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ABSTRACT 

 
 
 

PROGRESS TOWARD THE SYNTHSIS OF THEONELLAMIDE F 
 
 
 
 

Jennifer D. Bettale 
 

Department of Chemistry and Biochemistry 
 

Master of Science 
 
 
 
 
 

 Theonellamide is a bicyclic peptide isolated from a marine sponge, which shows 
interesting biological activity. It contains several unnatural amino acids, among which are 
(2S,3R)-3-hydroxyasparagine (L-erythro-β-hydroxyasparagine) (β-OHAsn) and τ-L-
histindino-D-alanine (τ-HAL). Although there were previous synthetic efforts toward 
each of these unnatural amino acids, the efforts were not ideal due to expensive starting 
material, time-consuming steps, and poor regioselectivity. The presented work 
demonstrates an inexpensive, enantioselective synthesis of β-OHAsn, which can be 
completed in a matter of weeks, as well as several attempts at a novel regiospecific 
approach toward τ-HAL, including work on a model study.  
 
 
Keywords: Theonellamide, bicyclic peptide, β-OHAsn, τ-HAL 
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1. Introduction 

1.1 Theonellamide F 

Theonellamide F (1, Figure 1) was isolated from the marine sponge Theonella sp.1 

Later other family members were also identified: Theonellamides A-E2 (2-6), 

Theopalauamide3 (7), and Theonegramide4 (8). It was suggested2-4 these compounds 

could actually be metabolites of bacteria that are symbionts of the sponge, as they are not 

consistently found in all Theonella sp.  

 

1.2 Biological Activity  

Theonellamide F was found to be biologically active, inhibiting growth of three 

types of pathogenic fungi at 3-12 µg/ml, and was also found to be cytotoxic against 

L1210 and P388 leukemia cell lines, with IC50 values of 3.2 and 2.7 µg/ml1 respectively. 

When the biological activity was researched further, it was found that the compound 

induced extensive large vacuole formation5 by a unique mechanism6 that surprisingly did 
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not cause cell death, as is typical for this phenomenon. It was demonstrated, however, to 

inhibit cellular autophagy,5 which is the cell’s ability to breakdown and reuse its 

components. Its cytotoxicity was attributed in part to its binding with 17β-hydroxysteroid 

dehydrogenase IV, which plays a role in intracellular transport, although it also was 

found to bind glutamate dehydrogenase, which plays a role in the citric acid cycle.7  

1.3 Structure 

Dodecapeptide 1 was found to contain several unusual amino acids1 (Figure 1). 

Those of interest include (2S,3R)-3-hydroxyasparagine (L-erythro-β-hydroxyasparagine) 

(β-OHAsn), (3S,4S,5E,7E)-3-amino-4-hydroxy-6-methyl-8-(p-bromophenyl)-5,7-

octadienoic acid (Aboa), (2S,4R)-2-amino-4-hydroxyadipic acid (Ahad), and τ-L-

histindino-D-alanine (τ-HAL). 

1.4 Previous Synthetic Work 

The Shioiri group attempted a total synthesis of Theonellamide F,8 designing 

conditions for the synthesis of Aboa,9 Ahad,10 and β-OHAsn and τ-HAL.8b As the scope 

of this thesis only covers β-OHAsn and τ-HAL, the discussion here shall be limited to 

these amino acids.  

1.4.1 β-OHAsn Syntheses 

Their efforts toward protected β-OHAsn were based on previously published 

work,8b, 11 shown in Scheme 1. Epoxysuccinic acid 7 was treated with ammonium 

hydroxide, which opens the strained three-membered ring, yielding 8. This dicarboxylic 

acid is selectively converted to methyl ester 9, which is exchanged for amide 10. This β-

OHAsn is then N-protected with a Boc group to yield 11 in a 48% overall yield. 



 

 

3 

However, succinic acid 7 must be harvested from bacteria, which is labor intensive, or 

purchased for $400 per gram, making this synthesis impractical.  

