

Brigham Young University BYU ScholarsArchive

All Theses and Dissertations

2009-11-19

Synthesis and Evaluation of N6,5'-Bis-Ureido-5'-Amino-5'-Deoxyadenosine Derivatives: Novel Nucleosides with Antiproliferative and Protein Kinase Binding Activities

Marcelio Oliveira Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the <u>Biochemistry Commons</u>, and the <u>Chemistry Commons</u>

BYU ScholarsArchive Citation

Oliveira, Marcelio, "Synthesis and Evaluation of N6,5'-Bis-Ureido-5'-Amino-5'-Deoxyadenosine Derivatives: Novel Nucleosides with Antiproliferative and Protein Kinase Binding Activities" (2009). *All Theses and Dissertations*. 1964. https://scholarsarchive.byu.edu/etd/1964

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Synthesis and Evaluation of N⁶,5'-Bis-ureido-5'-amino-5'-deoxyadenosine

Derivatives: Novel Nucleosides with Antiproliferative

and Protein Kinase Binding Activities

by

Marcélio de Moura Oliveira

A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of

Master of Science

Matt A. Peterson, Committee Chair Young Wan Ham, Committee Member Roger G. Harrison, Committee Member

Department of Chemistry and Biochemistry

Brigham Young University

December 2009

Copyright © 2009 Marcelio de Moura Oliveira

All Rights Reserved

ABSTRACT

Synthesis and Evaluation of N⁶,5'-Bis-ureido-5'-amino-5'-deoxyadenosine

Derivatives: Novel Nucleosides with Antiproliferative

and Protein Kinase Binding Activities

Marcélio de Moura Oliveira

Department of Chemistry and Biochemistry

Master of Science

A new series of N^{6} ,5'-bis-ureido-5'-amino-5'-deoxyadenosine derivatives was prepared and evaluated for anticancer activities using the NCI 60 panel of human cancers. Certain of the derivatives showed promising activities (low micromolar GI₅₀'s) against several of the representative cancers. These included cell lines from the following general cell types in the NCI 60: Leukemia, Breast, Central Nervous System, Non-Small Cell Lung, Ovarian, Prostate, Renal, and Colon cancers. Select compounds were also screened for their affinities for protein kinases. The synthesis of the compounds was straightforward and involved N⁶ acylation with arylisocyanates, preceded by activation and nucleophilic substitution of the 5'-position to give the desired 5'-azido-5'-deoxyadenosine derivatives. Reduction of the 5'-azido function with either H₂/Pd-C, or Ph₃P/H₂O, gave the desired 5'amino-5'-deoxyadenosine products. Acylation of the 5'-amino group with *N*-methyl 4nitrophenylcarbamate gave the N⁶,5'-bis-ureido-5'-amino-5'-deoxyadenosine products. Yields ranged from good (50–75%) to excellent (75–95%) for all synthetic transformations.

Keywords: Anti-cancer agents, N⁶,5'-bis-ureido deoxyadenosine, protein kinases

ACKNOWLEDGMENTS

I would like to thank my family for its support over the last two years. I would like to thank my friends and colleagues Jadd Shelton and Chris Cuttler for all their help in developing synthesis as well as their companionship. I would like to thank my friend and advisor Dr. Matt A. Peterson for all his instructions, kindness, patience and humor during our work together. I would like to thank Dr. Roger G. Harrison and Dr. Young Wan Ham for being members of my graduate committee. I'm grateful for all the help from Ms. Janet Fonoimoana in all the paperwork and in all the various administrative details that were necessary to be made until now. Finally, I would like to thank the Department of Chemistry and Biochemistry at BYU for the financial support that was used for the development of this work, as well as for providing the wonderful environment that was shared with me over the last two years.

Thanks to all.

TABLE OF CONTENTS

Table of Contents	vii
List of Figures	viii
List of Schemes	ix
List of Tables	X
Introduction	1
Background	4
Results and Discussion	
Conclusion	
Experimental Section	
Appendix	
References	50

LIST OF FIGURES

Figure 1. Structures of cancer-related protein kinase inhibitors Imatinib, Gefitinib, and Erlotinib
Figure 2. Pharmacophore model of the ATP-binding site of protein kinases
Figure 3. Potential HIV integrase inhibitors prepared by Peterson et al
Figure 4. 3'-End processing of viral DNA by HIV integrase
Figure 5. Strand transfer of viral DNA by HIV integrase
Figure 6. Putative binding of adenosine derivatives in the active site of HIV integrase6
Figure 7. Inhibition of binding of protein kinases to ATP-binding site ligands by 1 11
Figure 8. Binding inhibition \ge 30% observed in 11 of 353 protein kinases
Figure 9. Selective inhibition of binding of Alk6 by compound 1 13
Figure 10. Selective inhibition of binding to p38 protein kinases by 1 13
Figure 11. Selective inhibition of binding to PAK protein kinases by 1 13
Figure 12. Inhibition of cancer-related protein kinases by compound 1 15
Figure 13. Quadrants for SAR of compound 116
Figure 14. Targets for structure activity study (SAR)17
Figure 15. Structures of inventory compounds

LIST OF SCHEMES

Scheme 1.	Synthesis of compounds 9 and 10	.18
Scheme 2.	Synthesis of compound 11	.18
Scheme 3.	Synthetic targets for more in-depth SAR	23

LIST OF TABLES

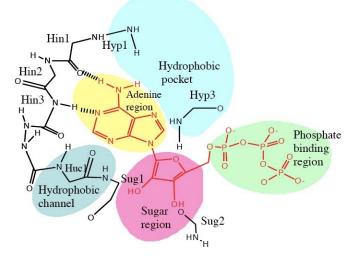
Table 1. Activities of test compounds in biochemical assays	6
Table 2. Results of single dose growth inhibition assay	8
Table 3. Results of multi-dose inhibition assay for compound 1	9
Table 4. Results of multi-dose inhibition assay for compound 2	10
Table 5. Single dose growth inhibition assay for 9 and 10	21

Introduction

Protein kinases constitute a large family of homologous proteins involved with control of such key cellular processes as cell growth and differentiation, apoptosis, and signal transduction. Protein kinases catalyze phosphorylation of hydroxyl groups of serine, threonine, or tyrosine in a substrate protein. This phosphorylation is executed with transfer of the gamma phosphate group of ATP or GTP to the substrate protein. The phosphorylated protein then undergoes a series of binding events with downstream proteins, thus setting in motion the cascade of reactions typically involved in signal transduction. Signal transduction processes are extremely complex, with numerous instances of pathway "cross talk" and/or reversal of signal outcome that have been documented. The key role played by protein kinases in cell growth and differentiation has prompted their investigation as promising targets for anticancer drug design.¹ The high incidence of these enzymes in cancer cells corroborates their importance as interesting targets in cancer treatment and the correlation between their aberrant expression and tumorigenesis has been well documented.² In recent years, protein kinases have emerged as one of the most important targets for drug development research, and it is estimated that approximately 25% of all pharmaceutical research focuses on protein kinases.³ Studies show that approximately 90% of patients with chronic myeloid leukemia (CML) exhibit a chromosomal defect that results in a hyper expression of certain kinases.⁴ In addition, chemotherapy that targets protein kinases shows efficiency of about 90% when focused on inhibition of these enzymes.⁵

Some recently developed drugs that have been approved for cancer treatment that function as protein kinase inhibitors include Imatinib Mesilate (in chronic myeloid leukemia);⁶ Gefitinib (in non-small cell lung cancer);⁷ and Erlotinib (in non-small cell lung cancer) (**Figure 1**).⁸

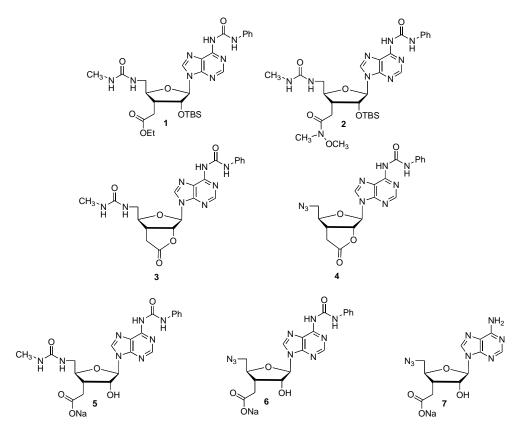
Figure 1. Structures of cancer-related protein kinase inhibitors Imatinib, Gefitinib and Erlotinib.


Among the various approaches to discovery of protein kinase inhibitors that have been evaluated to date, targeting the catalytic site with ATP-competitive inhibitors has proven most successful.⁹ Other approaches involving non-competitive or allosteric inhibitors have met with much more limited success.⁶ To date, over 50 crystal structures of protein kinases complexed with ATP site-directed inhibitors are now available, thus confirming the effectiveness of the ATP-binding site as a target for drug design.

The currently accepted pharmacophore model for the ATP-binding pocket of protein kinases is illustrated in Figure 2. This model consists of the following key features:

(1) Adenine binding region. This region consists of a bidentate hydrogen-bonding donor-acceptor motif in the hinge region. Hydrogen bonds between the protein backbone and N1 and N6 occur between a hinge region amide NH and carbonyl moiety, respectively. These interactions constitute the adenine anchoring interactions and many potent inhibitors exploit at least one of these hydrogen bond interactions.

- (2) Hydrophobic pocket. This hydrophobic region flanks the region proximal to N6 of the adenine heterocycle. This pocket has been exploited by numerous inhibitors and plays an important role for inhibitor selectivity.
- (3) Phosphate binding pocket. This pocket consists of positively charged amino acid residues such as lysine and/or arginine. Electrostatic interactions between the negatively charged phosphate and positively charged amino acid side chains occur in this region. This pocket appears to be the least important due to high solvent exposure, but it has been used to improve selectivity and gain additional binding affinity.
- (4) Sugar binding region. This region, with very few exceptions, is hydrophilic and is designed to bind to the ribose hydroxyls through hydrogen-bond donor-acceptor interactions.
- (5) Hyrophobic channel. This channel lies between the sugar binding and hinge regions and can exist in an open, solvent exposed, configuration. Since it is not utilized by ATP, it can be exploited to gain inhibitor binding affinity.


Figure 2. Pharmacophore model of the ATP-binding site of protein kinases.⁹

Background

Recently, N^6 ,5'-bis-ureidoadenosine compounds **1–7** were synthesized by Peterson et al. and select members of these compounds showed interesting cytotoxic properties against MT2 lymphoma cells in vitro (Figure 3).¹⁰

Figure 3. Potential HIV integrase inhibitors prepared by Peterson et al.

The original motivation for preparing these compounds was their potential utility as HIV integrase inhbitors. HIV integrase is one of three enzymes encoded for by HIV. These include reverse transcriptase, protease, and integrase. HIV integrase possesses two enzymatic activities: (1) 3'-end processing, and (2) strand transfer. Each activity involves an Mg^{2+} -promoted chemical reaction in which the Mg^{2+} and associated amino acid residues are in close proximity to the 3'-hydroxyl of a 2'-deoxyadenosine residue of the viral DNA substrate (Figures 4 and 5).

Figure 4. 3'-End processing of viral DNA by HIV integrase.

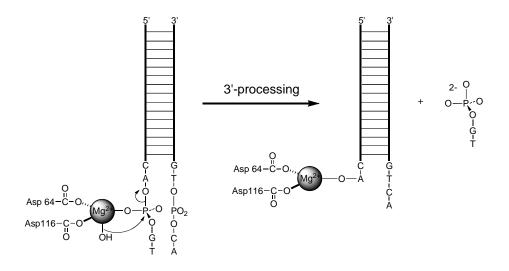
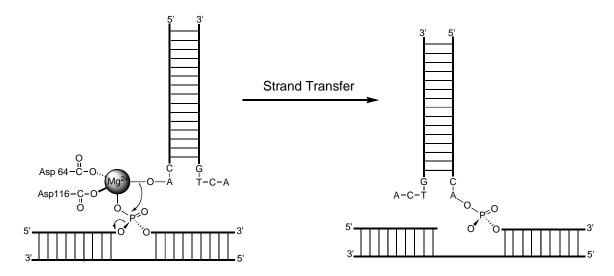



Figure 5. Strand transfer of viral DNA by HIV integrase.

Peterson et al. reasoned that appropriately derivatized adenosine analogues with metalbinding moieties attached to the 3'-position might be expected to bind to the active site of HIV integrase and thus inhibit the enzyme (Figure 6). Unfortunately, compounds 1-7were devoid of anti-HIV activity and failed to exhibit measurable inhibition of HIV integrase at the concentrations tested (Table 1).

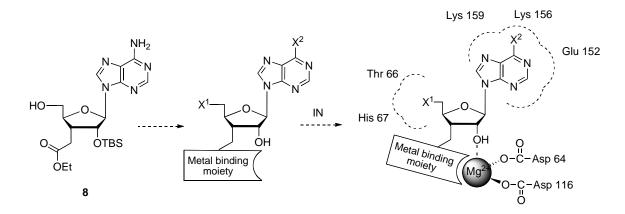


Figure 6. Putative binding of adenosine derivatives in the active site of HIV integrase.

Table 1. Activities of test compounds in biochemical assays

				IC ₅₀	$d(\mu M)$
Compd	$\mathrm{ED}_{50}{}^{a}\left(\mu\mathrm{M}\right)$	$\mathrm{CT}_{50}{}^{b}\left(\mu\mathrm{M}\right)$	$CT_5^c(\mu M)$	EPe	STf
1	>13	37.8	6.2	>10	>10
2	>17	22.6	11.3	>10	>10
3	>34	58.5	23.2	>10	>10
4	>19	21.9	9.3	>10	>10
5	>98	385	143	>10	>10
6	>149	812	162	>10	>10
7	>62	175	21	>10	>10

^{*a*}Inhibitory concentration required to protect MT-2 cells from 50% viral induced cell death. b Cytotoxic concentration required to inhibit cell growth by 50%.

^cCytotoxic concentration required to inhibit cell growth by 5%.

^dInhibitory concentration required to inhibit IN 3'-end processing (EP) or strand transfer (ST) by 50%.

^e3'-End processing.

^fStrand transfer.

The interesting cytotoxicities of compounds **1–4** prompted our evaluation of these compounds in the NCI 60 human cancer screen. The NCI 60 human cancer screen is a free service offered by the US National Cancer Institute as a rapid means of screening potential anti-cancer agents as a service to the public. The assay consists of colorimetric

determination of total cell count based on a sulphorhodamine-red protein assay.¹¹ The screening process is a two-tiered process involving a rapid single dose assay (performed at 10 μ M compound concentration), followed by more extensive multi-dose testing. The results for the single dose assay for compounds **1–4** are illustrated in Table 2. Compounds **1** and **2** showed promising antiproliferative activities against most of the leukemias, and several other cell lines were also of interest. Importantly, COLO 205 was inhibited by nearly 100% in the single dose assay by compound **2**. Compounds **3** and **4** were much less active, suggesting that perhaps the lactone moiety is saponified to the free carboxylic acid in the assay conditions and may not be able to traverse the cell member to interact with their supposed intracellular target(s). The promising activities of compounds **1–2** in the single dose assay assured their candidacy for the multi-dose screen. The results from these assays are shown in Tables 3 and 4.

