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ABSTRACT 

Keystroke Dynamics: Utilizing Keyprint Biometrics to Identify Users in Online Courses 
 

Jay Richards Young 
Department of Instructional Psychology and Technology, BYU 

Doctor of Philosophy 
 

This study examined the potential use of keystroke dynamics to create keyprints (typing 
fingerprints) to authenticate individuals in online assessment situations.  The implications of this 
study are best understood in terms of the keystroke behavioral biometric.  While previous studies 
considered the degree to which keystroke typing patterns are unique, this study was set up to 
determine how well keyprints are able to identify individuals when typing under various 
treatment conditions (copy typing, free typing, and typing with mild or moderate impediments).  
While authentication can be difficult when attempting to correctly identify individual users, the 
results of this study indicate that keyprints can be a solid indicator of negative cases (i.e., 
flagging situations where a typing sample is likely not the correct individual).  As anticipated, 
typing with a temporary impediment does diminish the algorithms’ ability to identify students.  
This is also the case when user samples are typed under conditions different from those in which 
the keyprint baseline signature was captured (i.e., copy versus free typing).  The ability to 
identify individuals is also challenging when using small comparison samples.  However, the 
ability of the system to identify negative cases functions fairly well in each instance.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: keystroke dynamics, keyprint signatures, online assessment 
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CHAPTER 1: INTRODUCTION 

The prevalence of online education has increased dramatically in the past decade due in 

part to several significant benefits online learning offers (The United States Higher Education 

System, 2016; Freidman, 2016; Newton, 2015).  Among those benefits are accessibility, 

schedule flexibility, and affordability (Li & Irby, 2008).  However, along with the benefits of 

online learning come several challenges, one of which is academic dishonesty among students 

(Grijalva, Nowell, & Kerkvliet, 2006; King, Guyette, & Piotrowski, 2009; Sewell, Frith, & 

Colvin, 2010).   

 Unethical behavior in schools is rampant (King et al., 2009), including prestigious 

universities (Pérez-Peña, 2012).  While cheating in school is not new, it has taken on new forms 

and is becoming easier to undertake due to increased use of technology to facilitate instruction 

and testing (King et al., 2009; Sewell et al., 2010).  One particular problem for providers of 

online courses is the challenge of verifying the identity of students completing an online course 

(i.e., making sure the person doing the work and taking the test is the same person getting credit 

for completing the course).  Moini and Madni (2009) stated, “the anecdotal body of evidence 

suggests that ‘cyber cheating’ is far more widespread than originally believed because it is nearly 

impossible to verify the identity of an individual being assessed online” (p. 469).   

In 2008, the United States government picked up on this issue and passed the higher 

education opportunity act (HEOA).  This act requires higher education institutions to “make 

greater access control efforts for the purposes of assuring that students of record are those 

actually accessing the systems and taking online exams by adopting identification technologies 

as they become more ubiquitous” (Monaco, Stewart, Cha, & Tappert, 2013, p. 2).  To comply 

with the requirements of this law, institutes of higher education who provide online courses have 
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begun exploring the use of biometrics to authenticate students.  This includes how science and 

technology can be utilized to identify physiological or behavioral attributes that are unique to 

individual students (Karnan, Akila, & Krishnaraj, 2011). 

Commonly used biometric indicators (e.g., finger or palm prints, iris scans, facial and 

voice recognition) are effective because technology can fairly accurately authenticate a user’s 

identity by comparing samples of unique physiological characteristics (Karnan et al., 2011).  The 

main concern with using biometrics in the authentication process is systems needed to capture 

and compare these metrics can be prohibitively expensive to implement (Panchumarthy, 

Subramanian, & Sarkar, 2012; Jenkins, Grimes, Proudfoot, & Lowry, 2014).  They can also be 

somewhat intrusive (e.g., taking facial recognition videos while working on a course).  These 

biometrics are good gatekeeper measures (i.e., verifying entry into the system similar to using a 

password); however, they do not serve well as in-system verification tools (i.e., once admitted 

into the learning system by a verified user, who is actually completing the work).  Behavioral 

traits such as handwriting, signatures, keystroke dynamics, and mouse dynamics can be used like 

physiological characteristics to identify individuals (Karnan et al., 2011).  Metrics using 

keystroke and mouse dynamics can examine the behavior of those admitted into the learning 

system to verify the person completing the course work is the person signed up to take the 

course.  These metrics can be somewhat less accurate than physiological characteristics as they 

often change slightly depending on circumstances, but they are less obtrusive and obtained 

during the process of an individual completing work in the course rather than merely at the 

beginning of a work session (Marsters, 2009).   
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Joyce and Gupta (1990) speculated that keystroke dynamics in online assessment could 

lead to increased security when a learner is completing a test unsupervised at a distance using 

technology.  Keystroke dynamics record and analyze the way a user types, based on habitual 

typing patterns (Monrose & Rubin, 2000).  Like a fingerprint or a signature, we theorize that 

individuals can be identified using keystroke dynamics to create what we call a keyprint that 

represents their typing behavior.  Monrose and Rubin (1997) suggest that the use of keystroke 

dynamics to create a typing signature for individuals is the most reasonable and cost-effective 

approach for institutions of higher-education looking to improve their online assessment security.  

Multiple studies verify that keystroke dynamics work in free text and password scenarios and 

using multiple analysis techniques (Giot, El-Abed, & Rosenberger, 2011; Flior & Kowalski, 

2010; Killourhy & Maxion, 2009; Killourhy & Maxion, 2008; Gaines, Lisowski, Press, & 

Shapiro, 1980; Spillane, 1975).   

Research Purpose    

The purpose of this proof of concept study extends the work done on keystroke dynamics 

as a potential tool to authenticate students as they complete work in an online course.  It 

considers the ability of keystroke detection algorithms to identify students typing under various 

conditions.  Specifically, this study was designed to consider the ability and accuracy of using 

keyprints to identify typing samples under various conditions that might decrease the accuracy of 

the authentication process (i.e., task difficulty and typing impediments).  This study also 

considered the possibility of using a reduced keyprint profile rather than a full keyprint signature 

as a baseline when comparing typing samples.   
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Research Questions  

This study was designed to answer four questions.   

Question 1: To what degree do keyprint signatures provide accurate user identifications of 

individuals when using a full keyprint signature as a baseline comparison? We 

hypothesized that our findings would be similar to findings from previous studies that 

found this technique to be a viable solution to the problem of user identification.   

Question 2: To what degree do keystroke dynamics provide accurate user identification of 

individuals when using a reduced keyprint profile as a baseline comparison? We 

hypothesized that using a reduced set of keystroke characteristics that included only those 

keystroke features that were unusual or somewhat outside the norm for individual typists 

would provide a more accurate identification of individuals in terms of reduced false 

positive and false negative results.   

Question 3: To what degree does task difficulty impede the ability of keyprint authentication to 

accurately identify individual typists? We hypothesized that there would be a reduction in 

accuracy when individuals free type a response as compared to copy typing text. 

Question 4: To what degree does typing with a mild or moderate impediment alter the ability of 

keyprint authentication to accurately identify individual typists? We hypothesized that 

there would be a considerable drop off in user identification accuracy when individuals 

were typing with a mild or moderate impediment.   
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CHAPTER 2: REVIEW OF LITERATURE  

Biometrics authentication is “the science and technology of authentication by identifying 

the living individual’s physiological or behavioral attributes” (Karnan, Akila, & Krishnaraj, 

2011, p. 1565).  Keystroke dynamics is defined as the process of analyzing the way a user types 

in an attempt to identify individuals based on typing patterns (Monrose & Rubin, 2000).  Online 

assessment is “the application of formative [and summative] assessment within learning online 

and blended settings where the teacher and learners are separated by time and/or space and 

where a substantial proportion of learning/teaching activities are conducted through web-based 

ICT [Information Communication Technology]” (Gikandi, Morrow, & Davis, 2011, p. 2337).  

Online identity verification is the confirmation of a focal person identity using supporting 

evidence (Meng & Agarwal, 2007).  Online assessment security is the process of decreasing the 

actual and probable occurrences of cheating in an online course context (Caldarola & MacNeil, 

2009).   

Online Assessment Security 

The role of online assessment security is to secure the institution against improper 

manipulation by the students (Graf, 2002).  Cheating is easier due to technology providing 

anonymity for the actual user; as a result, there is a greater need for security in the form of 

student verification for online courses and with online assessments.  For example, when taking a 

non-proctored online test, a student could use the internet to search for answers to the questions 

posed, or could have a friend, who excels in the subject, take the exam for them.  Such 

manipulation discredits the exam being taken as well as potentially implies a false level of 

competence for a student.  Examples of the myriad of ways students have been caught cheating 

include: plagiarism (McMurtry, 2001), checking notes on their mobile device during exams, 
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texting friends for answers to test questions, warning others of quizzes, telling others of test 

answers (O’Shaughnessy, 2009), accessing full exams online, hiring a surrogate, pay-to-pass, 

emailing friends for answers, emailing friends the test answers, and taking pictures of the exam 

and disseminating (Simkin & McLeod, 2010).   

Online assessment security decreases the occurrences of cheating (Caldarola & MacNeil, 

2009).  This is accomplished by using deterrent factors such as strategically placing integrity 

reminders encouraging students not to cheat (Hricko & Howell, 2006), employing authentication 

verification using biometrics (Ahmed & Traore, 2007; Saevanee, 2014), and specifically using 

keystroke dynamics as the primary biometric by which online assessment should be governed 

(Tapert, Villani, & Cha, 2009; Yu & Cho, 2004).   

Biometrics collect “behavioral or physiological characteristics to establish or verify a 

precise identity” (Ahmed & Traore, 2007, p. 165).  Accuracy depends on the specific biometric 

used.  “Physiological biometrics—including finger scan, iris scan, retina scan, hand scan, and 

facial scan” (p. 165) are quite accurate in precision, however, the cost for such precision in most 

cases is high (Monrose & Rubin, 2000; Yu & Cho, 2004).  Behavioral biometrics measure 

human actions (Ahmed & Traore, 2007, p. 165) which are accurate, although not as accurate as 

physiological biometrics can be, and almost free to implement (Gunetti & Picardi, 2005; Jenkins, 

Grimes, Proudfoot, & Lowry, 2013; Monrose & Rubin, 2000; Yu & Cho, 2004).  With cost 

being a significant issue for higher education institutions, keystroke dynamics becomes a logical 

step to improving user identification authentication in online assessment security.   
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Keystroke Dynamics: The Method  

“Keystroke dynamics are the patterns of rhythm and timing created when a person types” 

which can then be used to verify identity (Yu & Cho, 2004, p. 428,).  This is done by monitoring 

and measuring an individual’s keystroke dwell times (the amount of time a key is depressed) 

interwoven with flight times (time between the previous key up and the next key depression) 

(Chang, Tsai, Yang, & Cheng, 2011; Yu & Cho, 2004) and then identifying them based on their 

habitual rhythm typing patterns (Monrose & Rubin, 2000).  The identification is done by using 

inexpensive software or code to track a user and match their usage against their usage history 

(Keystroke dynamics, 2015).   

Tracking is done using “keystroke digraph latency times” (Leggett, Williams, Usnick, & 

Longnecker, 1991, p. 862).  Software measures the amount of time that lapses between two 

adjacent letters. For example, if a student named Mary were typing her name, she would 

sequentially type M, A, R, and Y. Keystroke digraph latency measures the “time elapsed 

between the keypresses for the letters of the digraph”, in this case “MA,” “AR,” and “RY” 

(Leggett et al., 1991). These data on Mary’s individual way of typing enable the software to 

identify Mary in future interactions.  

There are additional ways to extract data from keystrokes that go beyond digraph latency 

according to Rybnik, Tabedzki, and Saeed (2008). They claimed that in addition to dwell and 

flight times, keystroke data can be extracted using: 

• “typing speed – average number of keystrokes per time interval,  

• overlapping of specific keys combinations (especially ‘shift’ or ‘Caps lock’ 

for writing capital/small letters, but also overlapping of letters predicated by 

fast typing),  
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• amount of errors (and how often a user uses delete or backspace keys),  

• method of error correcting (selecting text before or deleting letters one by one, as 

well as a manner of typing used for corrections that may be very distinct as in most 

cases only one key will be pressed),  

• cursor navigation-specific keys (keys like arrows, home, end, page up, page down, 

etc.)” (p. 226).   

Flior and Kowalski (2010) added two additional ways to extract keystroke data:  

• keystroke seek time defined as “different letters take a different amount of 

time for the user to locate and press.  This can be rather unique, as a typical 

keyboard has 105 keys, which gives at most 105 potential combinations of 

seek-time, assuming the seek time for each key is different;” and 

• examination of characteristic errors including “holding the shift-key for too 

long, resulting in backspacing, or simply common typographical errors.  If 

these common errors can be recorded, they also provide a reference against 

which the user’s identity can be checked” (p. 490). 

Jenkins et al. (2014), added transition time, defined by latency between key presses.   

According to Joyce and Gupta (1990), keystroke dynamics were effective in identifying 

individuals who fraudulently tried to have someone else do the task for them. They did this by 

capturing the patterns of thirty-three users typing; each user typing their login and password info 

at least eight times. Each user then logged into their account five separate times, while six of the 

users were randomly selected to have their accounts potentially hacked by the twenty-seven 

other users yielding 810 total imposter attempts. Of those attempts, only two imposters were not 

caught (99.75% success rate). This miniscule imposter rate is because each user has his or her 
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own distinct typing pattern which consists of overlapping of specific keys combinations, amount 

of typical errors they make, method of error correcting, and/or cursor navigation-specific keys 

usage (Karnan, et al., 2011).  Our typing behavior is similar to a fingerprint, a voice, a retinal 

pattern, or a physical description; it is unique to us and difficult to duplicate.  In other words, it is 

“not what you type, but how you type” (Monrose & Rubin, 2000, p. 353).   

 For Rybnik, Tabedzki, and Saeed (2008), however, keystroke dynamics have issues 

because typing precision changes as skill improves; it is not a static ability. Additionally, a user’s 

health state being altered (e.g., injury to a finger or hand) can affect keystroke dynamics. 