 

 

 

Later, Wong and Taylor12 constructed β-OHAsn as well, using a Sharpless asymmetric 

aminohydroxylation reaction to form 13, with excellent enantiomeric excess. A 

Mitsunobu reaction was then used with p-nitrobenzoic acid as the inverting nucleophile 

to form the ester, which was then removed by azidolysis to give 14. The newly formed 

hydroxyl group was then protected as a TBS ether, and the methyl ester was converted to 

the amide. The latter process took two weeks. At this point, Wong and Taylor had trouble 

oxidizing the PMP-protecting group to the acid in the presence of the Cbz-protected 

amine, and therefore had to do some protecting group shuffling before finally 

constructing 17. The overall yield was about 23%, and the route took several weeks to 

complete.  

O
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HBocHN
HHO
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82% 73%

87% 93%

7 8 9

10 11

Scheme 2: β-OHAsn synthesis of the Shioiri group8b,11 
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Scheme 3: β-OHAsp synthesis of the Taylor12 group 
 

1.4.2 τ-HAL Syntheses 

The previous attempts toward τ-HAL 18 have been extensive and varied.13 The 

Friedman group14 used a copper-complexed histidine 19 to undergo a conjugate addition 

with a large excess of protected amino acrylate 20 (Scheme 3). 

 

 

 

 The Fujimoto group15 applied a similar approach, using  protected histidine 21 

with α-amino acrylic acid 22 and strong base (Scheme 4). 
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Scheme 3: Friedman’s synthesis of τ-HAL14 
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These syntheses were only used to confirm structural data, so the full experimental 

details were not reported. However, the Henle group16 later published full experimental 

details showing a modest 50% yield for similar conditions (Scheme 5). This conjugate 

addition approach was also demonstrated to generate a 7:1 mixture of isomers in favor of 

the desired τ isomer. The Boschin group17 later optimized the Henle conditions to a 94% 

yield by increasing the time exposed to base to 10 days and decreasing the temperature to 

room temperature. However, this resulted in a lower regioselectivity of only 5:1.  

 

 

In an effort to maintain both stereo- and regiocontrol of this peptide coupling for 

their work toward the total synthesis of Theonellamide F, the Todho group8b used a 

different approach.18 They utilized strained β-lactone 24 as an electrophile for an excess 

of protected histidine 25, and quenched the reaction with a tert-butyl source to yield the 

tert-butyl esters 27 and 28.  While this approach was stereoselective, it was only mildly 

regioselective, generating a 2:1 ratio of the desired τ regioisomer to its π counterpart. 

HN

N CO2H
AcHN

+ CO2HAcHN 1. aq. NaOH 50 oC, 4 d

2. HCl, 110 oC, 16 h
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+21 22 18
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+

N
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7    :    1

1. aq. KOH (pH 9)
90 oC, 24 h

2. 12 N HCl, 110 oC,
Sealed tube, 23 h
3. Dowex H+

21 22 18 23

Scheme 4: Fujimoto’s synthesis of τ-HAL14 

Scheme 5: Henle’s synthesis of τ-HAL16 



 

 

6 

Furthermore, the yield was only 61% combined, with only 40% of the desired 

regioisomer. Other problems arise when the syntheses of this reaction’s starting materials 

are considered. Lactone 24 is a product of two reactions with only moderate yields.18-19 

Likewise, protected histidine 25 is used in large excess, which is also undesirable.  

 

1.5 Summary 

Theonellamide F (1) is a natural bicyclic dodecapeptide with interesting biological 

activity.1, 5-7 Due to its limited natural abundance and its interesting structure, a total 

synthesis would be valuable.8-10_ENREF_9 Previous attempts toward β-OHAsn were 

based on an impractical starting material8b or suffered from excessive length.12 The 

syntheses of the central τ-HAL moiety (12) have been lacking in stereo- and 

regioselectivity, leaving room for improvement.8b, 13-17  
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2. β-OHAsn 

 
For our synthesis of β-OHAsn (10), we recognized a similarity in our proposed L-

histidine pathway for our τ-HAL (12) synthesis, and took advantage of the potentially 

shared intermediate (29) to create a divergent synthesis. Commercially available D-serine 

methyl ester was transformed into 291 in four steps, with an overall yield of 89%.  

