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ABSTRACT

Mass Spectrometry Based Proteomics and Lipidomics Studies 

Huan Kang 
Department of Chemistry and Biochemistry, BYU 

Master of Science 

Mass spectrometry has emerged as having a vital role in various applications to 
biochemical fields. In this thesis, we have utilized a variety of mass spectrometry techniques 
for both bacteriophage proteomics and colostrum and milk lipidomics studies.  

Our first study was the proteome characterization of Great Salt Lake bacteriophage 
NS01 with SDS-PAGE GEL to separate the viral proteins and high performance liquid 
chromatography (HPLC) coupled with an LTQ Orbitrap to identify the proteins after in-gel 
digestion. In this project, we have successfully identified 11 proteins with high confidence, 
p-values < 0.01, including coat protein gp88 with a coverage of 91% and tail protein gp86 
with a coverage of 40.96%, which facilitated the classification of NS01 as a T7-like phage.  

Our second study was the discovery of colostrum and milk biomarkers that can be used 
to predict the likelihood of development of production-related metabolic diseases (PRMDs) 
in dairy cows through a lipidomics approach. In this study, an electrospray ionization, 
time-of-flight mass spectrometer was applied to lipid profiling, quantification and significant 
biomolecule selection. A Q-Star quadrupole, orthogonal time-of-flight mass spectrometer 
and an Agilent 6530 accurate-mass quadrupole/time-of flight mass spectrometer were both 
used for lipid biomarker fragmentation and identification. According to linear discriminative 
statistical modeling, three panels of biomarkers were defined. A combination of 2 milk lipid 
predictors, including DG18:0/18:0 and TG 18:0/18:0/18:1, provided PRMD predictions with 
75.0% sensitivity at 90.0% specificity. A combination of 3 colostrum lipid predictors, 
including TG16:0/18:1/18:3, DG16:0/16:0 and C40H60NO, provided PRMD prediction with 
90.0% sensitivity at 86.4% specificity. Furthermore, a combination of 7 colostrum and milk 
biomarkers, including calculated differences between ‘shared’ markers found to be 
significantly different in both colostrum and milk, provided a predictive sensitivity of 87.5% 
at a specificity of 100%. Thus, three panels of lipid biomarkers have been discovered in 1-4 
day postparturient dairy cow colostrum and milk that can be used to predict resistance or 
susceptibility prior to onset of clinically apparent PRMDs. These novel lipids could be used as 
important diagnostic predictors in the future. Therefore, mass spectrometry based 
proteomics and lipidomics approaches have been efficient tools in the biochemical research 
described in this thesis.  

Keywords: proteomics, bacteriophage, lipidomics, mass spectrometry, biomarker, 
production-related metabolic diseases   
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Chapter 1 Introduction 

1.1 Mass spectrometry based lipidomics analysis 

1.1.1 Lipid biomarkers overview 

Lipids represent the largest and most diverse set of biomolecules. Their unifying 

characteristic is their hydrophobicity. Lipids have been known to have structural importance, 

but more recent research suggests many are biologically important active compounds 

mediating and regulating many cellular and systemic processes. Lipids are not directly 

genetically regulated. They are generated and metabolized by enzymes that are affected by 

the environment through such factors as nutrition and temperature. As is currently known, 

changes in lipids are seen in nearly all diseases states, including cardiovascular diseases, 

metabolic diseases like diabetes mellitus, obesity, Alzheimer’s disease, arthritis, asthma, 

cancer, and importantly they may play significant roles in the pathophysiology of such 

diseases (Table 1). Useful biomarkers may result from downstream responses to the disease, 

but may also be upstream activators, regulators or general contributors to the disease. 

Therefore, specific lipids or groups of lipids may become clinically relevant biomarkers that 

can be used to specifically predict the risk for or can be used to diagnose particular diseases. 

Lipids have been researched as potential biomarkers in many diseases using various 

biological samples. For instance, the sphingolipidome has been shown to provide potential 

biomarkers for early-stage Alzheimer disease1, type 1 diabetes2, neurodegenerative disease3, 

etc. Some lipids such as polyunsaturated fatty acids4, triglycerides5, glycerophospholipids6, 

sphingolipids6, and sterols6 have participated in or been altered by metabolic disorders, and 

1 



Diseases Lipids Samples Ref 

Obesity  Ceramide, lysophosphatidylcholine, free 

fatty acids, TG 

Plasma 7，8 

Diabetes Lysophosphatidylcholine, free fatty acids, 

TG, cardiolipin 

Plasma 7, 9 

Mitochondrial 

dysfunction 

Cardiolipin, TG and cholesterol esters A549 cells 10 

Alzheimer Phospholipids, sphingolipids and related 

compounds, sulfatide 

Serum, brain 

autopsy  

11,12,1,13, 

14 

Breast cancer Phosphatidylcholine, total cholesterol, 

low-density lipoprotein cholesterol 

Human breast 

tissue, plasma 

15,16 

Ovarian cancer Lysophosphatidic acid, 

lysophophatidylinositol, 

sphingosylphosphorylcholine, 

lysophosphorylcholine,  

lysophospholipids 

Plasma 17  

Asthma Phosphatidylcholine, leukotriene B4, 

prostaglandin D2 

Serum, mice 18,19 

Hepatic 

steatosis 

Polyunsaturated fatty acids, 

glycerophospholipids, sphingolipids, sterols 

Plasma 4 

Table 1. Lipid abnormalities in associated diseases. TG: triglycerides 
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as such, are potential phenotypic or disease biomarkers. 

Despite more research studies regarding protein biomarkers than lipid biomarkers, 

recent advances in lipid profiling, quantitative analysis and bioinformatics methods provide 

an opportunity to explore and define new roles for lipids and allow for them to be further 

characterized as biomarkers in order to predict or diagnose a range of diseases. In addition, 

in comparison with proteomic approaches, lipids are more stable, easier to handle, and may 

also provide a more economically efficient test for use in clinical practice than would protein 

mass spectrometry (MS) methods. 

 

1.1.2 Mass spectrometry as a tool for lipidomics 

By obtaining profile patterns of lipid molecules through MS analysis, metabolic changes 

can be observed under specific circumstances. Several such methods have been carried out 

including global20, focused21, and targeted22 lipidomics using mass spectrometry.  

Global lipidomic methods are applied to measure all or as many analytes as possible 

that are contained within extracted lipid samples without background information on any 

specific lipids or their fragments23. Put another way, this approach is unbiased and often 

considers hundreds of lipids, sometimes many more, in the discovery of biomarkers. Mass 

spectrometers with high resolution are always used for lipids profile studies to allow for the 

unambiguous resolution and measurement of all species observed. By combining liquid 

chromatographic separation with tandem mass spectrometry (MS/MS), fragmentation can 

be carried out, allowing for more information about the components that make up specific 

lipids, potentially identifying the specific lipid species. With the use of appropriate added 
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reference lipids, reasonably good quantification can also be determined.  

A focused lipidomics approach aims to detect molecules of a particular lipid class by 

focusing on specific fragments or neutral losses between fragments that are highly 

associated with a single lipid subgroup24. Through this method, lipids that are present at 

abundances normally below the MS detection limit can also be detected, which helps to 

overcome MS ion suppression issues. Taking phospholipids as an example, product ion 

scanning at m/z 184 could be used to select for choline-containing phospholipids in the 

positive ion mode. Furthermore, neutral loss scanning at m/z 141, 185, 189 and 277 could 

be used for detection of phosphoethanolamine (PE), phosphatidylserine (PS), 

phosphoatidylglycerol (PG), and phosphatidylinositol (PI) species, respectively.  

Targeted methods can be applied to choose one or a few specific molecules by precisely 

selecting m/z values for the lipid(s) of interest or by selection of its specific fragment ions. 

Through a targeted method, lipids can be either accurately quantified based their m/z values 

and their specific fragment ions or characterized by their fragmenting ions. The 

fragmentation information of the peak of interest can be obtained through specific product 

ion scanning as in other multiple reaction monitoring protein approaches.  

In our experiments, we used a comprehensive or global lipidomics approach by means 

of electrospray ionization mass spectrometry (ESI-MS) to find peaks of interest (significant 

statistically, quantitatively different lipids) based on abundances between disease and 

control samples, and a targeted MS/MS method in order to fragment and further chemically 

characterize peaks of interest.  
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1.1.3 Electrospray ionization mass spectrometry (ESI-MS) as a tool for determining lipid 

identity 

After the determination of lipids of interest, identification of the lipids is important in 

order to fully understand selected biomarkers and their role in biological functions. This was 

briefly discussed previously, but will be developed further in this section. 

Tandem mass spectrometry involving ion-trap, triple quadrupole, or hybrid instruments 

such as quadrupole-time-of-flight, linear ion trap quadrupole are normally used for lipid 

identification with electrospray ionization as the ion source. Characterization of individual 

lipids using ESI-MS requires knowledge of the m/z value for the lipid of interest. Then 

fragmentation of the targeted peak or a target peak list based on m/z values is conducted 

through product-ion analysis after collision-induced dissociation (CID)25. By adjusting the 

collision energy26, the abundance of the product ions of lower molecular mass will be 

different, which is useful for identification of the location of double bonds in fatty acyl chains. 

Optimal conditions for CID are determined by systematic investigations according to 

individual peak. 

Multiple sector mass spectrometry instruments and MS-MS techniques can be applied 

and combined for lipid biomarker(s) characterization. For example, in our studies, both 

QSTAR and Qq-TOF27 instruments were used for biomarker characterization. The QSTAR can 

select the targeted peak with low resolution, unit resolution and high resolution. However, it 

has a lower sensitivity and resolution power compared with Qq-TOF. Thus, the QSTAR may 

have a hard time detecting the peak of interest if it has a low abundance. As for the Qq-TOF, 

it can detect low abundance peaks. 

5 



Extensive MS-MS characterizations of the most common lipid classes, including mass 

spectra, have been published in the literature. Taking triacylglycerols as an example, the sn-1, 

sn-2 or sn-3 component of triacylglycerols can be determined based on neutral loss values 

with fragmentation as recorded in the product-ion scan. Triacylglycerols are neutral 

hydrophobic lipids defined as fatty acid triesters of glycerol. Therefore, positive ions such as 

ammonium acetate, sodium, and lithium that can form positive adducts with neutral lipids 

are always added to the solvents in order to produce lipid ions that can be detected in 

positive ion mode of mass spectrometry. 

Product-ion mass spectra of ammoniated triacylglycerol species ([M+NH4]+) at an m/z 

value of 906.83 after CID at 25 eV yielded product ions as shown in Figure 1, which can be 

informative for structural characterization. The fragment ion at [M+NH4-17]+ at 889.81, 

arising from the loss of ammonia (NH3) from the ammoniated triacylglycerol species, was 

observed and always present in the spectra (Figure 1a). The fragments shown in the spectra 

with m/z values of 605.54 and 607.55 represent diacylglycerol (DG) fragments 18:0/18:1 and 

18:0/18:0. By searching the LIPIDMAPS28 database, the product ion scan provided the 

probable structure as TG 18:0/18:0/18:1 for precursor ion 906.83. 

High resolution and mass accuracy are required for reliable identification of lipids. 

Fragment ions of polar headgroups or specific neutral losses from each class of 

phospholipids and glycerolipids are also very important for identification of each different 

category of polar lipids. In some cases, MS3 or MS4 (multiple steps of mass spectrometry 

selection with some form of fragmentation occurring in between the stages) may be 

important in order to obtain reliable identification.  

