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ABSTRACT 

 
The Seed Ecology of Rare and Endangered Gibbens’ Beardtongue (Penstemon gibbensii)  

and Blowout Penstemon (Penstemon haydenii) 
 

Kassie Lorraine Tilini 
Department of Plant and Wildlife Sciences, BYU 

Master of Science 
 

Penstemon gibbensii and Penstemon haydenii are two rare, perennial forbs inhabiting remote 
areas of the western United States. P. gibbensii is listed as a sensitive species by the Bureau of 
Land Management (BLM) in Colorado, Utah, and Wyoming (Heidel, 2009). P. haydenii was 
designated as Endangered by the U.S. Fish and Wildlife Service in 1987 (Heidel, 2012). This 
thesis research was geared toward helping land managers in their efforts to protect and 
rehabilitate these species by providing understanding on different aspects of their seed ecology.  
 My first study was a laboratory experiment performed on P. gibbensii and P. haydenii 
seed germination response to moist chilling and dry after-ripening. Wild harvested seeds were 
subjected to moist chilling at 2-4 °C for 0, 4, 8, 12, and 16 weeks and held in dry storage for 
approximately 2 years to determine effective methods for breaking primary dormancy. P. 
gibbensii seed germination increased consistently with increased length of chilling up to 16 
weeks and exhibited habitat-correlated variation in this response. P. haydenii seed germination 
increased from 1 to 100% germination with 4 weeks of chilling. P. haydenii germination was 
greatest (96%) when incubated under a cool, diurnally-fluctuating temperature regime (10-20 °C) 
and responded positively to dry storage, increasing germination from 0 to 15%.  
 My second study was an in situ field study designed to characterize the active seed bank 
of P. haydenii. We set up a transect line across a P. haydenii population and measured the 
number of seeds entering the seed bank, lost to predation post-dispersal, and persisting in the 
seed bank. P. haydenii does not appear to form an ecologically significant seed bank. 
Approximately 140 seeds/ 10m2 could potentially enter the seed bank but only 1 seed in the 
upper 10cm of sand persisted. Heavy post-dispersal insect predation resulted in a decrease in 
viability of nearly 30% in exposed P. haydenii seeds after just 12 hours.  
 My third study explored the effects of burial by sand on P. haydenii. Wild-harvested 
seeds were planted in pots at 1, 2, 4, 6, 8, and 10cm deep in sand and incubated at 10-20 °C. 
Seed germination and mortality and seedling emergence were measured. The response of 
dormant seeds to post-burial incubation was determined. Burial depth decreased seedling 
emergence and seed germination. Shallow burial appears to induce secondary dormancy for 
seeds that don’t germinate quickly, whereas deep burial appears to impose enforced dormancy in 
burial.  
Keywords: after-ripening, enforced dormancy, moist chilling, persistent seed bank, 
psammophyte, sand burial, secondary dormancy, seed germination   
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CHAPTER 1 

 

Breaking Seed Dormancy in Gibbens’ Beardtongue (Penstemon gibbensii) and Blowout 

Penstemon (Penstemon haydenii): Germination Response to Moist Chilling  

and Dry After-ripening 

 
 

K. L. Tilinia, S. E. Meyerb, P. S. Allena 

 

aDepartment of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah 84602 USA 

bUSDA Forest Service, Rocky Mountain Research Station, 735 North 500 East, Provo, Utah 
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ABSTRACT- ARTICLE 1 

 

This study explored the germination ecology of two rare, perennial forb species of the western 
United States, Gibben’s beardtongue (Penstemon haydenii (Dorn) [Scrophulariaceae]) and 
blowout penstemon (Penstemon haydenii (Watson) [Scrophulariaceae]). Wild-harvested seeds 
were subjected to moist chilling at 2-4 °C for 0, 4, 8, 12, and 16 weeks and approximately 2 
years of dry storage under laboratory conditions to determine effective methods for breaking 
primary dormancy. Seeds of both species responded positively to moist chilling. Penstemon 
gibbensii seed germination increased consistently with increasing length of chilling and 
exhibited habitat-correlated variation in this response. Penstemon haydenii seed germination 
increased from 1 to 100% germination with 4 weeks of chilling and remained high (> 95%) 
under favorable incubation regimes for all other chilling lengths. Penstemon haydenii 
germination was greatest (96%) when incubated under a cool, diurnally-fluctuating temperature 
regime (10-20 °C). Under warmer or constant temperatures post-chilling germination was < 
20%. Penstemon haydenii seeds also exhibited an after-ripening response; dry storage for 
approximately 2 years under laboratory conditions increased germination without chilling from 0 
to 15%. Our findings should prove useful in propagation and reintroduction efforts for restoring 
populations of these rare species.     
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INTRODUCTION 

 

The regulation of seed germination timing has two main functions: (1) to optimize 

within-year germination timing for maximum seedling establishment success and (2) to prevent 

complete germination within a year and ensure carry-over of seeds (Meyer, 1992). The first 

function enables a species to prevent precocious germination under unfavorable environmental 

conditions. This appears to have evolved in response to selection regimes, particularly climate 

regimes, of distinct habitats (Pendleton, 2004) and is known as “predictive” dormancy (Venable 

and Lawlor, 1980). Predictive dormancy can often be broken by specific environmental cues that 

occur prior to optimal conditions for establishment (Venable and Lawlor, 1980). In the genus 

Penstemon this environmental cue is often the duration of moist chilling, which under natural 

conditions occurs beneath winter snowpack (Meyer, Kitchen and Carlson, 1995). For example, 

dormant seeds from multiple populations of Penstemon species responded differently in 

laboratory experiments imitating the duration of winter snowpack.  Seeds from populations with 

more severe winters and greater snowpack required longer moist chilling periods than seeds from 

populations experiencing shorter, milder winters. The outcomes from common garden 

experiments corroborated with these results, suggesting a genetic basis for germination 

differences both among populations and between individual Penstemon plants (Meyer, Kitchen 

and Carlson, 1995).  

The second function of seed germination regulation enables a species to establish a 

persistent seed bank. This regulation is referred to as “innate” dormancy and is not overcome by 

cues associated with optimum conditions for germination within the first year (Venable and 

Lawlor, 1980).  High innate dormancy provides species with a hedge against complete 

germination under potentially unfavorable environmental conditions for seedling establishment 
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(Venable and Lawlor, 1980). Laboratory experiments performed on 16 Penstemon species 

revealed that many of these species produced a fraction of seeds exhibiting innate dormancy. 

These seeds did not respond to chilling the 1st year despite prolonged chilling (Kitchen and 

Meyer, 1991).  

Penstemon gibbensii (Dorn) [Scrophulariaceae]) and Penstemon haydenii (Watson) 

[Scrophulariaceae]) are two rare perennial forbs. Penstemon gibbensii inhabits shale and sandy-

clay slopes of the Brown’s Park Formation in areas of Colorado, Utah, and Wyoming of the 

Western United States (Heidel, 2009) and very little is known concerning the germination 

ecology of this species. P. haydenii is endemic to the sand hills of west-central Nebraska and the 

Ferris Dunes of Carbon County, Wyoming (Heidel, 2012). It was listed as Endangered by the 

U.S. Fish and Wildlife Service in 1987 (Heidel, 2012) and extensive research has been 

performed on the Nebraska populations of this species. Flessner and Stubbendieck (1989) 

examined the effects of moist chilling at 3 °C on P. haydenii seeds and found that stratification 

for 6, 12, and 18 weeks enhanced germination from 8% to 21% on average, but concluded that it 

“did not consistently enhance germination.” However, the post-chilling incubation temperatures 

used in their study were much higher than the optimum temperatures reported for Penstemon 

germination (Allen and Meyer, 1990).  

This study was conducted to better understand requirements for breaking primary seed 

dormancy in these two species. Our specific objectives were to 1) determine the role of moist 

chilling in breaking the primary dormancy of wild-collected P. gibbensii and P. haydenii seeds, 

2) determine optimum post-chilling incubation temperatures for stimulating germination in P. 

haydenii, and 3) determine if wild-collected P. gibbensii and P. haydenii seeds exhibit an after-

ripening response (i.e. increased germination following dry storage).  Characterizing the 
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mechanisms regulating germination in these two rare Penstemon species may assist managers in 

their conservation efforts by 1) helping optimize propagation techniques for reintroductions and 

recovery efforts and 2) increasing their understanding of how these plants can be expected to 

respond to varying environmental conditions in the field. We hypothesized that 1) P. gibbensii 

and P. haydenii germination would increase with increased chilling length, 2) P. gibbensii 

germination in chill would be greater for lower elevation populations than higher elevation 

populations in prolonged chilling (> 8 weeks) (testable because we had multiple collections), 3) 

P. haydenii would favor cooler incubation temperatures, and 4) P. gibbensii and P. haydenii 

would exhibit an after-ripening response following prolonged dry storage.    
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MATERIALS AND METHODS 

 

Seeds used in our experiments were collected from wild populations of P. haydenii and 

P. gibbensii. Penstemon haydenii seeds were collected from a single site located on Bear 

Mountain in the Ferris Dunes of Carbon Co., Wyoming. One seed lot was collected in the late 

summer of 2010 and the second was collected in the summer of 2012 (Table 1). Both seed 

collections were included in our experiments to determine the effects of time spent in dry storage 

for this species as well. P. gibbensii seeds were collected in the early fall of 2010 from three 

collection sites: Flat Top, Wyoming; Sand Creek, Wyoming and Brown’s Park, Utah (Table 1). 