Software can address these kinds of changes in keyboard ability but requires updating typing 

samples first (Gunetti & Picardi, 2005). According to Lau, Liu, Xiao, and Yu (2004), the 

disadvantages to using keystroke dynamics include inconsistent typing patterns based on fatigue, 

mood, and health; differences in which keyboard is being used; and differences in whether the 

typist is standing, sitting, using good posture, or multitasking.  The advantages include keystroke 

dynamics being unobtrusive, inexpensive, easy-to-collect data and can be done from virtually 

anywhere using an internet connection (Lau et al., 2004).  Keystroke dynamics are non-invasive 

for users.  Non-invasive does not necessarily mean concealed. While users do not have to know 

it is being used to track their keystrokes, it may be obvious to users when they are asked to type 

to authenticate themselves.  

In their study of keystroke dynamics accuracy with passwords, Killourhy and Maxion 

(2009) collected data to evaluate anomaly detection results seeking to understand if there was a 

change in the way passwords were input compared to imposter attempts.  They gathered their 

data from fifty-one subjects who typed over 400 passwords each with the “three top-performing 

detectors achiev[ing] equal-error rates between 9.6% and 10.2%” (p. 125).  It is important to 
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point out that anomaly-detection is one of many different techniques used in keystroke dynamics 

to identify imposters, and also very different from the detection percentages Joyce and Gupta’s 

study identified.  For Killourhy and Maxion, a 10% error rate was decent, but was in their 

estimation too high.  It should be noted that less than .001%, is the European standard for access-

control systems (2009, p. 125).  As an attempt to supplement anomaly detection, Flior and 

Kowalski (2010) developed a software solution combining HTML, PHP, MySQL and JavaScript 

to record key events (dwell and seek) and calculate the correlation between them.  Such software 

solutions provide ways to continuously authenticate and track student progression through an 

exam, thus improving online assessment security.   

Security Methods  

One way to know who is taking online courses is to have students provide a government-

issued ID. However, that kind of ID could potentially be forged and it is still unclear, even after 

the ID is provided, if they are who they say they are. Because of these insufficiencies, many 

universities have embraced additional measures such as video recording the student taking a 

course, face-to-face observation, or appealing to the personal integrity of the student. Even with 

these extra measures, the person taking the assessment is not necessarily the person enrolled in 

the course.  

There is a need for stronger online assessment security. Keystroke dynamics are a 

security feature that has potential to help strengthen online assessment security by mitigating 

cheating and authenticating identity (Ahmed & Traore, 2007; Giot, Dorizzi, & Rosenberger, 

2015; Jenkins et al., 2013; Miguel, Caball, Xhafa, & Prieto, 2015; Sewell et al., 2010).   
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Implications for using keystroke dynamics.  There are some important implications for 

including keystroke dynamics with online assessment that need to be addressed because it would 

force some important behavioral changes.  For example, there would be greater awareness by 

students that they need to do their own authentic work.  “Knowing ahead of time that the system 

will be determining whether or not the student is actually answering the questions provides a 

deterrent effect, impressing on the students that the work must be their own” (Flior & Kiwolski, 

2010, p. 492).   

Additionally, administrators and instructors would have more concise evidence on where 

to focus their administrative resources.  Keystroke dynamics reporting would flag problem areas 

(i.e., who is potentially cheating) allowing school administration to more precisely allocate 

scarce human resources.  Using keystroke dynamics in online exams would alert administrators 

and instructors to areas of concern as well as give them “reason to suspect that the [student] who 

wrote the examination is not the student registered in the class” (p. 492).  Armed with such 

evidence, administrators and instructors would potentially be able to mitigate the issue more 

meaningfully for all parties involved. 

Another implication for including keystroke dynamics with online assessment is the 

saving of time.  Students could theoretically take their exams in a non-proctored environment—

freeing up both student and instructor time (Alexander, Bartlett, Truell, & Ouwenega, 2001).  

Online testing is convenient for students and instructors.  For example, students would not need 

to worry about travel time (which for some is extensive, depending on where they live in 

proximity to the university or proctor), travel preparation (e.g., putting gas in the car, clearing the 

snow off), travel issues (e.g., traffic, accidents), or parking issues (e.g., finding a space).   
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Instructors would not need to worry about similar issues, plus they would have added time 

savings such as convenience for scheduling the exam (can be completed at 11:59 pm while the 

professor sleeps), fewer to grade because much of it is done by the computer, and automatically 

entering the grades (2001).   

Implementation cost. Including keystroke dynamics in online assessment security would 

also save money.  Most institutions, like the University of Georgia, already administer many of 

their exams online, but there is a need for proctoring, which demands money and human 

resources (University Student Services, n.d.).  Keystroke dynamics could assist in refining where 

resources are allocated by potentially removing the need for face-to-face proctors in 

administering online exams.   

In addition to saving time and lowering costs, school administrators would need to 

consider some of the technical implications associated with keystroke dynamics like how to use 

it (i.e., in online exams, throughout the entire course).  Using keystroke dynamics in these ways 

could help identify if a student is having someone else do their work for them.   

Successful use of keystroke dynamics.  Keystroke dynamics could be paired with 

mouse dynamics to increase user authentication information data and improve the identification 

authentication process.  Mouse dynamics involve “a signature that is based on selected mouse 

movement characteristics, which are computed using statistical techniques” (Ahmed & Traore, 

2007, p. 165).  Combining keystroke dynamics with mouse dynamics “would increase the 

complexity of input data for analysis but surely [limit] the possibility of similar inputs for two 

different identities” (Rybnik et al., 2008, p. 230).  Having these two data points would potentially 

improve imposter detection accuracy percentages as well.  
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In the current online marketplace, existing professional test-taking services offer services 

to students to take an entire course for them--as the student--guaranteeing a high grade.  These 

services are not cheap, costing as much as or more than the fee to take the course.  However, 

with little effort, students can deceive the administration of a higher institution of learning, 

fraudulently improve their GPAs, and deceitfully increase their potential options for acceptance 

into harder-to-get-into graduate schools or access to higher-paying or more prestigious jobs.  One 

class sometimes makes all the difference.   

Current utilization of keystroke dynamics. Such an advantage, dishonestly gained, 

creates an unfair playing field for students, harming both the integrity of the student and the 

institution where they are studying.  Federal laws, like the previously mentioned HEOA, demand 

institutions ensure appropriate technologies are in place to guarantee a student’s ID.  In addition 

to the governmental regulations, accrediting bodies have made this a part of their accreditation 

practices.  As of their latest printing, The Southern Association of Colleges and Schools standard 

4.8.1 asserted that an institution offering distance or correspondence education needs to 

demonstrate that the student who enrolls in a course needs to be “the same student who 

participates in and completes the course or program and receives the credit by verifying the 

identity of a student who participates” (p.40).  If an institution does not meet this standard, the 

likelihood of receiving accreditation decreases.  In response to these pressures, institutions like 

Coursera, a “social entrepreneurship company that partners with universities to offer free courses 

online” (Vrankuli, January 2013, para. 1), have begun using keystroke dynamics to verify the 

identities of their students.  They are doing this by having students “create a biometric profile of 

their unique typing patterns by typing a short phrase.  When a student submits work in the 

course, they authenticate their identity by typing the same short phrase, with which identity can 
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be verified through comparison to their recorded typing samples” (2013, para. 3).  Coursera is 

not alone in its employment of keystroke dynamics.  MIT and Harvard are also using it with their 

massively open online courses (MOOCs), by requiring students to type out a preselected phrase 

and then using that phrase to verify a student’s identity (Talavera-Franco, April 2014).  Using 

keystroke dynamics as a way to mitigate fraudulent academic activity and to ensure student 

identification is wise for an institution of higher learning to incorporate.   

A quick Google search for keystroke dynamics software yields multiple decently 

effective software packages available for free download.  Of course, these free versions are basic 

packages limited to small quantities of users with more users available for a higher cost.  For 

institutions of higher learning where users will most likely be in the thousands, an enterprise 

license will likely need to be negotiated, depending on specific institutional needs and goals.  

Coursera, for example, used an enterprise contract and an institutional strategy to track every key 

typed (KeyTrac, 2016) by their fifteen million-plus student users (EdSurge, 2015).  But this 

approach is expensive for course providers and it caps the number of authentications and 

identifications that can be completed, limiting the effectiveness of potential continuous 

authentication.  EdX (5 million-plus users) and Udacity (four million-plus users), competitors of 

Coursera, do not employ keystroke dynamics—opting for face-to-face discussions and 

competency interviews (2015).  They do this partially because they believe the qualitative 

assessment gives them a better feel of authenticity than keystroke dynamics can, and because 

they have the money to do so.  While not the choice of all institutions, keystroke dynamics is 

suggested as the most reasonable and cost-effective approach for higher-education institutions 

looking to improve their online assessment security (Monrose & Rubin, 1997).   
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Conclusion and the Need for Further Research 

Online assessment security is aimed at decreasing the actual and probable occurrences of 

cheating (Caldarola & MacNeil, 2009) as well as securing an institution against cheating by 

students (Graf, 2002).  Keystroke dynamics aids in preventing cheating by monitoring and 

analyzing a user’s keyboard inputs based on his or her habitual rhythm typing patterns (Monrose 

& Rubin, 1999).  Since its inception, keystroke dynamics has shown to be valuable in 

authenticating users (Ahmed & Traore, 2007; Flior & Kowalski, 2010; Graf, 2002; Gunetti & 

Picardi, 2005; Joyce & Gupta, 1990; Killourhy & Maxion, 2009; Lau, Liu, Xiao, & Yu, 2004; 

Monaco et al., 2013; Pfost, 2007; Saevanee, 2014), especially for the cost (Ali, Tappert, & Qiu, 

2015; Gunetti & Picardi, 2005; Guven & Sogukpinar, 2003; Jenkins et al., 2013; Monrose & 

Rubin, 1997; Yu & Cho, 2004). 

Combining keystroke dynamics with online assessment security, while not without its 

problems, is potentially an inexpensive and impactful tool that higher education institutions 

could look at more closely to help mitigate academic fraud.   

Implementing keystroke dynamics in online assessments is likely the next step for online 

education.  Each institution needs to be aware of its assessment goals and strategies and how 

keystroke dynamics can help reach them.  Administration and IT departments should work 

closely to develop clear and meaningful policies and execution strategies.   

This literature review suggests that keystroke dynamics can potentially lead to increased 

online assessment security.  More exploration is needed, but what is clear is that while keystroke 

dynamics has been around for a while, little is published about its use in education journals.  This 

means there is an opportunity for further research in this arena, in journals that reach the 

education audience, bringing more attention to the discipline and the topic.   
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Education conferences could include more topics relevant to keystroke dynamics and 

online assessment security, including having keynote speakers from Coursera, Keytrac, and other 

keystroke dynamics practitioner institutions.   

The conversation about and application of keystroke dynamics usage in online 

assessment needs to include more voices from higher education.  At these institutions, enrolling 

in and taking an online course is more and more a normal part of the learning experience, and so 

are the opportunities to cheat.  Cheating is not new, and with more technology involved in the 

learning process, it enables more cheating.  The ability to correctly identify who is taking a test 

online is of paramount importance to national and educational governing bodies.  To follow the 

instituted laws, higher education institutions have begun exploring biometrics as one method for 

identifying users.   

While biometrics are certainly a viable part of the identification process, there are some 

concerns.  A concern with biometrics in general is that they can be prohibitively expensive, 

making the likelihood of usage challenging (Jenkins, Grimes, Proudfoot, & Lowry, 2014; 

Panchumarthy, Subramanian, & Sarkar, 2012).  The keystroke dynamics biometric is potentially 

part of the solution, because it can reliably authenticate a user with a high degree of accuracy 

while remaining affordable (Lau, Liu, Xiao, & Yu, 2004).   

From the literature we see two main gaps. First, there seems to be minimal research on 

authenticating an individual while they are participating in common assessment typing situations, 

such as free typing.  Second, there seems to be minimal research on utilization of keystroke 

dynamics with typing authentication where injuries or impediments exist.  Critically important to 

being able to address these gaps is knowing how these contexts affect keystroke dynamics 

verification in free typing generative list task and free typing explanatory activities as well as 
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with minor and moderate injuries and impediments.  The research in this dissertation attempts to 

fill some of that gap by finding answers to these important questions.  Overall, keystroke 

dynamics has not been used extensively in online education, and is thus still largely unknown.  

That will change as more research is conducted and published about the value and strength 

keystroke dynamics adds to online assessment security.
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CHAPTER 3: METHODS 

To contribute to the research needed in this area, we decided to employ a proof-of-

concept (POC) methodology.  This study was set up to replicate data collection and analysis 

from other studies.  Similar to Flior and Kowalski (2010), we created a proof of concept software 

system to capture our data using HTML, MySQL, and JavaScript.  Like Gunetti and Picardi 

(2005), who gathered fifteen typing samples from forty volunteers, we gathered six typing 

samples under various treatment conditions from seventy-eight volunteers.  Like Killourhy and 

Maxion (2009), we used multiple methods to analyze our findings but decided on the use of a 

simple mean difference t test method.  Like Yu and Cho (2004), we used ROC charts to plot data 

accuracy; and similar to the linguistic profiling concept Saevanee (2014) developed, we created 

keyprint signatures and keyprint profiles based on a set of keystroke dynamics.  We set up our 

research design to determine the degree to which individuals had unique typing patterns similar 

to Joyce and Gupta (1990).  In addition to simulating the methods in previous studies, the study 

was designed to establish and verify the degree to which keyprints might be used to identify 

individuals typing under more specific treatment conditions (copy typing, free typing, and typing 

with mild or moderate impediments).  Table 1 presents terms and definitions used in this study.  



19

Table 1 

Key Terms Used in This Study 

Term Explanation 

Keyprint Signature Baseline used for comparison that includes all available data 
points 

Keyprint Profile Baseline used for comparison, which includes only those data 
points somewhat outside the norm 

Match Range Value at which paired data points in two samples were considered 
a match in initial analysis 

Match Threshold Percentage of matched data points required for the samples to be 
considered a match 

Z-score Cut-Point Value at which a dwell time or transition times were considered 
unusual enough to be place in the Keyprint profile 

True Match Instances when the algorithm correctly matched samples known 
to come from the same individual 

False Negative Instances when the algorithm failed to match samples known to 
come from the same individual 

False Positive Instances when the algorithm matched two samples known to 
come from different individuals 

Critical Point for False 
Negatives 

Point at which false negatives reach zero 

Participants 

University students from an Introduction to Management Information Systems course 

were recruited to participate in this study.  Roughly 150 students were offered extra credit to 

provide data for this study.  The class was structured in such a way that students could get extra 

credit points by participating in various activities or completing specific tasks.  Initially eighty-

four participants chose to provide data; however, data obtained from six individuals was found to 

be incomplete, leaving a total of seventy-eight usable sets of data.  The participants were all 
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undergraduate students, many of whom were majoring in information systems; each possessed 

requisite basic typing abilities.  Students who volunteered to provide data were emailed 

instructions (see Appendix A) directing them how to access the data capture webpage where 

their keystroke data could be captured as they completed six typing tasks.  Participants were 

originally given seven days to complete the typing task, but at that time, there were just over 

sixty participants who had completed the activity.  Since we had set a goal of getting 100 

participants we extended the data collection period for another three weeks.  During this time, we 

garnered another twenty-five participants.  The majority of participants completed the typing 

tasks on their personal laptops; the others completed it on a personal computer.   

