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ABSTRACT  
Ecological pattern-process linkages have been called the Rosetta’s stone of ecology. The pattern-

process linkage is a feedback whereby ecosystem processes drive structural patterns, and 

vegetation patterns also strongly influence vital ecosystem processes. The role of competition 

and gap dynamics in creating spatial heterogeneity was assessed in Sitka-spruce western 

hemlock forests. Results indicated that despite low species richness, these forests are structurally 

diverse with the spatial imprint of competition obscured by gap dynamics through stand 

development. The influence of forest structural and spatial heterogeneity on snow accumulation 

and persistence was examined in a mixed-conifer forest. Tree neighborhood type (open, clump, 

individual) and winter leaf habit (deciduousness) had a significant effect on snow processes, 

likely driven by interception and the spatial variation of longwave radiation. Random forest 

models relied on forest canopy metrics associated with the amount, location, and type of forest 

vegetation to predicting peak snow water equivalent (SWE) and snow disappearance. Variation 

of peak snow density was not explained with canopy or terrain metrics. Models parameterized 

with ground and LiDAR based canopy metrics performed equally well for SWE and snow 

disappearance. The results of this research provide managers with new tools for objectively 

quantifying forest heterogeneity, informing treatments that seek to create structural and spatial 

complexity, and a method for estimating the distribution of snow accumulation and melt in 

complex forests. These studies provide a clear links between forest spatial patterns and important 

ecosystem processes including competition, gap dynamics, and snow accumulation and 

disappearance.  
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INTRODUCTION 

The intrinsic pattern-process linkage has been called the Rosetta’s stone of ecology, and 

remains a challenge for ecologists (Levin 1992, McIntire and Fajardo 2009, O’Sullivan and 

Perry 2013). All natural ecosystems are patterned, whether as patches or as gradients, creating 

heterogeneity across an ecosystem (Legendre and Fortin 1989). Even within a heterogeneous 

landscape, vegetation is organized in spatially recognizable patterns that have been used as 

surrogates for processes such as competition, disturbance, succession, and invasion dynamics for 

decades (sensu Watt 1947, Legendre and Fortin 1989). Modern advances in spatial analysis 

techniques that incorporate “space as a surrogate” for more difficult, and often impossible, direct 

experimental manipulation, have maximized the inferential power of the pattern-process linkage 

(McIntire and Fajardo 2009). Extensive and detailed spatial datasets, at scales relevant to many 

ecosystems processes, are still rare. As such, identification of strong links between the patterns 

of vegetation and their mechanistic influence on important ecosystem processes remains an 

important goal (Schroder 2006).  

 The pattern-process linkage is a feedback whereby ecosystem processes drive structural 

patterns, but vegetation patterns also strongly influence vital ecosystem processes such as 

disturbance regime or soil moisture availability (O’Sullivan and Perry 2013). My dissertation 

research has been designed to investigate both directions of this relationship in forested 

ecosystems. Forests with heterogeneous horizontal and vertical structures offer ideal systems to 

test hypotheses of this linkage because trees are dominant organisms that strongly influence 

physical and biological processes in their local neighborhoods (Franklin and Van Pelt 2004). 

Both the processes that create structural heterogeneity in forests, such as competition and 

disturbance, and the influence of that heterogeneous structure on ecosystem processes, such as 

below-canopy snow dynamics, provide ecosystem services that are important for maintaining 

ecological, social, and economic health.  

The studies included here examine two different forest types, which are governed by 

different external forces, but the ecological theories and mechanisms remain constant and 

transferable to other forest types.  

Chapter 1 examines the forward pattern-process relationship, where I test hypotheses of 

competition and gap dynamics on the creation of structural heterogeneity in old-growth forests. 
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Deriving this form of pattern-process relationship utilizes a top-down approach, whereby 

processes that are driving pattern creation are inferred from repeated observations of similar or 

recurring patterns (O’Sullivan and Perry 2013). Using stem-maps in Sitka-spruce western 

hemlock forests of Southeast Alaska, I sought to:  

 (1) Quantify and analyze the spatial patterns of spruce-hemlock forests to examine the roles of 

competition and gap dynamics; 

 (2) Test the applicability of a newly proposed gap delineation method based on surrounding tree 

shadow lengths compared to traditional canopy tree death methods for higher latitude forests.  

This study presents the first quantitative analysis of spatial aspects of structural 

complexity in this forest type for the region. Evaluating the processes of competition and gap 

dynamics from tree spatial patterns yields insights into the timing and strength of each of these 

processes during forest stand development. I offer the first evaluation of a new tree shadow 

based method for objectively delineating gap structure.  

 The reciprocal pattern-process relationship is explored in chapters 2 and 3, where I 

examine the influence of forest vegetation patterns on the processes of snow accumulation and 

disappearance. A bottom up approach guides the remaining chapters (O’Sullivan and Perry 

2013). I studied the fine-scale processes and interactions in order to elucidate emergent behaviors 

at the forest stand scale. In chapter 2, I was interested in determining if spatial heterogeneity 

within the forest canopy induces heterogeneity in snow accumulation and persistence. In this 

study a stem-mapped and intensively snow sampled mixed-conifer forest in western Montana 

allowed me to: 

(1) Quantify tree spatial patterns in a mixed-conifer forest, identifying different local tree 

neighborhoods—individual trees, dense tree clumps, and openings.  

(2) Test the hypothesis that differences in snow accumulation and disappearance processes arise 

from the patterns of overlying vegetation, particularly their control on interception and 

interactions with energy budget. I used a set of linear contrasts to test the predictions that peak 

snow accumulation and snow persistence differ between: 

1. Openings and clumps; 

2. Openings and individuals; 

3. Deciduous conifer and evergreen conifer individuals; and 

4. Evergreen individuals of different species.  
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The purpose of this research was to improve our basic understanding of the functional 

consequences of within-stand structural and spatial heterogeneity for underlying snow processes. 

Such results can support management approaches that mediate forest structural complexity and 

tree spatial patterns, and seek to balance multiple management objectives.  

 Chapter 3 increases in scale, from point values to plot scale patterns of snow 

accumulation and disappearance. Aided by a stem-mapped forest and an extensive snow dataset 

spanning four winters (2014-2017) I was able to: 

 (1) Quantify the temporal and spatial variation in snow parameters (i.e., snow density, snow 

water equivalent, snow disappearance date) beneath a heterogeneous mixed-conifer canopy; (2) 

Model the distribution of snow parameters using detailed forest canopy metrics derived from 

ground and LiDAR measurements; (3) Compare the performance of LiDAR metrics relative to 

ground based measurements.  

This study provides the first, temporally and spatially extensive dataset of snow 

properties beneath a forest canopy and allowed for the quantification of variations in snow 

attributes due to vegetation. Characteristics of the vegetation canopy and stem distribution were 

used to parameterize a random forest model to estimate the distributional patterns of snow 

accumulation and disappearance. High resolution, high frequency snow data allowed me to 

explicitly test the linkage between vegetation patterns and the spatial variability of snow 

accumulation and melt at the point and plot scales. The introduction of LiDAR metrics into a 

regression tree modeling framework has not been tested in the field of snow hydrology and 

offers a cost effective management tool for quantifying the distribution of snow parameters over 

large extents and for forecasting the timing and quantity of available water supplies.   

These studies clearly demonstrated the strong link between forest vegetation patterns and 

important ecosystem processes. Pattern analysis provides an important approach for gaining 

insight into the mechanisms driving the creation and consequences of forest spatial patterns. My 

results illustrate a shift in the controlling processes that shape forest structural complexity from 

lower to upper latitudes within the same forest type. This study is a reminder that we should not 

naïvely assume that an ecological theory uniformly applies across the range of a forest type.  

The processes of snow accumulation and disappearance were significantly influenced by 

the presence and patterns of forest vegetation. Forest structural complexity characterized by tree 

arrangement, size and type were important variables driving snow dynamics. Chapters 2 and 3 
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uniquely captured the influence of Larix, a deciduous conifer, on snow accumulation and 

disappearance. Capturing and accounting for detailed forest structure in estimating peak SWE 

and snow disappearance were more important than the source of the data, as random forest 

models parameterized with ground or LiDAR derived canopy measures performed equally well. 

This work offers researchers and managers new tools for quantifying, understanding, and 

managing structurally complex forests. 
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CHAPTER 1. Spatial aspects of structural complexity in Sitka spruce – western 

hemlock forests, including evaluation of a new canopy gap delineation method 

 

Abstract 
Structural complexity in long-lived forests where stand-replacing disturbances are rare is thought 

to emerge from chronic small scale disturbances and competitive interactions between trees. We 

analyzed tree size distributions, tree spatial patterns, and canopy gap attributes in ten, 1.42 ha 

stem mapped plots in old-growth Sitka spruce-western hemlock forests in southeast Alaska. 

Most plots had rotated sigmoid or reverse J-shaped diameter distributions. Overstory tree 

patterns were uniform at short distance (<5 m) and random or aggregated at larger distances (>5 

m); understory trees were spatially random or aggregated at most scales. Tree patterns were 

highly variable across plots. Overstory and understory tree populations were spatially 

independent in most medium canopy cover (40%-70%) plots, but spatially repelled in most high 

canopy cover (>70%) plots. Canopy gap delineation using a traditional geometric approach 

identified more gaps and greater forest area in gaps compared to a new method based on canopy 

tree shadow lengths. We recommend defining the lower limit of canopy gap size using overstory 

tree crown diameter; gap delineation based on overstory tree shadow length is overly 

conservative at higher latitude sites. Our analyses show that, despite their low species richness, 

the temperate rainforests of southeast Alaska are highly structurally diverse. 

 

Introduction 

Old-growth forests provide important ecosystem functions including wildlife habitat, 

regulation of energy and nutrient cycles, and long-term carbon sequestration unmet by younger 

forests (Spies 2004). Horizontal and vertical heterogeneity—structural complexity—are 

emergent properties of old-growth stands that directly influence their functional characteristics 

(Franklin and Van Pelt 2004). Structural complexity is the long-term result of disturbance 

history, competitive interactions, tree mortality and recruitment, and the edaphic mosaic 

(Lertzman et al. 1996; Franklin et al. 2002; Franklin and Van Pelt 2004, Larson et al. 2015). 

In forests where stand replacing disturbances are rare, conceptual models of stand 

dynamics assume that small scale disturbances (i.e., wind, snow and ice, insects, disease) drive 

the development of structural and spatial heterogeneity in maturing forests (Nowacki and Kramer 

1998, Franklin et al. 2002). As stands transition from mature to old-growth, the structural and 

compositional consequences of canopy gap formation obscure the imprint of earlier competition-
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driven self-thinning mortality (Lertzman et al. 1996; Franklin et al. 2002). Overstory tree 

mortality creates localized canopy gaps allowing light to reach the forest floor (Lertzman and 

Krebs 1991). Gap size and the architecture of surrounding canopy trees directly influence and 

alter the patterns of light, moisture, and nutrients available to the understory (Canham et al. 

1990, Van Pelt and Franklin 1999, Van Pelt and Franklin 2000). Gap-associated 

microenvironments influence seedling performance, regeneration response, community 

composition, and productivity (Lertzman and Krebs 1991; McCarthy 2001, Coates 2002). 

Gap patterns and dynamics have been investigated in the coastal temperate rainforests of 

southeast Alaska (Alaback 1988; Ott 1997; Ott and Juday 2002). However, it is not clear how 

well the canopy gap concept applies at higher latitudes, because light that penetrates the forest 

canopy is increasingly displaced away (because of low sun angles) from the structural gap and 

associated soil resources with increasing latitude (Canham et al. 1990; Zhu et al. 2015, Kramer et 

al. 2001). An additional challenge is how to detect and classify canopy gaps in an objective, 

repeatable manner that is linked to ecosystem function and forest dynamics.  Zhu et al. (2015) 

recently introduced a method to objectively define minimum gap size based on the shortest 

shadow length of canopy trees surrounding a gap and canopy tree crown diameter, which directly 

accounts for the influence of surrounding canopy trees to moderate the light regime and modify 

the within gap microclimate and associated processes. The applicability of this new method to 

other forest types, especially higher latitude forests requires evaluation.  

