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RESEARCH ARTICLE

Variability of internal tide energy, mixing and nitrate fluxes in
response to changes in stratification on the northeast New
Zealand continental shelf
Jonathan Sharples a and John R. Zeldisb

aSchool of Environmental Sciences, University of Liverpool, Liverpool, UK; bNational Institute of Water and
Atmospheric Research Ltd., Christchurch, New Zealand

ABSTRACT
A 4-month time series of water column temperature structure on
the shelf of North Island New Zealand is used to calculate the
energy in the internal tide as stratification evolved between
spring and summer. Average total energy in the internal tidal
wave was 200 J m−2, with peaks reaching 600 J m−2. Wave energy
was weakly correlated with stratification (r = 0.2) and with the
spring-neap cycle of tidal currents (r = 0.17). Overall there was
little predictability in internal tide behaviour in response to the
physical environment. Reduction in wave energy was associated
with a downwelling-favourable wind event which reduced
stratification by mixing and by removing deeper water off the
shelf. Vertical eddy diffusivity driven by internal wave dissipation
ranged between 5.6 × 10−5 and 3.2 × 10−4 m2 s−1. Combined with
nitrate data this diffusivity resulted in diapycnal nitrate fluxes
towards the sea surface of 1.6–2.2 mmol m−2 day−1. Strong
stratification in summer reduced the eddy diffusivity but had little
effect on nitrate flux as a strengthened vertical nitrate gradient
compensated for the reduced diffusivity. This compensation will be
important when predicting how stronger stratification in a warmer
climate might alter diapycnal nutrient supplies to the upper ocean.
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Introduction

Internal tidal waves are a common feature in stratified oceans, caused by the interaction
between barotropic tidal currents and sloping seabed (Garrett and Kunze 2007). These
waves are found in the open ocean associated with mid-ocean ridges and seamounts
(e.g. Noble and Mullineaux 1989; Ledwell et al. 2000; Rudnick et al. 2003; Vic et al.
2018), at the continental shelf edge and slope (e.g. Wunsch and Hendry 1972; New and
Pingree 1990), and associated with banks in shelf seas (e.g. Dewey et al. 2005; Palmer
et al. 2013). In the open ocean internal tides have become increasingly recognised as
important for mixing heat and salt, and maintaining the vertical density structure of
the abyssal ocean (Munk and Wunsch 1998; Waterhouse et al. 2014), and more recently
for mixing nutrients vertically in the upper ocean (Stevens et al. 2012; Tuerena et al. 2019).
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Over the continental slopes and in shelf seas the vertical mixing caused by breaking
internal tidal waves significantly increases the fluxes of nutrients upwards into the
photic zone (e.g. Sharples et al. 2007; Tweddle et al. 2013) and can play a role in structur-
ing plankton communities and supporting commercially-important fisheries (Sharples
et al. 2009). In shelf seas the vertical movement of the sub-surface chlorophyll layer by
internal tidal waves can provide a pumping mechanism for the food supply to seafloor eco-
systems (Witman et al. 1993). Internal tides have also been implicated in the behaviour of
schooling fish (Embling et al. 2013). Internal tidal waves are thus of importance on global
and regional scales, and are a key physical process underpinning the physical structure of
the ocean, biogeochemical fluxes and cycling, and ecosystem structure.

New Zealand’s location on the plate boundary between the Pacific and Australian
plates, with a number of steep ocean ridges including the Colville and Kermadec ridges
to the north and Macquarie Ridges to the south, make the region globally significant in
the generation and dissipation of internal tidal waves (e.g. Waterhouse et al. 2014).
Direct observations of internal tides have been made around New Zealand, both in the
deep ocean over ridges and along the continental slope (Stanton 1977; Vennell and
Moore 1993; Chiswell and Moore 1999; Stevens et al. 2005; Waterhouse et al. 2018).