Individuals who provided typing samples for this study were directed to an HTML page 

that presented them with a consent form that each participant had to complete in accordance with 

our approved institutional review board (IRB) procedures.  Completing the consent form was not 

only important for IRB requirements, but it also allowed us to identify participants with unique 

IDs so we knew which samples were provided by specific individuals.  Each participant was 

asked to provide six samples of typing under specific treatment conditions and knowing which 

sample belonged to each participant was essential to the analysis process.  The consent form 

document disclosed the purpose for the study and asked participants to type normally.  Once the 

consent form was completed, participants were given directions on how to complete the typing 

tasks.   

Data Capture Procedures  

Using the Google Chrome browser, we embedded JavaScript into HTML pages so we 

could track dwell and transition times for specific keys and key combinations.  The data set (i.e., 

time stamps for when specific keys were pressed and released) was initially stored in JSON files 



21

and later saved on a MongoDB housed on the Amazon Web Services (AWS) cloud.  In the 

database, data was transformed into dwell and transition times.  Dwell times were calculated 

using time stamps of when each key was pressed and released.  Transition times were determined 

using time stamp differences for when the first and second keys in each combination were 

pressed.   

Participants were expected to complete the entire activity in one sitting and the system 

was set up to not allow stopping the exercises and restarting later.  It was believed that allowing 

this would have created a reliability problem with our data collection due to the fact that we 

would not know if they were completing the study on a different computer or more importantly 

using a different keyboard.  We anticipate studying this and other variables at a later time.  Each 

of the participants were asked to provide six typing samples (see Table 2).  The text participants 

were asked to type is provided in Appendix B.   

The first treatment (T1) was intended as a baseline copy typed exercise to capture each 

participant’s normal typing cadence.  Each participant was asked to type the introductory 

paragraph from the autobiography of Helen Keller.  The paragraph consisted of 175 words (964 

characters); the number of characters were similar in count to Leggett and Williams’ (1988) first 

baseline character count.  After initial data analysis, it was determined that this treatment sample 

would be suitable for use as the individual’s keyprint signature and profile. 

The second treatment (T2) was also a copy typing exercise to be used as a similar sample 

comparison to the first.  In this case, however, the participants were provided with the 

concluding paragraph from the autobiography of Helen Keller--which consisted of 145 words 

(798 characters); the number of characters gathered were significantly higher (more than two 

times higher) than that of Leggett and Williams’ (1988) second baseline count (see Appendix B).  
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We determined to use this as the baseline verification treatment sample to both check and verify 

that the T1 baseline sample was working and to use as the initial comparison treatment for T1 

under similar data capture conditions.   

The third and fourth treatments (T3 and T4) were free typing tasks.  These were intended 

to simulate situations where the task was different from the baseline task (copy typing) in terms 

of cognitive effort required to complete the task.  In T3 students were provided with the 

following prompt: “There are over 100 alternative ways to use paper clips from their intended 

usage, how many you can get?” In T4 participants were asked the following: “In at least 200 

words, and without consulting an outside source, type out your answer to the question, what is 

intelligence?” For the prompt in T3, participants were given instructions that they needed to 

write at least 150 words, although many did not.  In both tasks, participants were able to type 

their ideas using as much or as little time as needed.  Upon completion of the tasks, similar to 

(Vanette, 2015) participants were asked to fill out a five-point Likert scale survey regarding the 

difficulty of the typing task.  The expectation going into the study was that T4 would be more 

cognitively demanding than T3, but this assumption proved to be incorrect.  Participants rated 

the typing difficult of sample T3 to be about the same as T4 (T3 = 3.26, T4 = 3.14).  T3 did 

differ from T4 in the amount typed and the variety of dwell and transition times captured; 

however, based on a chi squared analysis, the response distribution regarding the students’ 

perception of the difficulty for these two tasks was found to be similar (χ2(4)=1.014, p = .908).   

The fifth and sixth typing samples (T5 and T6) were intended to mimic situations where a 

typist might have a temporary mild or moderate impediment when completing a typing task.  

Participants were asked in T5 to type an assignment with a band-aid on their right index finger.  

They were then asked to copy type the first two paragraphs of the Gettysburg address which 
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consisted of ninety-eight words or 533 characters (see Appendix B).  For T6, participants typed 

the last two paragraphs of the Gettysburg address with tape wrapping the middle and ring finger 

of their left hands together.  Instructions were provided, including a picture, on how to apply the 

tape.  The Gettysburg address consisted of 143 words or 791 characters (see Appendix B).  A 

concise breakdown of each treatment and their description is provided in Table 2. 
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Table 2 

Descriptions of the Design Treatments Used for the Data Samples Collected 

Treatment Condition Treatment Description 

T1: Baseline sample 
for Keyprint signature 

Participants copy typed the introduction paragraph from the 
autobiography of Helen Keller which consisted of 175 words (964 
characters). 

T2: Baseline similar 
sample comparison 

Participants copy typed the concluding paragraph from the 
Helen Keller’s autobiography which consisted of 145 words 
(798 characters). 

T3: Generative list task 
sample 

Participants free typed an answer to the following prompt: “There are 
over 100 alternative ways to use paper clips from their intended 
usage, how many you can get? 

T4: Explanation 
composition sample 

Participants free typed an answer to the following question: “In at 
least 200 words, and without consulting an outside source, type out 
your answer to the question, what is intelligence?” 

T5: Mild impediment 
sample 

Participants copy typed the first two paragraphs of the Gettysburg 
Address which consisted of ninety-eight words (533 characters) with 
a band-aid on their right index finger. 

T6: Moderate 
impediment sample 

Participants copy typed the last two paragraphs of the Gettysburg 
Address which consisted of 143 words (791 characters) with tape 
wrapping together the middle and ring fingers of their left hand. 

Prescreening Data Process 

Before analyzing the data, we needed to clean the data set to identify any unnecessary 

data and remove it.  According to Fawcett (2006), prescreening the data is essential to maximize 

the performance of the classifiers from the data being analyzed.  Prescreening allowed us to 

remove the non-essential elements of the data, thus maximizing the performance of the 

algorithm.  It was important to identify which keys and key combinations we would keep and 
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which we would exclude.  The criteria for inclusion was that the typed key and key combination 

occurred at a relatively regular rate and that the dwell and transition time likely represented the 

individual’s typical typing behavior.   

The initial data set consisted of 1,630 different transition combinations (see Appendix D). 

For pre-screening purposes, each combination was tracked for transition time and the number of 

times it was utilized.  The most used transition combination was the “backspace” key followed 

by the “backspace” key.  This combination was typed 11,751 times across all participants.  The 

data set contained 438 different transition combinations that were typed only once.  Such limited 

usage of these transitions warranted their removal from the data set.   

In total, we removed 1,587 transition combinations.  We kept forty-three transition 

combinations (see Appendix D) leaving 186,659 transition times for analysis.  The decisions to 

keep the forty-three transitions was informed by the number of times each transition was utilized, 

how those transitions were employed across treatments, and the similarity of the transitions to 

everyday typing.  For example, the digraph “ea,” “th,” and “in” were kept because they are 

commonly occurring digraphs in standard English; however, “, space” was removed because a 

digraph consisting of punctuation can introduce measurement errors when individuals pause 

unnaturally after punctuation.  That is not to say that punctuation digraphs were completely 

eliminated.  We kept the “.  space” digraph, but excluded instances where the transition time was 

greater than 1,000 milliseconds (or one second) both because the use of a period in typing is a 

basic skill and because it was utilized enough across treatments to warrant inclusion.   

Some key combinations were determined to be less reliable examples of typical typing.  

The best example of this is keystroke dynamics involving the “shift” key.  Data points involving 

the “shift” key (both for dwell and transition times) were removed because the times obtained 
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were considered too undependable.  Li and Jain (2009), found that using the shift key to modify 

a character varies based on a person using the left or right hand.  More importantly, the amount 

of time an individual holds the shift key down before typing another key varies dramatically 

from instance to instance for the same person. 

As for the dwell time data, we collected data from roughly eighty unique keys.  In the 

prescreening process this was trimmed to twenty-six (see Appendix D).  The decision to keep 

these twenty-six characters was based on the number of times the characters were used and 

whether they are commonly used in sentences.  We kept characters that had been used at least 

2,388 times across all treatments.  Any character that was used less than 2,388 times was 

removed.  This was a natural cut point for the data, as the next character in the list occurred only 

757 times across the six sample treatments.  In addition to infrequently used keys, special 

characters and non-printable characters were excluded (e.g., the volume key on the keyboard was 

pressed by several users and was excluded from our analysis).  After the initial prescreening 

analysis for commonly occurring instances of keys and key combinations, we were left with 

572,331 data points (i.e., 385,672 dwell times and 186,659 transition times). 

The last phase of the prescreening process involved excluding data points found to be 

unusually long.  Based on an initial review of the data, we removed any characters that had a 

dwell time over one second (1,000 milliseconds).  This was done to eliminate extreme outliers in 

the data set.  To complete the prescreening, we removed all participants who did not complete all 

data capture samples.  After final prescreening analysis to exclude unusually long dwell and 

transition times, as well as data from participants who did not complete each data-gathering task, 

we were left with 547,725 data points (i.e., 375,173 dwell times and 172,552 transition times). 
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Keyprint Profiles 

Once the list of twenty-six key and forty-three key combinations to be used was 

completed, the mean times for each transition and dwell time for each individual’s baseline 

sample (T1) was converted into a z-score so we could determine which dwell and transition 

times were outside the norm for individual typists at each data point. 

One of the assumptions when using z-scores and parametric statistical analysis (e.g., 

mean difference t tests) is that the data set is somewhat normal.  We initially attempted to run the 

Shapiro-Wilk statistical test to estimate the degree to which the data set could be considered 

normal; however, the Shapiro-Wilk test is known to be overly sensitive for large datasets and in 

R it does not run for data sets over 5,000, making this test unusable. 

 A visual inspection of the data set suggested the data are somewhat normal shaped; 

however, it is slightly skewed and has a long tail (see Figure 1).  Barnes et al. (2001) suggest that 

in practice no data set is completely normal and that if the distribution of the sample is “not 

wildly non-normal,’’ standard statistical methods likely work well enough (p. 81).  Given the 

large number of data points we obtained and the somewhat normal shape of the data set, we 

determined that the use of z-scores to define unusual dwell and transition times was a 

satisfactory approach.  
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Figure 1.  This figure shows the distribution of dwell and transition times of the entire dataset. 
A visual inspection of the data set suggests the distribution of dwell and transition times is 
somewhat normal, however the data are slightly skewed with a long tail. 

A descriptive analysis of the number of data points in each keyprint was conducted for 

each possible z-score cut point we might use (see Table 3).  The ideal cut-off point identified for 

this study was 0.5, because anything higher resulted in too few data points in each profile on 

average.  Additional evidence that the data set was normal enough to use z-scores was provided 

by an analysis of the theoretical normal curve.  In theory, it is expected that 38% of the data will 

fall between the -0.5 and +0.5 standard deviation from the mean of a normally shaped 

distribution, leaving 62% of the data outside this range.   
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In our data, using a z-score of +/- 0.5, the average number of data points in each profile 

was forty-one of sixy-nine possible (i.e., 60%).  In theory, we should have had 62% of the data 

points in the profiles, but we felt the results were adequate for our purposes. 

Table 3 

Optimal Z-score Cut Points Analysis Data 

Z-score cut points 1.00 0.9 0.8 0.7 0.6 0.5 0.4 

Min 4 5 9 12 18 23 29 
Mean 19 23 27 31 36 41 46 
Max 46 52 56 60 66 66 67 

Note: The complete keyprint signature included sixty-nine keys and key combinations.  The 
keyprint profile was to include only those keys outside the norm while maintaining a sufficient 
number of dwell and transition times in each profile to compare.  It was determined that 0.5 met 
this criterion.   

Treatment T1 was used to establish keyprint baseline comparison samples for each of the 

participants.  The keyprint signature included the average transition and dwell times (sixty-nine 

total data points) for each individual.  The keyprint profile was established for each individual 

and included only the atypical or unusually long or short dwell and transition times for each 

individual.  Using a z-cut point of 0.5, the keyprint profiles for participants in this study had 

between twenty-three and sixty-six unique typing behavioral characteristics.   

Data Analysis 

With the prescreening complete, the data analysis process consisted of calculating the 

number of false negative and false positive classifications at each match threshold given that we 

know the identity of each individual providing each sample.  The results were presented using 

receiver operating characteristic (ROC) charts for continuous output (i.e., depictions of class 

membership results at different thresholds).  This was done to establish optimal threshold points 
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(i.e., where the number of false negative and false positive is balanced) and critical points for 

false negatives (i.e., the point at which the probability of incorrectly classifying samples known 

to match is zero).   

Matching samples consisted of comparing the keyprint signature and profiles with 

samples obtained from each of the treatments separately, all other samples combined, and only 

those samples obtained under different conditions to the baseline sample (i.e., free typed and 

typed with an impediment). 