Tree spatial patterns reflect both the disturbance regime and past species interactions. 

Distinct structural patterns can be detected from within a structurally complex forested matrix, 

which provide insight into the underlying ecological processes (McIntire and Fajardo 2009). 
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Competitive interactions are an additional mechanism driving structural change in long-

lived and old-growth forests, and past competition may be detected in tree spatial patterns 

(Franklin et al. 2002; Parish and Antos 2004, Lutz et al. 2014, Larson et al. 2015). In temperate 

forests of the Pacific Northwest, the very shade-tolerant tree Tsuga heterophylla (western 

hemlock) is a strong competitor that may directly influence forest dynamics (Lutz et al. 2014). 

Competition theory predicts that large canopy trees will outcompete smaller understory trees for 

resources in their immediate environment, leading to a spatial segregation of the two populations 

at local scales (i.e., up to about 10 m) and a tendency towards a uniform distribution of overstory 

trees (Moeur 1997; Larson and Churchill 2008). Previous work has found spatial segregation 

between large overstory trees, particularly hemlock, and understory trees (i.e., ingrowth; Getzin 

et al. 2006; Lutz et al. 2014). If present, strong competitive interaction suggests that the large 

overstory trees are strongly influencing the forest dynamics. 

Northern coastal Sitka spruce (Picea sitchensis) – western hemlock 

(Tsuga heterophylla) forests form the largest expanse of intact old-growth temperate rainforest 

worldwide, providing a natural observatory in which to examine the structure and stand 

development of long-lived forests (Alaback 1988; McCarthy 2001). The objectives of this study 

were to characterize the structural and spatial attributes of unmanaged northern coastal spruce-

hemlock forests, and to interpret this analysis of forest stand structure and spatial pattern in terms 

of past developmental processes, especially gap dynamics and competitive interactions between 

trees.  We first report species composition and forest structure, including tree diameter 

distributions, providing context for our spatial analyses and interpretation of forest dynamics. 

Second, we investigate canopy gap attributes, including gap size distributions, total open space 

unoccupied by overstory tree crowns, and an assessment of the new Zhu et al. (2015) gap 
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detection method. Third, we use spatial point pattern analysis to investigate past competitive 

interactions between tree populations, and to test the hypothesis of spatial segregation between 

overstory and understory tree populations (Lutz et al. 2014).  These objectives require large plots 

(>1 ha) in which the locations of individual trees are mapped, a field sampling approach that 

complements traditional forest sampling with small (<1 ha) fixed area plots, but are better suited 

for different objectives (Lutz 2015). 

Methods 

Study Area and Sampling Design 

The data analyzed here were collected in 1964 as part of a forest inventory study 

designed, “To determine which basal area factor and point cluster pattern combinations would 

provide acceptably accurate measurements of basal area per acre.” (LaBau 1967).  The original 

study was motivated by a directive from the U.S. Forest Service Washington Office that 

instructed USFS Regional Offices to convert forest inventory field sampling from fixed radius 

plots to point (i.e., prism) sampling. The scope of the original study was old-growth spruce-

hemlock forests (LaBau 1967). 

Study sites were located in old-growth Sitka spruce-western hemlock forests within the 

Tongass National Forest around Juneau and Petersburg, Alaska in the summer of 1964 (Figure 

1). Using a stratified random sampling design, plots were located using aerial photographs 

(1:15,840 scale; LaBau 1967). Plots were required to be: (1) accessible—less than a mile from a 

road or beach; (2) commercial forest land capable of producing at least 8,000 board feet per acre 

(actual gross Scribner board foot volume for sampled plots: 26,764 - 110,947 bd ft); (3) at least 

150 years old; (4) a spruce and/or hemlock forest in which at least 50% of timber volume was 

either spruce or hemlock; and (5) covering at least 2.02 ha (5 acres). Twenty-six potential plot 
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locations were identified and classified as medium density (canopy closure of 40-70%) or full 

density (70-100% canopy closure) stocking based on aerial photo interpretation. All five 

locations falling into the medium density category were selected for sampling. The remaining 

sites were in high density areas, of which five were randomly selected for sampling. A total of 

10, 1.42 hectare (100.6 × 140.8 m; 5 × 7 chains) plots were located and sampled. Because the 

old-growth near Juneau tends to have lower timber volumes, two plots were located near 

Petersburg, Alaska.  Plot elevations ranged between 10 m and 500 m above sea level. The 

climate of southeast Alaska is mild and maritime with summer and winter mean temperatures of 

8oC and 1oC respectively; and mean annual precipitation is 145 cm and 266 cm for Juneau and 

Petersburg, respectively, occurring year-round, making prolonged drought rare (WRCC 2016). 

Data Collection 

Plot locations identified in aerial photographs were navigated to in the field and used as 

plot centers. Plot boundaries were laid out and corners staked using a staff compass, topographic 

chain, and relascope (LaBau 1967). Closure requirements for the primary plot boundary control 

traverse specified an allowable error of 1 in 300 (LaBau 1967). All live trees greater than 7.6 cm 

(3.0 in) in diameter at breast height (DBH, 1.37 m) were mapped in 20.12 m (66.0 ft) wide 

parallel columns within each 1.42 ha plot by making perpendicular side shots from a staked steel 

tape located in the center of each column. Each column was subdivided into 404.9 m2 subplots 

(1/10th acre) to facilitate tree measurement and data recording.  Within subplots, each tree was 

assigned a unique identifying number and species, DBH, and height in number of 4.9 m (16 ft) 

logs, as well as tree spatial coordinates were measured and recorded (LaBau 1967). Dead trees 

were not sampled. 
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To facilitate our study of gap attributes and tree spatial patterns, we designated three 

canopy strata based on tree height; overstory, midstory and understory (Larson and Franklin 

2006). We designated trees ≥25 m tall as overstory trees, approximating the 75th percentile of 

tree heights which had a lower DBH limit of 38.5 cm, and consistent with past usage in this 

forest type (Hennon and McClellan 2003). Trees 10-25 m tall were termed midstory, and ≤ 10 m 

were designated as understory trees. To fully explore the analytical consequences of this 

definition of overstory trees we conducted a sensitivity analysis using overstory tree heights of 

20, 25, and 30 m on gap parameters (see Table S2, S3). 

Spatial Analysis 

Gap analysis 

Canopy openings are regions of the forest canopy unoccupied by overstory tree crowns. 

For this analysis, we define open areas as regions with no direct overhead overstory canopy 

cover, with no lower size limit. Canopy gaps (Figure 2) are defined as contiguous open areas of 

sufficient size to create forest understory conditions that are functionally different from smaller 

canopy openings, in terms of, for example, increased available light, nutrients, or soil moisture 

(Zhu et al. 2015). The classical definition of a canopy gap is an opening created by the death of a 

dominant overstory tree (Runkle 1982). 

Open area and canopy gaps were identified and quantified using mapped tree locations, 

modeled tree heights, maximum crown dimensions, and tree shadow lengths. Tree heights were 

determined using estimated crown ratio values and a regionally parameterized height to diameter 

relationship (Keyser 2015). We used modeled total tree heights for gap delineation because the 

field-measured height in merchantable logs will always underestimate, sometimes severely, total 

tree height.  Crown ratio values were determined using a set of Wiebull-distribution based 
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equations (Keyser 2015). Species specific maximum crown diameter estimates were determined 

using regionally parameterized relationships between tree diameter and maximum crown 

dimensions (Bechtold 2004; Keyser 2015). 

We used a canopy opening detection algorithm developed by Churchill et al. (2017) for 

point pattern datasets. The opening algorithm determines the location and area of unoccupied 

space in a point pattern (i.e., a tree stem map) based on a user designated threshold distance from 

a fixed grid of points to the nearest tree. Polygons are then drawn in all unoccupied areas larger 

than the threshold distance from each of the surrounding tree boles. A tree crown buffer with a 

length equal to the average overstory tree crown radius is subtracted from the polygon so gaps 

extend from overstory tree crown edge to crown edge. All overlapping polygons are merged, and 

the area of each merged opening is calculated. This calculated gap area is the open area devoid of 

any overstory foliage, which is analytically equivalent to a canopy gap as defined by Runkle 

(1982). Eliminating the tree crown buffer is analytically equivalent to Runkle’s (1982) expanded 

gap, where displaced light due to the canopy gap is still highly influential extending to the base 

of the boles of gap bordering trees (Runkle 1982). An edge correction buffer equal to the 

threshold distance was applied to the perimeter of each plot to ensure only complete canopy gaps 

would be calculated. Without this buffer, partial gaps on the plot edge would be calculated, 

potentially inflating total gap area since no information is available for trees beyond the sampling 

window. 

Geometric gaps 

We used the classic definition of a canopy gap (Runkle 1982) as a benchmark against 

which to evaluate the new method proposed by Zhu et al. (2015).  Developmental canopy gaps 

result from the death of one or more canopy trees (Runkle 1982). The smallest functional gap 
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would then be the open area caused by the death of a single overstory tree. We used this to define 

the lower limit of a functional “geometric gap” with a lower limit equal to the crown diameter of 

a single overstory tree (Figure 2B). A functional gap using this definition had a threshold 

distance of 8.88 m and tree crown buffer of 4.44 m. This value is consistent with the average size 

of a single tree canopy gap across forest types (Canham et al. 1990). 

Shadow gaps 

Using the methods of Zhu et al. (2015), we determined the lower limit of functional gap 

size using the shortest shadow length of an average overstory tree; gaps greater than or equal to 

this area are termed “shadow gaps”. Shadow length was calculated using an overstory tree height 

of 25 meters, average plot latitude, and the solar angle at noon (1200 hrs) averaged over the 

growing season (Figure 2A; Zhu et al. 2015). The average crown diameter of an overstory tree 

was subtracted from the shadow length to determine the lower limit of a functional shadow gap. 

Shadow gaps were quantified using the algorithm described above with a threshold distance of 

11.78 m and tree crown buffer of 4.44 m. 

Open area 

Total open area in the plot devoid of overstory foliage was calculated using the same 

opening algorithm with a threshold distance of 4.44 m and tree crown buffer of 4.44 m. These 

values determined open area extending from the edge of all non-overlapping overstory tree 

crowns—the total area with no direct overhead overstory canopy coverage. Non-gap open area 

was calculated as the difference between total open area and functional gap area. 

Stand level spatial analysis 

We analyzed tree spatial patterns and interactions at the stand and within-stand scales 

using the statistical program R version 3.2.1 (R Core Team 2016) and functions in the spatstat 
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library (Baddeley and Turner 2005). Stand level spatial patterns were evaluated using the pair 

correlation function with an isotropic edge correction and default distance range. The pair 

correlation function (g) is a normalized, non-cumulative density function that calculates the 

probability of finding the observed density of neighboring trees in a ring centered around each 

point in a given point pattern across a range of distances (Wiegand and Moloney 2004). 

Significance is assessed by comparing the empirical result to the density generated through a 

random point process at those same distances (Wiegand and Moloney 2004). The advantage of 

using a non-cumulative function is that spatial patterns can be detected at given inter-tree 

distances rather than up to a given distance. Observed values less than 1 indicated a uniform 

pattern and greater than 1 suggest aggregation. Significance was evaluated using a Monte Carlo 

simulated 95% confidence envelope. A goodness of fit test was unnecessary since spatial 

analysis was exploratory. The pair correlation function was used to evaluate the spatial patterns 

of: (1) overstory trees of all species, (2) only western hemlock (i.e., Tsuga) overstory, and (3) 

understory trees of all species. Spatial patterns of overstory spruce only were not evaluated due 

to low sample size. 