The focus of this paper is on the seasonal-scale variability in the internal tidal wave
energy on the northeast shelf of North Island, New Zealand, and the implications for ver-
tical mixing and the diapycnal nitrate supply to surface waters. The northeast shelf has
relatively weak barotropic tidal flows (Sharples and Grieg 1998), with maximum tidal
current speeds of typically <10 cm s−1 and as a result very weak boundary mixing gener-
ated by tidal current friction with the seabed. An internal tidal wave is generated over the
continental slope, at a depth of around 600–700 m, and propagates over the shelf edge
(depth about 130 m) and onto the shelf (Sharples et al. 2001a; Stevens et al. 2005). Satellite
imagery (synthetic aperture radar) shows the internal tidal wave on the shelf to have a con-
tinuous wavefront, with wavelength about 15 km, followed by packets of smaller wave-
length (∼1 km) internal waves (Sharples et al. 2001a). These smaller wavelength waves
indicate breaking of the main internal tidal wave, and are largely responsible for driving
increased vertical mixing with eddy diffusivity of >10−4 m2 s−1 (Sharples et al. 2001a;
Stevens et al. 2005). This high rate of vertical mixing on the shelf plays an important
role in the shelf biogeochemistry. A persistent feature of the northeast shelf is upwelling
of cold, nutrient-laden slope water as a result of Ekman transport through the bottom
boundary layer of the along-slope East Auckland Current combined with episodic
pulses of upwelling-favourable winds (e.g. Zeldis 2004; Zeldis et al. 2004). This upwelling
system breaks down in summer, as the shelf is capped by a surface layer of subtropical
water, initially driven onto the shelf by downwelling-favourable winds and significantly
increasing the shelf stratification (Sharples 1997; Zeldis et al. 2004). Diapycnal mixing
of nutrients into the photic zone by the internal tide is likely to be the dominant mechan-
ism of connecting surface shelf waters with the upwelled nutrients through spring and
summer, and also supplying new nutrients upward to the oligotrophic surface waters in
late summer condition, with much lower contributions from wind-driven mixing (Shar-
ples et al. 2001a).

Analyses of internal tide behaviour and mixing on the northeast shelf have so far been
based on short time series of mooring data, typically 10–12 days (Sharples et al. 2001a;
Stevens et al. 2005). Here we use a 4-month time series of temperature structure from a
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mid-shelf mooring to assess the variability in the internal tide energy and mixing. The time
series covers the period from spring through to mid-summer, including the spring-early
summer upwelling period and the late summer capping of the shelf with subtropical
water. We investigate how wind stress, the spring-neap tidal cycle, and changes in stratifi-
cation can affect the strength of the internal tide and estimate the consequences for dia-
pycnal mixing of new nutrients upward into the photic zone over the shelf.

Data and methods

Mooring, CTD and wind data

Data were collected by a mooring comprising a series of Hugrun mini temperature loggers
and Aanderaa RCM6 current meters on the mid shelf of northeast North Island, New
Zealand (Figure 1). In a total water column depth of 100 m, RCM6 current meters

Figure 1. Location of the study area on the northeast shelf of North Island, New Zealand. Bathymetry in
the main map is in metres. Filled circles B1–B6 are the locations of the CTD stations, and the cross at B1
is the location of the mooring. Wind velocity data were available from a weather station on the Moko-
hinau Islands.
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(sample period 10 min) were positioned 20 m below the sea surface and 10 m above the
seabed. Hugrun loggers (sample period 5 min) were located between the RCMs, at
depths of 30, 40, 60 m. Cross-shelf context in the physical structure of the water
column was provided by four CTD surveys along a line of stations from the mooring to
the continental slope (stations B1–B6 in Figure 1) conducted when the mooring was
deployed (September 1996 using a Guildline CTD), serviced (October and December
1996 using a Seabird 911 CTD) and recovered (January 1997, using a Seabird 911
CTD). CTD salinity measurements were calibrated using water samples collected by the
CTD rosette and analysed on a Guildline Autosal against standard seawater: the error esti-
mate for salinity was 0.005 (PSS78). Hourly wind speed and direction data were available
from an automatic weather station on Mokohinau Island (NIWA National Climate
Centre; Figure 1). A full description of the physical environment on the northeast shelf
over the period of the mooring deployment can be found in Zeldis et al. (2004).