A sample match was determined by conducting a mean difference t test (α = 0.05) for 

each data point in the samples.  The degree to which two samples match was determined by 

calculating the percentage of data point matches.  This was then charted for each potential match 

threshold.  Given that the distribution of the data set is not completely normal, we initially 

conducted the analysis using a simple match range procedure (i.e., data points were considered a 

match if they were within +/- 50 milliseconds of each other).  We also employed a non-

parametric Wilcoxon-Mann-Whitney test and, based on 5,376 comparisons, the t test and 

Wilcoxon had a 92% agreement on matches; the t test, however performed better at reducing 

false negative classifications.  Using the match range method, we obtained suboptimal results 

compared to the other two methods (see Figure 2).  As a result, we used the t test method to 

determine matches for each data point comparison.   
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Figure 2.  This figure shows the comparison of Match Range Versus Wilcoxon-Mann-Whitney 
Versus t test Method Keyprint Signature Compared to All Other Samples. Among the three 
methods, the results were somewhat similar but the t test method performed better overall.  The 
t test performed better between 75% and 100% and hit the critical point for false positive at 
75%.  Using the non-parametric Wilcoxon method and the match range methods resulted in 
suboptimal performance compared to the t test method.   

One additional consideration we needed to make was how to calculate the percentage of 

data point matches.  Two methods were considered.  The first method (method 1) consisted of 

calculating percentages based on the total number of characters in a signature or profile 

regardless of whether the comparison sample included any instances of that key or key 

combination being typed.  In other words, we treated all missing data as a non-match and divided 

the number of matched data points by the total number of data points in the baseline signature or 

profile.  Using this method drastically increases the number of false negatives for samples with 

missing data points.  For our data set this only had a major effect on one sample (T3).  Most of 

the data samples contained little missing data.   
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The second method (method 2) involved excluding instances of missing data and 

reducing the total number of data points comprised in the percent matched calculation by the 

number of missing data points.  Method 2 considered only available data point comparisons 

when calculating the percentage of data point matches, which decreased the number of false 

negative mistakes.  We decided to use method 2 as the reporting method in the results section 

because our study was more concerned with an accurate estimate of false negatives (see Figures 

F5 and F6 in the appendix).  With the exception of Figure F6, the results tables in Appendix E 

use method 2 when calculating data point matches.   

One last issue involving missing data was that of when not to complete a comparison in 

situations where there were too few data points to compare due to missing data points in the 

comparison sample.  Again, this was only an issue when using the profile baseline for treatment 

T3.  We decided to use a too few cut point of ten data points.  Comparison that contained fewer 

than ten data points to compare were excluded from the results, given that there was likely not 

enough information from which a comparison could be made.  The robustness of our matching 

algorithm in terms of missing data is something we plan to test at a later time.   
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CHAPTER 4: RESULTS  

While analyzing the data, many interesting connections between keyprint signatures, 

using all characters, and keyprint profiles, using only the unique keys to authenticate identity 

were found.  This section is organized by each research question presenting results pertinent to 

each issue.  A full set of result tables and ROC charts is presented in Appendix E. 

Keyprint Accuracy for Baseline Samples 

To answer to our first research question, we compared each of the keyprint samples in the 

baseline treatment T1 to each of the other keyprints obtained.  Each of these are known not to 

match, as they were provided by different individuals.  We wanted to determine the degree to 

which keyprint signatures and profiles were unique to individual students.  Figure 2 presents the 

results for this analysis.   

From the information presented in this chart we found that keyprint signatures and 

keyprint profiles were unique.  When match comparisons were conducted using match thresholds 

for 100% to 80%, no two keyprints were the same (i.e., no false positive matches were found).  

Once the match threshold got below 80% we did start to get false positives.  This means that we 

started seeing keyprints that were similar enough at that match threshold to be considered a 

match even though we know they were typed by two different individuals.  The lower the match 

threshold used to determine sample matches, the higher the number of false positives.  The use of 

the keyprint profile performs slightly better at reducing false positive occurrences compared to 

the keyprint signature at low match thresholds.  In general, this finding replicates findings from 

other studies that show keystroke dynamics are unique for different individuals.  The evidence 

supports our hypothesis that keyprints are unique to some extent and could be used to provide 

accurate user identification of individuals.   
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Keyprint Profile Accuracy Question 

Our keyprint profile accuracy question focused on whether keystroke dynamics provided 

accurate user identification of individuals when using a reduced keyprint profile as a baseline 

comparison.  We hypothesized that using a reduced set of keystroke behaviors that included only 

those keystroke data points that were unusual or somewhat outside the norm for individual 

typists would provide a more accurate identification of individuals in terms of reduced false 

positive and false negative results.   

 
Figure 3.  This figure shows the False Positive Occurrences for Baseline Keyprint Signatures 
and Profiles in Sample T1 at Each Match Threshold. Based on this analysis, the critical point for 
false positive occurrences is between 80% and 85%.  This result indicates that at or above an 
80% match threshold, each keyprint for the individuals in the data is completely unique.   

To check our hypothesis, we compared the keyprint profile along with the keyprint 

signature to see how each fared.  Figure 3 presents false positive and false negative results when 

comparing keyprint signatures and profiles against all the other typing samples combined.  The 

comparison sample in this case is a composite of copy edit, free typed, and typing with a mild or 

moderate impediment.   
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The results of our analysis suggest that using the keyprint profile reduced the number of 

false positives the algorithm identified compared to the keyprint signature (i.e., matching 

samples when they were known to have been typed by different individuals).  This was 

especially the case when the match threshold was below the optimal point for false positives.  

However, using the profile underperformed compared to the keyprint signature in the number of 

false negatives (i.e., mistakes) the algorithm made when matching samples known to have been 

typed by the same individual.  The keyprint signature was more accurate and contained less 

error.  Because in the context of our study we are more concerned with limiting false negatives 

(i.e., falsely accusing individuals of not being themselves), our data does not support the 

hypothesis that using a keyprint profile would be a better method for comparing typing samples.  

In this case more data is better.  Based on this result, the remainder of our analysis will focus on 

the keyprint signature; however, the keyprint profile is presented alongside the signature for 

comparison purposes.  Figure 4 presents false negative and false positive results when comparing 

keyprint signatures and profiles against copy typed samples.   
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Figure 4.  This figure shows the False Negative and False Positive Optimization for Keyprint 
Signature and Profiles Compared to All Other Typing Samples Combined (T2-T6). 
Optimization occurs at a match threshold of approximately 75%.  This is the point where false 
positives and false negatives are optimally balanced.  However, the critical point for reducing 
false negative identifications to zero using the keyprint signature is approximately 70%.  The 
critical point for reducing false negative identifications to zero using the keyprint profile is 
closer to 65%.  In this regard using the keyprint signature is better than the keyprint profile. 

Comparison in Context  

In our analysis, we studied whether different typing conditions affected the algorithm’s 

ability to correctly match samples.  We compared copy typed keyprint signatures to samples that 

were copy typed, free typed, and copy typed with impediments.
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Keyprint accuracy with copy typed samples.  Our keyprint accuracy context for copy 

typed samples focused on whether keystroke dynamics provided accurate user identification of 

individuals who provided a sample under similar typing conditions to that of the baseline 

keyprint.  Figure 5 presents false positive and false negative results when comparing keyprint 

signatures and profiles against copy typed samples.  The analysis in this case is a comparison of 

a copy typed baseline (T1) with copy typed sample (T2).   

Figure 5. This figure shows the False Negative False Positive Optimization Keyprint Signature 
Compared to Copy Typed Sample T2. Optimization occurs at a match threshold between 75% 
and 80%.  The critical point for reducing false negative identifications to zero using the keyprint 
signature is approximately 75%.   

The results of our analysis show that when comparing a copy typed sample to the 

baseline keyprint signature, the algorithm functions fairly well.  Clearly individuals are not 

robots.  Unlike a fingerprint, each captured typing sample will never be completely consistent for 

every data point being compared.  However, in practice, if a typing sample (provided under 

similar conditions to the baseline) does not match the keyprint signature on at least 75% of the 

data points, based on these results, it would be highly unlikely that the two samples were 

provided by the same person. 
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Keyprint accuracy with free typed samples. Our keyprint accuracy context for free 

typing samples focused on whether keystroke dynamics provided accurate user identification of 

individuals when the sample was provided in a different context to that of the keyprint.  To 

determine this, we compared free typed samples to the copy typed baseline under two treatment 

conditions.  In the first situation (T3) the sample context involved free typing a generative list 

task response.  In the second situation (T4) we collected a free typed sample of explanatory 

writing.  We hypothesized that there would be a reduction in categorization accuracy when 

individuals free typed a response as compared to copy typed keyprint signature.  Figure 6 

presents the results when comparing the baseline sample T1 with the generative list task writing 

sample T3.  Figure 7 presents the results when comparing the baseline sample T1 with the 

explanatory writing sample T4.  Figure 8 presents the results when comparing the baseline 

sample T1 with the generative list task writing sample T3 and the explanatory writing sample T4 

combined.   

For the T1 T3 comparison, our analysis compared the free typed generative list task 

composition sample to the copy typed keyprint signature.  The optimal point of comparison 

occurs between 75% and 80% and the false negative critical point occurs at approximately 60%.  

Figure 6 presents the false positive and false negative results of this analysis.  The results of our 

analysis show that when comparing a free typed sample to the baseline keyprint signature, as in 

the previous case, the algorithm also functions well but not as well as it did with samples 

obtained under similar conditions.   

These results support our hypothesis in this regard.  In practice, if a free typed sample 

(provided under different conditions to the baseline) does not match the keyprint signature on at 

least 60% of the data points, our results indicate that it would be highly unlikely that the two 
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samples were provided by the same person.  One of the challenges with this sample was the 

limited number of data points captured.  Participants’ typing samples tended to be smaller than 

that of other samples captured. 

 
Figure 6.  This figure shows the False Negative False Positive Optimization Keyprint Signature 
Compared to Free Typed Sample (T3). Optimization occurs at a match threshold between 75% 
and 80%.  The critical point for reducing false negative identifications to zero using the keyprint 
signature is approximately 60%.   

In the second free typing situation, T1 T4 comparison, we compared explanatory writing 

with the keyprint signature.  For this situation we had plenty of data as compared to T3.  In this 

case the optimal point occurred between a match threshold of 70% and 75%.  The false negative 

critical point occurs somewhere between 50% and 55%.  Figure 7 presents the false positive and 

false negative results obtained in this treatment condition.  The results of our analysis show that 

when comparing a free typed sample to the baseline keyprint signature, the algorithm functions 

decently.   
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For a free typed explanatory writing sample, our results indicate that it would be highly 

unlikely that the two samples were provided by the same person if the sample did not match the 

copy typed keyprint on at least 50% of the data points.  This result was slightly different from the 

previous free typed comparison and may indicate that typing patterns vary based on the type of 

cognitive task elicited by the assignment.   

 

Figure 7.  This figure shows the False Negative False Positive Optimization Keyprint Signature 
Compared to Free Typed Sample (T4). Optimization occurs at a match threshold at about 70%.  
The critical point using the keyprint signature is somewhere between 50% and 55%.   

When comparing samples T3 and T4 combined to T1 (see Figure 8), the optimal point 

occurs between 70% and 75% match threshold with the false negative critical point occurring 

somewhere between 55% and 60%.  If a free typed sample was compared to the baseline, based 

on these results, we would expect that the samples must match on at least 55% of the data points 

if we are to conclude that they were typed by the same person.   
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As such, our data supports the hypothesis that our matching algorithm would see a 

reduction in accuracy when comparing free typed samples to the copy typed keyprints; still, we 

were pleased to see that the algorithm performed sufficiently well to detect potential cheating to 

some degree.   

 
Figure 8. This figure shows the False Negative False Positive Optimization Keyprint Signature 
Compared to Free Typed Samples (T3 and T4) – Method 2. Optimization occurs at a match 
threshold at about 70%.  The critical point using the keyprint signature is somewhere between 
50% and 55%.   

Keyprint accuracy comparing samples provided in an impediment context. Our final 

research question focused on the accuracy of keyprint comparisons in the context of samples 

involving impediments.  We compared two impediment treatments involving copy typed 

samples.  The first treatment (T5) involved copy typing with a band-aid on the right index finger 

(i.e., a mild impediment).  In the second treatment (T6) we collected a sample of copy typing 

with tape wrapping together the middle and ring fingers on the left hand (i.e., a moderate 

impediment).  We hypothesized that there would be a considerable reduction in matching 

accuracy when individuals copy typed under such conditions.  Figure 9 presents the results when 
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comparing the baseline sample T1 with the mild band-aid impediment sample T5.  Figure 10 

presents the results when comparing the baseline sample T1 with the moderate tape-wrapped 

fingers impediment sample T6.  Figure 11 presents the results when comparing the baseline 

sample T1 with the mild impediment sample T5 and the moderate impediment sample T6 

combined.    

For the T1 T5, we compared the keyprint signature to mild impediment copy typed 

samples.  Our results show the optimal point for matching occurs between 75% and 80%; the 

false negative critical point occurs somewhere between 50% and 55%.  However, for match 

thresholds between 55% and 65% the percent of false negative occurrences was only 1%.   

The results of our analysis show that when comparing a mild impediment sample to the 

baseline keyprint signature, the algorithm functions adequately.  In practice, if a mild 

impediment typed sample does not match the keyprint signature on at least 65% of the data 

points, our results say it would be extremely doubtful that the two typing samples were provided 

by the same individual.  These results support our hypothesis.  Typing under this condition is 

similar to that of free typing without anything impeding one’s typing.
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Figure 9.  This figure shows the False Negative False Positive Optimization Keyprint 
Signature Compared to Mild Impediment Sample (T5) – Method 2. Optimization occurs at a 
match threshold between 75% and 80%.  The critical point using the keyprint signature is 
somewhere between 50% and 55%.   

In the second impediment typing situation (the T1 T6 comparison where participants had 

tape-wrapped fingers) the optimal comparison point occurs between 60% and 65%.  The false 

negative critical point occurs somewhere between 40% and 45%.  As expected, when the typing 

sample is obtained in the condition of a moderate impediment, the accuracy of the matching 

algorithm is diminished.  In this condition, we could be sure that the individuals providing the 

samples were different people until less than 40% of the data points failed to match.  Up until 

that point we could not be certain the samples were not a match. 
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Figure 10.  This figure shows the False Negative False Positive Optimization Keyprint 
Signature Compared to Moderate Impediment Sample (T6) – Method 2. Optimization occurs 
at a match threshold between 60% and 65%.  The critical point using the keyprint signature is 
somewhere between 40% and 45%.   