Compounds **1** and **2** showed low μ M inhibition of all six leukemias tested (Tables 3 and 4). A significant number of cell lines from the other subclasses were also inhibited at the low μ M level. Compound **2** appeared to be somewhat more toxic than compound **1** toward the leukemia cell lines as evidenced by LC₅₀ values for **2** ranging from 9.43–59.0 μ M for leukemias SR, HL-60(TB), and RPMI-8226; in contrast to the LC₅₀ values for compound **1** which were > 100 μ M for all leukemias except RPMI-8226. LC₅₀ values for compound **1** and **2** were identical for leukemia RPMI-8226 (i.e., 59.0 μ M). Compound **1** was more toxic than **2** (16 cell lines showed LC₅₀ values < 100 μ M for compound **2**). A majority of cell lines showed LC₅₀ values > 100.0 μ M for compound **2**. Compound **1** showed greater efficacy in cell growth inhibition than compound **2**. For example, a total of 35 cell lines had GI₅₀

-									
Cell Line	1	2	3	4	Cell Line	1	2	3	4
Leukemia					CNS Cancer				
CCRF-CEM	50		92	94	SF-268	59	33	103	100
HL-60(TB) K-562	45 59	-33 16	87 93	83 81	SF-295	16 53	-41 0	100 98	103 104
MOLT-4	59 50	-11	93 85	70	SF-539 SNB-19	94	37	98 106	104
RPMI-8226	11	-75	98	105	SNB-75	63	-7	94	97
SR	28	-56	90	90	U251	34	-15	110	96
Non-Small Cel					Ovarian Cancer				
A549/ATCC	22	2	95	120	IGROV1	51	-37	91	92
EKVX HOP-62	64 79	21	103	102	OVCAR-3	80 61	8	95	92
HOP-62 HOP-92	79 63	60 -34	98 87	94 71	OVCAR-4	61 100	19 44	106 96	106 97
NCI-H226	76	-34	106	99	OVCAR-5 OVCAR-8	65	20	103	96
NCI-H23	92	48	105	90	SK-OV-3	94	41	106	102
NCI-H322M	91	79	100	101	Renal Cancer				
NCI-H460	48	18	112	114	786-0	76	48	105	98
NCI-H522	80	66	107	106	A498	70	40 46	105	90 94
Colon Cancer	40	400	404	110	ACHN	69	12	101	95
COLO 205 HCC-2998	43 62	-100 -13	104 106	110 93	CAKI-1	82	43	101	100
HCC-2996 HCT-116	62 17	-13	100	93 98	RXF393	-45	-68	-29	-23
HCT-15	56	12	91	92	SN12C TK-10	61 44	17 7	118 101	113
HT29	27	-26	109	110	UO-31	44 57	-7	79	99 64
KM12	43	17	106	106	Breast Cancer	51	'	10	0-1
SW620	71	24	105	106	BT-549	82	26	104	100
Melanoma					HS578T	44	4	111	105
	50	19	93	63	MCF7	18	3	92	98
MALME-3M M14	55 67	12 34	97 107	100 105	MDA-MB-231/ATCC MDA-MB-435	51 54	15 8	123 109	99 102
SK-MEL-2	54	-4	91	70	NCI/ADR-RES	86	54	109	97
SK-MEL-28	84	8	118	107	T-47D	27	-34	103	92
SK-MEL-5	58	26	106	110	Prostate Cancer				
UACC-257	88 80	6 34	122 107	125	DU-145	63	25	109	110
UACC-62				99	PC-3	47	-21	97	100

Table 2. Results of Single Dose Growth Inhibition Assay (GI Percent at $10 \ \mu M$)^{*a*}

^{*a*}Growth inhibition percent calculated as:

 $[(T_i-T_z)/C-T_z)] X 100 \text{ for } T_i \quad T_z$ $[(T_i-T_z)/T_z)] X 100 \text{ for } T_i < T_z$ Where T_z = absorbance at t = 0; T_i = absorbance at t = 48 h (10 µM test compound); C = absorbance of control at t = 48 h

Table 3. Results of Multi-Dose Growth Inhibition Assay for compound $1 (\mu M)^{a}$

Cell Line	GI ₅₀	TGI	LC ₅₀	Cell Line	GI ₅₀	TGI	LC ₅₀
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	6.69 3.01 3.59 2.39 1.09 2.23	88.6 32.9 23.3 4.57 7.07	>100.0 >100.0 >100.0 >100.0 59.0 >100.0	CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	6.53 5.73 5.19 29.0 4.56 4.69	27.0 >100.0 >100.0 >100.0 >100.0 20.9	92.5 >100.0 >100.0 >100.0 >100.0 >100.0 76.0
Non-Small Cd A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H460 NCI-H460 NCI-H522	ell Lung (4.18 17.7 8.96 <0.01 >109 33.3 >100.0 5.54 4.36	Cancer 19.2 >100.0 26.4 >100.0 >100.0 >100.0 2.5.0 85.7	79.1 >100.0 73.1 41.2 >100.0 >100.0 >100.0 >100.0 >100.0	Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 SK-OV-3 Renal Cancer 786-0	3.85 4.59 1.23 31.1 4.92 21.0	18.0 17.2 >100.0 >100.0 77.2 >100.0	79.2 91.3 >100.0 >100.0 >100.0 >100.0
Colon Cance COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW620	3.84 >100.0 3.20 8.50 4.20 3.95 4.80	>100.0 >100.0 16.1 >100.0 >100.0 20.9 28.4	>100.0 >100.0 45.6 >100.0 >100.0 >100.0 >100.0	A498 ACHN CAKI-1 RXF393 SN12C TK-10 UO-31 Breast Cancer MCF7	3.34 8.55 29.7 2.01 9.10 12.4 12.1 3.42	17.1 >100.0 >100.0 4.63 >100.0 40.5 29.5 45.1	>100.0 >100.0 19.5 >100.0 >100.0 >100.0 71.7 >100.0
Melanoma LOX IMVI MALME-3M M14 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	5.46 10.3 2.51 5.42 6.85 4.34 5.68 >100.0	>100.0 >100.0 11.6 33.1 20.2 >100.0 >100.0 >100.0	>100.0 >100.0 7.86 >100.0 48.7 >100.0 >100.0 >100.0	NCI/ADR-RES MDA-MB-231/ATC(HS578T MDA-MB-435 BT-549 T-47D Prostate Cancer PC-3 DU-145	>100.0	>100.0 41.3 53.6 >100.0 >100.0 >100.0 4.85 19.4	>100.0 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0 12.5 78.4

 ${}^{a}\text{GI}_{50}$ = concentration at which cell growth is inhibited by 50%; TGI = concentration required to achieve total growth inhibition; LC₅₀ = concentration required to achieve 50% reduction in measured protein after 48 h test period. TGI signifies a cytostatic effec; LC₅₀ signifies a cytotoxic effect.

 $[(T_i - T_z)/C - T_z)] X 100 = 50 \text{ for } GI_{50}$ $T_i = T_z \text{ for } TGI$ $[(T_i - T_z)/T_z)] X 100 = -50 \text{ for } LC_{50}$

Where T_z = absorbance at t = 0; T_i = absorbance at t = 48 h; C = absorbance of control at t = 48 h

Cell Line	GI ₅₀	TGI	LC ₅₀	Cell Line	GI ₅₀	TGI	LC ₅₀
Leukemia				CNS Cancer			
CCRF-CEM	6.37	>100.0	>100.0	SF-268	8.29	>100.0	>100.0
HL-60(TB)	1.81	4.34	16.4	SF-295	9.09	>100.0	>100.0
K-562	3.12	>100.0	>100.0	SF-539	22.3	>100.0	>100.0
MOLT-4	2.23	2.23	>100.0	SNB-19	>100.0	>100.0	>100.0
RPMI-8226	1.58	1.58	59.0	SNB-75	12.7	>100.0	>100.0
SR	1.27	1.27	9.43	U251	5.66	>100.0	>100.0
Non-Small Ce				Ovarian Cancer		~	
A549/ATCC	9.35	>100.0	>100.0	IGROV1	3.72	65.7	>100.0
EKVX	26.4	>100.0	>100.0	OVCAR-3	7.11	>100.0	>100.0
HOP-62	24.9	>100.0	>100.0	OVCAR-4	53.0	>100.0	>100.0
HOP-92	2.71	24.3	>100.0	OVCAR-5	38.2 9.02	>100.0 >100.0	>100.0 >100.0
NCI-H226	41.9	>100.0	>100.0	OVCAR-8	9.02 52.7	>100.0	>100.0
NCI-H23 NCI-H322M	>100.0	>100.0	>100.0	SK-OV-3	52.7	>100.0	>100.0
NCI-H322W	>100.0 7.49	>100.0 >100.0	>100.0 >100.0	Renal Cancer			
NCI-H400 NCI-H522	11.1	>100.0	>100.0	786-0	9.01	>100.0	>100.0
		>100.0	>100.0	A498	3.87	40.3	>100.0
Colon Cancer				ACHN	14.4	>100.0	>100.0
COLO 205	12.3	>100.0	>100.0	CAKI-1	53.8	>100.0	>100.0
HCC-2998	30.6	>100.0	>100.0	RXF393	9.74	38.0	>100.0
HCT-116	4.20	>100.0	>100.0	SN12C	85.3	>100.0	>100.0
HCT-15	6.47	>100.0	>100.0	TK-10	20.5	>100.0	>100.0
HT29	5.37	>100.0	>100.0	UO-31	7.79	>100.0	>100.0
KM12 SW620	23.9	>100.0	>100.0 >100.0	Breast Cancer			
50020	>100.0	>100.0	>100.0	MCF7	5.59	>100.0	>100.0
Melanoma				NCI/ADR-RES	>100.0	>100.0	>100.0
LOX IMVI	7.30	>100.0	>100.0	MDA-MB-231/ATC		>100.0	>100.0
MALME-3M	14.1	>100.0	>100.0	HS578T	5.79	>100.0	>100.0
M14	15.2	>100.0	>100.0	MDA-MB-435	10.9	>100.0	>100.0
SK-MEL-2	14.9	83.1	>100.0	BT-549	29.0	>100.0	>100.0
SK-MEL-28	7.77	>100.0	>100.0	T-47D	13.9	>100.0	>100.0
SK-MEL-5	5.81	>100.0	>100.0	Prostate Cancer			
UACC-257	22.6	>100.0	>100.0	PC-3			
UACC-62	41.9	>100.0	>100.0	DU-145	1.66	>100.0	>100.0

Table 4. Results of Multi-Dose Growth Inhibition Assay for compound $2 (\mu M)^a$

 ${}^{a}\text{GI}_{50}$ = concentration at which cell growth is inhibited by 50%; TGI = concentration required to achieve total growth inhibition; LC₅₀ = concentration required to achieve 50% reduction in measured protein after 48 h test period. TGI signifies a cytostatic effec; LC₅₀ signifies a cytotoxic effect.

 $[(T_i-T_z)/C-T_z)] X 100 = 50 \text{ for } GI_{50}$ $T_i = T_z \text{ for } TGI$ $[(T_i-T_z)/T_z)] X 100 = -50 \text{ for } LC_{50}$

Where T_z = absorbance at t = 0; T_i = absorbance at t = 48 h; C = absorbance of control at t = 48 h

values $\leq 6 \ \mu M$ for **1**, whereas only 14 cell lines were inhibited at similar levels for compound **2**.

A COMPARE¹² analysis of the GI_{50} data for compound **1** suggested that protein kinases might be molecular targets for this type of compound. Kinases for which there was significant correlation between kinase expression and cytotoxicity of compound **1** included EGFR, ERBB2, ERBB3, PTK2, and PTK6, each of which has been implicated in cancer.

To verify actual binding of compound **1** to cancer- and other disease-related protein kinases, compound **1** was screened against a commercially available panel of protein kinases (KinomeScanTM, Ambit Biosciences).¹³ The KinomeScanTM assay is a competitive binding assay based on phage-display of protein kinases and immobilized ATP-binding site ligands.¹⁴ Binding of protein kinases expressed on the surface of bacteriaphage T7 to immobilized ATP-binding site ligands was inhibited by compound **1** for 11 of the 353 protein kinases evaluated.¹⁵ Binding inhibition for these 11 kinases was \geq 30% while a majority of the kinases were unaffected by **1** showing binding inhibitions of \leq 10% (Figure 7).

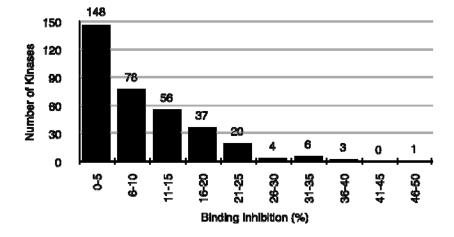
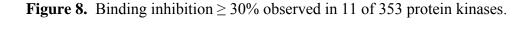
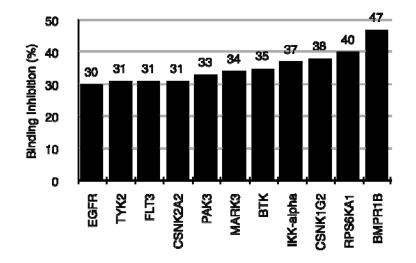




Figure 7. Inhibition of binding of protein kinases to ATP-binding site ligands by 1.

Selective inhibition of protein kinases is a desirable property and suggests that compound 1 and/or derivatives may have considerable potential in therapeutic applications.¹⁶ Kinases for which binding was inhibited by \geq 30% included EGFR, TYK2, FLT3, CSNK2A2, PAK3, MARK3, BTK, IKK- α , CSNK1G2, RPS6KA1, and BMPR1B, each of which has been implicated in various forms of cancer (Figure 8).

Binding inhibition was greatest for BMPR1B (or ALK6), a protein kinase recently implicated in estrogen receptor positive breast cancer. ¹⁷ The relatively pronounced inhibition of binding of ALK6 compared to other members of the ALK family of protein kinases suggests that **1** might be a useful probe for elucidating the role played by ALK6 in BMP-mediated signaling (Figure 9). ¹⁸ Selective inhibition of binding was also observed for other protein kinase families (e.g.; p38 and PAK kinase families, Figures 10 and 11).

Figure 9. Selective inhibition binding of Alk6 by compound 1.

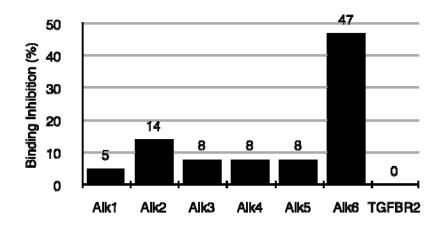


Figure 10. Selective inhibition of binding to p38 protein kinases by compound 1.

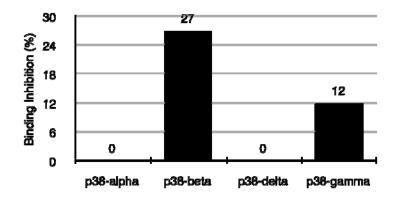
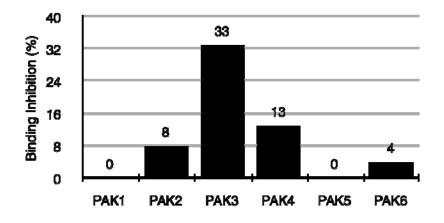



Figure 11. Selective inhibition of binding to PAK protein kinases by compound 1.

Compound 1 was also screened for its ability to inhibit a panel of cancer-related protein kinases (Figure 12). Activities for several of the protein kinases were modestly enhanced at 20 μ M compound concentration and two of the kinases (FMS and PAK4) were inhibited. The assay employed was based on inhibition of phosphorylation of an unnatural protein substrate in the presence of radio-labeled ATP. While this assay has been validated as a means of discovering protein kinase inhibitors in vitro, the relevance of the results obtained with an unnatural protein substrate remains somewhat in question. The modest inhibition of PAK4 and FMS in vitro therefore may not be particularly relevant in a biological context.

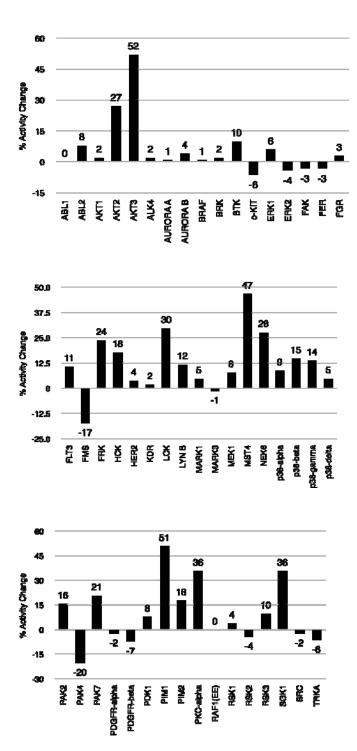
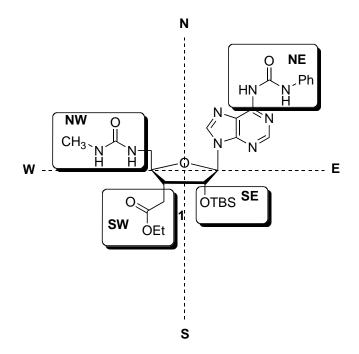
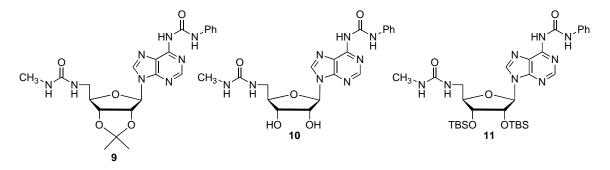
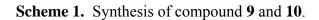



Figure 12. Inhibition of cancer-related protein kinases by compound 1 (20 μ M).

Results and Discussion

In order to explore the structural features required for anti-proliferative activity, we sought to prepare a series of compounds that would probe the importance of substituents in the SE and SW quadrants of compound **1** (Figure 13).


Figure 13. Quadrants for SAR of compound 1.


Based on the assumption that compound **1** exerts its effect as an ATP-binding site competitive inhibitor, we assumed for this initial Structure Activity Relationship Study (SAR) that substituents in the NE and NW quadrants are necessary for binding in the hydrophobic pocket and phosphate binding pockets, respectively (see ATP binding site pharmacophore model in Figure 2). The relatively poor anti-proliferative activities of compounds **3** and **4** suggested that the bulky 2'-O-TBS group is necessary for activity. However, the lability of the lactone moieties possessed by **3** and **4** (i.e. susceptibility to saponification and/or acylation by endogenous amines) did not preclude other reasons for the poor anti-proliferative activity, namely poor bioavailability caused by saponification to the carboxylic acid or reaction with nucleophilic amino acid side chains.

