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ABSTRACT 

Importance of Placement Depth in Evaluating Soil Nitrogen, Phosphorus, and Sulfur Using Ion 
Exchange Resin Capsules in Semi-Arid, Low Fertility Soils 

 
Rachel L. Buck 

Department of Plant and Wildlife Sciences, BYU 
Master of Science 

 
Ion exchange resin capsules provide a possible alternative to conventional soil testing 

procedures. Previous studies with semi-arid, low fertility soils observed poor relationships with 
poorly mobile nutrients such as phosphorus (P). We propose that placement depth may improve 
those relationships. Our objective was to (1) determine if placement depth could improve resin 
capsule estimation of the bioavailability of nitrogen (N), P, and sulfur (S) and (2) to determine if 
resin capsules can effectively estimate S availability in semi-arid, low fertility soils. Field sites 
were established in Rush and Skull Valleys, Utah on loam and sandy loam soils, respectively. 
Fertilizer was surface applied as ammonium sulfate and triple superphosphate with six N, P and 
S treatments (0, 5.5, 11, 22, 44 and 88 kg ha-1 of N and P2O5 and 0, 7, 14, 28, 56 and 112 kg ha-1 
of S). Thirty 4.0-m2 plots were established at each field location. Resin capsules were placed 
three per plot at 0–5, 5–10, and 10–15 cm deep in the soil and soil samples taken at respective 
depths. The capsules were removed and replaced after approximately 90 d. Final removal and 
soil sampling occurred approximately 240 d later. For the second study, fertilizer was surface 
applied as ammonium sulfate with six S treatments (0, 7, 14, 28, 56 and 112 kg ha-1 of S) with 
one resin capsule placed in each 4.0-m2 plot at a depth of 5 cm in the soil. Resin capsules were 
removed and replaced approximately every 90 d for a total of four samplings. Soil samples were 
taken with every resin capsules install and removal.  
 

In the first study, bicarbonate extractable P was significantly related to P application at all 
depths and times except the two lowest depths at the time of final sampling, and resin capsule P 
was only related to P application 398 days after application in the 0–5 and 5–10 cm depths. 
However, this is an improvement in estimates of bioavailability compared to a single placement 
depth. The 5–10 cm depth was the best for placement for determination of NH4-N, and resin 
capsules improved upon soil test estimates. For NO3-N, depth was not important, but resin 
capsules had a stronger relationship with N applied than the soil test 398 d after application. In 
addition, both resin capsules and the S soil test were related to S applied, but resin capsules were 
more able to pick up S cycling through the system. In the second study resin capsules and 
conventional soil tests were both effective in distinguishing between fertilizer rates, though only 
the conventional soil test was related to S applied at the last sampling (366 d after fertilizer 
application). Overall resin capsules were effective at reflecting application rates, and may be a 
good tool to estimate nutrient bioavailability. Correlation with plant uptake is required to 
determine if soil tests or resin capsules were a better estimate of bioavailable nutrients. 
 
Keywords: adsorption, desert soil, nitrogen, phosphorus, sulfur, plant available nutrients, resin 
capsule 
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Abstract 

Ion exchange resin capsules provide a possible alternative method to conventional soil testing 

procedures. Previous studies with semi-arid, low fertility soils observed poor relationships with 

poorly mobile nutrients such as phosphorus (P). We propose that additional placement depths 

may improve those relationships. Field studies were established in Rush and Skull Valleys, Utah 

on loam and sandy loam soils, respectively. Nitrogen (N) and P (0, 5.5, 11, 22, 44 and 88 kg ha-1 

N and P2O5) were broadcast applied and lightly raked into soil on March 23, 2010 as ammonium 

sulfate and triple superphosphate. Resin capsules were placed in the soils on June 15, 2010 at 

depths of 0–5 cm, 5–10 cm, and 10–15 cm. The capsules were removed and replaced September 

13, 2010 and removed for the last time on May 4, 2011. Soil samples were taken at the same 

depths and times whenever capsules were installed or removed. Overall, the 5–10 cm depth was 

the best for placement for determination of NH4-N, and resin capsules improved upon soil test 

estimates. For NO3-N, depth was not important, but resin capsules had a stronger relationship 

with N applied than the soil test 398 d after application. Bicarbonate extractable P was 

significantly related to P application at all depths and times except the two lowest depths at the 

time of final sampling, and resin capsule P was only related to P application 398 days after 

application in the 0–5 and 5–10 cm depths. However, this is an improvement in estimates of 

bioavailability compared to a single placement depth. Soil moisture should be carefully 

monitored when using resin capsules to access P availability in semi-arid soils. 
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Introduction 

Nutrient uptake by plants is impacted by a wide variety of soil chemical, physical, and 

biological (plant and microbial) processes. These processes include solubilization of minerals, 

mineralization of soil organic matter (OM), biological organism decay, reduction, active ion 

pumping, exudation of chelates, protons, reductants, root interception, mass flow driven by 

transpiration rates, and diffusion. Traditional soil testing only partially mimics one of these 

processes (solubilization), but the soil testing thrives based on the idea is that a correlation can be 

established between the extraction and nutrient uptake. Despite imperfections of traditional soil 

testing in estimating nutrient availability, the correlation with plant nutrient status can be very 

good in some cases, but, very poor in others.  

Ion exchange resin technology offers a potential improvement over traditional soil testing 

in that it theoretically simulates additional plant nutrient uptake processes, namely diffusion and 

some interactions with roots, microbes, and other soil organisms. Besides being impacted by 

actual soil physical and chemical properties, resin capsules make analysis procedures easy and 

cost effective because multiple nutrients can be extracted simultaneously (Qian and Schoenau, 

2002). Additionally, Yang et al. (1991) stated that the majority of soil tests used for extracting 

nutrients with chemical solutions provide only an index of true nutrient availability, while resin 

capsules provide a better index of relative nutrient availability and consistency over a wider 

range of soil types.  

