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ABSTRACT Defining a reference climate for precipitation is an important requirement in the development of
climate change scenarios to support climate adaptation strategies. It is also important for many hydrological
and water resource applications. This, however, remains a challenge in regions that are poorly covered by meteor-
ological stations, such as northern Canada or mountainous regions. Reanalyses may represent an interesting
option to define a reference climate in such regions. However, these need to be validated and corrected for bias
before they can be used. In this paper, two data assimilation methods, Optimal Interpolation (OI) and Ensemble
Optimal interpolation (EnOI), were used to combine four reanalysis datasets with observations in order to improve
the representation of various precipitation indices across Canada. A total of 986 meteorological stations with mini-
mally 20-year precipitation records over the 30-year reference period (1980–2009) were used. Annual values of ten
Climate Precipitations Indices (CPIs) were estimated for each available dataset and were then combined (reana-
lysis plus observations) using OI and EnOI. A cross-validation strategy was finally applied to assess the relative
performance of these datasets. Results suggest that combining reanalysis and observations through OI or EnOI
improves CPI estimates at sites where no recorded precipitation is available. The EnOI dataset outperformed
OI applied to each reanalysis independently. An evaluation of the gridded interpolated observational dataset
from Natural Resources Canada showed it should be used with considerable caution for extreme CPIs because
it can underestimate annual maximum 1-day precipitation, as well as overestimate the annual number of wet days.

RÉSUMÉ [Traduit par la rédaction] La définition d’un climat de référence pour les précipitations est un élément
important dans l’élaboration de scénarios de changements climatiques sur lesquels s’appuieront les stratégies
d’adaptation à de tels changements. Cette référence est également importante pour de nombreuses applications
en hydrologie et en gestion des eaux. Cependant, la référence est difficile à établir dans des régions où la couver-
ture des stations météorologiques est lacunaire, comme dans le nord du Canada ou dans les régions montagneuses.
Les réanalyses semblent être une option intéressante pour y parvenir. Elles doivent toutefois être validées et cor-
rigées des biais avant de pouvoir être utilisées. Dans cet article, deux méthodes d’assimilation de données, l’inter-
polation optimale (IO) et l’interpolation optimale d’ensemble (IOE), ont servi à combiner quatre jeux de données
de réanalyses avec observations afin d’améliorer la représentation de divers indices de précipitations au Canada.
Au total, 986 stations météorologiques ayant des relevés de précipitations couvrant au moins 20 des 30 années de
la période de référence (1980–2009) ont été utilisées. Les valeurs annuelles de dix indices de précipitations ont été
estimées pour chaque jeu de données disponibles puis combinées (réanalyses plus observations) par IO et IOE.
Enfin, une stratégie de validation croisée a été appliquée pour évaluer la performance de chacun des jeux de
données en question. Selon les résultats, la combinaison de réanalyses et d’observations par IO ou IOE améliore
les estimations d’indices de précipitations des sites où les précipitations ne sont pas enregistrées. Le jeu de données
de l’IOE a surpassé l’IO appliquée à chaque réanalyse séparément. Une évaluation du jeu de données d’observa-
tion interpolées aux points de grille de Ressources naturelles Canada montre qu’il doit être utilisé avec circonspec-
tion en ce qui a trait aux indices de précipitations extrêmes, car les valeurs annuelles de précipitations maximales
en un jour peuvent être sous-estimées et le nombre de jours de pluie par année surestimé.

KEYWORDS optimal interpolation; ensemble optimal interpolation; climate precipitations indices; data assimila-
tion; northern Canada
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1 Introduction

Flooding, landslides, soil erosion, crop damages, and degra-
dation of water quality are just a few examples of how
extreme precipitation events may affect ecosystems, the
economy, and human activities. These events have become
more frequent and intense over many regions of the world
during recent decades (e.g., North America and Europe) (Hart-
mann et al., 2013) and are expected to become even more fre-
quent and intense in the future as the climate warms (Stocker
et al., 2013). Characterizing baseline climatologies of precipi-
tation-related variables, such as extreme events, is essential for
many applications and sectors, for example, the design of
water infrastructure and water resource applications (Fletcher
et al., 2019). These baselines or reference climatologies are
also essential for developing climate change scenarios
(Hatzaki et al., 2010; Tebaldi et al., 2006; Westra et al., 2014).
Historical climate can be characterized through various

indices, such as the Climate Precipitations Indices (CPIs) pro-
posed by the Expert Team on Climate Change Detection and
Indices (ETCCDI) (Peterson et al., 2001; Zhang et al.,
2011). These indices have been estimated directly from avail-
able observational records around the world (e.g., Frich et al.,
2002). Gridded datasets of these indices have also been pro-
duced through interpolation of observational datasets (e.g.,
Alexander et al., 2006; Donat et al., 2013). This process is
relatively straightforward in regions with temporally consist-
ent, dense meteorological networks but represents a challenge
in remote regions with low-density networks and/or short
periods of record as is the case for mountainous and northern
regions of Canada (Mekis & Vincent, 2011).
Reanalyses represent an interesting complement to conven-