Within-stand level spatial analysis 

By reducing the scale of observation to within the stand, patches of trees and individuals 

can be identified. These local spatial patterns were evaluated using a clustering algorithm that 

assigns each tree to a patch or as a widely spaced individual using an analytically determined 

fixed inter-tree distance (Plotkin et al. 2002; Larson and Churchill 2008). Inter-tree distance is 

measured from stem center to stem center. Trees are a member of the same patch if the inter-tree 

distance is less than the inter-tree distance from at least one other patch member. Individual trees 

have no neighbors within at least the inter-tree distance. Inter-tree distance was determined using 
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percolation analysis, where the inflection point in distribution is used as the inter-tree distance 

(Plotkin et al. 2002). Analysis was conducted on all overstory trees. 

Competition analysis 

The bivariate pair correlation function (gi,j) was used to examine competitive spatial 

relationships between overstory (i) and understory (j) populations. A null model of population 

independence was used to test the prediction of overstory-understory segregation, especially that 

driven by Tsuga (hemlock; Goreaud and Pelissier 2003). If overstory trees suppress ingrowth, 

then the observed gover,under(r) < 1 where the sub-populations are repelled from each other. 

Competitive interactions between Tsuga overstory—all species understory and all species 

overstory—all species understory were evaluated. 

To evaluate overall spatial patterns and relationships by canopy density type, all spatial 

analysis methods were also conducted using the pool function in the spatstat library in R paired 

with a Monte Carlo simulation envelope utilizing the respective null models (Baddeley et al. 

2016). When overstory Tsuga populations were evaluated in a pooled framework, plot 104 was 

removed from the analysis in the medium density class due to an insufficient sample size of 

overstory Tsuga stems. 

Results 

Forest structure and composition 

Western hemlock (Tsuga heterophylla) dominated overstory and understory species 

composition, accounting for over 90% of stems in medium density plots and 75% in full density 

plots (Table 1). However, the largest trees in terms of diameter were Sitka spruce (Picea 

sitchensis). Plot 104, a full density plot located in a riparian area, was a compositional outlier 

with Sitka spruce making up 75% of the species composition, and the only plot to have black 
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cottonwood (Populus trichocarpa) (Table S1). Red alder (Alnus rubra) and yellow cedar 

(Cupressus nootkatensis) accounted for only 0.25% and 1.2% of total stems, respectively. When 

present, all non-dominant species were mostly confined to the midstory and understory positions. 

Stem density ranged from 315-666 trees ha-1 in medium and 246-664 trees ha-1 in full 

density plots. Twenty-five percent and 46% of the trees were tall enough to be considered 

overstory trees, but accounted for 76% and 83% of the total plot basal area in medium and full 

density plots respectively. The two plots located near Petersberg (plots 143, 161) were not 

structurally different from the plots located near Juneau in any of our analysis. 

Forests in the medium and full density strata exhibited different, recognizable patterns in 

their size distributions. Medium density plots exhibited reverse J-shaped diameter distributions, 

except for plot 104 which had a rotated sigmoid distribution (Figure 3). Conversely, most full 

density plots exhibited rotated sigmoid distributions, with the exception of plot 76 which had a 

reverse J distribution, and plot 32 which exhibits a distribution transitional between unimodal 

and rotated sigmoid (Figure 4). 

Gaps 

Stand stem maps indicate that old-growth tree structure consists of varying sizes and 

numbers of canopy gaps, widely spaced individual trees, and tree patches (Figure 5, S1, S2). 

Medium density plots consistently had greater numbers of gaps accounting for more of the total 

open area in each plot (Table 2, Figure S3). The classical geometric gap definition (Runkle 1982) 

produced two to six times more area in functional gaps than gaps delineated using the Zhu et al. 

(2015) shadow method, and this difference held over a range of overstory tree heights (Figure 

S3, Table S2-S3). In both plot density strata, the distribution of geometric gaps followed a right 

skewed normal distribution covering the full range of gap size classes, while shadow derived 
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gaps exhibited a flat distribution with a more restricted range of size classes, especially in full 

density plots (Figure 6, S4).   

Spatial Patterns 

Stand level 

Stand level overstory tree spatial patterns exhibited a spatially random tree distribution 

across most distances, with significant aggregation observed across most distances for understory 

trees (Table 3). All full density overstory trees tended to exhibit significant uniformity, mostly at 

short distances (1-3 m), with medium density plots tending towards more random distributions 

across all distances (Figure S5, S6). Tsuga overstory trees in medium density plots were 

randomly arranged, but one plot indicated significant aggregation around 10 m and one plot 

exhibited significant uniformity around 4 m (Figure S7). Full density overstory Tsuga was 

uniformly distributed at short distances (1-4 m) in four of the five plots and aggregated at three 

different ranges (6-7 m, 13 m, and 17 m; Figure S8) in the other plot. Understory trees in all but 

one plot (plot 104) exhibited significant aggregation across most distances in both density 

classes, but was much stronger in full density plots (Figure S9, S10). Stand-level tree spatial 

patterns were random across all distances when plots were pooled by density class for all 

univariate overstory and understory tree analyses: the pooled analysis masked the substantial 

inter-plot variation. 

Within stand spatial patterns 

Within stand spatial patterns consisted of widely spaced individuals, tree patches with 

two or more individuals, and inter-tree percolation distances consistent with average tree crown 

diameter. Percolation analysis identified overstory, midstory, and understory inter-tree distances 

around 8, 6, and 4 m respectively which are consistent with the average maximum crown 
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diameter for each subpopulation (Figure 7). Medium density overstory trees were evenly 

distributed among patch sizes in terms of percent density and basal area, while overstory trees in 

full density plots occurred mainly as two very large patches that accounted for 85% and 83% of 

the density and basal area (pooled by density) respectively, with little variation in patch 

distribution between plots (Table 4, Table S4). 

Competition 

Overstory hemlock and understory populations were spatially independent across most 

distances regardless of density class except two full density plots which indicated significant 

repulsion between the two populations across nearly all distances (Figure 8, 9). Medium density 

plots exhibit some small scale attraction (1-3 and 10 m), with one plot also indicating repulsion 

around 11 m (Figure 8). Two of the full density plots indicate repulsion across all distances (1-25 

m), with significant repulsion detected in the other three (Figure 9). Pooled analysis indicated 

that overstory hemlock and understory populations are spatially independent, again obscuring the 

between plot variation. 

An examination of the spatial relationship between all overstory and all understory trees 

indicated significant repulsion, attraction, and independence across various differences between 

plots and within in density class. Most medium density plots showed significant attraction at 

short and middle distances, one plot indicating only independence, and one plot with repulsion 

around 11 m (Figure S11). High between plot variation was also apparent for full density plots, 

where one plot showed independence, three plots had significant repulsion anywhere from 3-25 

m, and the last plot overstory and understory trees were spatially attracted from 2-12 m (Figure 

S12). 
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Discussion 

Our analyses quantify for the first time spatial aspects of structural complexity in Sitka 

spruce-western hemlock forests, and provide a new line of evidence supporting a role for gap 

dynamics in this forest type.  Large, stem mapped plots offer a means to investigate attributes of 

forest structure and dynamics that cannot be studied with traditional small fixed area plots (e.g., 

Lutz et al. 2014), an approach that has not previously been used in the temperate rainforests of 

southeast Alaska (but see Deal et al. 1991). Our analyses of tree spatial patterns, gap size 

distributions, and spatial relationships between overstory and understory trees show that, despite 

their low species richness, the temperate rainforests of southeast Alaska are highly structurally 

diverse. 

The original sampling design for this study targeted old-growth forests, which at the time 

of sampling in 1964 were defined as sites with no evidence of past timber harvest in which at 

least 150 years had passed since stand-initiating disturbance (LaBau 1967). Previous work in 

old-growth spruce-hemlock forests of southeast Alaska showed that old-growth structural 

features do not become apparent until about 160-200 years after stand-initiating disturbance 

(Alaback 1984). Thus, our study sites likely include both true old-growth stands, as well as 

younger stands that might be better described as transitional (sensu Zenner 2005) or early old-

growth (sensu Freund et al. 2015). 

Forest structure 

Tree diameter distributions provide insights into past forest development and vary 

predictably along a forest age and structural development gradient (Alaback 1984, Zenner 2005). 

In wind-disturbed spruce-hemlock forests of southeast Alaska, young forests originating from 

stand-replacement disturbance characteristically exhibit a unimodal diameter distribution up to 
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about stand age 160 years; at greater ages a reverse-J diameter distribution was most common 

(Alaback 1984). A rotated sigmoid diameter distribution is generally associated with stands that 

are transitional between the mature and old-growth structural stages (Zenner 2005, Freund et al. 

2015). Sites with disturbance histories that include intermediate non-stand replacing disturbances 

typically exhibit more complex DBH distributions, including rotated sigmoid (Ott and Juday 

2002, Zenner 2005) and bi- or multi-modal distributions (Deal et al. 1991, Kramer et al. 2001, 

Ott and Juday 2002, DeGayner et al. 2005). 

All plots included trees >100 cm DBH (Table S1), and nine of 10 plots had either rotated 

sigmoid or reverse J-shaped diameter distributions (Figure 3, 4), evidence that these are late-

successional stands that have either attained old-growth structure or are transitional between 

mature and old-growth (c.f., Ott and Juday 2002). Plot 32 had a skewed normal distribution 

(Figure 4), indicating that this site may be just beginning to transition to old-growth structure 

(Alaback 1984).  Reverse-J shaped DBH distributions were most common and most pronounced 

in the medium canopy density stratum (Figure 3), suggesting that these sites may have more 

highly developed old-growth attributes, and have developed for a longer time since the last 

stand-replacing disturbance than the full canopy density plots (Figure 4).  However, a complete 

population age structures would be needed to definitively assess stand age and developmental 

histories (Deal et al. 1991). 

Gap delineation, area, and size distributions 

Two types of canopy gaps occur in the temperate rainforests of southeast Alaska: 

developmental gaps and edaphic gaps. Developmental canopy gaps are the result of individual 

tree mortality and small-scale, chronic disturbance.  Most trees die standing or from bole 

breakage in temperate old-growth conifer forests of the Pacific Northwest, with only about 20 to 
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25% of trees uprooted (Spies et al. 1990, Hennon and McClellan 2003, Larson and 

Franklin2010). Tree death and gap formation due to bole breakage is often associated with 

preexisting decay and prior wounding, which compromise tree structural integrity and predispose 

mortality (Hennon 1995, Hennon and McClellan 2003, Larson and Franklin 2010). Edaphic gaps 

are persistent canopy openings within the forest matrix associated with sites unsuitable for 

development of a closed canopy, such as stream courses, rock outcrops, or wetlands (Lertzman et 

al. 1996). Extreme structural variants of edaphic gaps also occur that prevent the development of 

a closed canopy. For example, low-productivity palustrine forested wetlands—sites that support 

development of spruce-hemlock forests but where a shallow depth to the water table limits 

productivity (Bisbing et al. 2015), sometimes preventing development of a closed canopy. 

Another example is “priority” gaps (sensu Schmidt et al. 1998) where patches of dense mats of 

hardwood or shrub stems establish early in stand development and exclude conifer regeneration, 

preventing canopy closure. A strength of our analysis is that it provides an unbiased sample of 

forest gap structure and tree spatial patterns in coastal spruce-hemlock forests. However, we are 

not able to distinguish developmental gaps from edaphic gaps. Thus, our analysis of forest 

canopy gap structure represents the combined effects of site conditions (edaphic and priority 

gaps) and past tree mortality (developmental gaps). 