Ion exchange resin capsules have been used for over four decades as an alternative 

method to conventional soil testing (Skogley, 1966; Vaidyanathan and Nye, 1966) and are of 

renewed interest in modern agriculture use as well (Laboratory Analysis Workshop, Prosser, 

Washington, May 2013). Mixed-bed ion exchange resin capsules (2 cm diameter) contain resin 
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beads encapsulated with an elliptical mesh screen. The internal surface area of resin beads can 

exceed 105 m2 kg-1, giving resin capsules a higher cation exchange capacity than many soil 

colloids. But unlike soil colloids, which have high negative and low positive charge, this high 

surface area exhibits both positive and negative charges and, as such, acts as a sink for both 

cations and anions. In general, resin beads will function as a sink for any ion for which the 

capsule has a greater affinity than the counterion initially present on the resin (Skogley and 

Dobermann, 1996). Ion exchange counterions found in resin capsules vary, but common 

combinations include hydrogen/hydroxyl (H+/OH-), hydrogen/chloride (H+/Cl-), and 

sodium/bicarbonate (Na+/HCO3
-) (Sherrod et al., 2003).  

Because resin capsules act as a continuous sink for nutrients, it is possible to assess the 

nutrient supplying capacity of a soil over either short, intermediate or  long periods of time, in 

contrast to conventional soil testing which characterize a single point in time (Jones et al., 2012). 

Since almost no soil is removed with the resin capsule unlike soil sampling, their use allows for 

multiple placements at specific points (i.e. depths or locations) in the soil over time (Johnson et 

al., 2005). In addition, in situ use of resin capsules minimizes physical and chemical disturbance 

of the soil after initial placement (Dobermann et al., 1997). Resin capsules placed in the field 

would be impacted by biological functions (such as microbial and plant root exudates) as well as 

actual soil physical and chemical properties. Ion exchange occurs through both film diffusion 

and particle diffusion. Film diffusion occurs when ions in the soil solution surrounding the resin 

bead exchange for counterions on the surface of the resin bead. In response to ions exchanging at 

the resin surface, particle diffusion will occur through the countermovement of ions within the 

resin beads. It is important to recognize that besides diffusion through soil media, final resin 

capsule nutrient concentrations will reflect differences in initial solute concentrations, nutrient 
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release rates from solid phases (soil minerals and organic matter), movement of ions toward the 

resin via gravitational solution transfer, mass flow (if capsule is near roots drawing in water), and 

other dynamics (Skogley and Dobermann, 1996). 

As with any technology used to assess nutrient availability, there are a number of 

disadvantages with resin capsule use to determine nutrient availability for plants: two trips to 

field sites for placement and then removal, possible interference by burrowing/digging 

organisms, and each capsule only represents a finite spatial measurement. In contrast, traditional 

soil sampling requires just one trip to a field site and more easily allows measurement of an 

average spatial value across a landscape and by depth. In addition, resin capsules are sensitive to 

soil water status and temperature, as well as possible competition from microorganisms and roots 

for nutrients. In an incubation study, Johnson et al. (2005) found that both higher temperature 

and moisture conditions resulted in significant, positive effects on resin capsule mineral nitrogen 

(N). They suggested that because the soil solution is a major vector of contact between soil 

exchange sites and resin surfaces, resin capsules will not be especially accurate indices of soil 

mineral N in dry conditions.  

Additionally, research on the use of resin capsules in field conditions has focused on 

evaluating N, phosphorus (P), potassium (K), copper (Cu), iron (Fe), manganese (Mn), and zinc 

(Zn) in highly fertile soils, which creates questions about the validity of their use in low fertility 

or dry soils (Sherrod et al., 2002). In a field study conducted on low fertility, semi-arid soils, 

Jones et al. (2013b) found that resin capsule nitrate-N (NO3-N) and ammonium-N (NH4-N) had 

predictable relationships with N application rates, but the traditional soil test procedure of KCl-

extraction of NO3-N and NH4-N better predicted N availability. Furthermore, resin P did not 

reflect P application rates. It is suspected that the most likely explanation is the lack of 
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movement of P into the soil layer containing the resin capsule (five cm placement depth) due to 

poor mobility of P and low moisture levels. Before recommending against use of resin capsules 

in semi-arid, low fertility soils, an evaluation of  shallower placement of resin capsules than used 

by Jones et al. (2013b) needs to be tested for P determination. Spatial variation is highest for 

nutrients affected by redox processes and microbial transformations, such as N, P, and Fe 

(Dobermann et al., 1997), thus, placement depth could be an important factor in resin capsule 

absorption of these elements. 

Our objective was to determine if depth of placement could improve resin capsule 

estimates of P and N in low fertility, semiarid zone soils. We hope to find a methodology for 

field use of resin capsules in semi-arid zone soils that is effective and repeatable in reference to 

N and P determination. 

 

Materials and Methods 

Field Experiments  

Field studies were conducted southwest of the Great Salt Lake in Rush Valley 

(40°8’16”N and -112°30’26”W, 1676 m) and Skull Valley (40°18’27”N and -112°50’3”W, 1524 

m), Tooele County, Utah, USA on low fertility loam and sandy loam soils, respectively (Table 

1.1). Annual precipitation classifies these areas as semi-arid (Table 1.2). Use of previously 

fenced field sites prevented free range livestock from disturbing the study area. Each site was 

divided into thirty 4.0-m2 plots per site which received surface application of N and P at six rates 

(0, 5.5, 11, 22, 44, and 88 kg ha-1 N and P2O5) with five replications of each treatment in a 

completely randomized block design. Nitrogen was applied as granular ammonium sulfate 

[(NH4)2SO4; 21-0-0-24(S)] and P as granular triple superphosphate [Ca(H2PO4)2; 0-45-0] on 23 
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March 2010. Light raking was used to incorporate the fertilizer into the soil to a depth of 

approximately 0.5 to 1.0 cm. 

Resin capsules were prepared for placement in the field by attaching plastic string (60 cm 

in length) to which colored plastic (3 cm2) was attached to make capsules easier to find after 

burial (Jones et al., 2013b). Three mixed bed (H+/OH-) resin capsules were placed into each plot 

at depths of 0–5, 5–10, and 10–15 cm on 15 June 2010 (84 d after fertilization). Resin capsules 

were removed and a majority of surrounding soil was detached on 13 September 2010 (166 d 

after fertilization; 82 d after resin capsule insertion); for analysis and replaced at similar depths 

with fresh capsules. Soil samples were also taken at 0–5, 5–10, and 10–15 cm depths. Resin 

capsules were again removed and a final set of soil samples taken on 4 May 2011 (398 d after 

initial fertilization and 233 d after resin capsule insertion). 