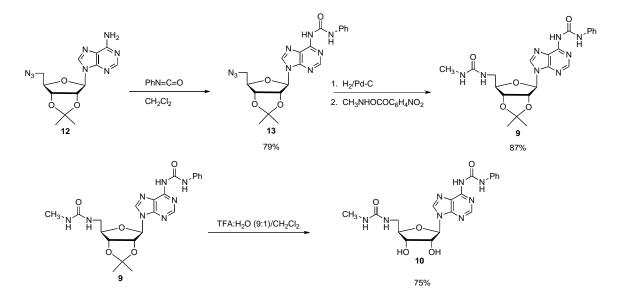
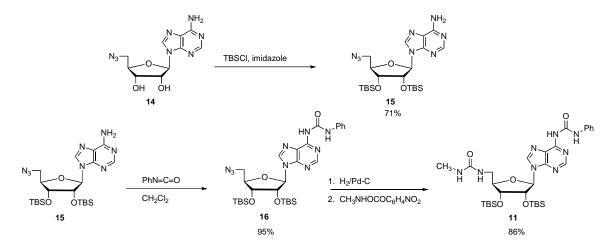

Saponification of the lactone moiety would yield a negatively charged carboxylate that would not be expected to diffuse across the cell membrane, and acylation of basic amino acid side chains such as lysine might result in a significant decrease in intracellular concentration of **3** and **4** via covalent linkage to "by-stander" proteins. Both of these mechanisms could account for the lack of activity exhibited by compounds **3** and **4**. In order to test whether the lack of activity exhibited by **3** and **4** was due to one of these mechanisms, or perhaps due to their lack of a bulky substituent at the 2′ position, compounds **9–11** were chosen as synthetic targets (Figure 14).

Figure 14. Targets for structure activity study (SAR)



The synthetic approach to compounds 9-11 is illustrated in Schemes 1 and 2, respectively. The synthesis of compounds 9-11 began with compound 12 which was prepared via a literature procedure. Treatment of compound 12 with phenylisocyanate in anhydrous CH_2Cl_2 for 5 days gave compound 13 in 87% isolated yield. It was found that diphenylurea is formed as a byproduct in this reaction (via hydrolysis of phenylisocyanate from adventitious water), and that the complex between the diphenylurea byproduct and compound 13 was almost completely insoluble in most common chromatography solvents.

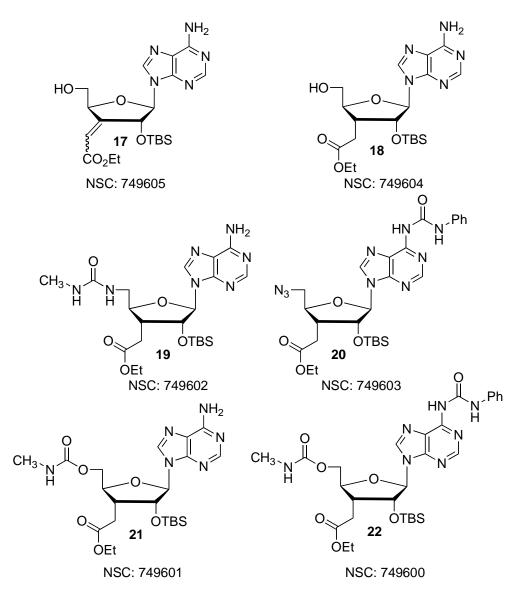
Scheme 2. Synthesis of compound 11.

The diphenylurea byproduct formed even when compound **12** was dried under vacuum or via azeotropic removal of water by evaporation of benzene. Removal of the reaction solvents prior to chromatography also seemed to give larger amounts of the diphenylurea byproduct and complicated getting the crude reaction material back into solution in order to be able to apply it to the chromatography column. We found that simply running the reaction at rather high dilution and then direct addition of the reaction mixture to a chromatography column avoided the problem of complex formation between diphenylurea and compound **13**. The highest yields were obtained for compound **13** when this procedure was followed.

Compound **13** was converted to compound **9** in 87% yield via a one-pot tandem reduction of the azide followed by acylation of the resulting amine intermediate with *p*-nitrophenyl N-methylcarbamate. *p*-Nitrophenyl N-methylcarbamate is a safe and easy-to-handle alternative to the more dangerous reagent methylisocyanate.¹⁹ Compound **9** was converted to compound 10 via TFA-promoted (trifluoracetic acid) hydrolysis of the acetal. Chromatography using an EtOAc/iPrOH/H₂O mixture (4:2:1) gave compound **10** in 75% yield.

Compound **11** was prepared from compound **14** via a three-step procedure. Silylation of compound **14** to give **15** was accomplished by treating 14 with TBSCl (3 equiv) and imidazole (excess). Application of this method to the preparation of **15** gave desired product in 71% yield. Conversion of **15** to **11** was accomplished using reagents and conditions similar to those used to prepare compound **9** from compound **12**. Compound **16** and diphenylurea had nearly identical R_{fs} in EtOAc/hexanes solvents, but good separation (by TLC) could be achieved using neat CH_2Cl_2 . Flash chromatography of **16** using 4 column lengths of neat CH_2Cl_2 followed by EtOAc/Hexanes (3:7) gave product which was mostly pure of the diphenylurea. However, residual "TLC-visible" quantities could be seen in the purified material. Fortunately, diphenylurea byproduct was easily separated out at the next step since it has a significantly higher R_f than compound **11**.

Compounds **9** and **10** were submitted to the NCI for screening against the NCI 60. Interestingly, compounds **9** and **10** had very little anti-proliferative activity at 10 μ M compound concentration (Table 5). This result strongly suggests that the bulky 2'-O-TBS group is necessary for optimum anti-proliferative activity.


To further probe structural features that might lead to anti-cancer activity, compounds from the chemical inventory in the Peterson group were submitted for screening (Figure 15). The results from these assays are illustrated in the Appendix. It is interesting to note that from this SAR it appears that the following substitution patterns are necessary for optimal anti-proliferative activity: (1) N-phenylurea in the NE quadrant; (2) N-methylurea or –urethane in the NW quadrant; (3) *O*-TBS substitution in the SE quadrant. Substitution in the SW was also evaluated and results from the NCI screening of compound **11** shed important light on the importance of a bulky 3'-*O*-TBS. Importantly, such substitutions. Compound **11** is significantly easier to prepare than either compounds **1** or **2** and provides a synthetically versatile template for more in-depth SAR studies. Synthetic targets for this study are illustrated in Scheme 3. Discussion of the synthesis of this library of compounds follows.

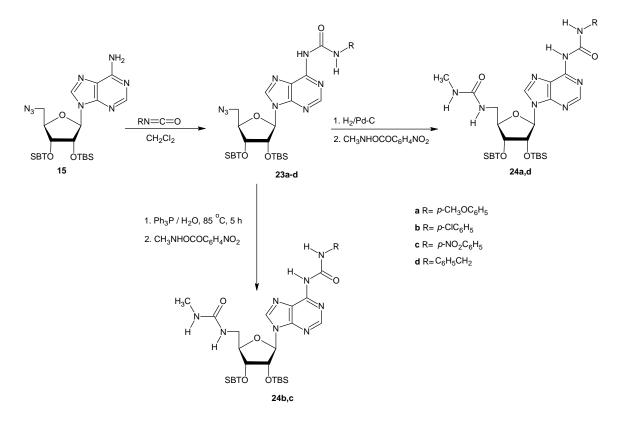

Cell Line	9	10	Cell Line	9	10
Leukemia			CNS Cancer		
CCRF-CEM	95	100	SF-268	91	99
HL-60(TB)	84	79	SF-295	119	123
K-562	90	60	SF-539	84	91
MOLT-4	103		SNB-19	85	89
RPMI-8226	87	90	SNB-75	60	66
			U251	94	86
Non-Small Cel	II Lung Ca	ancer	Ovarian Cancer		
A549/ATCC	103	99	OVCAR-3	89	85
EKVX	102	113	OVCAR-4	90	92
HOP-62	99	96	OVCAR-5	109	102
HOP-92	14	71	OVCAR-8	100	105
NCI-H226	109	99	SK-OV-3	79	77
NCI-H23	87	95			
NCI-H322M	101	95	Denal Career		
NCI-H460	101	101	Renal Cancer	405	100
NCI-H522	104	92	786-0	105	106
Colon Conser			A498 ACHN	87 105	103
Colon Cancer	06	70	CAKI-1	105	99
HCC-2998	96	78 89	RXF393	73	55
HCT-116 HCT-15	81 98	09	SN12C	97 95	114
HC1-15 HT29	98 99	97	TK-10	95 134	96 152
KM12	99 90	97 89	UO-31	74	98
SW620	90 91	89 98	Breast Cancer	74	90
30020	31	30	Breast Cancer BT-549	72	
Melanoma			HS578T	102	93
LOX IMVI	100	99	MCF7	85	93 91
MALME-3M	76	99 97	MDA-MB-231/AT		90
M14	89	108	MDA-MB-468	100	98
SK-MEL-2	104	117	T-47D	75	78
SK-MEL-28	92	100		15	10
SK-MEL-20	92 86	94	Prostate Cancer		
UACC-257	107	105	DU-145	94	95
UACC-62	92	88	PC-3	94 71	95 85
00002	52	00	F U- 3	11	00

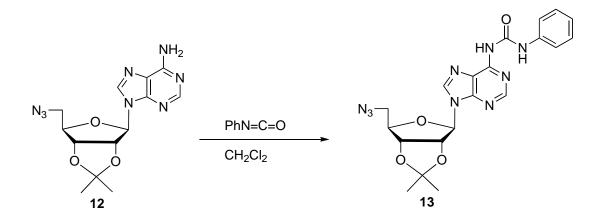
Table 5. Single Dose Growth Inhibition Assay for **9** and **10** (GI Percent at $10 \mu M$)^{*a*}

^{*a*}Growth inhibition percent calculated as:

 $[(T_i-T_z)/C-T_z)] X 100 \text{ for } T_i T_z$ $[(T_i-T_z)/T_z)] X 100 \text{ for } T_i < T_z$ Where T_z = absorbance at t = 0; T_i = absorbance at t = 48 h (10 µM test compound); C = absorbance of control at t = 48 h Figure 15. Structures of inventory compounds.

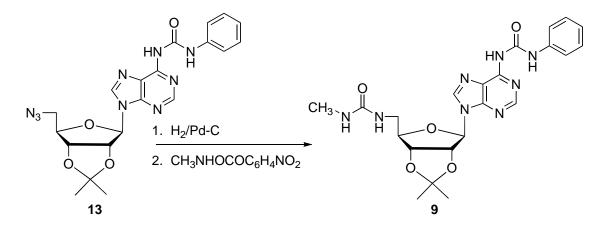
Scheme 3. Synthetic targets for more in-depth SAR.

Compounds 23a–d were prepared by treating 15 with the appropriate isocyanate in dilute CH_2Cl_2 solution. The reactions generally required 5 days at ambient temperature. Workup for 23a–d was similar to that for compound 16 and could be achieved by simple chromatography of the crude reaction mixture to give 23a–d in good yields. Reduction of the azide using standard hydrogenation conditions (H₂/Pd-C) proved problematic for 23b,c as these compounds have moieties which are susceptible to hydrogenolysis. Successful reduction of the azide was achieved by Staudinger reduction conditions (Ph₃P followed by H₂O) which afforded the desired products (24b,c) in acceptable yields. Compounds 24a–d are currently being screened for antiproliferative activity and that data will be published as soon as it is available.

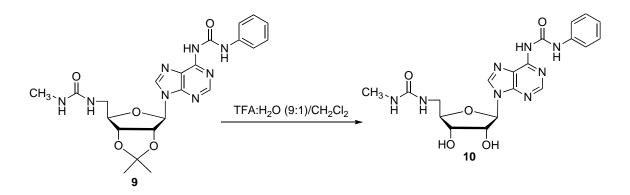

Conclusion

A series of N^6 ,5'-bis-ureidoadenosine derivatives was prepared and tested for activities in antiproliferative assays against the NCI 60 panel of human cancers. From this study it is concluded that a 2'-O-TBS group is necessary (but not sufficient) for growth inhibition, as is also true for the 5'- and N^6 -ureido substitutions. When occurring individually in the absence of the other, neither 5'- nor N^6 -ureido or N^6 -carbamoyl substitution gave rise to potent growth inhibition, even in the presence of the essential 2'-O-TBS moiety, as evidenced by the almost complete lack of activity for compounds 17-21 (Figure 15 and Appendix). Substitution of a carbamoyl group for the urea in the NW quadrant gave compound 22 which also exhibited comparable activities to compound 1. Very recently obtained data suggests that the synthetically-more-accessible compound 11 may exhibit activities comparable to the more challenging lead compound 1 (see Appendix for single-dose antiproliferative data for compound 11; NSC 750689). Compound 11 offers a synthetically viable alternative for preparing more extensive compound libraries based on the easier-to-prepare bis-O-TBS-substituted adenosine template (e.g. compounds 24a-d). We are currently pursuing this line of research and results from such studies will be reported shortly.

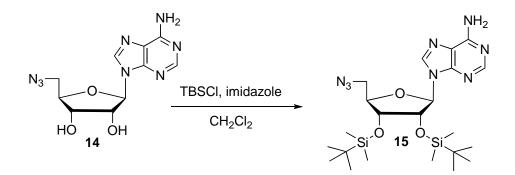
Experimental Section


General Experimental

Flash chromatography was carried out using 230–400 mesh silica gel. Preparative TLC was performed using Merck Kieselgel 60 F_{254} sheets. UV spectra were obtained in MeOH and water. ¹H NMR spectra were obtained on either a Varian 300 MHz or a Varian 500 MHz spectrometer using internal references at δ 7.27 (CDCl₃) and δ 2.50 (DMSO-*d*₆). ¹³C NMR spectra were obtained using internal references at δ 77.3 (CDCl₃) and δ 39.5 (DMSO-*d*₆). High resolution mass spectra were obtained by using FAB and ESI techniques. Commercially available reagents were used as supplied. All water sensitive reactions were performed in flame-dried flasks under Nitrogen or Argon. Solvents used in the reactions were dried by passing through columns of activated alumina under Argon.

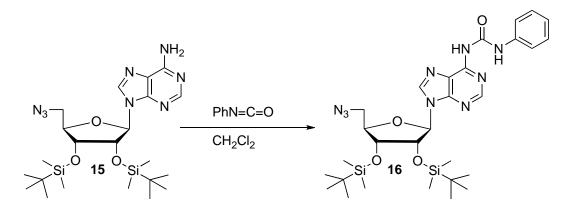

5'-azido-5'-deoxy-2', 3'-O-isopropylidene- N^{6} -(N-phenylcarbamoyl)adenosine (13).

To a flame dried flask containing compound **12** (454 mg, 1.37 mmol) was added phenylisocyanate (190 mg, 1.6 mmol) in CH₂Cl₂ (16 mL). The resulting solution was stirred protected from moisture until TLC indicated that starting material had been consumed (5 d). The crude solution was added directly to a flash chromatography eluted $(50 \rightarrow 75\% EtOAc/hexanes \rightarrow 10\% MeOH/EtOAc)$. Appropriate column and fractions were pooled and volatiles were evaporated under reduced pressure to give 5'azido-5'-deoxy-2', 3'-O-isopropylidene- N^{6} -(N-phenylcarbamoyl)adenosine (491 mg, 79%): ¹H NMR (CDCl₃, 500 MHz) & 11.71 (s, 1H), 8.66 (s, 1H), 8.25 (s, 1H), 8.21 (s, 1H), 7.66 (d, J = 8.5 Hz, 2H), 7.39 (t, J = 8.0 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H), 6.19 (d, J= 2.5 Hz, 1H), 5.44 (dd, J = 6.3, 2.3 Hz, 1H), 5.07 (dd, J = 6.0, 3.5 Hz, 1H), 4.43 (dd, J =9.0, 5.0 Hz, 1H), 3.63 (dd, J = 9.5, 4.8 Hz, 2H), 1.65 (s, 3H), 1.42 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) & 151.2, 151.1, 150.2, 149.9, 142.1, 137.9, 129.1, 124.1, 121.1, 120.4, 115.1, 90.7, 85.3, 84.1, 81.8, 52.3, 27.2, 25.4; MS (FAB) *m/z* 452.17923 (MH⁺ $[C_{20}H_{22}N_9O_4] = 452.17948).$

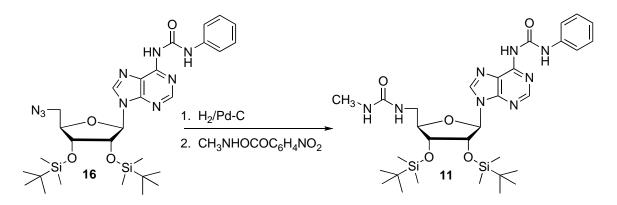


5'-Deoxy-2', 3'-O-isopropylidene-5'-[(N-methylcarbamoyl)amino]- N^{6} -(N-phenylcarbamoyl)adenosine (9).