 6 



 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 1. Targeted MS/MS analysis of Qq-TOF mass spectrometry. (a) product-ion spectra of m/z 906.83 [TG 
(18:0/18:0/18:1)+NH4]+, (b) representation of the two most abundant diacylglycerol fragments at 605.55 and 
607.56. 
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1.1.4 Comparison and overview of lipid extraction techniques 

Due to different polarities, lipids dissolve in solvents based on the relative strengths of 

the interactions between the solvent and either the hydrophobic or the hydrophilic regions 

of the lipid molecules. For instance, lipids of low polarity, such as triacylglycerols or 

cholesterol esters, are very soluble in non-polar hydrocarbon solvents. Organic solvents are 

always used for lipid extraction from tissues, cells, and other biological fluid29. Here, the 

three main lipid extraction methods are discussed, including the Folch method, the Bligh and 

Dyer extraction, and a newer version of lipid extraction using methyl-tert-butyl ether30. 

First, according to the Folch31 total lipid isolation method, lipids are extracted by 

homogenizing a tissue with 2:1 chloroform-methanol (v/v) solution, then the homogenate is 

filtered and the filtrate further purified with a 5 volume addition of water.  

Second, a mixture of chloroform:methanol:water in the proportion of 1:2:0.8 and 

2:2:1.8 (before and after dilution, respectively) is used for lipid extraction, particularly for 

phospholipids as described by Bligh and Dyer31. This method is recommended for large 

samples with a high proportion of endogenous water.  

Third, for extraction by methyl-tert-butyl ether30 (MTBE), 1.5 mL methanol is added to a 

200 µL sample aliquot in a glass tube, and the tube is vortexed. 5 mL of MTBE is added and 

the mixture placed on a shaker for 1 hr at room temperature. Then, 1.25 mL of MS-grade 

water is added for full separation of the aqueous layer and organic layer. 

There are reviews comparing the extraction efficiency between these distinct organic 

extraction methods29. For instance, a comparison of the Folch versus Bligh and Dyer method 

was done on marine tissues and meat products32, which showed that the efficiency of 

 8 



extraction was determined by the amount and percentage of lipids in the sample. Previous 

studies have proven that for samples containing more than 2% lipid, the Bligh and Dyer 

method significantly underestimated the lipid content, and this underestimation increased 

significantly with increasing lipid content of the sample33. 

For the MTBE method, the lipid layer is on top, which could help minimize carry-over of 

proteins. Another advantage of the MTBE lipid isolation method is that there is less toxicity 

in the extraction process by omitting chloroform as an organic solvent. Researchers have 

also made modifications based on the classifications of the lipids of interest. Different 

solvents are necessary to extract different lipids optimally. Plus, lipid extraction is carried out 

differently according to the nature of the biological specimen. For example, plant tissues are 

normally treated with isopropanol in order to denature the botanical enzymes prior to lipid 

extraction. 

In our experiments, we used a modified Bligh and Dyer method with 

chloroform:methanol:isopropanol in a 2:1:1.25 ratio for lipid extraction from colostrum or 

milk samples as opposed to the standard method which uses  

chloroform:methanol:water in the proportion of 1:2:0.8 and 2:2:1.8 (before and after 

dilution, respectively). In addition, water was later added to allow for full separation of the 

aqueous layer and organic layer. Thereafter, 10 mg of the cream layer (the thick white or 

pale yellow fatty liquid that rises to the top when either colostrum or milk is left to stand, 

and composed of mainly lipids) was used for lipid extraction, which contained greater than 2% 

lipid. Therefore, it was necessary to increase the chloroform portion to two fold compared 

to the original Bligh and Dyer extraction solvent mixture in order to have a fuller recovery of 
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lipids. 

 

1.1.5 Mass spectrometry as a predictive tool for production-related metabolic diseases 

(PRMDs) in dairy cows 

Over the past 100 years, the United States dairy industry has experienced a sharp 

reduction in the total number of cows and at the same time a nearly six-fold increase in 

average milk production per cow, with a substantially greater overall annual milk production. 

This has led to dairy cows being at an increased risk of developing production-related 

metabolic diseases (PRMDs). PRMDs are due to certain cows’ physiologic inability to cope 

with the metabolic demands of such high milk production. These health problems occur 

most often during the transition period (3 weeks pre-partum to 3 weeks after parturition), 

with the highest clinical incidence occurring within two weeks postpartum. Recently, PRMDs 

in dairy cows have been broadly defined to include conditions such as hypocalcemia, 

hypomagnesemia, ketosismana, hepatic lipodosis, abomasal displacement, laminitis, 

retained placenta, and other disorders that occur during the transition period. 

Over the past 20 years, there has been great interest in the impact that PRMDs have on 

dairy farm profitability, and in understanding what contributing factors and/or 

predisposition for such diseases exist, to eliminate and minimize economic losses. Although 

it is known that the highest incidence for most PRMDs occurs within the first 60 days in milk 

(DIM), the multifactorial disease incidence has not been altered by transition diets, 

manipulating prepartum dietary cation anion balance34, and over conditioning avoidance35. 

The nutritional and metabolic status36,37 of certain animals, combined with a poor 
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physiologic adaption38 to the negative energy balance experienced during the rapid rise in 

milk production with the onset of lactation, is associated with the development of PRMDs39. 

Although PRMDs usually effect a subset of cows within a dairy herd, the insidious nature and 

economic impact these health problems cause warrants a better means of earlier detection. 

Accurate biomarkers that could be easily applied to an animal substrate would provide an 

important diagnostic and management tool to predict individual cow resistance or risk for 

PRMDs while the animal is clinically normal. This method could be used during the 

peripartum period to provide an economical method to identify cows that are resistant or 

susceptible to PRMDs, for retention, breeding, early treatment intervention, or culling 

decisions to increase profit margins. 

Biochemical analytes have been previously explored to predict the development of 

PRMDs in dairy cows including the measurement of serum non-esterified fatty acids (NEFA)40, 

β-hydroxy-butyrate (BHBA) and calcium concentrations41 during the final week of gestation 

or the first and second week postpartum, to provide useful information for herd health 

monitoring and culling risk42. The effectiveness of their predictive ability was summarized by 

Ospina et al (2010) as shown in Figure 2. Additionally, the serum concentrations of NEFA at 

calving have been shown to be positively correlated with a negative energy balance and the 

incidence of certain peripartum diseases43. Hyperketonemia in the blood during the first 

week of lactation, on the other hand, appeared to be an important risk factor for the 

subsequent development of clinical ketosis, metritis, and displaced abomasum44. Serum 

cholesterol concentration was shown to have a greater decrease during the transition period 

in cows that developed disease45 PRMDs.  
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(a) 

 
(b) 

 
Figure 242. Prediction efficiency using NEFA and BHBA as predictors for transition diseases risk in dairy cows. (a) 
Information on thresholds from receiver operator characteristic curves for NEFA concentrations as predictors of 
displaced abomasum. (b) Information on thresholds from receiver operator characteristic curves for BHBA 
concentrations as predictors of displaced abomasum in animals sampled postpartum (n =1318). Results from 
Table 2 and Table 4 Ospina et al (2010). BHBA = beta hydroxybutyris acid, NEFA = non-esterified fatty acid. From 
Ospina et al (2010) used with permission. 
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Figure 3. Schematic of milk fat synthesis and secretion in ruminants46. From Chilliard et al (2009) used with 
permission  
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Therefore, lipids, including NEFA, BHBA, and cholesterol, have shown some promise as 

biomarkers of PRMDs. The objective of the current research was to detect accurate 

biomarkers that can predict PRMD resistance or susceptibility, and was based on the 

presence of lipids in colostrum and early milk secreted by the cow’s udder (Figure 3, from 

Ospina et al (2010), a schematic description of the milk fat synthesis pathway), to define the 

lipid status broadly through a mass spectrometry based lipidomics approach. With 

MS techniques, and may potentially be applied as biomarkers. Our findings were promising 

and may further suggest biological pathways involved in or altered by PRMDs. 

1.1.6 Summary 

In summary, sample preparation for mass spectrometry-based lipidomics analysis 

sample is easier compared to sample preparation for proteomics analysis. However, 

lipidomics fragmentation analysis is not as advanced as proteomics, and it can be 

challenging to do the lipid MS spectral analysis, to not only discover useful biomarkers, but 

to also achieve these markers’ identification. 

In this project, we focused on lipid biomarker discovery to identify peripartum dairy 

cows at risk for the later development of PRMDs using a lipidomics approach. If such 

markers could be found, given that they are present prior to development of PRMDs, they 

may allow therapeutic intervention for the prevention of PRMDs. Lipids in colostrum or milk 

samples were collected and evaluated for this study after extraction by the modified Bligh 

and Dyer method. Several individual candidate biomarkers were found in colostrum and milk. 

Statistical modeling of the individual markers resulted in 3 panels of biomarkers capable of 

14 



identifying a very high percentage of at-risk, as well as PRMD resistant animals. One set of 

biomarkers had 87.5% sensitivity and 100% specificity based on our data set. The sample 

collection was done by members of Dr. Beverly Roeder’s lab. Among the undergraduate 

students Holly Martin, Kory Brown, Austin Cook, Alice Huang, and Evan Buckmiller from the 

Department of Biology and Department of Chemistry and Biochemistry (Brigham Young 

University) made substantial contributions to the collection, sorting, and processing of these 

samples, including optimizing the various processing protocols. Members of my lab (Dr. 

Steven Graves) worked on sample processing and instrument analysis and methodology. One 

of the undergraduate students, Chris Lau, helped write a micro program within Excel that 

facilitated our processing the MS data analysis. Dr. Dennis Eggett from Department of 

Statistics, Brigham Young University, helped us with statistical modeling to successfully 

identify different panels of biomarkers. Graduate students Swati Anand, Komal Kedia and 

Ying Ding from Dr. Steven Graves’s lab advised and assisted with MS fragmentation and lipid 

identification of the relevant biomarkers. This proved to be a substantial project requiring 

both my committed efforts as well as the collaborative efforts of many others to accomplish 

it.  
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1.2 Mass spectrometry based viral proteomics study 

1.2.1 Viral proteomics 

Viruses have long been studied for their pathology, associated disease, as model 

systems for molecular processes and as tools for identifying important cellular regulatory 

proteins and pathways. Most viral research has been focused on positive and negative gene 

regulation, repressor operator interactions, DNA replication, transcriptional elongation and 

termination, etc. However, with the development of high-throughput proteomics methods, 

the protein composition of virions, the structure and protein interactions of viral proteins, 

and the effects of viral infection and individual viral proteins on the cellular proteome can be 

obtained. 

Determining the global protein composition of a specific virus particle normally involves 

multiple steps including pure virus preparation, detergent denaturation, electrophoretic 

separation, and identification of protein bands by mass spectrometry where mass 

spectrometry is a valuable tool in structural and functional viral proteomics. Dennis Hruby’s 

lab47 has obtained a detailed knowledge of the Pox vaccine viral proteome through sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) + LC-ESI-Q-TOF MS, SDS-PAGE 

+LC-ESI-QIT MS, HPLC+ LC-ESI-QIT MS, LC-ESI-Q-TOF MS, MALDI-TOF/TOF MS analysis 

methods, and were able to identify 63 proteins. By using SDS PAGE and LTQ- Orbitrap, 

Kerstin Radtke’s group were able to identify a total of 67 structural and nonstructural viral 

proteins of the Herpes Simplex Virus type 1 (HSV1)48 and identified 90 novel 

phosphorylation sites and 10 novel ubiquitination sites on different viral proteins. Therefore, 

a comprehensive mass spectrometry based viral proteomics study has been proven to be 
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very effective. By comparison with complementary data from genome sequencing, cryo-EM 

and image reconstruction, a new dimension to viral protein structure and function can be 

obtained.  

 Mass spectrometry based viral protein studies have enabled a more comprehensive 

characterization of virions and of virus-virus and virus-host interactions involved in infection 

and pathogenesis. Viral proteomics has been a promising tool to survey antigenicity of the 

influenza virus49 and for understanding virus tropism50. Moreover, the development of viral 

proteomics might also provide potent tools for diagnosis, and could generate novel insights 

into the therapeutics of virus-induced infectious diseases.  