An additional collection made from the Brown’s Park, Utah site in the fall of 2009 was also 

included in our experiments to examine the effects of time spent in dry storage on germination 

response.  

Following collection, all seeds were cleaned by a process of screening and blowing and 

stored in manila envelopes under laboratory conditions (20-22 °C, 6-8% moisture content) until 

laboratory experiments were conducted. Initial viability for each seed lot was also determined 

using either a cut test (Association of Official Seed Analysts, 1988) or tetrazolium staining 

(Grabe, 1970).  

Seeds were then subjected to a series of laboratory germination experiments. In 

December 2010 – March 2011 we determined if P. gibbensii exhibited primary dormancy and 

examined its response to moist chilling. Seeds from each of the four wild collections (Flat Top, 

WY; Sand Creek, WY; Brown’s Park, UT 2010; and Brown’s Park, UT 2009) were either placed 

directly into incubation at 10-20 °C (12 hour photoperiod corresponding to the high temperature) 

without a chilling pretreatment or subjected to one of four chilling treatments:  4, 8, 12 and 16 
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weeks of moist chilling in a dark chamber held at 2-4 °C. Following chill, dishes were placed in 

incubation at 10-20 °C (12 hour photoperiod) and scored for germination twice weekly.  

In August 2012 - January 2013 P. haydenii primary dormancy and its response to moist 

chilling were studied as described for P. gibbensii, using seeds from each of the two P. haydenii 

seed lots (Bear Mountain 2010 and 2012).  

To determine the optimum incubation temperatures required for P. haydenii germination, 

we put seeds from the Bear Mountain 2012 seed lot into moist chilling at 2-4 °C in a dark 

chamber for 4 weeks. Following chill, seeds were then subjected to one of six incubation 

treatments: constant 15 °C, alternating 10-20 °C, constant 20 °C, alternating 15-25 °C, constant 

25 °C, or alternating 20-30 °C (12 hour photoperiod for all treatments). Dishes were scored for 

germination every two days for 4 weeks and ungerminated seeds were tested for viability at the 

end of the incubation period. 

In the winter of 2010 Penstemon gibbensii and P. haydenii response to after-ripening was 

also determined. Seeds of P. haydenii and P. gibbensii were imbibed and placed directly into 10-

20 °C incubation and scored for germination. Seeds from the same collections were stored for 

approximately 2 years under laboratory conditions (20-22 °C, 6-8% moisture content) in manila 

envelopes then once again imbibed and placed into 10-20 °C incubation and scored for 

germination. Germination data was compared for “recently harvested” and “stored” seeds to 

determine the after-ripening response.  

All experiments included four replications of 25 seeds for each seed lot. Seeds were 

placed on water-saturated germination blotters (Anchor Paper, St. Paul, Minnesota) in 15 X 100 

mm plastic Petri dishes to maintain adequate moisture. During incubation, dishes were read 

periodically and germinated seeds (radicle >1 mm) were counted and removed. At the conclusion 
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of each experiment, viability of ungerminated seeds was determined using either a cut test or 

tetrazolium staining. Viable, ungerminated seeds were classified as dormant.  

Germination data from each experiment was converted to a proportion basis. Germination 

proportions were arcsine-transformed and analyzed using General Linear Models (GLM) to 

determine significant differences within and between treatments and collections. Differences in 

the means were determined using LSMEAN separations. All data were analyzed in SAS v. 8.1 

(PROC GLM: SAS Institute, 2000).   
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RESULTS 

 

P. gibbensii and P. haydenii primary dormancy: 

 Recently harvested P. gibbensii seeds germinated to a maximum of 25% (percentages= 

proportions x 100) when placed directly into incubation without a chilling pretreatment (Figure 

1). Seeds from Brown’s Park, Utah (2010) germinated to 22%, Sand Point to 25%, and Flat Top, 

the population from the highest elevation, completely failed to germinate (Figure 1). There was a 

significant population effect on the proportion of seeds germinating in incubation without a 

chilling pretreatment. The Flat Top population yielded lower germination in incubation than the 

other two P. gibbensii populations (P < 0.0001) (Figure 1).  Recently harvested (2012)  

P. haydenii seeds from Bear Mountain also failed to germinate; germination was only 1% 

without a chilling pretreatment (Figure 2).  

 

 

P. gibbensii and P. haydenii response to incremental chilling: 

 Seed germination for P. gibbensii increased consistently with the length of moist chilling 

(P < 0.0001) with 0 week chill having the lowest proportion of total seeds germinating and 16 

weeks the highest (Figure 1). There was also a significant population effect on the total 

proportion of seeds germinating. Flat Top seeds germinated to a much lower percentage than all 

other collections (p < 0.0001). The Brown’s Park 2010 seed collection had the highest total 

germination but this was not significantly different from the Sand Point population (p = 0.0826) 

(Figure 1). Chilling length had a significant treatment effect on the proportion of seeds 

germinating in chill (P < 0.0001). As chilling length increased, so did the proportion of seeds 

germinating in chill (Figure 1). Results also included a significant population effect on the 



10 
 

proportion of seeds germinating in chill. Flat Top yielded lower germination in chill than all 

other P. gibbensii seed collections (P < 0.0001) (Figure 1).  

Chilling length also had a treatment effect on the total proportion of P. haydenii seeds 

germinating in incubation (P < 0.0001). Germination was lower for 0 weeks of chilling than for 

all other chilling treatment lengths (Figure 2). In contrast with P. gibbensii, following 4 weeks of 

chill the proportion of P. haydenii seeds germinating did start to decrease with increased chilling 

length; seeds chilled for 16 weeks had significantly lower germination than did those chilled for 

4 or 8 week (Figure 2). There was a significant treatment by seed collection year effect as well. 

The 2012 Bear Mountain collection had lower germination with 0 weeks of chilling than the 

2010 Bear Mountain collection (P < 0.0001) (Figure  2). Unlike P. gibbensii, P. haydenii seeds 

did not germinate in chill.      

 

P. haydenii optimum incubation temperature: 

 Fluctuating incubation temperatures stimulated greater germination than did constant 

incubation temperatures (p>0.0001). Germination percentages at all fluctuating temperatures 

were significantly greater than at any constant temperature (Figure 3).The 10-20 °C incubation 

treatment stimulated higher germination of P. haydenii seeds than any other incubation treatment 

(P<0.0001) (Figure 3). Pre-chilled P. haydenii seeds placed in 10-20 °C incubation showed 

almost complete germination (Figure 3).    

 

P. gibbensii and P. haydenii response to after-ripening: 

 Prolonged dry storage under laboratory conditions had no effect on the germination of  
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P. gibbensii seeds for any population (P= 0.9647). Brown’s Park and Flat Top germination 

percentages increased slightly following approximately 2 years of prolonged dry storage but 

these numbers were not significantly different, and Sand Point seed germination actually 

decreased following dry storage (Figure 4).  In contrast, P. haydenii seed germination was 

improved by after-ripening (P < 0.0001). In 2011 P. haydenii seeds collected the previous 

summer failed to germinate in incubation, whereas in 2012 the germination of seeds from the 

same collection increased significantly (Figure 4). 
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DISCUSSION 

  

Our results indicate that seeds of both P. gibbensii and P. haydenii exhibit significant 

primary dormancy. Without any dormancy-breaking treatment neither species achieved high 

germination. For spring emerging species such as these, primary dormancy acts to prevent 

precocious germination under winter snowpack, while stimulating germination to follow shortly 

after snowmelt to maximize seedling establishment (Meyer and Kitchen, 1994). It is interesting 

to note that the extent of this primary dormancy response in P. gibbensii appears to vary with 

population elevation as hypothesized. Flat Top, the highest elevation P. gibbensii population in 

our study, had significantly lower germination percentages in incubation with or without a 

chilling pretreatment than all other populations. Increases in elevation have been shown to be 

associated with increased dormancy in the seeds of some alpine species (Cavieres and Arroyo, 

2001). It is possible that selection pressures at higher elevations have favored greater levels of 

innate dormancy in P. gibbensii seeds.  

 Penstemon gibbensii and P. haydenii seeds both exhibited significant increases in 

germination following moist chilling. Moist chilling imitates conditions experienced under 

snowpack during winter. Snowpack keeps seeds moist and insulates them from freezing 

temperatures at the soil surface. Seeds that require a period of moist chilling prior to germination 

use winter duration as the environmental cue for breaking primary dormancy and are able to time 

radicle emergence to correspond with the arrival of spring (Meyer, Kitchen and Carlson, 1995). 

