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ABSTRACT 
 

A Comparative Literature Review of Intelligent Tutoring Systems from 1990-2015 
 

Brice Robert Colby 
Department of Instructional Psychology and Technology, BYU 

Master of Science 
 

 This paper sought to accomplish three goals.  First, it provided a systematic, comparative 
review of several intelligent tutoring systems (ITS).  Second, it summarized problems and 
solutions presented and solved by developers of ITS by consolidating the knowledge of the field 
into a single review.  Third, it provided a unified language from which ITS can be reviewed and 
understood in the same context.  The findings of this review centered on the 5-Component 
Framework.  The first component, the domain model, showed that most ITS are focused on 
science, technology, and mathematics.  Within these fields, ITS generally have mastery learning 
as the desired level of understanding.  The second component, the tutor model, showed that 
constructivism is the theoretical strategy that informs most ITS.  The tutoring tactics employed in 
the ITS stem from this paradigm.  The third component, the student model, describes the several 
ways ITS infer what a student knows.  It described the variety of data that is collected by an ITS 
and how it is used to build the student model.  The fourth component, the interface, revealed that 
most ITS are now web-based, but vary in their capacity to interact with students.  It also showed 
that user experience is underreported and ought to be included more in the research.  Finally, the 
fifth component, learning gains, demonstrated that ITS are capable of producing learning gains 
equivalent to a human tutor.  However, reporting learning gains does not seem to be a focus of 
the literature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: intelligent tutoring systems, literature review 



iii 
 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................................... ii 

TABLE OF CONTENTS ............................................................................................................... iii 

LIST OF TABLES ........................................................................................................................ vii 

LIST OF FIGURES ..................................................................................................................... viii 
DESCRIPTION OF THESIS STRUCTURE................................................................................. ix 

JOURNAL ARTICLE .................................................................................................................... 1 

A Comparative Literature Review of Intelligent Tutoring Systems from 1990-2015 .................... 1 

Background ..................................................................................................................................... 3 
First Generation (1970-1990) ...................................................................................................... 4 

Second Generation (1990-2010) ................................................................................................. 5 

Third Generation (2010-Present) ................................................................................................ 5 

5-Component Framework Review .................................................................................................. 6 

Domain Model............................................................................................................................. 7 
Tutoring Model ........................................................................................................................... 7 

Student Model ............................................................................................................................. 8 

Interface ....................................................................................................................................... 8 

Learning Gains ............................................................................................................................ 8 
Review Methods ............................................................................................................................. 9 

Searching for and Identifying ITS Cases .................................................................................... 9 

Findings......................................................................................................................................... 11 

The Domain Model ................................................................................................................... 11 
The Tutoring Model .................................................................................................................. 19 

The Student Model .................................................................................................................... 29 

The Interface ............................................................................................................................. 36 

Learning Gains .......................................................................................................................... 40 
Conclusion .................................................................................................................................... 45 

References ..................................................................................................................................... 48 

ITS CASE STUDIES .................................................................................................................... 61 

ActiveMath ................................................................................................................................... 61 
Domain Model........................................................................................................................... 61 

Tutoring Model ......................................................................................................................... 62 



iv 
 

Student Model ........................................................................................................................... 65 

Interface ..................................................................................................................................... 67 

Learning Gains .......................................................................................................................... 68 

References ................................................................................................................................. 69 
ANDES ......................................................................................................................................... 72 

Domain Model........................................................................................................................... 72 

Tutoring Model ......................................................................................................................... 73 

Student Model ........................................................................................................................... 77 

Interface ..................................................................................................................................... 78 
Learning Gains .......................................................................................................................... 80 

References ................................................................................................................................. 81 

Aplusix .......................................................................................................................................... 83 

Domain Model........................................................................................................................... 83 
Tutoring Model ......................................................................................................................... 83 

Student Model ........................................................................................................................... 85 

Interface ..................................................................................................................................... 87 

Learning Gains .......................................................................................................................... 88 
References ................................................................................................................................. 90 

ASSISTments ................................................................................................................................ 92 

Domain Model........................................................................................................................... 92 

Tutoring Model ......................................................................................................................... 93 
Student Model ........................................................................................................................... 95 

Interface ..................................................................................................................................... 96 

Learning Gains .......................................................................................................................... 98 

References ................................................................................................................................. 99 
AutoTutor .................................................................................................................................... 102 

Domain Model......................................................................................................................... 102 

Tutoring Model ....................................................................................................................... 103 

Student Model ......................................................................................................................... 107 
Interface ................................................................................................................................... 109 

Learning Gains ........................................................................................................................ 110 

References ............................................................................................................................... 112 



v 
 

CIRCSIM-Tutor .......................................................................................................................... 115 

Domain Model......................................................................................................................... 115 

Tutoring Model ....................................................................................................................... 115 

Student Model ......................................................................................................................... 118 
Interface ................................................................................................................................... 119 

Learning Gains ........................................................................................................................ 121 

References ............................................................................................................................... 122 

Cognitive Tutor ........................................................................................................................... 124 

Domain Model......................................................................................................................... 124 
Tutoring Model ....................................................................................................................... 125 

Student Model ......................................................................................................................... 129 

Interface ................................................................................................................................... 130 

Learning Gains ........................................................................................................................ 131 
References ............................................................................................................................... 133 

Reading Tutor ............................................................................................................................. 136 

Domain Model......................................................................................................................... 136 

Tutoring Model ....................................................................................................................... 137 
Student Model ......................................................................................................................... 139 

Interface ................................................................................................................................... 141 

Learning Gains ........................................................................................................................ 141 

References ............................................................................................................................... 142 
SQL-Tutor ................................................................................................................................... 145 

Domain Model......................................................................................................................... 145 

Tutoring Model ....................................................................................................................... 146 

Student Model ......................................................................................................................... 148 
Interface ................................................................................................................................... 150 

Learning Gains ........................................................................................................................ 151 

References ............................................................................................................................... 153 

Wayang Outpost.......................................................................................................................... 156 
Domain Model......................................................................................................................... 156 

Tutoring Model ....................................................................................................................... 157 

Student Model ......................................................................................................................... 160 



vi 
 

Interface ................................................................................................................................... 163 

Learning Gains ........................................................................................................................ 164 

References ............................................................................................................................... 166 

 

  



vii 
 

LIST OF TABLES 

Table 1.     List of ITS, Number of Articles from the First Phase and the Date Range.…………13 

Table 2.     A List of STEM Domains for Each ITS………………………………………………14 

 

  



viii 
 

LIST OF FIGURES 

Literature Review 

Figure 1.     Reported Average and ranges of effect sizes for the 10 ITS. .................................... 42 

ActiveMath 

Figure 1.     The interface of ActiveMath (Andres et al., 2010). .................................................. 67 

ANDES 

Figure 1.     The interface of the web-based version of ANDES (VanLehn et al., 2010). ............ 79 

Aplusix 

Figure 1.     The user interface of Aplusix (Andallaza et al., 2012). ............................................. 88 

ASSISTments 

Figure 1.     A problem in ASSISTments including scaffolding and hints (Pedra et al., 2013). ... 97 

AutoTutor 

Figure 1.     The interface of AutoTutor (D'Mello & Graesser, 2012). ....................................... 110 

CIRCSIM-Tutor 

Figure 1.     The user interface of CIRCSIM-Tutor (Michael et al., 2003). ................................ 120 

Cognitive Tutor 

Figure 1.     The interface of Algebra Cognitive Tutor (Rolle et al., 2011). ............................... 131 

Reading Tutor 

Figure 1.     The interface of Reading Tutor (Aist, Kort, Reilly, Mostow, & Picard, 2002). ..... 141 

SQL-Tutor 

Figure 1.     The SQL-Tutor interface (Hull & du Boulay, 2015). .............................................. 151 

Wayang Outpost 

Figure 1.     The user interface of Wayang Outpost (Arroyo et al., 2012). ................................. 164 



ix 
 

DESCRIPTION OF THESIS STRUCTURE 

 This thesis was intended to be written in a hybrid format.  The first part of the thesis is a 

journal-ready article that is a comprehensive literature review of intelligent tutoring systems 

from 1990 to 2015 and serves as the research article.  The information for the review came from 

the second part of the thesis, which is a collection of intelligent tutoring system case studies.  

Each case is to be a stand-alone resource that will be provided on the Web.  A 5-Component 

Framework that covers the domain content, student knowledge, tutoring pedagogy, interface, and 

learning gains was used to analyze both sections. 

For publication of the journal-ready portion of my thesis, I would like to submit to the 

Review of Educational Research (RER).  This journal focuses on publishing literature reviews 

about education from any discipline.  As such, the article needs to be written at a level that is 

understandable by a broad audience.  Publications need to follow APA formatting.  There is no 

maximum word length.  
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JOURNAL ARTICLE 

A Comparative Literature Review of Intelligent Tutoring Systems from 1990-2015 

Intelligent Tutoring Systems (ITS) are computer programs “designed to incorporate 

techniques from the artificial intelligence (AI) community in order to provide tutors which know 

what they teach, who they teach, and how to teach it,” (Nwana, 1990, p. 252).  With such a loose 

definition, anything demonstrating some semblance of artificial intelligence that is used in 

education could be considered an intelligent tutoring system.  For example, one tutoring system, 

ActiveMath, focuses on dynamically creating e-textbooks that are adapted to a student’s skill 

level (Ullrich & Libbrecht, 2008).  Another tutor, ANDES, does not adapt content at all but, 

instead, focuses on promoting transfer by designing a user experience that is like a paper-and-

pencil format (VanLehn, van de Sande, Shelby, & Gershman, 2010).  This loose definition 

makes it difficult to compare multiple ITS since their underlying architecture can differ greatly 

from one system to another.  Consequently, it has been difficult to aggregate information about 

ITS systems and build upon previous knowledge.  This has led to three significant challenges. 

The first main challenge to fully understanding the research on ITS is that no systematic 

review has been done to compare ITS for many years.  The last one that could be found was by 

Nwana (1990); however, in my search of over 800 articles relating to ITS, I found a few review 

articles that compared systems to each other or compared different student modeling techniques 

but no comprehensive reviews similar to Nwana’s work.   

Second, the field seems to be dominated by a core group of researchers who work on 

their own tutoring systems.  One study looked at 815 papers from the years 2009-2012 and found 

that one-third of these papers were written by 12 groups (Nye, Graesser, & Hu, 2014).  These 

papers seem to focus on the iterative development of their own tutoring systems which can 
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hinder the advancement of generalizable knowledge in the field since solutions are found that are 

context-dependent.  Consider some of the following examples that highlight this hindrance.   

ITS developers seem to be solving the same problems repeatedly and concurrently.  For 

example, Reading Tutor is an oral reading fluency tutor (Lalle, Mostow, Luengo, & Guin, 2013).  

Initially, the collected data was not used to create a model of what a student knows (Beck, Jia, & 

Mostow, 2003; Beck, Jia, Sison, & Mostow 2003).  Recognizing the utility in have a strong 

student model, the developers retrofitted data to infer student capabilities (Beck, et al., 2003).  

Eventually, they had to redesign their data collection system to have the capacity to collect the 

data they needed (Beck et. al., 2003).  This oversight could have been avoided with an 

understanding of the role of a student model in ITS, derived from generalizable knowledge and 

theory developed from more rigorous research.   

In contrast, some ITS recognize problems that should be considered by the field but are 

not.  As an example, the developers of ASSISTments identified a concept called wheel-spinning 

(Beck & Gong, 2013).  This concept describes the process of a student getting stuck in a mastery 

loop.  In other words, the tutoring system determines that the student does not know a knowledge 

component well enough and offers remedial instruction and further problems to be solved.  

However, the student continues to get the problems wrong and is stuck in this loop until they 

become frustrated and quit.   

Third, there doesn’t appear to be a unifying language that allows researchers to talk about 

ITS in the same manner.  One does not need to look far into the research to find similar concepts 

called by different names.  For example, ontologies (Melis, Goguadze, Libbrecht, & Ullrich, 

2009), Q-matrices (Birenbaum, Kelly, & Tatsuoka, 1993), and transfer models (Feng & 

Heffernan, 2006) are all names describing a similar process of mapping knowledge components 
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to problems which students solve.  This may lead to researchers studying knowledge mapping 

processes by using only “ontology” as the search word and missing research that describes the 

same process under a different name.   

This paper aims to provide a solution to these three problems by providing a systematic, 

comparative review that uses a standard language to draw comparisons and to consolidate the 

progress of ITS since the previous attempt by Nwana (1990).  To do so, the paper is separated 

into the following sections.  First, context is given by providing a brief overview of the first, 

second, and third generations of ITS—a distinction made by Nkambou, Mizoguchi, and 

Bourdeau (2010).  Second, the methods section introduces the 5-Component Framework process 

by which the literature search was conducted, including inclusionary and exclusionary criteria.  

This 5-Component Framework is used in the paper to provide a unifying language.  Third, the 

findings are reported for each of the five components of the framework.   

Background 

 When talking about technological innovations, it is difficult to keep abreast of all the 

latest happenings since technological breakthroughs happen frequently.  While ITS can benefit 

from these technological breakthroughs, they rely on advances not only in technology, but also 

fields like psychology and artificial intelligence.  As such, ITS can be reviewed on a larger 

timescale than other technological innovations.  One way they can be broken up is into 

generations (Nkambou et al., 2010).  Nkambou et al. (2010) identified three generations of ITS.  

The first generational distinction made by Nkambou et al. (2010) described 20 years of research 

capped with seminal articles that related the state of the art.  In similar fashion, the second 

generation is distinguished as 20 years of research, followed by the third generation which is 

ongoing.   
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First Generation (1970-1990) 

Nwana (1990) reviewed the first generation of artificial intelligence in education (AIED) 

and identified the steps that led to the realization of the first ITS.  The precursor of ITS began 

with the development of computer-assisted instruction (CAI) in the 1950s.  Computer-assisted 

instruction programs followed a linear approach, moving students step-by-step to the learning 

goal or desired behavior.  These initial attempts at CAI did not afford any individualization of 

the instruction.  The same material was presented in the same sequence while ignoring student 

responses and providing no feedback (Nwana, 1990). 

 These machines advanced to branching programs in the 1960s.  This new type of CAI 

took into consideration student responses and provided a unique learning tree for each student.  

As students successfully or unsuccessfully answered questions, the sequence of material changed 

to provide tailored instruction.  Further functionality was added to CAI in the form of generative 

CAI in the late 1960s.  The new CAI was able to create and solve its own material (Uhr, 1969; 

Woods & Hartley, 1971).  This progression of CAI from linear programs to generative became 

the precursor for ITS. 

 Leading researchers recognized the potential that CAI could bring to education but 

acknowledged that it was still lacking something—intelligence (Nwana, 1990).  The 

demonstrable superiority of 1:1 human tutors was a well-known fact (Bloom, 1984).  The 2-

sigma tutoring effect (i.e., the ability of human tutors to produce learning gains of 2 sigma) 

identified by Bloom (1984) became the gold standard as the researchers searched for ways to use 

CAI to provide that 1:1 experience.  Carbonell (1970) proposed putting the AI in CAI to meet 

this need.  His work, called SCHOLAR, was the beginning of ITS in 1970.  From 1970-1990, 
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Nwana (1990) identified 43 first-generation ITS that were developed.  These first-generation ITS 

created a scientifically-based foundation for the second generation. 

Second Generation (1990-2010) 

A majority of the ITS identified by the current review come from the second generation.  

As such, a review of the development of ITS will not be given here, but it is supplied in the 

findings section of this paper.  Instead, this section addresses Self’s (1990) argument for the 

development of scientific foundations for AIED, including its own theories, techniques, and 

methods.  Self also wanted theorizers to put into practice the ideas they had about ITS.   

In answer to Self’s call, biannual conferences and journals were created for the sole 

purpose of ITS development and research.  Additionally, throughout the second generation, 

many ITS were built—another answer to Self’s call.  However, these ITS rarely used the same 

architecture, which made it difficult to have a unified language.  Regardless, common 

components could still be found between them.  These components are: the domain, tutor, and 

student models as well as the interface used to interact with the tutoring system.  Together, these 

components are called the four-component architecture (Wenger, 1987). 

Third Generation (2010-Present) 

 As ITS and other technologies become more commonplace in classrooms, Nye (2015) 

suggested that ITS will become less of comprehensive systems and more of an “ecosystem of 

reusable infrastructure and platforms” (p. 63).  This suggests that ITS will become a shell that 

draws from services provided by other sources.  Nye provided an example where other online 

technologies operate under that philosophy: basic blog site uses authentication services from 

several different sources (e.g., Google, Facebook).   
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 This review corroborates this notion with the identification of some ITS that are domain-

independent.  This means that these ITS are designed such that they are flexible enough to create 

an intelligent tutoring system based on the needs of whoever is creating content.  However, it is 

still too early to tell if ITS and AIED will make the shift to a service-based ecosystem even 

though Nye (2015) claimed it is an “existential necessity” (p. 64). 

 Even if ITS make the shift into a service-based ecosystem, thus obsoleting the need for a 

standardized architecture, much work has been done in the second and third generations that 

requires a consolidation of knowledge.  By consolidating knowledge, gaps can be identified so 

that developers of ITS know which services ought to be provided and which are redundant.  For 

example, the developers of Cognitive Tutor created a stand-alone Help Tutor which can provide 

metacognitive feedback to students and can be used in various systems (Roll, Aleven, McLaren, 

& Koedinger, 2011).  Knowing that such a service already exists can help developers know that 

they should spend time on creating another service that fills a need like automatic affect 

detection.    

5-Component Framework Review 

As mentioned in our summary of the second generation of intelligent tutoring systems, 

Wenger’s four component architecture (1987) was created to describe a typical architecture for 

ITS.  This architecture mentions domain, tutoring, and student models, as well as the user 

interface of an ITS.  The domain model answers the question of what ITS teach, the student 

model—who they teach, and the tutoring model—how they teach.  The interface component 

describes what the human-computer interaction is like and whether users like the interface.  

Since these four components can typically be identified in most ITS (albeit sometimes under 

other names), this architecture is used as the unifying language for this paper.  However, it has 
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been augmented with a fifth component: learning gains.  This component can answer the 

question of whether the tutoring system is effective.   

Each of these five components, we call the 5-Component Framework, identifies an area 

of particular concern when constructing ITS.  Attention to each area is what allows ITS to 

properly teach the domain to a student, act as a tutor, infer what a student knows, create an 

enjoyable experience for users, and ultimately let the users know that the system is worth their 

time by improving learning.  For clarification, each component will be described below.   

Domain Model 

The domain model refers to expert knowledge.  It contains the concepts, rules, and 

problem-solving strategies of the domain (Nkambou et al., 2010).  Building the domain model is 

what allows the tutor to be the teacher and is how the ITS know “what they teach” (Nwana, 

1990, p. 252).  Implicit to this model is the understanding that different types of knowledge 

require different types of teaching depending on the nature of the knowledge to be learned. 

Tutoring Model 

Whereas the domain model represents the expert knowledge of a teacher, the tutoring 

model represents the pedagogical knowledge of a tutor.  This model will inform tutoring 

strategies and tactics and dictates “how to teach” (Nwana, 1990, p. 252).  Like a human teacher, 

ITS are influenced by pedagogical paradigms like constructivism or behaviorism.  Examples of 

pedagogical tactics employed by ITS include Socratic dialogue, scaffolding, and hint-giving.  

Careful attention is given to the development of the tutoring model to ensure that the ITS is built 

upon sound pedagogy and produces the desired learning gains that come from tutor interactions. 
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Student Model 

The student model has been called the “core component” (Nkambou, et al., 2010).  It is 

designed to contain as much information about a student as possible (to the extent that the tutor 

can make use of the data) and to record changes in this information.  This is what allows ITS to 

know “who they teach” (Nwana, 1990).  These changes include performance factors such as 

answers to questions or time to completion of lessons and problems.  Additional factors include 

cognitive and affective states or even changes in belief patterns, knowledge, and misconceptions.  

Collecting this data about each student allows the ITS to proceed teaching in an informed 

manner and puts the student at the center of teaching.   

Interface 

The interface describes the interaction between the ITS and the student and includes 

many components from graphical representations of the tutor to different representations of the 

domain content to the amount of control afforded to the student.  ITS vary greatly in this regard 

as some ITS are minimalistic in terms of the complexity of the human-computer interaction 

while others develop virtual tutors capable of expressing emotions like approval or disapproval. 

Learning Gains 

At their heart, ITS are meant to improve instruction and learning through adapting to 

learner needs.  Therefore, any intelligent tutoring system framework that does not consider ITS’ 

effect on learning would be incomplete.  Thus, we added learning gains to the four-component 

architecture to gather information on what seems to be working in ITS development, and 

whether ITS are getting closer to achieving the 2-sigma effect of human tutors (Bloom, 1984).  

Inattention to learning gains can result in ineffective pedagogical techniques or gimmicky 
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interfaces being implemented rather than a well-honed ITS that eschews excess and provides a 

pointed learning experience.    

Review Methods 

 In order to understand the state of ITS systems currently, as well as areas for potential 

development, this review addresses the problem of creating a unifying language to discuss ITS.  

In order to do so, first, we define how various ITS address each of the five components in the 5-

Component Framework.  Second, patterns across ITS are identified that demonstrate how these 

components are implemented in practice and to find areas of strength and areas that require 

further research and development.  More specifically, the following questions are answered for 

each component: 

1. Domain model. What content do ITS cover?  What level of understanding is the goal?  

What is used to create the expert? 

2. Tutoring model. What tutoring strategies and tactics are used? 

3. Student model. How is the student model created?  What issues are there regarding the 

development of the student model?  What data is collected? 

4. Interface. What are the common types of interfaces?  What research is there on ITS user 

experience?  

5. Learning gains. What learning gains are reported?  Does the research suggest that ITS 

are close to achieving the 2-sigma effect of human tutors?  

Searching for and Identifying ITS Cases 

 An initial, informal search was conducted to generate a list of ITS.  A formal search was 

then conducted by looking through literature databases using the names of the tutoring systems 

as the search keyword.  At times, due to the general nature of some ITS’ names, the words 
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“intelligent tutoring system” were added at the end to hone the results.  When a new system was 

mentioned in an article, it was also added to the list and used for its own literature search.   

Since the field of AIED can span several educational databases (e.g., computer science, 

psychology, business), Google Scholar was a more effective database than any individual, 

discipline-based database.   

Inclusionary/exclusionary criteria.  Including and excluding articles involved two 

phases.  First, we included results from 1990-2015, which covered the second and third 

generations of ITS.  Only relevant articles were included, which was determined by reading 

through the abstract and searching the article to make sure that the system in question was the 

focus of the article and not a quick reference.  Article collection for each ITS stopped after five 

pages of results on Google Scholar since the quality and relevance of the articles started to 

diminish at that point (i.e., articles were merely referencing the named system or results were 

articles not even relating to ITS).  The first phase yielded a reasonably comprehensive list of ITS 

including 64 unique systems with a total of 823 articles for all ITS.   

The second phase narrowed the number of articles/ITS based on an approximation of 

prominence in the field.  To measure prominence, first, the system must have more than 25 

articles collected over a 10+ years span.  This produced a list of 10 ITS with a total of 333 

articles combined.  This represented 15.6% of the total ITS, but 40.5% of the published articles.  

This suggests that most of the research is dominated by these systems and supports the 

conclusion that these are influential systems.  

Each article was then read and reviewed and all information pertaining to one of the five 

components was identified.  Articles were read in chronological order starting with the oldest.  

This sequencing allowed the iterative development of each system to be more apparent as the 
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research built on older publications.  If an article provided redundant information, it was 

excluded from the list.  The 10 ITS described in more detail in the next section are ActiveMath, 

ANDES, Aplusix, ASSISTments, AutoTutor, CIRCSIM-Tutor, Cognitive Tutor, Reading Tutor, 

SQL-Tutor, and Wayang Outpost.  Table 1 shows the full list of ITS, the number of articles 

found in the first phase, and the date range of the articles.  Note that some ITS were referenced 

and are included in this list, but no articles were found using Google Scholar.   

Findings 

As was mentioned, of the ITS identified in Table 1, 10 will be used for further 

exploration in the following sections.  These 10 systems offer a good coverage of different 

domains, modeling techniques, and other features of ITS.  The following subsections will 

address the research questions presented earlier by using the 10 systems as examples. 