Gap structure was present in both canopy density classes with an average of 34% and 

20% of total medium and full density plot areas influenced to some degree by canopy openings 

(Table 2). These values are similar to the average of 30.2% found by Lertzman et al. (1996) for 

combined developmental and edaphic gap area in forests of coastal British Columbia. On 

average, 23.2% and 6.0% of plot area was in functional canopy gaps for medium and full density 

categories, respectively, using the geometric (Runkle 1982) gap delineation method. This range 



21 

 

is consistent with previous estimates of the area in developmental canopy gaps, which range 

from 3.8% to 33.7% in old-growth Alaskan temperate forests (Nowacki and Kramer 1998, Ott 

and Juday 2002). We used mapped tree locations and modeled tree heights and crown widths to 

estimate area in canopy openings and gaps, while previous studies directly measured canopy 

gaps in the field. Although modeled tree crowns do not represent actual crown geometry with 

perfect fidelity, our results for gap size distributions and total area in openings or gaps agree with 

previous field-based gap delineation studies. 

Our estimates of the functional gap size distribution using the geometric delineation 

approach are slightly different from previous studies, but our range of gap size values are 

consistent with other studies.  Geometric gaps exhibited an approximately normal, right skewed 

distribution, while canopy gap distributions in old-growth temperate forests in southeast Alaska 

and British Columbia consistently exhibit right skewed or negative exponential distributions 

suggesting the prevalence of many smaller gaps (Lertzman and Krebs 1991; Ott 1997; Nowacki 

and Kramer 1998, Bartemucci et al. 2002; Ott and Juday 2002). Our geometrically derived gaps 

spanned the range of size classes (1-600+ m2), with many mid-sized gaps (100-300 m2) and some 

large gaps (>600 m2) apparent in both density classes (Figure 6). In temperate forests in 

southeast Alaska canopy gaps have been found to range from 6-264 m2 (Nowacki and Kramer 

1998, Ott and Juday 2002), from 5-525 m2 in southwest British Columbia (Lertzman and Krebs 

1991), up to1,253 m2 on rare occasions in northern British Columbia (Bartemucci et al. 2002, 

and from 25.5-366 m2 in more southern temperature forests (Van Pelt and Franklin 2000). Using 

field based methods, gaps >600 m2 are rare usually only detected using Runkle’s (1982) 

expanded gap definition, where the gap extends from tree bole to bole rather than the canopy 

edges (Bartemucci et al. 2002). However, in Chilean temperate rainforest average canopy gap 
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size was 425 m2 (Veblen 1985) and gaps as large as 739 m2 were measured in the southern Sierra 

Nevada (Van Pelt and Franklin 2000). 

We do not recommend using the Zhu et al. (2015) gap delineation method (i.e., shadow 

gaps, Figure 2A) in tall, higher latitude forests, such as the coastal spruce-hemlock forests 

studied here. At our study sites, the Zhu et al. (2015) method underestimated the number of and 

total area in canopy gaps (Figure 6, S3, Table 3, S2-S3) relative to the classical Runkle (1982) 

method because the Zhu et al. (2015) definition of a minimum functional gap size increases with 

decreasing sun angle.  The Zhu et al. (2015) method is much more appropriate for lower latitude 

tropical and subtropical forests where the understory light regime is more directly regulated by 

overhead canopy cover and gaps (Canham et al. 1990).  Canopy gaps regulate other 

environmental variables in addition to light, such as precipitation throughfall rates and snow 

accumulation and persistence on the forest floor (Dickerson-Lange et al. 2017), and soil moisture 

(Gray et al. 2002). These important gap-influenced processes and environmental features are 

closely related to the actual geometry of canopy gaps, which is better represented using the 

Runkle (1982) geometric gap method. 

Tree spatial patterns and evidence of past competition 

            Competitive interactions produced a much stronger spatial signal in full density than 

medium density plots. However, we did not observe what we expected in terms of spatial 

patterns and competitive interactions in the pooled analyses. Significant spatial patterns 

consistent with past competitive mortality were evident only in individual plot analyses. The 

pooled analyses masked significant spatial patterns due to alternate scales of significant patterns 

between plots within a density class, which may be due to a high degree of variation in edaphic 

and biophysical conditions in the region. The overall random distribution of canopy trees, and 
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those in medium density stands was not consistent with our prediction of uniformity, but is 

consistent with the findings for canopy tree patterns in old-growth of similar forest types (Larson 

and Churchill 2008, Lutz et al. 2014). In contrast, most of the individual full density plots 

indicated significant uniform spatial patterns from 1-3 m suggesting that earlier self-thinning 

mortality was an important developmental process in those stands (Larson et al. 2015). 

Site and species-specific factors may explain why we did not find the predicted spatial 

signature of strong competitive interactions between overstory and understory trees. First, the 

sampling design did not capture the smallest diameter trees (>7.6 cm DBH). The lack of 

significant aggregation in the understory trees may also be partially attributed to the missing 

smallest size classes, which typically show the strongest signal of spatial aggregation, with 

midstory trees tending towards random distributions (Van Pelt and Franklin 2000, Parish et al. 

1999, Lutz et al. 2014). In addition, the low solar angles in latitudes above 50o N displaces the 

available light in canopy gaps away from the gap into the forest matrix creating a spatial 

disconnect between the location of the gap and the regeneration response (Canham et al. 1990; 

Coates and Burton 1997; Kneeshaw and Bergeron 1998; Van Pelt and Franklin 2000). This 

displacement may contribute to the apparent attraction between overstory and understory trees at 

some sites, as seedlings and saplings have been found to be more or equally abundant on edges 

of gaps and into the forest matrix, where the competitive interactions with the overstory is 

inconsequential compared to the availability of light or the presence of suitable establishment 

sites (Ban et al. 1998, Van Pelt and Franklin 2000, Coates 2002). 

Conclusions 

This study provides two novel contributions towards objectively quantifying structural 

complexity in tall, higher latitude forests. We provide the first quantification of spatial aspects of 
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structural complexity for higher latitude Sitka spruce-hemlock forests.  Despite their low species 

richness, forest structure was highly heterogeneous, characterized by a forest mosaic of canopy 

gaps, tree patches, and a diverse range of tree sizes. These distinctive structural features 

contribute to the unique ecological functions of old-growth forests that are unmet by younger 

stands (Spies 2004; Franklin and Van Pelt 2004). However, the strong competition and spatial 

segregation signals observed in more southern temperate conifer forests were much weaker and 

only occasionally apparent in our data, likely due to low sun angles, lower site productivity, and 

greater edaphic heterogeneity in our higher latitude rainforest study sites 

This study is the first to test Zhu et al.’s (2015) shadow gap delineation method in tall, 

higher latitude forests. We consider it an excellent method at lower latitudes, but because of the 

singular emphasis on noon solar angles to define canopy gaps, the Zhu et al. (2015) approach 

underestimates total area and number of canopy gaps in higher latitude forests. Thus, we do not 

recommend using the Zhu et al. (2015) method at higher latitude sites. Objectively delineating 

canopy gaps using the traditional geometric gap (Runkle 1982) is more appropriate for higher 

latitude forests, including coastal Sitka spruce-western hemlock forests. 
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Tables 

Table 1. Stand structure and compositional attributes for old-growth Sitka spruce-western hemlock forest stands in southeast Alaska. 

Medium density represents forests with 40-60% canopy closure and full density is 70-100% canopy closure. Plus minus values are the 

standard error of the mean. Overstory trees are ≥ 25 m in height, mid-story is trees with heights of 10-25 m, and understory trees are 

all trees < 10 m tall.  

  All  Overstory Mid-story Understory 

  Species 
Density 

(TPH) 
Basal area 

(m2/ha) 

DBH 

range 

(cm)  QMD (cm) 
Density 

(TPH) 
Basal area 

(m2/ha) 
Density 

(TPH) 
Basal area 

(m2/ha) 
Density 

(TPH) 
Basal area 

(m2/ha) 

Medium density 

 PISI 89 ± 37 18.38 ± 9.37 7.6 - 177.5 41.9 ± 4.4 34 ± 9 16.05 ± 3.76 51 ± 8 2.30 ± 0.44 4 ± 1 0.07 ± 0.02 

 TSHE 425 ± 95  46.01 ± 10.85 7.6 - 132.6 30.2 ± 2.7 70 ± 7 33.23 ± 4.00 220 ± 20 11.36 ± 0.98 135 ± 16 1.40 ± 0.16 

 POTR 6 ± 6 0.80 ± 0.80 15.2 - 44.5  6.7 ± 6.7 2 ± 0 0.42 ± 0.00 3 ± 0 0.37 ± 0.00 1 ± 0 0.02 ± 0.00 

 ALRU 6 ± 5 0.44 ± 0.37 8.4 - 43.2 28.0 ± 2.7 1 ± 0.4 0.08 ± 0.05 4 ± 2 0.33 ± 0.18 3 ± 2 0.04 ± 0.02 

 Total 518 ± 68 64.72 ± 4.28 7.6 - 177.5 34.44 ± 2.84 105 ± 2 49.40 ± 2.09 273 ± 17 13.87 ± 0.61 140 ± 16 1.45 ± 0.16 

Full density 

 PISI 92 ± 12 37.70 ± 8.04 7.6 - 162.1 61.1 ± 8.6 67 ± 3 36.45 ± 3.77 24 ± 6 1.17 ± 0.28 2 ± 1 0.01 ± 0.004 

 TSHE 344 ± 78 55.60 ± 3.10 7.6 - 133.6 40.6 ± 3.6 111 ± 4 42.56 ± 0.74 171 ± 25 12.47 ± 1.99 62 ± 13 0.64 ± 0.13 

 CUNO 56 ± 56 4.82 ± 4.82 10.7 - 55.6 27.9 ± 0.0 0 ± 0 0.00 ± 0.00 50 ± 0 4.71 ± 0.00 6 ± 0 0.01 ± 0.00 

 Total 448 ± 88 94.33 ± 5.78 7.6 - 162.1 46.44 ± 5.76 178 ± 5 79 .08 ± 4.37 205 ± 31 14.58 ± 2.40 65 ± 13 0.67 ± 0.13 

All plots 

 PISI 91 ± 20 28.0 ± 6.90 7.6 -177.5 51.5 ± 5.7 51 ± 3 26.25 ± 2.07 37 ± 4 1.73 ± 0.18 3 ± 0.3 0.04 ± 0.01 

 TSHE 385 ± 60 50.8 ± 5.90 7.6 - 133.6 35.4 ± 2.7 90 ± 4 37.90 ± 1.44 196 ± 11 11.91 ± 0.74 99 ± 8 1.02 ± 0.08 

 CHNO 56 ± 56 4.82 ± 4.82 10.7 - 55.6 27.9 ± 0.0 0 ± 0 0.00 ± 0.00 50 ± 0 4.71 ± 0.00 6 ± 0 0.01 ± 0.00 

 POTR 6 ± 6 0.80 ± 0.80 15.2 - 44.5  6.7 ± 6.7 2 ± 0 0.42 ± 0.00 3 ± 0 0.37 ± 0.00 1 ± 0 0.02 ± 0.00 

 ALRU 6 ± 5 0.44 ± 0.37 8.4 - 43.2 28.0 ± 2.7 1 ± 0.4 0.08 ± 0.05 4 ± 2 0.33 ± 0.18 3 ± 2 0.04 ± 0.02 

  Total 482 ± 54 79.53 ± 6.0 7.6 - 177.5 41.11 ± 3.15 141 ± 4 64.24 ± 2.25 239 ± 12 14.22 ± 0.83 103 ± 8 1.06 ± 0.08 
*PISI = Sitka spruce (Picea sitchensis); TSHE = western hemlock (Tsuga heterophylla); CHNO = yellow cedar (Cupressus nootkatensis); POTR = black cottonwood (Populus trichocarpa); 

ALRU = red alder (Alnus rubra) 

Note: The data do not include any records of Tsuga mertensiana which co-occurs with Tsuga heterophylla in many coastal forests in Southeast Alaska.  Large individuals of these species can 

be difficult to differentiate.  Thus, we acknowledge the potential for the TSHE category to include minor amounts of Tsuga mertensiana. 
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Table 2.  Summary values for open areas for 10 Sitka-spruce western hemlock forests in 

southeast Alaska. Values in parentheses are percent of total plot area in functional canopy gaps 

per plot. Each plot is a total of 14,164 m2.  

