channel width, ω, this equation can be converted to 

2 cos /p h        (1.4) 

where is the contact angle of the liquid on the channel walls. When a channel is filled by water 

with the surface tension of 0.0728 N/m at 25˚С, and assuming a contact angle of 60˚, the 

capillary pressure ranges from 7.28 to 72.8 bar for channel depths from 100 to 10 nm.
144-146

 The 

hydraulic resistance, Rh, in a planar nanochannel (h < ω) is given by (μ is liquid viscosity) 

 )/630.01(

12
3 



hh

L
Rh


       (1.5) 

Therefore, the longer and the shallower the channel is, the higher the flow resistance will be. 

This is consistent with experimental results, which have shown that capillary filling speed 

decreases with decreasing channel depth and increasing filling length and is independent of 

channel width.
147

 In this study, the minimum average flow rate obtained was 0.30 mm/s for a 140 

nm deep channel and 0.09 mm/s for a 40 nm deep channel (both are 200 μm wide). Since the 

channel dimensions are in the same range as my devices, it can be assumed that filling of the 

nanochannels will result in similar flow rate, which is sufficiently high for particle trapping and 

separation applications. Thus, the nanosieving devices have a significant potential use for 

pumpless high-speed analysis. 
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1.5.3 Application scenario: size fractionation of lipoproteins 

 Lipoproteins are globular particles of varying size and composition, configured in a way 

that their outer surface is hydrophilic and their inner core, which contains lipids, is hydrophobic. 

The surface of lipoprotein particles contains an amphipathic phospholipid bilayer, non-esterified 

cholesterol, and apolipoproteins. The core consists of cholesteryl esters and triglycerides (TG).  

 One can characterize lipoproteins by their size, density, flotation constant and 

electrophoretic mobility. Lipoproteins can be separated into five classes based on their size: 

chylomicron (80-1200 nm), very-low-density lipoproteins (VLDL, 30-80 nm), intermediate-

density lipoproteins (IDL, 23-35 nm), low-density lipoproteins (LDL, 18-25 nm) and high-

density lipoproteins (HDL, 5-12 nm).
148 

These major lipoprotein classes are highly 

heterogeneous in terms of their density, size and chemical composition, and each consists of two 

or more subclasses.  

 HDL are often referred to as “good cholesterol” because they shuttle fat out of the body 

whereas LDL are referred to as “bad cholesterol” because they deposit cholesterol in the blood 

vessels. It has been clinically proven that the contents of HDL and LDL in human blood serum 

are associated with risk of cardiovascular diseases.
149

 Because of the clinical significance of 

lipoproteins, various methods have been used for their quantitative and qualitative analysis. For 

example, Fig. 1.10 shows separation profiles of LDL and HDL subclasses obtained by gradient 

gel electrophoresis (GGE).
150

 This is the best resolution that can be achieved using this 

technique. Obviously, a higher resolution would be preferred. Although gel electrophoresis is 

widely used, little is understood about how it works on a molecular level because there is little 

information on the pore sizes of the gels.  As an alternative, nanofluidic structures offer a unique 

opportunity to achieve better resolution and faster separation, and due to the small feature sizes 
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Figure 1.10 Polyacrylamide gradient gel electrophoresis analysis of LDL and HDL subclasses. Image 

courtesy of Berkeley HeartLab. 
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in nanofluidic devices, they should further understanding of how sieving works on a molecular 

level. The ultimate goal of this project was to achieve high resolution size profiles of lipoproteins 

using tapered nanochannels consisting of multiple heights, monotonically increasing from one 

side of the channel array to the other. However, due to limited time and the many difficulties and 

challenges that remain to be overcome, this study only covers trapping and separation of proteins 

in two-segment nanochannels, and selective trapping of polymer bead mixtures in tapered 

channels consisting of two different channel heights. 
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Chapter 2. Two-segment nanochannels 

 

2.1 Fabrication 

 This work describes a set of nanofluidic devices developed using aluminum as sacrificial 

core. This process is illustrated in Fig. 2.1 using the example of an array of two-segment 

channels where the first segments are 200 nm tall and the second following segments are 45 nm 

tall. The terminology for describing devices like this throughout this dissertation is 200-45 nm 

channels. The fabrication process begins with depositing approximately 200 nm plasma 

enhanced chemical vapor deposited (PECVD) silicon dioxide, which will form the wettable 

bottom of the nanochannels. Then a thin layer of 45 nm aluminum (Al) is deposited on top of the 

oxide, defining the short segments. Photoresist AZ nLOF 2220 is spun-on, patterned and 

developed, exposing only an area where a second a layer of 155 nm Al is deposited. The 

photoresist layer is then lifted off using N-methylpyrrolidone (NMP), leaving behind two 

aluminum-covered areas of two different heights. Then photoresist AZ 3330 is spun-on, 

patterned and developed, defining the core lines. After etching out the aluminum between the 

core lines using a commercial aluminum etchant and removing the photoresist using acetone, the 

Al core lines are formed. At this step, the channels heights are characterized using profilometry, 

and a capping layer of approximately 5 μm PECVD is deposited over the core lines. Then AZ 

3330 is used to form reservoirs at both ends of the core lines, which are etched out using a 

buffered oxide etchant (BOE) to expose the cores. By etching away the metal in aqua regia (a 3:1 

mixture of hydrochloric acid and nitric acid), hollow channels are created.  

 It is known that the developer AZ 300 MIF etches aluminum. Therefore, later in the 

project, I used ~15–20 nm thick chromium (Cr) as a protecting layer on top of Al, which is 
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deposited in the same electron-beam deposition cycle as Al. The Cr is removed in chrome 

etchant after photoresist has been developed and before the next layer of aluminum is deposited. 

Additionally, it should be pointed out that the nanofluidic chips have a variation of ±5 nm in 

channel heights due to the nature of thermal deposition. 

 

2.2 Trapping of virus capsids 

 In order to demonstrate the capability of the nanosieving chips to trap biological 

nanoparticles, I used two types of spherical virus capsids: Herpes Simplex Virus type 1 (HSV-1) 

and Hepatitis B Virus (HBV). The HSV-1 sample was obtained from the laboratory of J. Brown 

(University of Virginia) and the HBV sample was obtained from the laboratory of A. Zlotnick 

(Indiana University).  

 HSV-1 has an icosahedral capsid with an average diameter of 120 nm.
1
 It belongs to the 

herpes virus family, responsible for a range of illness from cold sores to encephalitis. HBV is the 

prototype of a family of small hepatotropic viruses causing acute and chronic liver disease. It 

also has an icosahedral capsid but is smaller, approximately 30 nm in diameter.
2 

To facilitate 

visualization during trapping experiments, for both HSV-1 and HBV, the capsid of the native 

virus was labeled with FITC. Specifically, a 100 μL purified virus preparation was diluted (1:1 

ratio) with labeling buffer (100 mM bicarbonate buffer adjusted to pH 9.0). This virus 

suspension was incubated with 10 μL of FITC stock solution (~ 2 mM in dimethyl sulfoxide) in a 

dark room at room temperature for 24 h. To remove excessive FITC and concentrate the sample 

for trapping, the virus suspension was diluted to 2 mL with 50 mM, pH 8.3 borate buffer and 

centrifuged at 6000 rpm with an SS-34 rotor for 15 min using centrifugal membrane filters with a 

cutoff of 30,000 Da. This step was repeated to produce a final volume of 200 μL virus  
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Figure 2.1 Schematic illustrating the fabrication process involved in making two-segment sacrificial 

nanochannels. 
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suspension. 

 For HSV-1 capsids, the viral protein concentration was 2.3 mg/mL as determined from 

DC protein assay using α-1-antitrypsin as a standard, which corresponds to approximately 5.4 × 

10
12

 particles/mL (the HSV-1 capsid sample contained three types of capsids: type A (200 MDa 

average MW, 45%), type B (250 MDa average MW, 45%) and type C (300 MDa average MW, 

10%). Therefore, the average molecular weight of the capsid mixture was approximately 230 

MDa). For HBV capsids, the viral concentration was 6.76 mg/mL as determined from DC 

protein assay using BSA as the standard, which corresponds to approximately 9.44 × 10
14

 

particles/mL (HBV capsids have a molecular weight of approximately 4.25 MDa).  

 Before and after the labeling process, microscopy using a transmission electron 

microscope (Philips Tecnai F30 TEM operated at 300 kV) was performed to ensure that there 

were no other virus species in the sample, that the derivatized virus retained its original structure, 

and that the derivatization did not cause aggregation of the viruses. TEM micrographs for HSV-1 

capsids and HBV capsids are shown in Fig. 2.2, respectively. 

 To trap the HSV-1 capsids, a 190-65 nm device was used. To trap the HBV capsids, a 

145-25 nm device was used. Time lapse photographs showed an increase in fluorescence signal 

confined to the channel interface over time for both samples (Fig. 2.3). No signal was detected at 

the channel exits, demonstrating successful trapping.  