tional observational datasets because they provide a compre-
hensive and, in general, good spatiotemporal representation
of many variables. Reanalyses consist of a background fore-
cast model and data assimilation routine that combines avail-
able observational datasets with a model forecast to generate
gridded datasets (Bosilovich et al., 2008). They have been
widely used in different climate research applications (e.g.,
Alexeev et al., 2012; Lindsay et al., 2014; Zou et al.,
2014). Extreme precipitation and temperature indices from
reanalyses have also been used as references for the evalu-
ation of climate models (e.g., Sillmann et al., 2013). Their
consistency with global gridded observational datasets has
been verified (Donat et al., 2014), showing improvements
in the representation of the spatial patterns after 1979 when
satellite data were included in the assimilation process.
Despite their overall good spatiotemporal representation of
many variables, some variables, for instance precipitation,
are still not well represented in some regions, mainly
because observational datasets for these variables have not
been explicitly used in the assimilation process (Kobayashi
et al., 2015; Rienecker et al., 2011). For instance, in evaluat-
ing daily climate indices over the northern parts of Canada,
Diaconescu et al. (2018) recommended caution when using
extreme daily precipitation indices from reanalyses as

reference datasets for these regions because their performance
was, in some cases, lower than Regional Climate Model
simulations. Reanalyses, therefore, need to be “corrected”
before they can be used. Their overall performance depends
on the variable considered, the data assimilation routine,
the assimilated observational datasets, and the forecast
model (Lorenz & Kunstmann, 2012).

One option for improving theCPI representation in the histori-
cal climate is to use bias correction methods (e.g., linear-scaling
factor methods and quantile mapping) (Alidoost et al., 2019).
Another option is to combine reanalysis datasets with in situ
observations not considered in the reanalysis assimilation
process through data assimilation methods. These methods
combine model fields with observational datasets to create an
improved model dataset (Bertino et al., 2003; Kalnay, 2002).
They can be incorporated into the modelling process through
two different modes: an online mode, which increases the
quality of the initial conditions sequentially for newmodel simu-
lations, and an off-linemode,which is used to create the best esti-
mation, combining the final outputs of the model with
observational data (Candiani et al., 2013;Matsikaris et al., 2015).

In this study, the off-line mode was applied using the
Optimal Interpolation (OI) (Daley, 1991; Kalnay, 2002; Sen,
2009) and Ensemble Optimal Interpolation (EnOI) methods
(Evensen, 2003; Oke et al., 2010). The OI method was
applied to each reanalysis independently and EnOI to all rea-
nalyses combined. Both methods are quite similar, their main
difference being in how the background error covariance is
defined and estimated (Ren & Hartnett, 2017). These
methods were used because they are relatively straightfor-
ward, computationally inexpensive, and take the uncertainty
of the various datasets into account. The OI method has
been used to merge precipitation datasets in various regions
of the world (e.g., Häggmark et al., 2000; Mahfouf et al.,
2007; Soci et al., 2016). Furthermore, significant improve-
ments were obtained when merging satellite information
with observations and model predictions at a global scale
(Nie et al., 2016). This method has also been used for daily ret-
rospective estimation of streamflow at ungauged river sections
(Lachance-Cloutier et al., 2017).

The objective of the paper is to improve historical CPI data-
sets for Canada combining observations and reanalyses using
the OI and EnOI methods. The paper is organized as follows.
Section 2 describes the observational datasets and reanalyses
considered in this study. The CPI, the data assimilation tech-
niques (OI and EnOI), and the cross-validation procedure
are briefly described in Sections 3, 4, and 5, respectively.
Section 6 presents the results followed by a summary and dis-
cussion (Section 7).

2 Datasets

Five gridded datasets were considered in this study (Table 1).
The first four datasets are widely used reanalyses while the
fifth dataset is the interpolated daily precipitation dataset
from Natural Resources Canada (NRCan) generated from
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station records using a thin plate spline smoothing algorithm
(ANUSPLIN) (Hutchinson et al., 2009; McKenney et al.,
2011). It was used for comparison purposes and to estimate
missing values in station records (further details are provided
in Section 4).
Reanalyses differ in spatiotemporal resolutions, period

covered, assimilation method, and assimilated datasets. Of
the four reanalyses, the Climate Forecast System Reanalysis
(CFSR) is the only reanalysis that directly assimilates precipi-
tation datasets derived from ground-based meteorological
records. Two sets of global precipitation data are indeed
assimilated in CFSR. The first is the pentad dataset of the
Climate Prediction Center (CPC) Merged Analysis of Precipi-
tation (CMAP), which is a 5-day mean precipitation global
dataset with a spatial resolution of 2.5 degrees and combines
rain-gauge and satellite observations. The second dataset is
the CPC global land-based daily dataset with a spatial resolution
of 0.5 degrees obtained by interpolating approximately 30,000
rain-gauge stations worldwide (Saha et al., 2010). Precipitation
from satellite data and rates from ground-based radar obser-
vations (2009 onwards) are assimilated by the fifth major
global reanalysis produced by the European Centre for
Medium-range Weather Forecasts (ERA5) (Hersbach et al.,
2019). Finally, The Japanese 55-year Reanalysis (JRA-55)

and the Modern-Era Retrospective Analysis for Research and
Applications (MERRA) do not assimilate precipitation-related
variables (Kobayashi et al., 2015; Rienecker et al., 2011).

The NRCan dataset has fairly good spatial resolution
(10 km grid) and covers Canada (the study domain) over a
relatively long period (1950–2012). Previous studies showed
an overall underestimation of precipitation by this dataset
(e.g., Bajamgnigni Gbambie et al., 2017; Diaconescu et al.,
2018; Hutchinson et al., 2009). The observations used in
NRCan spatial models were not corrected for evaporation
loss or undercatch (Hutchinson et al., 2009), which may
partly explain these underestimations. To our knowledge, it
is the only available dataset with such spatial and temporal res-
olutions that entirely covers Canada. Some other gridded data-
sets exist but they cover short time periods (e.g., Canadian
Precipitation Analysis (CaPA); Lespinas et al., 2015;
Mahfouf et al., 2007) or parts of Canada (e.g., dataset from
the Ministère de l’Environnement et de la Lutte Contre les
Changements Climatiques (MELCC) covering the province
of Quebec; see Bajamgnigni Gbambie et al., 2017). Because
each dataset covers a different period, a common period,
1980–2009, was considered in the following.