Plot 

Total 

open 

area (m2) 

Area in 

shadow 

gap (m2) 

Area in 

geometric 

gap (m2) 

Medium density 

104 4758 1399 (9.8) 2985 (21.1) 

130 5150 441 (3.1) 3521 (24.9) 

132 4868 944 (6.7) 3433 (24.2) 

141 4838 531 (3.7) 2993 (21.1) 

220 4603 957 (6.8) 3206 (22.6) 

Full density 

32 2334 206 (1.5) 387 (2.7) 

76 3384 334 (2.4) 1760 (12.4) 

111 2804 354 (2.5) 808 (5.7) 

143 2499 0 (0.0) 406 (2.9) 

161 3318 0 (0.0) 901 (6.4) 
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Table 3. Summary statistics for within-stand spatial patterns of widely spaced individual trees 

(i.e. patch size = 1) and patches of trees. A fixed inter-tree distance of 8.88 m was used for 

overstory trees. BA is basal area in meters squared and SEM is standard error of the mean 

presented in parentheses.  

Overstory 

  Patch size (number of trees) 

Value (SEM) 1 2-4 5-7 8-10 11-15 16+ 

Medium density 

# Patches ha-1   10 (2) 9 (2) 3 (0) 2 (0) 1 (0) 1 (0) 

% Total density 9.6 (2.1) 

21.3 

(5.7) 

16.4 

(1.6) 

14.2 

(3.5) 

13.3 

(3.3) 18.2 (3.3) 

%Total BA 

10.5 

(2.4) 

24.1 

(5.5) 

16.7 

(2.0) 

11.5 

(3.7) 

15.3 

(2.6) 21.1 (5.7) 

Full density 

# Patches ha-1 ± SEM 4 (1) 4 (0) 1(0) 0 (0) 0 (0) 2 (0) 

% Total density 2.1 (0.5) 6.1 (1.2) 4.5 (1.5) 0.9 (0.9) 1.9 (1.9) 84.6 (3.1) 

%Total BA 2.0 (0.6) 6.7 (0.9) 4.8 (1.5) 0.9 (0.9) 1.9 (1.9) 83.2 (3.0) 
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Figures 

 

Figure 1. Plots were located in the Tongass National Forest in southeast Alaska. Eight plots were 

located immediately around Juneau and two near Petersburg, Alaska. Plot locations indicated with a 

circle represent medium density plots and triangles are full density plots.  
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Figure 2. Sketch of lower limit of functional gap size. (A) Shadow gap method. SAnoon is the solar 

angel (o) at noon local time; Cr is the length of the crown radius (m); Cd is the length of the crown 

width (m) which is equal to 2 x Cr; H is overstory tree height (25 m); shadow length is the full 

shadow of a surrounding overstory tree at noon; SGlower limit is the lower limit of a shadow gap (m), 

is equal to shadow length – Cd. (adapted from Zhu et al. 2015) (B) Geometric gap method. GGlower 

limit is the lower limit of a geometric gap (m), is equal to Cd. Assumptions: (1) slope of the gap 

location is 0o on flat land; (2) H, of surrounding trees is the same. Hemlock silhouette provided by 

Natural Resources Canada, https://tidcf.nrcan.gc.ca/en/trees/factsheet/119.  

 

https://tidcf.nrcan.gc.ca/en/trees/factsheet/119
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Figure 3. Diameter distribution in 10 cm diameter classes for five medium density (40-60% crown 

closure) plots and pooled values for old-growth Sitka spruce-western hemlock in southeast Alaska. 

Labels are located at the center point of the 10 cm diameter classes. TSHE: western hemlock, PISI: 

Sitka spruce, OTHER: includes red alder, black cottonwood, and yellow cedar.  
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Figure 4. Diameter distribution in 10 cm diameter classes for five full density (70-100% crown 

closure) plots and pooled values for old-growth Sitka spruce-western hemlock in southeast Alaska. 

Labels are located at the center point of the 10 cm diameter classes. TSHE: western hemlock, PISI: 

Sitka spruce, OTHER: includes red alder, black cottonwood, and yellow cedar. 
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A         B

  

Figure 5. Example stem maps for old-growth Sitka spruce – western hemlock forests in southeast Alaska. Tree boles are colored by 

species and point size represents overstory, mid-story, and understory canopy position. A 4.44 m radius was used to project tree 

crowns on overstory trees to show patches calculated using a fixed inter-tree distance of 8.88 m. Patch size is on a color gradient 

following the number of trees in a patch. Gaps and associated buffer distances are shown with a solid or dashed line. Background 

coloration is a graphical display of open area where colors indicate the distance to the nearest overstory trees in meters. Panel A is a 

medium density plot. Panel B is a full density plot.  
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Figure 6. Percentage of total open area, defined as area devoid of overstory foliage, considered a 

functional gap delineated by the shadow or geometric gap definitions, and pooled by density 

class.  
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Figure 7. Gap size distribution pooled by density class for shadow and geometric gaps. Size 

class is presented in 50-100 m2 bins. Minimum functional gap size is 42.3 m2 and 15.5 m2 for 

shadow and geometric gaps respectively.  



 

39 

 

 

Figure 8. Spatial pattern of overstory and understory trees pooled for each density 

class using a replicated pair correlation function. Analysis was conducted on all 

overstory trees (≥ 25 m tall; panels A & B), overstory western hemlock (TSHE: 

panels C & D), and all understory trees (< 10 m tall; panels E & F). The dataset used 

for panel C was reduced to four plots since one plot had an insufficient sample of 

overstory hemlock to conduct the analysis. The black line is the empirically observed 

pattern and the shaded regions represent a simulated 95% confidence envelope. 

Observed values above (below) the envelope indicates aggregation (uniformity) and 

within indicate randomness.  
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Figure 9. Proportional patch size distribution for ten Sitka spruce western hemlock plots. A patch is considered any grouping of two 

or more trees within a fixed distance of each other. Each line represents one plot. Overstory trees are defined as any tree greater than 

or equal to 25 m in height, mid-story trees are 10-25 m tall, and understory trees are less than 10 m tall. Plots in full density areas are 

indicated in black and medium density plots in gray.  
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Figure 10. Spatial relationships between understory trees (< 25 m tall) and overstory trees (≥ 25 

m tall) for the medium density class and pooled value using a replicated bivariate pair correlation 

function. The analysis was reduced to four plots since plot 104 did not have enough overstory 

hemlock to conduct the analysis. The black line is the observed pattern and the shaded regions 

are a simulated 95% confidence envelope. Observed values above (below) the envelope indicates 

attraction (repulsion) and within indicate independence.  
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Figure 11. Spatial relationships between understory trees (≤ 10 m tall) and overstory trees (≥ 25 

m tall) for the full density class and pooled value using a replicated bivariate pair correlation 

function. The black line is the observed pattern and the shaded regions are a simulated 95% 

confidence envelope. Observed values above (below) the envelope indicates attraction 

(repulsion) and within indicate independence. 
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CHAPTER 2. Tree spatial patterns modulate peak snow accumulation and snow 

disappearance 
 

Abstract 
Forests and snow covered regions frequently co-occur across the northern hemisphere. In these 

environments, forests are structurally and spatially complex mosaics of tree neighborhoods that 

are intrinsically linked to ecosystem functions. Tree and canopy structures influence snow 

accumulation and disappearance processes through interception and radiation attenuation. 

However, it is unclear if spatial heterogeneity within the forest canopy induces heterogeneity in 

snow accumulation and persistence. We quantitatively identified different tree neighborhoods 

and tested the differential effects of these within-stand neighborhoods on snow processes.  

Neighborhood types included individual ponderosa pine (Pinus ponderosa), Douglas-fir 

(Pseudotsuga menziesii) and western larch (Larix occidentalis) trees, dense overstory tree 

clumps, openings, and regeneration patches. Intensive measurements of snow accumulation 

(density and depth) and persistence (disappearance date) were made within replicate 

neighborhoods for three years. Overall, neighborhood type and year had a significant effect on 

accumulation and snow disappearance. Openings were significantly different from clumps and 

individuals, always accumulating more snow. Openings retained snow significantly later than 

clumps but were not significantly different from individuals. Within the individual tree 

neighborhood type, a nested species effect indicated no differences in accumulation but 

significant differences in disappearance between deciduous and evergreen conifers, with snow 

persisting longer beneath deciduous western larch. Our results suggest that canopy interception is 

the primary mechanism driving the accumulation phase, while snow disappearance patterns are 

largely a consequence of spatial variation of longwave radiation. Reducing canopy interception 

and longwave radiation by increasing the abundance of widely spaced single trees and small 

openings with silvicultural treatments should increase snow depth and duration, and thus snow 

water storage. Maintaining a heterogeneous canopy structure that includes tree clumps can be 

used to meet multiple objectives such as provision of ungulate winter range habitat, and 

heterogenous understory plant phenology.  

 

Introduction 
 

Forest vegetation significantly interacts with the processes of snow accumulation and 

disappearance. Forests and snow-covered regions co-occur over ~25% of the northern 

hemisphere (Musselman et al. 2012, Dickerson-Lange et al. 2015). Many co-locations occur in 

mountain watersheds where forest-snow interactions govern local ecology and hydrology 

(Musselman et al. 2012). In semi-arid regions, such as the western U.S., the annual snowpack in 

forested watersheds is the primary source of fresh water (Bales et al. 2006). Snow depth and 

duration influences important ecological functions such as primary productivity (Winkler et al. 
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2016), wildlife habitat (Mysterud et al. 1999), understory plant phenology (Walker et al. 1993), 

and microbial activity (Brooks et al. 1996). 

Most forests are structurally and spatially complex. Complexity, also referred to as 

heterogeneity, is characterized by the kind, number, size, and spatial arrangement of structures 

present at various scales (Franklin et al. 2002).  Structural complexity and spatial heterogeneity 

within forest stands emerge as ordered and random processes occur throughout stand 

development influence tree establishment, growth, and mortality patterns (Messier et al. 2013). 

Disturbance type, frequency and intensity also contribute significantly to forest complexity. For 

example, in western North American dry pine and mixed-conifer forests, complexity is manifest 

as a mosaic of large openings, widely spaced individual trees, clusters of mature trees, groups of 

regeneration (Larson and Churchill 2012, Tuten et al. 2015). High understory biodiversity 

consisting of legacy material and late successional trees such as white pine (Pinus strobus) and 

eastern hemlock (Tsuga canadensis) characterize complexity in the Great Lakes region (Webster 

et al. 2018). Similarly, northern European forests consist of fine-scale patches within continuous 

multi-aged cover consisting of large early and late successional specialist species and an 

abundance of dead wood (Brūmelis et al. 2001). Nearly all mature and old-growth temperate 

forests exhibit structural complexity and spatial heterogeneity, regardless of whether they 

experience chronic disturbance like gap dynamics in northern Europe and the Great Lakes 

region, or frequent events like fire and bark beetles in dry pine and mixed conifer forests 

(Franklin et al. 2002). Forest structural complexity is intrinsically linked to forest ecosystem 

function, and contributes to resiliency and adaptability (Boyden et al. 2012, Puettmann et al. 

