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ABSTRACT 

Identification of the Infection Route of a Fusarium Seed Pathogen 
into Non-Dormant Bromus tectorum Seeds  

JanaLynn Franke 
Department of Plant and Wildlife Sciences, BYU 

Master of Science  

The genus Fusarium has a wide host range and causes many different forms of plant disease. 
These include seed rot and seedling blight diseases of cultivated plants. The Fusarium-caused 
diseases of wild plants are less well-known. In this study we examined Fusarium sp. n-caused 
disease development on non-dormant seeds of the important rangeland weed Bromus tectorum as 
part of broader studies of the phenomenon of stand failure or ‘die-off’ in this annual grass. We 
previously isolated an undescribed species in the Fusarium tricinctum species complex from die-
off soils and showed that it is pathogenic on seeds. It can cause high mortality of non-dormant B. 
tectorum seeds, especially under conditions of water stress, but rarely attacks dormant seeds. In 
this study, we used scanning electron microscopy (SEM) to investigate the mode of attack used 
by this pathogen. Non-dormant B. tectorum seeds (i.e., florets containing caryopses) were 
inoculated with isolate Skull C1 macroconidia. Seeds were then exposed to water stress 
conditions (-1.5MPa) for 7 d, then transferred to free water.  Time lapse SEM photographs of 
healthy vs. infected seeds revealed that hyphae under water stress conditions grew toward and 
culminated their attack at the abscission layer of the floret attachment scar. A prominent 
infection cushion, apparent macroscopically as a white tuft of mycelium at the radicle end of the 
seed, developed within 48 hours after inoculation. Seeds which lacked an infection cushion 
completed germination upon transfer to free water, whereas seeds with an infection cushion were 
almost always killed. In addition, hyphae on seeds that did not initiate germination lacked 
directional growth and did not develop the infection cushion. This strongly suggests that the 
fungal attack is triggered by seed exudates released through the floret attachment scar at the 
initiation of germination. Images of cross-sections of infected seeds showed that the fungal 
hyphae first penetrated the caryposis wall, then entered the embryo, and later ramified 
throughout the endosperm, completely destroying the seed.  

Keywords: Bromus tectorum, cheatgrass, Fusarium, scanning electron microscopy, die-off, seed 
pathogen 
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INTRODUCTION 

The invasive winter annual grass Bromus tectorum (cheatgrass, downy brome) forms 

extensive near-monocultures over hundreds of thousands of hectares in semi-arid regions of 

western North America. A common but poorly understood phenomenon in B. tectorum stands is 

the occurrence of stand failure or ‘die-off’ over sometimes large areas. Stand failure in B. 

tectorum is thought to be caused by soilborne pathogens, possibly related to those which cause 

similar stand failure in winter cereal crops (1). In a recent study, Fusarium sp. n isolates 

representing an undescribed species in the Fusarium tricinctum species complex were obtained 

from killed non-dormant (readily germinable) B. tectorum seeds which had been planted into die-

off soils (26). These Fusarium isolates were found to be highly pathogenic on non-dormant B. 

tectorum seeds, particularly under water-stress conditions simulating field conditions following 

early autumn storms. In the pathogenicity test, non-dormant seeds were inoculated with F. sp. n 

macroconidia and kept at -1.5 MPa for 1 wk. The seeds were subsequently exposed to a free-

water environment at which point 25-83% of the seeds were killed. Even without the water stress 

treatment, mortality as high as 43% was observed. These results suggested that F. sp. n. might be 

an important causal organism implicated in the die-off phenomenon and prompted further studies 

of its pathogenesis on B. tectorum seeds. 

Members of the genus Fusarium are important crop pathogens worldwide and have been 

the subject of intensive study, particularly those species which impact winter cereal crops (11). 

Several Fusarium species are reported to cause seed ‘rot’ diseases, often as part of a complex of 

diseases which affect different stages of the host, such as seeds, seedlings, the crowns of 

developing plants (e.g., diseases caused by F. graminearum and related species) (29). When seed 

rot and seedling blight are caused by the same organism, pre-emergence mortality may be due to 
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pathogen attack either before or after germination. There are apparently few studies on the mode 

of attack by Fusarium directly on ungerminated seeds.  The most extensive work has been with 

Fusarium species which infect maize seed (5, 6, 21). More recently, work has been done on 

species pathogenic on the seeds of root-parasitic plants in the context of biocontrol. Heiko et al. 