Soil Nutrient and Statistical Analyses 

After field removal and initial soil detachment, capsules were placed in sealed plastic 

bags and stored at ~5°C until analyses were performed. After 14 to 21 d storage, soil was 

removed from each capsule by rinsing briefly with distilled water. The P, NO3-N, and NH4-N 

were extracted from resin capsules by washing each capsule three times successively using 20 

mL of 2 M hydrochloric acid (HCl) (Skogley et al., 1997; Jones et al., 2012). The extract (total 

of 60 mL) was then analyzed using flow injection analysis (Quick Chem 8500, Lachat 

Instruments, Loveland, Colorado, USA) for NO3-N and NH4-N and inductively coupled plasma 

spectroscopy (Iris Intrepid II XSP, ICP-OES, Thermo Electron Corporation, Franklin, Maryland, 

USA) for P. Concentration of NO3-N was determined using the cadmium reduction method 

(Keeney and Nelson, 1982) and concentration of NH4-N was determined by the sodium 

salicylate–sodium nitroprusside method (Rowland, 1983). 
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Immediately after transport to the laboratory, conventional soil samples were air dried 

and flail ground to pass a 2 mm sieve. The soil NO3-N and NH4-N were extracted with 2 M 

potassium chloride (KCl, referred to as KCl-extracted NO3-N and KCl-extracted NH4-N) and the 

concentration determined as described above. Phosphorus was extracted with 0.5 M sodium 

bicarbonate (NaHCO3) and quantified using the ammonium molybdate–ascorbic acid method 

(Olsen et al., 1954).  

Field location was designated as a random variable for statistical analysis. Statistical 

analysis by generalized liner model (GLM) with mean separation by Duncan-Waller K Ratio 

Test was performed using SAS 9.3 (SAS Institute, 2011, Cary, North Carolina, USA). Means 

were subjected to regression analysis (PROC REG) also with SAS.  

 

Results and Discussion 

 Resin capsule NH4-N was significantly correlated to N application during the first 

sampling period at all depths (Figure 1.1A). The effect continued through the next sampling 

period for the upper two depths, however, the quantity of NH4-N measured in resin capsules 

declined considerably by May 2011 and relationship between applied N and resin NH4-N was 

not as strong (Figure 1.1B). The KCl-extracted NH4-N was also significantly related to N applied 

at all depths on June and September 2010 (the days when resin capsules were placed at the 

beginning of both sampling periods (Figure 1.1C and 1.1D). Soil quantities and correlations had 

declined considerably by May 2011 (Figure 1.1E). One might expect relationships between N 

applied and NH4-N in soil or resin capsule to decline in later sampling periods, especially in 

these highly alkaline conditions. Nitrification would convert NH4-N to NO3-N as soon as warm, 

moist soil conditions prevail. Also, in calcareous soils, resin-H+ reacts with CaCO3 to form CO2 
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and  HCO3
-. A large quantity of Ca2+ accumulated by the resin will affect both K+ and NH4

+ 

adsorption when the resin is in the soil for long periods of time (Qian and Shoenau, 2002). 

However, there were still significant relationships between resin capsule NH4-N with N 

application through the September–May sampling period (Figure 1.1B) in the 0–5 and 5–10 cm 

depths. A few of the regressions between N rate and NH4-N were improved by curvilinear 

expression of those relationships (Figure 1.1A, 1.1C, and 1.1D); however the majority are best 

and adequately predicted using linear regression and to be consistent with the majority of the 

other graphs, all were presented linearly. This curvilinear relationship is seen only with NH4-N 

(not NO3-N or P with either resin or soil sampling) which could be due to nitrification and 

release of native N augmenting N to keep up with the rate of N applied, except at the highest rate 

(88 kg N ha-1). The spike in NH4-N concentration at the highest treatment only occurred at the 

surface (Figure 1.1A,1.1C, and 1.1D) which is not surprising as NH4-N is not as mobile as NO3-

N in the soil and there was very little precipitation during this time (Table 1.2).  

Potassium chloride-extracted NH4-N from the soil samples taken in May 2011 was not 

related to N application rate (Figure 1.1E). The sampling took place 398 d after fertilizer 

application, and the soil test NH4-N represents only a single point in time. It is likely that by May 

2011 the NH4
+ applied was used by plants and/or converted to NO3

- via nitrification or, less 

likely, lost to volatilization. In contrast, resin capsule NH4-N represents a cumulative amount 

adsorbed during the sampling period, explaining why there were still significant relationships in 

the resin capsules taken out a year after fertilizer was applied (Figure 1.1B). Similarly, Johnson 

et al. (2005) found that while soil mineral N either remained constant or declined slightly during 

the second and third incubation periods (56 and 84 d, respectively) in their study, resin capsules 

showed increases in ammonium-N recovery. Additionally, in an irrigated glasshouse study with 
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native Utah soils and squirreltail grass, Jones et al. (2013a) found that NH4-N extracted from 

resin capsules was related closely to yield, total N removal of squirreltail grass, and rate of 

fertilizer N applied while KCl-extractable NH4-N was not. In our current study, resin capsule 

NH4-N improved upon KCl-extracted estimates of NH4-N to reflect N application rates, giving a 

good correlation to N applied even a year after fertilizer application. While significant 

relationships were found at all depths, the 5–10 cm depth (middle) clearly produced the best 

correlation to N applied at both sampling times and, as such, is recommended for use in semi-

arid soils. 

Resin capsule NO3-N was low in all three depths in the June to September 2010 sampling 

period yet also highly correlated to N application rate (Figure 1.2A).Surprisingly the NO3-N 

values were high as well as highly correlated to N application rate at all three depths in the 

September 2010 to May 2011 sampling period (Figure 1.2B). The low NO3-N and concurrent 

high NH4-N measured in resin capsules in June to September sampling period and the high NO3-

N and low NH4-N may be explained by low precipitation June to September 2010 (Table 1.2) 

and the relatively few days with moisture content above -1.5 MPa (Table 1.3). Active plant 

growth would have begun as early as April 2010 and continued, albeit slowly, through 

September 2010 and that growth could have absorbed NO3-N released by nitrification during that 

period resulting in low resin NO3-N and high resin NH4-N. There could have been rapid 

nitrification and conversion of NH4
+ to NO3

- in fall of 2010 resulting in low resin NH4-N and 

high resin NO3-N by May 2011. There was not a curvilinear relationship with NO3-N responses 

as there was for NH4-N (Figure 1.2 and 1.2). The KCl-extracted NO3-N was related to N 

application in June and September 2010 at all depths (Figure 1.2C and 1.2D) but only at the 

lowest depth by May 2011 (Figure 1.2E). This is not surprising because the final soil sampling 
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occurred a year after fertilizer application, giving the NO3-N ample time to be utilized by plants, 

leached from the soil profile, and/or denitrified. In contrast, resin capsules were able to capture 

NO3
- over the time frame measured. In a study about detecting NO3

-  leaching through bypass 

flow, Pampolino et al. (2000) found that resin capsules were able to continuously intercept a 

representative amount of NO3
- and suggested that resin capsules were a promising technique for 

NO3
- leaching measurements. In our study, it is interesting that, while the concentration of KCl-

extracted soil NO3-N decreases over the three sampling times, the resin capsule NO3-N increases 

dramatically from the first (June–September 2010) to the second sampling period (September 

2010–May 2011; Figure 1.2A and 1.2B). Perhaps this can be explained by the fact that there was 

more available soil moisture from Sept 2010–May 2011 than from June–Sept 2010 (Table 1.3), 

and soil moisture has significant, positive effects on resin capsule NO3-N (Johnson et al., 2005). 