2008). 
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 Management for forest structural complexity and within-stand spatial heterogeneity is a 

common theme in multiple objective forest management systems (Fahey et al. 2018). 

Technological advances have allowed for greater quantification of complexity, such as tree 

spatial pattern arrangements or functional trait diversity, and such information is increasingly 

incorporated into silvicultural prescriptions (Maher et al. 2019). Silvicultural prescriptions that 

balance multiple objectives using complexity-based approaches are currently being used across a 

wide range of forest types including variable density thinning, ecological restoration, and 

complex adaptive systems (North et al. 2009, Tuten et al. 2015, Knapp et al. 2017, Addington et 

al. 2018, Churchill et al. 2017, Reynolds et al. 2013, Kuuluvainen 2009).  

Forest canopy structure influences ecologically and hydrologically significant snowpack 

attributes, including snow water equivalent (SWE), snow depth, and snow cover duration and 

extent. SWE is the amount of liquid water held in a given volume of snow and is directly used to 

forecast the quantity and timing of water availability (Strum et al. 2010). Snow depth is 

important for winter wildlife habitat (Pauley et al. 1993, Wallmo et al. 1977), efficacy of ground 

insulation (Zhang 2005), and is a strong driver of species phenology and distributions (Walker et 

al. 1993).  Duration of snow cover is correlated with green-up (Grippa et al. 2005, Ide and 

Oguma 2013) and is summarized by the snow disappearance date (SDD) or its derivative, 

fractional snow-covered area (fSCA)—the percent of sample points or area covered by snow.  

Tree and canopy structures influence snow accumulation and ablation through 

interception and radiation attenuation (Jost et al. 2007, Varhola et al. 2010). Interception is 

thought to be a primary mechanism driving accumulation patterns and can account for up to 60% 

of incoming precipitation in conifers (Dickerson-Lange et al. 2017, Martin et al. 2013). 

Intercepted snow can subsequently be returned to the atmosphere via sublimation or removed 
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from the canopy by mass release or meltwater drip (Storck et al. 2002). Ablation is thought to be 

controlled by the energy balance where trees can act as longwave radiating bodies increasing 

subcanopy melt rates, or can shade the snow from incoming shortwave radiation thereby 

retarding melt (Lawler and Link 2011). Trees also modify local wind patterns and snow 

redistribution with consequences for below canopy patterns of snow accumulation and 

persistence (Faria et. al 2000, Jost et al. 2007).  

Species composition accounts for differing canopy architectures that include branch size 

(Brown 1978), strength and pattern, and overall canopy roughness and area (Miller 1964). 

Differing dominant evergreen conifer species have explained nearly 75% of the variation in peak 

SWE (Moore and McCaughey 1997, Faria et al. 2000). Among conifers, the greatest functional 

difference is between deciduousness and evergreen leaf habits, however the effect of this trait on 

snow processes has received little attention.  

This begs the questions, does a heterogeneous forest canopy structure and composition 

translate to variability in underlying snow characteristics at corresponding spatial scales? 

Most research on forest-snow interactions has been done using a stand-average approach. 

Past studies have compared forested and unforested environments, and also investigated varying 

shapes and sizes of treeless openings (Kitteridge 1953, Troendle and Leaf 1980, Berndt 1965). 

Others have examined varying stem densities, total canopy cover or sky view fraction (Gary and 

Troendle 1982, Hubbart et al. 2015, Dickerson-Lange et al. 2017). As the extent and intensity of 

forest disturbances have increased, greater attention has been given to the effects forest structural 

changes due to fire and bark beetle have on snow (Harpold et al. 2014, Boon 2012, Stevens 

2017). However, these coarse scale approaches ignore the inherent complexity present in most 

forests. 
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Fewer studies have explicitly considered within-stand forest structural complexity or 

spatial heterogeneity, and the consequences thereof for below-canopy snow dynamics. While 

still working with stand-average metrics, Woods et al. (2006) and Pickard (2015) compared 

different tree spatial patterns. Woods et al. (2006) observed significantly more snow in uniform 

stands than in group retention and control treatments; however variation in snow depth was 

greater in their group retention treatment. Pickard (2015) found no significant treatment effect of 

experimentally manipulated tree patterns on snow accumulation (during a very low snow year). 

Winkler and Moore (2006) did not find a significant effect of within-stand forest structural 

complexity on snow characteristics; this result was attributed to a mismatch in the spatial scales 

of structural variation and sampling density. There is a clear need for new studies designed to 

directly test the effects of forest complexity on below canopy snow attributes.  

Our objective was to determine if spatial heterogeneity within the forest canopy induces 

heterogeneity in snow accumulation and persistence.  We quantified tree spatial patterns in an 

intensively mapped and measured mixed-conifer forest. Within the heterogeneous canopy we 

identified different tree neighborhoods—individual trees, dense tree clumps, and openings—and 

hypothesized that snow accumulation and persistence would vary across these neighborhoods 

due to their differential effects on interception and radiation. Specifically, we used linear 

contrasts to test the predictions that peak snow accumulation and snow persistence differ 

between: 

5. Openings and clumps; 

6. Openings and individuals; 

7. Deciduous conifer and evergreen conifer individuals; and 

8. Evergreen individuals of different species.  
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The purpose of this research was to improve our basic understanding of the functional 

consequences of within-stand structural and spatial heterogeneity for underlying snow processes. 

Such results can support management approaches that mediate forest structural complexity and 

tree spatial patterns, and seek to balance multiple management objectives.  

Methods 
 

Study site 

This study was conducted at Lubrecht Experimental Forest in western Montana, USA 

(113o27’W, 46o55’N) in the Blackfoot River basin. The study site supports a mature, mixed-

conifer forest dominated by Douglas-fir (Pseudotsuga menziesii; PSME) and ponderosa pine 

(Pinus ponderosa; PIPO) interspersed with the deciduous conifer, western larch (Larix 

occidentalis; LAOC); and include components of all stages of stand development (Franklin et al. 

2002). Located at 1,220 meters a.s.l, with generally flat topography, the site received an annual 

average of 12.2 cm of snow water equivalent (SWE) from 2014-2017, with snow present from 

November to March. Average winter temperatures range from -8o C to 2o C (average = -4o C). 

Winter winds ranged from 0.4 – 1.8 m/s on site in 2016. Existing forest structure and 

composition reflect recent and historical management regimes defined by early 20th century large 

tree selection and recent fire exclusion, intermittent grazing, and a thinning in 1984 to a target 

basal area of 16 m2/ha (Fiedler et al. 2012, Maher et al. 2019). Three adjacent 4.48 ha plots were 

established within the site to facilitate stem mapping and avoid a centrally bisecting road (Fig. 1, 

Schneider et al. 2015).  

Forest structure 

 To assess structural and spatial heterogeneity all live and dead trees greater than 10.0 cm 

at breast height were measured and mapped. Each tree was marked with a uniquely numbered tag 
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and its diameter at breast height (DBH), species, total height, and X-Y coordinates were 

measured and recorded. A survey grade Leica total station was used to map each structure from a 

closed traverse loop that allowed us to quantify and correct for mapping error (linear misclosure 

≤ 0.49 m).  

Spatial patterns 

 Tree neighborhoods were identified and quantified using a cluster identification 

algorithm and a canopy opening detection algorithm. Within stand spatial pattern components, 

henceforth known as neighborhoods, included openings, clumps of overstory trees (“clumps”), 

individuals, and patches of regeneration (“regen”) (Larson and Churchill 2012, Churchill et al. 

2018). Openings are defined as areas with no overstory canopy foliage, clumps include trees that 

are located less than a fixed inter-tree distance from any neighbor or clump member, individuals 

have no near neighbors, and regeneration patches are clusters of seedlings and saplings (trees 

less than 10 cm DBH).  

A clustering algorithm was used to quantify clumps and individuals. The algorithm 

evaluates each tree in a point pattern as a member of a clump or as an individual based on a fixed 

inter-tree distance that extends from tree center to tree center (Plotkin et al. 2002; Larson and 

Churchill 2008). Clumps consist of at least two trees where membership requires an inter-tree 

distance less than the fixed distance from at least one existing clump member. The fixed inter-

tree distance is related to the average distance between mature trees with interlocking crowns. 

Consistent with regional values, a fixed inter-tree distance of 6 m was used (Larson and 

Churchill 2012, Clyatt et al. 2016). Tree crown radii can also be used to establish clump 

membership, however a fixed distance is more readily translated into management guidelines 

(Sanchez Meador et al. 2011, Churchill et al. 2017, Maher et al. 2019).  



 

50 

 

 A canopy opening detection algorithm designed for point pattern data was used to 

identify and calculate the number and size of openings with no overstory canopy foliage within 

the forest matrix. A minimum opening threshold radius of 9 m was used and corresponds to a 

minimum area that is functionally distinct from the surrounding forest (Churchill et al. 2017). 

The algorithm lays a fixed grid over a point pattern (i.e., tree stem map) and calculates the 

distance from each grid point to the nearest tree bole. A polygon is drawn around all areas 

exceeding the 9 m minimum threshold. A 3 m tree crown buffer was then applied to each 

polygon so calculated openings extended from canopy edge to canopy edge. To ensure only the 

area of complete openings were calculated a 9 m edge buffer was also applied to the plot 

boundary.    

 Neighborhoods used for snow sampling (e.g. individuals, clumps, openings) were 

delineated using the procedures above and selected using a stratified random sampling design 

(Table S1). Individual trees sampled had a minimum of 7 m to their nearest neighbor to reduce 

canopy effects from surrounding trees and included the three species present. Six replicates of 

clumps and openings, and six replicates of each of the three species for individuals were selected 

for sampling. 

 Following 2014 field observations of potentially important effects of small trees <10.0 

cm DBH on snow characteristics, six regeneration neighborhoods were subjectively located 

across the site. These regeneration patches contained only tree seedlings and saplings <10.0 cm 

DBH. To characterize the structure of this neighborhood type, seedlings and saplings were 

identified to species and censused into size classes using 8.5 m radius plots centered on the snow 

sampling plot described below. To verify their frequency and structural uniqueness within the 

site, n = 15, 8.5 m fixed radius plots were randomly located throughout the study area in which 
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seedlings and saplings were inventoried by species and size class. Because trees <10 cm DBH 

were not mapped and sampling locations were not randomized, regeneration patches were not 

included in statistical analyses. 

Snow measurements 

 Snowpack characteristics were collected at peak accumulation and through the melt 

season from 2015-2017 in all neighborhoods, except for peak values in one clump replicate in 

2015 and one larch replicate in 2017. Peak snow was sampled February 22, 12, and 23 in 2015, 

2016, and 2017 respectively, dates consistent with the local long-term average (Fig. S1). Peak 

snow depth in clumps, openings and regeneration patches was sampled at 1 m intervals along 

two 14 m perpendicular transects with a central intersection point using a Standard Federal snow 

tube (Rickly Hydrological Company, Columbus, OH, USA). Samples were collected at 1 m 

intervals including the origin for n = 29 measurements per neighborhood. Individuals were 

sampled every meter along four 7 m transects extending from the tree bole and separated by 90o 

for n = 32 measurements per individual tree neighborhood. Sampling neighborhoods were 

marked with 1.5 m tall pieces of wooden lath installed at the end of each transect for easy 

identification and sampling replication. Wooden lath was chosen as it is a natural, affordable, 

and minimally conductive material to install as semi-permanent markers. Snow mass values were 

collected with an electronic scale at every other meter along each transect and used to calculate 

snow density. SWE was calculated for each point using depth and density values. A total of n = 

1,098 points were sampled over 13.44 ha of fully mapped and censused forest. While sampling 

extreme care was taken to avoid the impacts of altering snow conditions when working on plot.  