 

1.2.2 Summary 

As is known, a virion, i.e. an entire virus particle, consists of an external protein shell 

called a capsid and having an inner core containing nucleic acid. The core confers infectivity, 

and the capsid provides specificity to the virus. Extremophilic viruses are the viruses that can 

tolerate environmental limits beyond what most living organisms endure in terms of 

temperature, pH, salinity, desiccation, hydrostatic pressure, radiation, anaerobiosis, etc. 

Thus far, several extremophilic viruses have been characterized. The continuous attempts to 

isolate and to study viruses that thrive in extreme environments are needed to address such 

questions as the origin, activity, or importance of the in situ microbial dynamics. However, 

this topic appears to open a new window on an unexplored part of the viral world.   

In this project, three groups were involved, including Dr. Matt Domek‘s lab efforts in the 

collection and cultivation of the NS01 virions. Virion imaging and structural modeling studies 
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were achieved by Dr. David Belnap’s lab, and our lab and specifically my efforts, were 

focused on NS01 protein characterization. In this thesis, I will talk about Dr. Domek’s and Dr. 

Belnap’s work for reference and clarity, but discuss my protein characterization studies in 

much greater detail.  

 

.  
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Chapter 2 Sequence and structural characterization of Great Salt Lake Bacteriophage NS01, 

a turreted T7-like virus with flexible HK-97 subunits 

2.1 Introduction 

Studies of virus populations in the Dead Sea indicate that viruses in extreme 

environments play a predatory role in recycling organic matter and regulating bacterial host 

populations where eukaryotic predators are rare 51. Thus far, six extremophilic viruses have 

been studied by cryogenic electron microscopy (cryo-EM): SH1 52, STIV 53, STIV2 54, CW02 55, 

HVTV-1 56, and HSTV-2 56. Four of the extremophilic viruses studied via cryo-EM to date have 

shown unusual turret appendages at each five-fold vertex; however, the purpose of such 

turrets remains unknown. Thus, the ubiquity of phages in aquatic environments 57 and the 

lack of structural data about those in extreme environments suggest the need and potential 

for more research in understanding extremophilic viruses. 

Bacteriophage NS01 is a tailed, dsDNA extremophilic virus isolated from the Great Salt 

Lake and infects Salinivibrio costicola. Another halovirus, CW02, was recently reported to 

infect a Salinivibrio costicola-like bacterium, SA50, and characterized by cryo-EM 55. CW02 is 

a dsDNA, tailed virus that belongs to the Caudovirales order and Podoviridae family of 

phages, as defined by its short, non-contractile tail and icosahedral head 55. Interestingly, 

CW02 contains flexible turret structures at each 5-fold axis, much like other extremophilic 

viruses such as SH1 52, STIV 53, and STIV2 54.  

The structural and sequence analysis of NS01 revealed its relationship to CW02 and 

other dsDNA, tailed phages. Negative stain microscopy images suggest that NS01 is 

morphologically similar to viruses of the Podoviridae family and that it also has turrets at the 
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5-fold vertices similar to those found in SH1 52, STIV 53, and STIV2 54 (Figure 2A). PSI-BLAST 

sequence analysis also showed a relationship between NS01 and Enterobacteria phage T7 58 

and T7-like phages such as Vibrio phage ICP3 59, Vibrio phage VpV262 60, Enterobacteria 

phage N4 61, and Salinivibrio phage CW02 55. A 22 Å cryo-EM reconstruction of NS01 

revealed T=9 icosahedral symmetry in the capsid head, prominent turret structures at each 

5-fold vertex, and showed that the HK97-like fold fit within the capsid density, supporting 

the observation that dsDNA, tailed phages contain a common ancestral HK97-like fold. 

 

2.2 Materials and methods 

Cultivation and purification: Cultivation and purification were done in the laboratory of 

Professor Matt Domek. In brief, host bacteria and bacteriophage were isolated from the 

Great Salt Lake, Utah, USA. PCR was applied for amplification of host bacteria and 

approximately 1350 base pairs were sequenced (Idaho State University, Molecular Research 

Core Facility, Pocatello, Idaho, USA) and queried against the GenBank database using the 

BLAST search tool. The isolate was found to share 99% sequence identity with Salinivibrio 

costicola subsp. costicola strain ATCC 33508 (NR_027590.1). NS01 was further isolated by 

use of a plaque assay of filtered GSL water. The bacteriophage was further purified by 

isopycnic ultracentrifugation (64% CsCl w/v) at ~125,000 x g for 24 hours at 4 oC. 

 

Genome isolation and sequencing, and sequence analysis: Genomic DNA was sequenced at 

the Brigham Young University DNA sequencing Center using a Roche Genome Sequencer FLX 

Instrument and employing the GS FLX Titanium Sequencing XLR70 kit (Roche Diagnostics 
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Corporation, Indianapolis, Indiana, USA) by Dr. Belnap’s lab. Putative open reading frames 

(ORFs) of the NS01 genome were determined using GeneMarkS 62 and numbered according 

to whole-genome homology with bacteriophage PA11 63. 

 

Electron microscopy and image reconstruction, and structural modeling: For negative 

staining and cryo-EM, purified NS01 was prepared for microscopy as previously described 

(33) and was done in Dr. David Belnap’s lab. Structural studies were accomplished by 

Professor David Belnap’s lab. All surface renderings of the reconstruction were done at 1-σ 

contour level, which was defined by the sum of the average and standard deviation of map 

densities. Individual protein subunits were manipulated by eye to obtain a final fitting.  

 

NS01 Desalting: 100 kDa filter (Sartorius Stedim, Bohemia, New York, USA) was applied for 

NS01 virion desalting. Virion in solution was loaded onto a 100 kDa filter and centrifuged at 

1000 min-1. Double distilled water was used for virion buffer exchange for 3 times and 

further transferred to a new 100 kDa filter for complete desalting. Virions were collected by 

centrifuging at highest speed through the filter with a new centrifuge tube.  

 

Protein separation by SDS-PAGE and in-gel digestion: NS01 virions were subjected to sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to separate individual 

proteins. The gel of 4-15% polyacrylamide, containing 10 wells (Bio-Rad Laboratories, Inc., 

USA) was stained using Coomassie blue reagent, after which individual gel bands were 

excised then shredded by spinning gel fragments through micropipette tips. Proteins were 
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prepared for analysis by mass spectrometry using a modified filter-aided sample preparation 

(FASP) protocol, adapted from the protocol of Dr. Mann’s group64.  

 

Briefly, the gel fragments were destained using a 1:1 mixture of acetonitrile:8M urea, 0.1M 

Tris-HCl (pH 8.5). The denatured proteins were subsequently reduced with 0.1M 

dithiothreitol in UA buffer (8M urea, 0.1M Tris-Cl, pH 8.5), then carboamidomethylated with 

50 mM iodoacetamide in UA buffer. Each solution was washed by filtration through a 10 kDa 

molecular weight cutoff filter (Sartorius Stedim, Bohemia, New York, USA). The urea and 

iodoacetamide were then replaced by 50 mM ammonium bicarbonate. Proteins were finally 

digested by sequencing grade trypsin (Promega, Madison, WI, USA) overnight at 37 oC and 

then acidified by addition of formic acid (Rockford, IL, USA) to a 1% v/v concentration in the 

final solution. 

 

Mass spectrometry: Acidified peptide samples were loaded onto a 75 micron x 15 cm 

nanoAquity C18 column (Waters Corporation, Milford, Massachusetts, USA) and eluted by a 

300min binary gradient of Optima grade Solvent A (5% acetonitrile, 0.1 % formic acid) and 

Optima grade Solvent B (0.1% formic acid, 99.9% acetonitrile) (Thermo Scientific, San Jose, 

California, USA) at a rate of 325 nL/min composed of the following steps: From a baseline at 

98% Solvent A, a 208-minute linear gradient to 63% A , a 23-minute gradient to 1.5% A, 

followed by a 20-minute return to a 98% A baseline for 27 minutes.  

Column effluent was directed to a nanoESI spray source on a LTQ-Orbitrap XL (Thermo 

Scientific, Waltham, Massachusetts, USA). Data dependent acquisition was performed by 
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coupling a 60,000 resolution survey scan in the Orbitrap with up to the top ten subsequent 

CID MS/MS scans, acquired in the ion trap (signal threshold of 500, normalized collision 

energy of 35%, isolation width of 2 m/z, with a two-count dynamic exclusion in a 

three-minute window). A lock mass of the cyclomethicone N5 ions generated in the 

electrospray process from ambient air (m/z 371.101230) was used as an internal mass 

calibration standard65. 

Data analysis: MS/MS spectra were converted to Mascot generic format by the MsConvert 

program (http://proteowizard.sourceforge.net/pubs.shtml). Mascot searching was queried 

against a database of ORFs derived from the NS01 genome. The peptide search space was 

expanded by concatenating the NS01 database with a comprehensive database of the 

Escherichia coli ATCC 8739 proteome (GenBank accession no. YP_001723016.1) and a 

reverse decoy version of the same database. Results were filtered to provide a 1% false 

discovery rate (FDR) confidence at the peptide level. 

2.3 Results and discussion 

Proteins in the head structure module. We identified gp88 as the major capsid protein 

because of its high abundance in the NS01 SDS-PAGE analysis and LC-MS of the gel band 

(Figure 4). PSI-BLAST of gp88 resulted in matches with P22-like coat proteins in Clostridium 

phage phiCP26F and Clostridium phage phiCP13O with E-values ≤ 1e-18. Pairwise sequence 

analysis of gp88 and the major capsid proteins of T7, HK97, and P22 resulted in only 19%, 

15%, and 20% identity, respectively. However, secondary structure predictions by the Phyre 
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Figure 4. Protein composition of mature wild-type NS01 particles determined by SDS-PAGE and identified by 
LC-MS/MS. 4 pairs of gene products have similar sizes and were not separated in the gel including gp91/68, 
gp86/78, gp72/69, gp88/73. See Table 2 for properties of gene products. Lane MW contains molecular size 
markers. MW: molecular weight marker in kDa; NS01 (10 µL): 10µL of samples were loaded onto the gel; NS01 
(4 µL): 4µL of samples were loaded onto the gel.  
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Protein Fold Recognition Server 66 predicted the structure of gp88 to most closely resemble  

the major capsid protein fold of prochlorococcus2 cyanophage p-ssp7, T7, P22, and HK97 

with 100%, 100%, 99.5%, and 98.1% confidence, respectively. These results are consistent 

with the observation that the HK97 fold is more conserved than is its sequence among 

T7-like phages. 

 

Proteins in the tail structure module. Putative tail structure proteins were predicted to be 

leftwards of the head structure module in the genome, characteristic of T7-like phages60. A 

PSI-BLAST search suggested that gp79 and gp86 are putative tail proteins. 

 

In addition, several large ORFs are found in the NS01 genome at locations reasonably 

predicted to encode tail-associated proteins. For example, trimeric structures of coiled-coils 

and β-helices are a common motif in tail-associated proteins, such as the tail-spike protein 

of P22 (homotrimers of β-helices)67 and tail fibers of bacteriophage T7 (triple-stranded 

coiled-coils)68. Thus, the presence of coiled-coils and β-helices in candidate ORFs within the 

putative tail structure module was examined. The BetaWrapPro program predicted 

right-handed beta-helix motifs in gp81, gp82, and gp85, and the COILS program predicted a 

coiled-coil motif in gp78.  
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Figure 5. HPLC Orbitrap-LTQ chromatography (top) and ion map (bottom) of gp88. 
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Figure 6. Mascot result output of gp88, the major capsid protein, which had a score of 1744 and a sequence 
coverage of 91%.  
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ORF Unique peptides % Coverage Putative function & 

structure prediction 

gp91 18 37.48 possible N4-like portal 

protein 

gp86 15 40.96 tail fiber 

gp72 21 63.24 NA 

gp88 28 91 (10 uL) coat protein 

gp77 5 48.79 NA 

gp88 20 73.74 (3 uL) coat protein 

gp78 16 54.29 coiled-coils (COILS) 

gp68 19 36.12 NA 

gp69 14 37.62 NA 

gp81 10 27.2 beta-helix 

(BetaWrapPro) 

gp82 5 28.39 beta-helix 

(BetaWrapPro) 

gp73 4 13.59 NA 

 
Table 2. NS01 protein identification results from Mascot found by running against the NS01 ORF database. 
Trypsin was used for a bottom-up proteomics approach. Unique peptide identification and the percentage of 
amino acid sequences observed were included in the table as a reference for the identification confidence.  