Conditions employed with related amino aldehydes2 were screened (Table 1) for the best 

yielding and most diastereoselective cyanide addition to 29 (Scheme 1) by a coworker 

and myself.  

 

Scheme 4: Protected β-OHAsn formation2 

Table 1: Conditions screened for the diastereoselective addition of cyanide 
Lewis Acid –CN Source Time (Hours) Temp (o C) dr Calculated 

Yield 
AlMe3 

 

4.5 0 2:1 38% 

AlMe3 

 

6 0 3.3:1 46% 

AlMe3 

 

7 0 3.3:1 78% 

ZnBr2 TMSCN 6 –20 >19:1 39% 
ZnBr2 TMSCN 5 –20 >19:1 55% 

 

AlMe3 and ZnBr2 were shown to preferentially form the syn-diastereomer by both 

NMR studies using Mosher esters2a and X-ray cystallography.2b This trend may be 

explained using the Felkin-Ahn model of this reaction (Scheme 2). The nucleophilic 

attack will be more likely to happen over the less sterically hindered side of the molecule, 

giving the syn stereochemistry.  

Bn2N
O

OTBS

Bn2N CN

OTBS

OH
Bn2N CN

OTBS

OTBDPS

29 30 31

Conditions TBDPS-Cl

HO CN

HO CN

HO CN



 

 

9 

 

Figure 1: Felkin-Ahn model of 29 
  

While the AlMe3 and acetone cyanohydrin method afforded a higher yield of the 

desired isomer (60%) as calculated by NMR, the diastereomers were difficult to purify, 

lowing the obtained yield to 51%. The best conditions found for this cyanohydrin 

formation were using ZnBr2 at –20 oC for 5 hours to give a 55% yield with a dr that was 

greater than 19:1, as this is the limit of detection using NMR. 

The cyanohydrin was then protected to yield TBDPS ether 31. Application of the 

previously used1 silylation conditions of the TBS group using TBDPSCl and imidazole 

yielded incomplete silylation, and 60% of the starting material was recovered. Other 

conditions3 using DMAP and triethylamine produced 31 in 75% yield.   

2.1 Summary 

While the previous syntheses of β-OHAsn (10) (Chapter 1) were accomplished at 

a reported overall 48% yield4 and 23% yield,5 they were impractical for our use. The 

Shiori group’s synthesis4 was based on a starting material only available through 

harvesting from bacteria or purchasing for $400 a gram, while the Taylor synthesis5 had 

an amidation step that took two weeks and involved protecting group shuffling. Our 

overall yield was 37%, although from common intermediate 29 of the proposed τ-HAL 

synthesis (Chapter 3) it was 42%. Importantly, the conversion of D-Ser-OMe into 31 can 

be completed in one week.  
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–CN
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Bn2N O
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OH
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3. Progress Toward τ-HAL 

As previously shown (Chapter 1), the prior work creating τ-HAL (12) relied 

heavily on the nucleophilicity of the imidazole nitrogens of histidine, which leads to the 

undesired π-regioisomer also forming.1 We propose first creating the linear frame of the 

dipeptide and then designing a cyclization reaction to create the histidine imidazole. This 

would eliminate the problems of regio- and stereocontrol.  

3.1 Synthesis of the D-Ala Moiety 

For the D-alanine portion of the HAL subunit (Scheme 1), we started with 

commercially available L-serine methyl ester (31), which was trityl protected2 by a 

coworker to afford 32. I then used the Rapoport group’s conditions3 for the ammonolysis 

to provide 33 and the following reduction to produce 34. This afforded the free amine 

used for the peptide coupling to the L-His portion in a 78% overall yield.  

 

Scheme 5: Synthesis of the D-Ala portion of τ-HAL 
 
3.2 Synthesis of the L-His Moiety 

The L-histidine portion was created using previously mentioned aldehyde 29 

(Chapter 2). This aldehyde underwent a condensation reaction4 with ethyl 

isocyanoacetate to yield diastereomers 35 (Scheme 2). At this point the mixture of 
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diastereomers was not separated, as the configuration is unimportant and does not impact 

later reactions.  