 By analyzing how the fluorescent signal changes over time (Fig. 2.4), it can be observed 

that the slope of the HSV-1 curve is steeper than that of the HBV curve before 20 s, indicating 

faster initial flow rate. Since the 190-65 nm channels used for HSV-1 trapping are taller than the 

145-25 nm channels used for HBV trapping, faster filling is expected. Also, other factors can 
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Figure 2.2 TEM images showing (A) FITC-conjugated 120 nm HSV-1 capsids and (B) 30 nm HBV 

capsids. These images demonstrate that the viral structures remain intact following labeling and 

purification procedures. 

A 

B 
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Figure 2.3 Time lapse images of virus trapping. (A) HSV-1 trapping in 190-65 nm channels and (B) 

HBV trapping in 145-25 nm channels. 

 

 

A 

B 
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Figure 2.4 Normalized intensity versus time analysis of HBV trapping in 145-25 nm channels and HSV-1 

trapping in 190-65 nm channels. 
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contribute to the results: (a) different surface properties of the two different types of viruses; (b) 

HBV has a smaller diameter than HSV-1 and therefore, larger surface-to-volume ratio, which 

can result in a greater chance to interact with the wall; and (c) the devices used for trapping HBV 

have a larger surface-to-volume ratio than the ones used for trapping HSV-1, which also can lead 

to more analyte-wall interactions. The hypothesis can be backed up by the more severe 

nonspecific adsorption observed in the tall segments of 145-25 nm channels than 190-65 nm 

channels.  

 

2.3 Separation of polymer beads 

 It has been demonstrated that when the particle size is larger than the pore size, none of 

the particles are able to pass through the interface. When the particle size is smaller than the pore 

size, intrinsically, I expected all of the particles to pass without retention. However, when a 

sample of Chromeon 470 labeled, carboxy-modified 30 nm (nominal size) polyacrylonitrile 

(PAN) nanobeads (6×10
12

 particles/mL) was introduced into 200-45 nm channels, the 

nanoparticles were separated into two fractions: one stopping at the 45 nm interfaces and the 

other passing through the interfaces and migrating to the ends of the channels where they 

accumulated as the liquid carrier evaporated. By comparing the fluorescence signal intensities 

and assuming that they were linearly related to the number of trapped particles, the ratio of 

particle number in these two fractions was approximately 1:1 (Fig. 2.5). As mentioned earlier, 

trapping tests were repeated twice each using three different devices. The distribution ratio was 

0.9:1, 1:1, 1.1:1, 1:1, 1.2:1 and 1:1, respectively, with an average of 1:1. Applying the 

macroscopic concept of filtration, the data indicate that half of the particles are smaller than 45 

nm and the other half larger than 45 nm. This is inaccurate because the manufacturer confirmed  
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Figure 2.5 (A) Image of a separation of 30–50 nm PAN beads in 200-45 nm channels. (B) Plot 

(normalized signal intensity versus time) showing that the particles distributed in a 1:1 ratio between the 

45 nm barriers and the 45 nm channel exits.  
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that the majority of the beads had a diameter of 30 nm and all were smaller than 50 nm. There 

are several possibilities that could lead to the resultant data: (a) agglomeration, which induces 

channel clogging and prevents particles from passing, (b) “keystone effect,” and (c) statistical 

distribution. 

 The so-called “keystone effect” is often reported as occurring during the manufacture of 

particulate packed capillary columns. It was previously observed that, when a capillary column 

was packed with particles of diameters much smaller than the outlet, instead of being flushed out 

of the column because of their smaller size, they were retained at the outlet in a similar manner 

as a “keystone” arch in a stone bridge.
3 

For instance, Kennedy and Jorgenson
4
 reported that 5 μm 

particles were lodged in columns of 15-25 μm i.d. during the packing process and could not be 

moved even at a pressure of 300 bar.
 
Additionally, Lord et al.

5
 reported that 3 μm particles were 

retained in a 20 μm outlet of a capillary electrochromatography column.
 
Similarly, I believe that 

the keystone effect contributed to the result that particles smaller than 45 nm were immoblized at 

the interface. 

 On the other hand, Giddings pointed out that, in size exclusion chromatography, the 

distribution of particles between the bulk liquid and porous networks is a partitioning process.
6 

The equilibrium distribution coefficient K is the ratio of partition functions for molecules within 

the pores and within the bulk liquid. Consequently, it is a ratio of the configuration integrals 

      (2.1)     

For rigid particles in a pore between two infinite parallel plates, the model becomes 

K = 1 – dp/2h       (2.2) 
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where dp is the particle diameter and h is the pore size. Interestingly, even when the pore is larger 

than the particles to be filtered, some of them will still be excluded. This can be explained from 

the principles of statistical thermodynamics. In Fig. 2.6, certain molecular configurations are 

forbidden due to the steric repulsion from the pore wall to prevent partial overlap. In this case, 

exclusion is essentially a surface effect. The loss of configurational entropy from entering a 

smaller pore results in partial exclusion from such regions.  

 Based on the Giddings model, the ratio of number of trapped particles to total number of 

particles should be equal to the ratio of particle diameter to channel height     

Trapped/total = dp/h (or T/t = dp/h)     (2.3)  

where dp is the particle diameter and h is the barrier height. The value of T/t can be determined 

by calculating the ratio of fluorescence intensity at the barrier versus the summed fluorescence 

intensity at the barrier and the exit. According to this model, the separation of 30 nm particles in 

200-45 nm channels should result in a trapped/total value of 2:3, whereas the actual ratio was 

1/2, indicating that more particles are able to escape the barrier than theory predicts. A new 

model that incorporates the differences between this device design and Giddings’ system to 

explain the discrepancy is being studied. Currently, it is assumed that the difference is due to 

utilization of capillary action, which helps particles overcome the entropic energy barrier. 

Separation is achieved only via diffusion in Giddings’ model. This could lead to a smaller 

trapped/total value. However, it does not necessarily mean that all particles smaller than the 

barrier height are able to pass.  It should be noted in Fig. 2.5 the slopes of the curves are steepest 

in the first few seconds when capillary action is taking place. Once capillary action is complete, 

the separation process slows down (smaller slope) and eventually reaches equilibrium (between 

2-32 s), after which particle migration is driven by evaporation from the channel ends. 
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Figure 2.6 Illustration of allowed and forbidden configurations of different shaped particles confined 

between two infinite parallel planes (adapted from Ref. 6. Copyright 1968 American Chemical Society.). 
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2.4 Trapping and separation of proteins 

2.4.1 Surface deactivation 

 Polymer beads and even virus particles can be considered to be rigid compared to 

proteins. One of the major challenges of trapping or separating proteins using silica-based 

nanochannels is nonspecific interactions between proteins and the wall surface. This is because 

the surface-to-volume ratio increases substantially when columns or channels move down to 

nanoscale dimensions, which means that the chance for a protein particle to interact with the 

surface is also greatly increased. Considering the example of a capillary of 50 μm inner diameter, 

the surface-to-volume ratio is only 0.08, while for a 40 nm tall, 20 μm wide nanochannel, the 

ratio is 50, which is a 625-fold increase.  

 Protein adsorption is a very complex process. It is governed by protein-surface forces, 

including steric repulsion, van der Waals, electrostatic and hydrophobic interactions.
7
 Ionic 

strength, pH, and properties of the protein and the surface all affect how a protein interacts with a 

surface. Charged surfaces, such as silica (pH ~ pKa of silanol groups), are typically hydrophilic. 

In this case, electrostatic interactions are responsible for protein adsorption. Theoretically, by 

controlling the pH, proteins can bear charges of the same sign as the silanol groups on silica and 

be repelled from the surface, assuming that these charges are evenly distributed over the protein 

surface. However, the surface of a protein is not homogeneous. It may possess hydrophobic, 

hydrophilic, cationic and anionic patches at the same time.
8
 Consequently, electrostatic 

attractions may take place between the oppositely charged patches on the protein surface and the 

silica walls. Additionally, adsorption induces conformational changes in the protein, which 

increases the structural entropy. This entropy gain can overcome unfavorable conditions such as 

electrostatic repulsion. Therefore, the structural stability of proteins is an important factor in 
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adsorption. “Soft proteins” with low internal stabilities, such as BSA, and human serum proteins 

are more likely to absorb on surfaces than “hard proteins” with high internal stabilities, such as 

lysozyme and fibrinogen.
9 

 Many studies have been aimed at reducing nonspecific adsorption on different types of 

surfaces to improve separation resolution in protein analysis.
8,10-12 

With silica-based nanosieves, 

the goal is to passivate free silanol groups to produce a mildly hydrophilic protein-repellent 

surface. Generally, there are two ways to chemically deactivate a surface: permanent 

modification and dynamic modification. Permanent modification utilizes covalent bonding and 

crosslinking of high molecular weight polymers. Dynamic modification uses small molecules, 

surfactants or polymers as buffer additives to generate non-covalently attached surface coatings. 

Permanent modification is more stable and effective than dynamic modification. However, it 

typically involves a lengthy synthesis process and viscous polymer solutions, which are hard to 

introduce into nanochannels and can easily cause clogging. Therefore, a dynamic coating, which 

can be prepared by simply rinsing a surface with a solution containing a coating agent, is more 

attractive for nanochannel deactivation.  