When comparing both T5 and T6 combined to T1 (see Figure 11) the optimal point 

occurs close to a 70% match threshold with the false negative critical point occurring somewhere 

between 45% and 50%.  For match thresholds between 50% and 60% the percent of false 

negative occurrences was only 1%.  Clearly a mild or moderate impediment copy typed sample 

presents challenges to the matching algorithm.  But it is also clear that the algorithm performs 

somewhat well at detecting potential cheating even when the individual might be typing under 

adverse conditions.   
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Figure 11.  This figure shows the False Negative False Positive Optimization Keyprint 
Signature Compared to Impediment Samples (T5 and T6). Optimization occurs at a match 
threshold between 65% and 70%.  The critical point using the keyprint signature is 
somewhere between 50% and 55%.   
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

This study set out to answer four research questions, each about the ability of keystroke 

dynamics to accurately identify users in an online assessment context based on distinct treatment 

scenarios.  Each treatment condition studied produced results that we hypothesized would affect 

the ability of the matching algorithm to correctly match samples.  In practice, keystroke 

dynamics will never be as accurate as a finger print (which, barring disfigurement, is exactly the 

same all the time) because people do not type exactly the same way every time.  The type of task 

they are completing or typing under the adverse conditions of an impediment will affect their 

typing patterns.  What we hoped to determine with this study was the degree to which keystroke 

dynamics perform under-less-than ideal conditions.  In this regard, the results of our study 

suggest that keystroke dynamics could be quite valuable. 

An analysis of the results from this study positively demonstrated the feasibility of using 

keystroke dynamics to match typing samples.  We found that keyprints are somewhat unique, but 

it may be best to use a full keyprint signature (75% critical point) rather than a reduced keyprint 

profile (65% critical point).  We found that with a normal copy typed sample, keystroke 

dynamics can authenticate an individual with a high degree of accuracy (75% - 80% match 

threshold).  With generative list task writing free typed samples, the accuracy rates decreased 

slightly but were fairly accurate (70% match threshold).  With explanatory free typed samples, 

the accuracy rates decreased marginally (60% match threshold).  With a mild impediment, the 

accuracy slightly decreased, but did not seem to affect the ability of the algorithm to match 

samples dramatically (75% - 80% match threshold).  With a moderate impediment however, the 

precision rates were somewhat less accurate but still matched samples accurately to some degree 

(45% match threshold).  The results of the study are summarized in Table 4.   



47

Table 4 

Results Summary Table 

Comparison Hypothesis Result 

T1 to T1 Keyprints are somewhat unique Supported.  Sample known not to match did not 
match at or above an 80% match threshold 

T1 to T2-T6 Keyprint profiles will work better 
than keyprint signatures. 

Not Supported.  The keyprint signature critical 
point (75%) performed 10% better than the 
profile critical point (65%) 

T1 to T2 Matching will be good for samples 
obtained under similar conditions 

Supported.  If samples did not match on at least 
75% match threshold, samples were unlikely 
provided by the same person 

T1 to T3/T4 Matching will be diminished for 
samples obtained under different 
free typed, cognitive conditions 

Supported.  If samples did not match on at least 
60% match threshold, samples were unlikely 
provided by the same person 

T1 to T5/T6 Matching will be considerably 
diminished for samples obtained 
when the typing is done with an 
impediment 

Supported.  If samples did not match on at least 
45% match threshold, samples were unlikely 
provided by the same person  

Interpretations of Findings, Reflections, and Insights 

These findings relate to the practical understanding and application of keystroke 

dynamics in a number of different ways.  Clearly, the optimization point balances the false 

negatives and the false positives, and the critical point for eliminating false positives are 

important to establish.  These points are valuable to policy makers when determining how to best 

leverage the technology for their institution as they attempt to comply with government 

mandates to improve security in online courses.  Knowing where the optimal points are will 

inform decisions on the amount of risk an institution is willing to carry and at what point 

accusations of cheating should be employed.   
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Understanding the degree to which the keyprint signature performs in various conditions 

is extremely important for policy makers.  The keyprint signature we used in this study was 

made up of sixty-nine data points consisting of dwell and transition matches.  In practice, and in 

a normal copy typed context similar to the conditions under which keyprints are obtained, if 

there was not a match of at least 75% of the data points the probability that the same person 

typed the two samples being compared is extremely low.  However, in addition to the fact that 

people are not consistent typists and tend to improve with practice, copy typing is unlikely to be 

the condition under which samples will be obtained when this authentication practice is 

operationalized.   

For practical reasons, copy typing a baseline is necessary in order to obtain all the 

requisite dwells and transitions needed.  Using free typing to obtain a baseline would not 

guarantee that we would efficiently capture the necessary dwell and transition times needed to 

establish the keyprint signature as evidenced when we compared the two.  It is more likely that 

comparison samples will be obtained under conditions of cognitive load which is different from 

that of the baseline keyprint conditions.  In addition, students will inevitably experience times 

when they type with a mild or moderate impediment.  This, we found, didn’t affect our ability to 

match samples.  Free typed samples did not match copy typed keyprint signatures as well as 

copy typed samples did.  With mild impediments, our results showed that students’ typing 

cadences are not affected too much, but our ability to identify an individual diminished slightly.  

This was not the case with moderate impediments however.  With moderate impediments, 

accuracy was diminished, but the algorithm still functioned.  This was important to understand, 

because not only can typing ability change over time, typing patterns can also change due to the 

task being undertaken and circumstances where an injury has been incurred.  Using keystroke 
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dynamics to accurately identify individuals typing in various contexts and with a mild or 

moderate impediment is still somewhat accurate, but needs to be considered when deciding how 

best to utilize keystroke dynamics to authenticate individuals.   

One possible operational practice that might alleviate some of this would be to 

periodically recalibrate the keyprint, either adding to the keyprint or completely recapturing the 

baseline.  Doing so would also allow for the most up-to-date keystroke data to be used in the 

keyprint as well as allow flexibility for typing improvement or degradation. 

Limitations 

This study was limited in its scope due to multiple factors; some of which we plan to 

study at a different time.  One limitation of this study is that it does not account for the fact that 

typing ability is not a fixed ability.  An individual’s typing ability will change over time with 

practice.  In this regard, we anticipate that modifications to the keyprint signature would have to 

be made as time goes on.  Along these lines, we forced individuals to provide samples using a 

specific keyboard and device.  In an authentic online learning situation, this would not be the 

case.   

Another limitation involves implementation implications.  In order for keystroke 

dynamics to be used in authentic online assessment, any typing for the course would need to be 

done inside the designated assessment tracking system, not outside.  Requiring typing to be done 

in the system environment so keystroke tracking can take place may be difficult to enforce.  In 

reality, most learning management systems (LMS) are not designed as word processors, but 

keystroke dynamics in an LMS would be worth exploration by LMS designers for future LMS 

design.  As online assignment completion is currently constituted, students will often type their 

essays and responses in a word processor and then copy their responses into the LMS.  
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Implementation of keystroke dynamics could be done via partnership with Google or Microsoft 

online to include their word processing technology in the course.  This would allow students to 

do their work in the browser and allow the technology to track their keystrokes.   

A final limitation of the study involves decisions that need to be made about missing 

data.  This again is something we plan to explore at a later time.  For this study, we made sure 

our samples contained a sufficient amount of data to compare.  The degree to which it is realistic 

to assume that samples will contain sufficient data points and whether it is appropriate to 

combine samples obtained from individuals is unknown.   

Implications 

Practitioners can benefit from the results of this study in multiple ways. In knowing that a 

keystroke dynamics system is inexpensive to implement, practitioners can work with their local 

IT departments to develop and house a similar tool. If these institutions do not have the 

resources, they could partner with other institutions to work together to fund the project or apply 

for grant funds.  

Once implemented, keystroke dynamics would provide a clearer picture of possible 

cheaters and where it was occurring in a course. This would allow for a more focused allocation 

of resources, giving institutions a better understanding of potentially how much effort, time, and 

money is being spent on academic honesty issues. 

Implementation also makes the need for policy development paramount. It would be an 

opportunity for the institution to develop the necessary administrative checks and balances that 

need to be in place so that management of the keystroke dynamics system is clear and 

meaningful.  
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Students should not be assumed guilty of cheating simply because a sample of typing 

does not match their keyprint signature; this should only trigger additional identity verification 

checks.  The checks for verifying cheating might involve a number of possible steps.  The 

primary review tier would be a student needing to at least match their false negative critical point 

signature keyprint at 75%.  Should the student not match their false negative keyprint signature 

at 75%, the next reasonable step might be to trigger the secondary sample comparison involving 

a reduced false negative critical point of 60%.  If the false negative critical point occurs between 

60% and 75%, then no further action would be necessary.  However, if the false negative critical 

point were to occur below the 60% false negative critical point, then the next reasonable step 

might be to trigger an additional review involving a false negative critical point of 45%, 

checking for a potential impediment situation.  Should the false negative critical point fall 

between 45% and 60%, a responsible approach might be to monitor the student’s keyprint 

moving forward, but no further action may be necessary.   

If the false negative critical point were to fall below the 45% threshold, the potential 

additional step might be to contact the student and let him or her know a potential problem has 

been identified.  Doing this would give the student a chance to let course administrators know 

something has happened to alter their typing.  It would make sense to conduct this interview via 

video for visual evidence of the student.  Only upon verifying cheating has occurred should 

disciplinary action be taken.           

If practitioners were to implement this approach, they would need to consider the 

institutions response to student cheating.  Consequences to students might include giving the 

student a warning, zeros on assignments, requiring the student to take all their remaining 

assessments in a face-to-face proctored environment, or possibly removing the student from the 
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course.  Each institution’s policies and responses to cheating would be different, yet best 

practices should govern the overall administration of how student indiscretions are handled.    

Keystroke dynamics provide a greater sense of online assessment security as well as 

closer alignment with federal law. This does not mean that institutions of higher learning should 

abandon vigilance and oversight once keystroke dynamics are employed. It does mean, however, 

that there can be a greater sense of confidence that the students completing their courses online 

are the same ones who are supposed to be doing it. This sense of confidence should bring a 

stronger commitment to integrity and therefore provide assurance to an accrediting body, of the 

institution’s efforts to uphold the quality of the learning, academic fidelity, and the authenticity 

of the experience by the individuals receiving credit for the work being completed.  

Conclusion  

This study examined the potential use of keystroke dynamics to create keyprint signatures 

(typing fingerprints) to authenticate individuals in online course and assessment situations (Flior 

& Kowalski, 2010; Gaines et al., 1980; Giot et al., 2015; Killourhy & Maxion, 2009; Killourhy 

& Maxion, 2008; Monrose & Rubin, 2000; Rouse, 2008; Spillane, 1975; Yu & Cho, 2004).  It 

was set up to determine how well keyprints were able to identify individuals when typing under 

various treatment conditions (Joyce & Gupta, 1990; Leggett & Williams, 1988; Vanette, 2015).  

Clearly, it would be very difficult, if not impossible, to establish the actual identity of a person 

based solely on an unknown sample of typing (Ahmed & Traore, 2007; Giot et al., 2015; Jenkins 

et al., 2013; Miguel et al., 2015; Sewell et al., 2010).  There would be too many false positives to 

consider.  However, the results of this study indicate that keyprints can be utilized effectively for 

user identification purposes, when determining that an individual may not be who he or she is 

supposed to be (Flior & Kowalski, 2010; Jenkins et al.; Leggett et al., 1991; Rybnik et al., 2008).  
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We would not be able to say who the individual is, but we would be able to say with a high 

degree of certainty that a typing sample was not provided by the individual who was supposed to 

have provided the sample.   

As anticipated, typing with a temporary impediment diminished the algorithm’s ability to 

identify students.  This was also the case when user samples were typed under conditions 

different from those in which the keyprint baseline signature was captured.  The ability to 

identify individuals is also challenging when the number of individual data points captured are 

limited (i.e., small comparison samples with many missing data points compared to those in the 

keyprint signature).  However, the ability of the system to identify negative cases functions fairly 

well in each instance.  Still, there are always ways to circumvent systems; and there will always 

be individuals who are unwilling to put in the effort needed to learn what is intended, those who 

want credit for accomplishing something they did not, and those willing to pay for something 

they never intend to obtain.   

The major contributions of this dissertation come in the form of filling a part of the 

existing literature gap and beginning the discussion on keystroke dynamics usage in generative 

list task and explanatory free typing as well as in mild and moderate impediment typing.  

Overall, keystroke dynamics has not been used extensively in online education, and is still 

unproven in this arena. That will likely change as this important area of online assessment 

security is more thoroughly vetted and the value and significance of keystroke dynamics is 

realized (Giot et al., 2015; Jenkins et al., 2013; Miguel et al., 2015). 
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Future Research 

To further this area of research, additional work needs to focus on other conditions likely 

to be encountered when capturing typing samples in an online course or assessment situation.  

Future studies need to consider the degree to which typing on different keyboards affects 

keyprint matching, the thresholds for matching given missing data (i.e., the minimum number of 

data points required to satisfactorily perform matches given small comparison samples), and 

possibly, ways to triangulate match decisions using additional biometric information and typing 

behaviors unique to individual users (e.g., typing speed, preferred language use, or common 

syntax and spelling errors made by individuals).  Triangulation utilizing mouse dynamics in 

combination with keystroke dynamics to authenticate user behavior also needs further 

exploration. 

Keystroke dynamics policy development and implementation could use additional study, 

including the articulation of keystroke dynamics policy best practices.  This policy development 

will mature as authentication thresholds are tested, verified, and applied in real-life situations. 

On the system side, to get to the most accurate identification points with our keystroke 

dynamics system, it is essential to verify the algorithm we developed and used.  To do this, 

machine learning algorithms would be needed to improve the accuracy and precision when 

considering various data points.  These algorithms could potentially train a support vector 

algorithm on every individual to get a sophisticated prediction and have an improved yes/no 

authentication accuracy rate. In addition, applications required to capture typing samples in 

various ways, both in-system and without, might be developed.  These are all potential future 

research studies we intend to explore.   
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APPENDIX A  

EMAIL INSTRUCTIONS TO ACCESS KEYSTROKE COLLECTION SYSTEM  

Everyone, 

Thanks for participating in our keystroke data collection.  Just wanted to remind you of what we 

are asking as well as some important details.  We are collecting keystroke data for Jay Young’s 

Dissertation study and are hoping that you will participate.  For this to be successful, you should 

be aware:  

• Participating in this study will take about 15-30 minutes of your time 
• Please Use Chrome, that will provide the best results, go to the website, 

http://keystroke.webdrawnsilk.com/  
• Log in and use the tools you were given in class today to complete the extra credit 

assignment 
• Please complete it in one sitting  
• At the end of the keystroke activity, your name will be added to the list of those who 

participated and you will receive the extra credit.   
 