(15) showed that infection by Fusarium oxysporum f. sp. orthoceras resulted in the destruction of 

the germ tube of the seed and reduced the number of parasitic attachments of Orobanche cumana 

to its host plant (sunflower). In a more recent study (30), a Fusarium oxysporum isolate from 

Germany was noted to have the capability to reduce Orobanche ramosa seed germination by 

40%. In a more specialized study regarding the mode of infection for Fusarium nygamai into 

Striga hermonthica seeds, Sauerborn et al. (34) showed that this pathogen penetrated the seed 

coat along the cell walls, thereby requiring less energy, and that penetration culminated in the 

disintegration of the embryo and endosperm. 

Baughman and Meyer (1) determined that dormant (not readily germinable) B. tectorum 

seeds occurred at similar densities in the persistent seed banks of die-off and adjacent non-die-off 

soils. This suggested that the pathogen responsible for seed death and stand failure only impacted 

non-dormant seeds in the process of initiating germination and had little or no effect on dormant 

seeds.  Most studies of the interactions between seeds and their pathogens in the ‘spermosphere’ 

have involved crop species whose seeds are non-dormant at planting, so that the impact of 

dormancy status on pathogenesis has not been considered (31). Studies of losses to potentially 

pathogen-caused decay in weed seed banks have also not explicitly considered dormancy status, 

even though seed dormancy in weeds of arable lands is common (e.g., 10).  The relationship 

between seed dormancy and pathogen-caused mortality has recently received theoretical 

consideration, but there are few empirical studies available to test model predictions (4).  
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Although we have isolated F. sp. n strains from die-off soils and demonstrated their 

pathogenicity on B. tectorum seeds, the actual mechanism used by the fungus to infect and kill 

rapidly germinating, non-dormant B. tectorum seeds is poorly understood. Therefore, the 

objective of this study was visually examine the mode of attack which is implemented by this 

pathogen to cause mortality of non-dormant B. tectorum seeds, and to gain insight into why it 

may be less able to attack dormant seeds.  

MATERIALS AND METHODS 

Genetic Identification: The F. sp. n isolate Skull C1 used in the current study was 

obtained from the strain collection used by Meyer et al (26) in the pathogenicity test previously 

described. Amplification of a portion of the TEF (translation elongation factor) gene was 

conducted using primers ef1 (forward primer; 5’-ATGGGTAAGGA(A/G)GACAAGAC-3’) and 

ef2 (reverse primer; 5’-GGA(G/A)GTACCAGT(G/C)ATCATGTT-3’) (9). Sequencing results 

were used in a BLAST search of the FUSARIUM-ID (9) and NCBI GenBank databases.  

Inoculum production, seed inoculation, and incubation. Skull C1 was cultured onto SNA 

(Spezieller Nahrstoffaremer Agar) lined with one sterile filter paper and grown for 2-3 weeks to 

induce sporulation (22). Once macroconidia were observed, spores were suspended in sterile 

ddH2O (double deionized water) by pipetting 10 ml of ddH2O into the Petri dish and gently 

knocking the spores off of the mycelium with the back of a sterile spatula. Spore concentration 

was determined using a hemacytometer and diluted to 250,000 spores-ml-1. Non-dormant B. 

tectorum seeds (Brigham Young University Farm, Spanish Fork UT 2011) were immersed in the 

spore suspension and shaken for 1 minute; excess inoculum was then discarded. Inoculated seeds 

were placed in a sterile Petri dish lined with a PEG- 8000 (polyethylene glycol)-soaked blue 

blotter (Anchor Paper Company, St. Paul MN). The PEG concentration was calculated to create 
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a water potential of -1.5 MPa (27) and was checked with the Aqualab dew point water activity 

meter 4TE (Decagon, Pullman WA). Seeds were incubated at 25°C in the PEG solution for 7 d, 

then transferred to free water and incubated at 25°C for up to 14 additional days. 