 

 

 28 



Chapter 3 Discovery of colostrum and milk biomarkers predictive of production-related 

metabolic disease risk through a lipidomics approach 

3.1 Abstract 

Production-related metabolic diseases (PRMDs) are a set of debilitating disorders occurring 

in certain early lactation dairy cows. Animals could potentially be rescued prior to clinical 

signs of disease if it were known that they were at risk. In order to identify valuable lipid 

biomarkers, predictive of PRMDs in asymptomatic postpartum dairy cows, samples of 

colostrum (20 cases, 22 controls) and post-partum day 4 milk (16 cases, 20 controls) were 

collected and analyzed for lipid composition and specific lipid abundance using mass 

spectrometry. A modified Bligh and Dyer lipid extraction method, followed by direct 

injection electrospray ionization-mass spectrometry (ESI/MS) approach, was used for this 

lipidomics study. Many lipids were differentially expressed in both colostrum and milk as 

determined in a comparison between cows that later developed PRMDs to cows having no 

clinical signs of health problems. After statistical modeling of these several candidate 

markers, three panels of biomarkers were developed. A combination of 2 milk lipid 

biomarkers including a diglyceride (DG 18:0/18:0) and a triglyceride (TG 18:0/18:0/18:1) 

provided predictions with 75.0% sensitivity at 90.0% specificity. A combination of 3 

colostrum lipid biomarkers including TG 16:0/18:1/18:3, DG 16:0/16:0 and an unclassified 

lipid C40H60NO provided predictions with 90.0% sensitivity at 86.4% specificity. Furthermore, 

a combination of 7 colostrum and milk biomarkers, including calculated differences between 

‘shared’ markers found to be significantly different in both colostrum and milk, provided a 

predictive sensitivity of 87.5% at a specificity of 100%. Therefore, three panels of useful, 
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predictive, lipid biomarkers have been discovered in peripartum colostrum and milk 

sampling via lipidomics that can identify at risk cows days to weeks prior to onset of PRMDs. 

 

Keywords: Production related metabolism; lipidomics; mass spectrometry; colostrum; milk; 

biomarker 
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3.2 Introduction 

Production-related metabolic diseases (PRMDs) in dairy cows have been and continue to be 

a costly problem for the dairy industry. Different phenotypes of PRMDs have been 

documented, including hypocalcemia (commonly known as milk fever), displaced abomasum 

(DA), ketosis, fatty liver syndrome, and retained placenta amongst the most common 

disorders. These health problems may present with decreased milk production, altered milk 

composition, reduced reproductive capacity, shortened life expectancy and lower cull value, 

resulting in both animal and economic loss. Interventions for PRMDs are currently available 

after onset of clinical signs, but result in additional economic losses associated with 

medication and labor costs. Identifying animals that will have these complications early 

enough to prevent onset of PRMDs has not been possible previously. 

 

PRMDs are multifactorial and the causes are complex. The different phenotypes of PRMDs 

have been documented based on the clinical signs of disease manifested. However, although 

a variety of health problems have been identified, they are inter-related physiologically, and 

not distinct, independent entities69,70. Acute milk fever results from hypocalcemia, 

characterized by reduced ionized blood calcium levels, and must be treated as a medical 

emergency71. Displaced abomasum, in contrast, has been shown to be preceded by ketosis, 

and is often accompanied by subclinical hypocalcemia72. Ketosis is a metabolic process that 

occurs when the body does not have enough glucose to maintain normal cellular energy 

production73. In consequence, stored fats are broken down and mobilized to meet energy 

needs, resulting in elevated fatty acids and a build-up of organic acids called ketone bodies 

within the circulation. Fatty liver syndrome in dairy cows has been shown to occur when the 
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synthesis of triacylglycols (TGs) is higher than their export and appears to be associated with 

hormone disregulation74 and not surprisingly, disease states associated with ketosis may 

have varying degrees of hepatic lipidosis. Any of the aforementioned PRMDs may also occur 

with concurrent mastitis, metritis, retained placenta, or other health problems, begging the 

question as to whether or not affected animals may have a genetic predisposition for this 

problem. Since PRMDs are not limited to a single phenotype, and represent an array of 

disorders having inter-related causes, including dietary and environmental management 

practices, biomarkers that can identify the downstream responses to production demands in 

dairy cows associated with these metabolic disorders would be a valuable tool to detect the 

animals at risk, thereby allowing for appropriate interventions. 

 

Lipid metabolism has been found to be abnormal in certain metabolic diseases in dairy 

cows75. For example, the liver triglyceride to glycogen ratio has been used to predict 

susceptibility of cows to ketosis.75 Increase in plasma non-esterified fatty acids (NEFA) and 

β-hydroxybutyrate (BHBA) are both significantly associated with development of peripartum 

diseases.42 Milk fatty acids, such as C18:1 cis-9, have been proposed as possible biomarkers 

able to diagnose elevated concentrations of plasma NEFA early in dairy cows.76 However, 

there has not been a comprehensive study of lipid biomarkers with the intent of their 

anticipating PRMDs. Most current research has focused on dietary management and how 

diet and/or environmental interactions (e.g., over-conditioning at calving, low nutrient 

intake, environmental stress) can lead to peripartum diseases. Therefore, it is still highly 

desirable to discover novel biomarkers that are able to predict PRMDs with adequate 
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sensitivity and specificity.  

 

In other previous studies, lipids have been shown to be related to metabolic disorders, 

including ketosis77and fatty liver 78 which are also associated with development of DA and 

milk fever. The majority of PRMDs occurs after calving,  during early lactation, and are 

believed to be due to difficulty adapting to the high demands of lactation, resulting in 

physiological imbalances in susceptible cows.79 Since colostrum and milk are both rich in 

lipids, and readily accessible for collection, we hypothesized that lipid expression differences 

in colostrum and milk samples between PRMD susceptible and resistant dairy cows would 

exist and could be potential predictive biomarkers.  

 

‘Shotgun’, i.e., in-depth or comprehensive, lipidomics can survey thousands of unique lipids 

in a single biological specimen. One such lipidomic approach using direct injection, 

electrospray ionization coupled with highly mass accurate, tandem-mass spectrometers 

(ESI/MS/MS) represents a powerful tool for cataloguing, quantifying and chemically 

characterizing lipids20 in tissue, cell or body fluids. Lipidomics can complement peptidomic 

and proteomic methods. Indeed, colostrum and milk samples can be readily fractionated 

into lipid- and protein-rich layers. Lipidomics, especially direct injection lipidomics, is 

substantially less involved than top-down, global proteomic methods, which typically require 

enzyme digestion and multiple separation steps prior to MS. Consequently, lipidomics is well 

suited for the discovery of lipid biomarkers. Early, predictive biomarkers could help detect a 

cow’s propensity for PRMDs in advance, to allow for prevention or early stage treatment 
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interventions. Susceptible cows could be treated with extra nutrients, minerals, or other 

supplements, along with a health-promoting environment, to reduce animal losses80 while 

maintaining a physiologically compatible, albeit lower level of milk production. PRMD 

susceptible cows could be later reintroduced to the herd after their health was stable, and 

lactation parameters met economic production criteria. 

 

3.3 Materials and lipid standards 

Reproducibility and quantitative comparisons using direct injection lipidomics are 

dramatically improved with the introduction of known, consistent amounts of one or more 

synthetic lipid standards to the specimen to be analyzed. The synthetic lipid standard used in 

these studies was archeol (2, 3-diphytanyl-sn-glycerol), purchased from Avanti Polar Lipids, 

Inc. (Alabaser, AL, USA). Chloroform (HPLC grade) was purchased from Avantor Performance 

Materials, Inc. (Center Valley, PA, USA). Methanol (Optima LC/MS) was purchased from 

Fisher Scientific (Fair Lawn, NJ, USA). Isopropyl alcohol (suitable for LC and 

UV-spectrophotometry) and ammonium acetate were purchased from Mallinckrodt 

Chemicals, Inc. (Phillipsburg, NJ, USA) 

 

3.4 Sample collection and analysis  

Sample collection:  

Randomly chosen, age-, lactation-, and parity-matched clinically normal primiparous (n = 

101) and multiparous (n=109) Holstein cows at Brigham Creek Dairy (Elberta, UT) were 

studied. Cows received the same dry cow total mixed ration prepartum and were fed the 
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same fresh cow, early lactation diet the first week postpartum. 

 

Composite aliquots of colostrum secreted on the day of parturition and milk produced on 

the fourth day of lactation were collected from the four quarters of each cow’s udder as it 

pooled in a milking claw and was sampled via the exit milk tube. Samples were collected in 

50 mL conical vials, then buried immediately and completely in crushed ice for transport 

from Brigham Creek Dairy, Elberta, UT, to the lab at Brigham Young University, Provo, UT. 

Each sample was divided into 10 mL aliquots before being flash frozen in liquid N2 in a Dewar 

flask and stored in a -80oC freezer until later analysis.  

 

Animal health records were monitored through 60 days in milk (DIM) for evidence of PRMDs 

or other complication. The specific phenotypes considered were ketosis, left displacement 

abomasum (LDA), milk fever (MF), fatty liver, and/or hind limb weakness attributed to 

obturator nerve paresis (OP) (Table 3). 

 

Lipid extraction:  

Colostrum and milk samples were processed for lipidomic analysis in the same way. Selected 

samples were taken from the -80oC freezer and thawed completely at room temperature. 

Lipid and the aqueous protein fractions of colostrum (or milk) were separated by 

centrifugation (Sorvall Legend XTR Centrifuge, Thermo Scientific) for 20 min at 650 x g at 4oC. 

After separation, 10 mg of the upper, lipid containing layer of the sample was taken and 

dissolved in 3.8 mL of a 2:1:1.25 (v/v/v) solution of chloroform:methanol:isopropanol81. 
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After shaking the mixture for 30 s until complete lipid dissolution, 1.2 mL of double distilled 

deionized water was added and the mixture was shaken vigorously and then allowed to sit 

for organic and aqueous layer separation. After incubating at 37oC overnight for complete 

lipid extraction, the bottom organic phase was taken and diluted 500 times with a 2:1:1.25 

(v/v/v) solution of chloroform:methanol:isopropanol containing 15 mM of ammonium 

acetate and containing the lipid standard archaeol (6 nM) just prior to instrumental analysis.  

 

Lipid profiling by time-of-flight mass spectrometry:   

Mass spectrometric analysis was performed on an electrospray ionization source 

time-of-flight mass spectrometer (6230 ESI-TOFMS, Agilent Technologies). The ionization 

voltage was set to 3.5 kV, gas pressure to 15 psi and the source was controlled by Agilent 

MassHunter Workstation Data Acquisition software (Agilent Technologies, Santa Clara, CA, 

USA). All lipid samples were infused at the flow rate of 10 µL/min by a syringe pump (New 

Era Pump Systems, Inc, Farmingdale, NY, USA) and analyzed in positive ion mode for 3 min 

with MS data collected over the range from m/z 100 to 1500. Technical replicates (n = 2) 

were performed for each sample and the values averaged in order to minimize instrumental 

variability.  