Thanks for contributing to the study.   

http://keystroke.webdrawnsilk.com/
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APPENDIX B  

TREATMENT TEXT PARTICIPANTS WERE ASKED TO TYPE  

 
 T1 - Baseline check #1 

 
Text 

Introductory paragraph to the 
autobiography of Helen Keller.   

“It is with a kind of fear that I begin to write the history of my life.  I have, as 
it were, as superstitious hesitation in lifting the veil that clings about my 
childhood like a golden mist.  The task of writing an autobiography is a 
difficult one.  When I try to classify my earliest impressions, I find that fact 
and fancy look alike across the years that link the past with the present.  The 
woman paints the child’s experiences in her own fantasy.  A few impressions 
stand out vividly from the first years of my life; but “the shadows of the 
prison-house are on the rest.” Besides, many of the joys and sorrows of 
childhood have lost their poignancy; and many incidents of vital importance 
in my early education have been forgotten in the excitement of great 
discoveries.  In order, therefore, not to be tedious I shall try to present in a 
series of sketches only the episodes that seem to me to be the most interesting 
and important.  (Keller, 1904, p. 3)” 

Figure C1.  T1 - Baseline Check #1.  Each participant typed the introductory paragraph to Helen Keller’s 
autobiography, the Story of my Life. 

  

 

 

T2 - Baseline check #2 Text 

Conclusion paragraph to the 
autobiography of Helen Keller.   

“Often when I dream, thoughts pass through my mind like cowled shadows, 
silent and remote, and disappear.  Perhaps they are the ghosts of thoughts that 
once inhabited the mind of an ancestor.  At other times, the things I have 
learned and the things I have been taught, drop away, as the lizard sheds its 
skin, and I see my soul as God sees it.  There are also rare and beautiful 
moments when I see and hear in Dreamland.  What if in my waking hours a 
sound should ring through the silent halls of hearing? What if a ray of light 
should flash through the darkened chambers of my soul? What would happen, 
I ask many and many a time.  Would the bow-and-string tension of life snap? 
Would the heart, overweighted with sudden joy, stop beating for very excess 
of happiness? (Keller, 1904, p. 431)” 

Figure C2.  T2- Baseline check #2.  Each participant typed the conclusion paragraph to Helen Keller’s 
autobiography, the Story of my Life. 
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T5 – Impediment Check #1: Text 

Introduction paragraph of the 
Gettysburg Address.   

“Four score and seven years ago our fathers brought forth, upon this continent, 
a new nation, conceived in liberty, and dedicated to the proposition that “all 
men are created equal.” Now we are engaged in a great civil war, testing 
whether that nation, or any nation so conceived, and so dedicated, can long 
endure.  We are met on a great battle field of that war.  We come to dedicate a 
portion of it, as a final resting place for those who died here, that the nation 
might live.  This we may, in all propriety do” (Lincoln, 1863). 

Figure C4.  T3 Hand Impediment Check #1.  Each participant typed the introduction paragraph to the Gettysburg 
Address, by Abraham Lincoln 
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T6 – Impediment Check #2 Text 

Conclusion paragraph of the 
Gettysburg Address.   

“But, in a larger sense, we cannot dedicate – we cannot consecrate – we cannot 
hallow, this ground – The brave men, living and dead, who struggled here, 
have hallowed it, far above our poor power to add or detract.  The world will 
little note, nor long remember what we say here; while it can never forget what 
they did here.  It is rather for us, the living, we here be dedicated to the great 
task remaining before us – that, from these honored dead we take increased 
devotion to that cause for which they here, gave the last full measure of 
devotion – that we here highly resolve these dead shall not have died in vain; 
that the nation, shall have a new birth of freedom, and that government of the 
people, by the people, for the people, shall not perish from the earth” (Lincoln, 
1863). 

Figure C5.  T4 Hand Impediment Check #2.  Each participant typed the conclusion paragraph to the Gettysburg 
Address, by Abraham Lincoln. 
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APPENDIX C  

R CODE USED TO ANALYZE DATA  

The dataset used is available upon request by contacting Jay Young at jillow@gmail.com  

R code used for analyzing the data: 
 

--- 
title: "Keystroke Dynamics Analysis" 
author: "RSD" 
date: "10/20/2017" 
output: html_document 
--- 
 
```{r get data, echo=FALSE} 
# Get data from its location on the computer and name it, need to set working dir to where the file is located 
DatasetV1 <- read.csv("DatasetV1 92217final.csv") 
tolower(DatasetV1) 
TooFew <- 9 # how few is too few in the sample to make comparison 
zcut <- 0.5 # cut point to include data points in profile 
library(dplyr) 
library(reshape) 
``` 
```{r index chlable, echo=FALSE} 
# Index the names of the keys/combos to get a list of their names, then convert them to numbers.  Create a table that lets you compare the number 
to the name if needed called "namnum" 
DatasetV1 <- DatasetV1[order(DatasetV1$chLabel),] # sort  
names <- unique(DatasetV1$chLabel) # get unique labels 
x <- as.factor(DatasetV1$chLabel) # get index for lables 
DatasetV1$chLabel <- as.numeric(x) # replace labels with index number 
numbers <- unique(DatasetV1$chLabel) # get unique indexes 
namnum <- data.frame(names, numbers) # create a numbered list of characters and transition combos 
``` 
```{r Create Signature Profiles, echo=FALSE} 
DataTempX <- DatasetV1[DatasetV1$Treatment==1,] #get treatment sample 1 
# reshape baseline treatment data T1,  
DataT1means <- cast(DataTempX, ID~chLabel, mean, value = 'Time') 
# Get the Zscore, note uses mean of means not all user data for SD 
ZscoreT1 <- data.frame(apply(DataT1means, 2, scale)) # used mean and SD of means to reduce influence of outliers 
# create signature profiles based on unusually large z scores 
ProfileT1 <- data.frame(abs(ZscoreT1)>zcut) # keyprint profile  
ProfileT1[is.na(ProfileT1)] <- FALSE # flag empty profiles cells 
profileCount <- data.frame(rowSums(ProfileT1)) # count number of keys in each profile 
``` 
 
```{r false negatives for treatment 1 vs other samples, echo=TRUE} 
# function to calculate t values at each data point when comparing keyprint signature vs comparison sample 
MeanDifference.t <- function(m2,sd2,n2) { 
 meanDiff <- (Keyprint.mean[,-1] - m2[,-1]) # calculate mean differences 
 # se, scaled by the sample sizes used to calculate t 
 se <- sqrt( ((1/Keyprint.n[,-1]) + (1/n2[,-1])) * ( ( ((Keyprint.n[,-1]-1) * (Keyprint.sd[,-1]^2)) + ((n2[,-1]-1)*(sd2[,-1]^2)) ) / (Keyprint.n[,-
1]+n2[,-1]-2) ) ) 
 t <- meanDiff / se # calculate t values 
return(t) # return t values 
} 
DataTempX <- DatasetV1[DatasetV1$Treatment==1,] #get treatment sample 1 
# get the descriptives for each key/combo for each person, one line per person/ID 
Keyprint.mean <- cast(DataTempX, ID~chLabel, mean, value = 'Time') # average time of Keyprint signature 
Keyprint.sd <- cast(DataTempX, ID~chLabel, sd, value = 'Time') # Standard deviation of Keyprint signature 
Keyprint.n <- cast(DataTempX, ID~chLabel, length , value = 'Time') # count of Keyprint signature 
 
 
# get Treatment sample to compare 
DataTempX <- DatasetV1[DatasetV1$Treatment!=1,] # select all but T1 
#DataTempX <- DatasetV1[DatasetV1$Treatment>4,] # select only T5 T6 
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#DataTempX <- DatasetV1[(DatasetV1$Treatment==3)|(DatasetV1$Treatment==4) ,] # select only two treatments 
#DataTempX <- DatasetV1[DatasetV1$Treatment==3,] # select Treatment sample to compare 
 
# get the descriptives for sample to be compared 
Tcompare.mean <- cast(DataTempX, ID~chLabel, mean, value = 'Time') # get sample means to compare 
Tcompare.sd <- cast(DataTempX, ID~chLabel, sd, value = 'Time') # get sample SDs to compare  
Tcompare.n <- cast(DataTempX, ID~chLabel, length , value = 'Time') # get Ns of comparison sample 
 
t.scores <- abs(MeanDifference.t(Tcompare.mean,Tcompare.sd,Tcompare.n)) # get t values from comparison 
NAcount.t <- data.frame(rowSums(is.na(t.scores))) # Count number of NA 
df.table <- data.frame((Keyprint.n[,-1]+Tcompare.n[,-1])-2) # calculate Degree of Freedom 
 
# calculate p values for each t value excluding NA 
p.values <- t.scores # create data frame for p.values matching t.scores 
for (j in 1:nrow(t.scores)) {  
 for (k in 1:ncol(t.scores)) { 
 if(!is.na(t.scores[j,k])) { 
 p.values[j,k] <- 2*pt(-abs(t.scores[j,k]),df=df.table[j,k]) # calc p values 2 tailed for each data point  
}}} 
 
# determine how often sample matched Keyprint  
matchTemp <- data.frame(matrix(ncol = ncol(t.scores), nrow = nrow(t.scores))) # setup results table  
excludeTooFew <- data.frame(ncol(matchTemp)-NAcount.t <= TooFew ) # exclude if toofew 
matchTemp[is.na(p.values)] <- FALSE # replace NA with FALSE 
matchTemp[p.values <= 0.05] <- FALSE # flag non matches at each data point 
matchTemp[p.values > 0.05] <- TRUE # flag matches at each data point 
matchResult.t <- data.frame(rowSums(matchTemp)/ncol(matchTemp)) # get % matches treat NA as non-match  
matchResult.t2 <- data.frame(rowSums(matchTemp)/(ncol(matchTemp)-NAcount.t)) # get % matches exclude NA  
matchResult.t[excludeTooFew==TRUE] <- FALSE # exclude too few  
matchResult.t2[ excludeTooFew==TRUE] <- FALSE # exclude too few 
# matches based on ProfileT1  
NApro <- data.frame(rowSums((is.na(t.scores)&(ProfileT1==TRUE)))) # Number NA in profile 
excludeTooFewPro <- data.frame(profileCount-NApro <= TooFew ) #exclude if toofew 
matchTemp[(ProfileT1==FALSE)] <- FALSE # flag data points not in the profile 
matchResult.tpro <- data.frame(rowSums(matchTemp)/(profileCount)) # get % matches based on profile treat NA as non-match 
matchResult.tpro2 <- data.frame(rowSums(matchTemp)/(profileCount-NApro)) # get % matches exclude NA from total  
matchResult.tpro[excludeTooFewPro==TRUE] <- FALSE # exclude too few  
matchResult.tpro2[ excludeTooFewPro==TRUE] <- FALSE # exclude too few 
 
# determine false negatives at each match thresholds for ROC chart 
MT.values <- c(1,0.95,0.9,0.85,0.8,0.75,0.7,0.65,0.6,0.55,0.5,0.45,0.4,0.3,0.2) # set Match thresholds to compare 
FNFPT1T <- data.frame(matrix(ncol = length(MT.values), nrow = 4)) # setup results Table ncol = num thresholds indicated 
FNFPT1Tm2 <- data.frame(matrix(ncol = length(MT.values), nrow = 4)) # setup results Table for method 2 
colnames(FNFPT1T) <- MT.values # add column lables 
rownames(FNFPT1T) <- c("FNsignature","FPsignature","FNprofile","FPprofile") # add row labels 
colnames(FNFPT1Tm2) <- MT.values # add column lables 
rownames(FNFPT1Tm2) <- c("FNsignature","FPsignature","FNprofile","FPprofile") # add row labels 
 
# Compare each Users against know match in comparison samples, Calc % false negative matched 
matched <- matchResult.t # setup temp results variable  
matched2 <- matchResult.t2 # setup temp results variable for method 2  
for (mt in as.numeric(MT.values)) { 
 matched[matchResult.t >= mt] <- FALSE # flag True Matches for sample vs keyprint signature 
 matched[matchResult.t < mt] <- TRUE # flag False Negatives for sample vs keyprint signature 
 FNFPT1T[1,as.character(mt)] <- sum(matched)/(nrow(matched)-colSums(excludeTooFew)) # place value in Results table at mt 
 matched2[matchResult.t2 >= mt] <- FALSE # flag True Matches for sample vs keyprint signature 
 matched2[matchResult.t2 < mt] <- TRUE # flag False Negatives for sample vs keyprint signature 
 FNFPT1Tm2[1,as.character(mt)] <- sum(matched2)/(nrow(matched2)-colSums(excludeTooFew)) # place value in Results table at mt 
 
 # check matches in profile at each Match Threshold 
 EmptyProfiles <- length(profileCount[profileCount==0]) # count number of empty profiles 
 matched[(matchResult.tpro >= mt)] <- FALSE # flag True Matches  
 matched[(matchResult.tpro < mt)] <- TRUE # flag False Negatives  
 FNFPT1T[3,as.character(mt)] <- sum(matched)/(nrow(matched)-colSums(excludeTooFew)-EmptyProfiles) # place value  
 matched2[(matchResult.tpro2 >= mt)] <- FALSE # flag True Matches method 2 
 matched2[(matchResult.tpro2 < mt)] <- TRUE # flag False Negatives method 2 
 FNFPT1Tm2[3,as.character(mt)] <- sum(matched2)/(nrow(matched2)-colSums(excludeTooFew)-EmptyProfiles) # place value 
} 
``` 
```{r false positives for treatment 1 vs another sample, echo=TRUE} 
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 # function to calculate t values at each data point when comparing keyprint signature vs comparison sample 
SampleCompare.t <- function(KeyRow,CompRow, npro=TRUE, m2=FALSE) { 
 mDiff <- (Keyprint.mean[as.numeric(KeyRow),-1] - Tcompare.mean[as.numeric(CompRow),-1]) # mean differences 
 se <- sqrt( ((1/Keyprint.n[as.numeric(KeyRow),-1]) + (1/Tcompare.n[as.numeric(CompRow),-1])) * ( ( ((Keyprint.n[as.numeric(KeyRow),-1]-1) 
* (Keyprint.sd[as.numeric(KeyRow),-1]^2)) + ((Tcompare.n[as.numeric(CompRow),-1]-1)*(Tcompare.sd[as.numeric(CompRow),-1]^2)) ) / 
(Keyprint.n[as.numeric(KeyRow),-1]+Tcompare.n[as.numeric(CompRow),-1]-2) ) ) #Calc standard Error  
 t <- mDiff / se # calculate t values 
 # calculate % match for these two rows 
 NAcount <- data.frame(rowSums(is.na(t))) # Count number of NA 
 NApro <- data.frame(rowSums((is.na(t.scores)&(ProfileT1==TRUE)))) # Number NA in profile 
 # calculate Degrees of Freedom 
 df.tab <- data.frame((Keyprint.n[as.numeric(KeyRow),-1]+Tcompare.n[as.numeric(CompRow),-1])-2)  
 p.vals <- t # create data frame for p.values matching t.scores 
 # calculate p values for each t value excluding NA 
 for (k in 1:ncol(t)) { 
 if(!is.na(t[1,k])) { 
 p.vals[1,k] <- 2*pt(-abs(t[1,k]),df=df.tab[1,k]) # calc p values 2 tailed at each data point  
 } 
 } 
 matchT <- data.frame(matrix(ncol = ncol(t), nrow = 1)) # setup results table  
 matchT[is.na(p.vals)] <- FALSE # replace NA with FALSE  
 if (npro) { 
 # determine how often data points in sample matched Keyprint signature 
 matchT[p.vals <= 0.05] <- FALSE # flag non matches at each data point 
 matchT[p.vals > 0.05] <- TRUE # flag matches at each data point 
 if ((rowSums(matchT)-NAcount)<=TooFew) { 
 PercentMatch <- 0 # no matches 
 PercentMatch2 <- 0 # no matches 
 } else { 
 PercentMatch <- rowSums(matchT)/ncol(matchT) # Calculate % matches  
 PercentMatch2 <- rowSums(matchT)/(ncol(matchT)-NAcount) # Calculate % matches Exclude NA 
 } 
 } else { 
 # determine how often data points in sample matched Keyprint profile 
 matchT[(p.vals <= 0.05)|(ProfileT1[as.numeric(KeyRow),]==FALSE)] <- FALSE # non matches at each data point 
 matchT[(p.vals > 0.05)&(ProfileT1[as.numeric(KeyRow),]==TRUE)] <- TRUE # matches at each data point 
 # Calculate % matches  
 if ((profileCount[as.numeric(KeyRow),]-NApro[as.numeric(KeyRow),])<=TooFew) { 
 PercentMatch <- 0 
 PercentMatch2 <- 0 
 } else { 
 PercentMatch <- rowSums(matchT)/(profileCount[as.numeric(KeyRow),]) # % matches of data points in profile 
 PercentMatch2 <- rowSums(matchT)/(profileCount[as.numeric(KeyRow),]-NApro[as.numeric(KeyRow),]) #excludes NA 
 } 
 } 
 # return % match for these two samples, known to not match, using matching method specified 
 if (m2) {return(PercentMatch2)} else {return(PercentMatch)} 
} #end function 
 
# determine number of false positives in the sample 
k <- 1 # initialize index 
TotalFPcompared <- 0 # initialize total comparisons counter 
FNFPT1T[2,] <- 0 # initialize false positive counts 
FNFPT1T[4,] <- 0 # initialize false positive counts 
FNFPT1Tm2[2,] <- 0 # initialize false positive counts for method 2 
FNFPT1Tm2[4,] <- 0 # initialize false positive counts for method 2 
 
# nested for loop to compare all samples against all other samples known not to be matches, counts false positives 
for (row in 2:nrow(Keyprint.mean)) { 
 # add FP counts in second row of Results table at each match threshold 
 FP <- SampleCompare.t(1,row, TRUE, FALSE) # determine if false positive for two full samples using method 1 
 FPpro <- SampleCompare.t(1,row, FALSE, FALSE) # determine if false positive for two samples using Profile + method 1 
 FP2 <- SampleCompare.t(1,row, TRUE, TRUE) # determine if false positive for two full samples using method 2 
 FPpro2 <- SampleCompare.t(1,row, FALSE, TRUE) # determine if false positive for two samples using Profile + method 2 
 TotalFPcompared <- TotalFPcompared+1 # comparisons counter 
 # increment false positive counter for each method and keyprint type at each match threshold  
 for (mt in as.numeric(MT.values)) { 
 if (FP >= mt) { FNFPT1T[2,as.character(mt)] <- FNFPT1T[2,as.character(mt)] +1 } 
 if (FPpro >= mt) { FNFPT1T[4,as.character(mt)] <- FNFPT1T[4,as.character(mt)] +1 } 
 if (FP2 >= mt) { FNFPT1Tm2[2,as.character(mt)] <- FNFPT1Tm2[2,as.character(mt)] +1 } 
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 if (FPpro2 >= mt) { FNFPT1Tm2[4,as.character(mt)] <- FNFPT1Tm2[4,as.character(mt)] +1 } 
 } 
 for (r in (row+1):nrow(Keyprint.mean)) { 
 j<-k+1 
 if (r <= nrow(Keyprint.mean)) { 
 FP <- SampleCompare.t(j,r, TRUE, FALSE) # determine if false positive for two full samples using method 1 
 FPpro <- SampleCompare.t(j,r, FALSE, FALSE) # determine if false positive for two samples using Profile + method 1 
 FP2 <- SampleCompare.t(j,r, TRUE, TRUE) # determine if false positive for two full samples using method 2 
 FPpro2 <- SampleCompare.t(j,r, FALSE, TRUE) # determine if false positive for two samples using Profile + method 2 
 TotalFPcompared <- TotalFPcompared+1 # comparisons counter 
 # increment false positive counter for each method and keyprint type at each match threshold  
 for (mt in as.numeric(MT.values)) { 
 if (FP >= mt) { FNFPT1T[2,as.character(mt)] <- FNFPT1T[2,as.character(mt)] +1 }  
 if (FPpro >= mt) { FNFPT1T[4,as.character(mt)] <- FNFPT1T[4,as.character(mt)] +1 } 
 if (FP2 >= mt) { FNFPT1Tm2[2,as.character(mt)] <- FNFPT1Tm2[2,as.character(mt)] +1 }  
 if (FPpro2 >= mt) { FNFPT1Tm2[4,as.character(mt)] <- FNFPT1Tm2[4,as.character(mt)] +1 } 
 } } } 
 k <- k+1 
} # end forloop that counts false positives 
 
# place false positive counts in results tables for both match methods 
FNFPT1T[2,] <- FNFPT1T[2,]/ TotalFPcompared # calc % false positives at each Match Threshold 
FNFPT1T[4,] <- FNFPT1T[4,]/ TotalFPcompared # calc % false positives using profile at each Match Threshold 
FNFPT1Tm2[2,] <- FNFPT1Tm2[2,]/ TotalFPcompared # calc % false positives at each Match Threshold method 2 
FNFPT1Tm2[4,] <- FNFPT1Tm2[4,]/ TotalFPcompared # calc % false positives using profile using method 2 
 