There was more KCl-extracted NO3-N in the surface than the lower depths at the June 2010 

sampling (Figure 1.2C); however, the resin capsule NO3-N was very close in concentration at all 

three depths (Figure 1.2A). Our results are in agreement with Jones et al. (2013b) who found that 

resin NO3-N was strongly correlated to N application rates—suggesting that resin capsules may 

be effective in assessing mobile nutrient status in semi-arid land soils even if the nutrient is not 

mixed directly into the zone of placement.  

 Resin capsule P was not related to P application rates at any depth for the resin capsules 

buried from June–Sept 2010 (Figure 1.3A), but was highly correlated to P application in the 0–5 

and 5–10 cm depths during the September 2010 to May 2011 sampling period (Figure 1.3B). The 

poor early relationship may be associated with low precipitation (Table 1.2; June–Sept 2010; 

Rush Valley, 4.1 cm; Skull Valley, 2.7 cm) and, thus, minimal dissolution and/or diffusion of P 

to promote adsorption of P from solution by resin capsules. The high correlations observed over 
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a period of relatively higher precipitation (September 2010–May 2011) in the 0–5 and 5–10 cm 

depths supports resin capsule use in semi-arid soils but also points out the need to follow 

moisture relationships when interpreting resin capsule P data in such environments. This 

suggests that moisture is an important factor for P diffusion into resin capsules. In a laboratory 

incubation study, Pampolino and Hatano (2000) found a decrease in P adsorption on the resin 

due to reduced soil moisture. In a previous study with resin capsules buried at 5 cm, Jones et al. 

(2013b) found that P extracted from resin capsules never reflected P application levels and 

proposed that the most likely cause was that the P was not moving from the surface where placed 

into the soil layer containing the resin capsule due to known poor mobility of P and low moisture 

levels. Our current study supports that conclusion. Additional research is required to find the 

minimum amount of available moisture required for P to move into resin capsules. The 

bicarbonate extractable P was highly correlated to P applied in our study at all depths at the first 

two sampling times (Figure 1.3C and 1.3D) with much lower P tests observed in the 5–10 and 

10–15 cm depths than 0–5 cm surface depth where this immobile nutrient was placed. 

Bicarbonate extractable P declined in the intermediate samplings taken September 2010 and 

again in the samples taken May 2011 (Figure 1.3C, 1.3D and 1.3E). Bicarbonate extractable P 

was only related to P rate in the 0–5 cm depth only by May 2011 (Figure 1.3E). This would be 

expected as soluble applied P is normally fixed by soil chemical reactions that reduce soluble to 

insoluble or adsorbed forms (Hemwall, 1957). It is interesting that at all three sampling timings, 

there was clearly more P found at the surface (0–5 cm) than at deeper depths. The high 

correlation between bicarbonate P and P application rates in the 0–5 cm depth is in complete 

agreement with a previous study that sampled only the 0–5 cm depth (Jones et al., 2013b).  
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Conclusion 

 Resin capsule NH4-N improved upon soil test (KCl-extracted) estimates of NH4-N to 

reflect N application rates, giving a good correlation to N applied even a year after fertilizer 

application. The middle depth (5–10 cm) clearly produced the highest correlation to N applied 

and is recommended for use in semi-arid soils for NH4-N detection. In contrast, placement depth 

was not an important factor for estimating NO3-N with resin capsules (all depths sampled 

produced predictable relationships with N applied). Resin capsule NO3-N did improve upon soil 

test (KCl-extracted) estimates of NO3-N to reflect N application rates when samples were taken 

398 d after fertilizer was applied. Placing resin capsules nearer to the surface did improve 

estimates of P, but only after the soils were moist enough for P mobility to promote equilibrium. 

Overall, bicarbonate extractable P was better at reflecting rates of P applied, although correlation 

with plant uptake would be required to determine which of the two would be a better estimate of 

bioavailable P. Further research is required to define the minimum amount of available moisture 

required for P movement into resin capsules. Precipitation as well as soil moisture should be 

carefully monitored if resin capsules are used to assess P availability in semi-arid soils.  
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Table 1.1. Selected characteristics of loam (Rush Valley) and sandy loam (Skull Valley) soils at 
the two field sites (Utah, USA). 
 
Soil characteristic Rush Valley, UT Skull Valley, UT 
   
Textural classification Loam Sandy loam 
Sand, % 39 65 
Silt, % 38 20 
Clay, % 23 15 
Organic matter, % 2.2 1.0 
pH 7.7 7.8 
Electrical conductivity, dS m-1 0.75 0.57 
Sodium bicarbonate P, mg kg-1 13.4 8.4 
Sodium bicarbonate K, mg kg-1 340 220 
NO3-N, mg kg-1 2.0 1.6 
Calcium phosphate SO4-S, mg kg-1 4.4 3.6 
Calcium carbonate, % 19.8 9.8 
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Table 1.2. On site precipitation distribution (cm) during the two field experiments (March 2010–
May 2011) at Rush Valley and Skull Valley (Tooele County, Utah, USA). 
 
Period of precipitation Rush Valley* Skull Valley* 

 ---- cm ---- 
March to June 2010 5.1 10.2 
June to September 2010 1.5 2.3 
September 2010 to May 2011 13.1 13.1 
*Bruce Roundy, personal communication, 2013 
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Table 1.3. Number of days with soil water potential greater than -1.5 MPa (moist) at two depths 
(1–3 and 13–15 cm) during the field experiments (March 2010–May 2011) at Rush Valley and 
Skull Valley (Tooele County, Utah, USA). 
 