Daily precipitation records from the Adjusted and Homogen-
ized Canadian Climate Data (AHCCD) developed by Environ-
ment and Climate Change Canada (Mekis & Vincent, 2011)
were used, as well as from the stations operated by the
MELCC in Quebec. The records from the AHCCD were cor-
rected for evaporation loss and wind undercatch (Mekis &
Vincent, 2011). Only stations with at least 20 valid years
during the 30-year period 1980–2009 were considered for a
total of 986 stations across Canada. A valid year was defined
as a year when less than 10% of the daily values were missing.
This criterion was applied as a compromise between more
strict conditions (e.g., a smaller percentage of missing data for
valid years or a larger number of valid years over the 1980–
2009 period) that would result in a much smaller number of
stations and less strict conditions that would raise concerns
about data representativity. Figure 1 shows the map locating
these stations. It clearly shows that stations are unevenly distrib-
uted andmainly concentrated in the southern parts of the country.

It is important to note that not all the stations considered in
this study were used to create the NRCan dataset (for instance,
some stations operated by the MELCC in Quebec were not

TABLE 1. Gridded datasets used in this study (acronyms appearing in parentheses are used when referring to these datasets).

Gridded datasets Period
Spatial

Resolution
Temporal
Resolution Reference Precipitation Assimilated

Climate Forecast System Reanalysis (CFSR) 1979–2009 0.312o × 0.312o Hourly Saha et al. (2010) 2.5o pentad dataset of CMAP and
0.5o land-base of CPC

ERA5 reanalysis (ERA5) 1979 onwards 0.25o × 0.25o Hourly Hersbach et al.
(2019)

Satellites and ground-based radar
(2009 onwards)

Japanese 55-year Reanalysis (JRA55) 1958–2013 0.56o × 0.56o 3 h Kobayashi et al.
(2015)

Not assimilated

Modern-Era Retrospective Analysis for
Research and Applications (MERRA)

1979–2012 0.50o × 0.66o Hourly Rienecker et al.
(2011)

Not assimilated

Precipitation data from Natural Resources
Canada (NRCan)

1950–2012 0.083o × 0.083o Daily McKenney et al.
(2011)

Observations

Fig. 1 Map of the 986 stations considered in this study. Regions in red cor-
respond to mountainous regions according to the K3 classification of
Karagulle et al. (2017).
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used). Also, it is well known that interpolated precipitation,
especially extreme values, at daily time scales can be highly
uncertain in regions with sparse network coverage (Gervais
et al., 2014).

3 Climate precipitation indices and super-
observations

The CPI defined by the ETCCDI, as well as mean annual pre-
cipitation (PRmean), have been considered in this study (the
list of indices and their meanings can be found in Table 2).
Annual CPI values were first estimated, as well as the clima-
tological mean, over the 1980–2009 period. The CPI were
computed at each native grid point of each dataset (reanalysis
or NRCan dataset). A second-order conservative remapping
(Jones, 1999) was then applied to each CPI gridded dataset
created from CFSR, JRA55, and MERRA using the ERA5
grid as the reference grid. The OI and EnOI methods were
applied once the CPI gridded datasets from each reanalysis
were created on the common grid.
As shown in Fig. 1, the number of stations in southern Canada

(below 60°N) is relatively high (938 stations for 95% of the total
number of stations) compared with northern regions. Station
density in southern Canada is approximately one station per
80 km x 80 km, while for northern regions it is one station per
290 km x 290 km. Therefore, in southern regions, observations
from neighbouring stations can be highly correlated at daily
time scales. Furthermore, reanalyses may not properly represent
small-scale processes (Vihma et al., 2014). Super-observations
(Daley, 1991), also called upscaled observations (Cherubini
et al., 2002), were, therefore, created using the reanalysis grid
with the highest resolution as a reference grid (i.e., ERA5) in
order to guarantee the numerical stability of the OI and EnOI
methods. Super-observation values were estimated by combin-
ing station values within the same grid cell using the following
expression:

�x =
∑n
i=1

Di γi

∑n
i=1

Di

, (1)

where n is the total number of stations inside a given grid cell,Di

is the number of valid days for station i for a specific year, and γi

represents the annualCPI value for that year. Longitudes and lati-
tudes for the super-observations were also estimated using a
similar equation. The super-station is superposed on an available
station when there is only one station within a grid cell. In the
construction of super-station values, no correction was added
to account for possible differences in elevation among stations
located within a grid cell.

Figure 2 shows the number of stations and corresponding
super-observations with valid records for each year of the
1980–2009 period. It shows that the number of stations stay
almost constant over the first 20 years but quickly decreased
from 2000 to 2009. It should be noted that the spatial distri-
bution of the super-observations changes from year to year
as the number and location of available stations changes.
These super-observation networks were used to apply OI
and EnOI for each year independently.

4 Optimal interpolation methods
a Optimal Interpolation
This section provides a brief description of the OI method and
how it was applied in this paper. A more general and compre-
hensive description of this method can be found in Daley
(1991), Kalnay (2002), and Sen (2009).