Analysis for internal tidal wave energy and dissipation

Temperature time series from the moored loggers and RCMs were linearly interpolated
onto a regular grid, with 5 m vertical resolution between the sea surface and a nominal
depth of 100 m and a time step of 10 min. Temperature values above the upper RCM
(depth 20 m) and below the deepest RCM (90 m) were interpolated to the surface and
seabed boundaries by extrapolating the vertical temperature gradient; this helps with
visual interpretation of the temperature structure, but does not affect the subsequent ana-
lyses for the internal wave energy (see below).

Analysis for the potential energy of the internal tidal wave followed an established tech-
nique (e.g. Sherwin 1988; Largier 1994; Sharples et al. 2001a). An example of the tempera-
ture time series for a single temperature logger on the mooring is shown in Figure 2A,B,
illustrating the semi-diurnal variability in temperature superimposed on longer-term low
frequency variability. Power spectrum analysis (Figure 2C) shows the importance of the
M2 tidal signal in the temperature time series, and that there may be small but potentially
significant energy in the M4 harmonic. The energy in the broad shoulder of the spectrum
around M4 is perhaps to be expected, knowing that the internal tidal wave does steepen
and break (e.g. the SAR imagery in Sharples et al. 2001a).

The water column integrated potential energy, PE (J m−2), of the internal tidal wave in a
depth h (metres) is given by

PE = 1
4

∫0
−h

N(z)2r(z)h0(z)
2dz (1)

with N(z) (s−1) the buoyancy frequency and r (kg m−3) the density at depth z. The vari-
able h0(z) (metres) is the amplitude of the vertical excursion of the internal tidal wave. At
each depth in the interpolated temperature grid the time series was first filtered using a
running 12.5 h mean to yield a corresponding grid of the time variation in the mean temp-
erature profile. Then at each time step the excursion of the temperature structure at each
grid point was calculated by assessing where on the mean temperature profile at that time
the instantaneous value of temperature must have come from. Thus, for each depth on the
temperature time series grid a time series of the instantaneous vertical excursion away
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from the mean temperature profile was calculated. The tidal amplitude of the excursion,
h0(z), was then calculated at each depth by performing a harmonic analysis of the excur-
sion time series for the M2 and M4 tidal constituents. This analysis was carried out in a
rolling series of 25-hour windows through the time series.

Water density was estimated as a function of temperature using the CTD data from all
four cruises (Figure 3). Fitting a 2nd order polynomial to the data yielded a relationship
between density and temperature (T (°C)) of:

r = 1026.84+ 0.10T − 0.01T2 (2)

with a root-mean-square deviation about the relationship of 0.03 kg m−3. The relationship
in (2) was used to convert temperatures on the interpolated grid of mean and instan-
taneous temperatures to densities, and to calculate values for the buoyancy frequency

Figure 2. A, Time series from the temperature logger 40 m below the sea surface. B, High frequency
temperature variability from the data in A, calculated by removing a running 12.5 h mean from the raw
time series. C, Power spectrum of the temperature signal in A, showing also the periods of the M2 and
M4 tidal constituents. The vertical bar indicates the level of 90% uncertainty.
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and then time series of PE via (1). With a typical depth-mean value of N2 of 5 × 10−5 s−2,
the rms error in the relationship in (2) results in an error in the depth integrated PE of
about 15%. Values of PE in the upper 20 m and lower 10 m, i.e. above the uppermost
RCM and below the deep RCM, were interpolated linearly to zero on the boundaries,
as the vertical excursion of isotherms must approach zero at the boundaries.