 Various polymeric buffer additives have been used in dynamic modification, such as 

polyoxyethylene (Brij-35), hydroxyethylcellulose (HEC), poly(ethyleneimine) (PEI), poly(vinyl 

alcohol) (PVA), poly(ethylene oxide) (PEO) and poly(vinylpyyrolidone) (PVP). Neutral 

polymers are more often used than charged polymers, as they eliminate electrostatic interactions 

between proteins and surfaces. The hydrophilicity of the coating polymer is very important. 

Increasing the hydrophilicity will reduce protein-surface interaction; however, it will also lower 

the stability of the absorbed coating.
13

 I have experimented with the above-mentioned polymers, 

small amines and low-molecular-weight surfactants. Only PEO was shown to be protein-resistant 
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to some degree; however, it did not completely prevent protein adsorption on the nanochannel 

surface. A wide range of molecular weights (i.e. 400, 1000, 3350, 35 k, 100 k and 600 k) and 

different concentrations (5–20% for 400, 1000, 3350 and 0.05–2% 35 k, 100 k and 600 k) were 

evaluated. By far, PEO with the highest molecular weight (i.e. 600 k) was shown to be the most 

efficient in reducing protein adsorption.  

 As seen in Fig. 2.7, a set of 160-30 nm channels was tested for LDL trapping. LDL was 

labeled with fluorescent dye, AF 488, for detection. On bare silica walls, the proteins appeared to 

stick, and no trapping was obtained. When the channels were coated with 0.2% (w/v) PEO-600 k 

solution, surface adsorption was greatly decreased, and the proteins passed the barrier and 

stopped at the exit. Interestingly, when a higher concentration (0.4 %) of the PEO-600 k coating 

solution was applied, separation of the sample occurred. Part of the sample was trapped at the 

barrier while the rest migrated to the channel end. It is possible that the thicker polymer coating 

reduced the barrier height and produced an effective pore size smaller than 30 nm, which 

resulted in trapping of the LDL particles. Right now, I don't have a method to examine the inner 

surface of the channels. It would be useful to study the surface chemistry of the coated channel 

and determine whether or not and to what degree, the dimensions are changed by the polymer 

coating. De Gennes and co-workers reported the first theoretical studies of the resistance of PEO 

polymers to protein adsorption.
14 

They concluded that a polymer brush, i.e. a layer of end-

tethered PEO chains, served as a physical barrier. The steric repulsion resulting from 

compression of the PEO chains as the protein approached the surface was responsible for 

reducing protein adsorption. It was predicted that longer chain lengths and higher chain densities 

would lead to better protein resistance. Later, Szleifer et al. suggested that the mechanism for 

prevention of protein adsorption was simply blocking of protein adsorption sites (Fig. 2.8).
15-17 
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Figure 2.7 Fluorescence micrographs of AF488 labeled LDL (18–25 nm in diameter) in 160-30 nm 

channels. (A) When no surface coating is applied, proteins absorb onto the surfaces of the tall channel 

segments. (B) When the channels are pretreated with 0.2% (w/v) PEO-600 k solution, proteins pass the 

30-nm barrier and accumulate at the channel exit. (C) When the channels are coated with 0.4 % (w/v) 

PEO-600 k, proteins are fractioned into two groups, one stopping at the barrier and the other at the 

channel end.   
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Figure 2.8 Schematic illustration of a grafted polymer layer in contact with a protein solution. The 

connected circles represent the polymer chains, the small circles are the solvent molecules and the large 

circles are the protein molecules (adapted from Ref. 15, with permission from Elsevier).  
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 Although understanding the nonfouling mechanism of PEO is still ongoing, a possible 

explanation for the deactivation efficiency of PEO-600 k is that it possesses the longest chain 

among all of the PEOs evaluated. Longer chain length results in larger excluded volumes, higher 

conformation entropy and more pronounced steric repulsion. Concentrations higher than 0.2 % 

were tested, but showed inferior protein resistance. Higher concentrations should result in higher 

chain densities, which is typically desirable because this makes it more difficult for proteins to 

diffuse to the underlying substrate. However, if the density is too high, the chains may dehydrate 

and become adsorbent for proteins. For instance, worse adsorption was observed in the 160-nm 

segments when a 0.4 % instead of 0.2 % coating was used. In dynamic modification, PEO 

attaches to the silanol groups via hydrogen bonding. Silanol groups must be fully protonated to 

achieve good coating characteristics, so rinsing the surface with hydrochloric acid before PEO 

solution is necessary. 

2.4.2 Separation of binary protein mixtures and dual-color fluorescence detection 

 It is a common procedure to use thyroglobulin (17.0 nm), apoferritin (12.2 nm), catalase 

(9.6 nm), lactate dehydrogenase (8.2 nm) and BSA (7.1 nm) as calibration proteins in gel 

electrophoresis for lipoprotein analysis, due to their size similarities to HDL and LDL. I first 

studied the separation of these standards before lipoproteins, which have more complex  

compositions and structures. In this section, separation of a binary protein mixture of BSA and 

thyroglobulin (TG) was demonstrated in 160-25 nm channel array. Dual color detection was 

accomplished by labeling BSA with a green dye, fluorescein isothiocyanate (FITC, 

excitation/emission, 490 nm/525 nm) and TG with a red dye, Alexa Fluor 647 (AF 647, 

excitation/emission, 650 nm/665 nm). Static fluorescence images were obtained with an upright 

microscope. A blue LED (470 nm) or a red LED (660 nm) was used for excitation of FITC or AF 
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647, and a CCD camera was used for detection. A FITC filter cube (BP 485/20 nm excitation 

filter, LP 515 nm emission filter) was used to image FITC-BSA, and a Cy5 filter cube (BP 

630/20 nm excitation filter, BP 667/30 nm emission filter) was used to image AF 647-TG.  

 The hydrodynamic diameter is approximately 7.1 nm for BSA and 17.0 nm for TG. Fig. 

2.9 shows that when 0.5 mg/mL BSA and 0.5 mg/mL TG were injected into the channels 

separately, TG was trapped at the barrier while BSA was collected at the channel exit. When a 

1:1 mixture of the two protein samples was introduced into the channels, separation was 

observed, showing one fraction stopping at the barrier and the other at the end (proteins 

accumulated at the exit could only be BSA). The fluorescent signal at the barrier for the mixture 

was more intense than that for TG alone and the signal at the end was weaker than that for BSA 

alone.  These results suggest that some BSA was also trapped, mostly likely due to blockage by 

the TG particles that arrived at the barrier first. An alternating AC field was effective in reducing 

channel clogging in separations of polymer beads and viruses. However, this method was not 

successful when applied to proteins due to non-specific adsorption. I will discuss the AC 

agitation method in detail in the next Chapter. 

 These preliminary results demonstrate the potential of using nanosieves for separating 

protein mixtures. However, three major issues must be addressed: (a) nonspecific adsorption, (b)  

clogging and (c) presence of an energy barrier at the channel interface, which requires 

passivation of the inner channel wall and application of an electric field along the channel length 

to provide a driving force after capillary action ceases.   

 Interestingly, LDL particles with diameter of 18–25 nm passed the 30 nm barrier with no 

retention (Fig. 2.7). However, polymer beads and other types of proteins (e.g., 17 nm TG trapped 

at 25 nm interfaces) were not able to pass a barrier larger or equal to their size due to the  
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Figure 2.9 Micrographs showing trapping of BSA and TG and separation of their mixtures in 160-25 nm 

channels. (A) 0.5 mg/mL TG stopped at 25 nm barrier. (B) 0.5 mg/mL BSA passed the barrier and 

accumulated at the channel end. (C) and (D) Same trapping experiments imaged with different filter sets 

and illumination sources; (C) AF647 filter and red LED, and (D) FITC filter and blue LED.  
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existence of an energy barrier. It is unclear as to what caused LDL to behave differently in this  

situation. A possible explanation is that Giddings’ model applies to rigid particles, while proteins 

are flexible and can undergo conformational changes, especially when subject to interactions 

with solid surfaces. Mikl et al.
18

 studied lipoprotein resilience using elastic incoherent neutron 

scattering (EINS), which is a well-suited method to investigate the overall dynamics of complex 

biological systems like cells, membranes or lipoprotein, and revealed that lipoproteins are 

extremely soft and flexible.
 
Also, it is known that circulating VLDL can undergo metabolic 

delipidation to form IDL and LDL of smaller sizes.
19 

It has been reported that artificially-

prepared lipid-containing vesicle liposomes also lose lipids when experiencing frictional 

forces.
20 

Therefore, delipidation may occur in nanochannels due to protein-surface interactions, 

which reduce the sizes of lipoproteins. Additional studies must be done to determine the reasons 

behind the differences observed in trapping behavior between rigid and flexible particles, and 

between lipoproteins and other types of proteins.  
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Chapter 3. Three-segment nanochannels 

 

3.1 Introduction 

 Two-segment nanochannels are the simplest configurations of the nanosieve arrays, and 

they have provided fundamental understanding of how trapping and separation occur in this type 

of geometry. However, due to the existence of energy barriers, it was unclear using these two-

segment arrays alone whether or not particle mixtures could be fractioned using capillary action 

only and whether or not the obtained data could be interpreted as true size distribution 

information. Furthermore, with channels having only two different heights, no more than two 

size fractions could be obtained. More detailed size profiling would require adding multiple 

height variations to the nanochannel structures. As the first step toward this, I constructed three-

segment nanochannels containing two height barriers. As expected, an equilibrium distribution 

also exists in three-segment channels and an external field was required to help the particles 

overcome the configurational entropic energy barrier and to eliminate potential channel clogging. 