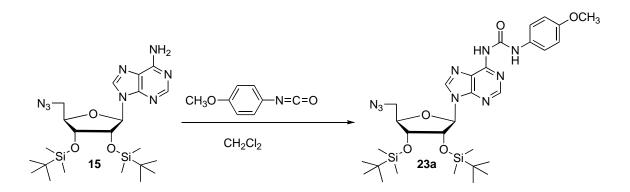
A solution of **13** (70 mg, 0.16 mmol) and 10% Pd–C (40 mg) in EtOAc (10 mL) was vigorously stirred for 15 h under an atmosphere of H₂ (balloon pressures). *p*-Nitrophenyl *N*-methylcarbamate (43 mg, 0.22 mmol) and anhydrous Na₂CO₃ (45 mg, 0.43 mmol) were added, and the resulting mixture was stirred for 4 h under N₂. Solids were removed via filtration (celite/EtOAc \rightarrow MeOH), and volatiles were evaporated under reduced pressure. The crude residue was chromatographed (5 \rightarrow 10% MeOH/CH₂Cl₂) to give **9** (65 mg, 87%): ¹H NMR (CDCl₃, 500 MHz) δ 12.10 (s, 1H), 9.79 (s, 1H), 8.69 (s, 1H), 8.68 (s, 1H), 7.56 (dd, *J* = 8.8, 0.8 Hz, 2H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.20 (t, *J* = 8.0 Hz, 1H), 6.15 (d, J = 4.0 Hz, 1H), 5.84 (m, 1H), 5.27 (dd, *J* = 6.3, 3.8 Hz, 1H), 4.98 (dd, *J* = 6.3, 2.3 Hz, 1H), 4.77 (m, 1H), 4.52 (dd, *J* = 6.8, 2.8 Hz, 1H), 3.74 (ddd, *J* = 13.8, 7.4, 4.1 Hz, 1H), 3.38 (dt, *J* = 3.8, 14.8 Hz, 1H), 2.56 (d, *J* = 4.5 Hz, 3H), 1.65 (s, 3H), 1.40 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 159.2, 152.6, 150.9, 150.34, 150.30, 143.3, 137.2, 129.2, 124.9, 121.5, 121.2, 114.6, 91.6, 85.9, 83.9, 81.6, 41.8, 27.4, 26.9, 25.4 ; MS (FAB) *m/z* 483.2099 (MH⁺ [C₂₂H₂₇N₈O₅] = 483.2099).



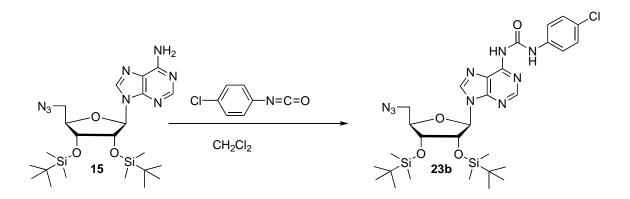
5'-Deoxy-5'-[(*N*-methylcarbamoyl)amino]-*N*⁶-(*N*-phenylcarbamoyl)adenosine (10). A solution of **9** (10 mg, 0.021 mmol), TFA (100 μL), and H₂O (25 μL) in CH₂Cl₂ (500 μL) was vigorously stirred at ambient temperature until TLC indicated complete conversion to baseline product (4 h). Volatiles were removed under reduced pressure (≤ 25 °C) and the crude was purified via flash chromatography (EtOAc/iPrOH/H₂O) to give **10** (7 mg, 75%): ¹H NMR (CDCl₃, 500 MHz) δ 11.75 (s, 1H), 10.21 (s, 1H), 8.71 (s, 1H), 8.70 (s, 1H), 7.61 (d, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.10 (s, 1H), 5.97 (d, *J* = 6.0 Hz, 1H), 5.80 (s, 1H), 4.67 (t, *J* = 5.5 Hz, 1H), 4.09 (dd, *J* = 3.5, 5.0 Hz, 1H), 3.94–3.91 (m, 1H), 3.41 (dd, *J* = 14.3, 4.3 Hz, 1H), 3.26 (dd, *J* = 14.3, 6.3 Hz, 1H), 2.49 (s, 3H; overlaps with DMSO); ¹³C NMR (CDCl₃, 125 MHz) δ 159.1, 151.4, 151.2, 151.1, 150.2, 143.4, 138.9, 129.4, 123.7, 121.1, 119.9, 87.9, 84.9, 73.6, 71.6, 42.2, 26.8; MS (FAB) *m/z* 443.17757 (MH⁺ [C₁₉H₂₃N₈O₅] = 443.17859).


5'-Azido-2',3'-bis-O-tert-butyldimethylsilyl-5'-deoxyadenosine (15).

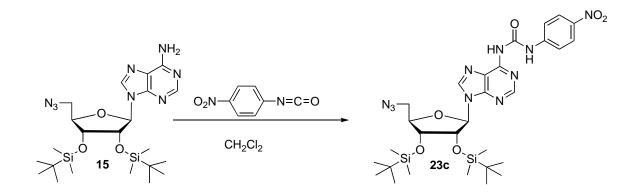
A solution of **14** (50 mg, 0.17 mmol), TBSCl (77 mg, 0.51 mmol), and imidazole (93 mg, 1.4 mmol) in dry DMF (0.25 mL) was stirred at ambient temperature and protected from moisture for 2 days. The crude reaction mixture was added directly to a flash column and eluted using 50% ethyl acetate/hexanes (2 columns), and 75% ethyl acetate/hexanes (3 columns) as eluents. Appropriate fractions were evaporated and the solvents were removed under reduced pressure. Recrystallization from benzene gave **15** (64 mg, 72.1%). ¹H NMR (CDCl₃, 300 MHz) δ 8.36 (s, 1H), 8.03 (s,1H), 6.20 (s, 2H), 5.91 (d, *J* = 4.5 Hz, 1H), 4.96 (t, *J* = 4.4 Hz, 1H), 4.35 (t, *J* = 4.5 Hz, 1H), 4.22 (dd, *J* = 9.3, 4.8 Hz, 1H), 3.74 (d, *J* = 8.0 Hz, 1H), 0.95 (s, 9H), 0.85 (s, 9H), 0.14 (s, 3H), 0.13 (s, 3H), 0.00 (s, 3H), -0.15 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 156.0, 153.1, 149.7, 140.2, 120.7, 90.0, 83.1, 74.4, 72.6, 51.8, 25.98, 25.88, 18.22, 18.06, -4.23, -4.53, -4.68, -4.75; MS 521.2851 (ES) *m/z* ([M+H]⁺ [C₂₂H₄₁N₈O₃Si₂] = 521.2835).


5'-Azido-2',3'-bis-O-tert-butyldimethylsilyl-5'-deoxy- N^6 -(N-phenylcarbamoyl)-adenosine (16).

A solution of compound **15** (125 mg, 0.240 mmol) and phenylisocyanate (0.29 mmol) in CH₂Cl₂ (2.9 mL) was stirred at ambient temperature until TLC indicated complete consumption of starting material (5 days). The crude reaction mixture was added directly to a flash chromatography column and eluted with 20 \rightarrow 30% EtOAc/hexanes to give **16** (130 mg, 85%). ¹H NMR (CDCl₃, 500 MHz) δ 11.78 (s, 1H), 8.61 (s, 1H), 8.46 (bs, 1H), 8.33 (bs, 1H), 7.63 (d, J = 7.5 Hz, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.11 (t, J = 7.3 Hz, 1H), 5.97 (d, J = 4.0 Hz, 1 H), 4.84 (t, J = 4.5 Hz, 1H), 4.30 (t, J = 4.3 Hz, 1H), 4.22 (t, J = 4.5 Hz, 1H), 3.70 (dd, J = 6.3, 4.8 Hz, 2H), 0.92 (s, 9H), 0.82 (s, 9H), 0.11 (s, 3H), 0.09 (s, 3H), 0.00 (s, 3H), -0.17 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 151.3, 150.8, 150.1, 142.5, 138.0, 129.0, 123.9, 121.2, 120.4, 89.7, 82.9, 74.7, 72.3, 51.6, 25.8, 25.7, 18.0, 17.9, -4.38, -4.68, -4.84, -4.88; MS (FAB) *m/z* 640.3204 (MH⁺ [C₂₉H₄₅N₉O₄Si₂]) = 640.3206.


2',3'-Bis-*O-tert*-butyldimethylsilyl-5'-deoxy-5'-(*N*-methylcarbamoyl)amino- N^6 -(*N*-phenylcarbamoyl)adenosine (11).

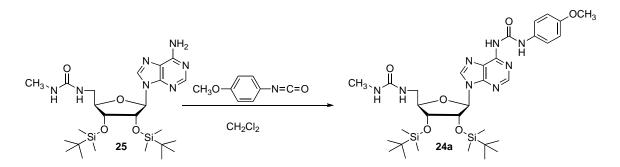
A solution of 16 (123 mg, 0.192 mmol) and 10% Pd-C (50 mg) in EtOAc (10 mL) was stirred overnight under an atmosphere of H_2 (balloon pressures). The mixture was filtered (celite) and volatiles were evaporated. The crude material was dissolved in CH₂Cl₂ (4 mL) and *p*-nitrophenyl-*N*-methyl-carbamate (45 mg, 0.229 mmol) and Et₃N (60 µL, 0.60 mmol) were then added. The mixture was stirred at ambient temperature until TLC showed reaction was complete (9 h). The crude mixture was added to a flash chromatography column and eluted with 75% EtOAc/hexanes \rightarrow 5% MeOH/EtOAc to give **11** (111 mg, 86%). ¹H NMR (CDCl₃, 500 MHz) δ 11.92 (bs, 1H), 9.03 (bs, 1H), 8.67 (s, 1H), 8.61 (s, 1H), 7.57 (d, J = 7.5 Hz), 7.39 (t, J = 8.3 Hz, 2H), 7.18 (t, J = 7.3 Hz, 1H), 6.51 (d, J = 6.0 Hz, 1 H), 6.01 (d, J = 8.0 Hz, 1H), 4.74–4.73 (m, 1H), 4.64 (dd, J =7.5, 4.5 Hz, 1 H), 4.36 (d, J = 4.5 Hz, 1H), 4.18 (t, J = 2.5 Hz, 1H), 3.99 (ddd, J = 14.5, 9.0, 2.5 Hz, 1H), 3.19 (dt, J = 14.5, 3.1 Hz, 1H), 2.72 (d, J = 4.5 Hz, 3H), 0.95 (s, 9H), 0.70 (s, 9H), 0.15 (s, 3H), 0.13 (s, 3H), -0.13 (s, 3H), -0.49 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) & 159.1, 152.9, 151.0, 150.4, 150.3, 144.1, 137.1, 129.2, 125.0, 121.8, 121.2, 88.0, 87.8, 75.9, 73.5, 41.6, 26.8, 25.9, 25.6, 18.0, 17.7, -4.53, -4.79, -5.65; MS (FAB) m/z 671.3525 (MH⁺ [C₃₁H₅₁N₈O₅Si₂]) = 671.3516.


5'-Azido-2',3'-bis-*O*-tert-butyldimethylsilyl-5'-deoxy- N^6 -[N-(4-methoxyphenyl)-carbamoyl]adenosine (23a).

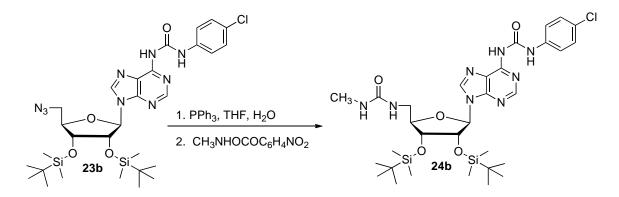
A solution of compound **15** (100 mg, 0.19 mmol) and 4-methoxyphenylisocyanate (0.24 mmol) in CH₂Cl₂ (2.4 mL) was stirred at ambient temperature until TLC indicated complete consumption of starting material (6 days). The crude reaction mixture was added directly to a flash chromatography column and eluted with 50% EtOAc/Hexanes to give **23a** (104 mg, 82%). ¹H NMR (CDCl₃, 500 MHz) δ 11.60 (s, 1H), 8.61 (s,1H), 8.53 (s, 1H), 8.36 (s, 1H), 7.54 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 5.98 (d, *J* = 4.5 Hz, 1H), 4.86 (t, *J* = 4.0 Hz, 1H), 4.32 (t, *J* = 4.5 Hz, 1H), 4.23 (dd, *J* = 9.5, 5.0 Hz, 1H), 3.82 (s, 3H), 3.72 (dd, *J* = 13.0, 4.0 Hz, 1H), 3.70 (dd, *J* = 13.0, 5.0 Hz, 1H), 0.94 (s, 9H), 0.84 (s, 9H), 0.13 (s, 3H), 0.11 (s, 3H), 0.00 (s, 3H), -0.16 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.3, 151.5, 150.8, 150.2, 150.1, 142.5, 131.0, 122.2, 121.2, 114.2, 89.7, 82.9, 74.7, 72.3, 55.5, 51.6, 25.8, 25.7, 18.0, 17.9, -4.4, -4.7, -4.85, -4.90; MS (ES) *m/z* ([M+H]⁺ 670.3335 [C₃₀H₄₈N₉O₅Si₂] = 670.3317).

5'-Azido-2',3'-bis-*O*-tert-butyldimethylsilyl-5'-deoxy- N^6 -[N-(4-chlorophenyl)-carbamoyl]adenosine (23b).

A solution of compound **15** (60 mg, 0.12 mmol) and 4-chlorophenylisocyanate (0.14 mmol) in CH₂Cl₂ (1.8 mL) was stirred at ambient temperature until TLC indicated complete consumption of starting material (6 days). The crude reaction mixture was added directly to a flash chromatography column and eluted with 10% EtOAc/CH₂Cl₂ to give **23b** (40 mg, 50%). ¹H NMR (CDCl₃, 300 MHz) δ 11.91 (s, 1H), 8.81 (s,1H), 8.63 (s, 1H), 8.43 (s, 1H), 7.61 (d, *J* = 8.9 Hz, 2H), 7.32 (d, *J* = 8.9 Hz, 2H), 6.00 (d, *J* = 3.3 Hz, 1H), 4.85 (t, *J* = 4.2 Hz, 1H), 4.32 (t, *J* = 4.5 Hz, 1H), 4.23 (dd, *J* = 9.0, 4.8 Hz, 1H), 3.75 (dd, *J* = 13.1, 4.1 Hz, 1H), 3.69 (dd, *J* = 13.2, 4.8 Hz, 1H), 0.94 (s, 9H), 0.84 (s, 9H), 0.13 (s, 3H), 0.11 (s, 3H), 0.00 (s, 3H), -0.15 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 151.6, 150.9, 150.2, 143.0, 136.9, 129.2, 129.0, 121.7, 89.9, 83.1, 75.0, 72.5, 51.8, 26.00, 25.89, 18.26, 18.12, -4.17, -4.47, -4.63, -4.67; MS (ES) *m*/*z* ([M+H]⁺ 674.2819 [C₂₉H₄₅CIN₉O₄Si₂] = 674.2816).

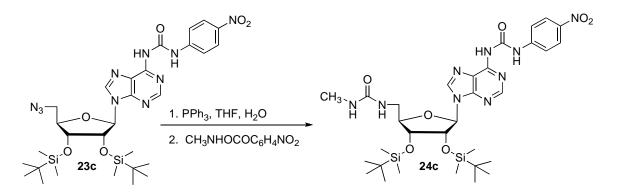

5'-Azido-2',3'-bis-O-tert-butyldimethylsilyl-5'-deoxy- N^6 -[N-(4-nitrophenyl)-carbamoyl]adenosine (23c).