Penstemon gibbensii and P. haydenii both possess a chilling requirement for breaking primary 

dormancy. It is likely that the mechanism regulating primary dormancy for these species in the 

field is the duration of winter snowpack in their respective habitats.  
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Penstemon gibbensii seed germination in chill also increased with increased chilling 

length. Most P. gibbensii seeds from the lower elevation populations germinated in chill within 4 

months. High levels of germination during moist chilling in the field would not likely happen. 

Precocious germination prior to spring snowmelt would likely result in the death of emerged 

seedlings due to frost and high levels of precocious germination would be selected against. It is 

unlikely then, that these populations of P. gibbensii ever experience winter snowpack for this 

prolonged length of time in the field.  The Flat Top population resides at a much higher elevation 

with greater mean January precipitation, most likely in the form of snow, and exhibited 

significantly less germination in chill than the other two populations. According to Allen and 

Meyer (1998), the seeds of species that establish in the spring show variation among populations 

that can be associated with habitat conditions. According to our results, P. gibbensii, like many 

other Intermountain Penstemon species, appears to exhibit habitat correlated variation in 

germination response to moist chilling.  

Penstemon haydenii seeds germinated almost completely following just 1 month of 

chilling. Unlike P. gibbensii, P. haydenii seed germination did not increase with increased 

chilling length beyond 4 weeks and no P. haydenii seeds germinated in chill. As a sand dune 

endemic, P. haydenii inhabits environments that are very dry much of the year with relatively 

small windows for timing successful seedling establishment. Seeds must therefore be able to 

accurately sense changes in weather from winter to spring and respond quickly enough to take 

advantage of available water before the sand dries out. This population of P. haydenii is also 

from a high elevation with long, severe winters. Germination during chill could result in seedling 

death from frost and we would expect for this population of P. haydenii to have tightly regulated 

primary dormancy so as to not germinate precociously. In the field P. haydenii does not form a 
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persistent seed bank (unpublished data). Reliance on current year seedling survival could 

potentially provide a selection pressure for more tightly regulated primary dormancy to prevent 

seedling death as a result of precocious germination.  

Consistent with our hypothesis, P. haydenii seeds germinated best at cool, diurnally 

fluctuating incubation temperatures following moist chilling. When combined with at least one 

month of moist chilling, incubation at 10-20 °C stimulated much higher germination percentages 

than those reported by Flessner and Stubbendieck (1989), who combined moist chilling with 

higher post-chill incubation temperatures. When paired with the same warmer incubation 

temperatures, one month of moist chilling stimulated similarly low levels of germination as those 

achieved in their study. Previously assumed ineffective moist chilling appears to actually be a 

highly effective method for breaking primary dormancy and stimulating germination in P. 

haydenii seeds. It is possible that the drier, high elevation habitat in Wyoming causes populations 

of P. haydenii to respond differently than those from the lower elevation, more mesic habitats of 

their Nebraska congeners as a result of ecotypic variation. Penstemon germination responses to 

moist chilling and incubation have been shown to exhibit ecotypic variation associated with 

elevation and climate regimes (Meyer, Kitchen and Carlson, 1995; Meyer and Kitchen, 1994; 

Meyer, 1992). However, work performed on temperature requirements for Penstemon 

germination showed a marked decrease in germination at temperatures above 20 °C for three 

species tested (Allen and Meyer, 1990).  

 Penstemon haydenii also exhibited a preference for fluctuating incubation temperatures 

over constant ones. All variable incubation treatments yielded significantly higher germination 

than any of the constant incubation treatments. This positive seed response of P. haydenii to 

fluctuating temperatures may be an indicator of its ability sense seed burial. This response to 
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temperature fluctuation has often been associated with a seed’s ability to sense and respond to 

diurnal temperature changes near the soil surface, which would stimulate germination with 

shallow burial and inhibit it with deep burial as reviewed by Thompson (1974). Soil acts as a 

buffer against temperature variation and fluctuations in temperature are dampened as soil depth 

increases (Ghersa, 1992). As a sand dune endemic, burial by sand is a frequent occurrence for P. 

haydenii seeds. The ability to restrict germination to optimum burial depths would be beneficial 

to seedling success. It is likely that P. haydenii’s positive response to fluctuating temperatures 

acts as a depth-sensing mechanism to prevent germination of deeply buried seeds and stimulate 

germination of shallowly buried seeds. 

After-ripening, the processes of breaking primary dormancy through dry storage 

(Hilhorst and Karssen, 1992), did not induce germination of P. gibbensii seeds. Similar results 

were reported for Penstemon eatonii, where it was concluded that environmental cues received in 

the imbibed state were more important for stimulating seed germination than length of storage in 

a dry state (Meyer, 1992). It is likely that P. gibbensii also relies more heavily on environmental 

cues received in the imbibed state for germination than after-ripening of its seeds. Penstemon 

haydenii, however, responded as predicted and showed a positive response to prolonged dry 

storage. Selection pressures in different habitats can result in seed adaptations specifically 

tailored to that environment (Beckstead, Meyer, and Allen, 1996). One such adaptation is a 

change in primary seed dormancy during after-ripening (Beckstead, Meyer and Allen, 1996). 

Penstemon haydenii seeds may experience increased mortality in the soil through time and lose 

dormancy in response to prolonged dry storage because the odds of surviving precocious 

germination are better than the odds of surviving longer in the soil. However, the likelihood of 

experiencing a moist chilling period of at least one month during winter is high and it is probable 
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that few seeds buried shallowly in the soil fail to germinate the first spring following dispersal. 

This dry after-ripening response may be more useful to conservationists planning on propagating 

P. haydenii because it indicates that if the seeds are left in dry storage for long enough they may 

not need a chilling treatment to stimulate germination.  
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TABLE AND FIGURE CAPTIONS 

 

Table 1: Location and climate data for P. gibbensii and P. haydenii seed collections. Mean 

January temperature and precipitation data for each site were generated using the Prism database 

(www.prism.oregonstate.edu). 

 

Figure 1: Proportions of P. gibbensii seeds germinated during and following chilling as a 

function of chilling duration for each seed collection. (A) Brown’s Park, UT 2009; (B) Brown’s 

Park, UT 2010; (C) Sand Point, WY; (D) Flat Top, WY. Columns with different letters represent 

treatments with significant differences (P < 0.05) in total proportion of seeds germinated as 

determined in the GLM means separations.  

 

Figure 2: The proportion of Bear Mountain P. haydenii seeds germinating (± SE) during 

incubation (10-20 °C) following different lengths of moist chilling (2-4 °C) for each seed 

collection. (A) Bear Mountain 2010; (B) Bear Mountain 2012. 

 

Figure 3: The proportion of P. haydenii seeds (± SE) germinating under constant or fluctuating 

incubation temperatures following 4 weeks of moist chilling (2-4 °C).  

 

Figure 4: The proportion of 2010 collections of P. haydenii and P. gibbensii (± SE) germinating 

during incubation (10-20 °C) following 4 weeks of moist chilling (2-4 °C) when recently 

harvested (2010) and after two years of dry storage (2012).  
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TABLES AND FIGURES 

 

Table 1 

 
Species Site Location Elevation (m) Mean Jan Temp. (°C) Mean Jan. Precip. Viability (%)

P. gibbensii Utah Brown's Park (2009) Daggett Co., UT 1700 -4.6 10.0mm 82
P. gibbensii Utah Brown's Park (2010) Daggett Co., UT 92
P. gibbensii Sand Creek Carbon Co., WY 1890-1900 -7 20.2mm 96
P. gibbensii Flat Top Carbon Co., WY 2290-2350 -5.9 33.3mm 80
P. haydenii Bear Mountain (2010) Carbon Co., WY 2070-2100 -5.9 15.2mm 93
P. haydenii Bear Mountain (2012) Carbon Co., WY 97
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Figure 1 
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Figure 2 
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Figure 4 
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ABSTRACT- ARTICLE 2 

 

The formation of a persistent soil seed bank can be critical to the survival of species inhabiting 
sand dune systems. Blowout Penstemon (Penstemon haydenii Wats. Scrophulariaceae) is an 
early colonizer of active sand dunes and this study was conducted to characterize the seed bank 
ecology of this endangered species. To do this we set up a transect line across a P. haydenii 
population and estimated seed production, post-dispersal predation, and seed persistence in the 
shallow seed bank (0-10 cm depth) in relation to plant density and sand dune movement. Our 
results showed that approximately 140 seeds/ 10 m2 could potentially enter the seed bank. Heavy 
post-dispersal insect predation resulted in a decrease in viability of nearly 30% in exposed P. 
haydenii seeds after just 12 hours. In situ seed bank sampling showed that only 1 seed/ 10 m2 
actually persisted in the shallow soil seed bank. The presence or absence of a seed in the seed 
bank was not correlated with either adult plant density or sand dune movement. Penstemon 
haydenii does not appear to form an ecologically significant shallow seed bank and most likely 
relies on current year seed production and adult plant adaptations to survive in active sand dune 
habitats. It may form a deeply buried long-term seed bank through secondary dormancy 
induction during burial, but the relatively shallow sampling depth used in this study did not 
permit evaluation of this possibility.  
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INTRODUCTION 