I investigated the effects of surfactants and an applied oscillating electric field. Different particle 

sizes, such as 30 nm, 50 nm, 80-100 nm and 120 nm polymer beads were used and different 

channel dimensions were fabricated. Only trapping of 30 nm particles (polymer beads and HBV 

virus capsids) will be described in this dissertation. Devices with heights stepping from 208 nm 

to 54 nm, then further down to 30 nm were fabricated and used to investigate the trapping 

behavior of these particles, which actually ranged in size from 30 to 50 nm. The questions of 

interest included: Would all particles stop at the 30 nm interfaces? What would the distribution 

ratio be between particles trapped at the two interfaces? Would the same-size polymer beads and 

virus particles display different trapping behaviors? 
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3.2 Fabrication 

 The three-segment channels consisted of 208 nm, 54 nm, and 30 nm high segments 

connected in series (0.8 mm, 0.2 mm and 0.2 mm long, respectively). Similar to the fabrication 

process for two-segment channels, the preparation of three-segment chips began with depositing 

approximately 200 nm of silicon dioxide on a silicon substrate via PECVD. A 30 nm layer of 

aluminum was then deposited using a thermal evaporator to form the short segments. Photoresist 

AZ nLOF 2020 was spun on, patterned and developed, exposing an area where a second layer of 

aluminum was deposited to form the 54 nm tall segments. The photoresist was then lifted off 

using N-methylpyrrolidone (NMP) heated to 95˚С, leaving two aluminum covered areas of 

different heights. The photolithography step using AZ nLOF 2020, metal deposition and NMP 

lift-off was then repeated, defining three distinct segment heights of 30 to 54 to 208 nm. After 

that, AZ 3330 PR was spun on and patterned to define the aluminum core lines. The exposed 

aluminum was removed using a commercial aluminum etchant heated to 50˚С, and the 

photoresist was rinsed off with acetone and 2-propanol. The aluminum channel core heights were 

verified with atomic force microscopy (AFM). Then, a capping layer of approximately 5 μm 

silicon dioxide was deposited using PECVD. The reservoir regions were then patterned on the 

wafer via photolithography using AZ 3330 and removed using buffered oxide etchant (BOE). 

The sacrificial cores were etched by soaking the wafer in aqua regia (HNO3/HCl, 1:1) and then 

in Nanostrip, both at 130˚С overnight. The final step involved soaking the wafer in DI water 

overnight to ensure neutral pH inside the channels.  
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3.3 Device operation 

To introduce sample into the nanochannel array, a pair of rectangular reservoirs (8 mm 

long × 0.6  mm wide × 0.5 mm deep) was laser cut into a piece of 0.5 mm thick, 10 mm × 10 

mm acrylic plate and treated on both sides with an oxygen plasma for 30 s at 150 W. A clean Si 

wafer was partially spin-coated with NOA 76 epoxy solution (Norland Products, Cranbury, NJ) 

at 5000 rpm for 1 min, onto which the PMMA reservoirs were pressed lightly to pick up a 

uniform coating of epoxy. Then the reservoirs were pressed onto the chips using tweezers, 

making certain that the on-chip reservoirs were not covered, and the channel inlets and outlets 

were open to allow sample introduction and evaporation, respectively. The assembly was then 

placed under a UV light for approximately 20 min and further cured in an oven overnight at 

50˚С. 

Chromeon 470 labeled, carboxy-modified 30 nm polyacrylonitrile nanobeads (Sigma 

Aldrich, St. Louis, MO) were first used as analytes. The original bead concentration was 

approximately 3×10
14 

particles/mL, which was diluted by a factor of either 10 or 50 using 100

mM Tris-HCl (pH 8.3) containing 1 mM SDS (Columbus Chemical Industries, Columbus, WI ). 

HBV capsids were obtained from the laboratory of A. Zlotnick and were labeled with Alexa 

Fluor 488 and purified using 30 kDa membrane filters (Amicon Ultra-0.5, Millipore, Billerica, 

MA). Specifically, a 500 μL volume of the virus sample was added to the filter, which was 

placed in a microcentrifuge tube and spun twice at 13,000 rpm for 7 min each. Between the two 

spinnings, filtrate was discarded and sample was brought to 500 μL again with 100 mM Tris 

buffer containing 1 mM SDS. To recover the concentrated sample, the filter device was placed 

upside down in a clean microcentrifuge tube and spun at 3,500 rpm for 2 min. 
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Trapping was monitored using a CCD camera (CoolSNAP HQ2, Photometrics, Tucson, 

AZ) attached to an upright microscope (Axio Scope A1, ZEISS, Thornwood, NY). Illumination 

was provided by a 625 mW LED (MBLED, Thorlabs, Newton, NJ) that passed through a filter 

cube (FITC-LP01-Clinical-OMF, Semrock, Rochester, NY). Images were acquired sequentially 

at a rate of 1.33 frames per second. Trapping was quantified by measuring the changes in 

fluorescence signal intensity for particles accumulated at the barriers or the ends of the multiple 

nanochannels over the whole trapping period. Image acquisition and data analysis were 

performed using Image J software. All trapping data were normalized to the maximum 

fluorescence intensity. 

For AC electrophoretic experiments, platinum wires were placed in the inlet and outlet 

fluid reservoirs, and an AC function generator (Hewlett Packard HD 3312 A, Palo Alto, CA) and 

an oscilloscope (TDS3014 4Ch 100MHz, Tektronix, Beaverton, Oregon) were used to control 

and monitor the AC frequency, waveforms and DC offset applied to the devices. 

3.4 Attachment of poly(methyl methacrylate) reservoirs 

Many lab-on-a-chip devices utilize a micro reservoir for direct chemical analysis or for 

fluid introduction into the channel system.
1-4 

I developed a reservoir that allowed me to interface

nanochannels with microliter-scale fluid volumes. As described in the experimental section, the 

nanochannels were made from SiO2. However, the reservoir regions were etched down to the 

underlying Si. Since both Si and SiO2 surfaces are hydrophilic, liquid samples could flow 

through the nanochannels smoothly via capillary action. However, due to the extremely small 

inner volume of the nanochannels (pL) and the limited depth of the on-chip liquid reservoir (5 

μm), liquid samples oftentimes tended to wick along the outer surface over the channels, instead 
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of flowing into and through the nanochannels or remaining in the reservoirs. The situation 

became worse when surfactants were used because they reduced the surface tension of the 

solution, which helped to spread it across the surface. To solve this problem, I constructed 

PMMA reservoirs via laser-cutting and attached them to the nanofluidic chips by epoxy resin 

bonding (Fig. 3.1). 

To produce a good reservoir that prevented clogging and leakage, it was essential to use a 

thin, clean PMMA plate to achieve high-quality contact and good sealing between the reservoir 

and the chip. I found that 0.5 mm was the best thickness of PMMA to use. Second, alignment 

precision must be achieved using a tunable stage with fine xyz control, because if misalignment 

occurred, the uncured resin would wick into the nanochannels through capillary action and clog 

them. For the same reason, a well-controlled epoxy layer thickness was also important, and I 

found that spin coating at 5000 rpm for 1 min gave the best results. Construction of these PMMA 

reservoirs was relatively simple and fast, and yielded an 81% success rate (65 out of 80 

reservoir-attached chips). Testing of the reservoirs affixed to the chips proved that they held the 

liquid samples without leakage even after months of use. 

A 
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Figure 3.1 (A) Photograph of a 208-54-30 nm three-segment chip with an attached PMMA reservoir set 

next to a US quarter coin; (B) microscope view of the three-segment nanochannels in (A), with the 208 

nm tall segments partially covered by the PMMA reservoir and the 54 nm and 30 nm interfaces 

uncovered for convenience of imaging; (C and D) SEM images of the cross-sections of two different 208 

nm segments in a 208-54-30 nm nanofluidic device, demonstrating the uniformity of the channels. 
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3.5 Size fractionation of polymer beads 

 Using two-segment (200-45 nm) chips, partial trapping at the interface was observed for 

the 30 nm particles. Because silanol groups on the inner nanochannel surface display a negative 

charge at alkaline pH conditions, to prevent nonspecific adsorption and unwanted aggregation of 

the particles, I used negatively charged SDS as a buffer additive. The surfactant was expected to 

adsorb on the particle surface, imparting a negative charge to the particles, repelling them from 

the channel walls and increasing their colloidal stability.
5 

The critical micelle concentration 

(CMC) of SDS has been reported to be around 7–10 mM in water at 20-25˚С and, in order to 

avoid forming SDS micelles, only concentrations below 7 mM were used. The aggregation 

number and micellar diameter at the CMC are approximately 62 and 6 nm, respectively.
6
  

 The distinct difference in trapping results obtained with and without added SDS proved 

the necessity of using a surfactant. In Fig. 3.2A, no SDS was used and all 30 nm particles were 

retained at the 54 nm barrier. Adsorption along the channel walls can also be observed. When 1 

mM SDS (Fig. 3.2B) was added to the buffer, particles became distributed between the 54 nm 

barrier and the 30 nm barrier at a ratio of approximately 1.5:1 (Fig. 3.2C).  