 

Data analysis:  

Instrument software (Agilent MassHunter Qualitative Analysis B.07.00 software, Agilent 

Technologies, Santa Clara, CA, USA) was used to generate a peak list with the abundance of 

each lipid (ion counts) recorded for each specimen. The abundances of the 2 instrumental 
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replicates were exported as CSV files using Agilent MassHunter. Two columns are generated 

in each file, including a peak list with m/z values and the corresponding abundances. The 

peaks were aligned between each run by a home-made macro program within an Excel file 

through Visual Basic Programming Language according to the m/z values and the associated 

abundances recorded. Accuracy of peak alignment by mass between samples was further 

checked manually. The intensity of the lipid standard in each run was determined and used 

for data normalization. Then, the normalized abundances of the 2 instrumental replicates 

were averaged.  

 

Statistical analysis: 

In order to find useful biomarkers that distinguish PRMD-resistant and susceptible animals, 

an initial, two-tailed Student’s t-test was carried out on the normalized abundances for the 

two comparison groups. Those lipid molecules having a p-value less than 0.05 were 

compiled and submitted for further discriminant statistical analysis. Colostrum and milk 

samples were analyzed separately. Furthermore, the ‘shared’ significant m/z values between 

colostrum and milk, i.e., those species that were significantly different in both milk and 

colostrum, were selected, and the differences between the normalized abundances for each 

peak were calculated by subtraction, and the differences further considered in the statistical 

analyses.  

 

Lipid compounds found in significantly different, quantitative abundances based on the 

Student t-test, were included in a second data set that was submitted to linear 
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discriminative analysis to model combinations or panels of milk and/or colostrum 

biomarkers (SAS 9.3, SAS Institute Inc., Cary, NC, USA). Linear discriminant analysis has been 

described previously42. In brief, each statistically different lipid was evaluated in a step-wise 

discriminant statistical analysis with it being the independent variable of lipid abundance in 

samples and HSC ranking (heath score): 0 (healthy) or 1 (PRMD treated/culled/died within 2 

months postpartum) being the dependent variables. A significance level of p <0.05 was 

considered significant for all tests. Discriminant analysis, grouping variable HSC, was 

performed for each colostrum (CS) and milk (MK) measure. Calculated differences between 

‘shared’ markers were obtained through significant m/z values of normalized abundance of 

colostrum minus normalized abundance of milk. A two-sample t-test was carried out to 

determine significant differences in the measurable abundance of lipid species found in 

colostrum and milk. Further statistical analysis was performed using a general linear model 

procedure (PROC GLM) with SAS (version 9.3) to determine differences between PRMD 

positive and negative cows’ lipid species found in colostrum, milk, or shared in both 

substrates. 

 

Additionally, after reviewing the results in milk, it was observed that all lipid biomarkers of a 

particular m/z range were increased in milk of animals later developing PRMDs whereas all 

the lipid biomarkers in a higher m/z range were reduced in disease susceptible animals. To 

test the significance of this, a 2x2 contingency table was created that looked at the 

classification of diseased animals with the consistency of an elevated or decreased 

abundance observed for lipid biomarkers based on their m/z category. A Fisher Exact test 
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was performed and a p-value <0.05 was considered significant. 

 

Lipid identification:  

Three panels of high performing predictive biomarkers were generated by statistical analysis. 

Each marker in the three panels was then chemically characterized by ESI-tandem mass 

spectrometry (MS/MS). Targeted MS/MS was applied to extracts in an effort to identify or 

substantially characterize each useful biomarker. A combination of ‘exact’ mass studies, 

together with MS/MS fragmentation studies using collisionally-induced dissociation, were 

used to chemically characterize candidate biomarkers. Fragmentation data was acquired on 

both a QSTAR Pulsar I quadrupole orthogonal time-of–flight mass spectrometer through an 

IonSpray Source (Applied Biosystems, Foster City, CA, USA) and on an Agilent 6530 

accurate-mass quadrupole/time-of flight mass spectrometry (Agilent Technologies, Santa 

Clara, CA, USA). Specific colostrum and milk samples were selected for characterization 

based on a higher abundance of the targeted lipid peak of interest being present and the 

sample was extracted using 2:1:1.25 chloroform:methanol:isopropanol with 15 mM 

ammonium acetate present.  

 

One MS instrument, the QSTAR, had the following settings: voltage potential of 4800 V for 

the ion spray needle coupled with a flow rate of 4 µL/min using the syringe pump. The 

drying gas used was N2 and the collision gas was nitrogen. Optimal collision energies varied 

depending on the size, structure, and abundance of the lipids, but were typically between 15 

and 40 eV. Analyst QS software was used for controlling the instrument, and a 50 - 2000 
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mass/charge range was used for each scan. 

 

For the second instrument, the Agilent Q-TOF, direct infusion with the syringe pump was 

used for sample injection at a flow rate of 10 µL/min. The ion selection quadrupole Q1 was 

operated under the unit resolution settings, and fragments were detected within the m/z 

range of 100 - 1000 using positive ion mode. Each MS/MS spectrum was acquired for 30 s 

with a collision energy range of 15 - 40 eV. An isolation window of 1.3 was used.  

 

Chromatograms were extracted from ESI total ion chromatograph (TIC) at a MS/MS level 

with Agilent MassHunter Qualitative Analysis B.07.00 (Agilent Technologies, Santa Clara, CA, 

USA). The exported product ion mode was broadly used for lipids identification. Predicted 

identities of target lipids were searched for using the on-line reference site LIPID MAPS82 and 

the Elemental Composition Calculator programed by Frank Antolasic was used in 

conjunction with the experimentally determined accurate mass of lipids after determination 

of their detected adduct. Fragmentation information was further manually determined in 

product ion mode through review of neutral loss species, or scanned fragment information. 

The LIPID MAPS MS fragment prediction tool (http://www.lipidmaps.org/tools/index.html) 

was also applied to determine the product ion peak lists, which often represented sn1 and 

sn2 acyl losses mainly for glycerolipids. 

 

3.5 Results  

Descriptive Data: 
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Day 1 colostrum and day 4 milk secretions were collected from 101 primiparous and 109 

multiparous asymptomatic postpartum Holstein cows. Approximately 10% of the cows from 

this larger cohort developed PRMDs within 24 weeks after calving. Therefore, their samples 

were selected along with healthy matched controls, and submitted to lipidomic analysis. The 

‘disease’ cows were diagnosed with PRMDs, that included abnormalities such as ketosis, left 

displaced abomasum (LDA), hypocalcemia (commonly known as milk fever (MF)) and 

obturator nerve paresis (OP) as shown in Table 3. All cows enrolled in the study were 

monitored for the development of PRMDs and their health history records were tracked for 

8 weeks postpartum in order to select healthy control and PRMD samples for this study. 

Controls were matched by age, parity, and lactation to animals that developed PRMDs and 

sorted according to similar date of calving. The selected samples are described in the 

demographics table (Table 3) that includes cow ID number, the diagnosis group (disease or 

control), and phenotype. Cow 19010, 21389 and 23567 did not have milk collected on day 4 

after calving due to illness or no longer being in the herd. Cow 23608 and 23971 did not 

have milk samples due to specimen loss or it being compromised. Cow 23374 was diagnosed 

with suspected milk fever, but was not included in the final data analysis due to uncertainty 

of the health record diagnosis. 

 

Significant lipid biomolecules between PRMD resistant and susceptible cows through lipids 

profiling approach: 

A peak list of m/z values, i.e., a list of lipid species observed in the MS, with their 

corresponding abundances (ion counts > 600) were exported from the Qq-TOF mass 
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spectrometer using Agilent MassHunter Qualitative Analysis B.07.00 software (Agilent 

Technologies, Santa Clara, CA, USA). A total of 1800-2000 ion peaks (ion counts > 600), 

representing potentially that number of different lipids, were detected in MS runs of 

separately analyzed colostrum and milk samples. After peak alignment among all the 

colostrum or milk samples based on the m/z, normalization was carried out by using the 

ratio of the peak abundance to the abundance of the internal standard. A Student’s t-test 

was applied within Excel for both colostrum and milk lipids. Some potential markers with 

statistically significant differences (p-value <0.05) between diseases and controls are listed in 

Table 3 and Table 4. In total, 61 statistically significant, quantitatively different lipids were 

discovered in colostrum (Table 3), and 77 significant, quantitatively different lipids were 

discovered in milk (Table 4). Of these, 31 lipids were found to be significantly different 

between cases and controls in both colostrum and milk. Additionally, for these ‘shared’ 

markers, differences between colostrum and milk values of the same peak were calculated 

by using normalized abundances of that lipid in colostrum minus its normalized abundance 

in milk. P-values of shared differences were calculated with SAS 9.3 as provided in Table 5. 

Further statistical modeling suggested how predictive these markers are for PRMD resistant 

and susceptible dairy cows as shown in Figure 11.  
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D or C Cow ID Diagnosis Lipids 
C 19048 - csmk 
C 20505 - csmk 
C 20804 - csmk 
C 20873 - csmk 
C 21132 - csmk 
C 21155 - cs 
C 21247 - csmk 
C 21859 - csmk 
C 22219 - csmk 
C 22598 - csmk 
C 22877 - csmk 
C 23609 - csmk 
C 23772 - csmk 
C 26556 - csmk 
C 26558  csmk 
C 26678 - csmk 
C 26776 - csmk 
C 26852 - csmk 
C 26998 - csmk 
C 29241 - csmk 
C 29552 - csmk 
C 29554 - cs 
C 29610 - cs 
D 14112 Died csmk 
D 16320 MF csmk 
D 17829 OP, Died csmk 
D 17841 MF, Died csmk 
D 19010 MF cs 
D 20594 LDA csmk 
D 20712 LDA csmk 
D 21389 LDA csmk 
D 22377 LDA csmk 
D 23567 MF, LDA cs 
D 23608 LDA cs 
D 23762 LDA csmk 
D 23971 LDA cs 
D 25249 LDA csmk 
D 25853 LDA csmk 
D 26035 MF, OP csmk 
D 26832 LDA csmk 
D 29337 LDA csmk 
D 29551 LDA csmk 
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D 29685 LDA csmk 
SuspD 23374 SuspectMF Csmk  

Table 3. Demographics. Postpartum first day colostrum and milk secreted on day 4 were collected from 210 
Holstein cows; cows that developed PRMDs were selected as diseased animals and compared with age, parity, 
and lactation matched controls. D: disease; C: control; MF: hypocalcemia, commonly known as milk fever; LDA: 
left displaced abomasum; OP: obturator nerve paresis; CS: colostrum; MK: milk 
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Table 4. Significant PRMD predictive lipid biomarkers (p<0.05) in colostrum. P values were obtained by 
Student’s t-test between PRMD susceptible and resistant dairy cows. The means of normalized abundance in 
20 diseased animals and 22 controls are shown in the 3rd and 4th columns.  