 

Land-use changes in the past century have resulted in sand dune stabilization and the loss 

or endangerment of many rare and endemic sand dune species (Arens and Geelen, 2006; 

Grootjans et al. 2002; Levin and Ben-Dor, 2004). Conserving sand dune plant diversity has 

therefore become a cause for concern for many land managers working in active sand dune 

systems. In these systems seed populations in the soil alter the structure and dynamics of the 

plant community (Leck et al., 1989). The formation of a persistent soil seed bank, i.e. where in 

seeds survive in the soil for more than a single year, may be important in habitats that experience 

frequent, unpredictable disturbances (Fenner and Thompson, 2005; Kottas, 2008). In these 

habitats delayed germination can act as a “bet hedging” strategy in that it can lower the 

likelihood that all seedlings will die before reproducing in the event of a catastrophic disturbance 

(Clauss and Venable, 2000).  Active sand dunes are habitats in which burial by sand is a frequent 

disturbance. Burial imposes an abiotic stress on the plants living therein (Maun, 1998). One 

strategy plants can adopt to combat this stress is to form a persistent seed bank as a buffer against 

population extinction. Understanding the seed bank ecology of species living in active sand 

dunes systems can play a critical role in species conservation and the management of these 

systems (Bai et al., 2004; Junling and Zhimin, 2008; Qiaoling et al., 2005).  

  In order to better understand the ecology of the soil seed bank, the potential input of 

seeds into and the magnitude of seed loss prior to entrance into the persistent soil seed bank 

needs to be characterized.  Actual viable seed output per plant is affected by both intrinsic 

limitations, such as genetically programmed ovule abortion (Weins et al., 1989) and extrinsic 

limitations, such as resource availability, pollinator availability, and predation (Ackerman, 

1989). Seed production, a measure of how many viable seeds are produced per adult plant, 
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provides an estimate of the number of seeds that potentially enter the soil seed bank. Rodent and 

insect predation can remove large quantities of seeds post-dispersal and can significantly reduce 

seed inputs into persistent seed banks (Abramsky, 1983; Auld and Denham 1999; Inouye et al., 

1980). North American sand dune habitats typically host from one to five or more species of 

seed-eating rodents (Brown, 1973). Predation studies can provide an estimate of how much seed 

is being removed or destroyed post-dispersal by both rodent and insect predators.  

 Penstemon haydenii (blowout Penstemon) is an endangered sand dune species endemic to 

the sand hills of west-central Nebraska and the Ferris dunes system of Carbon County, Wyoming 

(Heidel, 2012). It is an early seral, perennial species associated with sparsely vegetated, shifting 

dunes with active wind erosion (Heidel, 2012). As a species endemic to active sand dunes and 

blowouts, P. haydenii populations are subjected to frequent burial by sand. It is possible that this 

species has adopted a persistent soil seed bank to prevent local extinction under the occasional 

catastrophic burial event. Kottas (2008) performed field work on P. haydenii populations in the 

Nebraska sand hills and suggested that P. haydenii had the potential to form a persistent seed 

bank based on the fact that ungerminated seeds retained viability in the soil for multiple years. 

However, the results from Kottas’ work also showed that this possibility was unlikely, since 

most viable seeds germinated within the first year following dispersal (Kottas, 2008). Following 

4 weeks of moist chilling, P. haydenii seeds germinated to nearly 100% in the laboratory (Tilini, 

K., Brigham Young University, unpublished data). Seeds in the field are likely to experience 

similar conditions under winter snowpack and few seeds would be expected to remain 

ungerminated.   

We performed a series of studies along an active sand dune transect to characterize the 

seed bank ecology of P. haydenii. The goals of our study were to (1) estimate the annual seed 
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rain, (2) assess the magnitude of seed loss due to predation, and (3) measure seeds in the shallow 

seed bank and determine where those seeds were located in relation to P. haydenii adult plant 

density and sand dune movement. We hypothesized that a large proportion of the viable P. 

haydenii seeds produced by each plant would be taken by rodent and insect predators prior to 

entrance into the soil seed bank. We also hypothesized that the active seed bank would be 

relatively small and finally, that any Penstemon haydenii seeds in the persistent seed bank would 

more likely be found in areas with high adult plant density and moderate rather than extreme 

sand dune movement.  
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MATERIALS AND METHODS 

 

Study Site: 

 Our study was performed on the Bear Mountain population of P. haydenii located in the 

Ferris Dunes system of Carbon Co., Wyoming (Longitude: -107.07086, Latitude: 42.24348, 

elevation: 2100 m). The Ferris Dunes consist of > 300 km2 of predominantly stabilized parabolic 

sand dunes downwind of the Great Basin Divide (Stokes and Gaylord, 1993). P. haydenii 

occupies active sand dune slopes ranging in elevation from 1786-2270 m. The Bear Mountain 

population occurs on the steep slip-faces of dunes with a slope > 60% (Heidel, 2012) and soils 

consisting of psamments derived from wind-blown Quaternary alluvium (Munn and Arnesen, 

1998).   

 Climate data were obtained from a nearby station at the Rawlins Airport, which 

corresponds closely with the Ferris Dunes’ elevation and setting. Mean annual precipitation is 

23.4 cm, with a peak in April and May. Mean annual temperature is 6 °C. Mean minimum and 

maximum January temperatures are -10.7 °C and -0.6 °C respectively, and mean minimum and 

maximum July temperatures are 10.8 °C and 28.7 °C respectively (Heidel, 2012).  

 P. haydenii inhabits sparsely vegetated slopes with less than 5% plant cover (Fertig, 

2001). Predominant species associated with P. haydenii occurrence are blowout grass (Redfieldia 

flexuosa), indian ricegrass (Achnatherum hymenoides), thickspike wheatgrass (Elymus 

lanceolatus), and lemon scurf-pea (Psoralidium lanceolatum, Heidel, 2012).  

 



30 
 

Seed bank estimates: 

 To characterize the seed bank of the Bear Mountain P. haydenii population we set up a 

transect line in May of 2012 that ran along the dune face, across the top and back side of the 

Bear Mountain Dune. Along this transect we placed 55 sampling points, one point every 7 m. 

Each sampling point was marked by a 1 m plastic planting stake inserted approximately 0.5 m 

into the sand. Sampling points were labeled with metal tags attached to each stake. Planting 

stakes served not only as markers for each sampling point but were also used to measure sand 

movement along the dune. The height of each stake was recorded upon insertion and then 

measured at each visit to the site. This allowed us to determine whether the sampling point had 

been subjected to burial (lower stake height) or erosion (greater stake height). Comparing the 

differences between the stake heights allowed us to measure sand movement at each point along 

the transect line and therefore relate this movement to plant density and seed bank estimates.  

 The persistent seed bank of P. haydenii was estimated in situ in July of 2012, prior to 

current year seed dispersal. Four soil samples were taken at each sampling point along the 

transect line. However, one stake was completely unburied and lost before soil samples were 

taken and therefore not included in this study. A total of 216 soil seed bank samples were 

obtained. Each soil sample was taken by inserting a 0.1 m2 square metal frame into the sand to a 

depth of approximately 10 cm. Sand was removed from the metal frame and sifted on site using 

round metal sieves with a mesh size of 0.28 cm (7/64 in). Seeds and debris left on the sieve were 

collected in a labeled bag and transported to our laboratory for further processing. P. haydenii 

seeds found at each sampling point were counted and recorded. A total surface area of 20 m2 of 

soil was processed to a depth of 10 cm to estimate the persistent soil seed bank.     



31 
 

 Data collected on the presence or absence of a P. haydenii seed in each sample  was 

analyzed in relation to with both sand dune movement and adult P. haydenii plant density along 

the transect using Generalized Linear Models (GLM).  A Linear Model (LM) was used to 

compare P. haydenii adult plant density with sand dune movement. Comparisons with a 

probability level of P < 0.05 were considered significant. Analyses were performed using the 

software R 2.15.2 (R Development Core Team, 2012).   

 

Seed rain and reproductive success: 

 To estimate seed rain for the Bear Mountain P. haydenii population we took a series of 

four measurements that were then used to determine the number of viable seeds produced per 

unit area in a single season. The first measurement determined the number of plants per unit area. 