 To study the effect of SDS concentration, a series of concentrations (1, 2, 4 and 6 mM) 

was investigated. It was found that, at a concentration higher than 4 mM, clumps of fluorescent 

beads appeared, which were slowly dragged along the channel walls. Since SDS is concentrated 

due to evaporation from the channel ends and in the reservoir, there is a chance that its actual 

concentration is higher inside the nanochannels than in the original sample, approaching the 

CMC of SDS. I deduced that at concentrations above 4 mM, aggregation of SDS began, which 

caused aggregation of particles. Most likely, the SDS micelles (6 nm) attached to the polymer 

beads, resulting in sizes larger than 30 nm. 



73 
 

    

 

 

 

 

A 

B 



74 
 

0

0.2

0.4

0.6

0.8

1

0 50 100 150

Time (s)

N
o

rm
a
li

z
e
d

 I
n

te
n

s
it

y

54 nm interface

30 nm interface

 

Figure 3.2 Capillary action based separations of 30 nm particles (3 × 10
13

 particles/mL) in 208-54-30 nm 

channels. (A) No SDS added; all beads were stopped at the 54 nm barrier and adsorption along the 208 

nm tall segment channel walls was observed; (B) 1 mM SDS was added in the buffer, and some particles 

passed through to the 54 nm interfaces; (C) normalized fluorescence signal intensity versus time 

indicating that, in (B), the particles separated at the 54 nm interfaces and the 30 nm interfaces with a ratio 

of 1.5:1. 
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 I compared particle trapping results for approximately 20 individual channels on each of 

six different chips with SDS concentrations ranging from 1 to 4 mM; 4 to 5 trappings were 

performed on each chip. Using 1 mM SDS, average distribution ratios of particles trapped at the  

208-54 nm interface to those trapped at the 54-30 nm interface ranged from 1 to 3 (Table 3.1). 

Since using higher concentrations did not improve the distribution of particles significantly (2:1 

for 2 mM and 4:1 for 4 mM), in order to minimize the chance of forming SDS micelles, a 

concentration of 1 mM SDS was used for all trapping experiments with polymer beads. 

 Based on the model trapped/total = dp/h, a smaller fraction of 30 nm diameter particles 

should stop at the larger 54 nm barrier of the three-segment chips compared to the 45 nm barrier 

of the two-segment chips (see section 2.3). However, the above results showed that 50% of the 

particles stopped at the 45 nm height step, whereas 66% were stopped at the 54 nm height step. I 

hypothesize that the channels became clogged, which could be caused by several factors. First, 

unlike circular channels, rectangular nanochannels exhibit a flow stagnation phenomenon in the 

sharp corners (especially at the interfaces) due to the symmetric velocity profile,
7 

which tends to 

retain particles. With the particle size being so similar to the channel height, particles can quickly 

build up and constrict the pathway. Second, in order to pass through the interfaces, particles must 

overcome the configurational entropic energy barrier.
 
This can also slow down capillary-induced 

flow, and stack particles at the barriers. The 208-54-30 nm channels are more likely to be 

jammed or clogged than the 200-45 nm channels since they have one more interface and the 

smaller height slows down capillary flow.  

 I compared trapping experiments using two- and three-segment channels in order to 

further understand the fluidic motion and molecular motion inside different nanochannel 

structures. By referring to the resultant trapping intensity graphs, it is easy to notice a unique  
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Table 3.1 Consistency in particle distribution ratios between different channels on different chips for 

capillary action-based separations of 30 nm particles (3×10
13

 particles/mL) in 208-54-30 nm channels for 

various SDS concentrations. 

SDS 

Conc. 

(mM) 

Chip 
Particle Distribution Ratio 

(54 nm/30 nm Barrier) 

Particles Loaded  

per Channel (×10
4
) 

Relative Std. Dev. 

(%) 

54 nm 

Barrier 

30 nm 

Barrier 

Intra-

chip 
Inter-chip 

1  
a 3.0 4.5 1.5 6.7 

0.07 
b 2.8 4.4 1.6 10.6 

2  
c 2.3 4.2 1.8 10.0 

0.08 
d 2.4 4.2 1.8 13.4 

4  
e 3.0 4.5 1.5 9.8 

3.8 
f 4.3 4.9 1.1 5.0 
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difference in the two types of channel structures. In the 200-45 nm channels (Fig. 2.5B), trapping 

at the interfaces and at the ends appeared to start almost simultaneously, and the signal intensities 

reached a maximum and stabilized in approximately 30 s. The intensity built up faster at the 

interfaces than at the ends, which was reasonable considering the flow direction. For the 208-54-

30 nm channels (Fig. 3.2C) the fluorescence intensities at the 54 nm interfaces reached a peak 

and then decreased before stabilizing, indicating that some particles were temporarily trapped, 

but eventually passed through the interfaces. This was also reflected in the curve corresponding 

to trapping at the 30 nm interfaces, where I observed a lag in the onset of trapping. However, 

considering the fact that the tall and short interfaces were merely ~ 200 μm apart, trapping would 

be expected to begin almost simultaneously at the two interfaces as in the two-segment chips. 

Again, it seemed that, regardless of size, all particles lingered at the tall interfaces before some 

passed through. A particle “dam” may have formed at the tall interfaces as capillary-driven flow 

tried to carry the small particles toward the end. Once capillary action was completed, no other 

force present was strong enough to help the smaller beads overcome the energy barrier and pull 

them through the first interface as they arrived from the inlet and accumulated at the interface, 

which further restricted passage. Two observations are related to this postulate. First, as 

mentioned earlier, in the 208-54-30 nm chips, an average of 66% of the 30 nm particles 

accumulated at the 54 nm barrier, even though they were predicted to accumulate at the 30 nm 

barrier. Second, the line plots showed that the fluorescence intensity stabilized in ~30 s for the 

200-45 nm channels and in ~80 s for the 208-54-30 nm channels. Since completion of trapping 

can be related to stability of the fluorescence signal, the conclusion was reached that it takes 

more than twice the time to trap using a three-segment channel compared to a two-segment 

channel. 
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3.6 AC electrophoretic agitation 

 It has been demonstrated that the application of an electric field can pull charged particles 

into the pores, which helps overcome the energy barrier.
8
 Therefore, to eliminate clogging and 

ensure that trapping of the nanoparticles was solely based on size and not a result of other 

factors, an oscillating potential was applied to drive the particles forward and backward in an 

effort to break aggregates into individual particles and allow them to flow through the channels.  

 The dielectric breakdown mechanism of silicon dioxide specifies that when the local 

electric field is sufficiently high, breakdown of the dielectric SiO2 layer occurs and causes a short 

circuit. For ~250 nm thick SiO2, the critical breakdown voltage is 7 to 10 V.
9
 Consequently, to 

avoid shorting through the bottom silicon dioxide layer on the nanochannels, I only used low 

voltages (lower than 10 V). The polyacrylonitrile-based 30 nm nanobeads were negatively 

charged due to the surface carboxyl groups and the adsorbed SDS molecules, and they responded 

to electrokinetic migration when subjected to the electric field. Electrokinetic migration included 

both electrophoresis and electroosmosis, which were in opposite directions for negatively 

charged analytes. In a typical microchannel, the Debye layer thickness is negligible compared to 

the dimensions, whereas in a planar nanochannel, the Debye length (λd) becomes comparable to 

the channel depth. Using the equation 

  1/29.6 / ( )d nm c z 
     (3.1)  

where c is the solution concentration in mM and z is the valency,
10

 the thickness ranges from 1 to 

200 nm for a monovalent electrolyte in a concentration ranging from 0.002 to 100 mM, 

indicating possible overlap of the electrical double layer at low ionic strengths, which leads to 

uneven electroosmotic forces inside the channels. In order to maintain uniform electroosmotic 
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flow inside the nanochannels, I used a high ionic strength buffer (100 mM), which gave a 1-nm 

Debye layer, which was small compared to the channel depth. 
 

 AC or DC voltages were applied by placing a grounded electrode in the injection 

reservoir and a positively biased electrode in the outlet reservoir so that capillary flow and 

electrophoretic migration would be in the same direction. In the case of DC, the voltage was 

varied between 1 and 10 V, and no particles were observed to move from the tall interfaces to the 

short ones. By varying the peak value of the sinusoidal (symmetrical) AC field from 1 to 8 V, 

DC offset between 1 and 8 V, and frequency from 50 to 1000 Hz, it was determined that 

significant particle redistribution happened when applying a sinusoidal wave with a frequency of 

150 Hz and a peak-to-peak voltage of 8 V (4 V DC offset). Under these conditions, many 

particles trapped at the 54 nm interfaces moved down to the 30 nm interfaces. Most interestingly, 

in some channels, no particles remained at the 54 nm interfaces, as they had all passed to the 30 

nm interfaces (Fig. 3.3A). Based on the fact that an AC field was more effective than a DC field, 

it was concluded that the utilization of oscillating low-frequency AC waveforms alternated the 

direction of the electrophoretic force and, thus, particles moved in opposite directions every 

0.0067 s. The agitation helped break up clumps (aggregates) into individual particles and 

redistribute them across the interfaces. When higher than 150 Hz frequencies were used, the 

particles did not have sufficient time to separate.  