Total internal wave energy is the sum of potential and kinetic energy contributions.
Ideally a calculation of the wave kinetic energy (KE) would be made from a time series
of current profiles (e.g. Sharples et al. 2001a). However, only having 2 RCMs on the
mooring is not sufficient to allow calculation of the barotropic flow and the vertical struc-
ture of the baroclinic flow. Instead we can make use of a theoretical relationship (Fofonoff
1969) between internal tidal wave PE and KE, knowing the internal wave angular
frequency (v (s−1)) and the Coriolis frequency ( f (s−1)):

PE
KE

= (v2 − f 2)
(v2 + f 2)

(3)

The relationship in Equation (3) is applicable to a monochromatic, freely-propagat-
ing internal wave. Figure 2C demonstrates that most of the wave variability is in the
M2 tidal constituent. Sharples et al. (2001a) calculated that the critical slope for the
wave generation was 40 km offshore over the upper continental slope, and that the
relation in (3) was consistent with an independent calculation of internal wave KE
using current profile measurements. The total energy (E = PE + KE) for each of the
tidal constituents of the internal tidal wave was calculated using the time series of
PE and Equation (3) to calculate the corresponding time series of M2 and M4 KE.
The total internal tide energy was then taken as the sum of the (PE + KE) for the
M2 and M4 constituents.

We estimate the energy dissipation rate of the internal tide by assuming that all of the
wave energy is dissipated between the mooring and the coast (a distance of 9.2 km), i.e.
ignoring any reflection of energy back into the shelf (e.g. Largier 1994). Stevens et al. (2005)

Figure 3. Density (su) versus temperature for all CTD data collected over the four cruises at station B1.
The black solid line is the 2nd order polynomial fit to the data, with a root-mean-square deviation of the
data around the fit of 0.03 kg m−3.

6 J. SHARPLES AND J. R. ZELDIS



found no evidence of internal wave reflection on the northeast New Zealand shelf. Pre-
vious observations of internal tidal wave propagation over the northeast shelf have
yielded a wave speed of 0.3 m s−1 (Sharples et al. 2001a; Stevens et al. 2005), which
when combined with the distance to the coast and the mean water density allows calcu-
lation of the mean wave energy dissipation rate, 1 (m2 s−3). The vertical eddy diffusivity,
Kz (m

2 s−1), can then be estimated following the approach of Bouffard and Boegman
(2013). A turbulence intensity parameter is calculated as

Reb = 1

nN2
(4)

with n the molecular viscosity (1.2 × 10−6 m2 s−1) andN2 is the depth-mean of the squared
buoyancy frequency from the mooring data. For 8.5 , Reb , 400 the vertical eddy diffu-
sivity is calculated from (Osborn 1980):

Kz = G
1

N2
(5)

with the flux dissipation coefficient (also called the mixing efficiency) G assigned a value
0.2. For Reb . 400 the diffusivity is calculated from:

Kz = 4nRe0.5b (6)

Nitrate data and nitrate fluxes

The consequences of internal wave-driven mixing for shelf biogeochemistry are estimated
by considering the rate of upward diapycnal nitrate flux, FNO3 :

FNO3 = −Kz
DNO3

Dz
(7)

where the vertical gradient in nitrate, (DNO3/Dz) (mmol m−4), can be calculated using the
nitrate data presented in Zeldis (2004). Using a similar method to that in Sharples et al.
(2007) we use the nitrate and temperature data from the CTD profiles at station B1 to
determine a linear relationship between nitrate concentration and temperature
(Figure 4). The nitrate flux can then be calculated from:

FNO3 = −Kzm× DT
Dz

(8)

where m (mmol m−3 °C−1) is the gradient of the nitrate-temperature relationship in
Figure 4 and the vertical temperature gradient is provided by the mooring data. For the
temperature gradient we use the maximum value within a temperature profile, as this is
usually where key nitrate gradients are at the base of the photic zone (e.g. Sharples
et al. 2001b).