In June 2012, a tape was used to extend 4.6 m on either side of the 399 m transect for a total area 

of approximately 3,650 m2.  The total number of adult plants within this area was counted as we 

moved from sampling point to sampling point. The second measurement determined the ratio of 

reproductive to non-reproductive plants. This was obtained by scoring the number of 

reproductive plants out of subsample of 500 plants counted in November 2012. The third 

measurement was to determine the number of stalks per reproductive plant. To do this we 

counted the total number of stalks on the three plants nearest to each sampling point within 4.6 m 

in July 2012. We then randomly collected one stalk from each of the three plants, placed it in a 

labeled brown paper sack, and took it to the laboratory to determine the number of seeds per 

stalk. Once all measurements were obtained, we combined them to estimate the seed rain of the 

Bear Mountain P. haydenii population.  
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In the laboratory, factors affecting the reproductive output of individual P. haydenii 

plants were also measured and averages were calculated. The length of each stalk (cm) was 

measured along with the following for each collected stalk: number of filled capsules and seeds, 

number of aborted capsules and seeds, and number of insect-damaged capsules and seeds. These 

measurements allowed us to estimate both ovary (capsule) and ovule (seed) success.  

 

Post-dispersal predation: 

The incidence of post-dispersal insect and rodent predation for this population was 

determined in field exclusion experiments. In these trials, ten replications of 25 seeds each were 

subjected to one of four exclusion treatments: (1) exclusion of insect and rodent predators, (2) 

exclusion of rodent predators only, (3) exclusion of insect predators only, and (4) no exclusion. 

In July of 2012 ten blocks containing one replication of each of the above treatments 

were established every fourth sampling points on the transect line, along the dune face only. We 

assumed this is where P. haydenii seed predators would most likely be found due to a greater 

abundance of adult plants in this area. For each treatment, seeds were placed on the surface of  

15 X 100 mm plastic petri dishes filled with sand. The bottoms of the plastic petri dishes were 

glued inverted to the top of the dish. For insect exclusion, Tanglefoot™, an insoluble sticky 

substance, was smeared around the outside rim of the Pretri dish bottoms and kept above the soil 

surface. To provide access to insects, petri dishes were slightly buried in the sand to make the 

surface even with the soil. Wire mesh cages were assembled and placed over petri dishes to 

exclude rodent predators. The cages were secured into the sand using large, metal garden staples.   

A series of four trials were conducted over a three day period. The first trial was started 

on Tuesday evening and retrieved Wednesday morning. The second trial was started Wednesday 
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morning and retrieved Wednesday evening. The third trial was started Wednesday evening and 

retrieved Thursday morning. The last trial was started Thursday morning and retrieved Thursday 

evening. Insect predators are more likely to be active during the day, whereas rodent predators 

tend to be nocturnal. In order to account for possible diurnal and nocturnal differences in 

predation we included two night trials and two day trials. Seeds were exposed to predation for 

approximately 12 hours. Following exposure, seeds were collected in labeled coin envelopes and 

taken back to the laboratory for viability testing using a cut test (Association of Official Seed 

Analysts, 1988) and tetrazolium staining (Grabe, 1970).  

The P. haydenii predation data were analyzed using a General Linear Model in SAS        

v. 8.1 (PROC GLM; SAS Institute, 2000). The effects of treatment, block, and time of day on the 

proportion of damaged P. haydenii seeds were examined. Differences with a probability level of 

P<0.05 were considered statistically significant. 
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RESULTS 

 

Seed bank estimates: 

 A total of 21 P. haydenii seeds were recovered from the approximately 20 m2 surface 

area of sand sampled to a depth of 10 cm in the seed bank analysis. Only 2 of the seeds were 

viable. This gave us an estimate of approximately 1 viable seed for every 10 m2 surface area for 

the shallow persistent seed bank for this population of P. haydenii.  

Average adult plant density surrounding samples with a seed present in the sample was 

slightly greater (0.14 plants/m2) than for samples without a seed present (0.13 plants/m2). 

However, this relationship was not significant (P = 0.781) and the presence or absence of a seed 

within any given sample was not correlated with the density of adult plants surrounding the 

sample (Fig. 1).  

Average net sand movement for samples with a seed present was also slightly greater  

(2.8 cm.) than samples without a seed present (0.5 cm). However, this relationship was also not 

statistically significant (P = 0.199) and the presence or absence of a seed within any given 

sample was not directly correlated with the average net sand movement at the sample site  

(Fig. 2). There was no correlation between average adult plant density and net sand dune 

movement (P = 0.914; Adjusted R-squared = -0.019). However, there were no adult plants 

present where the sand dune had nearly stabilized and almost no net sand movement was 

measured (Compare Figs. 1 and 2).  
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Seed rain and reproductive success:   

 We counted a total number of 459 adult P. haydenii plants within the 3,650 m2 belt run 

along our established transect line. This means there was approximately 1 plant every 10 m2 in 

the area from which our samples were retrieved. A little over half of these adult plants were 

reproductive and produced on average 2.6 stalks and 70 seeds per stalk (Table 1). Using these 

measurements we estimated the seed rain for the Bear Mountain P. haydenii population in 2012 

to be approximately 14 seeds/m2.Average stalk height was 6.3 cm (Standard Deviation: 2.95 and 

Coefficient of Variation: 0.47). Ovary (capsule) success for this population appeared quite low; 

only a little over a third of the capsules actually yielded seeds. Over half were aborted and a 

small percentage was damaged by insects to the extent that individual seeds could not be 

distinguished and counted (Fig. 3). The ovule (seed) success for this population was higher; over 

half the seeds produced in each capsule were filled (Fig. 3). A third of the seeds were aborted 

and a small percentage was damaged by insects (Fig. 3).  

 

Post-dispersal predation: 

 In our predation study, the treatment intended to exclude insect access to seeds 

(Tanglefoot™) failed. As the dishes were placed on the sand surface wind blew sand onto the 

sides of the dishes, coating the Tanglefoot™ in a thick layer of sand and actually providing 

insects with a way to access the seeds within each dish. The wire-mesh cages meant to exclude 

rodent access did not fail; however, no rodent predation was detected in any of the treatments 

and no seeds were taken from these dishes. Since no seeds were taken from any of the dishes we 

assumed predation by birds was irrelevant. There were no significant differences in seed 

predation among any of the treatments (p= 0.1582). However, there was evidence of insect 
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predation in all treatments. Viability dropped from an initial 93% to an average of 66% following 

approximately 12 hours of exposure on the dune. This represents a reduction in viability of 27%. 

Cut tests in the laboratory showed seed damage characteristic of insect predation, i.e. shriveled 

sections of the embryo and chewing damage to the endosperm and embryo.   
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DISCUSSION 

 

Our results indicate that P. haydenii does not form an ecologically significant, persistent 

seed bank. A single seed buried every 10m2 would likely not be sufficient to restore this 

population in the event of a large-scale burial leading to a loss of the adult population. We 

believe that heavy insect predation and high spring germination rates following winter chill most 

likely account for the lack of significant seed quantities in the soil. Four weeks of moist chilling 

yielded almost complete germination of P. haydenii seeds in the laboratory (unpublished data). 

Moist chilling closely imitates conditions under winter snowpack and is required to break 

primary dormancy in many Penstemon species (Meyer, et al., 1995). Field work performed by 

Kottas (2008) on the longevity of P. haydenii seeds in the soil revealed that a majority of viable 

seeds germinated within the first year following planting. P. haydenii seeds appear to possess 

predictive dormancy mechanisms that ensure germination under optimal spring conditions 

following winter chill. However, they do not appear to possess carry-over mechanisms that 

would ensure that a portion of the seeds remain in primary dormancy and enter the persistent 

seed bank. Seed carry-over for perennial plants is not as crucial to survival as for annual plants, 

because surviving adult vegetation can buffer the population against less than optimal seed years 

(Venable and Lawlor, 1980). Adult plants of coastal dune species have been shown to possess 

adaptations that allow them to emerge from burial (Maun, 1998). Some of these adaptations 

include elongation of buried internodes, development of horizontal rhizomes containing 

carbohydrate reserves for emergence from burial, and elongation of petioles to expose 

photosynthetic leaf tissues (Maun, 1998). Short-lived perennial species tend to rely more heavily 

on current year seed for population regeneration than on persistent seeds in the seed bank (Louda 

and Potvin, 1995). As a short-lived perennial (Stubbendieck et al., 1997) P. haydenii is more 
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likely to depend on current year seed and spring germination for population regeneration. 

However, there is the possibility that a persistent seed bank for this species exists at burial depths 

greater than the relatively shallow depths we measured in this study. If P. haydenii seeds become 

deeply buried before receiving the chilling cue necessary for breaking primary dormancy, they 

could fail to germinate and become a part of the persistent seed bank.  

 Heavy predation of post-dispersal seeds is also likely to reduce the number of viable 

seeds entering the persistent seed bank. The results from our predation study revealed that post-

dispersal insect predation accounted for an average reduction in viability of P. haydenii seeds of 

nearly one third in a single day. The control in this experiment failed and all treatments were 

subjected to insect predation. However, we were still able to get an estimate of viability 

reduction due to insect predation by comparing initial viability of the seeds with viability post-

exposure. Seeds were only in the experiment for approximately 12 hours, making it highly 

unlikely that factors other than insect predation could account for such a high loss in viability. 