 It was observed that the electric field strength (E) in the channels was inhomogeneous. 

As E is inversely proportional to the channel depth, the effective electric field strength was 

higher in the shallow segments compared to the deep segments. For example, for the 208-54-30 

nm channels(the three segments were 0.8 mm, 0.2 mm and 0.2 mm long, respectively), the 

average height was approximately 153 nm and, thus, the field strength in the 30 nm channel  
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Figure 3.3 Images showing the effects of AC on eliminating clogging. (A) CCD image of trapped 30 nm 

polymer beads in 208-54-30 nm channels after being exposed to an oscillating electric field. (B) Three-

dimensional image (xy distance vs. z fluorescence) demonstrating that, before an AC electric field was 

applied, most particles were stopped at the 54 nm interfaces; (C) three-dimensional image (xy distances 

vs. z fluorescence intensity) demonstrating that, after an AC electric field was applied, many particles 

migrated to the shorter 30 nm interfaces. 

 

 
C 
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segments was a factor of 5 higher than the average field strength (~33 V/cm) when a 4 V DC 

offset was used. Although electroosmotic flow is essentially eliminated relative to 

electrophoretic motion of the particles in an AC field with no DC offset,
11

 when there is a DC 

offset, there should be EOF. It was assumed that, by using a high ionic strength buffer, any 

electroosmotic flow was effectively quenched.
12 

However, EOF was stronger in the shorter 

segments, where the field strength was higher. Stronger EOF led to competition with the 

electrophoretic migration by carrying particles in the opposite direction. Furthermore, the surface 

charge on the nanoparticles can vary from particle to particle, depending on the number of SDS 

molecules adsorbed onto them and the number of carboxyl groups on the surface. Also, some 

particle clumps may be easier to break up than others. In summary, these factors are most likely 

responsible for less trapping of particles in some channels at the 54 nm interfaces, whereas in 

other channels they were retained. 

 

3.7 Trapping of hepatitis B virus particles 

 One issue associated with applying nanosieving to a biological sample mixture is the 

expected greater interactions of the biological particles with each other and with the channel 

walls via electrostatic and hydrophobic interactions, which lead to agglomeration and adsorption 

onto the walls. To test the ability of the three-segment chips to fractionate a biological sample, I 

attempted to trap pure HBV capsids with an average diameter of 30 nm. The similarity in 

diameter between the 30 nm polymer beads and the virus capsids allowed a direct comparison of 

trapping performance.  

 The initial trapping experiments in 208-54-30 nm channels showed that the viral particles 

separated into three fractions (Fig. 3.4A). Although both the viral particles and the polymer 
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nanobeads were spherically shaped, they were different in three aspects. First, the virus capsids 

were relatively uniform in size, whereas the polymer beads had a size distribution ranging from 

30 to 50 nm. Second, the viral particles were sticky and were more prone to agglomerate and 

clog the channels compared to the polymer beads. Third, virus capsids are structurally more 

flexible than synthetic polymer beads and can undergo conformational deformation.  

 Based on these considerations, I deduced several reasons to explain why the 30 nm viral 

particles separated into three fractions and yet the same size polymer beads did not. Trapped 

bands formed at both the 54 nm and 30 nm interfaces, which were attributed to the existence of 

an entropic energy barrier and agglomeration as in the situation of polymer bead trapping. 

However, some of the viral particles and none of the polymer beads migrated to the ends of the 

channels, which suggests conformational flexibility of the viral particles. Even when an electric 

field was applied, the rigidity of the polymer beads prevented them from passing into the 30 nm 

segments.  

 When an AC electric field was applied to the trapped sample (7 V DC offset and 200 Hz), 

all viral particles were transported to the ends of the 30 nm short segments (Fig. 3.4B). Because 

the negatively charged viruses are likely more pliable than the rigid polymer beads, the applied 

AC field not only helped the capsids overcome the barrier to entering the short segments, but 

also broke up the agglomerated particles. Meanwhile, with the viruses moving all the way to the 

ends of the 30 nm segments, it was suspected, similar to a tennis ball being squeezed, that the 

electric field caused the viruses to distort slightly as they passed through the short segments. 

 These results demonstrate that AC electrophoresis is an effective way to eliminate 

particle agglomeration. Thus, trapping can be based principally on size without being influenced 

by aggregation, channel clogging and energy barriers. 
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Figure 3.4 Trapping of 30 nm HBV capsids in 208-54-30 nm channels. (A) CCD image showing 

capillary action-based separations of the viral particles; (B) CCD image showing redistributed viral 

capsids after being exposed to AC (200 Hz and 7 V DC offset), in which all particles were transported to 

the ends of the 30 nm short segments. 
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3.8 Lipoproteins 

3.8.1 Trapping of human plasma lipoproteins 

 As mentioned earlier, this work was originally directed toward size-based separation of 

lipoprotein mixtures. In previous experiments on protein trapping, it was discovered that 

lipoproteins pass barrier heights equivalent to their diameter. Corresponding to the diameters of 

different lipoprotein classes (VLDL, 30-80 nm; IDL, 23-35 nm; LDL, 18-25 nm; HDL, 5-12 

nm), three-segment nanochannels 50-25-15 nm were fabricated for lipoprotein fractionation. Due 

to variable concentrations of surface and core lipids, lipoprotein particle sizes may vary 

significantly. However, I speculated that VLDL may or may not enter the channels, IDL should 

trap at the 25 nm barrier, LDL should trap at the 15 nm barrier and HDL would pass both 

barriers and accumulate at the exit.  

 Isolated lipoprotein fractions (VLDL, LDL, IDL, and HDL) acquired via 

ultracentrifugation were provided by P. Guadagno from Health Diagnostic Laboratory 

(Richmond, VA). The original samples were of relatively low particle number and contained 

high concentrations of NaBr used for density gradient ultracentrifugation. The removal of salts 

and the exchange of buffers were accomplished using Amicon Ultra-0.5 mL centrifugal filters 

(Millipore, MA) by concentrating the sample at 8,000 rpm for 4 min, then reconstituting the 

concentrate to the original sample volume (0.5 mL) with 200 mM pH 8.3 NaHCO3 buffer. This 

process was repeated three times. After the third “washout,” the concentrated sample was 

collected by spinning at 3,500 rpm for 2 min. Then, 100 μL of protein sample were labeled with 

5 μL of AF 488 dissolved in DMSO overnight and exchanged into 100 mM pH 8.23 Tris buffer 

(containing 1 mM SDS and 0.13 w% Triton X-100 to reduce unwanted protein-surface 
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interactions) using the same procedures above (final protein concentrations: 9.53 mg/mL HDL, 

1.38 mg/mL LDL, 2.56 mg/mL IDL). 

 The protein samples were diluted to a final concentration of 1 mg/mL and introduced into 

the channels by capillary action. It was observed that HDL with a diameter of 5–12 nm passed 

both height barriers and only stopped at the channel exits. LDL with a diameter of 18–25 nm 

accumulated at the 50 nm interfaces and channel exits. And IDL with a diameter of 23–35 nm 

accumulated at the 50 nm and 25 nm interfaces, with some passing through to the channel ends 

(Fig. 3.5).  

 Preliminary experiments showed encouraging results in that the three-segment channels 

were able to differentiate different lipoprotein classes by trapping them differently. However, 

some problems must be addressed to achieve reliable separation of lipoprotein mixtures. First, 

distinct adsorption was seen in the tall segments of the channels for LDL and IDL. A polymer 

coating of PEG was used to reduce nonspecific adsorption. Unlike in the 160-30 nm two-

segment channels, where a thin coating (low PEG concentration) applied on the surface was 

efficient in reducing non-specific protein adsorption, a similar PEG coating was ineffective in 

resisting protein adsorption in 50-25-15 nm channels. When higher PEG concentration was used, 

liquid filling of the channels appeared to be slower and air bubbles were trapped inside the 

channels. I attributed these phenomena to the structural differences between the two- and three-

segment channels: the three-segment channels had a larger surface-to-volume ratio and smaller 

average channel depth. Consequently, the flow resistance was higher and the flow rate was lower 

inside the three-segment channels,
 13 

which could result in more significant protein-surface 

interactions. Additionally, the compositional differences between the lipoprotein classes could 

also contribute  
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Figure 3.5 Fluorescence images showing trapping of different size lipoprotein fractions in an array of 50-

25-15 nm channels. (A) Microscope view of an array of nanochannels; the lengths of three-height 

segments (50 nm, 25 nm and 15 nm) were 1 mm, 30 μm and 30 μm, respectively. (B) HDL with 

diameters between 5–12 nm passed both height barriers and only stopped at the channel exits. (C) LDL 

with diameters between 18–25 nm accumulated at the 50 nm interfaces and channel exits. (D) IDL with 

diameters between 23–35 nm accumulated at the 50 nm and 25 nm interfaces, with some stopping at the 

channel ends. 
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to non-specific adsorption. HDL has the lowest lipid content percentage compared to LDL and 

IDL and showed little to no adsorption (Fig. 3.5B). If the assumption is correct that the surface 

components of lipoproteins affect how they interact with the channel surface, this would indicate 

that lipoproteins interact with the channel surface via free cholesterol functionalities on their 

surface. Second, it is possible that the existence of an entropic energy barrier at the interfaces 

resulted in LDL and IDL being trapped at the 50 nm interfaces even though they are both smaller 

than 50 nm. I tried to apply the same AC electrophoretic agitation method to proteins. 