The Domain Model 

What content do ITS cover? To answer this question, each ITS was reviewed to see 

what subject matter the tutoring system focused on.  This resulted in 31 unique domains such as 

thermodynamics, physics, and algebra.  However, each of these domains could be classified 

under broader domains, namely STEM.  In order to simplify the categories, the STEM domains 

(Science, Technology, Engineering, Mathematics) were used as classifiers with an “Other” 

domain for subject matter that did not fit in STEM.  A final category of “Domain Independent” 

was used for those ITS which were created with the intent of being able to handle any domain 

content.  The results are presented in Table 2.   

This categorization shows a preference for the science, technology and mathematics 

domains.  Science had 14 ITS that covered four subdomains (i.e., biology, thermodynamics, 

physics, and genetics).  Of these subdomains, physics had the highest number of ITS with seven 
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dedicated solely to physics tutoring.  This was also the highest number of ITS for any one 

subdomain that related to a specific knowledge domain.  Technology had 12 ITS that covered 

nine subdomains (i.e., Java, Haskell, SQL, UML, database design, data normalization, functional 

dependencies, linked lists, and computer literacy).  Of these subdomains, five ITS were 

developed to tutor Java while the remaining subdomains had one system each.  Mathematics had 

11 ITS that could be categorized in this domain.  The subdomains included here are general 

mathematics, scatterplots, modelling dynamic systems, number factorization, geometry, algebra, 

statistics, and calculus.  Algebra had the most ITS of this domain with six systems.   

The remaining three domains, engineering, other, and domain independent are 

noteworthy.  Engineering had a total of three ITS for two subdomains (i.e., electrical engineering 

and electricity and electronics) which made it the least represented STEM domain.  Other had 10 

ITS for seven subdomains (i.e., design, plantation decision making negotiated interviews for 

nursing, logic, reading, critical thinking, and cross-cultural negotiation).  The domain-

independent category had eight ITS.   

The spread of the ITS over these domains seems to indicate a preference for designing 

ITS that tutor well-defined domains.  These well-defined domains can be considered as domains 

where the relationships between knowledge, rules, and problem-solving strategies are more 

apparent and each can be easily formalized.  First, the clear understanding of relationships 

among the domain’s knowledge components makes it easier to develop the tutoring model since 

prerequisite knowledge can be identified and targeted for instruction.  Second, the ease of 

formalization benefits the student model since knowledge components are explicitly defined and 

can be associated with homework problems in the tutoring system.  This allows the ITS to 

determine what the student is learning or demonstrating as the student interacts with the system.   
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Table 1 

List of ITS, Number of Articles from the First Phase, and the Date Range 
 

ITS # of 
Articles Date Range ITS # of 

Articles 
Date 

Range ITS # of 
Articles Date Range 

3ITS 1 2016 DeepTutor 19 2006-2016 NORMIT 13 2002-2013 

ActiveMath 32 2001-2011 DM-Tutor 4 2009-2012 OOPS 1 2009 

Algebra Tutor 15 1996-2015 Dr Vicky 1 2011 PAT 1 2012 

Andes 30 1996-2014 Dragoon 5 2014-2016 Prime Climb 24 2002-2015 

AnimalWatch 23 1999-2015 EcoLab II 15 2002-2016 Reading Tutor 33 1999-2013 

Aplusix 31 1993-2014 EER-Tutor 1 2006 Protus 13 2011-2015 

Ask-Elle 8 2012-2016 Electronix 
Tutor 1 2016 REALP 0 -- 

ASSISTments 36 2005-2015 eTeacher 5 2004-2013 Scatterplot 
Tutor 10 2005-2015 

Atlas 0 -- FDTutor 1 2008 Scooter the 
Tutor 8 2006-2016 

AutoTutor 35 1999-2014 FFDC 2 2009 SE-Coach 13 1997-2009 

BEETLE II 21 2010-2016 iList 8 2008-2015 SHIECC 0 -- 

BILAT 23 2006-2013 ILMDA 5 2004-2010 SmartTutor 3 2001-2002 

BlueJ 0 -- iStart 28 2004-2013 SQL-Tutor 38 1996-2016 

CIMEL ITS 8 2005-2008 Java Sensei 4 2015 T-Algebra 14 2005-2011 
CIRCSIM- 
Tutor 34 1991-2011 JavaTutor 25 2009-2016 The Incredible 

Machine 9 2001-2014 

Cognitive 
Constructor 7 2008-2015 J-LATTE 2 2009-2016 Thermo-Tutor 1 2011 

COLLECT-
UML 0 -- KERMIT 20 2001-2012 TutorJ 10 2005-2013 

Cognitive 
Tutor 38 1998-2014 Logiocando 5 2003-2016 Wayang 

Outpost 32 2003-2014 

Conceptual 
Helper 3 2000-2008 Mag 2 2009-2011 Why2-Atlas 11 2002-2006 

Cordillera 14 2007-2015 Mathematics 
Tutor 0 -- ZOSMAT 3 2009-2015 

Crystal Island 32 2006-2012 Medical 
Imaging 1 2009 

   

Deep Thought 25 2004-2015 MetaTutor 32 2007-2016    
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Table 2 

A List of STEM Domains for Each ITS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

ITS S T E M Other Domain Independent 
3ITS           X 
ActiveMath       X     
Algebra Tutor       X     
ANDES X           
AnimalWatch       X     
Aplusix       X     
Ask-Elle   X         
ASSISTments           X 
AutoTutor X X     X   
Beetle II     X       
BILAT         X   
BlueJ   X         
CIMEL ITS   X         
CIRCSIM-Tutor X           
Cognitive Constructor           X 
Cognitive Tutor X     X     
Conceptual Helper X           
Cordillera X           
Crystal Island X           
Deep Thought         X   
DeepTutor X           
DM-Tutor         X   
Dr Vicky         X   
Dragoon       X     
EcoLab II X           
Electronix Tutor     X       
eTeacher           X 
FDTutor   X         
FFDC         X   
iList   X         
ILMDA           X 
iStart         X   
Java Sensei   X         
JavaTutor   X         
J-LATTE   X         
KERMIT   X         
Logiocando         X   
MetaTutor X           
NORMIT   X         
Prime Climb       X     
Project Listen         X   
Protus X           
REALP             
Scatterplot Tutor       X     
SE-Coach X           
SHIECC     X       
SmartTutor           X 
SQL-Tutor   X         
T-Algebra       X     
The Incredible Machine         X   
Thermo-Tutor X           
TutorJ           X 
Wayang Outpost       X     
Why2-Atlas X           
ZOSMAT           X 
Category Totals 14 12 3 11 10 8 
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Another consideration is the amount of time developers spend on creating ITS.  Estimates 

have said that it can take anywhere from 100-1000 hours to produce one hour of instruction 

(Heffernan et al., 2006).  The developers of ITS also require extensive knowledge in cognitive 

science and the domains in order to produce an effective tutoring system.  To alleviate the need 

for such highly-skilled people, authoring tools have been developed.  These tools can be used by 

people who do not have a high level of computer expertise and have been shown to reduce the 

amount of time needed to produce one hour of content to 30-40 hours (Heffernan et al., 2006).   

What level of understanding is the goal? Many ITS that were reviewed had mastery 

learning as its goal, but a few did not.  Mastery learning is almost a natural consequence of ITS 

as the intelligent part of the tutoring systems aims to adapt to the learner.  The tutoring system 

takes information it collects via the student model and makes decisions on whether or not certain 

knowledge components have been mastered (the mastery levels are dependent on the system).  

This can be accomplished since each knowledge component and its relations to other knowledge 

components can be mapped to problems presented by the tutoring system.  This process of 

tagging problems with knowledge components has been called a Q-matrix (Birenbaum et al., 

1993), transfer model (Feng & Heffernan, 2006), cognitive model (Feng & Heffernan 2006), and 

ontology (Melis et al., 2009).  By tagging problems with knowledge components, the student 

model can estimate the likelihood that knowledge components have been mastered based on how 

a student solves a problem.  While some ITS use probabilities to estimate the student’s 

knowledge, other ITS simplify this process by setting a specific number of problems that need to 

be solved correctly before attaining mastery (Beck & Gong, 2013).   

ActiveMath, as an example, is an intelligent tutoring system that focuses on mastery 

learning.  It is unique in that it assesses mastery within the context of the first three levels of 
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Bloom’s taxonomy: knowledge, comprehension, and application (Melis et al., 2001).  Mastery of 

each knowledge component is then defined along each of these levels.  If a student reads a text, 

then the knowledge mastery for that knowledge component is increased.  If a student follows a 

worked-out example, then the comprehension mastery for the knowledge component is 

increased.  Finally, if a student successfully solves an exercise, then the application mastery can 

be updated for that knowledge component.   

While ActiveMath and others focus on teaching to the lower levels of Bloom’s 

Taxonomy, some ITS shift the focus on the higher levels.  AutoTutor (D’Mello & Graesser, 

2012; Graesser, VanLehn, Rose, Jordan, & Harter, 2001) and CIRCSIM-Tutor (Woo et al., 2006) 

use simulated tutor dialogue to help students develop their reasoning skills in making judgments 

and inferences in problem-solving situations.  Due to the nature of the higher levels of Bloom’s 

Taxonomy, it seems that natural language dialogue may be better to facilitate the acquisition of 

those skills.  Assessing whether a student is capable of synthesizing information is difficult to do 

when the only assessment tools available are multiple-choice questions.  There was no research 

found that addresses this hypothesis though since most ITS do not seem to separate knowledge 

acquisition into any kind of taxonomy.  It would be beneficial to test this hypothesis to see if 

different tutoring tactics are more conducive to teaching certain levels of knowledge.  For 

example, basic mathematical skills may require a skill-and-drill approach to gain fluency 

whereas some advanced mathematical techniques would need a more conceptual approach and 

would benefit from talking it out with a tutor.   

Going one step beyond mastery, Reading Tutor (Lalle, Mostow, Luengo, & Guin, 2013) 

and Wayang Outpost (Arroyo, Woolf, Cooper, Burleson, & Muldner, 2011) focus on developing 

oral reading fluency and math fluency.  The distinction between mastery and fluency is that 
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mastery means that a student can reliably demonstrate a given skill whereas fluency adds a time 

component to it.  Students must not only reliably demonstrate a skill but do so quickly.  The 

reasoning for focusing on fluency is so that students can have reduced cognitive load when being 

presented with more difficult items.   

Some ITS do not support mastery learning.  Mastery learning assumes that students can 

freely interact with the system without time constraints in regard to how long it takes a student to 

master content.  Since students are generally using ITS in the classroom, not all ITS can be self-

paced.  This means that some ITS are not concerned with presenting content adapted to the 

student, but instead they follow lesson plans created by teachers.  ANDES is a physics tutor that 

exemplifies this point (VanLehn et al., 2005).  Students are presented with a set of physics 

problems that are assigned by the teacher.  ANDES’ tutoring model is still intelligent in that 

hints are sequenced and feedback is adapted to the student, but it does not have a student model 

that utilizes the information collected about what the student knows.  Therefore, its goal is not 

mastery learning but to be more of an intelligent homework aide.   

One tutor falls in between supporting and not supporting mastery learning.  Cognitive 

Tutor uses a modified mastery learning approach to fit the constraints of a classroom (Corbett, 

McLaughlin, & Scarpinatto, 2000; Pane, Griffin, McCaffrey, & Karam, 2014).  Students have 

the opportunity to achieve mastery by solving problems and are considered to have graduated 

from that section if they do so.  However, some students require more time to master and may 

fall behind the class if they are expected to reach mastery levels.  As a compromise, Cognitive 

Tutor sets a maximum number of problems that students can attempt to solve for a given topic.  

If the student reaches the maximum number of problems without attaining mastery levels, then 

they move on to the next topic and are considered to have been promoted.  This modification 
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allows the tutor to use mastery learning in a classroom without hindering the overall progression 

of the course.   

What is used to create the expert? Developers of ITS have used many techniques of 

formalizing the knowledge, rules, and problem-solving strategies.  Some ITS use subject-matter 

experts who create and organize the domain.  ANDES (Schulze, 2000) had three physics 

professors who played an integral part as the tutoring system was developed.  They used their 

expert knowledge to structure the domain and outline the feedback they would give to students.  

CIRCSIM-Tutor (Evens et al., 1997; Woo, Evens, Michael, & Rovick, 1991) also used a subject-

matter expert to structure its domain with the added component that tutor dialogue was also 

based off transcripts of the subject-matter expert tutoring students.   

Another approach to creating the expert is by using standardized test questions.  Wayang 

Outpost (Arroyo et al., 2003) uses released questions from the SAT as its domain base.  

ASSISTments (Razzaq et al., 2005) did something similar by using questions that were released 

from a state standardized test to build the content base.  Then, subject-matter experts annotated 

the questions to add tutoring.  In a similar vein of using non-subject-matter experts to create the 

content, Reading Tutor used children’s reading magazines to have age-appropriate content for 

students (Mostow & Aist, 1999).   

Regardless of who or what is used to create the expert, domain models can be categorized 

into two prominent groups (i.e., model-tracing tutors or constraint-based tutors) with the rest 

belonging in an “other” group.  The way the domain is constructed has implications for the 

student model as well and so each group will be discussed in more detail in the Student Model 

section.   
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The Tutoring Model 

 What informs tutoring strategies and tactics? Just like any human tutor, ITS are 

designed with philosophical underpinnings that explain why tutors tutor the way they do.  This 

review question will be answered by looking at the strategies and tactics of ITS separately.  The 

strategies here are defined as the philosophical paradigms that dictate the overall goals of a 

system.  The tactics will describe the specific tutoring moves a system makes as it interacts with 

the student.   

 Strategies. Constructivism seems to be the paradigm of choice for ITS with eight of the 

10 example systems using some form of a constructivist theory.  While elements of other 

approaches are present in ITS like skill-and-drill and spaced repetition (Heffernan & Heffernan, 

2014), the nature of a tutoring interaction lends itself to constructivism.  A tutor is not a teacher.  

Their goal is not to instruct a student in new knowledge—a position explicitly stated by several ITS 

(Conati, Gertner, & VanLehn, 2002; Mitrovic, 1997).  The instruction that is presented is generally 

remedial or to fill in knowledge gaps.  To illustrate this point, consider ActiveMath.  Andrews, 

Fleisher, and Liang (2010) described their constructivist approach as helping students “gain 

understanding and knowledge through their own experience and reflections on their own 

experiences” (p.  319).  This approach informed the design of the system.  Students are allowed 

relative freedom in navigating the course and setting goals (Melis et al., 2001).  This interactivity 

provides the support a student needs while leaving room for the student to choose their own 

learning goals, context, and learning scenario.  Once the student defines these parameters, 

ActiveMath generates a personalized e-book that the student can extend at any time if they feel 

there is additional knowledge they require (Melis et al., 2007). 
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 Another system that uses a constructivist approach is AutoTutor.  AutoTutor uses mixed-

initiative dialogue to help scaffold students in explaining their reasoning, especially in the 

domain of physics (Nye, Graesser, & Hu, 2014).  For example, if a student seems to be 

struggling with the concept of acceleration, AutoTutor may ask a question relating to 

acceleration within the context of the current problem.  The student responds to the question by 

explaining their reasoning from which AutoTutor decides if the student has an accurate 

understanding of acceleration.  If the perception is inaccurate, AutoTutor can ask additional 

questions to draw out the student’s knowledge or provide hints and instruction.  This type of 

interactivity puts the burden on the student to be responsible for their own knowledge.   

 Coached problem solving. This strategy is a sub-strategy of constructivism.  ANDES 

implements this strategy in its tutoring design.  VanLehn (1996) defined coached problem 

solving as the process a tutor and student go through to solve problems.  Calling it a “kind of 

cognitive apprenticeship” (p.  29), VanLehn described the interaction as the coach (tutor) taking 

the lead and modeling cognitive processes for the student.  Eventually, the coach fades its 

scaffolding until the student is solving problems on his own.  In instances where the student 

requires help from the coach, ANDES provides hints that encourage the student to independently 

solve problems without explaining exactly which steps to take.   

 CIRCSIM-Tutor also uses a coached problem-solving approach for part of its instruction 

(Woo et al., 2006).  Students are asked to fill out a prediction table that predicts physiological 

responses based on causal relationships.  Once a student is done filling out the prediction table, 

the tutor and student engage in natural language dialogue to correct misunderstandings.   

 Zone of proximal development. Another strategy commonly cited, if not explicitly then 

certainly implied, is Vygotsky’s zone of proximal development (ZPD).  Here, tutoring systems 
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attempt to tailor problems to the student in such a way that each problem is just difficult enough 

that the student can’t easily solve it but is still capable of doing it with help (Arroyo et al., 2003; 

Mitrovic, Martin, & Mayo, 2002; Wixon et al., 2014).  Mastery learning and the ZPD seem to be 

intertwined in the design of ITS as the system tailors problems to the student in a way that the 

student remains engaged and challenged.   

 ACT-R. A prominent constructivist theory, ACT-R is used as a basis for several tutors to 

conceptualize knowledge (Koedinger & Anderson, 1998; Mitrovic, 1997).  In making a 

distinction between declarative (i.e., factual knowledge) and procedural knowledge (i.e., 

application of declarative knowledge in performing a skill), ITS can make better tutoring 

decisions when providing remedial instruction.  For example, if it is determined that a student is 

making errors in performing a mathematical formula (procedural knowledge), the system can 

determine if the student knows and understands the formula enough (declarative knowledge).  If 

declarative knowledge is missing, those gaps can be filled in.   

 Learning from performance errors. SQL-Tutor expands the ACT-R theory to including 

learning from performance errors.  This expansion is based off Ohlsson’s theory (1996) where 

learning from errors involves two parts: error recognition and error correction.  When someone 

does not have enough declarative knowledge to recognize an error, then that information needs 

to be taught to the student.  This approach of learning from errors is the basis for constraint-

based tutors (described in the Student Model section).   

 Natural language dialogue. Two of the 10 tutors used natural language dialogue as the 

main process of tutoring.  This means that additional theories need to be used to guide the 

dialogue moves the tutor makes.  AutoTutor and CIRCSIM-Tutor take different approaches to 

this.   
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AutoTutor uses explanation-based theories (Jackson, Mathews, Link, Olney, & Graesser, 

2003), to draw out student knowledge as it requires them explain their reasoning.  AutoTutor 

allows mixed-initiative dialogue meaning the student can ask questions and change the tutoring 

agenda based on their expressed needs (Person et al., 2000).  This collaborative approach 

between tutor and student in constructing an answer belies the fact that AutoTutor does not 

actually use any sophisticated tutoring strategies (e.g., Socratic dialogue) like expert tutors use 

for dialogue (Rajan et al., 2001).  Rather, AutoTutor relies on the tutoring strategies of unskilled 

tutors.  The reasoning behind this is based on a previous meta-analysis in which tutor experience 

did not significantly predict learning gains (Cohen, J.  Kulik, & C.  Kulik, 1982; Graesser, 

Wiemer-Hastings, Wiemer-Hastings, Kreuz, & Tutoring Research Group, 1999).  This finding 

led the authors of AutoTutor to hypothesize that, perhaps, it is not the sophisticated tutoring 

strategies or expertise of the tutor that matters, but rather the conversational properties of tutorial 

dialogue that are responsible for learning (Graesser et al., 2003).   

In contrast to AutoTutor, CIRCSIM-Tutor does use sophisticated tutoring strategies for 

its dialogue approach (Woo et al., 2006).  Relying on Socratic teaching, CIRCSIM-Tutor 

engages the student with questions and assertions that help the student develop qualitative 

reasoning skills.  However, CIRCSIM-Tutor does not handle mixed-initiative dialogue well, 

preferring to restrict student responses by almost always ending a dialogue move with an 

imperative or question (Freedman, 1997).   

 Educational gaming and multimedia learning theory. Relying on educational gaming and 

multimedia to keep students engaged and to promote learning, Wayang Outpost is unique among 

the 10 in that it is an educational game.  Set in at a research station in the Borneo Rainforest, 
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students receive assistance in solving SAT math problems and then go on adventures where 

similar math skills are contextualized within the game story (Wixon et al., 2014).   

 Non-constructivist approaches. Reading Tutor deviates from constructivist approaches.  

Reading Tutor is an ITS that develops reading fluency in first through fourth graders (Beck et al., 

2003).  Unlike the tutors that teach physics and mathematics, where conceptual knowledge plays 

a larger role, Reading Tutor requires more of a skill-and-drill approach for the intended 

audience—first through fourth graders.  Mostow, Beck, Chalasani, Cuneo, and Jia (2002) 

explicitly stated that they “did not attempt to model the Reading Tutor’s decision processes” (p.  

5).  Instead, they relied on expert reading interventions to assist students (Mostow & Aist, 1999; 

Zhang et al., 2008).  This decision could suggest a reason for the predominant constructivist 

approach in other ITS.  Students who have less knowledge benefit from more direct instruction 

and repeated practice opportunities.  If this is true, it has implications for the design of ITS—the 

target audience should dictate which strategy to use. 

 If most of the 10 ITS are influenced by constructivism, it becomes difficult to tell what an 

intelligent tutoring system would look like if a different learning theory were used.  This 

constraint on the basic design of a tutor prevents the exploration of new designs based on 

different learning theories.  However, this constraint may also suggest that a constructivist 

strategy is what makes a tutoring system intelligent.  After all, many direct instruction programs 

are used already by students.  Take the popular, language-learning app, Duolingo, as an example.  

Gamification is used, content is adaptive, mastery criteria is used, feedback is given, and a 

student model is created and displayed (Duolingo, n.d.).  Can Duolingo and similar direct-

instruction programs be considered intelligent tutoring systems?  Certainly, they can be 

considered intelligent systems, but do they meet the tutoring criterion?  Perhaps the very nature 
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of tutoring requires a constructivist strategy.  The tactics that are discussed next seem to indicate 

that a tutoring interaction is more than just a transfer of knowledge.   

 Tactics. Regardless of the strategies implemented by the tutoring system, many follow 

the same patterns of tutoring moves, most notably that of feedback and hint sequences.  Some of 

the more unique tactics used include scaffolding and fading of feedback, worked-out examples 

(both correct and erroneous), and natural language dialogue used to structure self-explanation.   

 Feedback. One of the key features of intelligent tutoring is being able to give feedback 

that has been adapted to the student.  Feedback can be generally categorized into flag feedback, 

step-based feedback, and answer-based feedback.  Flag feedback is the simplest form of 

feedback.  When implementing it, ITS flag an answer as simply right or wrong.  ANDES 

(VanLehn et al., 2005) accomplishes this by coloring an answer or steps of an answer red if it is 

incorrect and green if it is correct.  This does not provide much information to the student though 

since a student does not know why the answer was flagged.  ActiveMath (Melis, Goguadze, 

Libbrecht, & Ullrich, 2009), Cognitive Tutor (Corbett et al., 2000), Reading Tutor (Mostow & 

Aist, 1999), SQL-Tutor (Mitrovic & Ohlsson, 1999), and Wayang Outpost (Arroyo, Woolf, et 

al., 2010) also mentioned some form of flag feedback similar to ANDES.  Going a step further, 

step-based feedback increases the level of granularity by looking at the process a student goes 

through as he answers a question.  From there, a step can be marked right or wrong and feedback 

can be given based on what is wrong.  ANDES (VanLehn et al., 2005) does this by flagging a 

step right or wrong.  A student can then ask for help which ANDES will provide—at times 

supplying general hints and at other times giving more specific feedback and remedial 

instruction.  Finally, answer-based feedback gives feedback once a student submits an answer 

and not at all during the process of answering a question.  ASSISTments (Koedinger, 
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McLaughlin, & Heffernan, 2010) demonstrates answer-based feedback.  Once a student solves a 

problem, he inputs his answer.  If the answer is correct, the student moves on.  If the answer is 

incorrect, then the student goes through a scaffolded sequence that leads the student to the 

conclusion.   

 Some tutors also give feedback to students that is not based on student performance but 

rather desired metacognitive behaviors (Arroyo, Mehranian, & Woolf 2010; Roll, Aleven, 

McLaren, & Koedinger, 2011).  Cognitive Tutor developed a standalone tutor called Help Tutor 

that assists students in developing ideal help-seeking behaviors (Roll et al., 2011).  Wayang 

Outpost introduced pedagogical agents that give feedback that also promotes help-seeking 

behaviors but also promotes affective outcomes as well like helping students believe that 

intelligence is malleable (Arroyo, Mehranian, et al., 2010).   