 

 

Scheme 6: Synthesis of the D-His portion of τ-HAL 
This mixture 

was then subjected 

to hydrogenation.4-

5 After an inability 

to reproduce the 

yields reported with conditions previously used,6 we found that changing the solvent 

from CH2Cl2 to 1:1 THF:MeOH4 and the loading of Wilkinson’s catalyst from 10 mol % 

to 15 mol %,4 with an additional quantity introduced on the second day, made the yields 

higher and consistent. Afterward, 36 was hydrolyzed6 to 37  in quantitative yields.  

3.3 Progress Toward τ-HAL 

From this point, 34 and 37 were joined in a peptide coupling (Scheme 3).6 

Protecting3 the free hydroxyl group of dipeptide 38 yielded 39. From this point, we used 

the Burgess reagent,7 which is a zwitterionic carbamate, to dehydrate the formamide to an 

isonitrile.  
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Scheme 7: The synthesis of τ-HAL precursor 
 
We then proposed a novel cyclization (Scheme 4) based on a similar previous approach8 

that would result in the formation of the imidazole ring of the histidine. As seen in the 

carbene resonance form of the isonitrile, 40b, there is an empty p orbital on the isocyano 

carbon. While treatment with base deprotonates the alpha carbon to make 41, an 

equilibrium also forms with the amide nitrogen deprotonated (42), which can add into the 

p orbital of the isocyanide carbon creating the anion 43, which may then protonate to give 

the keto-enol tautomers 44 and 45.  
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Scheme 8: Proposed τ-HAL cyclization 
While there was evidence obtained by a coworker supporting this cyclization,6 it 

was reported at an 8% yield and was not reproducible. After screening several bases and 

various conditions in an attempt to elucidate more suitable conditions for this cyclization 

(Table 1), it became clear a model study would be beneficial in preserving the precious 

material and also to simplify the NMR to deduce potential side reactions. 

Table 1: τ-HAL cyclization attempts 
Conditions Results 

1 eq. tBuOK, 0 oC, 30 min, warmed to rt No reaction 

1 eq. tBuOK, 0 oC, overnight Decomposition 

2 eq. nBuLi, –78 oC, 1 h Decomposition 

Excess LDA, –20 oC, 20 min No product isolated 

3.6 eq. NaH, rt, 1 h Decomposition 

2.5 eq KHMDS, 0 oC, 1 h No product isolated 

2 eq. NaOMe, 0 oC, 2 h Decomposition 

 
 
3.4 τ-HAL Model Study 

 
For the model study, we employed a published9 procedure to synthesize the 

isocyanide precursor (Scheme 5). Using racemic phenylalanine 46, thionyl chloride, and 

methanol, methyl ester 47 was made. Acetic anhydride and formic acid were combined to 

make mixed anhydride 48, and 47 was added to create formamide 49.  
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Scheme 9: Model τ-HAL cyclization precursor synthesis 
Previously, for the isocyanide formation of 40 the Burgess reagent was used 

because we were concerned about the potential of the other nitrogens reacting as well. 

However, in the model system there is less functionality, so we followed literature 

precedent,9 applying phosphoryl chloride to create isocyanide 50 in nearly quantitative 

yield. Following this, an amidation reaction8a provided 51 in quantitative yields after 

recrystallization. 

 

Scheme 10: Model cyclization 
Attempting cyclization8b of 51 with various bases yielded results similar to those 

previously obtained, which lead to postulating possible instability of tautomers 52. We 

then proceeded to trap enol 52b as triflate 53. This was desirable, as we hoped to remove 

the oxygen later to yield the unsubstituted imidazole, and this made for a one-pot method. 

Several bases and two triflating agents were screened (Table 2) for this reaction. We 

were able to see the two sets of benzylic hydrogens in the 1H NMR spectra of 51, doublet 

of doublets centered at 3.26 and 4.43, collapse into two singlets at 4.06 and 5.55 ppm 

respectively in the 1H NMR spectra of 53. However, upon later analysis, the product was 
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coeluting with the excess triflating agents during purification, making exact yields 

unknown. Subsequent preparative thin plate chromatography yielded the di- and 

monotriflated triflating agents, but was unable to produce the cyclized product, 

suggesting it was unstable in those purification conditions.  However, using the NMR 

spectra of these coeluted species, calculated yields were made using molar ratios.  