A solution of compound **15** (100 mg, 0.20 mmol) and 4-nitrophenylisocyanate (0.24 mmol) in CH₂Cl₂ (2.4 mL) was stirred at ambient temperature until TLC indicated complete consumption of starting material (4 days). The crude reaction mixture was added directly to a flash chromatography column and eluted with 10% EtOAc/CH₂Cl₂ to give **23c** (97 mg, 71%). ¹H NMR (CDCl₃, 500 MHz) δ 12.39 (s, 1H), 8.69 (s, 1H), 8.64 (s, 1H), 8.38 (s, 1H), 8.27 (d, *J* = 9.3 Hz, 2H), 7.85 (d, *J* = 9.3 Hz, 2H), 6.02 (d, *J* = 4.5 Hz, 1H), 4.86 (t, *J* = 4.3 Hz, 1H), 4.33 (t, *J* = 4.3 Hz, 1H), 4.23 (dd, *J* = 8.7, 4.2 Hz, 1H), 3.77 (dd, *J* = 13.5, 4.0 Hz, 1H), 3.72 (dd, *J* = 13.5, 4.8 Hz, 1H), 0.95 (s, 9H), 0.85 (s, 9H), 0.14 (s, 3H), 0.13 (s, 3H), 0.02 (s, 3H), -0.14 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 151.2, 150.9, 150.7, 149.9, 144.4, 143.6, 143.0, 125.3, 121.6, 119.7, 90.0, 83.3, 75.1, 72.5, 51.8, 26.0, 25.9, 18.3, 18.1, -4.14, -4.42, -4.58, -4.67; MS 685.3057 (ES) *m/z* ([M+H]⁺ [C₂₉H₄₅N₁₀O₆Si₂] = 685.3062).

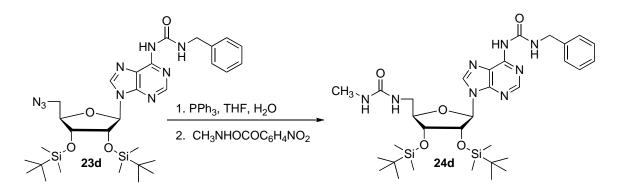

5'-Azido-2',3'-bis-O-tert-butyldimethylsilyl-5'-deoxy- N^6 -(N-benzylcarbamoyl)-adenosine (23d).

A solution of compound **15** (70 mg, 0.14 mmol) and benzylisocyanate (0.16 mmol) in CH_2Cl_2 (1.8 mL) was stirred at ambient temperature until TLC indicated complete consumption of starting material (8 days). The crude reaction mixture was added directly to a flash chromatography column and eluted with 10% EtOAc/CH₂Cl₂ to give **23d** (65 mg, 69%). ¹H NMR (CDCl₃, 300 MHz) δ 9.97 (bs, 1H), 8.78 (bs,1H), 8.48 (s, 1H), 8.42 (s,1H), 7.42-6.95 (m, 5H), 5.98 (d, *J* = 3.6 Hz, 1H), 4.83 (t, *J* = 4.2 Hz, 1H), 4.66 (d, *J* = 5.4 Hz, 2H), 4.34 (dd, *J* = 10.5, 5.1 Hz, 1H), 4.32 (t, *J* = 4.4 Hz, 1H), 4.22 (dd, *J* = 9.3, 4.5 Hz, 1H), 3.73 (dd, *J* = 13.8, 4.5 Hz, 1H), 3.66 (dd, *J* = 13.7, 5.0 Hz, 1H), 0.93 (s, 9H), 0.84 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H), 0.00 (s, 3H), -0.15 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 154.2, 151.0, 150.5, 142.4, 138.8, 128.6, 127.4, 127.3, 121.2, 89.7, 82.8, 74.8, 72.3, 51.6, 44.0, 29.8, 25.81, 25.70, 18.04, 17.90, -4.38, -4.70, -4.85; MS 654.3367 (ES) m/z ([M+H]⁺ [C₃₀H₄₈N₉O₄Si₂] = 654.3362).

2',3'-Bis-*O-tert*-butyldimethylsilyl-5'-deoxy- N^6 -[*N*-(4-methoxyphenyl)carbamoyl]-5'-(*N*-methylcarbamoyl)aminoadenosine (24a).


A solution of **25** (80 mg, 0.14 mmol) and *p*-methoxyphenylisocyanate (0.17 mmol) in CH₂Cl₂ (1.74 mL) was stirred at ambient temperature and protected from moisture until the reaction was complete (6 d). The crude mixture was added directly to a flash chromatography column and eluted with 30% EtOAc/Hexanes \rightarrow 4% MeOH/EtOAc to give **24a** (56 mg, 57 %). ¹H NMR (Acetone-*d*₆, 300 MHz) δ 11.98 (s, 1H), 9.55 (bs, 1H), 9.00 (s, 1H), 8.90 (s, 1H), 7.67 (d, *J* = 9.0 Hz, 2H), 6.98 (d, *J* = 9.0 Hz, 2H), 6.40-6.32 (m, 1H), 6.19 (d, *J* = 7.5 Hz, 1H), 5.71 (d, *J* = 4.8 Hz, 1H), 4.97 (dd, *J* = 4.4, 7.4 Hz, 1H), 4.59 (d, *J* = 4.5 Hz, 1H), 4.19 (t, *J*=4.7 Hz, 1H), 3.83 (s, 3H), 3.77-3.67 (m, 1H), 3.62-3.54 (m, 1H), 2.72 (d, *J* = 4.2 Hz, 3H), 0.98 (s, 9H), 0.73 (s, 9H), 0.19 (s, 3H), 0.17 (s, 3H), 0.00 (s, 3H), -0.42 (s, 3H); ¹³C NMR (Acetone-*d*₆, 75 MHz) δ 158.9, 156.3, 151.6, 151.4, 151.0, 150.9, 150.4, 143.9, 131.5, 131.4, 121.7, 121.6, 114.0, 87.9, 87.3, 75.2, 73.6, 54.8, 41.8, 25.5, 25.2, 17.8, 17.5, -5.14, -5.19, -5.33, -6.22; MS 701.3611 (ES) *m/z* ([M+H]⁺ [C₁₂H₅₁N₈O₆Si₂] = 701.3621).

2',3'-Bis-*O-tert*-butyldimethylsilyl-N⁶-[*N*-(4-chlorophenyl)carbamoyl]-5'-deoxy-5'-(*N*-methylcarbamoyl)aminoadenosine (24b).


A solution of 23b (60 mg, 0.09 mmol) and triphenylphosphine (35 mg, 0.13 mmol) in THF (0.6 mL) was stirred at ambient temperature for 15 min. Water (20 µL, 1.2 mmol) was added and the mixture was refluxed for 1.5 h at 85 °C. The resulting product was evaporated and chromatographed using EtOAc/CH₂Cl₂/CH₃OH (4:2:1) to give the reduction product as a white powder. This product was mixed with N-methyl-p-nitrophenylcarbamate (26 mg, 0.13 mmol) and triethylamine (50 µL, 0.36 mmol) in CH₂Cl₂ (2.3 mL) and stirred for 5 h at room temperature. Volatiles were removed under reduced pressure and the crude material was chromatographed using 30% acetone/hexanes \rightarrow 5% MeOH/CH₂Cl₂ to give **24b** (50 mg, 79%). ¹H NMR (Acetone- d_6 , 300 MHz) δ 12.30 (s, 1H), 9.86 (s, 1H), 9.03 (s, 1H), 8.77 (s, 1H), 7.79 (d, J = 9.0 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 6.34 (t, J = 6.0 Hz, 1H), 6.15 (d, J = 7.5 Hz, 1H), 5.74 (d, J = 5.1 Hz, 1H), 4.96 (dd, J = 4.4, 7.1 Hz, 1H), 4.54 (d, J = 4.2 Hz, 1H), 4.15 (t, J = 5.3 Hz, 1H), 3.70-3.60 (m, 2H), 2.72 (d, J = 4.5 Hz, 3H), 0.98 (s, 9H), 0.73 (s, 9H), 0.19 (s, 3H), 0.16 (s, 3H), -0.05 (s, 3 3H), -0.41 (s, 3H); ¹³C NMR (Acetone- d_6 , 75 MHz) δ 159.1, 151.5, 151.4, 151.0, 150.9, 150.2, 144.1, 137.6, 128.8, 128.5, 127.8, 121.3, 120.9, 87.9, 87.1, 75.2, 73.5, 41.9, 26.4,

26.3, 25.5, 25.3, 17.8, 17.5, -5.13, -5.19, -5.32, -6.16; MS 705.3126 (ES) m/z ([M+H]⁺ [C₃₁H₅₁N₈O₅Si₂] = 705.3145).

 $2^{,3^{-}Bis-O-tert-butyldimethylsilyl-5^{-}deoxy-5^{-}(N-methylcarbamoyl)-N^{6}-[N-(4-nitrophenyl)carbamoyl]aminoadenosine (24c).$

A solution of 23c (50 mg, 0.09 mmol) and triphenylphosphine (29 mg, 0.11 mmol) in THF (0.5 mL) was stirred at ambient temperature for 15 min. Water (20 μ L, 1.2 mmol) was added and the mixture was refluxed for 1.5 h at 85 °C. The resulting product was evaporated and chromatographed using EtOAc/CH₂Cl₂/CH₃OH (4:2:1) to give the reduction product as a white powder. This product was mixed with N-methyl-p-nitrophenylcarbamate (22 mg, 0.11 mmol) and triethylamine (40 µL, 0.29 mmol) in CH₂Cl₂ (1.9 mL) and stirred for 5 h at room temperature. Volatiles were removed under reduced pressure and the crude material was chromatographed using 30% acetone/hexanes \rightarrow 3% MeOH/CH₂Cl₂ to give **24c** (47 mg, 73%). ¹H NMR (Acetone- d_6 , 300 MHz) δ 12.77 (s, 1H), 9.60 (s, 1H), 8.94 (s, 1H), 8.82 (s, 1H), 8.26 (d, J = 9.3 Hz, 2H), 8.02 (d, J = 9.3 Hz, 2H), 6.33-6.30 (m, 1H), 6.14 (d, J = 7.6 Hz, 1H), 5.70 (d, J = 4.5 Hz, 1H), 5.00 (dd, J = 4.5, 2.7 Hz, 1H), 4.55 (d, J = 4.5 Hz, 1H), 4.15 (t, J = 5.4 Hz, 1H), 3.64 (d, J = 5.1 Hz, 1H) 2H), 2.74 (d, J = 4.2 Hz, 3H), 0.98 (s, 9H), 0.72 (s, 9H), 0.19 (s, 3H), 0.17 (s, 3H), -0.04 (s, 3H), -0.14 (s, 3H); 13 C NMR (Acetone- d_6 , 75 MHz) δ 159.9, 152.2, 152.0, 151.8, 150.9, 145.9, 145.0, 143.9, 125.8, 122.0, 120.2, 120.1, 88.9, 88.1, 75.9, 74.4, 42.8, 42.7, 27.3, 27.1, 26.4, 26.1, 18.7, 18.4, -4.2, -4.3, -4.4, -5.3; MS 716.3366 (ES) *m/z* ([M+H]⁺ $[C_{31}H_{50}N_9O_7Si_2] = 716.3353).$

 N^{6} -[N-Benzylcarbamoyl]-2',3'-bis-O-tert-butyldimethylsilyl-5'-deoxy-5'-(N-methylcarbamoyl)aminoadenosine (24d).

A solution of 23c (126 mg, 0.184 mmol) and triphenylphosphine (76 mg, 0.29 mmol) in THF (1.2 mL) was stirred at ambient temperature for 15 min. Water (45 µL, 2.5 mmol) was added and the mixture was refluxed for 1.5 h at 85 °C. The resulting product was evaporated and chromatographed using EtOAc/CH₂Cl₂/CH₃OH (4:2:1) to give the reduction product as a white powder. This product was mixed with N-methyl-p-nitrophenylcarbamate (57 mg, 0.29 mmol) and Na₂CO₃ (53 mg, 0.5 mmol) in EtOAc (8.0 mL), and stirred for 5 h at room temperature. Volatiles were removed under reduced pressure and the crude material was chromatographed using 30% acetone/hexanes \rightarrow 3% MeOH/CH₂Cl₂ to give **24d** (65 mg, 52%). ¹H NMR (CDCl₃, 500 MHz) δ 10.43 (bs, 1H), 9.33 (bs, 1H), 8.91 (bs, 1H), 8.55 (s, 1H), 7.39-7.36 (m, 3H), 7.32-7.29 (m, 2H), 6.34 (bs, 1H), 6.10 (d, J = 8.0 Hz, 1H), 5.27 (bs, 1H), 4.65 (d, J = 6.0 Hz, 2H), 4.49 (dd, J = 4.8, 7.8 Hz, 1H), 4.45 (d, J = 5.0 Hz, 1H), 4.13 (t, J = 5.4 Hz, 1H), 3.97 (ddd, J = 14.8, 8.0, 1.5 Hz, 1H), 2.97 (dt, J = 11.5, 3.0 Hz, 1H), 2.71 (d, J = 5.0 Hz, 3H), 0.96 (s, 9H), 0.69 (s, 9H), 0.15 (s, 3H), 0.14 (s, 3H), -0.12 (s, 3H), -0.49 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 159.5, 156.2, 151.7, 150.9, 150.5, 144.1, 138.2, 128.9, 127.6, 126.9, 120.8,

88.6, 86.6, 77.3, 73.9, 44.3, 41.5, 29.9, 26.9, 26.1, 25.7, 18.2, 17.9, -4.3, -4.6, -5.5; MS 685.3666 (ES) *m/z* ([M+H]⁺ [C₃₂H₅₂N₈O₅Si₂] = 685.3672). Appendix

Developmental Ther	apoulos riogram	NSC: 749800/1	Conc: 1.00E-5 Molar	Test Date: Jan 26, 2009	
One Dose Mean Graph		Experiment ID: 0901OS41		Report Date: Feb 17, 20	
Panel/Cell Line	Growth Percent	Mean Growt	cent		
eukemia CCRF-CEM					
HL-60(TB)	57.37 23.54				
K-562	28.69				
MOLT-4	34.39				
RPM-8226	39.74				
Ion-Small Cell Lung Cancer A549/ATCC	E4.94				
EKVX	51.34 67.49				
HOP-62	77.38				
HOP-92	62.10				
NCI-H226	55.49				
NCI-H23	81.04				
NCI-H322M NCI-H460	91.13 13.16				
NCI-H522	45.31				
colon Cancer	TIGOT				
COLO 205	67.36				
HCC-2996	-8.59			•	
HCT-116	17.07			I	
HCT-15 HT29	52.22 6.60				
KM12	31.18			I	
SW-620	72.19			I	
XNS Cancer	[I	
SF-268	59.69				
8F-295 SF-539	66.13 33.37				
SNB-19	99.06				
SNB-75	45.42				
U251	51.97				
felanoma LOX IMM	48.64				
MALME-3M	40.04 53.49		- r i		
M14	57.11				
MDA-MB-435	49.33		•		
SK-MEL-2	59.98				
SK-MEL-28	71.68				
SK-MEL-5 UACC-257	23.48 59.18			I	
UACC-62	65.12				
Xarian Cancer					
IGROV1	49.09			I	
OVCAR-3	51.09			1 1	
OVCAR-4 OVCAR-5	41.62 94.24			I	
OVCAR-8	73.97			I	
NCI/ADR-RES	48.08				
SK-OV-3	94.67				
tenal Cancer				I	
786-0 A498	72.53 77.42			I	
ACHIN	25.77			I	
CAKI-1	60.60		– 1	I	
RXF 393	34.96				
SN12C TK-10	34.84 87.72				
UC-31	87.72 41.89				
Tostate Cancer				I	
PC-3	32.41				
DU-145	58.76		– 1	I	
ireast Cancer MCF7	11.66			I	
MDA-MB-231/ATCC	71.79			I	
HS 578T	67.16				
BT-549	64.45				
T-47D	29.06				
MDA-MB-468	61.90				
Nean	52.35				
Delta	60.94				
Range	107.85			■	
	150	190 50	0 -50	-100 -15	
	1.00			-199	

Developmental Ther	apeutics Program	NSC: 749801/1	Conc: 1.00E-5 Molar	Test Date: Jan 26, 2009	
One Dose Mean Graph		Experiment ID: 09010S41		Raport Date: May 12, 20	
anel/Cell Line	Growth Percent	Mean Growth Percent - Growth Perc		ent	
eukemia CCRF-CEM	98.21				
HL-60(TB)	79.53				
K-562	86.22		•		
MOLT-4	55.48				
RPMI-8226	76.60				
on-Small Cell Lung Cancer A548/ATCC	81.50				
EKVX	82.97				
HOP-62	73.98				
HOP-92	95.17				
NCI-H226	79.06				
NCI-H23	104.57				
NCI-H322NI NCI-H460	96.90 106.03				
NCI-H522	75.08	1 1			
olon Cancer					
COLO 205	104.37			I	
HCC-2998	55.41				
HCT-116	80.53				
HCT-15 HT29	86.54 99.66				
KM12	102.44				
SW-620	104.34			I	
NS Cancer					
SF-268	97.07				
SF-295 SF-539	92.35 88.90		1 1		
SNB-19	92.27				
SNB-75	82.67				
U251	86.08				
islanoma Loss had			L I		
LOX IMVI MALME-SNI	88.07 96.42		I		
MPLDE-3W M14	90.42 99.59		_		
MDA-MB-435	95.55				
SK-MEL-2	110.97				
SK-MEL-28	105.54				
SK-MEL-5 UACC-257	67.67 94.07				
UACC-62	76,63		1		
varian Cancer					
IGROV1	118.36				
OVCAR-3	\$7.77			1 1	
OVCAR-4 OVCAR-5	78.30 114.49				
OVCAR-8	114.49 97.90				
NCI/ADR-RES	82.67		4 1		
SK-OV-3	93.94		- I		
ensi Cancer					
786-0 A498	87.13 87.69		_ 1		
ACHN	87.69 89.04				
CAKI-1	76.50		– 1	I	
RXF 393	78.27			I	
SN12C	85.84				
TK-10 UO-31	109.62 95.07				
rostate Cancer	82.Vf		1		
PC-3	84.02				
DÜ-145	84.02 99.73		-		
reast Cancer					
MCF7 MDA-UB-231/ATCC	98.33 85.45				
MDA-MB-231/ATCC HS 578T	93.32				
BT-549	73.60				
T-47D	84.46				
MDA-MB-468	77,43				
Mean	90.40				
Delta	34.99				
Range	62.95				
	150	190 50	0 -50	-100 -150	
	130	100 50	v -30	-100 -130	