Following peak accumulation, each sample point across neighborhoods was revisited 

roughly every three days until no snow remained. A snow disappearance date was assigned to 
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each sampling point when it was no longer snow covered. Fractional snow-covered area (fSCA) 

was calculated as the percentage of sample points per neighborhood that remained snow covered 

during each sampling day and was used to construct melt curves for each neighborhood (Fig. 2; 

Raleigh et al. 2013, Dickerson-Lange et al. 2015). We reduced individual melt curves to two 

univariate metrics summarizing snow persistence. We estimated fSCA50, the number of days 

following peak accumulation when 50% of the snow remained in each neighborhood, to provide 

a common reference point in terms of snow duration which encompasses both accumulation and 

ablation processes. fSCA50 values were estimated by linearly interpolating fSCA between the 

sample days preceding and following the 50% cover value in each neighborhood. Next we 

calculated the area under each fSCA melt curve as snow coverage days (AUCfSCA). This value 

describes the form of the melt curve where neighborhoods with quickly melting snow will have a 

more concave form, while longer lasting snow will have a more convex form. 

Statistical analysis 

Linear mixed effects models with random nested effects and unequal variance were used 

to test our hypothesis and estimate contrasts. Models were fit using the nlme library and the lme 

function in R v.3.3.3 (Pinheiro and Bates 2000, R Core Team, 2017). All response variable 

values were averaged to the replicate level (6 replicates per neighborhood), to obviate the need to 

account for autocorrelation among snow sampling locations within transects. 

A global neighborhood effect was modeled using neighborhood type, year, and an 

interaction term between neighborhood type and year as fixed effects and neighborhood replicate 

as a random effect. The random replicate effect was used to acknowledge the repeated measures 

aspect of the sampling design.  In addition, the model allowed for differential variances among 

replicates across neighborhood types. Neighborhood differences were tested using a set of 
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contrasts: (1) openings vs. clumps, (2) openings vs. individuals, (3) larch vs. evergreen 

individuals and (4) ponderosa pine vs. Douglas-fir individuals. The differential effect between 

neighborhoods was tested using contrasts 1 and 2 where openings were used as the reference 

point. Nested within the individual tree neighborhood type is a potential species levels effect. We 

tested for this effect using contrasts 3 and 4. Neighborhood differences and species effects were 

estimated with the contrast of interest, year, and the interaction between year and contrast. The 

interaction between contrast and year evaluated the consistency in sign and magnitude of the 

contrast over years.   

The statistical significance of fixed effect terms on snow characteristics was evaluated 

using F-statistics at the 0.05 level. 

Results 
 

Forest structure, composition, and spatial patterns 

 Structural and spatial heterogeneity define the study site (Fig. 3). Douglas-fir currently 

dominates the site, accounting for over half the stem density, followed by ponderosa pine at 37% 

(Table 1, Fig. S2). However, the average ponderosa pine is larger accounting for slightly more 

basal area across the site (Table 1). Although intermittent and accounting for only 8% of site 

basal area, the deciduous western larch has an average diameter similar to Douglas-fir.  

Neighborhood composition reflected these trends. Regeneration is dominated by 

Douglas-fir, with most occurring in the 1-5 cm size class (Table 2). Though present throughout 

the site, the density of seedlings and saplings is 1-2 orders of magnitude larger in sampled 

regeneration patches than in the forest matrix. Without being analytically identified from stem 

maps, these results highlight the unique structural attributes of this neighborhood type and verify 

it as a distinct and potentially important component of forest complexity.  
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 Local spatial analysis identified the presence of individual trees, clumps of various sizes 

(Table 3), and canopy openings (Table 4). Individuals and small clumps (2-4 trees) occurred 

most frequently across the site, whereas the largest clumps are long and sinuous accounting for 

more than half of the total plot density and basal area (Fig. 3). Openings were the rarest spatial  

pattern component and tended to be small, 100-400 m2 (mean = 300 m2). The largest openings 

were 772 m2, 523 m2, and 930 m2 in each plot respectively and account for 21% of the total open 

area at the site.  

Snow accumulation 

Neighborhood type had a significant effect on all snow accumulation and melt 

characteristics, often significantly interacting with year (Table 5). Openings always accumulated 

significantly more SWE than clumps or individuals over all sampling years (Fig. 4). Depth 

followed the same trends as SWE (Fig. 4). On average, openings collected 3.3 cm more SWE 

and snow was 17.7 cm deeper than clumps, with significantly larger differences observed in the 

larger snow year of 2017. While smaller, the +1.8 cm SWE and +10.8 cm snow depth 

differences in openings relative to individuals were significant. Interaction terms with both 

contrasts and year were significant, but the same pattern held over all sample years. The 

significant interaction between opening and clumps with year is attributable to the large 

differences seen in 2017 relative to 2015, while the interaction between year and opening vs. 

individual is likely sensitive both the heavy snow in 2017 and the unequal variances among 

neighborhood types.  

No statistically significant differences in peak snow accumulation were observed between 

species. SWE was greatest and snow was deepest under western larch followed by ponderosa 

pine and Douglas-fir (Fig. 4). Larch on average had 0.8 cm more SWE and was 4.1 cm deeper 
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than the evergreen species, while ponderosa pine accumulated 0.4 cm more SWE and 2.6 cm 

more snow than Douglas-fir. A significant interaction between larch and evergreens with year for 

snow depth was observed, but patterns remained consistent over the years (Table 5, Fig. 4). The 

fixed effect of year for peak SWE and snow depth was always significant (p > 0.001). 

On average, regeneration patches accumulated snow with depths and SWE between the 

canopied and non-canopied neighborhood types (Fig. 4).  

Snow disappearance 

The melt season lasted for 31, 44, and 56 days in 2015, 2016, and2017, respectively. 

Fractional snow-covered area was plotted for each neighborhood to create melt curves used to 

determine fSCA50 and AUCfSCA (Fig. 2, Fig. S4). Openings differed significantly from clumps in 

terms of snow persistence, taking on average 9.7 days longer to reach 50% disappearance, which 

was reflected in significantly more area under the melt curve (Table 5, Fig. 5). No significant 

difference was seen between openings and individuals, however the interaction between this 

contrast and year was significant for fSCA50 owing to changes in magnitude but not pattern.  

The duration of snow and snow disappearance patterns for western larch were 

significantly different from the two evergreen species (Table 5, Fig. 5, Fig. S4). The interaction 

between larch and evergreens with year for AUCfSCA was also significant, but again patterns 

remained consistent through time. Little difference in snow melt characteristics were seen 

between the evergreen species. The fixed effect of year was always significant (p > 0.001) for 

fSCA50 and AUCfSCA. 

Regeneration patches had fSCA50 and AUCfSCA values more often aligned with non-

canopied neighborhoods (i.e. openings and western larch) in 2016 and 2017, but were similar to 

similar to evergreen individuals in 2015.  
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Discussion 
 

 Heterogeneity in the forest canopy directly affects the variability in peak accumulation 

and persistence of underlying snow. Our study directly links tree spatial patterns with snow 

processes by addressing a wide range of within-forest spatial complexity paired with sampling at 

scales relevant to snow processes. We found that neighborhood type, species, and year 

significantly influence snow accumulation and disappearance processes in a heterogeneous 

forest. These findings provide crucial information on the functional consequences of forest 

structural complexity, which is often a primary silvicultural objective in forests managed for 

multiple objectives.  

Using a meta-analysis, Lundquist et al. (2013) concluded that December-January-

February (DJF) climate has a first order effect on how forests impact snow. In warmer and wetter 

winter climates (DFJ > -1o C) snow is retained longer in openings than in continuous forests. Our 

site, located in western Montana, is situated in a climatic transition zone between the warmer and 

wetter maritime and cold, dry continental winter conditions. Three years of consecutive snow 

data point to snow cover patterns consistent with maritime climate where warmer and wetter 

conditions lead to more snow and later melt in openings compared to forests. Even with this 

observation, climate represents a coarse grain factor that may not be able to predict within-stand, 

micro-scale variability in snow processes created by heterogeneous canopy structure. 

The distributional patterns of snow accumulation and ablation are highly variable in 

space and time. Over the sample years winter temperatures, timing of warming, and total 

snowfall varied, often giving rise to a significant interaction term in our analysis (Fig. S1). 

Overall, there was interannual consistency in the patterns of deepest accumulations and the most 

persistent snow cover, however the magnitude of the differences between neighborhood types 
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were either compressed or exaggerated (Fig. S4). Other studies have also found interannual 

variability to be a significant factor for peak snow (Winkler and Moore 2006). It is often noted 

that under heavy snow conditions an interception threshold is exceeded, and the influence of the 

trees is muted (Jost et al. 2007, Boon 2009). Our large snow year (2017) exaggerated 

neighborhood differences (Fig. 4 & 5). We suspect that rather than receiving large storms able to 

exceed interception capacities, total snowfall occurred in smaller, more frequent events.   

Snow accumulation 

 Observed differences in peak accumulation between neighborhoods and species, that 

span a gradient of canopy densities, suggest that the primary mechanism driving differences in 

the accumulation process is canopy interception. Previous studies have found that up to 60 % of 

cumulative snowfall can be intercepted by a forest canopy which can remove up to 40 % of the 

water storage from the snowpack (Pomeroy et al. 2002, Storck et al. 2002, Martin et al. 2013, 

Jost et al., 2007, Essery et al. 2003). Under warmer temperatures, consistent with a maritime 

climate, canopy interception efficiency and storage capacity can approach 80 % (Andreadis et al. 

2009).  

The amount of snow that can be intercepted also increases with increasing canopy density 

(Harestad and Bunnell 1981, Teti 2003). Lopez-Moreno and Latron (2008) found a positive 

linear relationship between canopy density and interception, while in general increasing canopy 

density by 10% reduces SWE by 4-6% (Moore and McCaughey 1997, Varhola et al. 2010). This 

trend is apparent in our results: approaching the neighborhoods as a density gradient moving 

from higher density clumps of mature trees (n = 7-15 stems within the immediate neighborhood), 

to individuals (evergreens then larch, n = 1 stem in neighborhood), and openings with the lowest 

canopy density (n = 0 stems) shows a pattern consistent with a canopy density effect. 
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However, regeneration patches with stem densities from hundreds to thousands are an 

exception to the density trend. This inconsistency is associated with decreased interception 

efficiency of small, flexible branches (Lundberg and Halldin 2001). Under juvenile (4 m tall) 

lodgepole pine in Montana, Hardy and Bristow (1990) found 20% greater snow accumulation 

compared to a mature spruce forest. Similarly, Winkler et al. (2005) studying juvenile pine 

stands with stem densities similar to our regeneration patches, observed only 14% less peak 

snow than in openings. Pfister and Schneebeli (1999) emphasized differences in interception 

capacity due to branch size, shape and inclination which can be attributed to different species. 

Wind and redistribution can also contribute to distributional patterns in peak 

accumulations. Significant differences in snow accumulation patterns at sites with high average 

wind speeds were observed following a climate gradient across the Pacific Northwest 

(Dickerson-Lange et al. 2017). Peak snow depths were equivalent between forests and openings, 

and snow was retained longer in forests due to preferential snow deposition in the forest. This 

pattern is consistent across the Northern hemisphere (Lundquist et al. 2013). Our observations of 

greater accumulations in openings over forests are consistent with sites with low-average wind 

speeds.  