Also, there was visual evidence of insect predation on the seeds during viability testing. This 

estimate of insect seed predation is, however, likely to be higher than what we would expect in 

the natural system for two main reasons: 1) seeds do not typically remain in concentrated piles 

post-dispersal and 2) seeds are most likely buried shortly following dispersal. However, given a 

few months in the field, if the seeds remain at the soil surface, insects could have quite a large 

impact on seed survival. In sand dune systems wind and sand dune action combine to have a 

significant effect on the horizontal distribution of dispersed seeds (Qiaoling et al., 2005). Seeds 

are distributed across the landscape away from the parent plant and each other which decreases 

seed density in any given area. As food density decreases, an animal spends more time searching 

for food and therefore, fewer food items are actually consumed (Norberg, 1977). Increased 
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foraging time for insects due to searching for seeds spread out across the landscape would have 

resulted in a lower estimate of the effect of insect predation on P. haydenii seeds. In active sand 

dune systems, wind and sand action work in concert to not only distribute seeds horizontally but 

also vertically in the soil profile (Junling and Zhimin, 2008). Once seeds are buried (> 1 cm) they 

are no longer susceptible to insect predation (Abramsky, 1983). This would also result in a lower 

estimate for the extent of insect predation on P. haydenii seeds than resulted in our study.  

 Our predation field study provided no evidence of rodent predation for this population of 

P. haydenii. However, this does not mean there is no rodent predation. Rodent predation on  

P. haydenii seeds was recorded by Kottas (2008) in field studies in Nebraska. Major rodent 

predators encountered in Kottas’ study were Ord’s kangaroo rats (Dipodomys ordii) and deer 

mice (Peromyscus maniculatus) (2008). Mice signs were reported in P. haydenii habitat in 

Wyoming (Heidel, 2012) and it is probable that Wyoming populations of P. haydenii also 

experience rodent predation. The absence of rodent predation in our field study was most likely 

due to the timing of our sampling. Our predation study was performed before natural dispersal 

occurred, meaning that the rodents would likely not yet be foraging for seeds on the dune.   

 The location of P. haydenii seeds in the seed bank was not correlated with sand dune 

movement or plant density. This is most likely due to seed dispersal away from the host plant by 

wind and sand movement. In active sand dune systems, the action of wind and resulting sand 

movement redistribute seeds in the soil and act as the most important abiotic factors controlling 

seed distribution (Qiaoling et al., 2005). Therefore, there is often little similarity between species 

composition of seeds in the seed bank and species composition of aboveground vegetation in 

these systems (Qiaoling, 2005). Small sample sizes, or low absolute numbers seeds in the seed 
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bank, could also account for the lack of correlation between seed bank samples and plant density 

or sand movement.  

 Sand dune movement and adult P. haydenii plant density were not linearly correlated. 

However, no P. haydenii plants were found in areas where there was no sand dune movement. 

This occurred across the top of the dune toward the end of the transect line. As a colonizing early 

seral species, P. haydenii is well adapted to and establishes on active sand dunes prior to 

stabilization; once the dunes become stabilized and other species colonize, it can no longer 

compete for resources and disappears from these areas (Weedon et al., 1982). In addition, there 

were few or no P. haydenii plants below the ridge crest of the dune, where sand deflation was 

most marked.  

 We estimated the potential seed rain of P. haydenii to be approximately 14 seeds/m2. This 

means that for every 10 m2 up to 140 seeds could enter the soil seed bank. The potential 

reproductive capabilities of this population of P. haydenii are much lower than those estimated 

for populations in Nebraska. Kottas (2008) estimated an average of 531 viable seeds per plant 

from two Nebraska sites, Hooker County and Cherry County. The Nebraska estimate is much 

higher than our estimate of only 182 viable seeds per plant for the Bear Mountain, Wyoming 

population. Average stalk height estimates were also much lower for our Wyoming population, 

only about one third that of the Nebraska populations. This Wyoming population of P. haydenii 

may possess lower reproductive potential than the Nebraska sites due to adaptations that enable it 

to live in a more extreme environment. The elevation for our Wyoming site is over 1,000 m 

higher than the Nebraska sites and yet receives almost 200 mm less precipitation on average each 

year. These differences in elevation and climatic conditions could have led the Bear Mountain  
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P. haydenii population to become genetically dwarfed in comparison to Nebraska populations. 

Plant populations may respond to stressful environments through the genetic adaptation of 

ecotypes (Bennington and McGraw, 1995). Decreased plant size in response to increased 

elevation is a well-known phenomenon (Hautier, 2009) and studies have shown empirically that 

reproductive effort often varies with size as reported by Samson and Werk (1986). It is possible 

that Wyoming populations of P. haydenii have developed ecotypes in response to living at much 

higher elevations than their Nebraska counterparts. Reciprocal transplant and common garden 

studies would be needed to determine if there is a genetic basis for the differences in size and 

reproductive potential.  

 Over half of the flowers produced by adult P. haydenii plants were aborted and failed to 

set seed. Many species of flowering plants regularly produce more flowers than actually become 

mature fruits and set seed (Stephenson, 1981). Possible reasons for this phenomenon were 

reported by Santon et al. (1981) and include both evolutionary (increased fruit production under 

favorable conditions and increased pollination with more attractive displays) and mechanistic 

(pollen and resource limitations to seed set) explanations. Studies on the pollination biology of  

P. haydenii found no indication of resource or pollination limitations to reproduction for 

Nebraska populations (Tepedino et al., 2006) and mechanistic explanations for low capsule 

success seem unlikely. P. haydenii is known to be one of the few self-incompatible Penstemon 

species and requires pollination for successful reproduction (Tepedino et al., 2006). As a self-

incompatible species, attracting pollinators is of high priority and it is possible that P. haydenii 

produces greater numbers of flowers than can produce seed in as an adaptation to more 

effectively attract pollinators by visual stimulation or nectar rewards. The activity of pollinator 

species has been linked to nectar production in flowering plants (Real and Rathcke, 1991; 
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Varassin et al., 2001) and lager inflorescences have been shown to be visited by more pollinators 

than smaller ones (Wilson and Bertin, 1979). P. haydenii is also one of the few fragrant species 

of Penstemon and may use volatile compounds in its flowers to attract pollinators. Another 

explanation for P. haydenii low capsule success could be a bet hedging strategy in which the 

plant produces large numbers of potential capsules in the event of a good resource year. Flower 

and fruit abortion enable a plant to coordinate seed production with resource availability under 

variable conditions from year to year (Stephenson, 1981). As a sand dune endemic, P. haydenii 

could encounter resource availability that is likely to be highly variable and could be 

implementing this strategy to coordinate seed production with changing resource availability.    
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TABLE AND FIGURE CAPTIONS 

 

Table 1: Measurements taken to estimate seed rain for the Bear Mountain P. haydenii 

population. Seed rain estimate was calculated by multiplying together the four primary 

measurements. 

 

Figure 1: Adult plant density/m2 surrounding each sample point along the established Bear 

Mountain transect line. The stacked stars above each bar indicate the number of seeds found in 

the persistent seed bank at each sampling point. “P” in the x-axis refers to an individual post or 

sampling point along the transect.  

 

Figure 2: Extent of sand dune movement measured in cm. at each sampling point between visits 

to the Bear Mountain site. The differences in sand movement for each line on the graph are in 

relation to the previous read. Sampling points at which the line is above 0 experienced burial 

during the measured period and sampling points at which the line falls below 0 experienced 

erosion. “P” in the x-axis refers to an individual post or sampling point along the transect.  

 

Figure 3: Factors affecting the reproductive output of P. haydenii. The left bar represents ovary 

(capsule) success and the right bar represents ovule (seed) success.  
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TABLES AND FIGURES 

 

Table 1 

 

Figure 1

 

Measurement Value 
Standard 
Deviation 

Coefficient of 
Variation  

Plants/m2 0.126 plants 11.86 1.47 
Reproductive Plants/ 
Total Plants 

0.613 plants 2.84 4.63 

Stalks/Reproductive Plant 2.61 stalks 2.96 1.14 
Seeds/Stalk 70.01 seeds 71.01 1.01 
Seed Rain Estimate 14.11 seeds/m2 NA NA 
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Figure 2

 

Figure 3 
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ABSTRACT- ARTICLE 3 

 