The OI method, also known as statistical interpolation, is
widely used (e.g., Lespinas et al., 2015; Mahfouf et al., 2007) to
create an analysis field by combining a background state, or
model forecast, with an observation network (Daley, 1991). The

analysis value ψ(j)
A at grid point j is estimated by the background

field ψ(j)
B , the linear combination of the differences between the

observationsψ(i)
O (i = 1, . . . , n), where n is the number of obser-

vations close to this grid point and the background values at the
observation siteψ(i)

B . The so-called analysis equation is defined as,

ψ(j)
A = ψ(j)

B +
∑n
i=1

W( j,i)(ψ(i)
O −ψ(i)

B ). (2)

TABLE 2. Climate Precipitation Indices (adapted from Zhang et al., 2011).

Index Description Units

PRmean Annual mean of daily precipitation mm
PR1mm Number of wet days (daily precipitation ≥ 1 mm) days
RX1day Annual maximum 1-day precipitation amount mm
RX5day Annual maximum 5-day precipitation amount mm
SDII Simple daily intensity index (ratio of annual total

precipitation to the number of wet days ≥ 1 mm)
mm d−1

R10mm Annual number of days with precipitation ≥ 10 mm days
R20mm Annual number of days with precipitation ≥ 20 mm days
CDD Annual maximum number of consecutive days with

precipitation below 1 mm
days

CWD Annual maximum number of consecutive days with
precipitation ≥ 1 mm

days

PRCPTOT Annual total precipitation from days ≥ 1 mm mm

Fig. 2 Total number of stations and super-observations available over the
1980–2009 period.
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Assuming that the background error depends only on distance
(so-called homogeneous conditions), is isotropic, and obser-
vation errors are uncorrelated, the interpolation weights matrix,
W, can then be estimated using the following equation (Daley,
1991):

[BEC + μ I] W = bEC, (3)

inwhichBEC is the background error correlationmatrix between
the station values, bEC is the background error correlation vector
between the observations and the background field at the corre-
sponding grid point, I is the identity matrix and μ = OEV/BEV,
where OEV and BEV, are the observation and background error
variances respectively. Parameter μ can be adjusted such that
the weights granted to observations can be increased or
reduced (Kalnay, 2002). For each index and reanalysis, OEV

and BEV, respectively, were estimated according to the method-
ology described in Section 4.3 of Daley (1991).
The available CPI annual series over the 30-year reference

period were used to estimate the spatial dependence of the cor-
relation function BEC(x) in Eq. (3). The values at
each observation point from the background field were
obtained for each year by means of bilinear interpolation,
and the missing values in the observational dataset
were filled out with the CPI calculated from the NRCan
dataset. Then, correlations Rij of the differences between the
observations and background field at sites i and j were calcu-
lated using the following equation (Daley, 1991; Sen, 2009):

Rij = (Oi − Bi)(Oj − Bj)�������������������������
(Oi − Bi)

2 (Oj − Bj)
2

√ , (4)

where the overlined variables correspond to the average values
over the reference period. The mean correlations over each
30 km distance interval were then computed. Many different
spatial correlation functions R(x) were tested and the following
expression was finally selected and adjusted to the estimated
values (Sen, 2009):

R(x) = a+ b e(−x/c), (5)

where x is the distance between stations and a, b, and c are the
fitting parameters of the correlation functions. These par-
ameters were estimated for each CPI and each reanalysis (not
shown) and PR1mm was the most correlated CPI (highest
values of c for all datasets) while RX5day and RX1day are
the least correlated indices.
Figure 3 shows an example of the spatial correlation for

the RX1day index estimated from CFSR with the corre-
sponding fit of Eq. (5). Because of the averaging process
over 30 km intervals, Figure 3 shows that at zero distance
correlation has to be estimated. Using Eq. (5) and setting
x = 0, the isotropic background error correlation BEC used

in Eq. (3) is given by (Sen, 2009):

BEC(x) = R(x)
R(0)

or BEC(x) = a+ b e(−x/c)

a+ b
. (6)

The relative expected analysis error ε for each grid point can
be estimated by the following equation (Daley, 1991;
Kalnay, 2002; Sen, 2009):

ε = 1−
∑n
i=1

W(i) b(i)EC, (7)

where values of ε close to 0 means there is a larger contri-
bution from neighbouring observations in the estimation
of the CPI value at this specific grid point, while values of
ε close to 1 means there is a larger contribution from the
background field.

b Ensemble Optimal Interpolation
This section provides a brief description of the EnOImethod and
how it was applied. A more general and comprehensive descrip-
tion can be found in Evensen (2003) and Oke et al. (2010).

The EnOI is an approximation of the ensemble Kalman
filter (EnKF) in which an ensemble of model states in long
time integration (stationary) is used to compute the analysis
in the space spanned and only one model state is used as a
background field (Oke et al., 2007). Defining a matrix E
with ensemble members:

E = [M1, M2, . . . , Mn], (8)

where n is the number of ensemble members that are stored
(vector form) in each column of E. For each CPI, the ensemble
members are the 30 years of each reanalysis combined
(n = 120 members). The anomaly or ensemble perturbation
matrix En can be defined by:

En = E− Em, (9)

Fig. 3 Estimated correlation function (continuous curve) with corresponding
discrete values for RX1day estimated from CFSR.