 Hint sequences. Hint sequences generally follow the same pattern in each ITS, but the 

number of hints available varies from system to system.  As an example, ANDES gives at first a 

general hint is given called a pointer hint (VanLehn et al., 2005).  This hint points to what the 

system identifies as a potential problem in an answer or step without giving further instruction or 

explicitly saying what is wrong.  If the student is still confused, he can ask for another hint.  This 

hint is more specific and is called a teaching hint (VanLehn et al., 2005).  This will provide 

further instruction.  Lastly, the final hint in the sequence is called the bottom-out hint (Razzaq & 

Heffernan, 2006; VanLehn et al., 2005) and is a common, last hint in ITS (Aleven & Koedinger, 

2001; Goguadze & Melis, 2008; Graesser, Hu, et al., 2001; Zhou et al., 1999).  This gives the 

answer to the student, which can serve as a worked-example for some students.  For other 

students, this prevents an endless, frustrating loop where the student does not have the requisite 
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knowledge components to answer the question successfully.  The tutor can move on and adapt 

the instruction to address the student’s knowledge gaps if needed.   

 Natural Language Dialogue. In an effort to more completely mimic human tutors, some 

ITS have implemented natural language processing.  This dialogue, exemplified in AutoTutor 

(Nye et al., 2014), allows students to converse with a pedagogical agent.  The agent can then 

respond as a tutor would.  If AutoTutor detects knowledge gaps, it can fill those in.  

Alternatively, AutoTutor can have a student explain their thought process.  This self-explanation 

has been demonstrated in other ITS and has proven effective in helping students learn (Gertner & 

VanLehn, 2000).   

 AutoTutor has myriad dialogue moves available, but follows the general framework of 

first, asking a question; second, the student answers the questions; third, the tutor gives short, 

immediate feedback on the quality of the answer; fourth, the tutor and the student collaboratively 

work together to improve the quality of the answer; and, lastly, the tutor assesses the student’s 

understanding (Graesser et al., 1999).  This framework is based on an analysis of nearly 100 

hours of naturalistic tutoring sessions.  In later development, the fifth step was dropped since it 

produced inconsistent student responses (Person, Graesser, Kreuz, & Pomeroy, 2003).   

 Scaffolding. The idea behind scaffolding is to remove assistance gradually as a student 

gains proficiency.  In ITS, scaffolding takes the form of help from the tutor.  While the ITS wean 

the students off the assistance, what is interesting to note is the timing of the scaffolding.  

Scaffolding can occur before, during, or after a problem.   

 Reading Tutor is an example of providing assistance before a problem (Beck et al., 

2003).  The Reading Tutor analyzes the words presented before a student starts reading.  If it 

determines that some of the words would be exceptionally difficulty to the student (e.g., first 
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encounter of the word, previous poor performance), then it will assist the student by doing 

something like saying the word aloud.  Beck et al., (2003) stated the rationale for this decision.  

If a student practices saying a word incorrectly, it will be more difficult to fix the pronunciation 

later—hence the preemptive assistance.   

Another example, from Schulze et al., (2000), shows ANDES providing unsolicited help 

during a problem.  In this case, the student model determined that the student does not 

understand a particular physics concept.  A mini-lesson is then presented to the student to fill in 

the knowledge gap.  ActiveMath (Melis & Andres, 2005) also suggests instructional intervention 

to a student mid-lesson.  As a student is solving a math problem, if the student model determines 

there are missing knowledge components, it can detect if the content had been reviewed by the 

student or not.  It can even detect if the student just skipped over a small part of the lesson.  If 

ActiveMath detects this, it will suggest revisiting the material.  

 After student performance is measured, some ITS will give feedback at the end without 

any help in between.  ASSISTments (Razzaq, Heffernan, & Lindeman, 2007) conducted an 

experiment to determine what level of tutor interaction is best.  There were three conditions: 

scaffolding + hints, hints on demand, and delayed feedback.  The results showed that those 

students with less knowledge benefited more from scaffolding + hints.  Those students who had 

more knowledge (honors students) benefited more from the delayed feedback setting.  This 

demonstrates that a one-size-fits-all to teaching does not work with all students.  That leads to 

the next tactic: adaptivity.   

 Adaptivity. One of the main advantages of one-on-one tutoring is being able to adapt to 

the student’s needs in real time.  ITS accomplish this by the wealth of data they collect about a 

student.  From these data, a system infers what the student knows and can adapt the presentation 
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of problems to a student.  The mastery level inferred from the data influences the number of 

problems presented as well as the difficulty (Ullrich, 2003). 

 Spaced Practice. To promote retention, ASSISTments developed a system that assesses 

learning on a spaced schedule of 7, 14, 28, and 60 days after a student initially masters a 

knowledge component (Heffernan & Heffernan, 2014).  If a student fails their reassessment, they 

are assigned a relearning activity and the schedule for spaced practice is reset.  

 Anti-gaming Tactics. Some students will disengage with the learning process and behave 

in a way that minimizes their effort and maximizes their progress with the tutor.  This gaming 

behavior is problematic since the student is not learning the material. Some tutors have attempted 

to address this issue through various tutor interventions.  ANDES encourages good behaviors by 

displaying a score on the screen (VanLehn, Van De Sande, Shelby, & Gershmann, 2010).  The 

score decreases when students use bad physics problem-solving strategies or engage in gaming 

behaviors.   

Cognitive Tutor’s developers also addressed the issue by introducing a pedagogical agent 

in the form of an animated dog called Scooter the Tutor (Baker et al., 2006).  Scooter promotes 

non-gaming behavior by looking happy and giving positive remarks when a student is behaving 

properly.  But, if Scooter detects the student is gaming the system, he will look progressively 

more upset until he is displaying anger.  This emotional response is meant to trigger social norms 

in the student so that the student no longer games.  Scooter will also give supplementary 

exercises to the student when gaming is detected so that the student has another opportunity to 

learn the material. Unfortunately, it seems that as anti-gaming measures are introduced, students 

will find new ways of gaming the system (Baker et al., 2006).  While gaming is not a common 
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behavior, many students do engage in it and thought needs to be put into the design of the ITS to 

prevent gaming. 

The Student Model 

 How is the student model created? The goal of the student model is to map what a 

student knows by inferring student knowledge from student performance (Beck & Chang, 2007).  

This process, called knowledge tracing, is quite complex.  There are popular techniques used to 

perform the knowledge tracing, but each system seems to adapt existing techniques to meet their 

system’s needs and capabilities.  Additionally, the underlying tutoring strategy seems to dictate 

modeling decisions, like whether or not to include forgetting as a variable in the model.  

Regardless of the differences in each system, the student models are classifiable in four 

categories: model tracing tutors, constraint-based tutors, example tracing tutors, and effort-based 

tutors.  These categories answer the question of how a student model is constructed. 

 Model tracing tutors. Of the 10 systems, three were model-tracing tutors.  Kodaganallur, 

Weitz, and Rosenthal (2005) described model-tracing tutors (MTT) as being process-centric.  

This means that the tutoring system attempts to infer the process or path that a student took to 

reach a solution.  Where it detects errors in this path, remediation is provided.  This is possible 

due to the domain knowledge being broken down into a series of production rules.  Kodaganallur 

et al. (2005) identified two sets of rules: expert rules and buggy rules.  Expert rules denote the 

solution path an expert would take to solve a problem.  These rules are further broken down into 

planning rules which represent procedural knowledge and operator rules which represent 

declarative knowledge.  Overall, these rules state that IF condition X is true, THEN do this thing.  

If the student did that thing, then the production rule is satisfied.  Buggy rules represent the 

misconceptions a student could have.  They are formalized the same way, it just demonstrates a 
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misapplication of knowledge in the THEN clause.  So, IF condition X is true, THEN do this 

incorrect thing.   

Model-tracing tutors have a model tracer that will trace the student’s solution path by 

executing a series of rules that eventually lead to the solution the student inputs, hence the name 

model tracing.  If the model tracer can reach the same solution, then it can be said to have 

successfully inferred the student’s process.  If the rule series includes buggy rules, then the tutor 

provides remedial instruction based on the knowledge component that was violated by the 

misconception.   

 Constraint-based tutors. Of the 10 systems, one was a constraint-based tutor and it was 

the first of its kind (Mitrovic, 2010).  In contrast to MTT, constraint-based tutors (CBT) are 

considered product-centric (Kodaganallur et al., 2005).  Rather than focusing on the process a 

student uses to identify buggy knowledge, CBT use the student’s solution to identify 

misconceptions.  Instead of identifying a series of rules that create a solution path, CBT have 

constraints.  These constraints set the conditions that must be satisfied for a solution to be 

correct.  In this case, the process that led to the solution is unimportant.  Constraints can be 

formalized as an ordered pair <Cr, Cs>.  Cr stands for the relevance condition (the IF-statement) 

and Cs is the satisfaction condition (the THEN-statement).  That is, the relevance condition 

describes when the constraint should be applied, and the satisfaction condition describes another 

condition that should be true for any correct solution that meets Cr.  Like production rules, 

constraints are formalized in IF-THEN clauses.  The difference being that constraints say that IF 

condition X is true, THEN condition Y better also be true (rather than stating what needs to be 

done).  Constraint-based tutors detect student misconceptions when a relevance condition is true, 
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but the satisfaction condition is not.  From there, CBT can provide remediation based on the 

violated constraint.   

 Example-tracing tutors. Unlike MTT or CBT, example-tracing tutors (ETT) are not 

rules-based and are focused on a single problem rather than an entire domain.  The 

ASSISTments system is an example of an ETT (Mendicino, Razzaq, & Heffernan, 2009).  

Within this system, a transfer model is created.  This transfer model is a mapping of knowledge 

components to problems and scaffolding questions (Feng & Heffernan, 2006).  While this may 

seem similar to MTT and CBT, the difference is that there are no rules or constraints associated 

with each knowledge component.  Rather, ASSISTments tracks how many times a knowledge 

component has been applied to a question.  Using this information, ASSISTments can infer 

mastery of knowledge components based on the student answering questions correctly.  The 

scaffolding and hints provided in the system give remediation to the student if they answer the 

question incorrectly.   

 Effort-based tutors. Wayang Outpost pursued a unique route for its student model.  

Noting that typical knowledge tracing methods focus on performance in terms of incorrect 

answers and do not take into consideration help requests or timing, Wayang Outpost’s 

developers created a new model that valued effort over performance (Arroyo, Mehranian, et al., 

2010).  Based on the number of hints requested, the number of attempts to solve a problem, and 

the time it took to solve a problem, Wayang Outpost can discern between behaviors that relate to 

student engagement in addition to behaviors related to skill mastery.  For example, this model 

could detect when a student demonstrated mastery without much effort.  In response, the tutor 

can increase the desired problem difficulty and maybe show the student’s learning progress.  

Another example could be that the student is avoiding hints but trying hard.  In that case, 
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Wayang Outpost can respond by reducing the problem difficulty and maybe offering hints on the 

next incorrect answer. 

 Other methods. In ill-defined domains, it seems that knowledge tracing is not as simple 

as creating a knowledge map and then tracing student performance against the mapping.  

Reading Tutor identifies with this hardship and used a different method of creating a student 

model.  Rather than creating and relying on expert solution paths, Reading Tutor’s developers 

took an inductive approach (Beck et al., 2003).  They determined which variables predict student 

knowledge at a coarse level—reading latency (pauses between words) and help requests.  They 

then used this information to let the tutor model know when to intervene (e.g., providing 

preemptive assistance).   

 What issues are there regarding the development of the student model? Several 

issues surround the construction of a student model.  First, the developers of ANDES described 

an assignment of credit/blame problem (Conati, Gertner, & VanLehn, 2002).  This problem 

describes the difficulty of ascertaining the amount of credit or blame should be assigned to 

solution.  If a student answers a question incorrectly and several knowledge components were 

found to be missing, how much blame does each component receive for the student answering 

the question incorrectly?  In other words, by how much is the mastery level of that knowledge 

component reduced?  The same holds true when a student identifies a correct solution—how 

much credit will you give to each knowledge component present in the problem?  This is 

especially problematic when students are not required to show their work and multiple solution 

paths exist.   

 A second problem is the identifiability issue.  Beck and Change (2007) demonstrated this 

issue by creating separate student models that all predict with similar accuracy student 
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performance.  The assumptions behind these models are wildly different.   One model predicted 

that a student would need 24 practice opportunities to master a knowledge component whereas 

another model predicted 32 practice opportunities.  If both accurately predict student 

performance, which model should be used?  This identifiability issue has further implications for 

tutoring decisions since some tutoring moves are dependent on estimates of student knowledge 

(e.g., presenting remedial instruction on missing knowledge components).   

 A third problem involves ill-defined domains and the restriction of input.  One of the 

reasons Reading Tutor had difficulties with its student model is that reading fluency isn’t clearly 

defined as a domain and students were restricted in which input could be accepted (Beck, Jia, & 

Mostow, 2003).  Student models that have been used in language learning have been able to rely 

on typed input.  However, Reading Tutor is aimed at first through fourth graders who cannot 

type.  And so, Reading Tutor had to rely on different data to assess student performance. 

 A fourth problem arises when ITS use standardized questions as content.  Two of the 10 

systems relied on these types of questions for their content.  Wayang Outpost described the 

problem in more detail (Arroyo, Beal, Murray, Walles, & Woolf, 2004).  First, there is no clear 

idea of what the problem difficulty will be on future versions of the SAT nor which skills will be 

implemented.  Second, the skills that are used are not used in more than a few problems, which 

makes estimating student knowledge difficult.  This takes some control over the domain model 

from Wayang Outpost which could explain why Wayang Outpost shifted from a traditional 

knowledge tracing model to one that focuses more on effort.   

 A final problem that was identified concerns the philosophical question, “What level of 

intelligence is necessary for ITS?” AutoTutor’s developers have argued that since real tutors 

have a hard time gauging student understanding but can produce significant learning gains, then 
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it would be reasonable to expect AutoTutor to perform reasonably well given a shallow 

understanding of student knowledge (Graesser et al., 1999).  SQL-Tutor’s developers shared a 

similar thought stating that “if the goal is to model student’s knowledge completely and 

precisely, student modeling is bound to be intractable,” (Mitrovic, 1998, p. 1).  Echoing the 

developers of AutoTutor, SQL-Tutor’s developers say that human tutors have “very loose 

models of their learners, and yet are highly effective in what they do,” (Mitrovic, 1998, p. 1).   

 What data is collected? When considering that millions of student interactions can be 

logged by an intelligent tutoring system over the course of a semester, it becomes a critical 

matter to understand which data are useful to collect.  To answer this question, the grain-size of 

data will be discussed.  Following that, different static and dynamic variables that are collected 

will be presented.  Finally, less observable data (engagement and affect) are discussed. 

 Grain-size. Grain-size refers to the granularity of data.  Generally, grain-size can be 

classified as fine-grained or coarse-grained.  Fine-grained data can represent step-based or even 

substep-based data collected by the system.  Examples of such data include timestamps, 

keystrokes, and mouse clicks.  In contrast, coarse-grained data can be represented by answer-

based data.  That is, final solutions, affect over time, and user preferences are examples of 

coarse-grained data.   

 Static variables. Static variables are variables that are not prone to change throughout the 

use of a tutoring system.  Such variables include field of study, learning scenario, goal concepts, 

and preferences (Melis et al., 2001).   

 Dynamic variables. Dynamic variables are variables that are prone to change throughout 

the use of a tutoring system.  For example, knowledge mastery values for knowledge tracing are 

updated as students solve problem and receive assistance (Melis et al., 2001).  Timestamps are 
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another variable that is collected.  Reading Tutor (Joseph, 2005) uses timestamps to detect when 

a student is making hasty responses as a sign of disengagement from assessment questions.  

ActiveMath uses timestamps in a similar manner to estimate if a student is skimming through 

content or skipping it completely (Melis & Andres, 2005).  Additional examples of dynamic 

variables include level of assistance/hints (Koedinger et al., 2010), reading latency (Mostow & 

Aist, 1999), and reading prosody (Mostow & Duong, 2009). 

 Engagement. Engagement is an important part of the student model to measure.  Since 

the tutoring model can present assistance and hints on-demand at times, students who are not 

engaged are more likely to game the system (Joseph, 2005).  Gaming the system can be defined 

as students minimizing their effort to maximize their gain.  Examples of gaming the system 

include repeatedly hitting the help button until a bottom-out hint is provided.  Other forms exist 

depending on the structure of the system.  Those students who game the system do not learn as 

much, although there has been evidence to show that gaming behavior actually helps 

(Ringenberg & VanLehn, 2006).  In these cases, the researchers hypothesize that these students 

use the bottom-out hints as worked examples.   

 Affect. The emotional state of a student can impact his performance when working with a 

tutoring system.  For example, anxiety can inhibit student performance (Ullrich & Libbrecht, 

2008).  Affect-sensitive tutoring systems use a variety of methods to measure affect including 

facial recognition, a pressure sensitive mouse, posture-sensitive chairs, and self-report measures 

(Nye et al., 2014).    

Being able to detect and respond to the affective states of students is a growing trend and 

focus in ITS.  AutoTutor’s work identified the six academic emotions of boredom, frustration, 

confusion, engagement, delight, and surprise (D’Mello et al., 2008).  The emotions of delight and 
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surprise were eventually eliminated since they are not very common in academic settings.  

Cognitive Tutor could identify similar emotions with five affective states being detectable: 

boredom, confusion, engaged concentration, frustration, and “?” which represented everything 

else (Baker et al., 2012).   

The Interface 

 The interfaces of the ITS reviewed can be distinguished by four dichotomous categories: 

(a) web- vs. desktop-based, (b) typed vs. spoken inputs, (c) including a pedagogical agent, (d) 

and being game-based.  Each of these categories will be discussed.  Afterwards, the research 

done on user experience will be addressed.   

Web- vs. desktop-based. In the early 90s, ITS seemed to be primarily desktop-based.  

ANDES (Schulze et al., 2000) is an example of this.  With the rise of the personal computers and 

faster internet connections, there has been a shift from desktop-based ITS to web-based ITS.  ITS 

have taken advantage of this shift to provide intelligent tutoring both in the school and at home.  

ASSISTments provides an example of an ITS used both at home and school (Tvarozek, Kravcik, 

& Bielikova, 2008).  At times, teachers use ASSISTments in the classroom, and, at other times, 

homework is assigned.  This flexibility allows ITS to be accessed anywhere that has the 

necessary system requirements and an internet connection.  This accessibility has implications 

for ITS development.   

First, there are the physical limitations in terms of things like servers and router 

bandwidth.  Care needs to be taken to properly manage databases and data access.  For example, 

Reading Tutor did not develop its reading tutor with a strong student model in mind (Mostow et 

al., 2002).  They collected data and stored it, but several articles described their struggles as they 

attempted to format old data to be interpretable and the adjustments they had to make in 
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collecting data they needed.  Another system described the latency periods between calling info 

from a database and using it to generate student reports (Feng & Heffernan, 2006).  Some of the 

tables required several minutes to generate the reports.  Such latency periods would be 

unacceptable by users today. 

Second, the accessibility can improve development times of content.  Several ITS have 

built web-based authoring tools that simplify the development process (Heffernan et al., 2006; 

Schulze et al., 2000; Goguadze & Tsigler, 2007).  This simplification allows teachers to create 

content catered to their needs.  This crowdsourcing of content development can then be shared 

for others to use.  As was described before, development time is a major hindrance to the 

development of ITS, but web-based solutions (i.e., authoring tools) seem to be helping 

(Heffernan et al., 2006). 

Typed vs. spoken input. Another differentiation between ITS seems to be their capacity 

for typed and spoken input.  ANDES takes a “pencil and paper” approach to their design 

(VanLehn et al., 2005).  This design was used to promote transfer to physics problems outside 

the scope of the system (i.e., actual paper and pencil problems).  In this case, students type their 

solutions step-by-step as if they were solving math problems on paper.  They can even use the 

interface to draw and label diagrams.  However, ANDES doesn’t support verbal input.   

Reading Tutor (Mostow & Aist, 1999) supports only verbal input.  This makes sense 

considering the domain—oral reading fluency.  Their design was based on the assumption that 

non-readers would not be able to write.  So, while students can use a mouse to navigate the 

program and seek help, their input is limited to spoken word excluding some assessment 

questions (Hoppcetal, 2003). 
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In between the two extremes is AutoTutor.  AutoTutor supports both typed input and 

verbal input.  Nye et al., (2014) report comparable performance on these two types of input, but 

with a slight favor for typed input due to errors in speech recognition.  In either case, students 

can input their answers however they want—especially when interacting with the pedagogical 

agent built into AutoTutor, the subject of the next section.   

Including a pedagogical agent. Some ITS have explored the addition of a virtual teacher 

to their system.  This virtual teacher is referred to as a pedagogical agent (PA).  Reading Tutor 

includes a pedagogical agent in the simplest form—a smiley face (Mostow & Aist, 1999).  

AutoTutor goes to the other extreme in terms of sophistication, creating a 3D rendering of a 

virtual teacher capable of expressing emotion and talking with the student (Nye et al., 2014).   

 Reading Tutor’s PA is used to provide feedback to the student.  It has been described as a 

“persona that actively watches and patiently listens” (p.  410).  Feedback and help appears in the 

form of a speech bubble above the PA.  This interactivity is meant to give the students a sense 

that someone is listening to them.   

 AutoTutor’s PA was designed to engage in dialogue with students and to provide 

feedback to the student.  The dialogue encourages self-explanation and metacognitive 

scaffolding (Nye et al., 2014).  Unlike typical feedback in other ITS that used flag feedback or 

textual assistance, AutoTutor’s PA can use spoken feedback with intonation and facial 

expressions to demonstrate disapproval, approval, and other emotions to the student (Craig, 

Graesser, Sullins, & Gholson, 2004; D’Mello et al., 2008, Nye et al., 2014).    

 Some PAs do not focus on giving instruction or performance feedback.  Rather, they help 

the student with metacognitive feedback.  One that was mentioned earlier was Cognitive Tutor’s 

Scooter the Tutor who discouraged students from gaming the system (Baker et al., 2006).  
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Wayang Outpost has a PA that acts more like a learning companion.  A student working at a 

computer is displayed on the screen and can be a boy (Jake) or a girl (Jane) and can represent 

minority races.  Jake and Jane are empathic agents that reflect the emotions of students (Arroyo, 

Woolf, Royer, & Tai, 2009), provide metacognitive or affective feedback, or direct the student to 

use the help button to request further assistance from the system (Cooper et al., 2009). 

User experience. Studies on user experience (UX) have been sparse and mostly 

anecdotal. Of the ITS reviewed, only five had any mention of user experience and, even then, 

those were not thorough studies.  ANDES had the most extensive information regarding what 

students thought about the system.  In Schulze et al. (2000), ANDES’ developers described 

anecdotal reports of students being frustrated by the interface.  ANDES forces students to define 

variables, which, at the beginning, seemed useless and like extra work.  They report that students 

eventually appreciated this constraint after extended use.   

 Another study from ANDES (Schulze et al., 2000) drew two conclusions regarding 

student attitudes.  First, those who used ANDES frequently liked it, but those who did not use it 

as much did not like it.  VanLehn et al. (2005) found that 40-50% of students liked ANDES and 

40-55% of students disliked ANDES.  Second, Schulze et al., (2000) concluded that problem sets 

should include challenging problems to demonstrate the utility of ANDES and justify the 

learning curve.  To help with the learning curve, various instructional materials were created like 

tutorials, manual, and short videos.  Of these, the short videos received positive reviews from the 

students.   

 Aside from the few reports from ANDES, not much research was found about user 

experience.  Surely anecdotal evidence was used in the initial design and subsequent versions, 

but not much has been included in the literature to help the field in this regard.  User experience 
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is important to the development of ITS.  A tutoring system can have impressive learning gains, 

but unless students like working with it, the effectiveness of the tutoring system will remain 

unrealized.  Additionally, it would be difficult to get buy-in from stakeholders (e.g., school 

administration, teachers, and parents) in order to implement ITS in a school if nobody liked the 

design.  Further research, or at least the publication of research already done, needs to become 

more of a priority if ITS are to become more widespread in their use.   

 Cognitive Tutor did focus a lot on UX, but not from the perspective of students.  

Cognitive Tutor had the goal of creating a complete course experience that includes textbooks, 

supplementary materials, and teacher training (Ritter, Anderson, Koedinger, & Corbett, 2007).  

This decision allowed Cognitive Tutor to become a regular part of the classroom experience 

since it was designed with teachers in mind.  Cognitive Tutor has been adopted by teachers 

throughout the country and is used by about 500,000 students regularly every year (Koedinger, 

McLaughlin, & Heffernan, 2010).    

Learning Gains 

 The 2-sigma effect is a well-known problem in AIED.  It comes from an article written 

by Bloom in 1984.  Bloom describes research that attempts to measure the effect sizes of three 

different instructional conditions: (a) conventional instruction, (b) mastery learning, and (c) 

human tutoring.  They found that the tutoring condition performed about two standard deviations 

above the conventional classroom condition.  This means that the average, tutored student 

performed better than 98% of students in the conventional classroom.  Mastery learning also had 

impressive results as the average student here performed better than the conventional classroom 

by about one standard deviation, or better than 84% of students in the conventional classroom.  