Results

The progression of the shelf temperature and salinity structure over the four cruises
(Figure 5) shows a number of key, relevant features of the environment. Stratification
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persisted throughout the mooring deployment, with strong vertical temperature gradients
countering generally higher salinities at the surface compared to deeper in the water
column. The along-slope flow of surface warm, salty subtropical water was particularly
evident in December 1996, located over the slope at distance 50 km from the coast
(Figure 5). Taking a salinity of 35.4 as indicating the transition from shelf water to sub-
tropical water (Zeldis 2004), there is evidence in September 1996, October 1996 and
most strongly in January 1997 of the subtropical water reaching onto the shelf.
Thermal stratification was particularly strong in January 1997, with a shallow, warm
surface layer with salinities close to 35.5 across most of the shelf. Upwelling of isotherms
and isopycnals was seen in October 1996 and stronger upwelling was seen in December
1996, but upwelling was much weaker in January 1997.

Figure 4. Nitrate versus temperature relationships for the CTD profiles at station B1 for each of the four
cruises. Nitrate data from (Zeldis 2004).

Figure 5. Cross-shelf sections of temperature (colours) and salinity (line contours, PSS78) for each of the
four research cruises during the mooring deployment. For station positions, see Figure 1.
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Tidal variability in the temperature time series, as seen in Figure 2, could be caused by
either (or both) of vertical oscillations of the temperature structure in response to an
internal tidal wave or tidal excursion of a horizontal temperature gradient. A typical hori-
zontal temperature gradient, based on the CTD data at stations B2 and B1 in October 1996
(Figure 5), was about 6 × 10−5 °C m−1, while the surface RCM current data gives a mean
tidal excursion in the cross-shelf direction of about 1.3 km. Thus, horizontal tidal flows
could drive a semi-diurnal signal in temperature at the mooring of about 0.08°C. The
mean temperature excursion seen at the mooring (Figure 3B) was about 0.32°C,
showing that most of the signal is likely to have been caused by the internal tidal wave
rather than horizontal excursion.

The mooring time series of raw temperature illustrates the progression to increasing
thermal stratification from September 1996 to January 1997, with very warm surface
water arriving around 27th December (Figure 6). This warm water marks the annual
event of wind-driven transfer of surface subtropical water from over the slope onto the
shelf (e.g. Sharples 1997), driven by a strong north-westward component to the wind
stress between 26th and 30th December. Superimposed on the long-term temperature
changes in Figure 6 can be seen the persistent fine structure of the semi-diurnal tidal oscil-
lations associated with the passage of the internal tidal wave.

Analysis of this temperature structure using the harmonic fitting procedure described
earlier produced a time series of the vertical pattern of tidal excursion amplitudes for the
isotherms for the M2 andM4 tidal constituents (Figure 7). The time series is dominated by
the M2 tidal constituent, with peak excursion amplitudes reaching 20–25 m, and so a
peak-trough range of isotherm movement of 40–50 m. By contrast the M4 excursion
amplitude reaches 10–12 m. Maximum excursion amplitudes tend to be close to the
middle of the water column, consistent with the mode 1 structure of the main internal
tidal wave (e.g. Sharples et al. 2001a). The strength of the internal tidal waves is clearly
highly variable, with two notable periods of consistently low wave amplitudes in late
October/early November and in early January.

The relative contributions of the M2 and M4 tidal constituents to the depth-integrated
PE, and the highly variable nature of the internal tide PE, are shown in Figure 8A,B. Peaks
in the M2 PE typically reach 150 J m−2, and as high as 300 J m−2, which is similar to that

Figure 6. Time series of the vertical structure of temperature at the mooring. Horizontal lines mark the
depths of the temperature loggers and RCMs. The white gaps on 26th October and 30th November are
data gaps during mooring servicing.
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seen in the on-shelf mooring in Sharples et al. (2001a). Combining the potential energy
data with calculation of the kinetic energies for the two tidal constituents (using
Equation(3)) yields the total energy in the internal tidal wave (Figure 8C). Not surprisingly
variability in the total energy is dominated by the potential energy in the M2 constituent,
with mean energy of about 190 ± 145 (1 s.d.) J m−2, and peak energies reaching 600–
800 J m−2. There was a particularly marked reduction in the water column PE and total
energy from about 27th October 1996 to 15th November 1996.