Period of experiments Rush Valley*  Skull Valley* 

 Depth, cm 
 1–3 13–15 1–3 13–15 
 ---- d, % of d in period ---- 
March to June 2010 41, 48% 49, 58% 57, 67% 79, 93% 
June to September 2010 30, 33% 35, 38% 42, 46% 64, 70% 
September 2010 to May 2011 171, 73% 176, 75% 168, 72% 185, 79% 
*Bruce Roundy, personal communication, 2013 
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Figure 1.1. Resin and KCl-extracted soil NH4-N measurements after application of 0, 5.5, 11, 22, 
44, and 88 kg ha-1 N; fertilizer applied March 2010 (values represent the mean of two locations).  
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Figure 1.2. Resin and KCl-extracted soil NO3-N measurements after application of 0, 5.5, 11, 22, 
44, and 88 kg ha-1 N; fertilizer applied March 2010 (values represent the mean of two locations). 
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Figure 1.3. Resin and NaHCO3-extracted soil P measurements after application of 0, 5.5, 11, 22, 
44, and 88 kg ha-1 P; fertilizer applied March 2010 (values represent the mean of two locations). 
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Abstract 

Sulfur (S) is an essential plant element found in most soils primarily in the organic matter phase; 

consequently, predicting plant bioavailability is difficult. Ion exchange resin capsules provide a 

viable alternative to chemical soil tests in evaluating the S status of fertilized soils, however their 

validity in desert ecosystems is not known. Two field studies were established at two locations—

Rush Valley and Skull Valley, Utah on loam and sandy loam soils, respectively. In the first 

study, fertilizer was applied with six S treatments (0, 7, 14, 28, 56 and 112 kg ha-1). Resin 

capsules were installed at a depth of 5 cm at fertilization and then removed and replaced 

approximately every 90 days with soil samples taken at the same times. Sulfate-S was 

determined on both the soil samples and resin capsules. Resins capsules and conventional soil 

tests are both effective in distinguishing between fertilizer rates on most dates, although at the 

last sampling, only the conventional soil test was related to S applied. The second field study 

used the same fertilizer rates as previously described, but three resin capsules were placed with 

one per plot at 0–5, 5–10, and 10–15 cm deep in the soil. Resin capsules were removed and 

replaced after 90 d, and final removal occurred 398 d after fertilizer application. Depth was not 

too important a factor as all depths yielded significant correlation to S applied, except the surface 

depth through the first sampling period. For both field studies, resin capsule correlation to S 

applied was good, but soil test S estimates were slightly better. Overall, resin capsules would be 

recommended for use in estimating S availability in semi-arid, low fertility conditions. Further 

research is needed to relate resin capsule S to plant uptake. 
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Introduction 

Sulfur (S) is an essential plant nutrient involved in the synthesis of amino acids (cysteine, 

cystine, and methionine) and proteins, enzyme activity, vitamin production, and nitrogen (N) 

fixation (Sinclair and Saunders, 1982). Sulfur deficiency in plants has become more prevalent in 

recent years due to increased crop removal [decreased organic matter (OM) pool], mitigation of 

sulfur dioxide (SO2) air pollution, and reduced S contamination in N or phosphorus (P) 

fertilizers. There can be both yield and crop quality benefits to using S fertilizers, and therefore it 

is important to assess the S status of soils and crops (Jensen, 2013). 

However, most soil S tests do a poor job of estimating bioavailable S. Anderson et al. 

(1998) observed that potassium chloride (KCl)-100 (0.25 M KCl heated at 100°C for 3 h) and 

0.5 M sodium bicarbonate (NaHCO3) are unsuitable as soil S tests as they overestimate the 

availability of S from the organic fraction in soil. In contrast, monocalcium phosphate, H2O, and 

KCl-40 (0.25 M KCl heated at 40°C for 3 h) appeared to have potential as soil S tests but had a 

relatively low correlation with plant S response due to an underestimation of the availability of 

soil organic S. Blair et al. (1991) also found that monocalcium phosphate, the most commonly 

used extractant, is unable to extract the organic S pool where 95% of the total S resides (Fenster, 

1978).  

Among the factors that complicate S soil tests are conversion of sulfate to insoluble 

sulfides, accretion of S from irrigation water and rain, volatilization of hydrogen sulfide, and 

mineralization of organic S (Islam and Ponnamperuma, 1982). As the amount of S in soils is 

depleted, additional S is dissolved from the inorganic pool and mineralized from the organic pool 

(Barrow, 1967; Till and May, 1971). The rate at which this mineralization occurs is controlled by 

soil moisture and temperature (Williams, 1967). This process is similar to N mineralization as 
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most of the N in the soil is in the organic form. However, the concentration of S is less than 10% 

of the total amount of N in soils and plants. Consequently, the inorganic soil N tests are not 

effective in assessing S availability to plants. In addition, the concentration of inorganic S in 

soils varies seasonally (Ghani et al., 1991) and is affected by the activity of microbial biomass, 

leaching and surface run off, fertilizer, and plant uptake. Any analytical value on sulfate 

concentration of a soil sample is more or less only for the moment the sample has been taken 

(Scherer, 2001; Schnug and Haneklaus, 1998). 

Because of these complicating factors, resin capsules may be better suited to estimate 

bioavailable nutrients. Resin capsules are elliptical mesh balls approximately 2 cm in diameter 

that act as sinks for ions in soil solution in a manner similar to plant absorption of nutrients 

(Jones et al., 2012). Because resin capsules have the ability to act as a sink over time and are 

buried for specific periods of time, they may be estimates related to the amount of S that 

becomes available through mineralization of OM than soil tests. It is also important to realize 

that the form of S taken up by resin capsules could be any mobile form, though most would be 

SO4
2-. 

Some researchers have already reported promising data regarding the estimation of S 

availability using resin technology (Prochnow et al., 1998). Anion exchange resin strip estimates 

of S were significantly correlated to S uptake in corn and rice (Li et al., 2001). In addition, 

Matula (1999) found that resin capsules successfully predicted the availability of S from soils 

with a surplus of gypsum while multiple soil extractions failed to do so. Under laboratory and 

saturated conditions, Yang and Skogley (1992) found that resin capsule S was significantly 

related to S extracted by a standard soil test. In an incubation study with two semi-arid soils, 

Jones et al. (2013a) assessed the ability of resin capsules to estimate available iron (Fe) and zinc 
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(Zn) applied at low rates as FeSO4•7H2O and ZnSO4•7H2O. While Fe and Zn levels were not 

found to be significantly different between treated and untreated soils, significant differences in 

sulfate-S (SO4-S) were measured. Thus, resin capsules adsorbed SO4-S, even at very low 

application rates (Jones et al., 2013a). 