The appeal in these data is that students can reach the level of achievement reserved for the top 
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20% of a conventional classroom through innovative teaching practices (i.e., mastery learning).  

While Bloom’s article focused on mastery learning benefits, the 2-sigma effect became a 

benchmark for excellence in AIED.  How can we design instruction to reach that level of student 

performance without the 1:1 tutoring costs?   

 ITS attempt to tackle this problem, not primarily through innovative teaching practices, 

but by providing a computerized tutor to every student.  It would follow that the benchmark for a 

successful computer tutor would be the effect size of a human tutor.  Thus, it becomes necessary 

to address the effect sizes of ITS to see if they are close to achieving the 2-sigma effect.  

However, newer research challenges the notion that human tutors even achieve the 2-sigma 

effect.   

 VanLehn (2011) conducted a meta-analysis to review the relative effectiveness of 

different tutoring scenarios (e.g., human tutoring, computer-based tutoring, or no tutoring).  After 

identifying 99 articles that met inclusionary criteria, VanLehn’s results contradicted Bloom’s 

(1984) findings.  Bloom claimed that human tutoring had an effect size of 2.0.  VanLehn found 

that human tutors were closer to 0.79 when compared to no tutoring.  Additionally, VanLehn 

found that step-based ITS are much closer to approximating human tutors than previously 

thought.  In his review, ITS had an effect size of 0.76 when compared to no tutoring.  This new 

information has the potential to redefine the 2-sigma problem.  If one ignores the two sigma that 

Bloom identified and focuses on the concept of ITS performing as well as human tutors, then it 

seems that some ITS have already reached that goal.  

 While VanLehn’s (2011) study provides a mean effect size for step-based ITS, the 

current paper will provide the range and mean of effect sizes based on each ITS.  Thus, we can 
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see a breakdown of the effectiveness of each tutoring system and whether they have solved the 

redefined 2-sigma problem.   

 Of the 10 ITS reviewed for this paper, only 6 of them had learning gains reported in 

terms of effect sizes.  Figure 1 is a graph showing the reported ranges and averages of the effect 

sizes of the tutors in relation to the benchmarks described above (i.e., average tutor, 0.79 sigma, 

and 2 sigma).  The four that did not (ActiveMath, Aplusix, Reading Tutor, and Wayang Outpost) 

may not have reported learning gains due to the nature of the tutoring system.  ActiveMath’s 

focus is to dynamically create textbooks for the students (Andres et al., 2010).  The textbooks do 

include questions and answers, but due to the system being based on mastery learning, perhaps 

effect sizes are not a good measure of differences in student achievement.  If each child is 

expected to master content to a certain level, this would artificially inflate the effect sizes when 

compared to a non-mastery learning course.  Perhaps another measure to look at in these cases is 

the length of time the students required to gain mastery.  A more efficient and effective system 

ought to help students achieve mastery quicker. 

 
Figure 1. Reported average and ranges of effect sizes for the 10 ITS. 
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 Reading Tutor’s focus is on oral reading fluency.  The data collected in this system (e.g., 

latency (Beck et al., 2003), prosody (Mostow & Duong, 2009)) is somewhat subjective.  While 

they use audio recordings of adults to approximate appropriate answers, there is no standardized, 

objective test that a student can take to measure the optimal latency period between words or the 

best intonation of a sentence.  This ties into reading being an ill-defined domain.  Perhaps the 

reporting of learning gains is too difficult to be practical in ill-defined domains.   

Wayang Outpost did report learning gains, but not in terms of effect sizes.  Instead, 

learning gains were reported as percentage point gains from pre- to posttests.  For example, one 

study found that there was a 27% increase from pre- to posttest (Arroyo, Woolf, & Beal, 2006).  

Students were divided into low/high performing groups using a median split technique based on 

the pre-test.  Low-performers took more advantage of the system functions and demonstrated 

significant improvement from pre- to posttest while high-performers showed no significant 

change.  It seems that the system is more valuable for those who start off at a disadvantage.   

 The remaining tutors boasted sizeable learning gains.  ANDES reported on learning gains 

over a five-year period with effect sizes that ranged from 0.21 to 0.92 (VanLehn et al., 2005).  

Overall, VanLehn et al., reported an average effect size of 0.61.  While this is a bit lower than 

0.79 reported by VanLehn (2011), students would perform better than or as well as 

approximately 73% of students in a conventional classroom.  VanLehn’s effect size for tutors, as 

a comparison, would have students performing better than or as well as approximately 79% 

percent of students.  So, while the effect sizes are considerably different, the practical effect 

(performing better than or as well as other students) seems to be less significant by comparison.   

 Looking at ASSISTments, effect sizes were reported within the range of 0.16 to 0.85 

(Koedinger et al., 2010; Mendicino, et al., 2009; Razzaq & Heffernan, 2006; Razzaq & 
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Heffernan, 2009; Singh et al., 2011).  No average effect size was found in the review for 

ASSISTments.  Applying the same standard (0.79 effect size, 79th percentile) to ASSISTments, 

we find on the low end that ASSISTments did not perform as well when compared to human 

tutors.  With a low effect size of 0.16, students would perform better than or as well as about 

56% percent of students—about average. 

 AutoTutor also had a range of effect sizes reported ranging from .2 to 1.5 standard 

deviations with an average of 0.8 (Graesser, Chipman, Haynes, & Olney, 2005).  These effect 

sizes are gathered from experiments on over 1000 students and almost always were significant.  

CIRCSIM-Tutor, the other dialogue-based tutor of the 10, only had one study that reported 

learning gains (Woo et al., 2006).  A control group where students read from a textbook was 

compared to students who used CIRCSIM-Tutor.  The control group outperformed CIRCSIM-

Tutor in memorizing relationship information with a significant effect size of 1.27 compared to 

CIRCSIM-Tutor’s significant 0.65 effect size for the same portion of the test.  However, 

CIRCSIM-Tutor outperformed the control group in terms of problem-solving and making correct 

predictions with a significant effect size of 1.24 for CIRCSIM-Tutor and 0.48 for the control. 

 The developers of Cognitive Tutor (Corbett et al., 2000) and SQL-Tutor (Martin, 

Koedinger, Mitrovic, & Mathan, 2005) mention another aspect of learning gains that should be 

considered here and that is the amount of time saved.  Cognitive Tutor’s developers found that 

students using the system were able to complete problems in as little as one-third the amount of 

time than a control group of students (Anderson, Corbett, Koedinger, & Pelletier, 1995).  SQL-

Tutor focused on learning curves that put the number of times a knowledge component has been 

used on the x-axis and the error rate on the y-axis.  Plotting this information, the curve 

demonstrates the speed at which the student is learning the material. The developers of SQL-



45 
 

Tutor argue that this measure can be a more accurate way of performing a quantitative 

comparison between disparate systems since the system that has a better learning curve could 

arguably be superior (Martin et al., 2005).  Unfortunately, this isn’t without its own difficulties.  

Martin et al., (2005) identified two problems with this approach.  First, having different 

knowledge components being measured in two systems can skew the learning curves.  For 

example, if one system has a “large number of trivially satisfied rules” (Martin et al., 2005, p. 7) 

that a student population already knows, then these could reduce the error rate for that population 

while another system foregoes similar rules.  The second problem relates to problem difficulty.  

If one system consistently presents more challenging content, then it will naturally have a higher 

error rate than a system that does not.   

 While the learning gains may vary from system to system, it is encouraging to know that 

ITS, overall, are capable of producing learning gains equivalent to their human counterparts 

(VanLehn, 2011).  This information can help ITS become more mainstream and accepted in 

classrooms.  After all, the costs of providing a human tutor for each student would be infeasible 

in our current system.  However, ITS can provide a scalable solution to achieving the learning 

gains of a human tutor.   

Conclusion 

 This paper sought to accomplish three goals.  First, it provided a systematic, comparative 

review of several ITS.  Second, it summarizes problems and solutions presented and solved by 

developers of ITS by consolidating the knowledge of the field into a single review.  Third, it 

provided a unified language from which ITS can be reviewed and understood in the same 

context.   
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 The findings of this review centered on a new 5-Component Framework.  The first 

component, the domain model, showed that most ITS are focused on science, technology, and 

mathematics.  Within these fields, ITS generally have mastery learning as its desired level of 

understanding.  The second component, the tutor model, showed that constructivism is the 

strategy that informs most ITS.  The tactics employed in the ITS stem from this paradigm.  The 

third component, the student model, identified the several ways ITS infer what a student knows.  

It described the variety of data that is collected by an ITS and how it is used to build the student 

model.  The fourth component, the interface, revealed that most ITS are now web-based, but 

vary in their capacity to interact with students.  It also showed that user experience is 

underreported and ought to be included more in the research.  Finally, the fifth component, 

learning gains, demonstrated that ITS are capable of producing learning gains equivalent to a 

human tutor.  However, reporting learning gains does not seem to be a focus of the literature. 

 From this review, we suggest that further research should focus on three things.  First, 

development of ITS for domains other than science, technology, and math.  Exploring ill-defined 

domains could lead the research community in a direction where new models and methodologies 

can be established as we struggle to represent the knowledge of those domains.  Second, 

conducting or publishing more research on user experience.  The research on user experience 

was sparse.  Having more information available can help in the design of ITS.  For example, if 

the research suggests that pedagogical agents add no significant benefit to the user experience or 

learning outcomes, then ITS can be slimmed down as they are excluded.  Not only would this cut 

down on development costs and time, but also more resources can be devoted to the development 

of a data-backed interface that supports learning.  Third, learning gains need to be more fully 

included in the research agenda for publications.  If there is no clear focus on conducting valid 
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experiments that measure the effectiveness of ITS, then it becomes difficult to not only compare 

IT, but also to know what is effective.  This is not to say that the effectiveness of learning gains 

can only be measured in effect sizes.  It is a call to create a standardized way of measuring 

effectiveness so that developers and users of ITS can make comparisons.   

 Following these recommendations may lead to the broader acceptance and 

implementation of ITS in schools.  If developers of ITS can demonstrate that ITS are a viable 

solution for more than science, technology, and math; if they can create ITS that are easy to use 

and visually pleasing; and if they can provide tutoring environments that are effective, 

worthwhile tools; then maybe ITS can be accepted as a regular tool in a classroom.  Thus, ITS 

can provide a 1:1 tutoring experience for every student, equalizing the quality of education 

across the board.    
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ITS CASE STUDIES 

ActiveMath 

ActiveMath is unique among intelligent tutoring systems (ITSs) in that it is a 

mathematics e-textbook that is dynamically created for students.  It has been in development 

since 2000 and has reached several countries in Europe as well as the US.  Information used for 

this section comes from 17 articles ranging from 2001 to 2010.   

Domain Model 

 What content does this ITS cover? ActiveMath is an ITS for mathematics (Andres, 

Fleisher, & Liang, 2010; Melis et al., 2001) with a special focus on the mathematical 

competencies from PISA (e.g., problem solving), an international student assessment (Ullrich, 

2005).  In contrast to many ITS which are created for one language and region, ActiveMath has 

been localized into several languages and regions.  ActiveMath has been used to teach fractions 

in German; differential calculus in German, English, and Spanish; operations research in Russian 

and English; methods of optimization in Russian; statistics and probability in calculus in German 

(Ullrich & Libbrecht, 2008); and computer science in Chinese (Andres et al., 2010). 

 As an e-textbook, ActiveMath allows students to choose the concepts and topics they 

wish to study (Ullrich, 2003).  Based on their choices, ActiveMath will then dynamically create a 

textbook that covers the chosen topics and any necessary prerequisites.  Interactive activities and 

problems are included with the e-textbook.   

 What level of understanding is the goal? ActiveMath started out with mastery learning 

as its goal (Melis et al., 2001; Ullrich, 2003).  However, mastery for each knowledge component 

was computed for three levels of Bloom’s Taxonomy: knowledge, comprehension, and 

application (Melis et al., 2001).  For example, a student who read a portion of the textbook 
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would gain knowledge mastery for that knowledge component.  If a student followed along with 

a worked-out example, they would gain comprehension mastery.  Finally, a student who 

successfully solves exercises would gain application mastery.  ActiveMath was updated to be 

able to adapt to different competency frameworks based on the educational system (Melis, 

Goguadze, Libbrecht, & Ullrich, 2009).   

 What is used to create the expert? The expert knowledge associated with ActiveMath 

is constructed by means of a domain ontology and pedagogical ontology (Melis et al., 2009).  

The domain ontology lists knowledge components and contains information like definitions and 

theorems.  The pedagogical ontology contains information like relationships between knowledge 

components (e.g., prerequisite knowledge) and properties of learning outcomes like difficulty.   

Tutoring Model 

 Strategies. The developers of ActiveMath claim a moderate constructivist approach to 

mathematics teaching (Goguadze & Melis, 2008; Melis, Moormann, Ullrich, & Libbrecht, 2007).  

They describe this approach as one that leaves space for students to make their own choices 

while providing enough guidance.  Students choose their own learning goals, the context, and 

learning scenario.  ActiveMath then reacts to their choices by creating a personalized e-textbook 

for that student, which the student can extend when they see fit.  Interactive exercises are 

incorporated into the content so that the student can engage in problem solving as well (Melis et 

al., 2007).  As such, the developers of ActiveMath consider learning to be “active, self-guided, 

constructive, situated, and a social process” (Melis et al., 2007). 

 Within the moderate constructivist approach, a few notable theories were also used in 

designing the tutor.  The first was Polya’s heuristics (Melis & Ullrich, 2003; Polya, 1957).  

These heuristics were used in ActiveMath to scaffold problem solving and learning.  In tandem 
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with Polya’s approach, ActiveMath implemented Merrill’s Instructional Transaction Theory 

(Melis & Ullrich, 2003; Merrill, 2002;) as a shell for organizing their learnings scenarios.  

ActiveMath’s approach to feedback is informed by a feedback framework known as the 

Interactive Tutoring Feedback model (Goguadze & Melis, 2008; Narciss, 2004).  This 

framework conceptualizes feedback as a way of regulating the learning process to help learners 

acquire the knowledge and skills they need for mastery (Goguadze & Melis, 2008).  As such, 

feedback typically has two ingredients: an evaluation of being correct or incorrect and additional 

information that helps the student complete the exercise (Goguadze & Melis, 2008).  Examples 

of strategies that are used to provide feedback include decomposing the problem into sub-goals, 

presenting a simpler version, and getting rid of feedback altogether and allowing students only to 

make correct steps or failing them on that exercise (Goguadze & Melis, 2008). 

 Tactics. To reify ActiveMath’s approach to tutoring, this section will include the specific 

tactics ActiveMath implements when working with students.   

 Feedback. ActiveMath provides three levels of feedback: flag feedback, local feedback, 

and global feedback.  With flag feedback, answers are marked as right or wrong; no additional 

information is given to the student unless they ask for a hint (Melis et al., 2009).  Local feedback 

(also known as step-based feedback) helps the student through their problem-solving steps.  

Information is given to the student as soon as they complete each step of the process and should 

direct the student towards the correct solution (Melis & Andre, 2005).  Global feedback, on the 

other hand, is less concerned with the problem-solving steps and even the current problem.  

Instead, global feedback helps to scaffold the overall learning process and may be given 

independently of problem-solving steps.  For example, ActiveMath accomplishes this by giving 

feedback to the student to let them know what they ought to do.  If a student incorrectly 
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answered a problem and had skipped reading a section of their e-textbook, then ActiveMath 

would instruct them to review the skipped material.  

 Learning Scenarios. ActiveMath implements six learning scenarios that students can 

choose from to accomplish their learning goals.  These scenarios are called: LearnNew, 

Rehearse, Overview, TrainCompetency, Workbook, and ExamSimulation.  The purpose of each 

scenario is unique, and the pedagogical rules are based on the scenario.  For example, LearnNew 

provides an in-depth course that thoroughly covers all the target material. In contrast, Overview 

broadly covers the chosen content (Ullrich, 2005).  The rules for each scenario can be changed at 

the teacher’s discretion.  This allows for the localization of ActiveMath, not just with the 

language, but also with the teaching styles of different countries.  For example, ActiveMath’s 

developers highlight the difference between American and German teaching styles.  A German 

teaching style might have definitions and theorems come before exercises, whereas an American 

style would present exercises first (Melis et al., 2001). 

 Erroneous Examples. A unique feature of ActiveMath is that erroneous examples were 

included as a pedagogical tactic (Melis, 2005).  Erroneous examples can be classified as 

erroneous results or erroneous worked solutions.  In erroneous worked solutions, all the problem 

steps are shown, and a student can follow the logic.  With erroneous results, only the result is 

given.  As students are working with erroneous examples, students can be asked to either correct 

errors that are already marked or be asked to find the errors and then correct them (Melis, 2005).  

In other situations, the problem may not be presented as erroneous from the start and the student 

must determine if the solution is flawed.   

 Hinting. Like other ITSs, ActiveMath employs hint sequencing which scaffolds hints as 

they are presented to the student (Goguadze & Melis, 2008).  When a student requests a hint, the 
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first hint starts off being more general and increases in specificity as additional hints are 

requested.  No information was found that describes the number of hint levels typical for each 

exercise.  It seems that the nature of hints is dependent on teacher discretion.  Hints are annotated 

into problem-solving steps and are dependent on the problem at hand (Goguadze & Tsigler, 

2007). 

Student Model 

 How is the student model created? ActiveMath seems to be using model tracing and 

knowledge tracing to create the student model.  An example of model tracing in ActiveMath is 

the domain reasoners which follows students’ problem-solving steps through branched decision 

paths.  As a student follows one solution path, ActiveMath can determine where along the path a 

student is and then offer feedback based on its estimation of what the student is trying to 

accomplish (Goguadze, 2009).  Using the same ontology, ActiveMath attaches competency 

values to each knowledge component.  This process is called knowledge tracing.  As a student 

interacts with ActiveMath, the techniques Item Response Theory and Transferable Belief Model 

(Faulhaber & Melis, 2008) are used to update the competencies based on the type of action the 

student performed (e.g., solving a problem vs. reading text) and other metadata (e.g., number of 

hints seen, whether the solution was correct or incorrect) (Melis et al., 2009).   

 What data is collected? To begin with, ActiveMath uses their registration page to collect 

information about the student in order to initialize the student model.  The registration page 

collects information like which learning scenario the student wants to use as well as their goals 

for the session.  Students are also asked to self-assess the amount of information they know 

regarding the concepts related to their learning goal (Melis et al., 2001).  ActiveMath even 

customizes instruction based on the field and education level identified at registration (Ullrich, 
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2003).  For example, an economics major at the university level studying statistics would benefit 

from different examples than a mathematics major studying the same subject.   

 As students interact with ActiveMath, additional information is collected to build the 

student model.  Timestamps are used to denote when a student starts/finishes reading a page, 

starts/finishes an exercise, and when the problem was correctly or incorrectly solved (Melis & 

Andres, 2005).  These data can provide information to the system such as the presentation order 

of material and exercises.  For example, if a student read sections A and C of a concept, but 

skipped section B, ActiveMath would be able to detect that.  Then, if a student incorrectly solves 

a problem that related to information in section B, ActiveMath can suggest to the student to go 

back and more thoroughly read the section that was skipped.   

 ActiveMath even attempts to collect data on and model students’ focus.  To model 

students’ attention, ActiveMath implemented a “poor man’s eyetracker” (Melis & Ullrich, 2002).  

More sophisticated eyetrackers use cameras to track where the eye is looking to track attention.  

ActiveMath’s developers created a simpler version which they believe accomplishes the same 

thing.  The underlying premise is that mouse location can determine where the attention of the 

student is.  However, not all students use the mouse to track where their attention is.   

So ActiveMath developed a method of softly forcing students to keep track with their 

mouse by making the text slightly unreadable (Melis & Ullrich, 2002).  Three variants exist to 

implement the poor man’s eyetracker.  First, elements of the page that do not have the focus of 

the mouse are covered, meaning a black box covers the text.  Second, a fade option exists which 

fades unfocused content to a color that is similar to the background color.  Third, elements on the 

page that do not have focus are zoomed out, meaning that the font size is changed to something 

smaller.  In order to restore the information to a readable state, the student must move their 
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mouse over that content.  Once they do, a timer is started after a latent period to keep track of 

where a student’s focus is.  This information can then be used in the student model since the 

tutor can now determine which specific units the student paid attention to on a single page thus 

helping to inform the tutor how much to increase mastery levels by for the competencies of 

concepts.    

Interface 

 ActiveMath is a web-based (Goguadze, 2009), dynamically created textbook that 

includes content and exercises for students along with explanations, visualizations, and 

interactive exercises (Andres et al., 2010).  Student responses are entered via mouse and 

keyboard, sometimes typing in their answers and solution steps (Goguadze & Melis, 2008) and 

other times choose answers to multiple choice questions.  No research was found that explores 

students’ experience with ActiveMath.   

 

Figure 1. The interface of ActiveMath (Andres et al., 2010). 
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Learning Gains 

 No research was found that describes any learning gains that were measured when using 

ActiveMath.   
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ANDES 

The developers of ANDES claim that ANDES was the first model-tracing tutor for the 

science domain.  Created and used at the US Naval Academy, ANDES was developed to mimic 

paper-and-pencil homework albeit in a digital format so that intelligent tutoring could be given to 

the student (Schulze et al., 2000b).  The developers stated that the goal of ANDES is “to 

demonstrate that intelligent tutoring can be decoupled from content reform and yet still improve 

learning” (VanLehn et al., 2005b, p. 2).  Seventeen articles spanning from 1996-2010 were used 

for this review.   

Domain Model 

 What content does this ITS cover? Andes is an ITS that covers classical Newtonian 

mechanics at the university level (VanLehn, 1996).  Topics covered include static forces, 

translational and rotational kinematics, translational and rotational dynamics, energy, and linear 

and angular momentum (Schulze et al., 2000c).   

 What level of understanding is the goal? ANDES started off with mastery learning as 

its goal, stating that a “student knows a rule when she is able to apply it correctly whenever it is 

required to solve a problem in all possible contexts,” (Conati, Gertner, VanLehn, & Druzdzel, 

1997, p. 235).  However, ANDES is not designed to teach physics all by itself.  It still expects 

students to attend classes and read textbooks.  ANDES is meant to be a homework aid that 

provides practice problems, which are scaffolded with tutoring (Conati, Gertner, & VanLehn, 

2002).   

 Even though mastery was the initial goal of ANDES, as the system evolved and was 

regularly used, there was a discrepancy between what the instructors wanted and how ANDES 

operated (VanLehn, Van De Sande, Shelby, & Gershmann, 2010).  The instructors could not 
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adapt their courses to allow students to progress through the course as they wanted and so the 

adaptive learning process that comes with mastery learning was not used.  Additionally, 

instructors did not use the student model for grading.  As such, the mastery learning model was 

done away with and ANDES provided tutoring on problems chosen by the teacher.   

 What is used to create the expert? The expert for ANDES was created by three physics 

professors who were the domain and pedagogical experts (Conati et al., 1997).  Together, they 

created over 600 physics rules that governed ANDES’ behavior (Schulze et al., 2000b).  

However, these rules do not teach things that experts do since there is no expert consensus on 

how to solve problems (VanLehn et al., 2005b).  Instead, ANDES focuses on a conceptual 

understanding of physics since experts can reach consensus on the major principles needed to 

solve problems.   

 ANDES uses the rules to create a solution graph which produced all the acceptable 

solution paths for a problem since multiple solution paths can exist (Schulze et al., 2000b).  

Doing so required too much time and was too slow as the program was more regularly used.  

Now, ANDES just evaluates the equation by replacing variables with numbers so as to provide 

feedback and hints to students (Shapiro, 2005).   

Tutoring Model 

 Strategies. ANDES uses constructivism as its underlying strategy for teaching students.  

Specifically, coached problem solving is used, which is a kind of cognitive apprenticeship that is 

limited to solving problems while providing adaptive scaffolding (Ringenberg & VanLehn, 

2006; VanLehn, 1996).  Cognitive skill acquisition is viewed as having three phases.  First, 

students must acquire preliminary knowledge.  Second, students learn to apply knowledge by 

applying existing knowledge and learning new knowledge.  Third, students practice until they’ve 
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reached automaticity, in other words, a state where minimal cognitive effort is required to 

perform the task (VanLehn, 1996).   

 The developers of Andes identified the following fundamental principles, which guided 

the design and strategies of the system (Gertner & VanLehn, 2000):  

1. Encouraging students to construct their own knowledge by providing hints that 

require them to reach the solution on their own.   