 

Candidate No. m/z value normalized value of diseases normalized value of controls Abundance comparison p value
1 344.2247 0.114880157 0.103689575 Higher in dieases 0.042061688
2 388.2525 0.121962693 0.112940105 Higher in dieases 0.048555005
3 489.1043 0.373807522 0.290967829 Higher in dieases 0.049572488
4 570.4639 0.176409178 0.11189889 Higher in dieases 0.013504484
5 586.5356 0.202742707 0.265637153 Higher in controls 0.001414111
6 598.5014 0.112665915 0.080800463 Higher in diseases 0.028964416
7 612.5527 0.065970917 0.078148394 Higher in controls 0.043833247
8 615.5605 0.069239485 0.087939768 Higher in controls 0.042757696
9 648.463 0.085478463 0.115099741 Higher in controls 0.049597223
10 652.5473 0.09833478 0.07354011 Higher in diseases 0.04724037
11 654.5636 0.939107997 0.652840941 Higher in diseases 0.014671469
12 659.5223 0.198002601 0.142805881 Higher in diseases 0.004243638
13 668.5827 0.16539349 0.11621013 Higher in diseases 0.015227126
14 675.4999 0.126403559 0.099737468 Higher in diseases 0.034354145
15 680.5771 0.513222007 0.349466169 Higher in diseases 0.004172134
16 682.5948 2.590566861 1.404894949 Higher in diseases 0.000949216
17 687.5507 0.380657952 0.224279411 Higher in diseases 0.000405532
18 694.5999 0.107000465 0.067609268 Higher in diseases 0.003174857
19 695.5915 0.19157094 0.138180817 Higher in diseases 0.007715938
20 696.6045 0.225131134 0.148052417 Higher in diseases 0.002541267
21 703.5253 0.262044497 0.163091281 Higher in diseases 0.001391699
22 704.5477 0.134370476 0.081080697 Higher in diseases 0.000546421
23 706.587 0.217696672 0.140102698 Higher in diseases 0.002698514
24 708.6098 0.732302369 0.366041823 Higher in diseases 0.000466794
25 710.6251 1.197685611 0.752962244 Higher in diseases 0.002817283
26 723.6208 0.399721453 0.242845266 Higher in diseases 0.001139869
27 731.5633 0.12838516 0.084643368 Higher in diseases 0.001933664
28 732.5673 0.113258213 0.082269331 Higher in diseases 0.005490254
29 734.6126 0.098106733 0.07821988 Higher in diseases 0.039988195
30 736.6403 0.249638522 0.1680125 Higher in diseases 0.003092746
31 749.6357 0.126106942 0.068235491 Higher in diseases 0.000335962
32 751.6513 0.196540202 0.133759701 Higher in diseases 0.002955134
33 752.6595 0.139024989 0.105137977 Higher in diseases 0.011054544
34 848.7654 0.934633969 0.749696345 Higher in diseases 0.01734462
35 850.7813 2.586551283 2.001595098 Higher in diseases 0.007887614
36 855.7364 0.491215538 0.395923832 Higher in diseases 0.006170212
37 858.7473 0.101043456 0.074631085 Higher in diseases 0.000650882
38 861.574 0.070961192 0.099041479 Higher in controls 0.035043823
39 862.788 0.166454098 0.11855104 Higher in diseases 0.00492844
40 864.788 0.32486829 0.263356503 Higher in diseases 0.007491634
41 872.745 0.222708437 0.18695274 Higher in diseases 0.023286159
42 873.7445 0.154204103 0.12767435 Higher in diseases 0.016994617
43 874.7789 0.477500575 0.329773294 Higher in diseases 0.000405247
44 876.7964 1.366009113 0.692794525 Higher in diseases 0.00025238
45 878.8096 0.961036568 0.493672525 Higher in diseases 0.000466523
46 881.7594 0.304220425 0.175428923 Higher in diseases 6.91957E-05
47 883.759 0.201953914 0.112400998 Higher in diseases 0.000112302
48 889.7908 0.142787896 0.118691043 Higher in diseases 0.015486554
49 890.8055 0.151286664 0.110704439 Higher in diseases 0.0015826
50 891.8077 0.338952477 0.272686318 Higher in diseases 0.007426845
51 897.7294 0.157819943 0.098184814 Higher in diseases 0.00036568
52 899.7562 0.139790521 0.08871563 Higher in diseases 0.000225419
53 900.7894 0.220946001 0.139311432 Higher in diseases 0.000267302
54 902.8102 0.365998427 0.175549359 Higher in diseases 0.000451383
55 904.8244 0.333156789 0.156091233 Higher in diseases 0.00073496
56 906.8353 0.180777646 0.101178543 Higher in diseases 0.000967386
57 917.8214 0.169726223 0.098529751 Higher in diseases 0.000225545
58 919.8341 0.123850821 0.066611016 Higher in diseases 0.000146124
59 964.5856 0.073206947 0.105163006 Higher in controls 0.015808127
60 965.6969 0.107055016 0.06447254 Higher in diseases 0.000659915
61 967.7134 0.122811632 0.10158746 Higher in diseases 0.036742958
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Table 5. Significant PRMD predictive lipid biomarkers (p <0.05) in milk. P-values were obtained by Student’s 
t-test between PRMD susceptible and resistant dairy cows. The means of the normalized abundance in 16 
diseased animals and 20 controls are shown in the 3rd and 4th columns.  

 

 

 

Candidate No. disease disease _mean control_mean Abundance comparison p value
1 572.4828 0.227073934 0.489156442 Higher in controls 5.66205E-05
2 600.5146 0.426188238 0.918376635 Higher in controls 1.72877E-05
3 626.5314 0.332706621 0.530873278 Higher in controls 0.000134814
4 628.5465 1.404315699 2.637108898 Higher in controls 4.38457E-06
5 633.5 0.150864782 0.265523759 Higher in controls 9.266E-06
6 640.5417 0.105486833 0.135917624 Higher in controls 0.005901871
7 642.5606 0.270175612 0.451766164 Higher in controls 2.83684E-07
8 652.5463 0.163679734 0.21762311 Higher in controls 0.001433185
9 654.5626 1.572666631 2.098405246 Higher in controls 0.000953975
10 656.5783 4.802102104 6.779852288 Higher in controls 2.41044E-05
11 657.5816 1.821030483 2.549534246 Higher in controls 2.62771E-05
12 658.5805 0.415087477 0.561397172 Higher in controls 4.48915E-05
13 659.5156 0.270610645 0.332875614 Higher in controls 0.005245116
14 661.5323 0.450185483 0.620125673 Higher in controls 3.67155E-05
15 668.5788 0.314661478 0.390475848 Higher in controls 0.003101227
16 669.5772 0.310755852 0.47647484 Higher in controls 1.96141E-06
17 670.5907 0.530011614 0.733158168 Higher in controls 1.14043E-05
18 675.4994 0.142120983 0.197464108 Higher in controls 0.00216583
19 677.507 0.295841154 0.439742727 Higher in controls 0.002393067
20 684.6074 4.038547322 5.375889332 Higher in controls 0.000453034
21 689.5597 0.404386212 0.525474832 Higher in controls 0.000420062
22 695.5945 0.288641146 0.348551776 Higher in controls 0.010188417
23 697.6055 0.762463331 0.974135232 Higher in controls 0.000186872
24 705.5422 0.280096199 0.389001747 Higher in controls 0.008195311
25 712.6371 1.282073361 1.879963512 Higher in controls 5.97024E-05
26 717.583 0.154938615 0.219021411 Higher in controls 8.00007E-05
27 721.5006 0.193633957 0.23423158 Higher in controls 0.048132457
28 725.6337 0.552109984 0.70004443 Higher in controls 0.001084341
29 732.5781 0.132098686 0.16261439 Higher in controls 0.027660775
30 733.5725 0.117869841 0.172986401 Higher in controls 0.002006596
31 734.6183 0.116226648 0.156062153 Higher in controls 0.000653951
32 738.6543 0.744455276 1.048604892 Higher in controls 0.000161202
33 740.6681 0.493078794 0.834138952 Higher in controls 0.000370689
34 752.6554 0.229681858 0.274217616 Higher in controls 0.007499157
35 753.6635 0.1902872 0.265708582 Higher in controls 5.5045E-05
36 754.6695 0.123341686 0.185374768 Higher in controls 1.45157E-05
37 764.6702 0.234524451 0.302551159 Higher in controls 0.000746323
38 766.6855 0.478029349 0.723050046 Higher in controls 0.000156398
39 768.6997 0.396400708 0.590469763 Higher in controls 0.020185394
40 780.6912 0.094034212 0.132513766 Higher in controls 2.56998E-05
41 792.7012 0.221344994 0.282647947 Higher in controls 0.001632091
42 794.7174 0.537540377 0.700470268 Higher in controls 0.01869102
43 808.7291 0.111769356 0.145186647 Higher in controls 0.000464602
44 809.7327 0.095715993 0.126344779 Higher in controls 0.01393217
45 810.7431 0.111801112 0.139741421 Higher in controls 0.028215881
46 848.7645 1.205927939 0.97061175 Higher in diseases 0.001509529
47 850.7802 3.14024801 2.310057231 Higher in diseases 2.60282E-05
48 855.7365 0.458887525 0.352796522 Higher in diseases 6.91148E-06
49 862.7773 0.261855371 0.206431713 Higher in diseases 0.003570806
50 863.7788 0.262347251 0.229356579 Higher in diseases 0.005640039
51 864.7913 0.444669242 0.343999739 Higher in diseases 0.000307567
52 865.7945 0.287828953 0.231822591 Higher in diseases 0.000241857
53 872.7541 0.240567243 0.203867439 Higher in diseases 0.02493066
54 874.7794 0.884013552 0.601752056 Higher in diseases 0.000311042
55 876.7962 3.975003341 2.283182118 Higher in diseases 4.45627E-05
56 878.8092 2.900494826 1.794288368 Higher in diseases 2.01532E-05
57 879.8124 1.398439996 0.894483247 Higher in diseases 2.12595E-05
58 881.7614 0.612866418 0.381728559 Higher in diseases 5.98877E-06
59 883.7632 0.430026039 0.285768862 Higher in diseases 7.37893E-06
60 888.789 0.123029972 0.086810486 Higher in diseases 0.000846913
61 889.7915 0.192554315 0.14362613 Higher in diseases 0.000244128
62 890.8051 0.317900205 0.212723122 Higher in diseases 0.000149677
63 891.8074 0.453012105 0.312917793 Higher in diseases 1.28318E-05
64 896.7527 0.090403386 0.075289411 Higher in diseases 0.022673036
65 897.7299 0.303077206 0.222820825 Higher in diseases 0.012642883
66 898.76 0.232897889 0.176361653 Higher in diseases 0.006328352
67 900.7909 0.393967161 0.269274785 Higher in diseases 0.000288913
68 902.8106 1.199197503 0.637454941 Higher in diseases 2.18259E-05
69 904.8246 1.308415831 0.719666079 Higher in diseases 1.31168E-05
70 906.836 0.588400876 0.365295263 Higher in diseases 1.85972E-05
71 908.8049 0.157094249 0.110560115 Higher in diseases 8.6087E-05
72 909.7825 0.221899985 0.133238648 Higher in diseases 5.60766E-06
73 915.8031 0.107663063 0.075385692 Higher in diseases 0.000332921
74 917.8208 0.374602543 0.223599465 Higher in diseases 5.61349E-05
75 919.8333 0.29246751 0.187698404 Higher in diseases 4.94772E-05
76 939.6842 0.188264489 0.240903499 Higher in controls 0.000158301
77 967.7069 0.16795484 0.19725702 Higher in controls 0.005952086
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Obs biomolecules   Mean_C   Mean_D Difference   StdErr   DF  tValue  Probt 