Additionally, the amount of soil that actually contributes to delivering ions to the resin 

capsule is not known (Skogley, 1994) and is likely dependent on the mobility of the ion, 

temperature, and moisture. It is therefore currently unknown if placement depth for resin 

capsules used in situ is important for capturing specific elements. Buck et al. (in preparation) 

found that placing resin capsules near the soil surface (0–5 cm) improved resin capsule 

phosphorus (P) correlation to applied P while a deeper depth of placement (5–10 cm) best related 

resin capsule ammonium-nitrogen (NH4-N) to N applied. Because S is mobile is the SO4
2- form, 

lower depths may be an effective measure of available S. Finally, research with resin capsules 

outside the laboratory has been done almost exclusively in highly fertile soils, which creates 

questions about the validity of their use in low fertility or dry soils (Sherrod et al., 2002). 

Our objectives were to study S availability in low fertility semi-arid soils treated with six 

rates of surface applied S by (1) assessing resin capsule sulfate or soil test sulfate, taken at four 

sampling dates over a 12-month period, and (2) assessing if varying depth of placement could 

improve such estimates. 

 

Materials and Methods 

Field Experiment 1 

Field studies were conducted southwest of the Great Salt Lake in Rush Valley 

(40°8’16”N and -112°30’26”W, 1676 m) and Skull Valley (40°18’27”N and -112°50’3”W, 1524 



28 

m), Tooele County, Utah, USA on low fertility loam and sandy loam soils, respectively (Table 

2.1). Annual precipitation classifies these areas as semi-arid (Table 2.2). Previously fenced field 

sites prevented free range livestock from disturbing the study area. Each site was divided into 

thirty 4.0-m2 plots per site which received surface application of S at six rates (0, 7, 14, 28, 56, 

and 112 kg ha-1 S) with five replications of each treatment in a completely randomized block 

design on 18 May 2009. Sulfur was applied as granular ammonium sulfate [(NH4)2SO4; 21-0-0-

24]. Light raking was used to incorporate the fertilizer into the soil to a depth of approximately 

0.5 to 1.0 cm. 

Resin capsules were prepared for placement in the field by attaching plastic string (60 cm 

in length) to which colored plastic (3 cm2) was attached to make capsules easier to find after 

burial (Jones et al., 2013b). One mixed bed (H+/ OH-) ion exchange resin capsule was placed to a 

depth of 5 cm in each plot (18 May 2009). Resin capsules were removed and replaced, and soil 

samples taken in 18 August and 17 November 2009, as well as 23 March and 18 May 2010. 

Field Experiment 2 

Additional plots were established with identical S rates and experimental design adjacent 

to those described in Experiment 1. Sulfur was applied on 23 March 2010 with three mixed bed 

(H+/ OH-) resin capsules placed as previously described into each plot at depths of 0–5, 5–10, 

and 10–15 cm beginning 15 June 2010 and continuing with removal and installation of fresh 

capsules 13 September 2010 with final removal 4 May 2011. Soil samples were taken 

corresponding with each of these dates. 

Soil Nutrient and Statistical Analyses 

After field removal, capsules were placed in sealed plastic bags and stored at 5 ◦C until 

analyses were performed. After 14 to 21 d in storage, remaining soil was washed from each 
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capsule by rinsing with distilled water just prior to analysis. Sulfur was extracted from the resin 

capsules by washing each capsule successively three times using 20 mL of 2 M HCl (Skogley et 

al., 1997; Jones et al., 2012). The extract (total of 60 mL) was then analyzed for S using 

inductively coupled plasma spectroscopy (Iris Intrepid II XSP, ICP-OES, Thermo Electron 

Corporation, Franklin, Maryland, USA). 

Immediately after transport to the laboratory, conventional soil samples were air dried 

and then ground to pass a 2-mm sieve. Sulfate-S was extracted from soils with monocalcium 

phosphate (Fox et al., 1964). Sulfur in solution was quantified as described above.  

Field location was designated as a random variable for statistical analysis. Statistical 

analysis by generalized linear model (GLM) with mean separation by Duncan-Waller K Ratio 

Test was performed using SAS 9.3 (SAS Institute, 2011, Cary, North Carolina, USA). Means 

were subjected to regression analysis (PROC REG) also with SAS. 

 

Results and Discussion 

Field Experiment 1 

Resin capsule S was significantly related to fertilizer S applied through the first three 

sampling periods (Figure 2.1A). However, by the end of the fourth sampling period (Mar–May 

2010), there was no significant relationship (Figure 2.1A). This was somewhat surprising 

because there was more available moisture during this time period (Table 2.2; Table 2.3) and 

resin capsules are better at absorbing soluble ions with high soil moisture (Yang et al., 1991; 

Buck et al., in preparation). Perhaps this can be explained by microorganisms taking advantage 

of the increased available moisture and more S being taken up these organisms and subsequently 

released from soil OM (confounding the amount of S applied).  
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Values from the traditional soil test, Ca(H2PO4)2-extracted, for SO4-S were highly 

correlated to S applied at all four sampling dates (Figure 2.1B). In contrast to the resin capsule 

results where the SO4-S was highest through the first sampling period (May–Aug 2009), 

Ca(H2PO4)2-extracted SO4-S was highest at the second sampling (November 2009). This may be 

related to some SO4-S leaching below the zone of the resin capsule in later sampling periods (or 

all leached below in the case of the last sampling period) or due to S cycling between microbes, 

the soil organic fraction, and soil solution. Soil sampling might pick up the SO4-S slightly below 

the resin capsule and thus giving better relationships even at later sampling periods. It is 

important to note that S was applied as sulfate, and the soil test used quantifies SO4-S, while 

resin capsule S could represent any form of S that can move to the resin capsule. Other 

researchers have also found positive relationships using resin technology to estimate S 

bioavailability. In a study comparing different soil extractants and resin strips, Li et al. (2001) 

found that that extractable S by Ca(H2PO4)2 and KH2PO4 in soils with a pH below 6.0 was more 

than that extracted by CaCl2. However, all three extractants produced similar amounts of 

extractable S from the soils with a pH greater than 6.0. In contrast, the anion resin strips value 

for S was not affected by pH but depended more on the mineralization potential of the soil. This 

suggests that resin technology may be a better estimator of available S over a wide range of soil 

types and conditions. 