Improving Representation of Historical Climate Precipitation Indices using OI / 5

ATMOSPHERE-OCEAN iFirst article, 2020, 1–15 https://doi.org/10.1080/07055900.2020.1800444
Canadian Meteorological and Oceanographic Society



where Em is the ensemble mean matrix in which each column
has the same ensemble mean vector calculated from all the
ensemble members stored in E. Then, the ensemble covari-
ance matrix ECM can be estimated by

ECM = CF ◦ α En ET
n

n− 1
, (10)

where the superscript T means a matrix transpose and the par-
ameter α[ (0,1] is a scaling parameter of the model anomalies.
This parameter is introduced to reduce the variance produced by
the ensemble over a long time period that can overestimate the
instantaneous background field error variance (Evensen, 2003;
Fu et al., 2011). In our case, the value α = 1 was used. The
correlation function matrix CF is used to implement the localiz-
ation (each analysis grid point is calculated using only
the nearest stations; Evensen, 2003), and “◦” represents the
Hadamard product that multiplies two matrices of the same
dimensions element by element (Oke et al., 2007).
The EnOI analysis field was estimated using Eq. (2)

described in Section 4.a and the following weight matrix W
(Oke et al., 2007):

W = ECM HT [H ECM HT + R]−1, (11)

where H is an operator that interpolates model grid points at
observation sites (bilinear interpolation), and R is the obser-
vation error covariance matrix. Combining Eqs (10) and
(11), W can finally be expressed as

W = CF

◦ En α (HEn)
T [CF ◦HEn α (HEn)

T + (n− 1) R]−1.

(12)

The background field used in the EnOI was the ensemble
mean over the four reanalyses for each year. The observation
errors were assumed to be uncorrelated as in Section 4.a;
therefore, the observation error covariance matrix R was diag-
onal with values equal to the observation error variance OEV.
The correlation function was the same as Eq. (6), and the par-
ameters a, b, and c for this equation were the mean parameters
over the four reanalyses. The ensemble OEV (defined as EOEV)
was estimated using the following equation:

EOEV = 1
4

∑k

i=1

OEV(i)

k
, (13)

where k is the number of reanalyses (in our case four). The
“four factor” preceding the sum is used for convenience to
provide more weight to the observations in the analysis
equation. The OEV differs from one reanalysis to another
because it was estimated from the relationship between the
observations and the background values at the observation
sites (see Section 4 and Section 4.3 of Daley (1991). Elevation
was not used in the analysis equation to estimate the CPI.

Regions with abrupt elevation changes could, therefore, be
incorrectly represented. A possible solution could be to use
only observational sites with absolute differences to grid
average elevation less than 400 m (Brasnett, 1999).
However, it would considerably reduce the number of obser-
vation sites used in this study.

5 Cross-validation procedure

In order to evaluate the performance of the OI and EnOI
methods and check how the quality of the CPI improved at
sites without observations, the sub-network cross-validation
approach proposed by Panthou et al. (2012) was used. Avail-
able stations are first subdivided into two sub-networks: the
calibration and validation sub-networks.

Validation sub-networks were generated by eliminating
stations at varying distances in order to control the average dis-
tance between sites of the calibration and validation sub-net-
works. Two types of calibration and validation sub-networks
were defined. Near sub-networks were designed to assess
the performance close to the calibration points and were
created according to the following steps: (1) the distances
between all pairs of stations are first calculated; (2) the pair
of closest stations is selected; (3) considering these two
stations, the one with the smallest distance to the remaining
stations is put in the validation sub-network; and (4) steps
(1), (2), and (3) were then repeated using the remaining
stations until the percentage of stations in the validation sub-
network is reached. Far sub-networks were designed to
assess the performance of the datasets at distant locations
from the calibration stations. Far sub-network creation starts
with step (1) as previously explained. Closest neighbouring
stations are then paired. The station with the largest distance
from the neighbouring station is then selected and removed
from the calibration sub-network and put in the validation
sub-network. Step 4 (mentioned above) was then applied.
Different validation sub-networks including 10%, 30%, and
50% of the stations were considered for the Near and Far
configurations.

Figure 4 presents violin plots (Hintze & Nelson, 1998) and
boxplots of the distributions of distances between all pairs of
validation sites and their closest calibration sites for Near
and Far sub-networks respectively. The 10% Near sub-
network corresponds to the configuration with the smallest
distances between calibration and validation sites while the
Far configuration has the largest distances. These distances
increase as the fraction of validation sites increases for the
Near sub-networks, while they decrease for the Far sub-net-
works. Furthermore, these distances decrease rapidly for Far
configurations as the fraction of validation sites increases,
which is consistent with the spatial distribution of stations
shown in Fig. 1, where the network density is much higher
in the southern part of Canada, and only a small fraction of
stations covers the northern regions.

The distance between each land-based grid point over the
study area and the closest station is presented in Fig. 5a. All
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stations with records over the 30-year study period were con-
sidered despite their number and spatial distribution changing
from year to year as a result of missing data. In fact, no year
in the 1980–2009 period includes all stations as shown in Fig.
2. Figure 5a shows the areas where the estimated CPIs were
more influenced by nearby station values (areas in blue) or by
the initial field (reanalysis; areas in red) values after the appli-
cation of OI and EnOI. Figure 5b provides the relative expected
analysis error values (Daley, 1991; Kalnay, 2002; Sen, 2009)
(in this case the expected relative average CPI error). Values
close to zero indicate that the neighbouring observations have
the largest influence on estimated CPI fields, while values
close to one indicate that the background or initial field has
the largest impact on the estimated CPI fields. Despite CPI
values at each grid point being estimated using neighbouring
stations, not only the closest station, Fig. 5b provides valuable
information about the relationship between the expected
CPI error and the distance to the station having the most signifi-
cant impact on the estimated values. It is possible to see that the
contribution from observations to the analysis field decreases
more quickly with distance for some indices (e.g., RX5day,
RX1day, R20mm, CDD, and CWD). Indices with the most sub-
stantial contribution from neighbouring observations for a given
distance are PRCPTOT, PRmean, and PR1mm. It can be seen
that for some remote regions, the main contribution is from
the reanalysis field, and the overall quality of the analysis
field highly relies on the quality of the reanalysis field.