Active sand dunes are habitats in which burial by sand plays an important role in regulating seed 
dormancy and seedling emergence. This study was conducted to better understand how sand 
burial depth affects seed dormancy and seedling emergence of a rare sand dune endemic, 
Penstemon haydenii. Wild-harvested seeds were planted in pots at 1, 2, 4, 6, 8, and 10 cm deep 
in sand, and then incubated at 10-20 °C in a growth chamber. Seed germination, seedling 
emergence, and mortality were measured and the response of ungerminated seeds to post-burial 
incubation was determined. The proportion of P. haydenii seedling emergence decreased with 
increasing burial depth. Failure to emerge was mainly due to failure to germinate. A majority of 
deeply buried (8 and 10 cm) seeds (> 60%) experienced enforced dormancy in burial but were 
germinable in post-burial incubation. A smaller fraction (< 38%) was induced into secondary 
dormancy. Shallowly buried seeds (1 and 2 cm) either germinated and emerged from burial (37-
77%) or were induced into secondary dormancy (>85%). Few ungerminated seeds (< 6%) 
retrieved from shallow burial germinated in incubation. Seeds from intermediate depths (4 and 
6cm) showed an intermediate response in post-burial incubation; about 30% remained 
germinable and about 70% were induced into secondary dormancy. Seed burial greater than 4cm 
dramatically suppresses P. haydenii germination and the seeds of this species appear to possess a 
depth sensing mechanism which inhibits germination under unfavorable burial conditions. 
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INTRODUCTION 
  

Active sands dunes are habitats in which wind erosion and sand movement play an 

important role in distributing seeds and plants both horizontally and vertically across the 

landscape (Qiaoling et al., 2005, Junling and Zhimin, 2008). In these systems, burial by sand is a 

frequently recurring phenomenon and acts as strong selective force for plant adaptation (Maun, 

1998). Seed dormancy protects more vulnerable plant life stages from unfavorable environmental 

conditions (Vegis, 1964). One such condition is represented by excessive burial that imposes 

abiotic stresses such as changes in soil compaction, pH, and oxygen availability on seedling 

survival (Maun, 1998). One mechanism seeds can employ to avoid the stresses associated with 

germination under excessive burial is to remain dormant until conditions become more favorable 

for germination and seedling establishment, i.e. the seeds regain proximity to the surface. Studies 

performed on a number of sand dune species showed that increasing burial depth 

correspondingly increased enforced dormancy of seeds and suppressed germination (Pemadasa 

and Lovell, 1975; Jianhua and Maun, 1990; Hua and Maun, 1999; Jun et al., 2002). In this paper 

we define “enforced dormancy” as a condition in which germinable seeds are prevented 

environmentally from germinating but will resume normal germination when favorable 

conditions are restored. Secondary dormancy is another form of dormancy in which initially 

nondormant seeds or those that have been rendered nondormant are induced into dormancy 

under certain conditions (Baskin and Baskin, 1985). Seeds rendered secondarily dormant will not 

germinate even when placed under favorable conditions until secondary dormancy has been 

broken. Excessive burial has also been shown to induce secondary dormancy in a number of 

weed species (Benvenuti, 2003).  
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 Burial by sand can strongly affect seedling emergence and survival. Once germinated, 

seedlings rely solely on seed energy reserves to reach the soil surface and the size of these 

reserves dictates from what depth seedlings can emerge (Maun and Lapierre, 1986). Numerous 

studies on sand dune and weed species show that as burial depth increases, seedling emergence 

decreases (Maun and Lapierre, 1986; Jianhua and Maun, 1990; Maun, 1998; Hua and Maun, 

1999; Benvenuti et al., 2001; Jun et al., 2002; Benvenuti, 2003).  

 Blowout penstemon (P. haydenii) is a rare perennial herb endemic to the sand hills of 

west-central Nebraska and the Ferris sand dunes of Carbon County, Wyoming (Heidel, 2012). It 

is an early seral species directly associated with sparsely vegetated, shifting sand dunes with 

active wind erosion (Heidel, 2012). Penstemon haydenii was listed as Endangered by the U.S. 

Fish and Wildlife Service in 1987 and is protected under state law in Nebraska (Heidel, 2012). 

As a sand dune endemic, it is likely that burial by sand plays an important role in limiting the 

seed germination and seedling emergence of this species.  

The goal of this study was to examine the effects of burial by sand on seeds and seedlings 

of P. haydenii. The specific objectives of our study were to determine the effects of burial depth 

on (1) seed germination, dormancy and mortality, (2) seedling emergence and mortality, (3) 

germination, dormancy, and mortality of retrieved seeds in post-burial incubation, and (4) the 

success of re-chilling on breaking secondary dormancy. We hypothesized that as burial depth 

increased (1) seed germination would decrease and enforced dormancy would increase, (2), 

seedling emergence would decrease and mortality would increase, and (3) induced secondary 

dormancy of seeds in post-burial incubation would increase.   
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MATERIALS AND METHODS 

Seed Source: 

Seeds of wild P. haydenii plants were collected in July of 2012 from the Bear Mountain 

sand dune, a member of the Ferris dunes system in Carbon Co., Wyoming (421425.25 N and 

1070426.682 W). To collect seeds, a transect line was run through the P. haydenii population 

and sampling points were established every 7m. At each sampling point one randomly chosen 

seed stalk from each of the three nearest plants within 3m was removed. Stalks were clipped at 

the base, placed in a brown paper sack, and transported to the laboratory. Seed capsules were 

removed from the stalks and seeds were cleaned using screening and blowing. After cleaning, 

seeds were stored in manila envelopes under laboratory conditions (20-22 °C, 6-8% moisture 

content) for approximately 2 months before inclusion in burial experiments. Initial viability of 

the seed lot was determined to be 97% using tetrazolium staining (Grabe, 1970). 

 

Experimental Procedure: 

Wild-harvested P. haydenii seeds exhibit primary dormancy. To break primary 

dormancy, seeds intended for this study were placed on water-saturated germination blotters in 

15 X 100 mm plastic Petri dishes. Dishes were then placed in a dark growth chamber at 2-4 °C 

for four weeks, which preliminary experiments showed will effectively break primary dormancy 

and stimulate seed germination to between 98 and 100% (Tilini, K. Brigham Young Univeristy, 

unpublished manuscript).  

Following moist chilling, seeds were removed from Petri dishes and subjected to one of 

six burial depth treatments: 1, 2, 4, 6, 8, or 10 cm. Seeds were placed in plastic planting pots  
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(13 x 12 cm) and buried with sand to the assigned treatment depth. Sand used in this experiment 

was obtained directly from the Bear Mountain site where seed collection occurred. Pots were 

then placed in trays filled with wet sand and buried approximately half-way in the sand. This was 

done to reduce any oxygen contamination from drainage holes in the bottoms of the pots. The 

trays with the pots were then put into a 10-20 °C growth chamber (12 hour photoperiod). Pots 

were watered every other day to saturation and seedling emergence was recorded daily for six 

weeks at which time the experiment was ended and seeds and seedlings were exhumed. At the 

end of the experiment, the sand in each pot was washed through a fine sieve to retrieve both the 

ungerminated seeds and the unemerged seedlings. Seeds were categorized as ungerminated or 

dead and seedlings as emerged or unemerged (germinated but failed to emerge).  

Ungerminated seeds retrieved from burial were then placed in 15 X 100 mm plastic Petri 

dishes on saturated germination blotters and put back into 10-20 °C incubation for four weeks to 

test for burial-induced secondary dormancy. Dishes were read twice a week and scored for 

germination.  Following 4 weeks in incubation seeds were categorized as germinated, dormant, 

or dead. Seeds that experienced suppressed germination in burial but then germinated in post-

burial incubation were considered in a state of “enforced dormancy.” Seeds remaining dormant 

in post-burial incubation were considered in a state of “secondary dormancy” and were then 

subjected to re-chilling (2-4 °C) in an effort to break this dormancy. Dead seeds were those 

which were visibly infected with either bacteria or fungal colonies and were soft to touch. Firm 

seeds were considered alive and dormant and were included in re-chilling. Prior to initiation of 

re-chilling, five seeds from each treatment replication containing ten or more dormant seeds were 

tested using tetrazolium staining (Grabe, 1970) to verify viability.  Following four weeks of re-

chilling, seeds were placed back into 10-20 °C incubation and read twice a week for germination.  
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Statistical analysis: 

Data collected on seed germination and mortality and seedling emergence of P. haydenii 

seeds in burial was converted to proportions of total seeds planted. Data collected on post-burial 

incubation seed germination, mortality and dormancy were converted to proportions of the 

number of ungerminated seeds recovered from burial. These same variables were also analyzed 

as the proportions of total number of seeds planted in burial to ensure patterns were not simply 

artifacts of high germination in burial. Data collected from re-chilled seeds were converted to 

proportions of the number of seeds remaining dormant in post-burial incubation.  Proportional 

data from burial, incubation, and re-chilling were arcsine square root transformed prior to 

analysis. All data were analyzed in a randomized block design in SAS v. 8.1 (PROC MIXED: 

SAS Institute, 2000). Models were run to determine the effects of varying burial depths on the 

previously mentioned variables. Separate models were run for seed response to burial, post-

burial incubation, and re-chilling. LSMEANS separations were run on differences among burial 

depths.   
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RESULTS 

 

P. haydenii seed response to burial: 

 As burial depth increased (up to 4 cm), seed germination decreased (p < 0.0001,  

F = 12.65, DF = 18). At all burial depths greater than 4cm nearly all seeds (> 90%) experienced 

suppressed germination (Figure 1B). Burial depth up to 4 cm also significantly decreased the 

proportion of emerged seedlings (p < 0.0001, F = 13.12, DF = 18) (Figure 1A). Failure of 

seedlings to emerge was mostly due to failure of seeds to germinate since very few seeds 

germinated at depths greater than 4 cm. However, for the few seeds that did germinate and fail to 

emerge, 2, 4, and 6 cm depths yielded higher proportions of unemerged seedings than  

8 and 10 cm depths (p = 0.0427, F = 2.91, DF = 18) (Figure 1C). This is likely an artifact of the 

fact that so few seeds germinated from 8 and 10 cm. Mortality was so low at all burial depths 

that no treatment effect could be discerned (P = 0.7590, F = 0.52, DF = 18) (Figure 1D).   