Sample selection, preparation, and viewing. Inoculated seeds were randomly sampled 2, 

24, 48, 72, and 96 hours after inoculation. Selected samples were then fixed by gently placing 

samples into a 2-percent gluteraldehyde mixture for 48 hours. The fixed samples were placed 

into a sodium cacodylate working buffer at a pH of 7.2-7.4 to wash the samples. The buffer 

solution was replaced 5 times at 15-minute intervals using the same buffer. Ethanol dehydration 

steps were then used with ethanol concentrations of 30, 50, 75 (5 times, each for 15 minutes), 90 

and 100% (5 times, each for 30 minutes). Finally, dehydrated samples were dried in a critical-

point dryer (Tousimis Autosamdri 931.GL, Rockville MD) to ensure sample preservation by first 

replacing 100-percent ethanol with liquid carbon dioxide and then carbon dioxide gas.  

Each sample was mounted to a metal stub using epoxy. Samples were then coated with 

gold palladium after drying for 24 hours. Coated samples were viewed using the FEI XL30 

ESEM FEG and the FEI Helios Nanolab 600 electron microscope (FEI, Hillsboro OR) at a 

voltage of 5.0 Kv. 

Vertical cross section SEM sample preparation and viewing. Cross section samples were 

selected from uninfected and severely infected seeds. The uninfected samples were randomly 

selected from a group of uninoculated non-dormant seeds and were photographed both 

unimbibed and after 14 days of imbibition. The severely-infected samples were visually selected 

from a dish of non-dormant seeds which had been imbibed and inoculated 14d  prior (7d in PEG 

followed by 7d  in free water). The severely-infected samples were chosen based on the 
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appearance of a white tuft at the radicle end of the seed. This ensured that the location of the 

fungal attack could be visualized within the seed.  

Selected samples were fixed and dehydrated using the previously-stated protocol for 

dehydration through the 75%-ethanol solution. Samples were removed from the 75%-ethanol 

solution and slowly submerged in liquid nitrogen with tweezers, and held down until the 

bubbling had ceased. The sample was removed from liquid nitrogen and immediately fractured 

using a frozen razor blade. The fractured sample was immediately placed back into the 75%-

ethanol solution to continue dehydration steps. Seed preservation, mounting, coating, and 

viewing were completed following the previously-stated protocol.  

RESULTS 

Sequencing Results. A nucleotide BLAST query of NCBI GenBank revealed that the 

TEF region of the Skull C1 isolate was an 100% match to accession JX397848, which was 

obtained from BBA 71608 from corn in Serbia. The sequence from this strain was deposited as 

Fusarium cf. reticulatum, i.e, as similar but not identical to F. reticulatum, a member of the F. 

tricinctum species complex. In the associated publication (32), the authors present a phylogenetic 

tree based on maximum likelihood analysis that includes BBA71608 along with 60 other strains 

belonging to F. tricinctum and other species within the complex.  This tree shows that strain 

BBA71608 falls clearly within the F. tricinctum species complex but that it is not identical to 

any known species. This indicates that the taxon represented by Skull C1 is an undescribed 

species within the F. tricinctum species complex.  

Bromus tectorum seed anatomy. In B. tectorum, as in most grasses, the dispersal unit is 

comprised of floret bracts (lemma, palea) which enclose a one-seeded fruit (caryopsis) in which 
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the fruit wall (pericarp) and seed coat (testa) are fused into a single multi-layered structure, the 

caryopsis wall (25; Figure 1a). Within the caryopsis are the embryo and the endosperm. The 

attachment scar is located at the embryo end of the floret, near the point of radicle emergence. It 

represents the vascular tissue through which the seed was provisioned by the maternal plant. The 

attachment scar remains after dispersal as a porous, highly vascularized area which represents a 

direct pathway toward the now-mature caryopsis (Figure 1b), beginning at the abscission layer 

and ending at the exterior of the caryopsis wall. Seeds in our research were initially not imbibed; 

therefore the endosperm had not begun digestion (Figure 1c). However, once a non-dormant seed 

becomes imbibed, the seed germination process is initiated. This begins with the digestion of 

starch cells within the endosperm (Figure 1d) and presumably results in the diffusion of products 

of endosperm digestion through the weakening zone of radicle emergence in the caryopsis wall 

and then through the porous abscission layer.   