``` 
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APPENDIX D 

TRANSITION AND DWELL CHARACTER USAGE TABLES 

Table D1 

Transition Characters Used to Develop the Keyprint Signatures and Profiles Organized 

Alphabetically 

 Transition 
Characters 

Average 
Time 

Character 
Count   Transition 

Characters 
Average 

Time Character Count 

1.  .  space 340.9 2369  23.  n t 150.4 2262 

2.  a n 125.8 4354  24.  o n 81.3 3180 

3.  a s 157.3 1717  25.  o r 97.7 2739 

4.  a t 123.5 4298  26.  o u 102.6 2640 

5.  backspace 
backspace 189.4 11751  27.  r e 162.9 4486 

6.  d space 171.8 5591  28.  s e 189.1 1949 

7.  e a 141.8 2557  29.  s space 159.6 5598 

8.  e d 193.5 2628  30.  s t 126.0 2028 

9.  e n 145.3 3514  31.  space a 186.6 6885 

10.  e r 138.5 3957  32.  space f 290.9 2382 

11.  e s 178.5 2651  33.  space h 175.0 2858 

12.  e space 125.4 11546  34.  space i 238.7 4324 

13.  f space 97.2 2390  35.  space o 203.0 3938 

14.  h a 111.6 4079  36.  space s 315.7 3568 

15.  h e 126.3 6610  37.  space t 189.3 9505 

16.  h i 80.1 1456  38.  space w 201.4 3275 

17.  i n 99.5 6216  39.  t e 160.1 2708 

18.  i s 114.0 1849  40.  t h 87.8 8639 

19.  i t 196.2 2400  41.  t i 117.8 2415 

20.  l i 88.0 2525  42.  t o 106.7 2281 

21.  n d 129.1 2980  43.  t space 151.8 6349 

22.  n space 142.1 4913      
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Table D2 

Dwell Characters Used to Develop the Keyprint Signatures and Profiles 

Number Dwell 
Character 

Average 
Time 

Character 
Count 

 Number Dwell 
Character 

Average 
Time 

Character 
Count 

1.  , 97.7 4792  14.  l 133.3 12440 

2.  . 108.4 2897  15.  m 121.2 5921 

3.  a 151.7 23223  16.  n 108.8 21035 

4.  b 88.0 2509  17.  o 115.3 21777 

5.  backspace 95.1 22894  18.  p 139.5 5663 

6.  c 116.0 7274  19.  r 127.6 16030 

7.  d 108.8 11435  20.  s 144.2 16791 

8.  e 121.7 37226  21.  t 116.3 27940 

9.  f 112.3 6531  22.  u 123.5 5940 

10.  g 103.6 6499  23.  v 105.5 3375 

11.  h 95.8 16922  24.  w 138.1 6154 

12.  i 128.9 21713  25.  y 100.6 4963 

13.  k 81.1 2388  26.  space 114.1 65087 
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Table D3 

Dwell Characters Excluded from the Keyprint Signature and Profiles 

Number Dwell Character Times Used Number Dwell Character Times Used 

1.  - 757 31.  5 28 

2.  " 590 32.  \ 25 

3.  ' 566 33.  CapsLock 15 

4.  Enter 503 34.  [ 14 

5.  x 466 35.  Meta 12 

6.  1 410 36.  AudioVolumeDown 10 

7.  ; 357 37.  7 9 

8.  j 350 38.  NumLock 8 

9.  3 324 39.  End 8 

10.  ) 296 40.  AudioVolumeUp 8 

11.  0 276 41.  + 7 

12.  ArrowRight 268 42.  ! 7 

13.  9 266 43.  _ 7 

14.  ( 251 44.  < 6 

15.  4 227 45.  ] 6 

16.  q 203 46.  Home 4 

17.  ? 197 47.  * 4 

18.  ArrowLeft 178 48.  & 3 

19.  / 177 49.  # 3 

20.  z 162 50.  @ 2 

21.  8 160 51.  % 2 

22.  6 158 52.  Tab 2 

23.  Control 126 53.  ContextMenu 1 

24.  Delete 76 54.  Insert 1 

25.  ArrowDown 71 55.  { 1 

26.  = 70 56.  PageDown 1 

27.  ArrowUp 68 57.  PageUp 1 

28.  > 39    

29.  2 33    

30.  : 30    
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Table D4 
Transition Characters Excluded from Developing Keyprint Signatures or Profiles.  All Other Key 

Combinations Were Used Fewer Times and Were Excluded from the Table  
Number Transition Characters Times 

Used 
Number Transition characters Times 

Used 
Number Transition characters Times 

Used 

1 , Space  4603 35 Space n 1316 69 k e 890 

2 Space Shift 3958 36 h Space 1311 70 i f 879 

3 y Space 3478 37 o t 1279 71 Backspace e 862 

4 r Space 2912 38 w h 1273 72 u s 845 

5 a r 2641 39 n o 1231 73 r t 845 

6 o Space 2622 40 s o 1212 74 u t 835 

7 Space Backspace 2581 41 o w 1203 75 n a 832 

8 Space m 2522 42 e l 1197 76 e t 829 

9 n g 2327 43 p e 1195 77 Backspace Space 820 

10 Space c 2310 44 f o 1188 78 p r 820 

11 v e 2297 45 d i 1175 79 e e 811 

12 o f 2255 46 r i 1170 80 o p 796 

13 Space p 2083 47 n e 1168 81 p o 792 

14 Space d 2065 48 I Space 1163 82 u r 790 

15 Space l 2064 49 i g 1157 83 r a 785 

16 Space b 2034 50 c o 1146 84 Backspace t 771 

17 l l 1993 51 g e 1136 85 s s 751 

18 a Space 1930 52 g h 1132 86 h t 746 

19 l e 1888 53 l d 1120 87 c h 743 

20 d e 1719 54 Space r 1082 88 Backspace Shift 733 

21 i o 1717 55 t a 1075 89 m y 732 

22 a l 1680 56 m a 1022 90 a p 716 

23 Shift i 1616 57 s i 989 91 e m 714 

24 g Space 1613 58 e , 974 92 t s 712 

25 b e 1583 59 i l 966 93 l o 710 

26 n c 1566 60 s h 962 94 u g 702 

27 l Space 1530 61 u l 952 95 l a 674 

28 w e 1515 62 a v 943 96 i v 671 

29 h o 1491 63 o m 943 97 a c 660 

30 c e 1450 64 e Backspace 935 98 Backspace , 659 

31 Space e 1424 65 r s 925 99 Shift t 656 

32 m e 1395 66 Space g 917 100 p l 655 

33 r o 1381 67 i e 910 101 Backspace a 652 

34 c a 1376 68 i c 899 102 e . 646 
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APPENDIX E  

ROC CHARTS WITH DATA ATTACHED 

Table E1 

False Positive Occurrences for Baseline Keyprint Signatures and Profiles in Sample T1  

Match Thresholds 

 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 30% 20% 

% False 
Positives 
Keyprint 
Signature 

0.00 0.00 0.00 0.00 0.01 0.06 0.14 0.26 0.40 0.56 0.69 0.79 0.88 0.96 1.00 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.00 0.01 0.03 0.07 0.12 0.22 0.33 0.43 0.54 0.63 0.73 0.88 0.97 

 
Figure E1.  False positive occurrences for baseline keyprint signatures and profiles in sample T1 at each match 
threshold. Based on this analysis, the critical point for false positive occurrences is between 80% and 85%.  This 
result indicates that at or above an 80% match threshold, each keyprint for the individuals in the data is completely 
unique. 
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Table E2 