2. Making the interface as much like paper and pencil to promote transfer.   

3. Giving immediate feedback to maximize the opportunities for learning and minimize 

the amount of time pursuing incorrect solution paths.   

4. Allowing students to perform and skip steps as they please.   

 Tactics. This section will talk about the tutoring tactics of ANDES, specifically its 

feedback, fading, hints, algebra solver, mini-lessons, and encouragement of good behaviors.   

 Feedback. When a student answers a question incorrectly, they are immediately given 

flag feedback which simply flags the problem step as correct or incorrect by marking it green or 

red respectively (VanLehn, 1996).  If a student wants additional help, they click on a “What’s 

Wrong?” button which will give a feedback message to the student.  To determine the feedback 

given to the student, ANDES initially compared the student’s solution state to the solution graph 

(Schulze et al., 2000c).  When a match was found, feedback associated with that state in the 

solution graph could be given to the student.  After discontinuing the practice of generating all 

possible solution states beforehand, ANDES switched to an evaluative model which substituted 

numbers for variables to see if the equation balances.  If it does, then the solution state is marked 

as green, otherwise it is marked as red (VanLehn et al., 2010).   
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 Fading. Two forms of scaffolding were present in ANDES (VanLehn, 1996).  The first, 

which was already discussed, was the flag feedback mechanism which is eventually supposed to 

be faded.  The second form relates to the user interface for qualitative analysis which, too, is 

faded with time.  Here, students are, at first, required to enter qualitative analyses of the 

problems they are given until it is faded where they are no longer required to do so.  This fading 

process is meant to parallel the final phase of a cognitive apprenticeship, or in this case, coached 

problem solving.    

 Hints. As one of the fundamental principles above stated, hints are meant to help the 

student to solve a problem on their own rather than giving them the answer (Conati et al., 1997).  

Hints are sequenced from general to specific until a bottom-out hint is given.  Generally, there 

are three levels of hints (pointing hints, teaching hints, and bottom-out hints; VanLehn et al., 

2005b).  Pointing hints identify where the problem is, teaching hints provides remedial 

instruction, and bottom-out hints provide an answer.  Experiments with this hint sequence have 

included replacing teaching hints with multimedia or natural language dialogue which reportedly 

improved learning in a lab setting (VanLehn et al., 2005b).  Another experiment replaced the 

bottom-out hint with worked examples (Ringenberg & VanLehn, 2006). 

 Students can receive hints in three situations (VanLehn et al., 2005a).  First, when the 

system determines that a student slipped and made an error due to lack of attention, an error 

message pops up.  Second, when the mistake was not a slip, then the flag feedback occurs, and 

students can receive help via the “What’s Wrong?” button.  Last, when a student is stuck and 

does not know what to do next, they may click on the “Next Step” button.  “What’s Wrong?” 

help follows the pattern described in the paragraph above (pointing, teaching, and bottom-out 

hints).  “Next Step” help differs since it is not in response to a student mistake.  The system 
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attempts to recognize the student’s plan via the solution graph and then suggested the next step.  

However, when they compared ANDES’ suggested action path with experts’ suggested paths, a 

discrepancy was found (VanLehn et al., 2010).  In response, ANDES replicated the experts’ plan 

and suggests to the students a particular problem-solving strategy.  From there, ANDES guides 

the student through the steps of that strategy.  Students maintain the freedom to abort the current 

path at any time and do their own thing.   

 Algebra Solver. With ANDES’ focus being on providing a conceptual understanding of 

physics and less on the mathematical problem solving associated with it, the developers provide 

an algebra solver that removes some of the cognitive burden from the student (Schulze et al., 

2000a).  This frees students to focus on the concepts being taught rather than their algebraic 

skills.   

 Mini-lessons. When ANDES determines that a student does not understand a specific 

concept, a short, annotated lesson appears in a new window.  This is regardless of whether a 

student asks for the help.  A student cannot continue working on the current problem until 

they’ve finished the mini-lesson or dismiss the lesson by closing the window (Schulze et al., 

2000b).   

 Encouraging good behaviors. As many ITSs have experienced, students engage in 

gaming behavior with ANDES as well.  Gaming behavior is when students minimize their effort 

to maximize the outcome.  Each tutoring system develops its own way of dealing with gaming 

behaviors.  ANDES’ solution was to display an overall score in the lower right corner (VanLehn 

et al., 2010).  As students solved steps correctly and without help, they would gain points.  

However, if a student engages in gaming behavior or bad physics practices, then they would lose 

points. 



77 
 

Student Model 

 How is the student model created? In the beginning, ANDES used a probabilistic 

framework for its student model (Conati et al., 1997).  This framework accomplished three goals, 

two of which have already been discussed: recognizing the student’s current solution path and 

which goals and actions the student is trying to pursue via model tracing.  The third goal 

provides long-term assessment of the domain knowledge via knowledge tracing.  However, as 

was previously mentioned, ANDES eliminated most of its student model once it was realized 

that the professors using the system did not want it to be used for macro-adaptation 

(individualized sequencing of content; VanLehn et al., 2005b) and mastery learning wasn’t used 

for grading criteria (VanLehn et al., 2010).  Thus, it does not appear that knowledge tracing was 

used.   

 What issues are there regarding the development of the student model? While 

ANDES still had a student model, an issue associated with knowledge tracing was brought up, 

which was how to assign credit or blame to knowledge components and solution paths (Conati et 

al., 2002).  That is, if there are multiple explanations for a student’s solution, then which one 

receives the credit or the blame?  Earlier solutions to this problem included restricting student 

input to one solution path, however the professors involved with the design of ANDES insisted 

that all possible solution paths be viable.  ANDES’ developers addressed this issue by using the 

estimate of what a student knows to influence the prediction of which student paths a student is 

likely to take.  In other words, if a student is more likely to know the skills associated with 

solution path A over solution path B, yet both solution paths could explain the current solution 

state, the tutor can make the decision that path A is more likely since the student knows those 
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skills.  This makes ANDES the first ITS that modeled knowledge tracing, plan recognition, and 

action prediction at the same time (Conati et al., 2002).   

 What data is collected? Since the developers of ANDES abandoned the probabilistic 

portions of its student model (e.g., likeliness of knowing a knowledge component), not much was 

reported in terms of the data ANDES collects.  From what was reported, it seems that ANDES 

attempted to track attention in a modified version of ANDES that focused on self-explanation by 

masking parts of the interface (Conati et al., 2002). 

 As was mentioned previously, ANDES computes a score that is displayed at the bottom 

of the screen.  This score is a weighted sum of data including the proportion of correct entries 

and the number of requests for bottom-out hints (VanLehn et al., 2005b; VanLehn et al., 2010).  

So, while it’s apparent that student data still has uses within the ANDES system, not much is 

reported on the nature of the data collected.   

Interface 

 ANDES’s interface is referred to as the ANDES Workbench and is meant to replicate 

paper and pencil—thus becoming a substitute for traditional homework (VanLehn et al., 2005b).  

The upper right panel of the interface holds variables and their definitions which students are 

required to fill out.  The bottom right panel acts as a sheet of paper with separate lines available 

for the student to type in their problem-solving steps line by line.  The current problem is 

displayed on the left.  The student has various commands at their disposal to do things like 

request for hints, solve algebraic expressions, use a Greek keyboard, and use buttons that assist 

in drawing vectors and free-body diagrams (Schulze et al., 2000a).  While ANDES started as a 

desktop application (VanLehn, 1996), it eventually transitioned fully to the web (VanLehn et al., 

2010).   
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 Initial student reactions to ANDES showed that students were irritated at first for being 

forced to enter and define variables especially on easy problems.  The developers of ANDES 

claim that students eventually adapted and recognized the utility of being forced to define 

variables.  These student responses were anecdotal (Schulze et al., 2000c).  With more 

experiments being done with ANDES, additional student reactions were collected.  One study 

found that those students who used ANDES a lot like it while those who did not use ANDES as 

much were less partial to the system (Schulze et al., 2000b).  The same study also suggested that 

a student should be given a difficult problem when first using the system to help them appreciate 

the functionality of ANDES.  However, students reported that 40-50% of them like the system 

and nearly 70% said ANDES was more effective than other tools at the university (VanLehn et 

al., 2005b).   

 

Figure 1. The interface of the web-based version of ANDES (VanLehn et al., 2010). 
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Learning Gains 

 ANDES conducted several studies which measured the learning gains produced by the 

system.  Each study used students from multiple sections of a physics course and each student 

took the same final exam.  However, each professor assigned different homework problems and 

midterms.  Three professors in this study used ANDES instead of traditional homework.  The 

other professors who took part in the study served as control groups.  The homework problems 

assigned in the control group were similar to the problems assigned in ANDES while the 

midterms and final exam were the same for both treatment and control.  No pretest was 

administered to determine if students had similar knowledge, but the groups were considered 

equal and randomly distributed based on GPA and college major (VanLehn et al., 2010).   

Overall, the developers of ANDES reported having an average effect size of 0.61 

(VanLehn et al., 2010).  Effect sizes for the following years were also reported for the midterms: 

1999: 0.21; 2000: 0.92; 2001: 0.52; 2002: 0.44; 2003: 0.6.  ANDES did not cover much of the 

content of the final exam until 2003 when it covered 70% of the material. Based on the data from 

that year, the developers reported an effect size of 0.25 for all student.  When broken down by 

major, engineering and science students showed no significant difference between treatment and 

control while other majors showed an effect size of 0.5 (VanLehn et al., 2010) 
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Aplusix 

Aplusix is an ITS that was developed and used in various parts of Europe to teach 

Algebra (Chaachoua, Nicaud, Bronner, & Bouhineau, 2004).  It was designed with two goals in 

mind (Hadjerrouit & Bronner, 2014).  First, to create a computer-based environment where 

students can write and transform algebraic expressions much like they do on paper.  Second, to 

provide appropriate feedback to students. 

Domain Model 

 What content does this ITS cover? Aplusix is an ITS that covers several topics within 

Algebra (Nicaud, 1993).  Topics include algebra and numerical calculation, expansion and 

simplification, factorization, solving equations, solving inequalities, solving systems of equations 

and inequalities (Dagami et al., 2011).   

 What level of understanding is the goal? Nothing was found in the articles relating to 

this question.   

 What is used to create the expert? Nothing was found in the articles relating to this 

question.   

Tutoring Model 

 Strategies. The developers of Aplusix adopt a constructivist approach to their tutoring 

(Chaachoua et al., 2004).  Relying on the Theory of Didactical Situations (TDS), they claim that 

“learning occurs by means of interaction between learner and a ‘milieu’” (Hadjerrouit & Meier, 

2010, p. 3433).  The milieu is an educational environment with which students interact.  As 

students perform actions in the milieu, the milieu generates feedback for the student which then 

causes the student to experience difficulties and contradictions.  As students learn to adapt to the 

feedback, this can be considered evidence of learning.  However, Aplusix developers are clear on 
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their emphasis that teachers are still responsible for the teaching and learning process.  Aplusix is 

only meant to help students apply the rules and methods correctly, thus narrowing their 

constructivist approach to one of learning by doing (Nicaud, 1993).   

 Three major principles were reported that seem to guide not only tutoring decisions, but 

also the interface design as well (Nicaud, Bouhineau, Chaachoua, Huguet & Bronner, 2003).  

First, a student will show their work by entering the results of their calculation steps.  Second, 

non-intrusive feedback is given to the student.  Third, some commands will be available for the 

system to perform routine calculations so that the student can focus on higher-order concepts. 

 Tactics. The tutoring tactics of Aplusix are discussed next, in particular: feedback, hints, 

and modes of instruction. 

 Feedback. Flag feedback is implemented in Aplusix (Nicaud et al., 2003).  Flag feedback 

is used to check the structure or syntax of the algebra as well as semantic equivalence.  So, if a 

step is well-structured, the step’s font is colored black.  If the syntax is entered incorrectly, it is 

highlighted blue.  Syntax errors that result in undefined being returned (like dividing by zero) are 

turned red.  Equivalence between problem-solving steps is also flagged.  If two steps are 

equivalent, black arrows are used to represent this.  If the steps are not equivalent, then a red “X” 

is used.  Finally, students are alerted when they have reached a solved state.  However, students 

are free to end when they think they are done since there are multiple solution paths, and help 

functions do not place a student on a solution path (Rodrigo et al., 2008; Nicaud, 1993). 

 Hints. Following the pattern of other ITSs, Aplusix implements hint sequences that end 

in bottom-out hints (Rodrigo, Baker, et al., 2008).  However, students can only see the bottom-

out hint after submitting their answers and receiving feedback on the errors they’ve already 
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committed.  These error messages do not indicate which part of the equation is wrong, but the 

student is left to figure that out (Rodrigo, Anglo, et al., 2008).   

 Modes of instruction. The pedagogical goals of Aplusix can be adapted based on the 

selected mode of instruction.  Four modes exist within Aplusix (Hadjerrouit & Meier, 2010): 

training mode, test mode, self-correction, and observation.  Each mode differs in the amount of 

help and scaffolding present.  For example, training mode uses scaffolding (showing equivalence 

between steps) to help the students learn the material. However, test mode would be devoid of 

any hints or scaffolding in order to simulate a classroom test.   

Student Model 

 How is the student model created? Aplusix, at one point, had 260 rules that captured 

both conceptions and misconceptions a student has (Nicaud, Chaachoua, & Bittar, 2006).  Based 

on their definition of how the rules worked, it sounds similar to how model and knowledge 

tracing work.  For example, as students transform equations, the rules check to see if a student 

properly applied the transformation (model tracing).  Knowledge tracing works as conceptions or 

misconceptions are attributed to a student when several behaviors verify that the student has that 

conception or misconception.  No sophisticated, probabilistic models were reported as of 2006 

(Nicaud et al., 2006) to determine when the behaviors verify that a student has a conception or 

misconception. 

 In addition to this cognitive model of what a student knows, work has been done to create 

non-cognitive models that measure student affect (Anglo & Rodrigo, 2010).  Using system 

interactions, semantic data, and naturalistic observations, the developers of Aplusix attempted to 

model boredom, confusion, and frustration.  Unfortunately, the results were subpar and could 

barely detect student affect better than chance (Anglo & Rodrigo, 2010).  Another study 



86 
 

attempted to measure engaged concentration, boredom, confusion, delight, surprise, frustration, 

and a neutral state, but produced poor models that only confirmed the importance of the average 

number of steps a student takes to solve a problem in determining student affect (Andallaza, 

Rodrigo, Lagud, Jimenez, & Sugay, 2012). 

 What data is collected? One article listed the variables collected in Aplusix’s log file 

(Dagami et al., 2011).  Content of the log files includes: school, run (the student’s run or batch 

number), student number (id), set number (set number of current exercise), problem number 

within the set (item number within the set number), absolute problem number (the item number 

relative to all the problems answered by the student), date, time started, level (degree of 

difficulty), step number (the step number which is then number of the current step), duration (the 

number of seconds describing how long each step was done), action (the action performed by the 

student), error (the error committed by the student while solving problem), etape (the stage or 

phase of the solution), expression (the state of the math expression), etat (the current state of the 

solution), cursor (location of cursor), selection (selected values in the solution), equivalence 

(indicates whether the equation is correct or not), and resolution (indicates whether the problem 

has been solved or not). 

Aplusix makes use of this data to inform interventions like it does with its embodied 

conversational agent (ECA) called Grimace who responds to students’ affective states 

(Andallaza & Rodrigo, 2013).  Grimace used two features (the number of steps and the duration) 

to determine a student’s affective state.  Using these features and threshold values for each, 

Grimace classified students into three categories (high-performing, average, and low-

performing).  The classification determined the affective state for a student.  So those who were 

classified as high-performers could be considered engaged, while those who were average were 
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confused, and the low-performers were considered bored.  Grimace would then give feedback to 

the students based on their affective state. 

Interface 

Aplusix is considered to be an “advanced 2D editor of algebraic expressions” (Nicaud et 

al., 2003, p. 1).  A student uses both a physical and a virtual keyboard to enter in their 

mathematical equations into the system, but some tools are provided that solve simpler steps for 

students so they can focus on more advanced concepts (Chaachoua et al., 2004).  A student is not 

restricted in making only correct transformations of an equation, but are free to do as they will 

(Hadjerrouit & Bronner, 2014).   

Aplusix has two forms of pedagogical agents.  First, there are domain-based agents 

named Chloe, Julien, and Olivia who provide feedback and hints to students about the problems 

being solved (Andallaza et al., 2012).  The other agent, Grimace, was mentioned previously.  

Grimace detects and responds to student affect by using an appropriate expression and providing 

both text and spoken feedback to the student (Andallaza et al., 2012).  Research on Grimace’s 

effectiveness showed that responses were too quick and frequent which irritated some students 

(Andallaza et al., 2012).  These findings prompted a newer version of Grimace that addressed the 

quick and frequent responses.  The newer version of Grimace was better received as students 

expressed an overall, more positive trend on survey questions towards the newer version of 

Grimace when compared to a control group that used the old version of Grimace (Andallaza & 

Rodrigo, 2013). 

Aplusix is unique in that it does not provide a web-based version of its tutor.  It must be 

purchased and downloaded onto each computer (Hadjerrouit & Bronner, 2014).  This paywall 

and lack of web-based support caused some teachers to be dissatisfied with the accessibility of 
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Aplusix since students could not work with the system at home (a mean score of 3.43 on a 5-

point Likert scale with 1 being highest and 5 being the lowest; Hadjerrouit & Bronner, 2014).  

The same group of teachers were not overly impressed with the interface in terms of 

attractiveness, visual design, and appearance demonstrated by an average score of 2.86 for a 

survey question relating to those characteristics (Hadjerrouit & Bronner, 2014).  These and other 

usability concerns have prevented Aplusix from being “fully successful in classroom [sic]” 

(Hadjerrouit & Bronner, 2014, p. 1).   

 

Figure 1. The user interface of Aplusix (Andallaza et al., 2012). 

Learning Gains 

No controlled experiments comparing use of Aplusix was found.  Instead, gains were 

reported in terms of pre-/post-test scores within Aplusix (Chaachoua et al., 2004; Hadjerrouit & 

Meier, 2010).  One study showed that Aplusix can increase learning on its own pre-/post-tests by 

70% to 250% (Bouhineau, Nicaud, Chaachoua, Bittar, & Bronner, 2005).  These data were 

collected over two years of use and four experiments.  The experiments ranged from having two 

to three sessions with Aplusix with each session being 50 minutes.  Test problems covered linear 

equations and inequations for all but one of the experiments which had test questions relating to 
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every type of problem available in Aplusix.  A total of 2874 students were involved ranging from 

13-17 years of age.    
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ASSISTments 

ASSISTments is a domain-independent intelligent tutoring system (ITS), but the 

developers refer to it as a pseudo-tutor (a simplified ITS) since it doesn’t have the full 

functionality and reasoning of a regular ITS (Tvarožek, Kravčík, & Bieliková, 2008).  

ASSISTments set out to create a platform that can easily be used for a wide range of content and 

experiments while allowing for enough flexibility that teachers accept it as their own (Heffernan 

& Heffernan, 2014).  This allows the teachers to be in charge and has helped with its adoption.  

For this section, 22 articles were used from the years 2005-2015. 

Domain Model 

 What content does this ITS cover? ASSISTments started off by providing tutoring 

assistance for mathematics (Razzaq et al., 2005).  However, ASSISTments was designed to be 

domain-independent.  This allowed others to use the ASSISTments system to create courses for 

physics, life science, earth science, English, and statistics (Gobert, Montaly, Toto, Sao Pedro, & 

Baker, 2010; Heffernan & Heffernan, 2014).   

 What level of understanding is the goal? As with other ITSs, ASSISTments strives for 

mastery learning and students gain mastery after solving three questions in a row correctly (Beck 

& Gong, 2013).   

 What is used to create the expert? Originally, the expert came from the Massachusetts 

Comprehensive Assessment System (MCAS) test items that were released to the public (Razzaq 

et al., 2005).  Three math departmental heads were interviewed and asked questions like, “What 

kinds of questions would you ask the student?” and “What kind of hints would you give?” Based 

on their answers, the developers of Aplusix created the content for the test items.  Later, teachers 

and the developers of ASSISTments annotated other examples to give hints and feedback and to 
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also identify the knowledge components associated with each problem (Feng & Heffernan, 

2006).  Once the knowledge components were identified, groups of knowledge components 

could be organized relationally and hierarchically.  This creates what ASSISTments calls a 

transfer model (Feng & Heffernan, 2006).  This transfer model acts as the ontology for the 

domain and does not require a production rule system like in other systems (Razzaq, Feng, et al., 

2007).  Yet, the transfer model still allows for useful student modeling techniques like 

knowledge tracing.   

 ASSISTments has a web-based item builder that both teachers and researchers can use to 

create items, hints, feedback, and identify knowledge components and map them to the transfer 

model (Junker, 2006).  This process allows new courses to be created independent of the domain 

and for teachers to create transfer models that suit their preferences and classroom needs.  

Creating examples this way, which ASSISTments calls example tracing, reduces the time for 

content creation considerably (Mendicino, Razzaq, & Heffernan, 2009).  Previous estimates 

placed the manhours required for one hour of instruction to be between 100 and 1000 hours.  

ASSISTments reduces that time to be between 10 and 30 man-hours for one hour of instruction. 

Tutoring Model 

 Strategies. With tutoring being designed at an item level, global tutoring strategies seem 

to be inconsistent as they depend on the ideas and beliefs of the one creating each example.  

Further, each example is self-contained and independent of other problems.  Other than a generic 

tutored problem-solving approach (Razzaq & Heffernan, 2009) to learning, no overall strategy 

was reported.   

 Tactics. The tutoring tactics of ASSISTments is discussed next, in particular: scaffolding, 

explaining, spaced practice, differential instruction, and hinting. 
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 Scaffolding. Scaffolding for each problem only appears if the student answers the 

question incorrectly.  After their first error, a student cannot try the problem further until they go 

through a sequence of scaffolding questions and answer one of them correctly (Razzaq et al., 

2005).  The scaffolding questions break down the problem into its constituent parts to get a 

clearer picture of what the student is struggling with (Koedinger, McLaughlin, & Heffernan, 

2010).   

 Explain. On some occasions, messages are given to students that explain the problem 

rather than giving hints or other feedback (Razzaq, Feng, et al., 2007).  This is used when it is 

assumed that the student already knows how to solve the problem.   

 Spaced Practice. Potentially unique to ASSISTments is the implementation of spaced 

practice (Heffernan & Heffernan, 2014).  To promote learning and retention, once a skill is 

mastered, a student will be reassessed on a schedule of 7, 14, 28, and 60 days after initial 

mastery.  If a student fails one of the reassessments, they will be given items to relearn the 

material and the spaced practice schedule will be reset.   

 Differential Instruction. Although the general progression of problems is linear 

(Mendicino et al., 2009), at times, the teacher can offer differential instruction (Heffernan & 

Heffernan, 2014).  For example, if 67% of students get a problem set wrong, a different set of 

problems can be assigned to that group while the other 33% can receive a different set of 

problems. 

 Hinting. ASSISTments uses a hint sequence that follows this format: hint, hint, bottom-

out hint (the answer; Razzaq et al., 2005).  Students have the freedom to ask for hints at any time 

they are confused or are unable to answer (Koedinger et al., 2010).   
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Student Model 

 How is the student model created? There are no production rules in ASSISTments 

which means it can’t solve its own problems nor follow student solution paths to provide 

feedback (i.e., model tracing).  However, that is not needed considering ASSISTments is an 

example-tracing tutor and each example has all the information it needs contained within it 

whereas a model tracing tutor uses rules to dictate the domain.   

 As far as knowledge tracing is concerned, no dynamic version was used at first.  Instead, 

a poor man’s version was created.  The student’s percent correct across all previous problems 

combined with four Boolean values indicating the level of prior knowledge is compared to the 

average prior knowledge of all students in combination with the standard deviation of that 

average (Walanoski & Heffernan, 2006).  This poor man’s version can do as well as the MCAS 

to predict performance on future MCAS exams.  Eventually, ASSISTments transitioned to a 

probabilistic model of inferring student knowledge (Pedro, Baker, Bowers, & Heffernan, 2013), 

but continued to claim that ASSISTments does not have a strong student model that does deep 

reasoning about the student or content (Heffernan & Heffernan, 2014).   

 What issues are there regarding the development of the student model? 