Table 2: τ-HAL model cyclization attempts 
Base Triflating agent Result Equivalents of 

Base 
nBuLi NPhTf2 Decomposition 1 

KHMDS NPhTf2 Decomposition 1 

tBuOK in THF NPhTf2 ca. 8% yield* 1 

Phosphazine Base P1 NPhTf2 Decomposition 1 

NaH NPhTf2 Decomposition 1.5 

tBuOK in THF Comins’ reagent ca. 10% yield* 1 

tBuOK in tBuOH  Comins’ reagent ca. 7% yield* 1 

*These yields were calculated using NMR-derived molar ratios  

3.5 Application of the Cyclization Conditions on τ-HAL 

Returning to the cyclization of the τ-HAL precursor, the conditions developed in 

the model study (Chapter 3.4), were applied to 40. Unfortunately, however, this again 

yielded an unpromising crude 1H NMR spectrum and the column was fruitless. 

Additionally, the cyclized material was not detected by mass spectrometry in the crude 

mixture. 

3.6 Summary 

The D-Ala and L-His components were synthesized2-6 then joined to form the τ-

HAL precursor 40.3, 6-9 As the actual cyclization was troublesome, a model study was 

undertaken. This produced conditions8b that brought about triflate trapped model τ-HAL 
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53, albeit in low yield and contaminated with excess triflating reagent. However, when 

these conditions were applied to our dipeptide precursor, it again was not fruitful.  

3.7 Conclusions and Suggested Future Work 

While the NMR and mass spectral data suggest we were successful in synthesizing 

a triflate trapped model τ-HAL, we were unsuccessful in purifying the cyclized product 

from the triflating agents and in applying those conditions to the dipeptide 40. The low 

yields were also undesirable, and perhaps had many contributing factors. It is possible 

that side products could form from the starting material through intermolecular additions 

or from another anion in equilibrium during the cyclization conditions, as no starting 

material remained. There is also the evidence of decomposition on preparative thin layer 

chromatography that suggests the cyclized product’s instability. Although molar ratios of 

the triflating agent to 53 were found to be similar when crude 1H NMR spectra were 

compared to the purified ones, indicating decomposition was not occurring during the 

column, it is possible that during the reaction time the cyclized product went on to further 

react. In support of this, one side product isolated periodically suggested an unexplained 

debenzylation of the τ nitrogen, although its spectra otherwise matched that of cyclized 

product 53. It would be beneficial for future work to address identifying possible side 

products and improving the reaction conditions to eliminate them. Future work should 

also focus on the purification of 53 from the triflating agents. The next steps are removal 

of the triflate group to yield the unsubstituted imidazole and further optimizing both 

reactions for use on the τ-HAL precursor 40.  
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4. Experimental 

4.1 General Experimental Details 

All anhydrous solvents were dried by passage through a Glass Contour solvent 

drying system containing cylinders of activated alumina. All equipment was dried in an 

oven and cooled over desiccant prior to use. Reagents were purchased from Sigma-

Aldrich and Alfa Aesar, and used without further purification. Flash chromatography was 

carried out using 60-230 mesh silica gel. 1H NMR spectra were acquired on 500 MHz 

spectrometers with tetramethylsilane (0.00 ppm) as internal reference. Signals are 

reported as follows: s (singlet), d (doublet), t (triplet), dd (doublet of doublets), brs (broad 

singlet), m (multiplet). Coupling constants are reported in hertz (Hz). 13C NMR specta 

were acquired on spectrometers operating at 125 MHz with solvent (by lock) as internal 

reference. Mass spectral data were obtained using ESI techniques. 