Unfortunately, this resulted in worse nonspecific adsorption, which made it difficult to determine 

the effects of an external force on lipoprotein trapping.  

 Since some particles migrated to the channel exits in the LDL experiments, another 

possibility is that the sample contained other proteins. To verify this speculation, the LDL 

fraction was analyzed using sodium dodecyl polyacrylamide gradient gel electrophoresis (SDS-

PAGE) in a 14% separating gel and stained with Coomassie stain. Three protein bands were 

obtained (Fig. 3.6). Calibration using molecular weight (MW) standards indicated that their 

corresponding MWs were approximately 250, 70 and 25 kDa, respectively.  

 Lipoproteins are complex aggregates of lipids and proteins held together by noncovalent 

forces. Each lipoprotein class has its own characteristic apolipoproteins (Table 3.2). For 

instance, ApoA1 is the major protein of HDL, and ApoB (two isoforms ApoB48 and ApoB100) 

is the primary protein of LDL.
14

 The protein samples were incubated with 10% SDS buffer and 

heated at 100 ˚С for 5 to 10 min before separation, which led to apolipoprotein dissociation.
15,16

 

As a result, it is the isolated apolipoproteins that were most likely fractionated in SDS-PAGE. 

The three proteins were probably Apo B48 (chylomicron apolipoproteins) of 241 kDa or Lp(a) 

(LDL apolipoproteins) of 300 kDa, human serum albumin of 67 kDa (HSA is the most abundant  
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Figure 3.6 14% Tris-glycine SDS-PAGE of LDL. (Left to right) lane 1, MW standards (top to bottom: 

250, 130, 100, 70, 55, 35, 25, 15 and 10 kDa); lane 2-6, a dilution series of LDL containing 1, 2.5, 5, 7.5 

and 12.5 μL of 1.38 LDL, respectively. 
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Table 3.2 Properties of blood plasma apolipoproteins (cited from lipidlibrary.aocs.org: Plasma 

Lipoproteins: Composition, Structure and Biochemistry by W. W. Christie). 
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protein in human blood plasma) and Apo A1 (HDL apolipoproteins) of 28 kDa. Although it was 

not clear how much of each contaminant protein was present and how much this would affect 

trapping, the SDS-PAGE results did suggest that the LDL fraction obtained by GGE was not 

pure.  

 In summary, in order to separate lipoproteins using nanochannels, the surface must be 

passivated and the critical channel step heights must be determined. It is envisioned that 

fractionation of subclasses may occur with appropriately selected barrier heights. I demonstrated 

in Chapter 2 the potential of using multi-color fluorescence detection, which could possibly be 

applied to lipoprotein analysis. An external electric field may be necessary to provide flow and to 

help protein particles overcome energy barriers at the interfaces. Detailed size profiling requires 

the use of nanochannels with multiple height barriers, which poses challenges for 

nanofabrication. 

3.8.2 Problems with bubble formation in channel filling 

 Successful application of nanofluidic systems demands a thorough fundamental 

understanding of liquid dynamics in nanoconfinements. Experimental results are presented here, 

demonstrating how bubbles can be eliminated by adjusting the channel dimension. 

 Initially, it was possible to only fabricate channel heights taller than 20 nm due to the fact 

that in the fabrication process, the developer AZ 300 MIF could etch away up to 20 nm of Al, 

which changed the channel heights and even made the short segments disappear altogether. 

During this time, I used taller channels, e.g., 200-50-25 nm channels, for lipoprotein analysis and 

observed that LDL and IDL showed similar trapping behavior, and thus could not be 

differentiated. When using chromium as a protective layer on the surface of Al, I was able to 

fabricate 100-25-15 nm channels. This modification in the fabrication process made protein 
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trapping feasible. However, during the filling of the 200-25-15 nm channels, solution tended to 

fill faster along the channel side walls, and air bubbles formed by enclosure of air in the center of 

the channel, which did not disappear in a period of over 10 min. Not only did the formation of 

bubbles increase the fluidic resistance and reduce the filling speed,
17

 it also inevitably interfered 

with particle trapping. Therefore, this issue must be addressed in order to achieve successful 

trapping and separation.  

 Bubble formation during capillary filling of nanoconfinements with polar solvents, such 

as deionized water, has frequently been reported.
18-20

 However, most channels reported were of a 

single height throughout their lengths.  

 The filling kinetics in nanochannels are determined by the geometry of the channel, the 

liquid and the surface properties. As bubble problems only arose in three-segment channels 

containing height barriers below 20 nm, I deduced that adding more height barriers and reducing 

the nanoslit cross-sectional area increased the fluidic resistance, which led to bubble formation. 

It was mentioned earlier that the flow resistance is inversely proportional to the channel depth 

and length. In order to eliminate bubble formation, I started by reducing the channel length 

instead of height to avoid clogging. I first tried shortening the lengths of the second and third 

segments from 200 μm to 100 μm, 50 μm or 30 μm, while maintaining the heights of all three 

segments constant.  During trapping experiments, the lengths of the trapped particle bands 

sometimes reached tens of microns. Also, in the fabrication process, the BOE buffer etched and 

opened up the sidewalls of the shortest segments, making them shorter than 30 μm and even 

destroying the channel structures. Nevertheless, bubbles still appeared in the channels during 

filling. Consequently, attention focused on the abrupt height change from 200 nm down to 25 

nm. Although bubbles were observed in single-height nanochannels as shallow as 27 nm, they all 
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quickly dissolved away.
19

 Considering the fact that the trapped air bubble in the 200-25-15 nm 

channel arrays did not disappear in more than 10 min, it was surmised that the barrier structures 

prevented air from being dissolved into the solvent. In order to maintain the channel structures 

and solve the bubble formation problem, the heights of the first segments were decreased from 

200 nm to 50 nm. With the 25 nm and 15 nm segments being 30 μm long, these new 50-25-15 

nm channel arrays displayed no air bubble trapping during filling.  
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Chapter 4. Nanochannels with monotonically increasing heights 

 

4.1 Introduction 

 Cui and Lawes developed the first process using photoresist as sacrificial layer to 

fabricate micromechanical components and systems.
1 
Since then, various microstructures have 

been created using this method.
2,3 

The photoresist layer is low-cost, easy to coat and can be 

patterned directly. In contrast, metallic sacrificial layers require costly and time-consuming 

deposition processes and additional photolithography steps. This work describes a set of 

nanofluidic devices fabricated with photoresist as sacrificial core. Each device contains an array 

of 200 parallel channels consisting of two heights. The short segments monotonically increase 

from 30 nm to 250 nm in height from the left to right and the tall segments are 200 nm taller than 

the short segments. 

 

4.2 Fabrication of wedge masks and tapered channels 

 We used a customized mask for fabricating tapered structures. Fig. 4.1A shows a taper 

mask created by cutting wedges out of poly(methyl methacrylate) (PMMA) using a laser cutter. 

The PMMA was cut in a saw-tooth pattern (7 teeth along 7 parallel line patterns). Each tooth (or 

taper) was approximately 10 mm long to cover the entire length of each chip. A plastic base was 

cut to snugly fit each of the PMMA saw tooth sections. Due to the absorption properties of 

PMMA, light passes through with a fairly linear power variation. Therefore, the amount of UV 

light transmitted onto the photoresist is dependent on the local thickness of the wedge, which 

subsequently results in the photoresist being spatially exposed differently and, when developed, 

forms a tapered structure (Fig. 4.1B). Light blue PMMA was found to work best at creating the  
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Figure 4.1 (A) Photograph of a wedge mask used to create tapered nanochannels. (B) Photograph of a 

wafer containing 49 silicon dies patterned with photoresist core lines; light interference is produced due to 

the variation in the thickness of the thin photoresist layer, indicating the presence of tapered structures. 
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desired taper depths. The 30–250 nm tapers were created with a wedge of 6.533 mm thickness at 

the tallest end. 

 The fabrication process for tapered channels (Fig. 4.2) begins with growing 

approximately 200 nm of PECVD silicon dioxide on top of a 4-inch silicon wafer, which forms 

the wettable bottom of the nanochannels. The wafer is then primed with hexamethyldisilazane 

(HMDS) before a 6:4 mixture of AZ 3312 and propylene glycol monomethyl ether acetate 

(PGMEA) is spun-on and patterned using a wedge mask to define the tapered line structures. A 

diluted AZ 300 MIF developer (6:7 developer/water) is used for developing the photoresist. It is 

ideal to reach the desired taper heights (30–250 nm in this case) directly during development. 