Field Experiment 2 

In the second field experiment, Ca(H2PO4)2-extracted SO4-S was also significantly 

correlated to S applied at every time and depth from which samples were taken, even by May 

2011 which was 398 days after fertilizer application. It is interesting to note that the most 

Ca(H2PO4)2-extracted SO4-S was found at the lowest depth (10–15 cm) in both June 2010 (soil 



31 

samples taken when resin capsules were placed in the soil) and September 2010 (soil samples 

taken when first set of resin capsules were extracted). However, the quantity of SO4-S measured 

was very low in May 2011 compared to earlier sampling periods (in which similar amounts and 

similar patterns of accumulation were observed). There was ample precipitation between March 

and June 2010 to provide the moisture necessary for sulfate leaching (Table 2.2; Table 2.4). 

Resin capsule S was not significantly related to S applied at the end of the first sampling period 

in the top depth (P=0.085, Figure 2.2A) but was significantly related at all other points sampled. 

These relationships were generally significant at lower values than with Ca(H2PO4)2 extracted 

SO4-S (Figure 2.2). It is clear from the Ca(H2PO4)2 extraction that there was S in the top depth; 

perhaps the poor relationship with resin capsule SO4-S at that depth and date could be explained 

by evaporation at the surface resulting in less available moisture at that depth and reducing the 

ability of SO4-S to come in contact with resin capsules. Yang and Skogley (1992) found that 

movement of S, K, P, and NH4 to a sink is highly dependent on ion activities in soil solution. In 

our study, the best relationship with resin capsules was found in the 0–5 cm and the 10–15 cm 

depths at the end of the second sampling period (Figure 2.2B). Although resin capsules were 

slightly less effective than Ca(H2PO4)2 extracted SO4-S at relating soil applied S levels, there 

were strong relationships between resin S and application rates at all but one date/depth in these 

relatively dry semi-arid conditions. In addition, soil tests for S can measure how much available 

S was present in the soil when sampled, but such tests cannot forecast how much S will be 

released in an available form by the decay of soil OM and crop residues (Ratanalert, 1978). 

These strong relationships warrant further study of the potential for resin capsule S and plant S 

nutrition relationships. 
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Conclusion 

 Both ion exchange resin capsules and the Ca(H2PO4)2 extract were able to predict 

available S based on application rates. However, the Ca(H2PO4)2 (traditional soil test) had a 

stronger correlation to fertilizer application rates. Resin capsules were more able to pick up the 

sulfur cycling through the system during the second time period, suggesting that they may be a 

better indicator of nutrient availability over time and are a promising method for estimating soil 

S as they show a more complete picture of the amount of S released from OM. Overall, resin 

capsules would be recommended for use in estimating S availability in semi-arid, low fertility 

conditions. Further research is needed to relate resin capsule S to plant uptake. 
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Table 2.1. Selected characteristics of loam (Rush Valley) and sandy loam (Skull Valley) soils at 
the two field sites (Utah, USA). 
 
Soil characteristic Rush Valley, UT Skull Valley, UT 
   
Textural classification Loam Sandy loam 
Sand, % 39 65 
Silt, % 38 20 
Clay, % 23 15 
Organic matter, % 2.2 1.0 
pH 7.7 7.8 
Electrical conductivity, dS m-1 0.75 0.57 
Sodium bicarbonate P, mg kg-1 13.4 8.4 
Sodium bicarbonate K, mg kg-1 340 220 
NO3-N, mg kg-1 2.0 1.6 
Calcium phosphate SO4-S, mg kg-1 4.4 3.6 
Calcium carbonate, % 19.8 9.8 
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Table 2.2. Precipitation distribution (in cm) during the period of experiments (May 2009–May 
2011) at Rush Valley and Skull Valley (Toole County, Utah, USA). 
 
Period of experiments Rush Valley*  Skull Valley* 

 ---- cm ---- 
May to August 2009 3.2 3.8 
August to November 2009 2.4 1.1 
November 2009 to March 2010 3.2 7.0 
March to June 2010 5.1 10.2 
June to September 2010 1.5  2.3 
September 2010 to May 2011 13.1 13.1 
*Bruce Roundy, personal communication, 2013 
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Table 2.3. Wet days (soil water potential greater than -1.5 MPa) at the soil surface (1–3 cm) 
during the period of the first field experiment (May 2009–May 2010) at Rush Valley and Skull 
Valley (Toole County, Utah, USA). 
 
Period of experiments Rush Valley*  Skull Valley* 

 ---- d ---- 
May to August 2009 6 7 
August to November 2009 8 6 
November 2009 to March 2010 66 63 
March to May 2010 41 57 
*Bruce Roundy, personal communication, 2013 
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Table 2.4. Wet days (soil water potential greater than -1.5 MPa) at two depths (1–3 and 13–15 
cm) during the period of the second field experiment (March 2010–May 2011) at Rush Valley 
and Skull Valley (Toole County, Utah, USA). 
 
Period of experiments Rush Valley*  Skull Valley* 

Depth 1–3 cm 13–15 cm 1–3 cm 13–15 cm 
 ---- d, % of period ---- 
March to June 2010 41, 48% 41, 48% 41, 48% 41, 48% 
June to September 2010 30, 33% 30, 33% 30, 33% 30, 33% 
September 2010 to May 2011 171, 73% 171, 73% 171, 73% 171, 73% 
*Bruce Roundy, personal communication, 2013 
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Figure 2.1. Resin (A) and Ca(H2PO4)2-extracted (B) S measurements after application of 0, 7, 
14, 28, 56, and 112 kg ha-1 S; fertilizer applied 13 May 2009. Values represent the average of 
two locations (Rush Valley and Skull Valley). 
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Figure 2.2. Resin and Ca(H2PO4)2-extracted S measurements after application of 0, 7, 14, 28, 56, and 112 kg ha-1 S; 
fertilizer applied 23 March 2010. Values represent the average of two locations (Rush Valley and Skull Valley). 
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Laboratory Procedures 

Resin Capsules 

Additional PPE: gloves, safety goggles, fume hood 

Extraction: 

1. Remove capsule with tweezers and rinse thoroughly with distilled water using the pressurized 

nozzle from the tap. 