4.2 Synthesis of β-OHAsn 

(2R,3R)-4-((tert-Butyldimethylsilyl)oxy)-3-(dibenzylamino)-2-hydroxybutanenitrile 

(30)  

 

Aldehyde 29 (62.8 mg, 0.163 mmol) was suspended in anhydrous CH2Cl2 (1.4 mL) 

and cooled to –20 oC under Ar. TMSCN (0.055 mL, 0.412 mmol) was added, followed 

by ZnBr2 (55.4 mg, 0.246 mmol). The resulting mixture was stirred at –20 oC for 5 h. It 

was then warmed to rt and treated with 10% citric acid in MeOH (1.5 mL) and stirred for 

15 min. H2O (3 mL) was added and the aqueous layer was extracted with EtOAc (3 × 6 

Bn2N CN

OTBS

OH

30
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mL), washed with brine (5 mL), dried over Na2SO4, and concentrated in vacuo. Flash 

chromatography (10% EtOAc in hexanes elution) produced 30 (36.7 mg, 55%) as a 

yellow oil: [α]25
D –40.9 (c 1.3, CH2Cl2); 1H NMR (CDCl3, 500 MHz) δ 7.35–7.24 (m, 

10H), 4.5 (d, J = 8.5 Hz, 1H), 4.11 (dd, J = 11.0, 4.5 Hz, 1H), 3.95 (dd, J = 11.0, 5.5 Hz, 

1H), 3.92 (d, J = 13.5 Hz, 2H), 3.65 (d, J = 13.5 Hz, 2H), 3.14–3.12 (m, 1H), 0.93 (s, 

9H), 0.14 (s, 6H); 13C NMR (CDCl3, 125 MHz) δ 138.2, 129.1, 128.7, 127.7, 119.7, 60.2, 

59.7, 54.9, 54.5, 26.6, 25.8, –5.6; HRMS (ESI) m/z 411.2418 (MH+, C24H34N2O2SiH+ 

requires 411.2418); IR (film) νmax 3430, 30.28, 2928, 2856, 2359, 1494, 1454, 1361, 

1258, 1101, 837 cm-1. 

(2R,3R)-4-((tert-Butyldimethylsilyl)oxy)-2-((tert-butyldiphenylsilyl)oxy)-3-

(dibenzylamino)butanenitrile (31)  

 

Cyanohydrin 30 (36.0 mg, 0.0877 mmol) was suspended in anhydrous CH2Cl2 (0.8 mL) 

under Ar. NEt3 (0.032 mL, 0.230 mmol) and DMAP (6.8 mg, 0.0557 mmol) were added, 

and the reaction mixture was cooled to 0 oC. TBDPSCl (0.046 mL, 0.177 mmol) was 

added, the mixture was warmed to rt and stirred for 20 h. It was then diluted with EtOAc 

(6 mL), washed with saturated aqueous NH4Cl (2 mL), H2O (1 mL), saturated aqueous 

NaHCO3 (2 mL), and brine (2 mL). It was then dried over Na2SO4, and concentrated in 

vacuo. Flash chromatography (2.5–5% EtOAc in hexanes gradient elution) produced 31 

(41.1 mg, 72%) as a yellow oil: [α]25
D –7.5 (c 0.56, CH2Cl2); 1H NMR (CDCl3, 500 

MHz) δ 7.64–7.20 (m, 20H), 4.40 (d, J = 8.5 Hz, 1H), 3.89 (dd, J = 15.0, 5.0 Hz, 1H), 

Bn2N CN
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OTBDPS

31
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3.83 (dd, J = 22.0, 13.5 Hz, 4H), 3.65 (dd, J = 10.5, 7.5 Hz, 1H), 3.33–3.28 (m, 1H), 1.09 

(s, 9H), 0.86 (s, 9H), 0.03 (s, 6H); 13C NMR (CDCl3, 125 MHz) 136.1, 135.8, 128.9, 

128.3, 127.0, 119.3, 63.7, 63.0, 60.6, 55.7, 26.9, 25.9, 19.3, 18.0, –5.5, –5.6; HRMS 

(ESI) m/z 649.3583 (MH+, C40H52N2O2Si2H+ requires 649.3583); IR (film) νmax 2929, 

2857, 1471, 1427, 1256, 1106, 838 cm-1. 