However, once the photoresist layer thickness drops below a certain level (typically 100 nm), the 

remaining photoresist comes off very irregularly. To overcome this problem, the low end of the 

taper is developed to about 100 nm, which is achieved by adjusting the development time. This 

parameter varied from wafer to wafer; however, for the 30–250 nm taper, it was approximately 1 

min. After the channel heights are reduced to their desired values via dry etching and measured 

using a profilometer (Fig. 4.3), a second layer of AZ 3312 and PGMEA mixture is spun-on and 

patterned to define steps in the lines, followed by development in the diluted AZ 300 MIF 

developer mentioned above. Wafers are heated to at 250 ˚С and baked for 5 min before a capping 

layer of approximately 5 μm PECVD oxide is deposited over the core lines. Then, photoresist 

AZ 3330 is spun-on and pattered, exposing only the reservoir areas at the ends of the core lines. 

The exposed oxide is etched using buffered oxide etchant (BOE) and the masking photoresist is 

dissolved in acetone. The exposed photoresist lines are then etched using Piranha (3:1 mixture of 

concentrated sulfuric acid and hydrogen peroxide) heated to 90 ˚С. When the etching process is 

complete, hollow channels consisting of two heights are created. The wafer is soaked in D.I.  
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Figure 4.2 Drawings illustrating the fabrication process involved in making tapered nanochannels.  
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Figure 4.3 Profilometry analysis of photoresist-formed nanochannel core lines tapered from 

approximately 30 nm to 250 nm. 
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water overnight before use. 

 

4.3 Trapping of polymer beads 

 The tapered channels were used for trapping fluorescently labeled 30 nm 

polyacrylonitrile polymer beads suspended in 100 mM pH 8.3 Tris-HCl buffer containing 1 mM 

SDS and 0.13% Triton X-100 to prevent adsorption and aggregation. The concentrations of both 

beads were 6×10
12

 particles/mL. The 30 nm particles were tested in an array of 30–250 nm 

channels. Clear differential trapping behavior was observed in a 22-channel section, in which the 

barriers tapered from 30 nm to 53.1 nm (Fig. 4.4A). The barrier height was calculated based on 

the profiled average height of the taper array (30–250 nm) and the average height difference 

between every two adjacent channels (1.1 nm), assuming the height increased (or decreased) 

linearly from one side of the chip to the other. It can be seen that the fluorescence intensity 

gradually decreased from left to right at the barriers (I), and increased at the channel ends (E).  

Using the two sets of fluorescence intensity data (I and E) allowed me to calculate the 

trapped/total ratios (T/t = I/(I +E)), which were then plotted versus channel height. This curve 

displays the same trend as the slit model (i.e., T/t = dp/h, see section 2.3) predicts, although the 

values are lower (Fig. 4.4B). As mentioned before, since the slit model is derived from 

Giddings’ model, which defines diffusion as the sole driving force for separation, it is expected 

that the experimental T/t should be lower in our case because the existence of capillary force 

provides an external force to help the particles overcome the energy barrier when they are 

introduced into the channels. Thus, fewer particles should be trapped at the channel interface. 

 Trapping of 30 nm particles was also tested in the other sections of the same chip. 

Unfortunately, they did not show a clear difference in terms of trapping. This can be attributed to 

the discrepancy between the profiled depths of the photoresist core lines prior to oxide capping 
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Figure 4.4 (A) Image showing trapping of 30 nm fluorescently labeled PAN beads in an array of channels 

with an interface tapering from 30 nm to 53.1 nm (left to right). The particles clearly display differential 

trapping behavior. (B) Data analysis of trapped/total particles versus channel height, showing the same 

trend predicted by the slit model. Error bars represent the standard deviation of three measurements. 
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layer deposition and the actual channel heights after photoresist was dissolved by hot piranha. It 

is a common practice when using piranha solution to clean the photoresist residue from the 

silicon wafers. However, it was reported that using piranha solution to dissolve photoresist 

tended to clog the channels.
4 

It is likely that the etching process leaves a residue, which forms a 

thin film on the inner channel surface and changes its depth and width, especially considering 

that etched materials can only slowly diffuse out of the channels. Soaking with water may be 

insufficient to remove the residue. It has been demonstrated that an oxygen plasma is more 

efficient than piranha for removing photoresist,
4
 although it would be difficult to carry out in 

enclosed nanochannels such as those described here.  

 In this study, a total of eight sets of tapered nanochannels of different dimensions were 

fabricated and tested. Fewer than a dozen devices from two wafers (each containing 49 dies) 

showed differential trapping of 30 nm particles in a section of the channels on the chip. The 

experimental data followed the trend predicted by the slit model, although there was a 

discrepancy of 50% between them. These results indicated that it was possible to fabricate 

tapered nanochannels using photoresist as sacrificial core, and then use them for differential 

trapping, although the repeatability was still low. The fabrication of tapered channels should be 

further developed to improve channel height precision and linearity in channel height change 

across the channel arrays. Ideally, the nanofluidic chip should display differential trapping 

behavior across the entire array of 200 channels. The ultimate goal is to use the tapered channels 

for separating mixtures and determining their size distributions based on barrier heights and 

trapped/total data. Additional channel dimensions and more particle sizes must be investigated to 

adjust the slit model.  
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Chapter 5. Conclusions and future work 

 Reports of novel micro/nanostructures designed to separate biomacromolecules and 

bioparticles are increasing in number, and these studies have greatly advanced our understanding 

of nanoscale fluidics and nanoparticle behavior in confined channels. In the work described in 

this dissertation, I developed a simple, fast nanosieving method and demonstrated its applications 

for size-based separation of engineered and biological nanoparticles. Specifically, three types of 

nanochannels were fabricated, including two-segment nanochannels (channels with two different 

channel height segments), three-segment nanochannels (channels with three different channel 

height segments), and tapered nanochannels (channels with monotonically changing barrier 

heights from one side of the nanofluidic chip to the other). I demonstrated the successful trapping 

of polymer nanobeads and two types of virus capsids (30 nm HBV and 120 nm HSV-1) using 

two-segment nanochannels. Furthermore, I studied the fractionation of nanoparticles in three-

segment nanochannels. The effects of adding surfactants and applying an alternating current 

electric field on particle distribution were investigated, both of which aided in the prevention of 

channel clogging. Most recently, I applied the nanosieving method to lipoprotein analysis. 

Promising results were obtained, indicating that it should eventually be possible to fractionate the 

major lipoprotein classes (IDL, LDL and HDL) using three-segment nanochannels. I studied the 

protein-resistant performance of polyethylene glycol (PEG) coatings and used dual-color 

fluorescence detection for the separation of a binary protein mixture. Finally, I successfully 

fabricated tapered channels using photoresist sacrificial materials and applied them to trapping 

30 nm polymer nanobeads.  

 These results demonstrate the potential of using nanosieves for separating proteins. 

However, three challenging issues remain: nonspecific adsorption, clogging (or aggregation) and 
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an energy barrier at the channel interfaces. In order to achieve the ultimate goal of fractionating 

lipoprotein mixtures, the inner channel surface must be passivated via dynamic modification to 

minimize protein-wall interactions. More trapping tests must be performed to determine the 

critical step heights, at which each lipoprotein class would stop or pass. It is envisioned that 

fractionation of subclasses may occur with barrier heights in between. I showed the possibility of 

doing multi-color fluorescence detection, which could potentially be applied to lipoprotein 

analysis. An external electric field may be necessary to propel flow and help protein particles 

overcome the energy barrier at the interfaces. Detailed size profiling requires the use of 

nanochannels with multiple height barriers, which poses challenges for nanofabrication. Also, 

meticulous characterization of flow dynamics inside these channels is required. 

 With tapered nanochannels, the experimental data generally followed trends predicted by 

the slit model, although there was a discrepancy of 50% between them. More channel 

dimensions and particle sizes should be investigated to determine how the original slit model can 

be adjusted to address our channel structures better and predict trapping more accurately. More 

studies should also be done to determine the reasons behind the differences in trapping behavior 

for rigid and flexible particles, and between lipoproteins and other types of proteins. The 

fabrication of tapered channels should be further developed in order to improve channel height 

precision. Ideally, differential trapping behavior across the entire array of 200 channels should be 

possible. I hope that the tapered channels can eventually be used for separating nanoparticle 

mixtures and analyzing their size distributions based on barrier heights and trapped/total data.  

 In summary, micro/nanofabricated structures have opened new possibilities for efficient 

separation of biomolecules. Advances in fabrication techniques enable researchers to control 

geometrical designs and provide insight into separation mechanisms at the molecular level. 
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Multi-dimensional or anisotropic structures hold great future promise for high resolution, high 

throughput separations. Although many challenges continue to plague research efforts, such as 

nonspecific adsorption, clogging and detection of extremely low-concentration analytes, there is 

no doubt that nanotechnologies will continue to grow at a rapid pace, since they offer unique 

opportunities that are not addressed by any of the conventional methods.  

 

 