2. Place capsule in 50 ml centrifuge tube. 

3. Add 20 ml 2N HCL. To make: 333.3 ml concentrated HCl for 2 L distilled water 

4. Shake for 20 minutes. 

5. Filter through 12.5 cm filter paper into 125 ml plastic bottles. 

6. Repeat steps 6-8 two more times, for a total of three times ending with a total of 60 ml. 

7. Run on the ICP using the Resin method with 2N HCl as the blank. 

Lachat: 

Ammonium: samples MUST be neutralized before running. First, add 0.5 ml of 50% NaOH to 

the tubes you will be using of an ICP rack. Next, pipette 5 ml of sample into each tube (don’t 

forget to neutralize the standards also). Place silicon or neoprene (green) stoppers, size zero, over 

each tube. Invert several times to mix. 

Nitrate: Use the neutralized samples and neutralize the nitrate standards.  

 

Reference: 

Mary P. Jones, Bruce L. Webb, Daniel A. cook & Von D. Jolley (2012): Comparing Nutrient 

Availability in Low-Fertility Soils using Ion Exchange Resin Capsules, Communications 

in Soil Science and Plant Analysis, 43:1-2, 368-376. 
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Ammonium (NH4-N) and Nitrate (NO3-N) by Lachat 

Additional PPE: gloves, safety goggles, fume hood 

Standards: 

• 1,000 ppm NH4-N stock solution should be remade every 6 months. To make: Add 4.717 
g of ammonium sulfate (NH4)2SO4 to a 1 L volumetric flask. Add about 500 ml of 
deionized water, then add 1 ml of concentrated HCl and fill to volume with deionized 
water. 

Reagents: 

• 2 M KCl. Add 149 g of KCl to a 1 L volumetric flask. Fill to volume with deionized 
water. 

Extraction: 

 
1. Weigh 2.5 grams of soil into a 50 ml centrifuge tube and add 25 ml of 2M KCl. Cap the 

tubes and shake for 1 hour. 
2. Centrifuge the samples for approximately 5 minutes and filter into a 125 ml plastic bottle. 

This extract is used to determine both ammonium and nitrate. Ammonium samples need 
to be analyzed the same day. 

3. Run samples on the Lachat (see Lachat instructions). If you are running biosolids, the 
extract will need to be diluted 1:16 before running the ammonium on the Lachat (it does 
not need to be diluted for nitrate). Use the clear dilutor on the far right. 

 

Reference: 

Ammonium and Nitrate extracted with KCl. Analyzed by Rapid Flow Analyzer 
 
Kenny, D.R., and D.W. Nelson. Nitrogen - Inorganic forms. pp. 643-698. In: A.L. Page (ed.), 

Methods of Soil Analysis Part 2. 1982. American Society of Agronomy, Inc. Madison, 
WI. 
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P Available (Olsen Bicarbonate Method) 

Additional PPE: gloves 

Reagents: 

0.5 molar sodium bicarbonate: Add 1 liter of distilled water to 42 g of NaHCO3. Let the solution 
equilibrate overnight. Store the solution in a plastic container. The pH in the  
2 liter bottle needs to be adjusted with each use. To make 18 liters, use 756 g of NaHCO3. 
 
Reagent A: Dissolve 12 g of ammonium molybdate in 250 ml of distilled water. Dissolve 0.2908 
g of antimony potassium tartrate in 100 ml of distilled water. Make 1000 ml of 5 N H2SO4 by 
adding 141 ml of concentrated H2SO4 to water and bringing to a volume of 1 liter. Add these 
three solutions together and bring to a volume of 2000 ml with distilled water. Store in a Pyrex 
bottle in a dark, cool place. 
 
Reagent B: Dissolve 0.528g of ascorbic acid in 100 ml of reagent A (for 25 ml use 0.132g 
ascorbic acid, for 50ml use 0.264g ascorbic acid and for 200 ml use 1.056 g ascorbic acid). This 
solution needs to be made every day. 
 

Procedure: 

• Place 2.5 g of soil in a 250 ml Erlenmeyer flask. Use the racks with 9 flasks in a row. 
Adjust the pH of the NaHCO3 in the 2 liter bottle using 6 N NaOH or 6 N HCl. to read 
between 8.28 and 8.30. Add 50 ml of 0.5 molar NaHCO3 to the flasks using the orange 
dispenser (2 pumps). Place the rack on the reciprocating shaker and shake at low speed 
for 30 minutes. 
 

• After shaking, immediately filter the suspension through 15 cm medium fast filter paper. 
To accomplish this, fold the filter paper so it will sit on top of the 100 ml plastic cups 
which are in racks of 9. Pour the suspension through the filter paper into the cups. The 
filtrate will be used for both phosphorus and potassium, so do not discard it.  
 

• Use the 1:3 dilutor to take a 5 ml aliquot of the filtrate and add 10 ml of distilled water. 
Make this dilution in the large plastic tubes. Add 5 ml of reagent B (directions are above) 
with a pipettor and then swirl vigorously. 
 

• Let the solution stand for 15 minutes and then read the color intensity on the Spectronic7 
20 GenesysJ Spectrophotom eter at a wavelength of 880 nm. Use your blank to set the 
transmittance at 100 %, and then read the transmittance on the samples. 

 
• The ppm phosphorus are determined by comparing the samples with a standard curve. 

This curve is obtained by making working standards of 0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 
6.0, and 7.0 ppm from the stock solution. Develop the color in these standards just as was 
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done with the soil extract. The curve is made by plotting the transmittance of the standard 
against the concentration.  

 
• The curve follows Beer’s law, so the log of transmittance falls in a straight line. This 

means a regression equation can be calculated and the results computed on a calculator. 
 

Reference: 

Phosphorus extracted with sodium bicarbonate 

Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus 
in soil by extraction with sodium bicarbonate. USDA Cir. No. 939. 
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Sulfate-S—500 ppm P Monocalcium Phosphate 

 

Reagents: 

500 ppm P monocalcium phosphate: Add 2.03 g of Ca(H2PO4)2 * H2O to a 1 L volumetric flask. 
Fill to volume with deionized water. 

 

Procedure: 

1. Weigh out 10 grams of sample into 25 ml centrifuge tubes. 
2. Add 25 ml of 500 ppm P monocalcium phosphate extracting solution. 
3. Shake for 30 minutes. 
4. Centrifuge for 5 minutes, and filter the samples into small plastic bottles. 
5. Run on the ICP with the sulfates method. 
 

 

Reference: 

Fox, R.L., R.A. Olson, and H.F. Rhoades. 1964. Evaluating the sulfur status of soils by plants 

and soil tests. Soil Sci. Soc. Am. Proc. 28:243-246.  
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