ASSISTments identified an issue with adaptive tutoring and mastery loops called wheel-spinning 

(Pedro et al., 2013).  Wheel-spinning is defined as a student being stuck in a mastery loop – one 

where students spend too much time struggling to learn a topic without mastery and the system 

not moving on from the problem.  To address this issue, ASSISTments locks out a student from 

solving a problem after 10 failed attempts on a skill.  A student can return to the problem on a 

different day.   
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 What data is collected? ASSISTments uses a logging unit that records student 

interaction with the system at a fine-grained level.  ASSISTments also has other mechanisms that 

can abstract or coarsen the data (Junker, 2006).   

 Examples of fine-grained data collected include: total time spent in ASSISTments, time 

spent today in ASSISTments, number of problems seen, percent correct, timestamps, student ID, 

problem ID, student action type, student input and response, number of scaffolding questions, 

and number of hint requests (Feng & Heffernan, 2006); answer speed and accuracy (Junker, 

2006); progress within a curriculum and its sections (Razzaq, Feng, et al., 2007); assistance 

needed (e.g., hints, scaffolding), number of attempts made, number of hints requested, response 

time, and number of opportunities to practice (Koedinger et al., 2010); proportion of correct 

actions, and number of first attempts on problems (a proxy for overall usage; Pedro et al., 2013).   

 These data can be used to help teachers with classroom interventions.  The data are 

coarsened into a gradebook for each student and for the entire class thus providing valuable data.  

For example, student performance can be used to predict and report to teachers MCAS scores 

and performance levels (Feng & Heffernan, 2006).  Data can also be used to alert the teacher to 

unusual behaviors like asking for more hints than other students, gaming, or student affective 

states (e.g., bored, engaged; Feng & Heffernan 2006; Pedro et al., 2013).  The data are also used 

to create estimates of student knowledge (Pedro et al., 2013).  This information helps teachers to 

know which items are difficult, which items students perform below the state average, and which 

items could use more focus in classroom instruction (Razzaq et al., 2005).   

Interface 

 ASSISTments is a web-based tutor wherein students answer questions and receive 

scaffolding, hints, and feedback (Heffernan & Heffernan, 2014).  ASSISTments comes with 
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several tools in the form of widgets (Razzaq, Feng, et al., 2007).  Some low-level widgets 

include text labels, text fields, and images whereas some high-level widgets include multimedia, 

spell-checkers, and algebra parsing text fields.   

ASSISTments provides resources for multiple stakeholders in the learning process.  It 

tutors students, provides feedback to teachers to improve classroom decisions (Koedinger et al., 

2010, and alerts parents by allowing teachers to share student data with them (Heffernan & 

Heffernan, 2014).   

User experience studies of ASSISTments seem to focus on the teacher experience with 

the system.  In 2005 (Razzaq et al., 2005), teachers thought highly of the system since it included 

MCAS items and scaffolded assistance.  A few years later in 2007 (Razzaq, Feng, et al., 2007), 

the authors reported that some students found the forced scaffolding to be frustrating.  However, 

not much else was reported in terms of user experience in the articles reviewed.   

 

Figure 1. A problem in ASSISTments including scaffolding and hints (Pedra et al., 2013). 
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Learning Gains 

 ASSISTments was originally designed to predict MCAS scores and so learning gains 

were measured in its ability to predict these scores.  At one point, student performance on 

ASSISTments had an r value of 0.75 in predicting MCAS scores two years later (Razzaq et al., 

2005).  Learning gains were later measured as effect sizes and studies reported effect sizes 

ranging from .23 to .61 (Heffernan & Heffernan, 2014; Koedinger et al., 2010; Mendicino et al., 

2009; Singh et al., 2011;).  Their research found that the scaffolding and tutoring was more 

beneficial for some groups over others (Koedinger et al., 2010; Razzaq & Heffernan, 2009; 

Razzaq, Heffernan, & Lindeman, 2007).  For example, students with less knowledge benefited 

more from the scaffolding and hints than those students who had more knowledge and benefitted 

from a delayed feedback setting (Razzaq, Heffernan, et al., 2007).  Focusing on the same 

categories of students, another study found that high performers do better learning from worked 

examples while low-performing students benefitted more from the tutored problem solving 

(Razzaq & Heffernan, 2009).  Another study found that those with IEPs benefitted more from 

ASSISTments’ tutoring than did their peers, resulting in an effect size of .50 (Koedinger et al., 

2010).   
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AutoTutor 

AutoTutor is an ITS that covers the subjects of computer literacy, conceptual Newtonian 

physics, and critical thinking by using mixed-initiative dialogue.  This means that AutoTutor will 

provide a question or prompt that the student then answers or asks follow-up questions.  If the 

answer given is too short, incomplete, or wrong, AutoTutor helps the student construct the right 

answer by asking additional questions to draw out information or will correct the student 

(Graesser, Chipman, Haynes, & Olney, 2005).  This review was conducted using 20 articles from 

the years 1999-2014.   

Domain Model 

 What content does this ITS cover? AutoTutor was originally designed to cover topics 

relating to computer literacy (i.e., fundamentals of hardware, operating systems, and the internet; 

Graesser, Wiemer-Hastings, Wiemer-Hastings, Kreuz, & Tutoring Research Group, 1999).  The 

system was later expanded to cover Newtonian physics and critical thinking skills (D’Mello et 

al., 2008; Graesser, Hu, et al., 2001).   

 What level of understanding is the goal? Shifting from the traditional goal of mastery 

learning, AutoTutor instead focuses on deep reasoning through its dialogue-based tutoring 

(Graesser, Hu, et al., 2001; D’Mello & Graesser, 2012).  This puts more focus on higher levels of 

learning rather than focusing on the basics and skill-and-drill approaches. 

 What is used to create the expert? The expert is organized into a curriculum script 

which is a loosely ordered but well-defined set of skills, concepts, example problems, and 

question-answer units (Graesser et al., 1999).  This script organizes the topics and content of 

tutorial dialogue by including things like example problems, figures and diagrams, questions for 

the tutor to ask, hints, libraries for good and bad responses, buggy knowledge, misconceptions, 
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and errors.  While it is not possible to anticipate all possible student answers as a dialogue-based 

system, AutoTutor can recognize good and bad student responses, which it can then add to the 

curriculum script, thus growing its knowledge base.  These curriculum scripts are what allow 

AutoTutor to expand its content offerings as the questions, summary, tutor prompts and answers, 

etc., can be written independently of the system.   

Tutoring Model 

 Strategies. One of the defining features of AutoTutor is its ability to engage in natural 

dialogue with a student with the aim of getting a student to talk and explore what they know 

(Graesser et al., 1999)—thus more fully replicating a one-on-one tutoring session.  Based on 

about 100 hours of naturalistic tutoring sessions (Graesser et al., 1999), AutoTutor’s design is 

based on explanation-based constructivist theories and collaborative constructivist activities that 

occur in human tutoring (Graesser et al., 2003) as well as the ability of a human tutor to adapt to 

a student’s knowledge (Graesser et al., 2005).   

 AutoTutor demonstrates its explanation-based constructivist theory in the way it models 

student knowledge and communicates with the student.  That is, AutoTutor only believes a 

student knows something after the student has stated it (Jackson, Mathews, Link, Olney, & 

Graesser 2003).  In this sense, a student must do a sufficient job in convincing the tutor 

(AutoTutor) that they know enough about a subject.  Only after such an explanation will 

AutoTutor give the student credit for that knowledge. 

 The collaboration component is very evident in most tutor-student interactions.  

AutoTutor will present a question or problem to the student and asks them to state the answer.  

Generally, students only provide parts of the ideal solution and several dialogue turns are 

required for the student’s answer to be fully developed.  For challenging questions, it takes about 
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100 dialogue turns for the student to supply a sufficient answer (D’Mello & Graesser, 2012).  In 

this process, called expectations and misconceptions dialogue (EMT dialogue), AutoTutor 

compares the student’s response to an ideal answer.  If a student’s response only satisfies certain 

portions of the ideal answer, then AutoTutor will ask the student for more information or provide 

it if needed.  Thus, the two work together to help the student’s knowledge become more like the 

expert’s.  Throughout this, AutoTutor is capable of dynamically applying and testing different 

pedagogical principles in choosing which expectation it coaches a student through (Graesser et 

al., 2005).  In some cases, AutoTutor may opt for an expectation that lies in a student’s zone of 

proximal development (estimated by the system), while in other cases, it chooses to maximize 

the coherence of the conversation by choosing an expectation that is most similar to what was 

recently discussed.   

 Other tutoring systems that have implemented a dialogue approach restrict student input 

to some degree (Freedman, 1997), usually by allowing only answers from the student and not 

questions.  AutoTutor goes beyond those restrictions and encourages students to ask questions of 

the system (Rajan et al., 2001).  This mixed-initiative dialogue is part of AutoTutor’s adaptation 

to what a student knows.  So, if a student requests more information about a topic or seems 

confused, AutoTutor can respond to what the student knows and change what is being presented 

to meet the needs of the student (Graesser et al., 2005).   

 With mixed-initiative dialogue being part of the AutoTutor system, this introduces the 

need for tutoring strategies for the dialogue (e.g., Socratic dialogue) that expert tutors implement, 

not just for how the system operates.  Surprisingly, AutoTutor does not implement sophisticated 

tutoring strategies, but instead uses the tutoring strategies of unskilled tutors (Graesser, Hu, et al., 

2001).  The reasoning behind this is based on a previous meta-analysis in which tutor experience 
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did not significantly predict learning gains (Cohen, Kulik, & Kulik, 1982; Graesser et al., 1999).  

This finding led the authors of AutoTutor to hypothesize that, perhaps, it is not the sophisticated 

tutoring techniques or expertise of the tutor that matters, but rather the conversational properties 

of tutorial dialogue that are responsible for learning (Graesser et al., 2003).   

 Going beyond cognitive concerns, AutoTutor’s strategies also include the affective and 

metacognitive needs of a student (D’Mello et al., 2008).  For example, consider what happens 

when a student is frustrated.  AutoTutor relies on attribution theory to address the student’s 

frustration in an empathic and empowering way by helping the student maintain positive self-

efficacy and blaming the system.  In other instances, AutoTutor may push the student by offering 

encouragement when they are confused, giving the student affirmations that they are capable of 

solving the problem.   

 Tactics. The tutoring tactics of AutoTutor are described next, more specifically its 

dialogue framework, dialogue moves, conversational behaviors, feedback, and use of simulation. 

 Dialogue Framework. Following the basic structure human tutors use in their 

interactions, AutoTutor follows a five-step framework that structures the basics of dialogue with 

a student (Graesser et al., 1999).  First, AutoTutor will ask a question.  Second, the student 

answers the question.  Third, the tutor gives short, immediate feedback on the quality of the 

student’s response.  Fourth, the tutor and student collaboratively work together to improve the 

quality of the student’s answer.  Fifth, the tutor assesses the student’s understanding with follow-

up questions.  Eventually, the fifth step was removed from AutoTutor’s framework since it 

produced unreliable student responses (Person, Graesser, Kreuz, & Pomeroy, 2003).   

 Dialogue Moves. AutoTutor began with 12 dialogue moves that it would employ in its 

conversations with students (Rajan et al., 2001).  Throughout development, AutoTutor refined its 
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dialogue moves and more recently described nine (D’Mello & Graesser, 2012).  Those nine are 

discussed here.  The first move is called Main Question wherein AutoTutor initiates the dialogue 

with a question.  After this, the moves come in no particular order.  Second, is a Pump where 

AutoTutor is asked for more information regarding the topic.  Hint is third and is a leading 

question or statement that directs the student’s thinking.  Fourth, Prompt, leads a student to 

supply a word that is missing from an important idea.  Fifth, Short Feedback, signals the quality 

of the student response in terms that are positive, neutral, or negative.  Sixth, Correction, corrects 

a statement made by the learner.  Seventh, Assertion, states a main idea within the problem or the 

answer to the problem.  Eighth, Answer, is a response to a learner’s question regarding a 

definition of a concept.  Ninth, Summary, summarizes the full answer to the student at the end of 

the dialogue.   

 Conversational Behaviors. In addition to the aforementioned verbal behaviors, 

AutoTutor expresses other conversational cues via a talking head that acts as the system’s 

pedagogical agent (Rajan et al., 2001).  Behaviors for this agent include head movements, facial 

expressions, intonation variation, gaze behaviors, and blinking patterns.  These behaviors are 

used in conjunction with feedback so that a human-like, empathic response is also given.  So, if a 

student receives positive feedback, the agent will smile and say the praise with enthusiasm. 

 Feedback. There are three levels of feedback given in AutoTutor (Graesser, VanLehn, 

Rose, Jordan, & Harter, 2001).  The first level of feedback is called backchannel feedback.  This 

feedback can be verbal or nonverbal and is meant to facilitate the conversation but not add any 

content (e.g., head nods, saying “Uh-huh”; Rajan et al., 2001).  The next level of feedback is 

evaluative pedagogical feedback.  Here, responses are given along a spectrum of negative to 
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neutral to positive feedback letting the student know of the quality of their work.  Lastly, there is 

corrective feedback that repairs buggy knowledge and misconceptions.   

 Simulation. In one study, a simulation environment was designed that presented physics 

problems to students (Graesser, Jackson, Kim, & Olney, 2006).  Within these 3D micro-worlds, 

students could see the question play out.  Then, to help them answer the tutor’s questions, they 

could manipulate the variables of the micro-world to see how changing one thing would affect 

the other parameters.   

Student Model 

 How is the student model created? AutoTutor’s developers make the argument that real 

tutors have a hard time gauging student understanding and that there is a lot of misunderstanding 

that happens.  As such, AutoTutor can manage well enough with a shallow understanding of the 

student’s knowledge as long as the selection of dialogue moves is strategic (Graesser et al., 

1999).   

 That being said, AutoTutor performs knowledge tracing by using the student’s responses 

compared to an ideal answer (Rajan et al., 2001).  The degree to which a student knows 

something is reflected in the quality of the answer, which is measured by using a technique 

called latent semantic analysis (LSA).  AutoTutor can compare a student’s response to an ideal 

answer and the degree to which they match shows the quality.   

For example, let’s suppose a problem has seven expectations that need to be met in the 

ideal answer.  A student can only supply four of them before the tutor supplies the remaining 

expectations.  However, the student encountered a similar problem before and could only 

provide two of the expectations the first time.  AutoTutor is able to create a local and global 

model of the student’s knowledge with this information (D’Mello & Graesser, 2012).  The local 
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model deals with the current student response and gives the tutor information in terms of how the 

student is currently doing.  This information will affect the dialogue moves and feedback it 

provides.  The global model uses the current response and all previous student responses for the 

current problem, which provides a model of the student knowledge for the current problem.   

 What data is collected? The student’s responses are the main source of data for 

AutoTutor.  As was mentioned, these responses are compared to ideal and bad answers to 

determine the level of semantic similarity.  In this way, AutoTutor can perform knowledge 

tracing.  AutoTutor tracks the following features of student responses: the quality of a student’s 

current response, how much of the current topic is covered so far (in terms of expectations met), 

and the student’s overall ability level for the topic (global competence; Person et al., 2003).  

Other features of student response that are recorded include the verbosity of the student, reaction 

and response times, the length of an answer, and other parameters about the conceptual quality 

(Sidney et al., 2005).   

 After identifying six academic emotions (frustration, boredom, flow, confusion, eureka, 

and neutral), AutoTutor began to collect information to model students’ affect states (Craig, 

Graesser, Sullins, & Gholson, 2004).  AutoTutor uses non-intrusive sensing devices in the form 

of a facial camera that runs facial expression recognition and tracks the pupils, a pressure-

sensitive chair for posture readings, and log files for conversation clues (D’Mello et al., 2008; 

Sidney et al., 2005).  The facial camera was able to achieve an accuracy of 68% when classifying 

facial action units to determine student affect.  The pressure-sensitive chair was able to classify 

interest by analyzing posture sequences with an accuracy of 82.3% for known subjects and 

76.5% on new subjects.  The log files are used to classify responses into five categories: meta-
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communicative, metacognitive, shallow comprehension, assertions reflecting deep 

comprehension, and an “other” category (Sidney et al., 2005).   

Interface 

 AutoTutor’s interface varies a bit for each version, but most of them have the following 

five windows: a talking head that serves as a pedagogical agent, a textbox for typed student 

input, a textbox displaying the current question, and a graphics box that displays pictures or 

animations relevant to the current question, and a dialogue history (D’Mello & Graesser, 2012).  

Once AutoTutor presents the question, the mixed-initiative dialogue begins.  While a student’s 

input is usually typed, AutoTutor responds with facial expressions, gestures, and a synthesized 

voice which has appropriate intonation (Person et al., 2003).  Not all student input is typed, 

though, as a version of AutoTutor has been developed which can handle some spoken input from 

the student (D’Mello & Graesser, 2012).   

 While nothing was found describing how students felt when using the system, one study 

did attest to the naturalness of AutoTutor’s generated dialogue moves (Graesser et al., 2003).  A 

bystander Turing test was conducted where a third party was asked to judge whether a transcript 

of a tutor-student interaction was conducted by a computer or human tutor.  Bystanders were 

unable to discriminate whether a move was generated by a computer or a tutor. 

 AutoTutor has also been used to study the effects that multimedia has on learning 

(Graesser et al., 2003) answering the question, “To what extent does having a talking head or 

using synthesized speech over text affect learning?” They found that by removing the agent or 

presenting text only (no voice or pedagogical agent), there was a non-significant decrease of 0.13 

sigma in learning gains.  What really mattered was being able to present the right content.  These 

results along with another study dispute the redundancy effect for multimedia learning which 



110 
 

says that duplicating modes of communication (e.g., having speech and text) hurts learning.  The 

other study (Graesser, Jeon, & Dufty, 2008) found a non-significant, positive impact on learning 

with a sigma of 0.34.   

 

Figure 1. The interface of AutoTutor (D'Mello & Graesser, 2012). 

Learning Gains 

 Several studies have shown significant learning gains for students using AutoTutor.  Over 

1000 students have taken part in these studies and there have almost always been significant 

effect sizes ranging from 0.2 to 1.5 sigma with an average of 0.8 for computer literacy and 

physics (D’Mello & Graesser, 2012).  These results were compared to a do-nothing control or 

reading from a textbook on the same topics for the same amount of time.  The developers of 

AutoTutor concluded that when there is an intermediate gap of knowledge between the student 
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and AutoTutor, then the system is most effective.  If the student does not know enough or knows 

too much, AutoTutor’s effectiveness is diminished (D’Mello & Graesser, 2012).   
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CIRCSIM-Tutor 

CIRCSIM-Tutor is a natural-language dialogue tutor designed for medical students.  It 

focuses on teaching causal relationships as students fill out a prediction table to determine the 

effects of changes in the cardiovascular system.  Once a student has made their predictions, the 

tutor engages in dialogue with the student to coach them through their difficulties.  Sixteen 

articles from the years 1991-2010 were used as the basis for this review. 

Domain Model 

 What content does this ITS cover? CIRCSIM-Tutor covers the baroreceptor reflex of 

the cardiovascular system for first year medical students (Evens et al., 1997; Shim, Evens, 

Michael, & Rovick, 1991).  In doing so, it teaches qualitative reasoning in the form of causal 

relationships between variables that affect the baroreceptor reflex.   

 What level of understanding is the goal? CIRCSIM-Tutor distinguishes between two 

types of knowledge: declarative and procedural (Hume, 1992).  As students are tutored, 

CIRCSIM-Tutor teaches declarative knowledge of the cardiovascular system and procedural 

knowledge involving the rules and heuristics that need to be applied in problem-solving 

situations (Woo et al., 2006).   

 What is used to create the expert? Two experts were used to create a knowledge base 

that is organized around variables and causal relations (Evens et al., 1997; Shim et al., 1991).  

Production rules are written that allow the tutor to have a problem solver that can trace solution 

paths (model tracing) and solve the problems it presents to students (Woo et al., 2006).   

Tutoring Model 

 Strategies. CIRCSIM-Tutor uses natural language dialogue to tutor students (Zhou & 

Evens, 1999).  The strategies used for CIRCSIM-Tutor are based on over 75 hours of human-to-
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human tutoring transcripts (Freedman & Evens, 1996).  CIRCSIM-Tutor begins with a coach-

like approach when students initially fill out a prediction table (predicting the cause and effect of 

variables) that is used to determine student errors and areas for tutoring.  Once it moves on from 

the prediction table entry and addresses student errors, CIRCSIM-Tutor uses Socratic teaching 

for interactive tutoring (Woo et al., 2006).  CIRCSIM-Tutor can have more of an interactive 

approach since it does not teach new material, but rather tutors material the students should have 

already studied (Freedman, 1997).  However, CIRCSIM-Tutor does not handle mixed-initiative 

dialogue very well and actively constrains student responses by doing things like asking short-

answer questions or ending every dialogue move with a request of some sort (Freedman, 1997; 

Zhou & Evens, 1999). 

 Tactics. The following section will describe the tutoring tactics of CIRCSIM-Tutor.  

Specifically, CIRCSIM-Tutor’s hints, dialogue moves, and responses to student initiative will be 

addressed. 

 Hints. CIRCSIM-Tutor first provides hints when a student shows signs of difficulty such 

as making an error, asking a question, or being confused (Hume, Michael, Rovick, & Evens, 

1996).  The tutor will try as many as two hints before providing an explanation and moving on 

from the topic.  The system is sensitive enough to switch hinting tactics when the student model 

determines that the student does not have sufficient background knowledge to respond to the 

hints or if the student rarely responds well to hints (Hume et al., 1996).  CIRCSIM-Tutor keeps a 

tutor history to avoid giving the same hints or returning to causal relationships that were already 

tutored (Zhou et al., 1999). 

 The hints that are given were originally very general and did not consider what the 

student had said previously (Zhou et al., 1999).  Hints started to become tailored to student 
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answers by tailoring them when students give partial hints (Zhou et al., 1999).  CIRCSIM-Tutor 

uses the following hints in ranked order: (a) hints specifically related to the student’s answers, 

(b) hints involving equations, (c) hints involving evocative synonyms, (d) hints involving a 

related anatomical object, (e) hints giving intermediate logical step, and a sixth category that 

covers everything else.   

 Dialogue Moves. After student knowledge is tested at first with a prediction table, 

CIRCSIM-Tutor identifies misconceptions and then engages in a natural language tutoring 

dialogue (Woo et al., 1991).  Examples of the types of dialogue moves CIRCSIM-Tutor can 

make include direct questions, hints, explanations, and reminders (Woo et al., 1991).  Every 

dialogue move has the same basic structure: an optional response to the student’s previous 

statement, new material, and then a question or imperative for the student (Freedman & Evens, 

1996).  As was stated earlier, CIRCSIM-Tutor ends each dialogue move with a question or 

imperative to limit the size and complexity of expected student responses which reduces the 

chances of misunderstanding and student frustration (Freedman, 1997).  When CIRCSIM-Tutor 

does receive student input that it does not recognize, it describes the kind of input that is 

expected so that the student can respond appropriately (Evens et al., 1997).   

 Responses to Student Initiative. Although student input is constrained, CIRCSIM-Tutor 

does have ways of dealing with unexpected input like asking a question (Evens et al., 1997).  For 

example, if a student requests more information, CIRCSIM-Tutor can respond to the statement 

and then return to the lesson plan, it can replace the current plan with the student’s request, it can 

delay answering the request by putting it elsewhere in the agenda, it can acknowledge the student 

input without responding, or it can ignore what the student said.   

 



118 
 

Student Model 

 How is the student model created? Since CIRCSIM-Tutor addresses both declarative 

and procedural knowledge, it needed a way to model both forms.  The overlay model and bug 

library model were popular at the time to deal with declarative and procedural knowledge 

modeling respectively.  CIRCSIM-Tutor decided to combine both for their student model (Shim 

et al., 1991; Woo et al., 2006).  The overlay model assumes that student knowledge is a subset of 

expert knowledge and any deviance from the model showed discrepancies in a student’s 

declarative knowledge (Hume, 1992).  A bug library assumes that student errors reflects 

misconceptions about how to solve a problem and thus is informative in identifying gaps in 

procedural knowledge (Hume, 1992).  By integrating the two, CIRCSIM-Tutor could now keep 

track of students’ ability to make predictions and their performance on questions as well as 

correcting any misconceptions students have (Woo et al., 2006).   

 What data is collected? Initial student data is collected through a prediction table in 

which the student predicts the causal relationships between various parameters involving the 

baroreceptor reflex (Hume, 1992).  This allows the tutoring dialogue to proceed with some 

information about what a student knows so that it can make a tutoring plan to address student 

deficiencies.  After that, the basic piece of data collected from each student is their written 

responses in the dialogue.   