6 Results and discussion
a Comparison between Reanalysis, OI, and EnOI
Datasets
Taylor diagrams (Taylor, 2001) were used to compare CPI
annual series at stations with (i) reanalysis CPI values; (ii)

reanalysis CPI values after the application of OI; (iii) ensemble
CPI values before the application of EnOI; and (iv) CPI values
after the application of EnOI (Fig. 6). The statistics displayed
in the Taylor diagrams were calculated for each CPI by com-
bining the annual CPI values from all stations.

Reanalysis performance depends on considered CPI, the
largest normalized root mean square difference (NRMSD)
value being obtained for the CFSR CWD index and the smal-
lest one for the ERA5 PRmean, ERA5 R10mm, and ERA5
PRCPTOT indices. The reanalysis with the best overall per-
formance is ERA5, while CFSR and MERRA displayed the
poorest performance. Correlation coefficients for all indices
and all reanalyses are larger than 0.5. After applying OI,
most indices display correlation values larger than 0.9,
NRMSD smaller than 0.5, and normalized standard deviation
(NSD) close to 1. The ensemble mean before applying EnOI
(Fig. 6c) confirms the CWD index with the largest NRMSD

Fig. 4 Violin and box plots showing the distances between all pairs of vali-
dation sites and closest calibration sites for Near (red) and Far (blue)
sub-networks over the study period. Boxes represent the inter-quartile
range (first quartile Q1 and third quartile Q3); line inside the box is the
median value; and the black dots are outliers. Outliers are defined as
values 1.5 times the inter-quartile distance (IQR = Q3–Q1, corre-
sponding to the whiskers) above or below Q3 or Q1, respectively.

Fig. 5 (a) Distance between each grid point and the closest station. (b)
Expected relative CPI error as a function of the distance to the
closest station.
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and the smallest for PRmean, R10mm, and PRCPTOT indices.
Combining the various reanalyses through EnOI (Fig. 6d) still
improved the overall performance because the NRMSD for all
indices is smaller than 0.3, and the correlation coefficient is
larger than 0.95. The indices with the largest NRMSD are
RX1day, CDD, CWD, and RX5day.
Considering that the climatologyof northern andmountainous

regions are generally poorly represented, a similar analysis was
carried out for northern regions (48 stations located north of
60°N) and mountainous regions (246 stations according to the
K3 classification of Karagulle et al. (2017); regions in red in
Fig. 1) before and after applying EnOI. Figure 7 shows the

Taylor diagrams for northern regions (Figs 7a and 7b), and
mountainous regions (Figs 7c and 7d). It is possible to see that
applying EnOI improves the CPI estimates over these specific
regions. The largest NRMSD values for northern regions were
obtained after applying EnOI for the R20mm index, while for
mountainous regions the largest NRMSD values were estimated
for the CDD index. Small differences are observed in the global
performance for these regions comparedwith the entire territory.
These results are not really surprising because performance is
assessed at the same sites as those used for the data-assimilation
process. They, however, confirm that applying OI or EnOI
improves the CPI estimates at station sites.

Fig. 6 Taylor diagrams comparing the observed and estimated annual CPI values over the 1980–2009 period at station sites: (a) before applying OI; (b) after apply-
ing OI; (c) before applying EnOI, and (d) after applying EnOI. Enlargements for the more dense areas are provided for (b) and (d).
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b Cross-Validation
Cross-validationwas applied to assess the performanceofOI and
EnOI at points that were not used to upgrade the initial field.
Figure 8 shows a heatmap with the values of N(MAE) defined by

N(MAE) = MAEA

MAEB
, (14)

whereMAEA is themean absolute error of the annual CPI values
at validation sites of the analysis field (reanalysis after applying
OI or EnOI), andMAEB is the mean absolute error of the annual
CPI values of the initial or background field (each reanalysis
value or average reanalysis value).

It can be seen that for each CPI and cross-validation
network Near or Far (and, therefore, even for points far from
the calibration network), estimated CPI fields were improved
after applying OI or EnOI compared with reanalysis values
(all N(MAE) values are smaller than one). The largest N(MAE)

values (smallest improvement compared with the background
field) are obtained, in general, for the Far configuration with
10% validation sites, which represents the configuration with
the largest average distance between calibration and validation
networks (see Fig. 4). When increasing the percentage of vali-
dation points to 30% or 50%, N(MAE) decreases because vali-
dation points are closer to calibration points (see Fig. 4).
Reanalyses cannot be compared with each other in Fig. 8