Fusarium infection process on non-dormant Bromus tectorum seeds. Non-dormant B. 

tectorum seeds were inoculated with Skull C1 macroconidia and allowed to imbibe while under 

water stress as described earlier (Figure 2a). The macroconidia developed adhesion pads only 2 

hours after contact with the surface of the floret bracts (Figure 2 b-d). Some macroconidia did 

not produce adhesion pads but instead immediately produced germ tubes (Figure 2e). Within 24 

hours, the majority of the macroconidia had germinated and begun to focus their hyphal growth 

towards the abscission layer of the floret attachment scar (Figure 3a, b). Within 48 hours, the 

hyphae grew preferentially toward and culminated at the abscission layer regardless of 

macroconidial germination location. The spores prepared for penetration down the vascular 

tissue of the floret attachment scar by developing a large infection cushion (Figure 3c). Little 

additional hyphal growth occurred between 48 h and 96 h in PEG (Figure 3d). During this time, 
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growth was temporarily halted until the water potential was increased by transferring the seeds to 

free water on day 7 (Figure 4a), at which point mycelial proliferation recommenced (Figure 4b). 

Occasionally a B. tectorum seed was able to germinate quickly enough to outgrow the infection 

cushion (Figure 5a). On even rarer occasions, a viable seed was apparently still functionally 

dormant and failed to initiate germination. This resulted in wandering mycelial growth on the 

surface of the floret bracts in place of a well-developed infection cushion at the floret attachment 

scar, and was similar to the mycelial growth observed on dormant seeds in earlier experiments 

(Figure 5b).  

Vertical cross section of infected seed. Because the infection of the embryo takes place 

within the floret bracts, a vertical cross-section was necessary to identify the location of the 

mycelial attack (Figure 6). Fourteen days after macroconidial inoculation (7d after transfer to 

free water), hyphae had successfully colonized the vascular tissue of the seed attachment scar 

(Figure 7a). During the 7 d in water, penetration hyphae successfully breached the caryopsis wall 

and came in contact with the nutrient-rich embryo. Colonization began in the intercellular region 

and eventually spread to intracellular growth (Figure 7b, c). Once colonization in the embryo had 

occurred, hyphae grew into the endosperm where they began intercellular growth (Figure 7d). 

The end result was the complete destruction of the non-dormant B. tectorum seed.   

DISCUSSION 

The regulation of Fusarium pathogenesis on seeds in an artificial inoculation experiment 

may be quite different from the process as it occurs in soil. In semi-arid ecosystems, soils are 

rarely at saturation, and nutrients available to microorganisms are sporadically available at best, 

resulting in nutrient competition. This can in turn result in the suppression of pathogen spore 

germination, a phenomenon known as fungistasis (8, 23). Fungistasis may be overcome by an 
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increase in nutrient status, which could be provided by a change in the status of organic matter in 

the soil (3) or directly by exudates from germinating seeds (31). In the experiment described 

here, Fusarium spores were immediately exposed to an environment conducive to germination, 

either because of an absence of competing soil microorganisms or possibly because of the 

presence of seed exudates. It is not known whether the spores in this study are capable of 

germination in the absence of an exogenous nutrient source, or whether the imbibing seeds 

provided this nutrient source. In either case, spore attachment and germination occurred 

essentially simultaneously within 24 h of inoculation. 

 In previous studies with plant pathogenic fungi such as Cochliobolus heterostrophus, 

conidia were capable of forming a firm attachment to plant and artificial surfaces within 60 

minutes after inoculation (2). According to Jones et al. (17), many plant pathogenic fungi depend 

on spore attachment as the first step in host infection. Their results showed that mutants 

incapable of attaching to the host had a dramatic decrease in virulence on non-wounded host 

tissue (fruit). The extracellular matrix material produced prior to germ tube production proved to 

be the key to infection, and was not dependent on nutrient availability. In this study this initial 

step most likely happens in the field in the first wetting event after spore dissemination.  

As mentioned earlier, there is evidence that the F. sp. n strains implicated in B. tectorum 

die-offs only effectively attack germinating (non-dormant) seeds (1). Evidence gathered from the 

vertical cross-sectional view of an uninoculated non-dormant B. tectorum seed suggests that the 

vascular tissue of the floret attachment scar could be the exit route for exudates released by the 

germinating seed. This would result in the directional growth toward the abscission layer of the 

floret attachment scar as exhibited by the Skull C1 isolate in this study. Spores were able to 

germinate on seeds which did not initiate germination, but hyphal growth meandered with no 
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obvious direction. The directional pattern of response to an apparent nutrient gradient emanating 

from the radicle end of a germinating seed permitted the pathogen to target the most vulnerable 

point on the seed and to rapidly complete penetration before radicle protrusion could occur 

following transfer to free water. 