 CIRCSIM-Tutor has an input understander which extracts what it needs from student 

responses so that it can understand what the student is trying to say while being as permissive as 

possible in what a student can input (Glass, 2001).  Student answers are then classified into eight 

distinct categories (Zhou et al., 1999): correct, partially correct answer, near miss answer, “I 
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don’t know” answer, “grain of truth” answer, misconception, other incorrect answers, and mixed 

answers (having a combination of other classifications).   

 CIRCSIM-Tutor maintains a performance model that estimates student competence 

(Zhou & Evens, 1999).  These estimates happen on four levels: globally (an overall measure of 

student performance), procedure-level (a measure for each problem), stage assessment (a 

measurement for each physiological stage in a problem), and local (a measurement for each 

variable).  The information provided by the performance model coupled with what a student 

knows allows CIRCSIM-Tutor to adapt the difficulty level. 

 For each concept within CIRCSIM-Tutor, a student reply history is kept (Zhou & Evens, 

1999).  This history stores information on the part of the causal chain that was covered along 

with the student’s answers in the dialogue.  Each response is also put into one of the categories 

mentioned above.   

 A student solution record is kept which records the number of errors a student made 

while solving a problem (Zhou & Evens, 1999).  A detailed description of the error is kept.  This 

record is useful in being a rough estimate of the student’s ability at qualitative reasoning since 

the solution path cannot be inferred from a student’s predictions.   

 A final component of the student model is the tutoring history model wherein the plan 

history and discourse history are kept (Zhou & Evens, 1999).  In other words, this is a record of 

what the system has done without any direct information on the student.  This information 

informs CIRCSIM-Tutor on what it needs to do next.   

Interface 

 CIRCSIM-Tutor has four windows in its application (Michael, Rovick, Glass, Zhou, & 

Evens, 2003).  The first window is the tutoring window which maintains the dialogue history and 
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allows the student to type their response.  A procedure description window explains the current 

scenario.  The prediction table window is where a student inputs their predictions for the effect 

of the scenario on different parameters in the causal relationship map.  The final window is a 

notes window where students can leave notes for themselves.   

 A survey was conducted to see what students thought of the system (Woo et al., 2006).  

The survey was a 5-point Likert scale with 1 being “Definitely YES” and 5 being “Definitely 

NO”.  Based on the responses, students said the system was easy to use (mean – 1.7), that they 

learned a lot (mean – 1.9), and that they would recommend it to others (mean – 1.9).  Mean 

responses to other questions in the survey were all positive and indicated a pleasant experience 

with the system.   

 

Figure 1. The user interface of CIRCSIM-Tutor (Michael et al., 2003). 
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Learning Gains 

 One experiment was reported that measured the effect size of working with CIRCSIM-

Tutor (Woo et al., 2006).  A control group where students read from a textbook was compared to 

students who used CIRCSIM-Tutor.  The control group outperformed CIRCSIM-Tutor in 

memorizing relationship information with a significant effect size of 1.27 compared to 

CIRCSIM-Tutor’s significant 0.65 effect size for the same portion of the test.  However, 

CIRCSIM-Tutor outperformed the control group in terms of problem-solving and making correct 

predictions with a significant effect size of 1.24 for CIRCSIM-Tutor and 0.48 for the control.  

This was the only study found that reported learning gains. 
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Cognitive Tutor 

Cognitive Tutor, developed at Carnegie Mellon University, has arguably the most success 

at bridging the gap between research and application being used by more than 500,000 students 

every year (Koedinger et al., 2010).  Cognitive Tutor was created to provide a full course 

experience for teacher and student alike as it tutors students in subjects like algebra, geometry, 

and genetics.   This review was conducted using 19 articles from the years 1998-2014.   

Domain Model 

 What content does this ITS cover? Cognitive Tutor is one of the more prolific ITSs in 

that it has been used in several domains and is used by hundreds of thousands of students 

(Koedinger et al., 2010).  Cognitive Tutor originally was designed to teach first-year, high school 

algebra (Koedinger & Anderson, 1998), but has been expanded to include algebra II (Corbett, 

McLaughlin, Scarpinatto, & Hadley, 2000), programming, geometry (Corbett, McLaughlin, & 

Scarpinatto, 2000), scatterplots (Baker, Corbett, Koedinger, & Wagner, 2004), metacognitive 

help-seeking behaviors (Aleven, McLaren, & Koedinger, 2004), and genetics (Corbett, 

Kauffman, MacLaren, Wagner, & Jones, 2010).   

 What level of understanding is the goal? Cognitive Tutor uses a modified version of 

mastery learning to fit within the time constraints of a classroom (Corbett, McLaughlin, & 

Scarpinatto, 2000; Pane, Griffin, McCaffrey, & Karam, 2014).  A maximum number of problems 

is set for each section.  If a student masters every component in the section, then they are 

considered to have graduated.  However, if a student fails to reach mastery, but has reached the 

maximum number of problems, then they are promoted to the next section.  This way, students 

can continue to progress with the class without falling too far behind the rest of the students.    
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 What is used to create the expert? Cognitive Tutor originally started with a math 

teacher and textbook to define the expert (Koedinger & Anderson, 1998).  The model for each 

tutor is derived from a cognitive task analysis for domain knowledge and reasoning strategies 

that students need to complete the course (Corbett et al., 2010).  The model is then codified into 

production rules that represent the skills and strategies (Aleven & Koedinger, 2002).  Production 

rules are IF-THEN statements that take declarative knowledge as a condition for the IF and the 

THEN portion says what to do (procedural knowledge). 

Tutoring Model 

 Strategies. Cognitive Tutor relies on the ACT-R Theory which conceptualizes 

knowledge as being either declarative or procedural (Koedinger & Anderson, 1998).  Declarative 

knowledge includes such things as facts and concepts and is encoded through activities like 

reading (Corbett, McLaughlin, & Scarpinatto, 2000).  Procedural knowledge is performance 

knowledge that can only be measured by doing and requires applying declarative knowledge.  As 

such, Cognitive Tutor focuses on teaching procedural knowledge by doing (Koedinger & 

Anderson, 1998).  Thus, students engage in a cognitive apprenticeship with Cognitive Tutor 

wherein students become experts by practicing the declarative and procedural knowledge 

encoded in the system (Koedinger & Corbett, 2006; Ritter, Anderson, Koedinger, & Corbett, 

2007).   

 In helping students learn by doing, Cognitive Tutor developed three design goals: (a) 

support students in applying algebra to real-world problems (contextualizing), (b) support 

reasoning among multiple representations (tables, graphs, symbolic expressions, and natural 

language), and (c) employ modern computational tools. 
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 Tactics. The following section will talk about the tutoring tactics of Cognitive Tutor 

including its hints, feedback, anti-gaming measures, use of self-explanation, and a stand-alone 

Help Tutor.   

 Hints. Students can request help at any time (Koedinger & Anderson, 2008), however if a 

student gets more than two errors on a step, help is volunteered to the student (Aleven & 

Koedinger, 2001).  The first hint is vague to maximize the opportunities a student must reason it 

out or to encourage the student to seek a teacher for help (Corbett, McLaughlin, & Scarpinatto, 

2000).  If a student requests additional hints, the hints become more specific until a suggested 

action is presented.  There are usually five to eight levels of hints provided for each problem 

(Aleven & Koedinger, 2001).  While students do not have to follow a specific solution path when 

solving a problem, if they ask for help, the hints will guide students along a recommended path 

(Corbett, McLaughlin, Scarpinatto, & Hadley, 2000).   

 When a student asks for help on what to do next, Cognitive Tutor has three general levels 

of advice.  First, it will remind or advise the student of an appropriate goal. Second, it will 

provide general advice on how to solve the goal. Last, it will provide a concrete suggestion on 

how to solve the goal given the current context (Corbett, McLaughlin, & Scarpinatto, 2000).   

 Feedback. An initial form of feedback given to students is when they submit answers.  

Cognitive Tutor will either accept a step as correct or it will flag them for errors (Corbett, 

McLaughlin, & Scarpinatto, 2000).  This process is automatic, and the student does not need to 

request it (Aleven & Koedinger, 2001).  After that, some additional feedback can be given.  For 

example, if a student performs a common error, an error message is displayed explaining the 

error to the student (Aleven & Koedinger, 2002).   
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 Cognitive Tutors also provide metacognitive feedback to students.  This type of feedback 

is given based on the student’s learning behaviors rather than the accuracy of their responses 

(Roll, Aleven, McLaren, & Koedinger, 2011).  The content of the feedback message explains 

what the desired learning behavior looks like.  For example, if a student is avoiding asking for 

help and the system detects this, it can provide feedback that lets the student know they should 

be asking for help on this problem.   

 Anti-gaming Measures. The developers of Cognitive Tutor provided a lot of research on 

anti-gaming measures within ITSs.  For example, a two second delay was implemented between 

each hint level to discourage students from clicking the hint button repeatedly until they reach a 

bottom-out hint (Aleven & Koedinger, 2001).   

 Another way Cognitive Tutor addresses gaming behavior is through a pedagogical agent 

called Scooter the Tutor (Baker et al., 2006).  Scooter is an animated dog that observes students 

as they interact with the system.  If Scooter detects gaming behavior, he looks increasingly 

unhappy.  The implementation of Scooter had three goals (Baker et al., 2006).  First, there should 

be some representation of how much a student is gaming.  Second, Scooter’s emotional response 

was meant to invoke social norms so as to discourage the behavior.  Third, to allow the students 

another opportunity to learn material that is being gamed by providing supplemental material. 

 The supplemental material given by Scooter has three levels of multiple-choice questions 

(Baker et al., 2006).  Students have one chance to answer each question correctly; if they are 

correct they are taken back to the main question.  The first two questions test the student’s 

understanding of one of the concepts or the role the gamed step plays in solving the overall 

problem.  If a student gets to the third level, the question is still related but is very easy to avoid 

the student being stuck in an indefinite loop.  If the student answers that last question incorrectly, 
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Scooter assumes the student is trying to game him, gets angry, and asks the student to try and get 

the questions right on the first try.  The problem is then flagged to receive supplementary help in 

the future.   

 In one study with Cognitive Tutor, the prevalence of gaming behavior was recorded 

(Baker et al., 2004).  The study involved observing student behavior as they interacted with the 

system while observers noted the first behavior exhibited in fixed time intervals.  Of the 

behaviors recorded, it was found that students were on-task 82% of the time.  Of the 18% off-

task behaviors, 3% was due to gaming.  This may seem like a relatively small percentage, but it 

should be known that 24% of the students were observed gaming at least once.  Those who 

gamed had lower than average academic achievement and the least prior knowledge of the 

material. Even though efforts are made to help these students engage in productive behaviors, the 

authors of Cognitive Tutor found that as new anti-gaming measures are implemented, students 

find new ways to game (Baker et al., 2006).   

 Self-explanation. The Geometry Cognitive Tutor implemented self-explanation as a 

required step of problem solving in order to promote learning (Aleven, Popescu, & Koedinger, 

2001).  Students must justify their answers by stating the geometric definition or theorem that 

explains their step.  If it is the wrong justification, the system provides feedback.  The definitions 

and theorems are selected from a drop-down menu (Aleven & Koedinger, 2002).  They found 

that while self-explanation does not increase the rate of knowledge acquisition, it does change 

the nature of the knowledge acquired (Aleven & Koedinger, 2002).   

 Help Tutor. As was mentioned earlier, Cognitive Tutor provides metacognitive feedback 

to students for help-seeking behaviors.  This feedback was formed into a separate, add-on Tutor 

called the Help Tutor (Roll et al., 2011).  The Help Tutor had 80 production rules that could 
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classify student behavior as either desired or undesired help-seeking behaviors.  When a behavior 

is classified as undesired, immediate feedback is given such as “Take your time.” The feedback 

is meant to be domain-independent so that it can be used with any tutor.  When feedback is given 

to the student, it is distinguished by font and color from regular hints and feedback.   

Student Model 

 How is the student model created? Cognitive Tutors uses various techniques to perform 

model and knowledge tracing (Koedinger & Anderson, 1998).  Model tracing follows the 

student’s individual solution path along the cognitive model for the domain.  This lets the tutor 

know which path the student has taken and the student’s current solution state so as to provide 

contextualized feedback to the student (Corbett, McLaughlin, & Scarpinatto, 2000).  Knowledge 

tracing also follows the solution path to map the strengths and weaknesses of the student’s 

acquisition of production rules and to provide tailored instruction (Koedinger & Corbett, 2006).   

For knowledge tracing, each production rule is in one of two states: learned or unlearned 

(Corbett, McLaughlin, & Scarpinatto, 2000).  A production rule can be learned through 

classroom activities or by applying the rule in a problem.  A rule cannot be unlearned.  The state 

of the rule is modeled probabilistically as a student does not always apply rules even if they 

know it (called a slip parameter) or they can guess and arrive at an answer correctly (called a 

guess parameter).  For a student to have mastered a rule, the probability that it is in the learned 

state must be greater than or equal to 0.95.  The probabilities of each production rule are updated 

at each opportunity it is used.  The estimates of student knowledge are displayed to the student in 

what is referred to as an open student model (Aleven & Koedinger, 2002).  The knowledge is 

displayed as a skillometer.   
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 What data is collected? Not much was found that described the fine-grained data that 

Cognitive Tutor collects to inform its student model.  However, some of the research explained 

their process of measuring student affect. 

 Six emotional states were identified: boredom, confusion, engaged concentration (flow), 

frustration, and “?” which represents everything else (Baker et al., 2012).  In a naturalistic 

observation from the same study, the frequencies of each behavior were determined by an 

observer.  Boredom was recorded 5.9% of the time, engaged concentration 84.5%, frustration 

0.9%, confusion 1.8%, and the remaining behaviors were classified as “?”.  The time frames in 

which these behaviors were recorded were synced with the log files of the students to see if there 

were behavioral patterns that indicated each affect state.   

Interface 

 The design decision was made that Cognitive Tutor would be a complete course that 

included textbooks, the software, supplementary materials, and teacher training (Ritter, 

Anderson, Koedinger, & Corbett, 2007).  This decision allowed Cognitive Tutor to become a 

regular part of the classroom experience.  It is designed so that two days a week, class time is 

spent on Cognitive Tutor, while the other three days are student-centered activities in class that 

involve group work and problem solving (Pane et al., 2014).   

 The interface that is described next refers to the Algebra Cognitive Tutor.  Cognitive 

Tutor has several tools that it uses to help students (Koedinger & Corbett, 2006).  For example, 

Algebra Cognitive Tutor uses a worksheet (much like one found in a spreadsheet) where students 

can solve problems step-by-step, a grapher to graph problems, and a solver which can calculate 

mathematical operations.  These tools adapt as the student works with the program.  As students 
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demonstrate their ability to perform lower-level skills, these tools automate those skills so that 

the student can focus on acquiring higher-level skills and concepts.   

 

Figure 1. The interface of Algebra Cognitive Tutor (Rolle et al., 2011). 

Learning Gains 

 Cognitive Tutor has demonstrated large learning gains within various domains.  One 

study reported that the Programming and Geometry Tutors performed 1 standard deviation better 

than a control group and the Algebra I Tutor had learning gains ranging from .7 to 1.2 sigma 

(Ritter et al., 2007).  Another study (Baker et al., 2006) showed that Cognitive Tutor performed 1 

standard deviation better than classroom instruction and 1.75 standard deviations better than self-

study.   



132 
 

 In addition to increased learning, Cognitive Tutor has had some indication that it can also 

reduce the amount of time spent learning.  One study (Corbett, McLaughlin, & Scarpinatto, 

2000) found that students using Cognitive Tutor completed problem-solving activities in as little 

as one-third the time needed by students working in a conventional problem-solving 

environment.   
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Reading Tutor 

Reading Tutor helps children learn to read using expert reading interventions as students 

read sentences from a story aloud.  By recording the student’s audio, Reading Tutor can 

determine if the student is reading at a fluent level and use this information to provide tailored 

feedback and interventions.  This was not always the case since Reading Tutor did not start off 

with a strong student model, but adjustments were made so that Reading Tutor could take 

advantage of the data it was collecting on students.  A total of 23 articles were used for this 

review spanning the years of 1999-2013.   

Domain Model 

 What content does this ITS cover? The Reading Tutor covers the domain of reading for 

first through fourth grades (Beck, Jia, & Mostow, 2003; Mostow & Aist, 1999).   

 What level of understanding is the goal? The Reading Tutor aims for oral reading 

fluency which means to read a text with speed, accuracy, and proper expression (Mostow & 

Duong, 2009).  Reading Tutor measures oral reading fluency by using the number of words read 

correctly per minute and if the Reading Tutor can recognize the word as being read correctly 

without help or hesitation (Lalle, Mostow, Luengo, & Guin, 2013).   

 What is used to create the expert? The material for the Reading Tutor was adapted 

from a children's news magazine called Weekly Reader as well as other sources (Mostow & Aist, 

1999).  With that as source material, the oral part of the domain was created by using acoustic 

models that are trained on adult female speech (Mostow & Aist, 1999).  The student’s acoustic 

model is then compared to the adult’s model as a standard of expert behavior.  Since each 

sentence is known beforehand, there is no need for a general language model (Heiner, Beck, & 

Mostow, 2004).   
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Tutoring Model 

 Strategies. In a child’s early years, the ability to identify words can create a bottleneck to 

fluent reading and comprehension.  As such, Reading Tutor’s strategies are based off the 

interventions used by expert reading teachers (Mostow & Aist, 1999; Zhang et al., 2008).  For 

example, experts suggested the following steps (the Beck Battery): (a) give the context of the 

target vocabulary word in the story, (b) repeat the word to create a phonological representation, 

(c) explain the meaning of the word, (d) provide examples of the word in other contexts outside 

of the story, (e) allow children to practice the word in new contexts, and (f) repeat the word to 

reinforce the phonological representation (Heiner, Beck, & Mostow, 2006).   

 Tactics. The feedback, reading interventions, and use of cloze questions in Reading 

Tutor are discussed next. 

 Feedback. The Reading Tutor provides feedback to students in several ways.  First, it 

provides flag feedback after hearing words by turning them green if they are read correctly 

(Mostow & Aist, 1999).  Second, it can provide preemptive feedback with the mindset that 

preventing reading mistakes is better than fixing reading mistakes (Beck, Jia, Sison, & Mostow, 

2003).  So, if Reading Tutor determines that a student will have difficulty with a word (based off 

the student’s previous performance and the length of the word), it will provide assistance by 

reading the word aloud before the student has a chance to.  Third, if a student does not self-

correct and moves on to the next word, Reading Tutor will interrupt and go back to the missed 

word (Mostow & Aist, 1999).  Similarly, if a student takes too long (silent for more than seven 

seconds), Reading Tutor will intervene with assistance (Mostow & Aist, 1999).  Last, Reading 

Tutor randomly offers praise at the end of a sentence if it was read correctly or if there was 
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improvement on the current performance compared to a previous one.  However, praise is always 

offered at the end of reading a story (Mostow & Aist, 1999).   

 Reading Interventions. The reading interventions that the Reading Tutor implements are, 

in decreasing order of frequency (Heiner et al., 2004): saying the word, giving the word in 

context, autophonics (pronouncing the grapheme), sounding out the word using a video of a 

child’s mouth sounding out phonemes, recuing, onset rime (which says the first phoneme, 

pauses, then says the rest of the phonemes), starts like, rhymes with, syllabify (breaking the word 

down into syllables and pronouncing each), showing a picture of the word, and making a sound 

effect related to the word. 

 The Reading Tutor aims to be a patient listener, giving plenty of space for the student to 

work through a sentence (Mostow & Aist, 1999).  It will wait two seconds before providing 

back-channel feedback (e.g., “uh-huh”), four seconds before giving a hint, and seven seconds 

before prompting the student what to do.   

 Cloze Questions. To gauge reading comprehension, cloze questions were inserted into 

the stories (Mostow, 2004).  These questions are generated by replacing a word in the question 

with a blank to fill in.  The options the student can pick from fill in that missing word.  There are 

four types of cloze questions: sight, easy, hard, and defined (Joseph, 2005).  Sight questions are 

for very common words, while hard questions were for rarer words.  Defined questions have 

words that need explanation for students.  Performance on these questions was used to help 

gauge student engagement as part of the student model since it correlated well with performance 

on standardized tests of reading comprehension (Zhang, Mostow, & Beck, 2007).   
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Student Model 

 How is the student model created? Reading Tutor did not start with a student model 

when it was first made.  Instead, it made a student model retroactively by collecting data first and 

then using the data to create a student model (Beck, Jia, & Mostow, 2003).  However, their 

student model “does not have the strong reasoning about the user that distinguishes a classic 

intelligent tutoring system” (Beck, Jia, Sison, et al., 2003, p. 1).  Rather than opting for a fine-

grained analysis (e.g., knowing that ph makes an f sound in the word phone), the student model 

instead focuses on coarse-level assessment of student knowledge by relying on student input like 

latency and help request (Beck, Jia, & Mostow, 2003).   

 With the introduction of cloze questions, Reading Tutor was able to model student 

engagement in a process called engagement tracing (Joseph, 2005).  Using student data on cloze 

questions, they found that students who spend about 4-7 seconds on a question had a higher 

likelihood of answering questions correctly (i.e., they are engaged) than those who spent a 

shorter amount of time (i.e., they are not engaged).  Those who spent longer than 7 seconds saw 

a slight decrease in performance, but it could not be ascertained why that was nor could it be 

considered a sign of disengagement.  The model could predict aggregate student performance 

very well with an r2 of 0.954, however it did not account for individual differences like students 

who are very fast readers.  Efforts were made to rectify that problem and the model correlated at 

0.25 with learning gains on tests with a model reliability of 0.95.  This model of student affect is 

unique in that it uses student data that is already normally collected by an ITS and does not 

require additional sensors.   
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 Eventually, Reading Tutor was able to implement a form of knowledge tracing to be able 

to predict the likelihood that a student knows a particular word and to determine when students 

have mastered a word (Chang, Beck, Mostow, & Corbett, 2006).   

 What issues are there regarding the development of the student model? Reading 

Tutor’s developers had trouble in creating a student model since reading is considered an ill-

defined domain and there is no typed input that could be used (Beck, Jia, & Mostow, 2003).  As 

such, the logging of student actions in the beginning was incomplete (e.g., the type of hint given 

was not recorded; Beck, Jia, Sison, et al., 2003).   

 What data is collected? The main form of student data in the Reading Tutor is the 

student’s spoken responses.  As such, many features of the student’s speech are recorded.  For 

example: the latency between words is measured, false starts, sounding out, and near misses are 

documented (Mostow & Aist, 1999) as well as student miscues like repetitions, insertions, or 

omissions (Mostow, Beck, Winter, & Wang, 2002).  Eventually, the student’s prosody was 

measured and compared to adult prosodic contours as a way of comparing latency, duration, 

mean pitch, or mean intensity (Mostow & Duong, 2009).  The student’s historical performance 

on a word is recorded as well (Mostow & Aist, 1999).  Using these data, a student’s fluency can 

be inferred from the student’s accuracy and latency.  Other system events are logged that 

timestamp when a student reads a story, sentence, word, or requests help (also measures how 

much help requested and the type of help; Beck, Jia, & Mostow, 2003).  At a coarse level, the 

latency and help request data can be used to assess student knowledge (Beck, Jia, & Mostow, 

2003).   
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Interface 

 Reading Tutor displays a sentence or fragment at a time that a student is supposed to read 

and is part of a story (Mostow & Aist, 1999).  Students speak to the system and their responses 

are recorded and analyzed using automatic speech recognition software (Mostow & Aist, 1999).  

To aid the students, a simple, animated persona (a face) that “actively watches and patiently 

listens” (Mostow & Aist, 1999).  It provides help to the student and highlights words as it speaks.   

 

Figure 1. The interface of Reading Tutor (Aist, Kort, Reilly, Mostow, & Picard, 2002). 

Learning Gains 

 No learning gains have been reported as a measure of Reading Tutor’s effectiveness.   
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SQL-Tutor 

SQL-Tutor, as the name suggests, tutors the SQL programming language.  While tutoring 

a programming language alone does not make SQL-Tutor stand out from similar systems, it is 

unique in its approach and underlying structure being the first of its kind to implement 

constraint-based modeling.  Nineteen articles from the years of 1996-2016 provided the basis for 

this review. 

Domain Model 

 What content does this ITS cover? SQL-Tutor is an ITS for the SQL programming 

language for upper-level undergraduate students (Mitrovic, 1997; Zhou, Wang, & Ng, 1996).  

More specifically, it covers the SELECT statement and querying databases (Mitrovic & Ohlsson, 

2016).   