Fig. 7 Taylor diagrams comparing the observed and estimated annual CPI values over the 1980–2009 period at station sites in northern regions (48 stations located
north of 60°N): (a) before applying EnOI and (b) after applying EnOI; and in mountainous regions (246 stations according to the K3 classification of Kar-
agulle et al., 2017): (c) before applying EnOI and (d) after applying EnOI.
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because reference datasets are different in each case (denomi-
nator of Eq. (14)). For instance, one dataset can display a large
improvement, but the initial performance could have been
poor, while another dataset can display a small improvement
but perform well initially.
The N(MAE) values for the various datasets were compared

for each sub-network (Near or Far with 10%, 30%, or 50%
validation points) and each CPI. The black dots on Fig. 8
identify the dataset with the largest improvement (smallest
N(MAE)) for each sub-network and each CPI. The CFSR and
MERRA reanalyses showed the largest improvements for
most sub-networks. The CPIs with the smallest improvements,
especially for Far sub-networks, were RX1day and RX5day,
while PR1mm stands out as the CPI with the largest improve-
ment. These results are consistent with Fig. 5b in which con-
tributions from observations to RX1day and RX5day
decreased as distance to the closest station increased, while
PR1mm is the CPI with the largest contribution from obser-
vations for the closest station.
A similar heatmap is presented in Fig. 9 for N(RMSD) values

defined by

N(RMSD) = RMSDA

σo
, (15)

where RMSDA is the root mean square difference of the analy-
sis field (reanalysis after applying OI or EnOI), and σo is the
standard deviation of annual CPI values for all validation
sites over the 1980–2009 period. Each dataset is compared
with the same reference dataset; therefore, it is possible to
select the datasets displaying the best performance for each
CPI. Figure 9 shows that, for most CPIs and sub-networks,

EnOI outperformed the OI datasets (28 CPI and sub-network
combinations representing 46.7% of all cases), followed by
the analysis field based on OI applied to JRA55 (17 CPI and
sub-network combinations for 28.3% of all cases) and
finally by the analysis field based on OI applied to ERA5
(15 CPI and sub-network combinations for 25% of all
cases). It can also be seen that EnOI outperformed the other
datasets for PR1mm, RX1day, RX5day, SDII, CDD, and
CWD for the Far configuration with 10% of validation
points corresponding to the case with the largest average dis-
tance between calibration and validation sites (Fig. 4).

These results show that applying OI and EnOI methods
improved the representation of the CPI fields across Canada
compared with the initial field (single reanalysis) for all
CPIs and even at ungauged sites far from the sites that were
used for OI and EnOI calibration. Also, it shows that the
EnOI in most cases outperformed OI. This last result is inter-
esting because it shows that combining all the available infor-
mation (all reanalyses) through EnOI is the best strategy.

c Comparison between EnOI and NRCan Gridded
Interpolated Datasets
The CPI dataset created from EnOI was compared with the CPI
values estimated from theNRCan dataset. Although theNRCan
dataset is constructed by interpolating station records and,
therefore, should adequately reproduce CPI values at sites
where stations are located, two major issues must be con-
sidered. First, station density has an effect on estimated interp-
olated precipitation values suggesting possible large errors for
remote regions with low station density (Gervais et al., 2014).
Second, representativeness errors defined by Tustison et al.
(2001) as “the errors in representing data (i.e., either model

Fig. 8 Mean Absolute Error of the analysis field (MAEA) normalized by the
Mean Absolute Error of the background field (MAEB) over all vali-
dation sites for the entire period (1980–2009) (Eq. (14)) and each
CPI (x-axis). Near (N) and Far (F) configurations with 10%, 30%,
and 50% validation points after applying OI to the four reanalyses
(top four rows) and after applying EnOI (bottom row) are presented.
Black dots identify, for each CPI, the datasets with the lowest N(MAE)

values for a given sub-network (N or F with 10%, 30%, or 50% of
validation points).

Fig. 9 RMSD of the analysis field (RMSDA) normalized by the standard
deviation for each annual CPI series at all validation sites over the
1980–2009 period (N(RMSD) values; (Eq. (15)) and each CPI (x-
axis). Near (N) and Far (F) configurations with 10%, 30%, and
50% validation points after applying OI to the four reanalyses (top
four rows) and after applying EnOI (bottom row) are presented.
Black dots identify the datasets with the best performance (smallest
N(RMSD) values) for a given sub-network (N or F with 10%, 30%,
or 50% validation points) and CPI.
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output or observations) at a scale other than their own inherent
scale” may also be influenced by the interpolating procedure.
Besides, as was pointed out in Section 2, some stations used
in this study were not considered when creating the NRCan
dataset. Because the NRCan dataset grid (0.083◦ × 0.083◦)
has a finer spatial resolution than EnOI (0.25◦ × 0.25◦), it
was necessary to remap theNRCan dataset to the EnOI grid res-
olution in order to do a grid-to-grid comparison. A conservative
remapping method (Jones, 1999) was used.
Figure 10 shows maps of EnOI and NRCan mean CPI

values over the 1980–2009 period and the corresponding
grid-to-grid differences between the EnOI and NRCan
values for three specific indices (PRmean, PR1mm, and
RX1day). The smallest differences between the EnOI and
NRCan datasets were observed for PRmean with generally
smaller values for the NRCan dataset. The PR1mm values
for EnOI are globally lower than the NRCan values (especially

in the centre and southern part of the study area). In the north-
ern part of the study area, the NRCan dataset also displays a
small area with lower values for this index. Lower RX1day
values are observed for the NRCan dataset for almost the
entire domain, and this could probably be attributed to the
interpolation process used to create this dataset, which
smooths out extreme values or the fact that corrections (e.g.,
evaporation loss and wind undercatch) were not applied to
the observations used to build this dataset.