False Negative Comparing Match Range versus Wilcoxon Versus t test Method Keyprint Signature 

Compared to All Other Samples  

Match Thresholds 

 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 30% 20% 

t.test False 
Negative 
Signature 

0.99 0.63 0.29 0.10 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Wilcoxon 
False 
Negative 
Signature 

1.00 0.86 0.47 0.19 0.12 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Match 
Range 
False 
Negative 
Signature 

1.00 0.96 0.81 0.40 0.18 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Figure E2.  Comparison of match range versus Wilcoxon-Mann-Whitney versus t test method keyprint signature 
compared to all other samples.  Among the three methods, the results were somewhat similar but the t test method 
performed better overall. 
 The t test performed better between 75% and 100% and hit the critical point for false positive at 75%.  Using the 
non-parametric Wilcoxon method and the match range methods resulted in suboptimal performance compared to 
the t test method.   
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Table E3 

False Negative False Positive Optimization for Keyprint Signature and Profile (T1) Compared to All 

Other Samples (T2-T6) 

Match Thresholds 
 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 30% 20% 

% False 
Negative 
Keyprint 
Signature 

1.00 0.91 0.53 0.24 0.10 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Signature 

0.00 0.00 0.00 0.00 0.01 0.04 0.10 0.23 0.35 0.53 0.66 0.77 0.87 0.96 0.99 

% False 
Negative 
Keyprint 
Profile 

0.96 0.86 0.56 0.33 0.15 0.09 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.00 0.00 0.02 0.05 0.09 0.16 0.26 0.36 0.48 0.57 0.68 0.87 0.96 

 

Figure E3.  False negative and false positive optimization for keyprint signature and profiles compared to all 
other typing samples combined (T2-T6).  Optimization occurs at a match threshold of approximately 75%.  This is 
the point where false positives and false negatives are optimally balanced.  However, the critical point for reducing 
false negative identifications to zero using the keyprint signature is approximately 70%.  The critical point for 
reducing false negative identifications to zero using the keyprint profile is closer to 65%.  In this regard, using the 
keyprint signature is better than the keyprint profile. 
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Table E4 

False Negative False Positive Optimization for Keyprint Signature and Profile (T1) Compared to Copy 

Typed Sample (T2)  

Match Thresholds 
 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 30% 20% 

% False 
Positives 
Keyprint 
Signature 

1.00 0.82 0.47 0.14 0.06 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.00 0.00 0.01 0.06 0.13 0.27 0.42 0.58 0.72 0.81 0.89 0.97 1.00 

% False 
Negative 
Keyprint 
Signature 

0.95 0.74 0.44 0.23 0.08 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.00 0.01 0.03 0.07 0.14 0.22 0.34 0.44 0.57 0.65 0.75 0.91 0.98 

 

Figure E4.  False Negative False Positive Optimization Keyprint Signature Compared to Copy Typed Sample T2. 
Optimization occurs at a match threshold between 75% and 80%.  The critical point for reducing false negative 
identifications to zero using the keyprint signature is approximately 75%.  The critical point for reducing false 
negative identifications to zero using the keyprint profile is closer to 65%.  In this regard, using the keyprint 
signature is slightly better than the keyprint profile. 
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Table E5 

False Negative False Positive Optimization for Keyprint Signature and Profile (T1) Compared to Free 

Typed Sample (T3) – Method 2 

Match Thresholds 
 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 30% 20% 

% False 
Positives 
Keyprint 
Signature 

1.00 0.99 0.76 0.41 0.22 0.12 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.01 0.02 0.08 0.17 0.27 0.39 0.50 0.61 0.72 0.80 0.88 0.95 0.98 

% False 
Negative 
Keyprint 
Signature 

0.96 0.93 0.80 0.55 0.34 0.16 0.11 0.08 0.08 0.05 0.05 0.05 0.05 0.05 0.05 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.01 0.04 0.08 0.15 0.23 0.32 0.43 0.53 0.63 0.70 0.78 0.90 0.98 

 

Figure E5.  False Negative False Positive Optimization Keyprint Signature Compared to Free Typed Sample (T3) 
– Method 2. Optimization occurs at a match threshold between 75% and 80%.  The critical point for reducing false 
negative identifications to zero using the keyprint signature is approximately 60%.  The critical point for reducing 
false negative identifications to zero using the keyprint profile is closer to 55%.  In this regard, using the keyprint 
signature is slightly better than the keyprint profile. 
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Table E6 

False Negative False Positive Optimization for Keyprint Signature and Profile (T1) Compared to Free 

Typed Sample (T3) – Method 1 

Match Thresholds 
 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 30% 20% 

% False 
Positives 
Keyprint 
Signature 

1.00 1.00 0.99 0.96 0.95 0.92 0.88 0.79 0.71 0.56 0.53 0.41 0.28 0.10 0.05 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.05 0.09 0.14 0.21 0.36 0.64 0.87 

% False 
Negative 
Keyprint 
Signature 

1.00 1.00 1.00 0.97 0.94 0.92 0.88 0.83 0.69 0.62 0.50 0.45 0.35 0.13 0.06 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.08 0.13 0.20 0.30 0.56 0.82 

 
Figure E6.  Method 1 - False Negative False Positive Optimization Keyprint Signature Compared to Free Typed 
Sample (T3) – Method 1.  Optimization occurs at a match threshold at about 40%.  No critical point is reached for 
either the keyprint signature or the keyprint profile.  In this respect, using the keyprint signature is slightly better 
than the keyprint profile but there is still a large margin for error. 
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Table E7 

False Negative False Positive Optimization for Keyprint Signature and Profile (T1) Compared to Free 

Typed Sample (T4)  

Match Thresholds 
 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 30% 20% 

% False 
Positives 
Keyprint 
Signature 

1.00 0.94 0.77 0.37 0.15 0.10 0.09 0.05 0.03 0.01 0.00 0.00 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.00 0.00 0.01 0.05 0.12 0.24 0.38 0.55 0.69 0.79 0.88 0.96 1.00 

% False 
Negative 
Keyprint 
Signature 

1.00 0.92 0.72 0.44 0.26 0.10 0.09 0.04 0.04 0.03 0.01 0.00 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.00 0.01 0.03 0.06 0.12 0.20 0.30 0.42 0.53 0.62 0.72 0.90 0.98 

 

Figure E7.  False Negative False Positive Optimization Keyprint Signature Compared to Free Typed Sample 
(T4). Optimization occurs at a match threshold at about 70%.  The critical point using the keyprint signature is 
somewhere between 50% and 55%.  The critical point for the keyprint profile is somewhere between 45% and 
50%.  In this regard, the keyprint signature is better than the keyprint profile. 
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Table E8 

False Negative False Positive Optimization for Keyprint Signature and Profile (T1) Compared to Free 

Typed Samples (T3 and T4)  

Match Thresholds 
 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 30% 20% 

% False 
Positives 
Keyprint 
Signature 

1.00 0.94 0.74 0.33 0.14 0.10 0.08 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.00 0.00 0.01 0.05 0.11 0.23 0.37 0.54 0.67 0.77 0.87 0.96 0.99 

% False 
Negative 
Keyprint 
Signature 

0.99 0.91 0.68 0.42 0.23 0.14 0.08 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.00 0.01 0.02 0.05 0.11 0.18 0.29 0.40 0.51 0.60 0.71 0.88 0.98 

 

Figure E8.  False Negative False Positive Optimization Keyprint Signature Compared to Free Typed Samples (T3 
and T4) – Method 2. Optimization occurs at a match threshold at about 70%.  The critical point using the keyprint 
signature is somewhere between 50% and 55%.  The critical point for the keyprint profile is somewhere between 
45% and 50%.  In this regard, the keyprint signature is better than the keyprint profile. 
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Table E9 

False Negative False Positive Optimization for Keyprint Signature and Profile (T1) Compared to Mild 

Impediment Sample (T5)  

Match Thresholds 
 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 30% 20% 

% False 
Positives 
Keyprint 
Signature 1.00 0.90 0.64 0.28 0.10 0.05 0.04 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 0.00 0.00 0.00 0.01 0.03 0.11 0.22 0.37 0.52 0.66 0.81 0.88 0.94 1.00 1.00 

% False 
Negative 
Keyprint 
Signature 0.97 0.87 0.64 0.42 0.15 0.09 0.05 0.03 0.03 0.03 0.01 0.00 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 0.00 0.00 0.01 0.02 0.05 0.11 0.20 0.31 0.42 0.53 0.65 0.74 0.82 0.95 0.99 

 

Figure E9.  False Negative False Positive Optimization Keyprint Signature Compared to Mild Impediment 
Sample (T5) – Method 2. Optimization occurs at a match threshold between 75% and 80%.  The critical point 
using the keyprint signature is somewhere between 50% and 55%.  The critical point for the keyprint profile is 
somewhere between 45% and 50%.  In this regard, the keyprint signature is better than the keyprint profile. 
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Table E10 

False Negative False Positive Optimization for Keyprint Signature and Profile (T1) Compared to 

Moderate Impediment Sample (T6)  

Match Thresholds 
 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 30% 20% 

% False 
Positives 
Keyprint 
Signature 1.00 0.97 0.94 0.83 0.74 0.55 0.41 0.29 0.18 0.06 0.03 0.01 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 0.00 0.00 0.00 0.00 0.01 0.04 0.11 0.20 0.35 0.49 0.64 0.75 0.85 0.96 0.99 

% False 
Negative 
Keyprint 
Signature 1.00 0.94 0.90 0.78 0.72 0.58 0.46 0.36 0.23 0.14 0.06 0.06 0.04 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 0.00 0.00 0.00 0.01 0.03 0.06 0.11 0.18 0.27 0.38 0.50 0.59 0.69 0.86 0.96 

 

Figure E10.  False Negative False Positive Optimization Keyprint Signature Compared to Moderate Impediment 
Sample (T6) – Method 2.  Optimization occurs at a match threshold between 60% and 65%.  The critical point 
using the keyprint signature is somewhere between 40% and 45%.  The critical point for the keyprint profile is 
somewhere between 30% and 40%.  In this regard, the keyprint signature is better than the keyprint profile. 
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Table E11 

False Negative False Positive Optimization for Keyprint Signature and Profile (T1) Compared to 

Impediment Samples (T5 and T6)  

Match Thresholds 
 100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 30% 20% 

% False 
Positives 
Keyprint 
Signature 

1.00 0.95 0.90 0.65 0.50 0.31 0.13 0.04 0.01 0.01 0.01 0.00 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.00 0.00 0.01 0.05 0.12 0.27 0.40 0.56 0.68 0.80 0.90 0.98 1.00 

% False 
Negative 
Keyprint 
Signature 

0.97 0.94 0.86 0.71 0.58 0.40 0.24 0.13 0.06 0.03 0.03 0.03 0.00 0.00 0.00 

% False 
Positives 
Keyprint 
Profile 

0.00 0.00 0.00 0.01 0.02 0.06 0.11 0.19 0.29 0.40 0.52 0.62 0.73 0.89 0.98 

 

Figure E11.  False Negative False Positive Optimization Keyprint Signature Compared to Impediment Samples 
(T5 and T6) – Method 2.  Optimization occurs at a match threshold between 75% and 80%.  The critical point 
using the keyprint signature is somewhere between 50% and 55%.  The critical point for the keyprint profile is 
somewhere between 45% and 50%.  In this regard, the keyprint signature is better than the keyprint profile. 
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Table E12 

Number of Keyprint Signature Characters identified for T3 and deleted for T3 Method 2 – Participants 1-

26 

Participant T3 Profile 
Characters 

T3 Profile Characters 
Missing Data 

Actual Data Points 
Used in T3 Method 2 

Too Few (9 or fewer) Removed 
From Data for Method 2 (41 

total) 

1 24 11 13  

2 10 5 5 X 

3 44 22 22  

4 39 27 12  

5 18 14 4 X 

6 40 35 5 X 

7 15 8 7 X 

8 21 19 2 X 

9 30 22 8 X 

10 33 28 5 X 

11 51 46 5 X 

12 19 11 8 X 

13 39 22 17  

14 59 27 32  

15 18 14 4 X 

16 22 13 9 X 

17 32 12 20  

18 32 13 19  

19 21 15 6 X 

20 10 5 5 X 

21 32 18 14  

22 60 25 35  

23 15 14 1 X 

24 35 18 17  

25 4 3 1 X 

26 34 17 17  
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Table E13 

Number of Keyprint Signature Characters identified for T3 and deleted for T3 Method 2 – Continued; 

Participants 27-54 

Participant T3 Profile 
Characters 

T3 Profile Characters 
Missing Data 

Actual Data Points 
Used in T3 Method 2 

Too Few (9 or fewer) Removed 
From Data for Method 2 (41 

total) 

27 31 19 12  

28 32 15 17  

29 17 10 7 X 

30 3 2 1 X 

31 14 9 5 X 

32 26 13 13  

33 18 13 5 X 

34 39 23 16  

35 25 18 7 X 

36 23 18 5 X 

37 55 24 31  

38 24 20 4 X 

39 61 42 19  

40 17 12 5 X 

41 0 0 0 X 

42 2 1 1 X 

43 18 10 8 X 

44 31 9 22  

45 16 8 8 X 

46 40 26 14  

47 39 25 14  

48 11 8 3 X 

49 35 24 11  

50 42 17 25  

51 20 9 11  

52 31 22 9 X 

53 11 6 5 X 

54 18 8 10  
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Table E14 

Number of Keyprint Signature Characters identified for T3 and deleted for T3 Method 2 – Continued: 

Participants 55-78  

Participant T3 Profile 
Characters 

T3 Profile Characters 
Missing Data 

Actual Data Points 
Used in T3 Method 2 

Too Few (9 or fewer) Removed 
From Data for Method 2 (41 

total) 

55 47 29 18 

56 22 15 7 X 

57 39 25 14 

58 34 21 13 

59 45 23 22 

60 30 14 16 

61 34 20 14 

62 38 18 20 

63 33 19 14 

64 33 22 11 

65 4 3 1 X 

66 23 15 8 X 

67 38 13 25 

68 33 21 12 

69 30 22 8 X 

70 32 14 18 

71 50 36 14 

72 9 6 3 X 

73 23 15 8 X 

74 32 23 9 X 

75 27 23 4 X 

76 37 23 14 

77 19 10 9 X 

78 26 20 6 X 
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