 What level of understanding is the goal? SQL-Tutor assumes that students were 

exposed to concepts of database management prior to interacting with the tutor.  As such, it is 

meant to be a practice environment that complements but does not substitute the classroom 

(Mitrovic, 1997) and aims for mastery of the topics (Mitrovic, Martin, & Mayo, 2002).   

 What is used to create the expert? The expert for SQL-Tutor is based on over 600 IF-

THEN statements called constraints (Mitrovic & Martin, 2003) which were created by the author 

(Mitrovic & Ohlsson, 1999).  These constraints are similar in structure to production rules 

(sharing an IF-THEN structure), but they differ in purpose and nature.  Production rules state that 

IF x is true, THEN do this thing.  Constraints say that IF condition X is true, THEN condition Y 

better also be true.  These IF-THEN statements can be written as an ordered pair as well (Cr, Cs) 

where Cr is a relevance condition and Cs is a satisfaction condition (Mitrovic, 1997).  

Constraints are written such that they represent correct domain knowledge which is the same 
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across all student populations and are general enough that they can be tested against any problem 

(Mitrovic & Ohlsson, 1999).  Ideal answers are written for problems so that the tutor can trace a 

correct constraint path, but constraints can recognize correct student solutions even if they are 

not ideal so long as no constraints are violated.  If a constraint is violated, that means the student 

has a misconception or buggy knowledge.  Constraints are limited in that they cannot diagnose 

what caused the error, but instead focuses on teaching correct domain knowledge since feedback 

can be given for violated domain principles (Mitrovic, 2010).  The model, called Constraint-

based Modeling (CBM) is based on Ohlsson’s theory on learning from performance errors 

(Ohlsson, 1996) and SQL-Tutor serves as the first constraint-based tutor.  More explanation of 

CBM is given in the Student Model section below. 

Tutoring Model 

 Strategies. SQL-Tutor’s developers claim SQL-Tutor is an “integration of ideas from 

several theories of learning” (Mitrovic, 1997) including ACT-R (Anderson, 1993), impasse-

driven learning (VanLehn, 1988), general architecture of intelligence SOAR (Rosenbloom, 

Laird, Newell, & McCarl, 1991), and Ohlsson’s theory on learning from performance errors 

(1996).  Learning has been conceptualized to happen in three phases (Mitrovic, 1997).  First, a 

relatively short phase happens wherein students acquire new knowledge in declarative form (also 

known as conceptual learning).  The second phase is longer and involves practicing and applying 

existing knowledge and acquiring new knowledge.  This has been called procedural knowledge 

by Anderson (Anderson, 1993).  VanLehn (1988) says the process of acquiring new knowledge 

happens because student reach an impasse and must use the resources available to them to solve 

the problem, while Ohlsson (1996) says that students can also learn from their errors.   
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 SQL-Tutor also uses the zone of proximal development in determining the level of 

difficulty for the next problem (Mitrovic, Martin, & Mayo, 2002).  SQL-Tutor predicts the 

number of errors a student will make then chooses a problem where a student will not make too 

few or too many mistakes.   

In summary, SQL-Tutor is a guided discovery environment (Mitrovic, 1997).  The tutor 

and student work cooperatively to achieve learning goals.  The student can have the choice of 

being in control of problem and topic selection while the tutor will create a learning graph that 

the student can traverse.  The student can also choose to let the system be in control of topic 

selection and determining what the student needs to learn (Zhou et al., 1996).   

Tactics. SQL-Tutor’s use of feedback will be discussed as a tutoring tactic below.   

 Feedback. Feedback generated by the system originally had five levels (Mitrovic, 1997; 

Mitrovic & Ohlsson, 1999): (a) positive or negative feedback to let the student know if the 

solution is correct or not, (b) an error flag, (c) hints (gives information about the type of error), 

(d) a partial solution (gives the correct content of a clause in the SELECT statement), and (e) a 

complete solution (gives a full, correct solution).  Later, a sixth level of feedback was added 

called “all errors” where every error made was reported to the student instead of addressing one 

at a time like is typical for the system (Mitrovic & Martin, 2000; Mitrovic & Ohlsson, 1999). 

As students are working on problems, feedback is offered after a student submits their 

answer making the feedback answer-based instead of step-based (Mitrovic & Ohlsson, 1999).  

SQL-Tutor will never offer more than the hint level of feedback, but students can request 

partial/complete solutions by clicking a button (Mitrovic & Ohlsson, 1999).   

Feedback is generated for a student by determining which constraints apply to the current 

problem.  Then, using the constraints to build an answer as close as possible to the student’s 
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attempt, SQL-Tutor can provide feedback by comparing the constraint paths to see which are 

being violated by the student’s answer.   

The content for feedback was created intuitively at first with no supporting theory behind 

it.  So, using Ohlsson’s theory (1996), the feedback was changed to make sure it told the student 

what the error was, what constitutes the error, and reiterate the domain principles that were 

violated (Mitrovic, 2010).   

Student Model 

 How is the student model created? Since there can be no correct answer that violates 

domain principles, constraint-based modeling holds that the diagnostic information of student 

errors is not hidden in the sequence of student’s actions but in the problem state a student arrives 

at (Mitrovic, 1997).  This allows CBM to be more permissive than model tracing since it adopts 

an innocent-until-proven-guilty mindset.  If no constraints are violated, then the answer is 

assumed to be correct whereas model tracing would usually mark an unrecognized answer as 

wrong (Mitrovic et al., 2007). 

 Constraints come in two forms in SQL-Tutor (Mitrovic & Ohlsson, 2016).  First, there 

are syntax constraints which checks for the syntactical correctness of the student’s solution.  

Second, there are semantic constraints which check to see if the solution is correct for the current 

problem by comparing it to the ideal solution and the constraints that it uses.  Both types of 

constraints are problem-independent which makes it easier to add new problems. 

 The student model itself is generated by propagating the student answer through the 

relevance (Cr) and satisfaction (Cs) networks of the constraints (Mitrovic, 1997; Martin, 1999).  

In other words, the student solution goes through all the Cr portions of the constraints to see 

which constraints apply to the current solution.  Then, it works through the Cs portion of each 
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constraint to see if anything is violated.  A list of all satisfied and violated constraints is then 

generated.   

The model uses these two lists to probabilistically determine if the constraint is mastered 

(Mitrovic et al., 2002).  There are three heuristics for updating the probabilities.  First, if a 

constraint is satisfied, then the probability it is mastered increases by 10% of 1 minus its current 

mastered probability (1-P(Masteredc = Yes)).  Second, if the constraint is violated and no 

feedback is given, then the probability it is mastered decreases by 20%.  Third, if the constraint is 

violated but feedback is given, then the probability of it being mastered increases by 20% of (1-

P(Masteredc = Yes)).   

 What issues are there regarding the development of the student model? Creating a 

student model is a complex process and many modeling approaches insist on cognitive validity 

and completeness (Mitrovic, 1998).  The authors of SQL-Tutor argue that the student does not 

need to be cognitively valid and complete and that you can get away with a model that is good 

enough citing that human teachers do not have valid and complete cognitive models of their 

student, yet they still do well at their job (Mitrovic, 1998).   

 What data is collected? Each time a constraint is applicable to a solution, properties of 

that constraint are incremented (a used counter, a violated counter, and a relevant counter) 

(Martin, 1999; Mitrovic, 1999).  This information creates a long-term history of each constraint, 

but a complete history cannot always be used since students are supposed to improve with time 

(Mitrovic, 2010).  So instead, a window of time is used to determine the estimate of student 

knowledge.   

 In addition to performance on constraints, SQL-Tutor collects information about the 

student, such as reports of their self-efficacy.  Students are asked during their first session 
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whether they are novices, intermediate, or experienced (Mitrovic et al., 2002).  As the student 

uses the tutor, their level is updated.  For example, if a student solves two or more problems that 

are at or above their current level, they will be promoted to the next level.  This information is 

used in determining the level of difficulty for the next problem.   

 Difficulty of problems is also dynamically recorded based off student performance (Hull 

& du Boulay, 2015).  Problems receive a difficulty level ranging from 1-9 (easy to hard).  With 

each student attempt on a problem the difficulty level of all problems is reevaluated based on the 

student’s performance.   

Interface 

 SQL-Tutor’s web-based interface is designed to promote problem solving through a 

learning-by-doing format (Mitrovic, 1997).  It does so by reducing the memory load of students 

by displaying the database’s schema and the current problem, providing the basic structure of the 

query, and providing explanations of the elements of SQL (Mitrovic, 1997).  These parts of the 

interface are located in three separate windows that are always visible.   

 Another window was created that showed a skillometer to each student.  The skillometer 

opens up the student model to show the student the system’s estimates of what they know 

(Mitrovic & Martin, 2002).  The constraints were categorized into the six clauses of the SELECT 

query since displaying each constraint is not feasible (Mitrovic & Martin, 2003).  The mastery of 

each clause is based on aggregate information for each constraint.   

 SQL-Tutor integrated a pedagogical agent called Smart Egg into their tutoring (Mitrovic 

& Suraweera, 2000).  Smart Egg is a cartoon-like character that explains the system’s functions, 

provides feedback, and lets the student know of additional ways they can receive help.  Students 

appeared to have liked Smart Egg, as the approval rating of the entire system had a mean of 4.5 
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(out of 5) compared to a control setting without Smart Egg of 3.83 (Mitrovic & Suraweera, 

2000).  Another evaluation of the system (without Smart Egg) showed that 50% of students 

agreed that they enjoyed working with SQL-Tutor (Mitrovic & Ohlsson, 1999).   

 

Figure 2. The SQL-Tutor interface (Hull & du Boulay, 2015). 

Learning Gains 

 SQL-Tutor suggests that the use of effect sizes is not the most appropriate measure of 

learning gains since training histories are different for each ITS (Mitrovic & Ohlsson, 1999).  

Instead, they recommend looking at and comparing learning curves to see how quickly 

knowledge is learned.  For example, by plotting the probability that a student will violate a 

constraint against the number of times the constraint is relevant for a problem, you can get a 

learning curve that demonstrates the power law of practice (Martin et al., 2005).  The argument 

is made that those systems that provide a better power law fit may be superior.  Using learning 

curves have their own disadvantages as well such as the difficulty of problems causing steeper 

learning curves.  To compare one model to another, it would need the exact same problem sets.  
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They suggest that some way of normalizing the learning curves is needed (Martin et al., 2005).  

Even with the emphasis on learning curves, SQL-Tutor has reported an effect size.  One study 

reported an effect size of 0.66 sigma (Mitrovic et al., 2002).  Unfortunately, this was a non-

controlled study where 20 students self-selected to participate to use SQL-Tutor for two hours 

before they took the final exam.   
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Wayang Outpost 

Wayang Outpost makes full use of multimedia as it engages students in a game-like 

environment where students demonstrate math skills as they attempt to solve problems relating 

to their adventure.  The developers of Wayang Outpost also address issues like gender and 

ethnicity and the role they play in a student’s self-efficacy towards mathematics.  A total of 27 

articles from 2003-2014 were used as the basis for review.   

Domain Model 

 What content does this ITS cover? Wayang Outpost was designed to tutor geometry 

specifically for the SAT (Arroyo, Beal, et al., 2003).  It was eventually extended to include 

statistics, and algebra (Arroyo, Mehranian, & Woolf, 2010).   

 What level of understanding is the goal? Wayang Outpost not only teaches students to 

a level of mastery (Arroyo, Woolf, & Shanabrook, 2012; Wixon et al., 2014), but also to a level 

of fluency (Arroyo, Royer, & Woolf, 2011).  Fluency is defined here as “the speed with which 

students either retrieve or calculate answers to basic math” (Arroyo et al., 2012).  In other words, 

not only are students expected to be able to demonstrate the skills of the domain, but they also 

must do so quickly.  While there is a focus on speed, it is not intended to be a regression to the 

skill and drill methods of teaching.  The intent is to make the skills more readily available to 

students as they move onto more complex problem-solving activities.   

 What is used to create the expert? The expert is based on SAT released problems 

which are then embedded into an educational game environment where students must solve the 

problems. 
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Tutoring Model 

 Strategies. Wayang Outpost is based on a cognitive apprenticeship between the tutor and 

the student (Wixon et al., 2014).  There are several phases to this cognitive apprenticeship which 

are apparent in the game environment: modeling, practice with coaching, scaffolding, and 

reflection.  The cognitive apprenticeship also utilizes the zone of proximal development to 

ensure students are receiving enough of a challenge by making sure that each problem has a 

small number of mistakes and limiting the amount of time spent on a problem (Arroyo, Beal, et 

al., 2003; Wixon et al., 2014).   

 Wayang Outpost is unique in that its tutoring strategies relies on educational gaming (Tai, 

Arroyo, & Woolf, 2013) and multimedia learning theory (Wixon et al., 2014).  Wayang Outpost 

uses in-game characters to act as role models for students (especially for girls) and video-game-

like adventures as a motivational strategy for students (Arroyo, Beal, Murray, Walles, & Woolf, 

2004; Arroyo, Walles, Beal, & Woolf, 2003).   

 Wayang Outpost addresses the issue of transfer to make sure that students are able to 

apply what they learn in several contexts (Arroyo, Beal, et al., 2003).  Problems are organized 

into short-term transfer and long-term transfer problems.  Short-term transfer problems include 

variations of the SAT problem (with different numbers and minor changes in figures) and are 

multiple choice while long-term transfers involve more of the gaming component.  Long-term 

transfer problems are couched in animated adventures where students solve real-world math 

problems which are part of a storyline for the game.  The problems that are solved in the 

adventures rely on the same skills that are in the short-term transfer sets, but are more 

sophisticated in that they are not multiple choice.  How well students do on the adventure 
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problems is a sign of how well the skills transferred to a new context (Arroyo, Walles, Beal, & 

Woolf, 2003).   

 Another unique feature of Wayang Outpost is its focus on gender and minority 

differences (Tai, Arroyo, & Woolf, 2013).  Recognizing that girls and other minorities tend to 

have lower self-efficacy regarding math skill (Arroyo, Woolf, et al., 2010), Wayang Outpost 

addresses this issue in one way by making the scientists in the game based off actual female 

scientists to make the game female-friendly.  Additional pedagogical support (i.e., pedagogical 

agents) are also sensitive to gender and minority differences by having agents that are gendered 

and can be of different racial backgrounds (Tai et al., 2013).  Wayang Outpost also downplays 

the role of performance in favor of learning by promoting effort and perseverance and suggesting 

to the student that intelligence is malleable (Arroyo, Woolf, et al., 2010).  Their research 

suggests that the needs of boys and girls could be different, and that the student model should 

consider gender in its approach for interventions (Arroyo, Woolf, Cooper, Burleson, & Muldner, 

2011).   

Tactics. The tutoring tactics of Wayang Outpost are now discussed.  Specifically, the 

hinting, adaptiveness, use of multimedia, and feedback are discussed. 

 Hints. Wayang Outpost implements two distinct types of hints with one being based on 

an analytical approach and the other based on a spatial estimates approach (Arroyo, Beal, et al., 

2003).  The analytical approach focuses on computation and numeric help.  The spatial estimates 

approach helps to teach the student heuristics and estimation techniques.  The type of hint given 

is chosen based on estimates of how effective that hint would be for a student.  This can be 

ascertained by a spatial ability test taken before interacting with the tutor (Arroyo, Woolf, & 

Beal, 2006).   
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 Hints go from general to more specific and can be skipped (Arroyo et al., 2004).  When a 

hint is skipped, the next hint will provide a summary of previous hint while giving a full 

explanation of the current hint.  Each new hint is delivered with multimedia to simulate what a 

human tutor might do (e.g., drawing, highlighting); Arroyo, Beal, et al., 2003).   

 Adaptive. There is an adaptive module within Wayang Outpost that allows the 

sequencing of problems (Arroyo et al., 2006).  Initially, experts determined the difficulty of each 

problem and the module would select based off that (Arroyo Mehranian, et al., 2010).  However, 

the expert-defined difficulty of a problem did not necessarily line up with the perceived difficulty 

students had of the problem.  To reconcile the two, Wayang Outpost started using data (number 

of attempts to solve a problem, amount of time spent on a problem, and the amount of help 

required or requested) to infer the student’s perceived difficulty (Arroyo Mehranian, et al., 

2010).  Later, students were even asked if they wanted to see easier or harder problems (Tai et 

al., 2013).   

 Multimedia. While using multimedia to present hints, feedback, and problems may be 

useful in motivating students it comes with some costs.  Problems are much more sophisticated 

in that animations and sound are used and become costlier because of that.  This limits the 

number of problems Wayang Outpost can present since presenting the same problems with 

different numbers can be repetitive for students (Arroyo et al., 2004).   

 Feedback. The first round of feedback that students can get is flag feedback where a 

question is marked red if it is wrong and green if it is correct (Arroyo, Woolf, et al., 2010; 

Arroyo, Woolf, et al., 2011).  Additional feedback is given to the student via the pedagogical 

agent present (Arroyo Mehranian, et al., 2010).  These pedagogical agents are considered 

learning companions in that they are meant to be learning with the student and not be giving 
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instruction, so the nature of their feedback is different from what one might expect.  Based on the 

student’s effort model, the learning companions will give affective and metacognitive feedback.  

For example, the learning companions had about 50 different messages that emphasize the 

malleability of intelligence and the importance of effort and perseverance (Arroyo, Woolf, et al., 

2010).  The learning companions also displayed emotions in their response to effort.  If a student 

is deemed to not have exerted much effort, the learning companion will seem unimpressed (Tai 

et al., 2013).  Messages from the learning companions could also be metacognitive in nature by 

helping the students with problem-solving strategies (Arroyo, Woolf, et al., 2010).   

Student Model 

 How is the student model created? Wayang Outpost started with 70 distinct problems 

which was thought to be too few to require a sophisticated algorithm that adapted problems 

based on skill mastery level (Arroyo et al., 2004).  Instead, focus was spent on optimizing 

problem sequencing so that students performed slightly worse than the average behavior 

expected for a problem (called the desired problem difficulty).  This level of difficulty was 

calculated from the log files of previous users based on the number of hints seen and the 

mistakes that were made (Arroyo et al., 2004).  A skill’s mastery levels were still inferred based 

on student performance though by using a variation of item response theory to perform 

knowledge tracing (Ferguson, Arroyo, Mahadevan, Woolf, & Barto, 2006; Johns & Woolf, 

2006).   

 However, Wayang Outpost continued to be developed to focus on the student’s effort in 

solving problems.  In 2010 (Arroyo Mehranian, et al., 2010), an effort-based model was created 

that was able to accomplish more than knowledge tracing could on its own.  Based on the 

number of hints requested, the number of attempts to solve a problem, and the time it took to 
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solve a problem, Wayang Outpost can discern between behaviors that relate to student 

engagement in addition to behaviors related to skill mastery (Arroyo Mehranian, et al., 2010).  

For example, this model could detect when a student demonstrated mastery without much effort.  

In response, the tutor can increase the desired problem difficulty and maybe show the student’s 

learning progress.  Another example could be that the student is avoiding hints but trying hard.  

In that case, Wayang Outpost would respond by reducing the problem difficulty and maybe 

offering hints on the next incorrect answer.  This model further demonstrates Wayang Outpost’s 

focus on effort over performance.   

 What issues are there regarding the development of the student model? Having 

based their tutor on released SAT items, some difficulties emerged in creating a student model.  

First, there is no clear idea of what the problem difficulty will be on future versions of the SAT 

nor which skills will be implemented.  Second, the skills that are used are not used in more than 

a few problems which makes estimating student knowledge difficult (Arroyo et al., 2004).  These 

issues may have been encouragement for shifting from a traditional knowledge tracing model to 

one that focuses more on effort.   

 Another issue common with mastery learning is the idea of being stuck in a mastery 

loop—that is, unable to attain mastery.  Wayang Outpost addresses this issue by exiting the 

mastery loop under three conditions (Arroyo Mehranian, et al., 2010): when the topic mastery is 

reached, when the tutor has persistent difficulty in finding a problem of appropriate difficulty 

level, or when the student reaching the maximum amount of time or problems allowed to spend 

on a topic.   

 What data is collected? Wayang Outpost starts with a pretest to determine the initial 

student model by finding out which skills are already mastered (Ferguson et al., 2006).  The 
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pretest also serves as a posttest comparison to be able to measure learning gains.  Wayang 

Outpost also collects information on spatial reasoning and math fact retrieval skills prior to the 

student using the system (Arroyo et al., 2006).   

 Once the student begins tutoring, every interaction between the student and the tutor is 

logged (Arroyo & Woolf, 2005).  Performance variables such as time spent on a problem, the 

number of problems seen, the speed of a response, and the number of hints viewed are all part of 

the log.  Non-performance variables like affect are also recorded like when students are surveyed 

about how they are currently feeling while using the system (Arroyo, Woolf, Royer, & Tai, 

2009).   

 All these data are collected and classified to detect student attitudes and beliefs so that the 

tutor can respond appropriately (Arroyo et al., 2004).  Take gaming behavior as an example.  

Using student data, Wayang Outpost can identify two gaming behaviors that are most prevalent 

and respond to them: (a) being unmotivated and exhausting hints so as to get a bottom-out hint or 

(b) being unmotivated and quickly guessing for a correct answer (Arroyo et al., 2006).  Other 

student behavior patterns can be determined from the data as well such as when a student is 

guessing, solving problems independently and accurately or using multimedia help to learn (Beal 

& Cohen, 2008).  Being able to classify student behaviors this way allows the tutor to chain 

behaviors together in order to predict future behaviors (Beal & Cohen, 2008).   

 Student affect is also determined from more than just a survey.  Wayang Outpost used 

four sensors to determine affect (Arroyo, Cooper, et al., 2009): facial recognition software, a 

wireless bracelet to measure skin conductivity, a pressure mouse, and pressure sensitive seat 

cushions and back pad.  These sensors have prediction accuracies of 78-87% and can be used in 
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tailoring tutoring tactics to student performance and emotional states (Cooper, Muldner, Arroyo, 

Woolf, & Burleson, 2010).   

Interface 

 Wayang Outpost is set at a research station in the Borneo rainforest where students play a 

game to address environmental issues surrounding orangutans.  Wayang Outpost is web-based 

and uses multimedia to direct attention, animate parts of the solution, emphasize concepts, and 

motivate students (Arroyo, Beal, et al., 2003).   

 A pedagogical agent has always been a part of the tutoring system.  The agent started off 

as an Indonesian shadow puppet who presented the problems to students and provided step-by-

step help (Arroyo, Beal, et al., 2003).  The shadow puppet was eventually replaced by a learning 

companion named Jake or Jane and could be a boy or girl and of an ethnic background (Arroyo, 

Woolf, et al., 2009).  These two learning companions were exactly the same in the help they 

offered but differed in the voice that was used.  Jake and Jane were empathic agents that 

reflected the emotions of the students since Jake and Jane are solving the problems along with 

the students (Arroyo, Woolf, et al., 2009).  They react only when a student has answered a 

problem correctly or incorrectly and will either provide metacognitive or affective feedback or 

direct the student to use the help button for further assistance from the system (Cooper et al., 

2009).  While a learning companion was present, students reported significantly less frustration 

and more interest for the task at hand (Arroyo, Woolf, et al., 2010).   

 Overall Wayang Outpost provides relevant information that explores the different 

cognitive and affective needs of boys and girls.  For example, females reported having a better 

learning experience with a learning companion present whereas males reported a better 

experience without one present (Arroyo, Woolf, et al., 2010).  Other behavioral differences were 
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noted such as females would game less and spend more time on problems when a learning 

companion was present (Arroyo, Woolf, et al., 2010). 

 While a virtual learning companion seems to have its uses, Wayang Outpost recognizes 

the importance of collaboration with other students in the classroom.  As the authors of the 

system observed students using Wayang Outpost, they noticed that students would frequently 

work together to solve problems but that was made difficult when students were working on 

separate problems.  To facilitate this collaboration, a “Go To’ button was added to the interface 

so that students could work on the same problem at the same time (Arroyo, Woolf, & 

Shanabrook, 2012).   

 

Figure 1. The user interface of Wayang Outpost (Arroyo et al., 2012). 

Learning Gains 

 While the pre- and posttests that students take can act as measures of learning gains, not 

much was found that reported learning gains of the system.  One study showed a 27% increase 

from pre- to posttest (Arroyo et al., 2006).  Another study showed that scores improved by an 

average of 10% after three hours of instruction and 20% after four to five hours of instruction 
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with the tutor (Arroyo et al., 2012).  One more study compared performance on state 

standardized exams where students who used Wayang Outpost scored a mean of 92% versus a 

control who averaged 76% (Wixon et al., 2014).   
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