The mean rate of energy dissipation (Figure 9A) was 0.007 (±0.005, 1 s.d.) W m−2,
which is consistent with previous values from much shorter time series on the northeast
shelf of New Zealand (0.015 ± 0.010 W m−2 (Sharples et al. 2001a) and 0.007 W m−2

(Stevens et al. 2005)). Calculation of the turbulence intensity parameter (Equation (4))
indicates that the system was almost always in the energetic regime with Reb . 400
(Figure 9B); calculation of the vertical eddy diffusivity (Figure 9C) shows that using the
Osborn relation (Equation (5)) would result in an overestimate of scalar mixing. The
mean diffusivity over the entire deployment based on the Osborn relation is 3.2 × 10−4

(±2.4 × 10−4, 1 s.d.) m2 s−1, while application of Equations (5) and (6) depending on
the value of Reb yields a mean diffusivity of 1.6 × 10−4 (±0.7 × 10−4, 1 s.d.) m2 s−1. For
most of the deployment the turbulent intensity results in the use of Equation (6) for cal-
culation of the diffusivity, which both lowers the typical diffusivity and reduces the range
of the variability in diffusivity. Using Equation (8), with the values for m taken from the
regressions in Figure 4, the vertical nitrate flux can be estimated associated with each of the
research cruises. Taking the mean diffusivities and vertical temperature gradients over 7
days about each cruise (or the last 7 days of the mooring deployment for the January
cruise) yields nitrate fluxes of 1.7 ± 0.8, 1.6 ± 0.8, 2.0 ± 0.3 and 2.2 ± 0.9 mmol m−2 day−1

for the cruises in September, October, December and January respectively. These fluxes are
less than the flux reported by Sharples et al. 2001a, who calculated a flux of 12 mmol m−2

Figure 7. Amplitude of the vertical excursion of isotherms based on harmonic analysis for the M2
(upper panel) and M4 (lower panel) tidal constituents.
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day−1 over a short mooring deployment in summer. Much of the discrepancy is a result of
a higher estimate of the diffusivity by Sharples et al. (2001a), based on microstructure
measurements over a single tidal cycle. Over this much longer mooring deployment the
perhaps surprising result is that the flux did not change markedly, and indeed appears
to have been strongest during the time of strongest stratification; the reasons for this
will be discussed below.

Discussion

A 4-month time series of thermal structure on the shelf of northeast New Zealand has
illustrated marked variability in the vertical oscillations of the isotherms and in the
wave potential energy. While the wave is known to steepen and break (Sharples et al.
2001a) the M2 tidal constituent dominates over the M4 harmonic; overall the mean PE
at the M2 frequency was 74.5 J m−2, compared to an M4 contribution of 14.5 J m−2.

Figure 8. A, Depth-integrated potential energy in the internal tidal wave (PE in Equation (1)) for the M2
tidal constituent. B, Depth-integrated potential energy for the M4 tidal constituent. C, Depth-inte-
grated total energy in the internal tidal wave, using the time series in A and B with Equation (3).
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The following discussion will focus on first on determining if there are any consistent or
significant links between internal wave energy and the physical structure and forcing of the
shelf. We will then consider the implications of the wave energy for vertical mixing and
diapycnal nutrient fluxes on the shelf.