 

P. haydenii response to post-burial incubation: 

 The proportion of retrieved seeds held under enforced dormancy during burial but 

germinating in post-burial incubation increased with increasing burial depth (p < 0.0001,  

F = 11.45, DF = 17). Deep burial (8 and 10 cm) had the highest proportion of germinated seeds 

in post-burial incubation, followed by 4 and 6 cm, while 1 and 2 cm had the fewest (Figure 2A). 

Conversely, the proportion of seeds rendered secondarily dormant and failing to germinate in 

post-burial incubation decreased with increased burial depth (p = 0.0022, F = 6.01, DF = 17). 

The two deepest burial treatments had the smallest proportion of seeds that remained dormant in 

post-burial incubation followed by the two intermediate depths (4 and 6 cm), while the two 
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shallowest depths had the most (Figure 2B). Mortality was not significantly affected by burial 

depth (p = 0.9430, F = 0.23, DF = 17) and very few seeds died in post-burial incubation  

(Figure 2C). Even when analyzed over the total number of seeds planted in burial, there was a 

treatment effect on the proportion of seeds rendered secondarily dormant (p = 0.0428, F = 2.91, 

DF = 18).  

 

P. haydenii response to re-chilling: 

 Re-chilling P. haydenii seeds that became secondarily dormant as a result of burial 

slightly stimulated germination. Seed burial depth affected the small proportion of seeds that 

responded to re-chilling (p = 0.022). Six cm burial depth had the highest proportion of seeds 

germinating, almost 11% while all other burial depths yielded 3% or less germination.        
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DISCUSSION 

 

 As seed burial depth increased, the proportion of P. haydenii seedlings emerging 

decreased. A burial depth of only 2 cm halved seedling emergence and depths greater than 4 cm 

almost completely inhibited emergence. The depth from which seedlings can potentially emerge 

has been associated with both seed size (Maun and Lapierre, 1986; Hua and Maun, 1999) and 

energy reserves (Maun, 1998). Larger seeds typically have greater energy reserves and are able 

to emerge from greater depths of burial. Despite the relatively large size of P. haydenii seeds, it 

appears that relatively shallow burial is enough to inhibit germination. Penstemon haydenii 

inhabits relatively harsh environments and seedlings must be able to emerge and then survive 

under the extreme conditions associated with high elevation, active sand dunes. These conditions 

include frequent wind erosion, sand abrasion, high surface temperatures, drought, and sun 

exposure. Excessive burial of seeds has been shown to have negative effects on seedling 

establishment (Jianhua and Maun, 1990). Larger seeds emerging from shallower depths would be 

able to produce more extensive root systems to absorb nutrients and water (Hua and Maun, 

1999). Failure of P. haydenii seedlings to emerge was due mostly to failure to germinate. Very 

few germinated seeds actually failed to emerge suggesting that attempted emergence from deep 

burial has a negative effect on plant survival or fitness and is, therefore, tightly regulated. It 

appears that P. haydenii, like many other species (Maun and Lapierre, 1986; Jianhua, 1990; 

Maun, 1998; Hua and Maun, 1999; Jun et al., 2002), possesses some type of depth sensing 

mechanism or response which inhibits germination under the unfavorable conditions associated 

with excessive burial.  

The mediation of seed germination inhibition through burial depth has been linked to a 

number of potential factors. One such proposed factor is sensitivity to temperature fluctuations in 
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the soil. Studies performed on Sorghum halapense seed germination showed that sensitivity of 

seeds to temperature fluctuations in the soil was a major component of its depth sensing 

mechanism (Ghersa et al., 1992). Temperature fluctuations in the soil are dependent on depth 

(Thompson, 1977; Ghersa et al., 1992) and the seeds of many species have been shown to 

positively respond to fluctuating incubation temperatures (Thompson and Grime, 1983).  

Penstemon haydenii has been shown to exhibit a preference for cool diurnally fluctuating 

incubation temperatures for optimum germination (Tilini, K., Brigham Young University, 

unpublished manuscript). As temperature fluctuations decrease with increasing depth, it is 

plausible that P. haydenii sensitivity to temperature acts as a mechanism for sensing burial depth 

and inhibiting germination.    

Another proposed factor affecting depth-mediated germination inhibition is soil oxygen 

content and gas exchange capabilities. Studies performed on the effects of hypoxic conditions on 

seed germination attributed germination inhibition to increasing levels of hypoxia surrounding 

seeds (Benvenuti and Macchia, 1995). However, it was postulated that oxygen supply was of less 

importance and the main inhibitor of seed germination was due to poor gas exchange and 

therefore, inability to eliminate the products of anaerobic metabolism (Benvenuti and Macchia, 

1995). These findings were supported in a related study that showed a close relationship between 

depth-mediated germination inhibition and poor gas exchange (Benvenuti, 2003). It is likely that 

P. haydenii germination inhibition at increasing burial depths is associated with reduced gas 

exchange capabilities of the soil in which the seed resides. 

Penstemon haydenii seed response to post-burial incubation revealed some interesting 

patterns. A majority of ungerminated seeds planted at shallow burial were induced into 

secondary dormancy. Seeds failed to germinate even when restored to optimum conditions. 



61 
 

Ungerminated seeds retrieved from intermediate depths showed an intermediate response; about 

one third of the seeds were germinable and two thirds were induced into secondary dormancy. 

Lastly, seeds recovered from deep burial showed a high proportion of germination (over half), 

and a much smaller fraction entered secondary dormancy. A possible explanation for this pattern 

could be a race between two opposing processes: germination and secondary dormancy induction 

in the dark. At very shallow depths (1cm), where conditions are not limiting to germination, a 

majority of the seeds germinate rapidly. Only the slowest fraction of seeds is induced into 

secondary dormancy. At slightly deeper burial (2 cm) conditions are not as favorable to 

germination and germination is slowed. Under these conditions, over half the seeds are induced 

into secondary dormancy. At deep burial depths conditions are completely limiting to 

germination and possibly to a lesser extent, secondary dormancy induction. At these depths most 

seeds simply stay in a state of enforced dormancy and then germinate once restored to optimum 

germination conditions. The rest of the seeds are induced into secondary dormancy. At 

intermediate burial depths, conditions are limiting enough for enforced dormancy and very few 

germinate. However, the conditions are not limiting enough to prevent a large proportion of 

seeds from entering secondary dormancy. More research concerning secondary dormancy 

induction and its association with conditions limiting to germination at different burial depths 

would be needed to support this hypothesis and further explain this interesting pattern. 

Re-chilling seeds in an effort to break primary dormancy was not effective for this 

population of P. haydenii. Very few secondarily dormant seeds germinated in re-chilling and the 

small proportion which did is ecologically insignificant. Placing seeds back into chill following a 

period of incubation has been shown to be ineffective in breaking primary and secondary 

dormancy in the seeds of many Penstemon species (Meyer, S., USDA Forest Service, 
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unpublished data). However, work on Penstemon propagation has shown that if the seed are first 

allowed to dry out for a period prior to re-chilling, a larger fraction will then germinate in 

incubation (Meyer, S., USDA Forest Service, personal communication). In the field buried seeds 

of P. haydenii probably never re-enter a state of moist chilling without drying out first. Seasonal 

fluctuations in temperature and moisture levels will subject seeds to a period of dry storage under 

the soil during summer before they re-enter moist chilling during the winter. It is possible that 

this response acts to prevent precocious germination during the summer and to ensure 

germination occurs during the optimum season, spring.  
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TABLE AND FIGURE CAPTIONS 

 

Figure 1: P. haydenii seed response to varying burial depths. Bar graphs represent the proportion 

of seedlings (± SE) that (A) emerged or (B) failed to emerge (unemerged) and the proportion of 

seeds (± SE) that (C) failed to germinate or (D) died in burial at varying depths.   

 

Figure 2: Response to post-burial incubation of remaining ungerminated P. haydenii seeds 

following burial for 6 weeks. Bar graphs show the proportion (± SE) of retrieved P. haydenii 

seeds from different burial depths that (A) germinated (i.e. under enforced dormancy during 

burial), (B) were induced into secondary dormancy, and (C) died during post-burial incubation.  
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Figure 2 
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