 The development of hyphae dramatically increases fungal nutrient acquisition. Numerous 

studies have examined the mechanisms behind hyphal growth. Riquelme et al. (33) showed that 

in Neurospora crassa the spitzen korper position located on the tip of hyphae directly affects the 

direction and morphology of hyphal growth. Their results showed directional fungal growth and 

the hyphal ability to adaptively change direction. Grow (12) discussed the different mechanisms 

used by fungi for directional orientation, such as thigmotropism (which was not apparent in this 

study). A second mechanism is directional growth in response to chemical gradients. In the 

present study, it appears that the recognition of a gradient of seed exudates emanating from the 

floret attachment scar allowed hyphae to sense the most direct path to the source of nutrients. 

This resulted in a conspicuous white infection cushion at the abscission layer of the floret 

attachment scar. 

  There was no evidence suggesting that Skull C1 used advanced morphological 

structures to penetrate the exterior of the floret bracts or the caryopsis wall. Studies have shown 

that some fungal species have forgone penetration structure development and completely 

bypassed the plant cuticle by taking advantage of features of plant or seed anatomy to infect the 

host (e.g., through the stomates; 19). According to Mendgen et al. (24), some Fusarium species 

enter their host with little cell differentiation or, in other words, a very underdeveloped 

appressorium. These Fusarium species use a method in which they produce a net-like mat of 

mycelium where the penetration hyphae are produced. This method is very similar to the pattern 
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observed in the present study. By taking advantage of the porous floret attachment scar and the 

weakening caryopsis wall at the point of radicle emergence, Skull C1 was able to penetrate host 

tissues and cause seed death without appressorial development.   

 According to our results, water stress at -1.5 MPa prevented seeds from completing 

germination while fungal growth could still occur, a result similar to that observed with 

Pyrenophora semeniperda, another B. tectorum seed pathogen (7). However, we observed that 

for Skull C1 there was a growth lag between 48 h in PEG and exposure to free water.  It appears 

that this Fusarium species can germinate, grow directionally, and produce an infection cushion at 

reduced water potential. However, the actual penetration of the caryopsis wall, and subsequent 

access to the abundant resources within the seed, did not take place until after transfer to free 

water. Seeds are also allowed to complete germination normally once exposed to free water. 

However, by this time, Skull C1 had already penetrated the floret bracts and was ready to 

penetrate the caryopsis wall.  

Money (28) showed that hyphae require a substantial amount of turgor pressure to 

penetrate solid media. This ultimately is caused by the inability of hyphae to generate enough 

pressure inside while the exterior pressure is so low. According to Howard et al. (16), penetration 

of rice by Magnaporthe grisea was significantly reduced after an incubation period of 48 hours 

in PEG. Mechanical penetration occurred after sufficient turgor pressure was established. In 

contrast, Harold et al. (14) showed that exposure to low turgor pressure had little effect on 

hyphal morphogenesis and growth while exposed to water stress.  Kaminskyj et al. (18) first 

noted that hyphal extension and diameter increased when subjected to water stress. This was 

reaffirmed by Money (28). Our research agrees with these previous studies in that Skull C1 
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growth recommenced after exposure to free water, suggesting that free water is crucial to the 

production of the turgor pressure required for penetration of the caryopsis wall. 

 Other confounding variables may decrease hyphal penetration of the caryopsis wall or 

seed coat. Polyphenolic and phenolic compounds in seed coats and their interactions with 

pathogens have been studied extensively. Results suggest that hyphae may grow substantially on 

seed surfaces lower in polyphenolic compounds before penetrating polyphenolic-rich surfaces 

(such as the seed coat), delaying penetration (13; 20). Because such a clear relationship exists in 

our study between water potential and the growth potential of the hyphae, it may be argued that 

polyphenolic and phenolic compounds probably played a minor role in protecting the seeds from 

attack.  