Developmental Ther	apeutics Program	NSC: 749802/1	Conc: 1.00E-5 Molar	Test Date: Jan 26, 2009	
One Dose Mean Graph		Experiment ID: 09010S41		Report Date: Feb 17, 20	
Panel/Cell Line	Growth Percent	Mean Growt	th Percent - Growth Per	cent	
eukemia CCRF-CEM	97.54				
HL-60(TB)	107.25		_		
K-562	105.81		_		
MOLT-4	108.68				
RPMI-8226 Ion-Smail Cell Lung Cancer	97.59		1 1		
ASCOUNTOC	84.17				
EKYX	92,43				
FRUP-OZ	83.91				
HOP-92 NCI-H226	94.41 98.59		I		
NCI-H23	97.38				
NCI-HS22M	93.82		P		
NCI-1460 NCI-14522	110.75 79.23				
Xolon Cancer	78.23				
COLO 205	117.34				
HCC-2998	83.79				
HCT-116 HCT-15	99.BC 96.50		7 1		
HT29	111.09				
KM12	102.46				
SW-620 INS Cancer	85.86				
SF-268	96.72				
SF-295	101.19				
8F-539	87.13		1		
SNB-19 SNB-75	99.33 85.58		1 <u> </u>		
uzsi	98.45				
Aelanoma					
	91.60				
MALME-3NI M14	95.44 105.81		I		
MDA-MB-435	85.08		• •		
SK-MEL-2	91,98				
SK-MEL-28 SK-MEL-5	107.33 94.41				
UACC-257	86.03		- E - E - E - E - E - E - E - E - E - E		
UACC-62	79.63				
Ovarian Cancer	00 cm				
IGROV1 OVCAR-3	96.53 98.00				
OVCAR-4	99.93				
OVCAR-5	86.6G		I		
OVCAR-8	100.16		1 <u> </u>		
NCI/ADR-RES SK-OV-3	84.57 110.10				
tenal Cancer					
786-0	93.43				
A498 ACHN	109.32 90.08				
CAKI-1	95.89				
RXF 393	138.72				
SN12C	87.75		I		
TK-10 UO-31	101.45 87.28		I		
roslate Cancer					
PC-3	87.94 97.70				
DU-145 Kreest Cancer	97.70				
MCF7	84.01				
MOA-MB-231/ATCC	98.74				
HS 578T	97.70				
BT-549 T-47D	85.12 94.66				
MDA-MB-468	82.38				
Liona	08.70				
Nican Delta	96.79 17.56				
Range	58.49				
-					
	150	190 5	0 0 -50	-100 -154	
	120	100 34	00	-100 -100	