4.3 Synthesis of Model τ-HAL 

(4S)-Ethyl-5-((tert-butyldimethylsilyl)oxy)-4-(dibenzylamino)-2-

formamidopentanoate1 

 

Allylformamide 35 (1.28 g, 2.58 mmol) was suspended in anhydrous THF:MeOH 

(1:1, 25 mL) and placed under Ar. Wilkinson’s catalyst (0.34 g, 0.387 mmol) was added 

and the flask was set into a bomb. The chamber was flushed (3 × 25 bar) with H2, and 

then filled with H2 (25 bar). The reaction was stirred at rt overnight for 2 d. The chamber 

was vented and two small spatula scoops of catalyst were added. The chamber was 

flushed and repressurized as before, stirring for another 2 d. The chamber was vented and 

the reaction mixture was filtered and concentrated in vacuo. Flash chromatography (5–

10% EtOAc in hexanes gradient elution) afforded 36 (0.90 g, 70%). Spectral data were 

identical to those previously collected.1  

N-Benzyl-2-isocyano-3-phenylpropanamide (51)  
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Isocyanide 50 (5.95 g, 31.5 mmol), benzylamine (3.45 mL, 31.5 mmol), and p-

toluenesulfonic acid (31.5 mg, 0.183 mmol) were mixed together neat at 60 oC for 35 min 

under Ar, at which point an off-white precipitate was formed. The precipitate was 

filtered, rinsed with cold MeOH and recrystallized with i-PrOH to afford 51 (8.42 g, 

100%) as an ivory powder: 1H NMR (CDCl3, 500 MHz) δ 7.34–7.29 (m, 6H), 7.27 (s, 

1H), 7.25 (s, 1H), 7.14 (s, 1H), 7.13 (s, 1H), 6.49 (brs, 1H), 4.50–4.45 (m, 3H), 4.39 (dd, 

J = 15.0, 5.0 Hz, 1H), 3.31 (dd, J = 15.0, 5.0 Hz, 1H), 3.22 (dd, J = 15.0, 5.0 Hz, 1H); 13C 

NMR (CDCl3, 125 MHz) δ 164.6, 136.7, 134.4, 129.6, 128.8, 128.7, 127.9, 127.8, 127.7, 

110.0, 44.0, 38.6; HRMS (ESI) m/z 265.1361 (MH+, C17H16N2OH+ requires 264.3217); 

IR (film) νmax 3298, 3064, 3030, 2930, 2142, 1666, 1604, 1534, 1496, 1454, 1286, 1240, 

1081, 1029 cm-1. 

1,4-Dibenzyl-1H-imidazol-5-yl trifluoromethanesulfonate (53)  

 

Isocyanide 51 (0.7092 g, 2.68 mmol) was suspended in anhydrous THF (26.8 mL) 

and cooled to –78 oC under Ar. Potassium tert-butoxide (1M in tert-butanol) (2.68 mL) 

was added dropwise. The reaction was warmed to –20 oC for 20 minutes and then cooled 

to –78 oC. Comins’ reagent (2.1 g, 5.37 mmol) in THF (1.8 mL) was added, and the 

resulting mixture was stirred at  –78 oC for 1 hour, then warmed to rt and stirred 
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overnight. The solvent was removed, and CH2Cl2 (35 mL) was added. The organics were 

washed with H2O (2 × 35 mL), dried over Na2SO4, and concentrated in vacuo. Flash 

chromatography (0–5% EtOAc in hexanes gradient elution) produced 53 (0.9712 g of 

14:1 mixture with Comins’ reagent, ca. 7%). 1H NMR (CDCl3, 500 MHz) δ 7.39–7.28 

(m, 6H), 7.24–7.17 (m, 3H), 7.13–7.06 (m, 2H), 5.56 (s, 2H), 4.05 (s, 2H); 13C NMR 

(CDCl3, 125 MHz) δ 136.5, 135.0, 133.2, 139.2, 129.0, 128.6, 128.5, 127.9, 127.3, 126.9, 

126.6, 49.5, 32.2; HRMS (ESI) m/z 397.0877 (MH+, C18H15F3N2O3SH+ requires 

397.0877).  
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