 This study has demonstrated that F. sp. n pathogenesis on non-dormant B. tectorum seeds 

is focused on the porous tissue of the floret attachment scar, close to the point of potential radicle 

emergence. This represents the most vulnerable location for pathogen attack on a rapidly 

germinating seed. A nutrient gradient produced by seed exudates apparently directs hyphal 

growth toward this attachment scar, where an infection cushion is produced even at water 

potentials that suppress seed germination. Upon subsequent transfer to free water, the fungus is 

able to quickly breach the caryopsis wall. This results in rapid colonization of the embryo, seed 

death, and a major increase in pathogen mycelial production. Knowledge of this mechanism of 

pathogenesis will enable us to determine how the pathogen operates to cause seed mortality in 

the field, and will help to clarify its role in the B. tectorum die-off phenomenon. 
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FIGURE 1

Scanning electron microscopic images of uninoculated Bromus tectorum seeds. (A) Abscission layer (Ab) 

of the floret attachment scar (Fs). (B) Vertical cross section showing the unimbibed caryopsis surrounded 

by the floret bracts (Fb). The vascular tissue (Vt) begins at the abscission layer (Ab) of the attachment 

scar (Fs) and ends at the caryopsis wall. Inside are the embryo (Em), and the endosperm (En). (C) Close-

up of the cross section of the unimbibed endosperm with amyloplast (Am) filled starch cells (St). It is 

protected by the floret bracts (Fb) on the outside and the caryopsis wall (C) on the immediate exterior. (D) 

Close-up of imbibed B. tectorum endosperm with starch cells (St) which have begun to digest the 

amyloplasts (Am). The endosperm is protected by the caryopsis wall (C). 
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FIGURE 2

Scanning electron microscopic images of Skull C1 macroconidia on imbibed Bromus tectorum seeds. (A) 

Macrocondia (Mc) on the floret bracts (Fb) of the seed immediately after inoculation. (B) Macroconidial 

development of an adhesion pad (Ap) on the floret bract (Fb) 2 hours after inoculation. (C) Macroconidial 

development of an adhesion pad (Ap) on bract hair (Bh) 2 hours after inoculation. (D) A close up of 

macroconidial adhesion pad (Ap) as shown in Fig. 2c. (E) Macroconidial (Mc) development of a germ 

tube on the surface of the seed 2 hours after inoculation. 
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FIGURE 3

Scanning electron microscopic time-lapse images of Skull C1 hyphal growth on imbibed Bromus 

tectorum seeds. (A) Hyphal growth (Hg) towards the floret attachment scar (Fs) 24 hours after 

inoculation. (B) Close-up of hyphal growth (Hg) at floret attachment scar (Fs) 24 hours after inoculation. 

(C) An infection cushion (Ic) is developed at the abscission layer of the floret attachment scar 48 h after 

inoculation. (D) Infection cushion (Ic) 96 h after inoculation. 
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FIGURE 4

Images of infected seeds (florets). (A) Infected Bromus tectorum seed in PEG 7 days after Skull C1 

macroconidial inoculation with a well-developed infection cushion. (B) Well-colonized Bromus tectorum 

seed in free water 21 d (7 d in PEG and 14 d in free water) after macroconidial inoculation.  
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FIGURE 5

Scanning electron microscopic images of Skull C1-inoculated Bromus tectorum seeds which escaped 

infection. (A) A weak infection cushion (Ic) on a Bromus tectorum floret 7 d after inoculation, allowing 

seedling growth. (B) Hyphal growth on an inoculated Bromus tectorum seed which failed to germinate.  
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FIGURE 6

Scanning electron microscopic images of a vertical cross-section taken from Skull C1-inoculated Bromus 

tectorum seeds. (A) Vertical cross-section of a severely infected seed 14 d (7 d in PEG and 7 d in H2O) 

after macroconidial inoculation. The hyphae have visibly grown down the vascular tissue (Vt) of the 

floret attachment scar and penetrated the caryopsis wall (C), colonizing the embryo (Em).  
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FIGURE 7

Scanning electron microscopic images of close-ups of the vertical cross-section shown in Figure 6. (A) 

Hyphae (Hp) have grown down and colonized the vascular tissue (Vt) of the floret attachment scar. (B-C) 

Hyphae (Hp) colonizing the embryo. (D) Hyphae (Hp) growing in the intercellular region of the 

endosperm starch cells (St).  
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