Annual CPI values over the reference period estimated from
the EnOI and NRCan datasets were then compared with corre-
sponding station values. Figure 11 shows the corresponding
scatterplots for these three indices. It shows that the NRCan
dataset slightly underestimates the observed PRmean values,
but underestimations are much more important for RX1day,
especially at sites with large observed RX1day values.
Finally, PR1mm estimated from NRCan overestimates

Fig. 10 Mean PRmean (first row), PR1mm (second row), and RX1day (third row) values over the 1980–2009 period as estimated from the EnOI (left column),
NRCan datasets (middle column), and corresponding grid-to-grid differences between EnOI and NRCan (right column).
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corresponding station values. Biases are much smaller for the
EnOI ensembles for all three indices.
These results show that the CPI estimated from the EnOI

dataset, obtained through the combination of the four reana-
lyses with the observational dataset, outperformed the
NRCan dataset over Canada. Also, these results show that the
NRCan dataset must be used with caution for extreme indices
in Canada as previously reported (Diaconescu et al., 2018).

7 Summary and conclusions

Defining a reference climate for precipitation is an important
issue in many hydrological and water resource applications. It
is also essential when assessing the impact of climate change
and comparing various adaptation strategies. However, it can
be challenging in remote regions that are historically poorly
covered by station networks. Reanalyses represent an interest-
ing option for such regions but can contain large biases because
many do not assimilate surface precipitation observations.
Combining reanalysis and station records could, therefore,

provide an improvement in the spatial representation of precipi-
tation. In this study, the off-line data assimilation techniques
(OI and EnOI) were applied to define a historical climate for
Canada through the combination of observational and reanaly-
sis datasets. The OI method combined each reanalysis indepen-
dently with the available station records, while the EnOI
method combined station records with the information pro-
vided by all reanalyses. A period of 30 years (1980–2009)
was considered. Annual series for ten CPIs were estimated
for each OI and EnOI dataset.

In order to assess the performance of these datasets, prelimi-
nary analyses were first carried out comparing the estimated
annual precipitation indices over the 1980–2009 period at
each observational site with the corresponding nearest grid-
point values estimated through OI or EnOI. Results showed
that reanalysis performance strongly depends on the precipi-
tation indices considered. For instance, indices displaying
the best overall performance were annual mean precipitation
(PRmean) and the annual total precipitation from days with
precipitation greater than or equal to 1 mm (PRCPTOT),

Fig. 11 Scatterplots of PRmean (first row), PR1mm (second row), and RX1day (third row) values estimated from EnOI (left column) and NRCan (right column)
dataset against the corresponding observed values.
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while the index showing the poorest performance was the
annual maximum number of consecutive days with precipi-
tation greater than or equal to 1 mm (CWD). The ERA5 reana-
lysis globally outperformed the other reanalyses, while CFSR
and MERRA were the reanalyses with the poorest global per-
formance. As expected, OI and EnOI led to substantial
reductions in the differences between observed and estimated
values at station sites.
Cross-validation was then used to evaluate the performance

at sites not included in the calibration process. For this
purpose, stations were classified into two sub-networks, one
used for calibration and the other for validation. Two different
sub-networks, Near and Far, were also defined based on the
average distance between calibration and validation sites.
Validation networks including 10%, 30%, and 50% of the
original stations were considered. A total of 60 sub-networks
per dataset (six for each of the ten CPIs, three Near, and three
Far) were considered. Improvements in the estimated OI CPI
annual series compared with their respective reanalysis were
observed for all sub-networks. These improvements were
larger for CPIs estimated from CFSR and MERRA than
CPIs estimated from other reanalyses after applying OI.
Among the datasets obtained after applying OI, CPIs esti-
mated from JRA55 and ERA5 displayed the overall best per-
formance, while those estimated from MERRA and CFSR had
the poorest performance. Finally, the EnOI dataset also outper-
formed OI applied to each reanalysis.
Finally, the CPI annual series estimated from the EnOI

dataset were compared with the corresponding values esti-
mated from the NRCan dataset. A grid-to-grid comparison
was carried out for three specific indices: PRmean, PR1mm,
and RX1day. Differences between each of these datasets and
observed values remained small for PRmean, while the
NRCan dataset globally overestimated PR1mm values and
underestimated RX1day values. The smoothing effect from
the interpolation method may partly explain these biases.
These results show that the NRCan dataset should be used
with caution for extreme indices such as RX1day.
Precipitation observations are notoriously difficult to

measure in northern environments and may contain significant
site- and instrument-related biases and uncertainties. Assimi-
lating observational datasets with reanalyses as proposed in

this study is based on the assumption that station records rep-
resent the most valuable information to characterize the past
climatology of these regions despite the possible biases and
uncertainties. Corrections of possible biases caused by, for
instance, evaporation loss, wind undercatch, and trace precipi-
tation are, therefore, important because they may help improve
the quality of observational datasets and all datasets derived
from this primary source of data.

The proposed dataset provides a unique reference climate
dataset for ten precipitation indices covering Canada for the
1980–2009 period. It combines the main available reanalyses
that were bias corrected with available station records. Such a
gridded dataset increases our ability to characterize the past
climate over regions that are poorly covered with station net-
works, and it is an important contribution to climate change
impact studies, as well as the development of adaptation strat-
egies. Future work will look at the extension of the period pre-
sented in this study to include more recent years, as well as to
incorporate other datasets in the assimilation process (e.g., sat-
ellite data). Different comparison analyses will be carry out
with other available datasets for recent years (e.g., the Cana-
dian Precipitation Analysis). In addition, the application of
these methods to daily precipitation series is planned, enabling
a possible application to hydrology.
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