1    DF652_5473   -0.1448 -0.06356  -0.08124   0.01650   34   -4.92 <.0001 

   2    DF654_5636   -1.4531  -0.6123   -0.8407    0.1475   34   -5.70 <.0001 

   3    DF659_5223   -0.1912 -0.06697   -0.1243   0.02416   34   -5.14 <.0001 

   4    DF668_5827   -0.2751  -0.1447   -0.1304   0.02803   34   -4.65 <.0001 

   5    DF675_4999  -0.09726 -0.01074  -0.08652   0.02147   34   -4.03 0.0003 

   6    DF695_5915   -0.2121 -0.09033   -0.1217   0.02325   34   -5.23 <.0001 

   7    DF732_5673  -0.07994 -0.01389  -0.06605   0.01811   34   -3.65 0.0009 

   8    DF734_6126  -0.07823 -0.01643  -0.06180   0.01415   34   -4.37 0.0001 

   9    DF752_6595   -0.1702 -0.08774  -0.08243   0.01767   34   -4.67 <.0001 

   10   DF848_7654   -0.2434  -0.2847   0.04131   0.09265   34    0.4  0.6585 

   11   DF850_7813   -0.3721  -0.5994    0.2273    0.2663   34    0.85 0.3993 

   12   DF855_7364   0.03917  0.02702   0.01215   0.04909   34    0.25 0.8059 

   13   DF862_788   -0.09118 -0.09356  0.002384   0.02681   34    0.09 0.9297 

   14   DF864_788   -0.08544  -0.1160   0.03054   0.03793   34    0.81 0.4263 

   15   DF872_745   -0.01984 -0.01910  -0.00074   0.02608   34   -0.03 0.9777 

   16   DF874_7789   -0.2784  -0.4047    0.1263   0.07273   34    1.74 0.0915 

   17   DF876_7964   -1.6041  -2.5649    0.9608    0.3163   34    3.04 0.0046 

   18   DF878_8096   -1.3085  -1.8992    0.5907    0.2005   34    2.95 0.0058 

   19   DF881_7594   -0.2066  -0.2989   0.09229   0.04264   34    2.16 0.0375 

   20   DF883_759    -0.1734  -0.2197   0.04625   0.03018   34    1.53 0.1346 

   21   DF889_7908  -0.02712 -0.04889   0.02177   0.01526   34    1.43 0.1629 

   22   DF890_8055   -0.1029  -0.1628   0.05986   0.02474   34    2.42 0.0210 

   23   DF891_8077  -0.04577  -0.1122   0.06643   0.03648   34    1.82 0.0774 

   24   DF897_7294   -0.1247  -0.1399   0.01526   0.03527   34    0.43 0.6680 

   25   DF900_7894   -0.1311  -0.1644   0.03338   0.03462   34    0.96 0.3417 

   26   DF902_8102   -0.4627  -0.8160    0.3533   0.09900   34    3.57 0.0011 

   27   DF904_8244   -0.5646  -0.9608    0.3962   0.09890   34    4.01 0.0003 

   28   DF906_8353   -0.2650  -0.4005    0.1355   0.03998   34    3.39 0.0018 

   29   DF917_8214   -0.1262  -0.1980   0.07175   0.02924   34    2.45 0.0194 

   30   DF919_8341   -0.1202  -0.1625   0.04225   0.02184   34    1.93 0.0614 

   31   DF967_7134  -0.09657 -0.04388  -0.05269   0.01299   34   -4.06 0.0003 

Table 6. Statistical analysis of ‘shared’ peak differences, i.e. for lipids significantly different between diseased 
and control animals in both colostrum and milk. The differences of shared biomarkers were calculated by using 
the normalized abundance of colostrum minus the normalized abundance of milk. Mean_C: mean differences 
of controls; Mean_D: mean differences of diseases; 31 shared peaks were found as shown, p values named as 
Probt in the rightmost column were obtained through SAS 9.3.  
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Figure 7. Representative mass spectra of PRMDs lipid marker at m/z 682.59 from 6 colostrum samples. The 
peak at 670.70 m/z is the ammoniated internal standard archaeol. The upper three samples are diseased cows 
(14112, 17841, 20712), and the bottom three are control cows (20873, 22219, 21859). Reproducible internal 
standard was shown in randomized MS runs. As observed in these 6 colostrum samples’ mass spectra, m/z 
682.59 is more highly expressed in cows which later developed PRMDs compared to control animals that 
remained healthy. 
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Statistical modeling of predictive PRMD lipid biomarker panels:   

The best colostrum biomarker panel as found for these data using linear discriminative 

analysis contained three lipids as shown in Figure 8. The panel yielded 90.0% sensitivity and 

86.4% specificity. The best milk biomarker panel contained two lipids as shown in Figure 9, 

which provided a sensitivity of 75.0 % at a specificity of 90.0%. In addition, an optimized 

combined colostrum and milk biomarker panel included 7 lipid markers: 2 lipids were from 

the colostrum data set, 2 lipids were from the milk data set, and 3 markers represented 

calculated differences between colostrum and milk for the ‘shared’ marker set. The 

combined biomarker panel yielded 87.5% sensitivity and 100.0% specificity (Figure 10).  
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(d) 

 
Figure 8. (a) Comparison of the panel of 3 colostrum lipid markers at m/z 570.4639, 586.5356 and 855.7473 of 
PRMD susceptible (n = 20) and PRMD resistant (n = 22) cows. SE: standard error (b) Boxplot of colostrum 
marker m/z 570.46. (c) Boxplot of colostrum marker m/z 586.53. (d) Boxplot of colostrum marker m/z 855.74. 
The y-axis is the normalized abundance. The boxplot data were from 20 cows that developed PRMDs and 22 
healthy controls. 
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(c) 

Figure 9. (a) Comparison of the 2 milk lipid markers at m/z 642.5606 and 906.836 yielding the optimum panel 
of PRMD susceptible (n = 16) and PRMD resistant (n = 20) cows. (b) Boxplot of milk marker m/z 642.56. (c) 
Boxplot of milk marker m/z 906.83. The y-axis represents normalized abundance. Boxplot was obtained from 
16 cows that developed PRMDs and 20 healthy controls.  
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(h) 

Figure 10. (a) Representation of a panel of 7 predictive PRMD lipid biomarkers. MK: milk; CS: colostrum; DF: 
difference for shared markers; DF = normalized abundance of CS – normalized abundance of MK; Milk lipids 
m/z 642.5606 and 740.6681 and colostrum lipids m/z 344.2247 and 682.5948 were selected for the panel. 
Additionally, three calculated differences for shared markers (different in both colostrum and milk) with 
statistical differences between animals that later developed PRMDs and cases were included. Lipids with m/z 
652.5473, 906.8353 and 919.8341 shown as negative mean values indicated the normalized abundance of the 
biomarker in milk was higher than in colostrum. (b) Boxplot of milk lipid m/z 642.56. (c) Boxplot of milk lipid 
m/z 740.66. (d) Boxplot of colostrum lipid m/z 344.22. (e) Boxplot of colostrum lipid m/z 682.59. (f) Boxplot of 
normalized shifted abundance differences of colostrum and milk marker m/z 652.54. Y-axis (normalized DF 
abundance) was shifted by 0.2615. (g) Boxplot of normalized abundance differences of colostrum and milk 
marker m/z 906.83. Y-axis was shifted by 0.5821. (h) Boxplot of normalized abundance differences of colostrum 
and milk marker m/z 919.83. Y-axis of normalized DF abundance was shifted by 0.3208. 
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Lipid marker structures were identified by means of targeted MS/MS analyses on the QSTAR 

and/or QqTOF using collisionally-induced dissociation (CID). The markers that made up the 

three panels were submitted to this further characterization. This represented 10 unique 

lipid biomarkers that needed to be chemically characterized. Of these, 5 markers were 

successfully identified as triacylglycerols (TG), including m/z 855.7473 which represented the 

protonated TG (16:0/18:1/18:3) determined based on 2 abundant fragments at m/z 573.49 

and m/z 599.48. The marker m/z 906.836 was first determined to be an ammoniated TG 

because of a peak at [M+NH4 -17]+. Utilizing this same approach, marker m/z 740.6681 was 

characterized as [TG (12:0/14:0/16:0)+NH4]+. Identification studies on the marker m/z 

919.8341 yielded two possibilities, including an oxidized TG (18:0/18:0/19:1)+OH+ or an 

oxidized TG (18:0/18:1/19:0)+OH+. As for the marker m/z 682.5948, a NH3 neutral loss was 

observed in the spectra. And the exact mass of marker m/z 664.56 suggested its elemental 

composition to be C41H76O6, which indicates strongly that the marker is a TG. Three of the 10 

markers were categorized as diacylglycerols (DG) through the same approach with 

determinations based on the fragments and neutral losses in the fragmentation spectra. The 

fragmentation studies identified these 3 markers to be DG (16:0/16:0), DG (18:0/18:0) and 

DG (18:2/19:0). 

  

The elemental composition of the last two lipid markers m/z 570.4639 and m/z 344.2247 

were determined as [C40H56O+NH4]+ and [C21H26O3+NH4]+. However, these two markers were 

not classified into a specific lipid group due to lack of identifiable headgroups or 

recognizable constituent species in the fragmentation data. 
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570.4639 C40H56O+NH4 NA Higher in 
diseases 

0.013504484 
 

586.5356 C35H68O5+NH4 DG(16:0/16:0) Higher in 
controls 

0.001414111 

855.7473 C55H98O6+H TG(16:0/18:1/18:3) Higher in 
Diseases 

                    
0.000650882 

 
Table 7. Identification of predictive PRMD lipid markers that were part of the optimized 
panel for colostrum. These provided 90.0% sensitivity at 86.4% specificity. This panel 
predicted 19 out of 22 control cows and 18 out of 20 cows with later PRMDs. 
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642.5606 C39H76O5+NH4 DG(18:0/18:0) Higher in 
controls 

2.83684E-07 

906.836 C57H108O6 

+NH4 
TG(18:0/18:0/18:1) Higher in 

diseases 
1.85972E-05 

 
Table 8. Characterization of predictive PRMD milk biomarkers. An optimized predictor panel 
of milk lipids provided 75.0% sensitivity at 90.0% specificity, by predicting 12 out of 16 cows 
that later developed PRMDs and 18 out of 20 cows that remained healthy that were used as 
controls.  
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composition 
MK642.5606 C39H76O5+NH4 DG(18:0/18:0) Higher in 

controls 
2.83684E-07 

CS682.5948 C41H76O6+NH4 TG Higher in 
diseases 

0.000949216 

CS344.2247 C21H26O3+NH4 NA Higher in 
diseases 

0.042061688 

DF906.8353 C57H108O6 +NH4 TG(18:0/18:0/18:1) Higher 
changes in 
diseases 

0.0614 

DF919.8341 C58H110O6+OH TG 
(18:0/18:0/19:1)+OH; 
TG 
(18:0/18:1/19:0)+OH 

Higher 
changes in 
diseases 

0.0018 

DF652.5473 C40H74O5+NH4 DG(18:2/19:0) Higher 
changes in 
controls 

<.0001 

MK740.6681 C45H86O6+NH4 TG(12:0/14:0/16:0) Higher in 
controls 

   0.000370689              

Table 9. Characterization of predictive PRMD biomarkers combining colostrum, milk and 
shared markers. An optimized predictor panel using a combination of colostrum, milk and 
the differences between milk and colostrum for ‘shared’ lipids found in both of these 
secretions showing significant differences in both colostrum and milk, provided 87.5% 
sensitivity at a specificity of 100.0%, by predicting 14 out of 16 cows that later developed 
PRMDs and 20 out of 20 cows that remained healthy and served as controls. The difference 
(DF) between the normalized abundance of the biomarker for lipids with m/z 652.5473, 
906.8353 and 919.8341 indicated it was higher in milk than in colostrum. 
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3.6 Discussion   

Production-related metabolic diseases (PRMDs) have one of the highest incidences of 

any disease in dairy cows worldwide, e.g., on average milk fever occurs in ~7% of all animals 

after calving and displaced abomasum in ~5% of cows in well managed dairy herds, which 

requires appropriate management and treatments that may include surgical intervention or 

even loss of the animal depending on the severity of the disease at the time of diagnosis. A 

condition like left displaced abomasum (LDA) can require increased costs for labor, drugs 

and/or surgery, as well as reduced milk production, fertility issues, and possibly death of the 

cow. Prevention of PRMDs is more efficient and much cheaper than any treatment for the 

aforementioned diseases. Thus, a useful and easy way of predicting cows at risk for PRMDs 

in advance of clinical signs is necessary and would be significant in helping preserve dairy 

cow health to enhance overall herd production and to lower economic losses. 

Previous attempts to predict cows at risk for PRMDs have focused on circulating levels of 

lipids in blood plasma or serum. Animals with an elevated serum NEFA concentration (more 

than 0.3 mEq/L) 14 to 2 days prior to calving or animals with an elevated serum BHBA 

concentration (more than 10 mg/dL) and NEFA concentration (more than 0.6 mEq/L) 3 to 14 

days postpartum, have been shown to be at an increased risk of transition diseases in dairy 

cows (see Figure 2 for a summary of specificity and sensitivity using NEFA and BHBA as 

predictors for transition diseases).42 However, the sensitivity and specificity of both of these 

markers are inadequate to be useful, are labor intense to collect venipuncture derived 

samples, and perform much less well than the biomarkers described here. We recognize that 

more samples from geographically distinct regions are needed for analysis in order to 

validate our results, to be confident that the observed biomarkers from our study are 
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present in other cows from unrelated herds. The goal being to identify early, more efficient 

and hence valuable lipid biomarkers in substrates that are readily available, easy to collect 

such as colostrum or milk, and that are predictive of imminent PRMDs in asymptomatic 

postpartum dairy cows.  