The resulting time series of total wave energy can be compared to time series of wind
forcing, local stratification, and the stage of the spring-neap tidal cycle (Figure 10). A sus-
tained period of moderate wind stress between 23rd and 29th October 1996 (Figure 10A)
resulted in a marked reduction in stratification (Figure 10B) and a reduction in the upwel-
ling slope of the isotherms. The CTD profile at station B1 conducted on 25th October
showed a vertically-mixed surface layer to a depth of 50 m, and a temperature difference
between depths of 20 and 90 m of 2.2°C. The mooring data (Figure 10B) suggest that the
stratification was further eroded, reaching only 0.5°C by 29th October. This reduction in
stratification reduced the energy in the internal tidal wave (Figure 10D), with the internal

Figure 9. A, Time series of internal tidal wave dissipation, assuming that all wave energy is dissipated
between the mooring and the coast. B, Turbulence intensity parameter (Equation (4)). C, Time series of
depth-mean vertical eddy diffusivity, Kz (from Equations (5) (solid line) and (6) (dashed line)). The hori-
zontal dashed line in B marks Reb = 400.
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wave energy recovering from about 14th November. Such a wind-driven mixing event and
its effect on the internal tide is similar to that described in Sharples et al. (2001a), though
with a significantly lengthened recovery time in the internal wave compared to the return
of the stratification. A similar response to a wind event can also be seen at the end of the
time series, with a sharp, strong wind event on 11th January markedly reducing the stra-
tification and the internal wave energy.

Figure 10. A, Time series of surface wind stress, calculated from the wind data available from the
Mokohinau Islands. B, Time series of local stratification, calculated as the difference between low fre-
quency near-surface and near-bed temperatures measured by the RCMs on the mooring. C, Tidal varia-
bility in sea level for Auckland harbour. D, Time series of the total internal tidal wave energy (PE + KE)
for both M2 and M4 tidal constituents. Sea level in C was calculated for Auckland harbour (see Figure 1)
using https://tides.niwa.co.nz/.
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An analysis of the correlation between the magnitude of the wind stress and wave
energy yields r =−0.05 with zero time lag and switching to r = 0.08 with a lag of 3 days.
A correlation with the along-shelf component of the wind stress yields r =−0.08 with
little change with time lag. Correlation between stratification (maximum buoyancy fre-
quency) and wave energy show r = 0.20 to 0.22 as the time lag changes from 0 days to
2 days. Thus, there is negligible consistent link through the time series between wave
energy and wind-driven mixing or along-shelf wind stress. There is some correlation
with stratification: weaker stratification is associated with lower internal wave energy,
which is consistent with the role of stratification in propagating internal waves.

In Figure 10C,D there does appear to be some link between some spring tides and peaks
in the internal wave energy, which would be expected as the barotropic tide is the funda-
mental driver of the internal tide. The daily maximum tidal current speed was calculated
by performing a harmonic analysis of the entire time series of the along-shelf current data
from the surface RCM for the M2, S2 and N2 tidal constituents (i.e. the spring-neap cycle,
modulated by the N2 lunar elliptic constituent). Correlation of the internal wave energy
with the predicted daily maximum tidal current speed was very weak, with a maximum
r = 0.17 at zero time lag.

Overall, therefore, while it might appear that there are some small correlations between
wave energy and the physical environment, all of the correlations are weak and there is
little clear predictability in the time series of internal tide energy. This result is consistent
with other long time series of internal wave behaviour (e.g. Cottier et al. 2004), and the
general finding that internal tides are usually unpredictable (Nash et al. 2012). The
likely generation site for the internal tidal wave is about 40 km offshore over the continen-
tal slope, in a depth of 600–700 m (Sharples et al. 2001a). Internal tidal wave energy will be
set at the generation site and will not correlate strongly with conditions local to the
mooring. Energy at the mooring will depend on the fraction of initial internal wave
energy propagating onto the shelf, reflection of wave energy at the upper slope, and dis-
sipation of wave energy as it moves through the varying water column density structure
across the shelf edge and shelf. The only robust observation from the northeast shelf
mooring results is that internal tide energy was reduced markedly following a strong,
downwelling-favourable wind mixing event (i.e. late October 1996).