Parash/Cell Line Growth Percent Nean Growth Percent - Growth Percent Luidernia CC-RG 10 + CASE (1) K-SEC (1) K-SE	Developmental Iner	apeutics Program	NSC: 749803/1	Conc: 1.00E-5 Molar	Test Date: Jan 26, 2009	
construit CH off (Te) 91.60 K-422 72.15 MC174 78.70 IPTM-8222 103.44 ENVX 91.83 HO1742 91.83 HO17423 91.43 MC17423 91.43 MC17423 91.43 MC17423 91.43 MC17423 91.43 MC17423 91.42 MC17423 91.43 MC17423 91.42 MC17423 91.43 MC17423 91.43 MC17423 91.42 MC17423 91.43 MC17423 91.43 MC17423 91.42 MC17423 91.43 MC17423 91.42 MC17423 91.42 MC17423 91.42 MC17423 91.42 MC17423 91.42 MC17423 91.42 MC17423 91.43 MC17423 91.43 MC17423 91.43 MC17423 91.43 MC17423 91.44 MC17423 91.44 MC17423 91.71 MC17423 91.71 MC17423 91.71 MC1743 91.71 </th <th colspan="2">One Dose Mean Graph</th> <th colspan="2">Experiment ID: 09010S41</th> <th colspan="2">Report Date: Feb 17, 20</th>	One Dose Mean Graph		Experiment ID: 09010S41		Report Date: Feb 17, 20	
CCH2-CEM 62.67 H.4.66 H.4.76 H.4.66 H.4.76 H.4.66 H.4.76 H.4.66 H.4.76 H.4.66 H.4.76 H.4.66 H.4.76	Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Perc		;ent	
H. 6402 (19) 51.60 K-6402 + 77.215 Work # 220 Work # 220 More Carbor 103.46 EXVX 81.52 HOP-42 819.59 HOP-42 810.50 HOP-42 810.50 HOP	eukania CORE CEV	87 87				
K452 / 72:15 Weit - 4 K401 - 4 K4						
MC11-4 75.70 MRTM#221 96.33 HCV2 96.39 HCV2 96.43 HCV2 96.44 HCV2 96.45 HCV2 96.44 HCV2 96.45 HCV2 96.45 HCV2 96.45 HCV2 96.45 HCV2 96.45 HCV2 96.45 HCV2 96.34 HCV2 96.35 SHAB-19 91.70 SHB-75 72.14 HC2-16 96.32 SHB-76 96.42 HC2-17 94.62 HC2-16 96.32 SHAHE-23 111.16 HC2-16 96.22 HC2-16 96.25 HC2-17 96.70	K-562 `					
Star San Call Ling Cancer IC3 46 ASHA TCV 85.33 EXV/X 85.35 FIOP 42 95.38 NCI-H228 61.58 NCI-H228 91.69 NCI-H228 91.70 Star Cancer 91.70 Star Cancer 91.70 Star Sale		78.70				
ASRATCC 103.48 HOP-82 90.39 HOP-82 90.39 HOP-82 90.39 HOP-82 90.39 HOP-82 91.58 NCH-823 97.42 NCH-822 106.00 Starter 91.71 Starter 91.72 Starter 91.71 Starter 91.71 Starter 91.71 Starter 91.71 Starter 91.21 Starter 91.21 Starter 91.21 Starter 91.21 Starter 91.21 Starter 91.21 Starter 91.71 Starter 91.21 Starter 91.21 Starter 91.21	RPM-8226	75.12				
EKYX 8833 HQF-42 HQF-42 Stable HQF-42 Sta	Von-Small Cell Lung Cancer	103.48				
H0F-42 H0F-42 H0F-42 H0F-42 H0F-42 H0F-422 H0F-422 H0F-422 H0F-422 H0F-422 H0F-422 H0F-422 H0F-422 H0F-422 H0F-422 H0F-42		89.93				
H0P-82 H0F-82 H0F-1423	HOP-62			I		
NG1-H323 97.42 NG1-H324 98.43 NG1-H326 104.09 NG1-H327 89.86 NG1-H327 99.43 NG1-H327 10.251 HG7-116 81.51 H37.21 100.75 SW420 100.99 NS Cancer 91.21 SK-288 95.17 SF-288 91.70 SW420 100.99 NS SW420 100.99 SW421 94.2 Idencine 10.30.4 IQ251 94.82 Idencine 83.99 SW422 91.21 SK-48L-28 118.30 SK-48L-27 91.21 SK-48L-37 103.90 Nation Cancer 83.99 IGROV1 92.26 OWCAR-4 60.25 OWCAR-4 60.25 OWCAR-4 60.25 OWCAR-4 100.42 IGROV1 92.26 OWCAR-5 100.31 Tot-1 87.70	HOP-92	99.99				
MCI-HEZZM MCI-HEZZM						
NGI-H480 NGI-H480 NGI-H482 NGI-NE22 NGI Carvor TCCO 200 CCCO						
NCI-H322 89.95 CDL 0.285 113.85 CDL 0.285 123.91 HCT-116 94.37 HCT-238 95.17 SY-282 95.17 SY-282 94.92 MCamor 95.82 MLH-3M 97.34 M4 97.34 M4B-3455 92.92 MAHE-26 91.39 SK-4HE-26 103.90 UACC-257 85.74 UACC-257 85.74 UACC-257 85.74 UACC-257 85.74 UACC-257 85.74 UACC-267 81.71 SK-048-3 117.83 OWAR-3 117.84 OWAR-3 117.84 UACC-27 80.99 Water Cancer 95.93 UACC-27 80.84 OWAR-3 111.24 SK-048 111.24 SW120 96.73 UC-31 96.73 <td></td> <td></td> <td></td> <td></td> <td></td>						
Zdm Carbor 113.5 HCC 2396 120.91 HCC 116 81.91 HCT 116 81.91 HCT 116 81.91 HCT 116 81.91 SWB 200 100.99 SWS Camor 91.95 SF-235 91.91 SWB 75 71.94 UZ51 94.82 MALME-SM 97.24 M44 101.31 MALME-SM 97.24 M44 101.31 MALME-SM 97.24 M14 101.31 MAD.ME-435 92.50 SK-48E-23 111.18 OVCAR-3 101.92 OVCAR-4 62.25 OVCAR-5 107.33 OVCAR-4 62.25 OVCAR-5 100.31 MS7 84.70 SW12C 85.73 SW12C 85.73		89.98				
HCC-28965 120.91 HCT-116 81.91 HCT-116 84.37 HT723 103.48 WF260 100.76 SF-286 53.88 SF-386 55.17 SF-286 53.88 SF-386 55.17 SF-286 53.88 SF-387 72.14 U251 94.82 HMA ME-5N 77.24 HMA ME-5N 77.34 HMA ME-5N 95.82 U251 94.82 HMA ME-5N 95.82 SK-48E-2 91.21 SK-48E-2 91.21 SK-48E-3 102.90 UACC-257 86.73 UACC-257 86.70 UACC-47 78 SK-48E 53 SK-48E 53 SK-48E 53 UACC-257 86.70 UACC-257 86.70 UACC-257 86.70 UACC-257 86.70 UACC-257 86.70 UACC-257 86.70 UACC-257 86.70 UACC-257 86.70 UACC-257 86.70 UCC-257 86.70 UCC-25	Colon Cancer					
HCT-116 81.91 HCT-15 64.37 HT22 103.48 KW12 100.76 SW420 100.99 HCT-15 64.37 HT22 103.48 KW12 100.76 SW420 100.99 HCT-15 64.37 HCT-15 64.37 HCT-15 64.37 HCT-15 64.37 HCT-15 64.37 HCT-15 64.37 HCT-15 64.37 HCT-15 64.37 HCT-15 7 HCT-15 64.37 HCT-15 7 HCT-15	COLO 205	113.95			I	
HCT-15 64.37 HT22 100.76 SW-620 100.99 SW-520 100.99 SW-520 30.99 SW-57 3225 30.99 SW-75 72.94 U251 94.82 Herear 53 92.90 SW-75 72.94 U251 94.82 Herear 53 92.90 SW-81-2 91.21 SK-481-23 91.21 SK-481-23 91.21 SK-481-23 91.21 SK-481-23 91.21 SK-481-23 91.21 SK-481-23 111.18 OVCAR-3 100.82 SK-401 27.33 OVCAR-5 167.33 OVCAR-5 167.33 OVCAR-	HCC-2558 LCC-446					
HT22 103.76 SW-820 100.99 SW-820 100.99 SF-830 95.17 SF-830 95.17 SF-830 96.17 SF-830 94.20 SF-830 94.20 SF-930 94.20 S						
KM12 100.76 SM420 100.99 XSCancer 95.17 SF-288 95.17 SF-288 91.17 SF-288 91.17 SF-288 91.21 SKB01 91.21 Kdamoran 94.82 Idaw 95.82 MALME-SN 97.34 M14 101.31 MOA-MB-455 92.90 SK-4REL-22 91.21 SK-4REL-23 118.10 SK-4REL-24 91.21 SK-4REL-25 103.90 Junc Cocorr 80.99 Junc Cocorr 80.99 Junc Cocorr 80.99 Junc Cocorr 80.99 Junc Cocorr 80.25 OWCAR-3 91.11 OWCAR-5 107.33 OWCAR-5 107.33 OWCAR-5 107.33 OWCAR-5 107.33 OWCAR-6 100.82 Jurail Cancor 81.17 Zefs 81.17 Zefs 81.17 Adem 11.24 SH124 91.11 ACM-1 97.91 Di-146 100.83 MCF 7 84.70 MCF 7 84.70 <td></td> <td></td> <td></td> <td></td> <td> I</td>					I	
XHS Cancer 95.17 SF-326 93.89 SF-536 93.89 SNB-19 91.70 SNB-75 72.94 LOX IMM 97.84 LOX IMM 97.84 LOX IMM 97.84 LOX IMM 97.85 MCL ME-SN 97.91 LOX IMM 97.84 LOX IMM 97.84 LOX IMM 97.85 MCAME-23 91.71 SK-47EL-23 91.71 SK-47EL-5 103.90 LWCC-287 66.74 LWCC-287 66.74 UWCC-287 66.74 OVCAR-4 60.25 OVCAR-5 107.33 OWCAR-4 60.25 OVCAR-5 107.32 MGR041 92.56 OWCAR-4 60.25 OVCAR-5 107.33 MCIADR-RES 96.70 WCM-48 97.90 MCIADR-RES 96.70 WCM-1 87.91 SW172C 80.81 WCM-48-231/ATCC 91.81 SW172C 80.83 WCM-48-231/ATCC 91.81 SW2 91.81 WCM-48-231/ATCC 91.81 MCA-48-231/ATCC	KM12	100.76				
SF-288 95.17 SF-288 95.17 SF-286 93.368 SF-389 68.39 SNB-19 91.78 SNB-75 72.34 U251 94.82 MdLME-SM 97.34 M14 001.31 MDL-MB-4355 92.90 SK-4MEL-2 91.21 SK-4MEL-2 91.21 SK-4MEL-2 91.21 SK-4MEL-2 91.21 SK-4MEL-2 91.21 SK-4MEL-2 83.09 UACC-257 86.74 UACC-262 OVCAR-4 610.33 OVCAR-5 100.82 OVCAR-5 100.82 OVCAR-5 100.82 OVCAR-5 100.82 OVCAR-5 100.82 OVCAR-5 100.82 OVCAR-5 100.82 OVCAR-5 100.82 SK-0V-3 80.111.24 SW126 80.068 TK-10 103.01 RJC 388 111.24 SW126 80.068 TK-10 103.01 RJC 388 111.24 SW126 80.068 TK-10 103.01 TA7D 73.06 MDL-MB-231/ATCC 84.53 DL-146 105.63 MDL-MB-231/ATCC 85.33 HS 6781 91.81 MDL-MB-231/ATCC 85.33 HS 6781 91.81 MDL-MB-2469 95.54 MDL-MB-231/ATCC 85.33 HS 6781 91.81 MDL-MB-231/ATCC 95.33 HS 6781 91.81 MDL-MB-2469 95.54 MDL-MB-231/ATCC 95.33 HS 6781 91.81 MDL-MB-2469 95.54 MDL-MB-2469 95.54 MDL-MB-250 MDL-		100.99				
SF-286 S188 SF-539 8139 SNB-19 91.78 SNB-75 72L94 U251 94.82 LOX IMM 95.82 MAL ME-3M 97.34 M14 101.31 MAL ME-3M 97.34 M14 101.31 SK-MEL-2 9121 SK-MEL-2 9121 SK-MEL-2 9121 SK-MEL-2 80.99 SK-MEL-2 80.99 SK-MEL-2 80.99 SK-MEL-2 80.99 SK-MEL-2 80.99 SK-MEL-2 80.99 SK-MEL-2 80.99 SK-MEL-2 80.99 SK-MEL-2 80.91 SK-MEL-2 80.93 SK-MEL-2 80.93 SK-MEL		05 17				
SF-530 80.39 SND-75 72.34 U251 94.82 idemone 1 LOX IMM 95.82 M4. ME-SM 97.34 M14 101.31 MDA-MB-435 92.90 SK-MEL-2 91.21 SK-MEL-23 110.10 SK-MEL-2 91.21 SK-MEL-3 100.32 OVCAR-4 60.25 OVCAR-8 97.01 SK-MEL-7 91.81 UACC-62 80.09 OVCAR-8 97.01 SK-070 86.70 SK-071 87.01 SK-072 86.70 SK-073 100.92 Strait Cancer 64.53 DU-146 105.03 MDA-ME-221/ATCC 85.33 HS F78T 91.81 MC7 84.70 MDA-ME-2468 96.71 MDA-ME-2468 96.81 MDA-ME-2468		93.68		1 1		
SNB-19 91,78 VB-75 72,14 U251 94,82 Idencine 100,131 LOX IMM 95,82 M4L MESN 97,34 M14 101,31 MDA-MB-435 92,90 SK-MEL-2 91,21 SK-MEL-2 91,21 SK-MEL-2 91,21 SK-MEL-2 91,21 Jarran Cancer 103,00 UACC-62 83,09 Jarran Cancer 100,00 IGROV1 92,55 OVCAR-3 111,18 OVCAR-4 68,25 OVCAR-5 107,33 OVCAR-8 97,90 NCL/ADRENES 96,70 SK-0V-3 100,82 Jaral Cancer 786-6 T66-6 81,17 Adel 121,32 ACHN 92,04 CAK-1 87,01 Ror 338 111,24 SW12C 80,38 DL-146 105,31 MDA-ME-231/ATCC 95,33 MCA-ME-231/ATCC 85,33 D4-146 105,31 MDA-ME-231/ATCC 85,33 MDA-ME-2468 96,51 MDA-ME-2468 96,51		89.39		- F 1	I	
UZ51 94.62 relaxions 96.62 MAL MESNI 97.34 MAL MESNI 97.34 M14 101.31 MDA.ABE.435 92.90 SKAMEL-2 91.21 SKAMEL-3 116.10 SKAMEL-5 103.90 UACC-62 83.09 Partian Cancer 1040042 IGROV1 92.56 OVCAR-8 97.90 NCIADER-RSS 96.70 SK-0V-3 100.82 Grand Cancer 107.33 OVCAR-8 97.90 NCIADER-RSS 96.70 SK-0V-3 100.82 Grand Cancer 786-6 786-6 86.17 AG8 97.91 RX7.93 111.24 SW12C 80.86 TK-10 103.01 UO-31 82.53 Du-146 105.83 Brast Cancer 91.81 MC47 85.41 MC57 84.70 MC44 105.83 HS 6781 91.81	SNB-19	91.78		L		
Ideacome Ideacome LOX IMM 95.82 MAL ME-SN 97.34 M14 101.31 MDA.MB-435 92.90 SK-MEL-2 91.21 SK-MEL-3 116.10 SK-MEL-5 103.90 UACC-257 86.74 UACC-22 83.09 Jomin Cancer 92.26 OWCAR-3 111.18 OWCAR-5 107.33 OWCAR-5 107.33 OWCAR-5 107.33 OWCAR-5 117.32 OWCAR-8 97.90 NCI/ADR-RES 96.70 NCI/ADR-RES 96.70 NCIADR-RES 96.70 NCIADR-RES 96.70 NCIADR-RES 96.70 NCIADR-RES 96.70 NCIADR-RES 91.11.24 SN12C 90.86 TH-10 103.01 TK-10 103.01 TK-10 103.01 TK-78 10.31 MCH-ME-231/ATCC 95.33 NDL-ME-488 95.41 MCH-ME-231/ATCC 95.33 NDL-ME-488 95.41 MCH-ME-231/ATCC 95.33 NDH-ME-488 95.41 MCH-ME-488 95.41<						
LCX IMM 95.82 M4L ME-SN 97.34 M14 101.31 MDA. MB-435 92.50 SK-MEL-2 91.21 SK-MEL-28 116.10 SK-MEL-38 108.10 UACC-62 83.09 Varian Cancer IGROV1 92.56 OVCAR-3 111.18 OVCAR-3 111.18 OVCAR-4 68.25 OVCAR-5 107.33 OVCAR-5 107.33 OVCAR-5 98.70 SK-OV-3 100.82 Gamel Cancer 786-0 88.17 Adde 121.32 ACHN 92.04 CAKI-1 87.01 RXF 985 111.24 SN12C 80.88 TK-10 105.83 Net Cancer PC-3 64.53 DUL-46 105.83 Net Cancer PC-3 64.53 DU-46 105.83 Net Cancer PC-3 64.53 NOA-MB-221/ATCC 95.53 DU-46 105.83 No Cancer PC-3 64.53 DU-46 105.83 DU-46 105.85 DU-46 105.85 DU-46 105.85 DU-46 105.85 DU-46 105.85 DU-4		94.62		1 1	I	
M44 ME-3NI 97.34 M14 (101.31) MDA-M8-435 92.20 SK-MEI-22 9121 SK-MEI-28 116.10 SK-MEI-28 16.10 SK-MEI-28 16.10 SK-MEI-28 103.90 UMCC-267 86.74 UMCC-262 83.09 Zmain Cancer IGROV1 92.56 OVCAR-3 111.18 OVCAR-4 69.25 OVCAR-5 107.33 OVCAR-5 107.33 OVCAR-5 97.90 OVCAR-5 97.90 SK-OV-3 100.82 Zmail Cancer 786-0 89.17 A498 121.32 ACHN 92.04 CAK-1 87.01 RXF3985 111.24 SN12C 80.886 TK-16 103.01 U-0.31 87.53 SN12C 80.886 TK-16 103.01 U-0.31 87.53 DL1-446 105.83 Zmail Cancer PC-3 64.53 DL1-446 105.83 Zmail Cancer PC-3 64.53 DL1-446 105.83 Zmail Cancer PC-3 64.53 DL1-446 100.31 T-47D 73.06 MCA-MB-221/ATCC 95.33 MCA-MB-221/ATCC 95.33 MCA-MB-221/ATCC 95.33 MCA-MB-221/ATCC 95.33 MCA-MB-468 95.41		95,82		- I		
M14 101.31 MDA.M8-435 92.50 SK-MEL-2 91.21 SK-MEL-28 91.21 SK-MEL-5 103.90 UACC-27 86.74 UACC-62 83.09 Dwalar Cancer OVCAR-3 111.18 OVCAR-4 68.17 T68-6 89.17 T68-6 89.19 T68-7 89.19 T68-7 89.19 T68-7 89.19 T68-7 89.19 T68-7 89.19 T68-7 89.19T68-7 89.19 T68-7 89.19T68-7 89.19 T68-7 89.19T68-	MALME-3N	97.34			I	
SK44EL-2 91.21 SK-44EL-28 118.10 SK-44EL-5 103.90 UMCC-27 85.74 UMCC-22 83.09 Varian Cancer 92.56 OVCAR-3 111.18 OVCAR-5 107.33 OVCAR-5 107.33 OVCAR-8 97.90 NCI/ADR-RES 96.70 SK-0V-3 100.82 Varian Cancer 97.90 NCI/ADR-RES 96.70 SK-0V-3 100.82 Varian Cancer 97.91 788-6 81.71 A498 121.32 Acith 82.04 Cancer 97.93 NCI/ADR-RES 96.70 SK-0V-3 100.82 Varian Cancer 97.94 PC-3 64.53 DL-146 105.83 Streats Cancer 91.81 MCA-7 84.70 MCA-7 91.81 B15.648 105.83 Streats Cancer 91.81 MCA-7 91.81 B15.648 100.31 MCA-MB-468 95.41 MCA-7 91.85 MCA-7 92.92 Data 00.72 Rar		101.31			I	
SK 44EL-28 116.10 SK 44EL-5 103.90 UACC-257 96.74 UACC-262 83.09 Variant Cancer 9 IGROV1 92.56 OVCAR-3 111.18 OVCAR-4 60.25 OVCAR-3 117.18 OVCAR-4 90.25 OVCAR-5 107.33 OVCAR-8 97.90 SK-0V-3 100.62 Gamel Cancer 786-6 786-6 89.17 A498 121.32 ACHN 92.04 CAK1-1 87.01 TK-10 103.01 UO-31 82.53 PC-3 64.53 DL-148 105.89 MCSF7 84.70 MCSF7 91.81 BE-578T 91.81 BE-549 100.31 MCA-482-488 95.41 McA-482-488 95.41 McA-482-488 95.41		82.90 04.24				
SK-AHEL-5 103.90 UACC-257 86.74 UACC-262 83.09 Diraten Cancer 92.56 OVCAR-3 111.18 OVCAR-4 06.25 OVCAR-5 107.33 OVCAR-8 97.90 NCUADR-RES 96.70 SK-0V-3 100.82 Varian Cancer 786-6 786-6 89.17 A499 121.32 ACHN 92.04 CAU-1 87.01 RXF 383 111.24 SN12C 80.86 TK-10 103.01 UO-31 82.53 PC-3 64.53 DL-146 105.83 Steast Cancer 94.70 MCF7 94.70 MCF7 94.70 MCF7 94.70 MCF7 94.70 MCA-MB-231/ATCC 95.33 Best Cancer 95.33 MCF7 91.61 BT-548 100.31 MCA-MB-486 95.41 Mcan 92.32 Deta 40.72 Range 69.72						
UACC-257 86.74 UACC-62 83.09 Warten Cancer IGROV1 92.56 OVCAR-3 111.18 OVCAR-4 98.25 OVCAR-5 107.33 OVCAR-8 97.50 NC/MAR-RES 96.70 SK-OV-3 100.82 Starsl Cancer 786-4 89.17 A498 121.32 ACHN 92.04 CAKI-1 87.01 RCF 383 111.24 SN12C 80.88 SN12C 80.88	SK-MEL-5	103.90				
Dearter Cancer IGROV1 \$256 OWCAR-3 111.18 OWCAR-3 68.25 OWCAR-4 68.25 OWCAR-5 117.33 OWCAR-8 \$77.90 NCI/ADR-RES 96.70 SK-OV-3 100.82 Tearl Cancer RAF 383 111.24 A498 121.32 A498 121.32 A498 121.32 A498 121.32 A498 121.32 ACHN \$20.44 CAKI-1 87.01 RAF 383 111.24 SN12C 80.88 SN12C 80.88 SN12C 80.88 SN12C 80.98 TK-10 103.01 UO-31 62.53 DU-145 105.83 Reset Cancer MCA-HB-231/ATCC 95.33 HS 678T 91.81 BT-549 100.31 T-47D 73.05 MCA-HB-231/ATCC 95.33 HS 678T 91.81 BT-549 100.31 T-47D 73.05 MCA-HB-2488 95.41 Near 92.32 Data 40.72 Range 68.72	UACC-257	86.74			I	
IGROV1 32.56 OVCAR-3 111.18 OVCAR-4 68.25 OVCAR-5 107.33 OVCAR-8 37.90 NCI/ADR-RES 96.70 SK-0V-3 100.82 Jensi Cancer 778-3 778-3 82.17 A496 121.32 ACHN \$2.04 CAKL-1 87.01 RXF.7383 111.24 SN12C 80.96 TK-10 103.01 UO-31 82.53 PC-3 64.53 DL-146 105.83 Streast Cancer 91.81 PC-3 64.53 DL-146 105.83 Streast Cancer 91.81 BT-549 100.31 T-47D 73.06 MCA-MB-231/ATCC 95.33 HS 578T 91.81 BT-549 100.31 T-47D 73.05 MCA-MB-468 95.41 Dalia 40.72 Range 68.72		83.09		- F I	I	
OVCAR-3 111.18 OVCAR-4 68.25 OVCAR-5 107.33 OVCAR-8 97.90 NCI/ADR-RES 96.70 SK-OV-3 100.82 Varial Cancer 788-6 788-6 89.17 A498 121.32 ACHN 92.04 CANC-1 87.01 RXF 388 111.24 SN12C 80.86 TK-10 103.01 UO-31 82.53 Pc3 64.53 DL-145 105.83 Ntcar 91.81 BT-549 100.31 T-47D 73.08 MDA-MB-468 95.41 MCar 92.32 Dafia 40.72 Range 69.72		07.58				
OVCAR-4 68.25 OVCAR-5 107.33 OVCAR-8 97.90 NCI/ADR-RES 96.70 SK-0V-3 100.82 Vanel Cancer 785-0 785-0 89.17 785-0 89.17 785-0 89.17 785-0 89.17 785-0 89.17 785-0 89.17 785-0 89.17 785-0 89.17 785-0 89.17 785-0 89.17 785-0 89.17 785-1 89.11 ACHN 92.04 CAKL-1 87.01 RXCF 383 111.24 SN12C 60.88 TK-10 103.01 UO-31 82.53 PC-3 64.53 DL-145 105.63 Streast Cancer 91.91 HS 578T 91.91 BT-549 100.31 T-47D 73.05 MDA-MB-468 95.41 Mcan 92.32 Data 40.72 Range 69.72						
OVCAR-5 107.33 OVCAR-8 97.90 NCI/ADIR-RES 96.70 SK-COV-3 100.82 arrail Cancer 786-6 786-6 89.17 A498 121.32 ACHN 92.04 CAKI-1 87.01 RAF 935 111.24 SN12C 80.88 TK-10 103.01 UC-31 82.53 PC-3 64.53 DU-145 105.83 Rest 93 165.83 Rest 94 100.31 T-47D 73.06 MDA-MB-231/ATCC 95.33 HS 678T 91.81 BT-349 100.31 T-47D 73.06 MDA-MB-468 95.41 Mean 92.32 Defta 40.72 Range 69.72	OVCAR-4	68.25				
NCI/ADIR-RES 96.70 SK-OV-3 100.82 tensi Cancer 788-0 88.17 788-0 88.17 788-0 88.17 788-0 88.17 788-0 88.17 784-0 121.32 ACHN 92.04 CAKI-1 87.01 RXF 383 111.24 SN12C 80.88 TK-10 100.01 UO-31 82.53 PC-3 04.53 DU-145 105.83 PC-3 04.55 DU-145 105.83 Freest Cancer PC-3 04.55 DU-145 105.83 Freest Cancer MCA-MB-231/ATCC 85.33 HS 678T 91.81 BT-549 100.31 T-47D 73.08 MDA-MB-468 95.41 Mean 92.32 Defta 40.72 Range 68.72		107.33				
SK-CV-3 100.82 Vensi Cancer 89.17 A498 121.32 ACHN 92.04 CAKI-1 87.01 RXF398 111.24 SN12C 80.88 TK-10 103.01 UO-31 82.53 Postate Cancer 84.53 DU-146 106.83 Romer 84.53 DU-146 106.83 MCF7 84.70 MOA-MB-231/ATCC 95.33 HS 678T 91.81 BT-549 100.31 T-47D 73.08 MDA-MB-468 95.41 Mean 92.32 Defta 40.72 Range 69.72		97.90 06.70				
tansi Cancer 788-0 89.17 A498 121.32 ACHN 92.04 CAKI-1 87.01 RXF 3983 111.24 SN12C 80.88 INC-31 82.53 DU-146 105.83 Breest Cancer 92.32 MCA-MB-231/ATCC 85.33 BT-549 100.31 T-47D 73.08 MDA-MB-468 95.41 Mean 92.32 Detha 40.72 Range 69.72	SK-OV-3					
78-0 89.17 A498 121.32 ACHN \$2.04 CAKI-1 87.01 RXF.393 111.24 SN12C 80.88 TK-10 103.01 UC-31 82.53 PC-3 64.53 DLI-145 105.83 Reserved Cancer 91.81 PC-3 94.53 DLI-145 105.83 Reserved Cancer 91.81 PC-3 94.53 DLI-145 105.83 Reserved Cancer 91.81 BT-549 100.31 T-47D 73.08 MDA-MB-4686 95.41 Mean 92.32 Defta 40.72 Range 69.72	tensi Cancer					
A499 121.32 ACHN 92.04 CARCI-1 87.01 RXF 393 111.24 SN12C 80.88 TK-10 103.01 UC-31 82.53 Postate Cancer MCF7 84.70 MCF7 84.70 MCF7 84.70 MCF7 84.70 MCF7 84.70 MCA-MB-231/ATCC 95.33 HS 678T 91.81 BT-549 100.31 T-47D 73.08 MCA-MB-488 95.41 Mean 92.32 Detha 40.72 Range 89.72	786-0			P		
CAKI-1 87.01 RXF 3953 111.24 SN12C 80.88 TK-10 103.01 UO-31 82.53 Postate Cancer PC-3 64.53 DU-145 106.83 Ress Cancer MCA-MB-231/ATCC 85.33 HS 578T 91.81 BT-549 100.31 T-47D 73.08 MDA-MB-469 95.41 Mean 92.32 Defta 40.72 Range 69.72	A498					
RVF 398 111.24 SN12C 80.88 SN12C 80.88 TK-10 103.01 UO-31 82.53 PC-3 64.53 DU-145 105.83 Breast Cancer MCF7 MCF7 84.70 MCF7 84.70 MCF7 84.70 MCF7 91.61 BT-549 100.31 T-47D 73.05 MDA-MB-468 95.41 Mean 92.32 Data 40.72 Range 69.72				6 1		
SN12C 60.88 TK-10 103.01 UO-31 82.53 PC-3 64.53 DLI-145 105.83 Kreest Cancer 84.70 MCA-MB-231/ATCC 95.33 HS 678T 91.81 B1-549 100.31 T-47D 73.08 MDA-MB-468 95.41 Mean 92.32 Defta 40.72 Range 69.72						
TK-10 103.01 UO-31 82.53 Positate Cancer 9C-3 PC-3 64.53 DU-145 105.83 INExest Cancer 91.81 MCA-MB-231/ATCC 95.33 HS 578T 91.81 BT-549 100.31 MDA-MB-468 95.41 MEan 92.32 Deita 40.72 Range 69.72	SN12C	80.68				
Positiste Cancer 64.53 DU-145 105.83 Ress Cancer 84.70 MCF7 84.70 MCA-MB-231/ATCC 95.33 HS 678T 91.81 BT-549 100.31 T-47D 73.06 MDA-MB-466 95.41 Mean 92.32 Defta 40.72 Range 69.72	TK-10	103.01				
PC-3 64.53 DU-145 105.83 Reset Cancer MCF7 84.70 MDA-MB-231/ATCC 95.33 HS 678T 91.81 BT-549 100.31 T-47D 73.05 MDA-MB-468 95.41 Mean 92.32 Defta 40.72 Range 89.72		82.53				
DU-145 105.83 streast Cancer #0077 84.70 MCA-MB-231/ATCC 85.33 HS 578T 91.81 BT-549 100.31 T-47D 73.08 MDA-MB-468 95.41 Mean 92.32 Defta 40.72 Range 69.72		64.53				
Incert B4.70 MCX+MB-231//ATCC 85.33 HS 678T 91.81 BT-349 100.31 BT-349 100.31 IT-47D 73.06 MDA-MB-468 95.41 Mean 92.32 Delta 40.72 Range 69.72		105.63				
M0A-MB-231/ATCC 95.33 H8 578T 91.81 BT-349 100.31 T-47D 73.05 MDA-MB-466 95.41 Mean 92.32 Defta 40.72 Range 69.72	kreast Cancer					
HS 678T 91.81 BT-549 100.31 T-47D 73.06 MDA-MB-468 95.41 Mean 92.32 Delta 40.72 Range 69.72						
BT-549 100.31 T-47D 73.08 MDA-MB-468 95.41 Nean 92.32 Data 40.72 Range 69.72				1 1		
T-47D 73.08 MDA-MB-468 95.41 Mean 92.32 Delta 40.72 Range 69.72	BT-549	100.31				
Mean 92.32 Defa 40.72 Range 69.72	T-47D	73.08				
Deha 40.72 Range 69.72	MIJA-MIJ-498	95.41				
Delta: 40.72 Range 69.72	Mean	92.32				
	Delta	40.72				
L 150 190 50 0 -50 -100 -1	Range	69.72				
150 190 50 0 -50 -100 -1						
		150	190 54	0 0 -50	-100 -156	