A comprehensive lipidomics approach employing ESI-MS was for the first time applied 

to lipid quantification and the selection of potential PRMD markers in day 1 postpartum 

colostrum and day 4 postpartum milk. Here, 10 mg of the cream layer of colostrum or milk 

was used for lipid extraction, and the resulting extract diluted 1000 times before loading the 

specimen onto the ESI-MS. This dilution allowed most of the observed lipids to fall within 

the linear dynamic concentration range of the instrument, i.e. the range over which ion 

signal is directly proportional to the analyte concentration. Most of the lipids in colostrum or 

milk are neutral lipids such as glycerolipids, and consequently a concentration of chloroform 

twice that of methanol was used for the extraction step in order to obtain the broadest 

representation of lipids in the organic phase. Statistical linear discriminative analysis was 

then used to create different panels of biomarkers having greater predictive sensitivity and 

specificity than individual markers. After developing optimal predictive biomarker panels, 

targeted MS/MS analysis was performed to further chemically characterize the 10 relevant 

lipid biomarkers obtained from statistical remodeling.  

As shown in Table 4, among the 61 statistically significant biomarker candidates in 

colostrum, 55 of them were present in higher concentration based on their normalized 

abundances in dairy cows that subsequently developed PRMDs. The other 6 lipids were 

present in higher levels in healthy controls. As previously demonstrated, a number of 
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compounds, most notably IgG, nutrients (e.g., vitamins, lipids) and other serum proteins, are 

secreted as colostrum accumulates in the mammary gland several weeks before calving 

under the influence of various lactogenic hormones, including prolactin, 17β-estradiol, 

insulin, etc83,84. The differences found in the aforementioned lipid biomarker candidates that 

were secreted in colostrum and/or milk from cows that either developed PRMD or remained 

healthy, may have occurred during the period prior to calving. Until now, there have been 

few if any research studies carried out on day 1 colostrum as part of lipid biomarker 

discovery.  

There was a finding in the post-partum day 4 milk specimens, lipid biomarkers that 

suggested a significant change in the biological composition of triglycerides in milk between 

animals destined to develop PRMDs and those animals that remained healthy with normal 

production status. Among the 77 statistically significant biomarker candidates in milk listed 

in Table 5, those having m/z values from 572.48 to 810.74 (n = 45) were all higher in controls, 

whereas those having m/z values from 848.76 to 919.83 (30 of 32) were higher in animals 

that later developed disease. The remaining 2 statistically significant biomarker candidates 

having m/z values of 939.68 and 967.71 were both higher in controls. Overall these lipid 

‘class’ distinctions in milk were significant (p=2.3x10-19). All of these milk lipid biomarkers 

appear to be triglycerides (TG). It has been previously established that the mammary gland 

of the cow synthesizes de novo fatty acids with an even number of carbons of the 4:0-14:0 

acids together with about half of the 16:0 from acetate and β-hydroxybutyrate that accounts 

for approximately 60 and 45% of the fatty acids present in milk on a molar and weight basis, 

respectively85. The remaining 40-60% of milk fatty acids are longer-chain 16:0 and 
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predominantly C18 fatty acids derived mainly from dietary lipids, but are also from lipolysis of 

adipose tissue triacylglycerols, which make their way into the circulation, mainly as plasma 

NEFA and triglyceride-rich lipoproteins85. Thus, fatty acids incorporated into milk fat TGs are 

provided either from mammary de novo synthesis or from the uptake of preformed fatty 

acids from the peripheral circulation. Figure 3 illustrates the milk fat TG synthesis pathway. 

Even though we did not determine the structure of all the milk lipid biomarkers, those lipids 

with m/z values from 848.76 to 919.83 appear to represent longer chain TG based on their 

m/z values and on the analysis of selected lipids in this range. Indeed, those milk biomarkers 

that were included in the optimal panel, then fragmented and characterized having m/z 

values of 906.83 and m/z 919.8341 were found to be TGs having longer chain fatty acid 

components. These were higher in clinically normal cows that later developed PRMDs (see 

Table 9). Milk lipids in the range of m/z 510 to ~810 are likely to be TGs composed of shorter 

chain fatty acids. For example, the biomarker at m/z 740.668 was characterized as a TG 

having shorter chain fatty acids present, i.e., 12:0/14:0/16:0 and was found in higher levels 

in controls. Since the dairy cows that developed PRMDs and the matched control group 

cows selected for this study were provided with the same feed, the differences in the lipid 

biomarker concentrations between affected and healthy animals cannot be attributed to 

diet. 

The long chain fatty acid C18:1 cis-9 has been previously proposed as a possible 

biomarker able to diagnose elevated concentrations of plasma NEFA76. As for 

hyperketonemia, 90% of non-hyperketonemic controls showed a milk fat C18:1 

cis-9-to-C15:0 ratio of 40 or lower, whereas 70% of cows suffering from hyperketonemia 
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showed milk fat C18:1 cis-9-to-C15:0 ratios exceeding 40, which is  consistent with our 

findings of potential different trends between longer chain TGs and shorter chain TGs86. 

Perhaps the higher expressed longer chain TGs in diseased animals is an early compensatory 

response to reduced maternal short chain fatty acid production de novo by the udder.  

As to the reduced levels of short chain fatty acid TGs seen in the PRMD susceptible 

animals, this might be a foreshadowing of those particular cows having limited ability to 

generate adequate amounts of their own TGs which compromises the health of the animal 

as production demands remain very high at the onset of lactation. 

However, in colostrum the results were quite different. The statistically significant 

biomarkers in both the short chain fatty acid and longer chain fatty acid TGs were both 

elevated in the colostrum of animals later developing PRMDs. Clearly colostrum production 

and milk production are representative of different stages in lactation. It has been observed 

that the colostrum secreted within 24 hr after calving has a distinct fat composition 

compared with the secretion produced on day 4 after calving in dairy cows87. Nevertheless, 

in colostrum all lipid biomarkers representative of both short chain and long chain fatty acid 

TGs are significantly increased in those animals that later developed PRMDs. Given the 

timing of colostrum versus milk production, the data strongly suggests that there are 

preexisting problems prior to calving in those animals that later develop PRMDs that lead to 

increased TGs in colostrum, and that the demands of milk production as early as day 4 

postpartum deplete endogenously produced TGs quickly in animals destined to develop 

PRMDs. Collectively, the data suggest that there are profoundly compromised biological 

pathways that lead to or reflect PRMDs, but these remain to be identified. 
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 Of those markers that were part of the optimized panel, 8 out of 10 lipid biomarkers 

were successfully identified. Even though it was challenging to confidently determine the 

lipid class of colostrum biomarker m/z 344.2247, based on the most likely elemental 

composition determined as C21H26O3+NH4 predicted by exact mass studies, it would suggest 

that it is an oxidized lipid. This marker showed a higher normalized intensity in the colostrum 

of case animals compared with healthy controls. 

 The colostrum, milk and optimized mixed panels of lipid markers described here may be 

useful biomarkers for later routine application. All have shown predictive abilities with 

higher than 75.0% sensitivity and specificity. The one panel optimized using linear 

discriminative analysis demonstrated that there was complete separation between cows 

destined to develop PRMDs and those that had an uncomplicated postpartum course. This 

panel combined biomarkers from colostrum, milk and those lipids that were found in both 

colostrum and milk that were significantly different in both specimens (see Figure 11). 

Clearly, further confirmation needs to occur with a more focused effort on the development 

of a specific risk index, i.e., the quantitative likelihood of PRMDs based on specific quantities 

of the several biomarkers as part of a panel. Ideally, a single collection of colostrum and milk 

with lipidomic measurement of targeted lipids could be converted into percent likelihood of 

an animal developing a PRMD. Also, additional studies will need to be done surveying 

broader geographic regions and different dairy breeds to confirm the effectiveness of the 

current biomarkers across all dairy cows.  
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Figure 11. Linear discriminative analysis of the optimal lipid biomarkers demonstrating separation between 
modeled biomarker values for animals developing PRMDs later (red) and healthy control animals (blue). The 
x-axis and y-axis represent the discriminant function scores. 
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Chapter 4 Conclusions and future work 

4.1 Summary of Bacteriophage NS01 proteomics study 

Using the combination of SDS-PAGE and HPLC-MS-MS, bacteriophage NS01 proteins 

were successfully characterized with high probability scores and good coverage according to 

the output results from the search engine Mascot. The protein characterization approach 

was a multi-step process including NS01 purification from salts, SDS gradient gel protein 

separation, excised gel protein digestion with trypsin, digested protein analyzed by 

HPLC-MS-MS, and further data processing with software. SDS-PAGE combined with 

HPLC-MS-MS techniques helped overcome MS ion suppression issues and characterized 

proteins with high confidence (p value <0.01). The hardest part of this project, however, was 

purification step, which required a complete buffer exchange of the bacteriophage before 

loading it onto the SDS-PAGE. This study expanded our knowledge regarding the 

extremophilic virus NS01 allowing it to be categorized as a turreted T7-like virus with flexible 

HK-97 subunits according to the major capsid protein gp88 secondary structure predications 

as well as the putative tail protein gp86. 

However, there still exist some aspects of the research that can be improved. For 

example, two-dimensional gel electrophoresis (2-DE) could be used to separate proteins not 

only based on their molecular weights but also on their isoelectric points, allowing for many 

more bacteriophage proteins to be isolated potentially and studied. See our gel picture 

Figure 4. There were 4 gel bands identified as gp91/68, gp86/78, gp72/69 and gp88/73 that 

because of their similar sizes were not fully separated. However, if 2-DE had been applied, 

protein isoelectric points may have helped to fully clarify more of the bacteriophage 
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proteome. 

4.2 Summary of biomarker study for PRMDs through a lipidomics approach 

This project worked on finding and identifying predictive biomarkers for PRMDs present 

in colostrum and day 4 postpartum milk using mass spectrometry through a lipidomics 

approach. It successfully discovered several individual candidate lipid markers predictive of 

PRMDs as well as three panels of biomarkers resulting from statistical modeling. The three 

panels of biomarkers provided adequate sensitivity and specificity, all higher than 75.0%, 

which would be generally acceptable for use in a real life setting. 

Even though this project has shown promising results from the current three panels of 

lipid markers and the individual biomarker candidates in those panels, improvements still 

need to be made. 

For example, internal lipid standards from diverse representative lipid groups such as 

synthetic TGs could be spiked into the 2:1:1.25 chloroform:methanol: isopropanol extraction 

solution as part of the lipid extraction step. If applicable, a neutral loss scan can be used for 

DG and TG detection and product fragments applied for lipid quantification similar to 

multiple reaction monitoring. In addition, further research can be carried out on lipids 

outside the panels to chemically characterize them more completely, which may provide 

more of an indication of the underlying biological pathway disturbances corresponding to 

metabolic disorders in affected dairy cows. 

Furthermore, in order to be an accepted dairy application, additional blinded studies 

carried out at several geographic locations involving other breeds of dairy cows need to be 
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carried out with the same method to validate the effectiveness of the three panels of 

biomarkers. This may also require development of different biomarkers unique to different 

breeds. Also, specific milk or colostrum biomarkers might be evaluated for their ability to 

predict specific disease phenotypes. With even more research, one could test the response 

of animals to nutritional or other interventions to determine if biomarkers normalize with 

treatment and health improvement allowing for treatment assessment.  
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