Periods of generally low diffusivities are associated both with the low wave energy fol-
lowing wind-mixing in late October, and also with the stronger stratification associated
with the on-shelf transport of the warm surface subtropical water in early January
(Figure 9B,D). However, low diffusivity does not necessarily translate into low diapycnal
nitrate flux. Table 1 summarises the values of parameters that combine to provide the

Table 1. Data used in the calculation of vertical nitrate fluxes driven by the internal tide.

Cruise month

DNO3

Dz
(mmol m−4)

DT
Dz

(°C m−1)
N2 (s−2) E (J m−2) Kz (m2 s−1) FNO3 (mmol m−2 day−1)

September −0.117 0.026 3.3 × 10−5 172 1.7 × 10−4 1.7
October −0.119 0.033 3.5 × 10−5 105 1.4 × 10−4 1.6
December −0.111 0.037 4.4 × 10−5 243 2.0 × 10−4 2.0
January −0.193 0.077 9.4 × 10−5 265 1.3 × 10−4 2.2

Notes: Values for (DNO3/Dz) come from the regressions in Figure 4 combined with (DT/Dz). All parameters are mean
values over 7 days centred on the cruise CTD survey of line B, except for January 1997 when the last 7 days of the
mooring deployment are used.
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nitrate flux for ±3 days around the times of each of the CTD surveys along line B. Note that
the January cruise and mooring recovery took place at the end of the month, while the
useful mooring data finished in mid-January; we have used early January for the nitrate
flux calculation as relevant for the situation when the subtropical water has capped the
shelf.

The lowest fluxes observed were in September and October 1996, associated with
low internal tidal energy and low vertical temperature gradient; internal tidal energy
was lowest in October as a result of the strong winds. However, fluxes prior to the
January 1997 subtropical intrusion probably do not indicate a limiting factor to the
primary production, as nitrate concentrations were still close to 2 mmol m−3 at the
sea surface, i.e. phytoplankton would not have been nitrate-limited (Eppley et al.
1969) and the nitrate flux was able to overcome the uptake requirements throughout
the water column. Instead the importance of the internal tide mixing in spring and
early summer probably lies with the role that it plays in controlling the light environ-
ment experienced by the phytoplankton. The nitrate flux in January 1997 is more bio-
geochemically important, as the intrusion of the oligotrophic subtropical water led to a
surface later deplete in nitrate (e.g. the warm water nitrate concentrations in January
1996; Figure 4); in that case the nitrate flux will be a limiting factor to new primary
production in the photic zone. The stronger stratification in January (N2 = 9.4 ×
10−5 s−2 compared to ≤4.4 × 10−5 s−2 in September to December) was associated
with a reduction in Kz, but the effect on the nitrate flux was more than compensated
for by the associated stronger nitrate gradient (Table 1). The internal wave energy was
also stronger in January (Table 1). The stratification at depth over the upper slope was
not affected by the subtropical intrusion in January, with deep water values of N2 vir-
tually unchanged across all four CTD surveys, so conversion of barotropic tidal energy
into the internal tidal wave would have been similar. The stronger wave energy on the
shelf in January was perhaps instead related to the stronger upper ocean stratification
aiding the propagation of internal wave energy. It is generally expected that as the
climate warms, near-surface stratification will strengthen and result in a reduction in
the nutrient supply to the surface ocean (Sarmiento et al. 2004; Steinacher et al.
2010). This simple link between warming and nutrient supply has been questioned.
Climate warming could also alter wind and buoyancy forcing as well as the advective
supply of nutrients (Lozier et al. 2011). The results here suggest that strengthening stra-
tification could also lead to more energy in the internal tide over the shelf and also
steeper nutrient gradients, both of which could counter a reduction in nutrient
supply to the surface ocean.
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