Developmental The	apeutics Program	NSC: 749804 / 1	Conc: 1.00E-5 Molar	Test Date: Jan 26, 2009	
One Dose Mean Graph		Experiment ID: 09010S41		Report Date: Feb 17, 200	
anel/Cell Line	Growth Percent	Mean Growt	cent		
eukamia CCRF-CEM	82.68				
HL-60(TB)	89.09		•		
K-562	84.25				
MOLT-4 RP MI-8226	74.47 98.55				
Ion-Small Cell Lung Cancer	30.33				
A548/ATCC	89.54				
EKVX	74.63				
HOP-62 HOP-82	91.22 81.19				
NCI-H226	90.17				
NCI-H23	108.89				
NCI-H322M	90.94				
NCI-11460 NCI-11522	100.54 91.91		I		
Xolon Cancer	81.81		r i		
COLO 205	108.54				
HCC-2998	104.23				
HCT-116 HCT-15	83.94 90.99				
HT29	\$7.72				
KM12	108.99				
SW-620	103.24				
NS Cancer SF-268	97.48				
SF-295	97.23				
SF-539	90.58				
SNB-19	102.88 75.14				
SNB-75 U251	75.14 98.62				
Adanoma					
LOX IMM	91.48				
MALME-3W M14	92.69 99.26		I		
MDA-MB-435	3a.20 94.64				
SK-MEL-2	108.09		– 1		
SK-MEL-28	112.23				
SK-MEL-5 UACC-257	80.73 104.48				
UACC-62	73.05				
Svarlæn Cancer			L I		
IGROV1	89.71		I		
OVCAR-3 OVCAR-4	98.00 96.41				
OVCAR-5	101.19		- I		
OVCAR-8	102.58		- -		
NCI/ADR-RES	90.21 103.18				
SK-OV-3 tensi Cancer	103.16				
786-0	97.21		4 1		
A498	87.94		_ I		
ACHN CAKI-1	101.85 92.38				
RXF 393	3Z-30 111.67				
SN12C	84.48		⊢		
TK-10	94.18				
UO-31 Proslate Cancer	72.31				
Tostate Cancer PC-3	85.21 92.65				
DU-146	92.65				
MCF7	89.23				
MDA-MB-231/ATCC	89.81				
HS 576T	101.90				
BT-549 T-47D	76.66 82.17				
MDA-MB-468	82.17 84.14				
Nican Delta	93.68 21.37				
Range	39.92				
		490 74			
	150	190 50	0 -50	-100 -150	

Developmental The	rapeutics Program	NSC: 749805/1	Conc: 1.00E-5 Molar	Test Date: Jan 26, 2009	
One Dose Mean Graph		Experiment ID: 09010S41		Report Date: Feb 17, 200	
anel/Cell Line	Growth Percent	Mean Growth Percent - Growth Percent			
eukernie CCRF-CEM	116.66				
HL-60(TB)	75.94				
K-562	83.69				
MOLT-4 RP M-8226	75.38 80.65		- 1		
Ion-Small Cell Lung Cancer					
A548/ATCC	99.55				
EKVX HOP-62	85.84 98.81				
HOP-82	90.02				
NCI-H226	90.13				
NCI-H23 NCI-H322M	99.17 81.06				
NCI-H460	109.73				
NCI-H522	74.14				
Xolon Cancer	78 75				
COLO 205 HCC-2998	76.25 70.97				
HCT-116	52.05				
HCT-15 HT29	90.13 65.06				
KM12	60.12				
SW-620	88.23				
NS Cancer SF-268	96.33				
5r-205 SF-295	88.15				
SF-539	92.05				
SNB-19 SNB-75	88.05 97.53		I		
U251	53.55				
felanoma					
LOX IMVI MALME-3NI	73.84 104.66				
M14	86.71				
MDA-MB-435	67.46				
SK-MEL-2 SK-MEL-28	93.59 111.32				
SK-MEL-20	74.94				
UACC-257	95.45		– 1		
UACC-62 Ivarian Cancer	79.04		r I		
IGROV1	48.12				
OVCAR-3	65.44				
OVCAR-4 OVCAR-5	71.01 88.41				
OVCAR-8	103.63				
NCI/ADR-RES	89.32				
SK-OV-3 tenel Cancer	101.78				
786-0	76.74		▶ I		
A498	78.45				
ACHN CAKI-1	69.56 84.74				
RXF 393	104.64				
SN12C	80.29		-		
TK-10 UO-31	84.68 75.60		⊢ 1		
roslate Cancer					
PC-3 DU-145	82.49				
DU-140 Reast Cancer	79.85				
MCF7	94.25				
MDA-MB-231/ATCC HS 578T	81.35 106.60				
BT-549	79.60				
T-47D	79.15				
MDA-MB-468	70.83				
Mean	84.34				
Delta	38.22				
Range	72.54				
	150	190 50) 0 -50	-100 -150	

Developmental men	apeutics Program	NSC: 750689 / 1	Conc: 1.00E-5 Molar	Test Date: Jul 06, 2009
One Dose Mean Graph		Experiment ID: 0907OS76		Report Date: Oct 22, 200
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Per		cent
eukemia	40.04			
CCRF-CEM HL-60(TB)	42.61 23.46			
K-562	34.49		– 1	
MOLT-4	24.10			
RPMI-8226	20.22			
SR Non-Small Cell Lung Cancer	-22.06			
A549/ATCC	22.99		• I	
EKVX	23.44			
HOP-62 HOP-92	61.74 -2.68			
NCI-H226	49.05			
NCI-H23	36.34		_	
NCI-H322M	87.32			
NCI-H460 NCI-H522	-6.74 46.16			
Colon Cancer	40.10			
COLO 205	-100.00			
HCC-2998	-1.37			
HCT-116 HCT-15	0.33 21.33		-	
HT29	-67.72			
KM12	-3.66			
SW-620 CNS Cancer	36.35			
SF-268	35.99			
SF-295	45.14			
SF-539 SNB-19	33.40 76.11			
SNB-75	45.81			
U251	17.24			
Ielanoma LOX IMVI	13.27			
MALME-3M	48.88			
M14	32.98		-	
MDA-MB-435 SK-MEL-2	25.94 56.73			
SK-MEL-28	60.01			
SK-MEL-5	48.21			
UACC-257 UACC-62	42.80 41.90			
Dvarian Cancer	41.90			
IGROV1	52.53			
OVCAR-3	-28.71			
OVCAR-4 OVCAR-5	29.63 69.19			
OVCAR-8	32.85		-	
NCI/ADR-RES	31.03			
SK-OV-3 Renal Cancer	77.55			
786-0	16.53		–	
ACHN	20.53			
CAKI-1 RXF 393	59.49 -36.96			–
SN12C	-79.29			
TK-10 UO-31	34.25 48.26			
Prostate Cancer	40.20			
PC-3	7.78			
DU-145	52.18			
Breast Cancer MCF7	0.29			
MDA-MB-231/ATCC	37.66			
HS 578T	60.99			
BT-549 T-47D	39.72 13.64			
MDA-MB-468	35.78		_	
Mean	25.85			
Delta	125.85			
Range	187.32			
	150	100 50	0 -50	-100 -150

References:

- ¹ Pawson, T. Protein molecules and signaling networks, *Nature* **1995**, 373, 573–580.
- ² (a) Egan, S. E.; Weinberg, R. A. The pathway to signal achievement, *Nature* **1993**, *365*,
- 781-782; (b) Blume-Jensen, P.; Hunter, T. Oncogenic kinase signaling, Nature 2001,
- 411, 355–365; (c) Hanahan, D.; Weinberg, R. A. The hallmarks of cancer, Cell 2000,

100, 57-70.

³ Dancey, J.; Sausville, E. Issues and progress with protein kinase inhibitors for cancer treatment, *Nat Rev Drug Discovery* **2003**, *2*, 296–313.

⁴ (a) Michael, W. N.; Deininger M.; Druker, B. J. Specific Targeted Therapy Of Chronic Myelogenous Leukemia With Imatinib, *Pharmacol. Reviews.* **2003**, *55*, No. 3, (b) Kantarjian, H.; Kurzrock, R.; Talpaz, M. Philadelphia chromosome-negative chronic myelogenous leukemia and chronic myelomonocytic leukemia, *Hematol. Oncol. Clin.*

North Am. 1990, 4, 389–404.

⁵ Kantarjian, H. M.; Cortes J. New Strategies In Chronic Myeloid Leukemia. *Int. J. Hematology*, **2006**, *83*, 289–293

⁶ Deininger, M.; Druker, B. J. Specific Targeted Therapy of Chronic Myelogenous Leukemia with Imatinib, *Pharmacol Rev.* **2003**, 55(3), 401–423,

⁷ Sordella, R.; Bell, D.; Haber, D.; Settleman, J. Gefitinib-Sensitizing EGFR Mutations in Lung Cancer Activate Anti-Apoptotic Pathways, *Science*, **2004**, *305*, 1163-1167.

⁸ Tsao, M. Sakurada, A.; Cutz, J. C.; Zhu, C. Q.; Kamel-Reid, S.; Squire, J.; Lorimer, I.; Zhang, T.; Liu, N.; Daneshmand, M.; Marrano, P.; Santos, G. D.; Lagarde, A.; Richardson, F.; Seymour, L.; Whitehead, M.; Ding, K. Y.; Pater, J.; Shepherd, F. A. Erlotinib in Lung Cancer — Molecular and Clinical Predictors of Outcome, *New Eng. J. Med.* **2005**, *353*, 133–144.

⁹ (a) Fabbro, D.; Ruetz, S.; Buchdunger, E.; Cowan-Jacob, S. W.; Fendrich, G.;

Liebetanz, J.; Mestan, J.; O'Reilly, T.; Traxler, P.; Chaudhuri, B.; Fretz, H.; Zimmerman, J.; Meyer, T.; Caravatti, G.; Furet, P.; Manley, P. W. Protein Kinases as Targets for Anticancer Agents: From Inhibitors to Useful Drugs, *Pharm. Ther.* **2002**, *93*, 79–98. ¹⁰ Peterson, M. A.; Ke, P.; Shi, H.; Jones, C.; McDougall, B. R.; Robinson, W. E. Design, Synthesis, and Antiviral Evaluation of Some 3'-Carboxymethyl-3'-Deoxyadenosine Derivatives, *Nucleos. Nucleotid. Nucl.* **2007**, *26*, 499–519.

¹¹ Vichai, V.; Kirtikara, K. Sulorhodamine B colorimetric assay for cytotoxicity screening, *Nature Protocols.* **2006**, *1*, 1112–1116.

¹² Paull, K. D.; Shoemaker, R. H.; Hodes, L.; Monks, A.; Scudiero, D. A.; Rubinstein, L.; Plowman, J.; Boyd, M. R. Display and Analysis of Patterns of Differential Activity of Drugs Against Human Tumor Cell Lines: Development of Mean Graph and COMPARE Algorithm, *J. Natl. Cancer Inst.* **1989**, *81*, 1088–92.

¹³ Ambit Biosciences. March, 2009 < http://www.ambitbio.com/>

¹⁴ Fabian, M.A.; Biggs, W. H. III; Treiber, D. K.; Atteridge, C. E.; Azimioara, M. D.;

Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen, P. T.; Floyd, M.; Ford, J. M.; Galvin,

M.; Gerlach, J. L.; Grotzfeld, R. M.; Herrgard, S.; Insko, D. E.; Insko, M. A.; Lai, A. G.;

Lélias, J.-M.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L. M.; Patel, H.

K.; Zarrinkar, P. P.; Lockhart, D. J. A Small Molecule-Kinase Interaction Map for

Clinical Kinase Inhibitors, Nature Biotech. 2005, 23, 329-336.

¹⁵ Peterson, M. A.; Oliveira, M.; Christiansen, M. A.; Cutler, C. E. Preliminary SAR Analysis of Novel Antiproliferative N6,5'-Bis-ureidoadenosine Derivatives, *Bioorg. Med. Chem. Lett.* **2009**, *19*, 6775–6779.

¹⁶ Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge, C. E.,

Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.; Edeen, P. T.; Faraoni, R.;

Floyd, M.; Hunt, J. P.; Lockhart, D. J.; Milanov, Z. V.; Morrison, M. J.; Pallares, G.;

Patel, H. K.; Pritchard, S.; Wodicka, L. M.; Zarrinkar, P. P. A Quantitative Analysis of Kinase Inhibitor Selectivity, *Nature Biotech.* **2008**, *26*, 127–132.

¹⁷ (a) Helms, M. W.; Packeisen, J.; August, C.; Schittek, B.; Boecker, W.; Brandt, B. H.;
Buerger, H. First Evidence Supporting a Potential Role for the BMP/SMAD Pathway in
the Progression of Oestrogen Receptor-positive Breast Cancer, *J. Pathol.* 2005, 206,
366–376.

(b) Alarmo, E.-L.; Kuukasjärvi, T.; Karhu, R.; Kallioniemi, A. A Comprehensive Expression Survey of Bone Morphogenetic Proteins in Breast Cancer Highlights the Importance of BMP4 and BMP7. *Breast Cancer Res. Treat.* **2007**, *103*, 239–246.

¹⁸ Anderson, G. J.; Darshan, D. Small-Molecule Dissection of BMP Signaling, *Nature Chem. Biol.* **2008**, *4*, 15–16.

¹⁹ Peterson, M. A.; Shi, H.; Ke, P. A Simple and Efficient Biphasic Method for the Preparation of 4-Nitrophenyl *N*-Methyl- and *N*-Alkylcarbamates, *Tetrahedron Lett*. **2006**, *47*, 3405–3407.