Snow disappearance 

 Differences in peak accumulation between neighborhood types set up by canopy 

interception, where total snow under trees is less than in non-canopied environments (Fig. 4) 

contributes to different timing of snow disappearance due to different cold contents (Lundquist et 

al. 2013, Dickerson-Lange et al. 2017). Net available energy is the primary driver of snowmelt in 

forested environments (Varhola et al. 2010). In regions where low solar angles and shorter days 

characterize the melt period, longwave radiation dominates the energy balance as it is dependent 
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on air temperature rather than solar angle, unlike shortwave radiation (Sicart et al. 2004, Lalwer 

and Link 2011, Lundquist et al. 2013). Net longwave radiation shifts from positive under closed 

canopy to negative in openings (Lundquist et al. 2013). Forest canopy can affect the radiation 

balance in one of two ways: forest canopy can reduce shortwave radiation by shading underlying 

and adjacent areas resulting in a radiative minima; or the canopy can enhance longwave radiation 

leading to greater melt under the canopy creating a radiative maxima (Lawler and Link 2011).  

We attribute the significant differences in snow disappearance observed between 

neighborhood types and species to the availability of longwave radiation. The significantly 

longer time to fSCA50 in openings than clumps can be attributed to openings acting as radiative 

minima, where the surrounding canopy is able to shade the opening and longwave enhancement 

is minimal. Using sites with characteristics similar to ours (e.g. flat, small radiation differences, 

discontinuous forest, similar latitude), Lawler and Link (2011) found that small gaps 1-2 tree 

heights wide, also consistent with the size of our openings (Table S1), experienced minimal 

radiative input and adjacent forests experienced greater radiative inputs (Golding and Swanson 

1978, Berry and Rothwell 1992).  

The insignificant difference between openings and pooled individuals is likely driven by the 

inclusion of larch (see discussion below). However, an average difference of 5.5 days to fSCA50 

may be an ecologically significant difference, even if it was not statistically significant in our 

field study with n = 6 replicates per neighborhood type. 

The significant difference in snow disappearance date and melt pattern observed between 

larch and the evergreen species suggests a potential biophysical feedback in which the deciduous 

western larch enhances snow cover duration beneath its crown. The visually striking concentric 

melt patterns observed around larch stems suggest that bole heating was a factor, and without a 
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winter canopy there is little overhead mass to trap and enhance longwave radiation below 

(Lundquist et al. 2013). Crown biomass, which includes branches and foliage can be used to 

evaluate potential interception and radiation (Brown 1978). For a 30.0 cm DBH tree, Douglas-fir 

and ponderosa pine maintain 1.5 and 2.5 times more total crown biomass than western larch 

(Brown 1978). This suggests that the crown architecture (i.e., branch form and biomass) of larch 

is different from neighboring evergreens, in addition to being deciduous (Gower and Richards 

1990). During the winter, a 20 cm DBH Douglas-fir supports 41 m2 of winter foliage area 

compared to 0 m2 on a western larch of the same size (Gower et al. 1987). A significant 

interaction for AUCfSCA suggests different melt patterns under western larch relative to co-

occurring evergreens. 

Previous research on winter interception capacity or ablation mechanisms of Larix is nearly 

absent despite its global distribution and importance as a dominant circumboreal genus (Shuman 

et al. 2011). Deciduous angiosperms offer a reference point but cannot be directly compared 

because of very different branch geometry. Conflicting results have been found when comparing 

deciduous angiosperms and evergreen conifers. Research suggests that deciduous angiosperms 

tend to accumulate snow like open areas, but with melt rates similar to paired evergreen conifer 

stands (Lull and Rushmore 1960, Hart 1963). By contrast, Dunford and Niederhof (1944) found 

that aspen provided enough shelter and shade to reduce wind redistribution and slow melt 

compared to adjacent evergreen conifers.  

We observed greater separation between larch and evergreens in the snowier year of 2017 

(Fig. 4). This is likely due to more frequent snow events where snow gradually accumulated 

under larch, but interception losses were maximized in evergreens with lag times between snow 

events that did not exceed interception capacity. The significant interaction between leaf habits 
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and year for peak snow depth also suggests that the difference between these neighborhoods is 

particularly sensitive to interannual variation of total snowfall (Table 5). Larix always 

accumulated more snow than evergreens and with a larger sample size this difference may have 

been statistically significant. Because of the unique larch-snow interaction, shifts in species 

composition from larch to evergreens species will have large scale consequences on hydrology 

by altering forest composition and structure (Molotch et al. 2009). This trend is already being 

observed with climate change in Siberia where changes in surface albedo have an amplifying 

feedback on warming which is predicted to be greater than any carbon gains from biomass 

accumulation (Shuman et al. 2011, Kharuk et al. 2007). 

Conclusions and Management Implications 

We have demonstrated that structural and spatial heterogeneity within the forest canopy 

induces heterogeneity on the processes of snow accumulation and disappearance. Understanding 

the functional consequences of forest complexity is essential to support the development of 

management principles and silvicultural treatments to meet multiple management objectives 

(Levin 1992).  

If the primary objective is to optimize snow water storage, our results suggest increasing 

the number of openings and widely spaced individuals. This should increase net accumulation 

and retain snowpack longer than areas with denser canopy conditions by reducing interception 

and longwave radiation. However, melt rates are often higher in very large open areas due to 

increased direct shortwave radiation than in forests and smaller canopy gaps 1-2 tree heights 

wide (Lawler and Link 2011, Varhola et al. 2010). Increasing the proportions of western larch 

and ponderosa pine should also modestly increase snow water storage. In dry mixed-conifer 

forests of the intermountain western US, this is consistent with management guidance to favor 
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early seral, fire-tolerant species as an ecological restoration and climate change adaptation 

strategy (Churchill et al. 2013). Yet, maximizing snowpack duration is likely dependent on a 

heterogeneous forest canopy (Stevens 2017).  

Meeting multiple objectives with a single silvicultural prescription is increasingly the 

norm in forest management (Fahey et al. 2018)—single objective forestry is rare, especially on 

public lands. Even in municipal watersheds where water provisioning is of primary importance, 

multiple objectives are being considered to maintain and enhance forest heterogeneity and 

ecosystem functions. For example, in the Cedar River Municipal Watershed which serves the 

Seattle, Washington area, management objectives also include restoring forest and riparian 

ecosystems to provide habitat for species of concern (Richards et al. 2012, Sprugel et al. 2009, 

Mollot and Bilby 2008). In the Ashland, Oregon, municipal watershed management objectives 

also include promoting forest health, controlling invasive species, and actively reducing fire risk 

(Ashland Forest Lands Commission 2016).  

Maintaining forest structural complexity and spatial heterogeneity embodied by different 

neighborhood types allows competing management objectives to be met. If providing winter 

habitat and energy efficient forge for ungulates is an objective, neighborhoods that accumulate 

less snow are needed (Armlender et al. 1994). For patches that green up early, neighborhoods 

with early snow disappearance should be emphasized (Wang et al. 2015). To improve the 

efficacy of insulation for microbial communities, neighborhoods with deep, persistent snow 

should be created (Brooks et al. 1996). Thus, multiple-objective forest management may be best 

served by a portfolio approach in which structurally complex stands include multiple 

neighborhood types (Franklin et al. 2002). Maintaining or creating structurally and spatially 
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complex forest stands contributes to forest resiliency and adaptability, which is vital for the 

perpetuation of forest ecosystem services and function (Franklin et al. 2018).  
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Tables 

Table 1. Summary of structural characteristics for all trees > 10.0 cm dbh by plot and site for a 

mixed conifer forest in western Montana. Site values are given as mean ± standard deviation. 

TPH is trees per hectare, QMD is quadratic mean diameter, species: PIPO = ponderosa pine 

(Pinus ponderosa), PSME = Douglas-fir (Pseudotsuga menziesii), LAOC = western larch (Larix 

occidentalis), PICO = lodgepole pine (Pinus contorta). Dead includes all upright snags with a 

height greater than 1.37 m that are greater than 10.0 cm dbh.  

 

 

 

 

 

Species 
Density 

(TPH) 

Basal area 

(m2/ha) 

DBH range 

(cm)  
QMD (cm) 

Plot 1 

PIPO     112 13.60 10.2 - 79.5 39.3 

PSME 148 10.43 10.0 - 71.2 29.9 

LAOC 1 0.08 10.7 - 41.9 27.5 

Dead 11 0.74 10.1 - 77.9 28.7 

Plot 2 

PIPO 119 13.02 10.0 - 77.7 37.3 

PSME 174 10.65 10.0 - 67.4 27.9 

LAOC 13 0.99 12.1 - 58.8 31.5 

Dead 19 0.97 10.0 - 57.8 25.4 

Plot 3 

PIPO 81 7.91 10 .0 - 73.0 35.2 

PSME 115 9.33 10.0 - 64.8 32.1 

LAOC 85 4.80 10.0 - 62.3 26.9 

PICO < 1 0.06 28.6 28.6 

Dead 21 1.34 10.0 - 77.5 28.4 

Site average 

PIPO 104 ± 20 11.51 ± 3.13 10.0 -79.5 37.2 ± 2.0 

PSME 146 ± 29 10.14 ± 0.70 10.0 -71.2 30.0 ± 2.1 

LAOC 33 ± 45 1.96 ± 2.51 10.0 - 62.3 28.6 ± 2.5 

PICO < 1 ± 0 <0.01 ± 0.00 28.6 28.6 ± 0.0 

Dead 17 ± 5 1.02 ± 0.30 10.0 - 77.9 27.5 ± 1.8 
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Table 2. Mean densities of seedlings and saplings (≤ 10.0 cm DBH) within the research site 

estimated from randomly located plots, and in subjectively selected regeneration neighborhoods. 

Size classes are diameter at breast height. 

Size class (cm) TPH SD     Range 

Randomly located plots (n = 15) 

0-1 179 200    0 – 617 

1-5 579 904    0 - 3,260 

5-10 59 84    0 – 264 

Subjectively selected regeneration patches (n = 6) 

0-1 1,219 787    352 - 2,247 

1-5 5,955 3,548    2,643 - 12,732 

5-10 1,116 535    573 - 1,366 

 

 

 

Table 3. Distribution of individual trees and clumps across a mixed-conifer forest using a fixed 

inter-tree distance of 6 m. Total density is total number of mapped stems by plot and BA is basal 

area. 

    Clump size (number of trees) 

  1 2 - 4 5 - 9 10 - 15 16+  

Plot 1 # Clumps ha-1 16 15 5 2 4  

 % Total density 6 16 13 12 53  

 % Total BA 10 19 14 11 46  

Plot 2 # Clumps ha-1 11 11 6 2 4  

 % Total density 4 11 13 10 63  

 % Total BA 6 12 15 9 58  

Plot 3 # Clumps ha-1 15 11 6 1 4  

 % Total density 5 11 14 4 65  

  % Total BA 9 14 16 5 56  

Site  # Clumps ha-1 14 ± 3 12 ± 2 6 ± 1 2 ± 1 4 ± 0   

average % Total density 5 ± 1 13 ± 3 13 ± 1 9 ± 4 60 ± 6  

 % Total BA 8 ± 2 15 ± 4 15 ± 1 8 ± 3 54 ± 6  
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Table 4. Description and distribution of openings within a mixed-conifer forest. Values are 

presented for each 4.48 ha (44,800 m2) plot and averaged across the site. Each open area is any 

canopy opening extending at least 9 m from any live tree bole. Open area is the total plot area 

devoid of overstory foliage. Means ± standard deviation.  

  Openings ha-1 Mean area (m2) Open area (m2) Open area (%) 

Plot 1 2 327.1 ± 186.8 3,598.00 8.0 

Plot 2 3 280.8 ± 119.2  3,651.00 8.1 

Plot 3 2 326.0 ± 230.5 3,260.00 7.3 

Site avg.  2 311.3 ± 178.9 3,503.00 7.8 

 Number of openings in size class (m2) 

 0-50 51-100 101-200 201-300 301-400 401-500 501-600 601+ 

Plot 1 0 1 2 2 4 1 0 1 

Plot 2 0 0 5 3 3 1 1 0 

Plot 3 0 0 2 4 2 1 0 1 

Site avg.  0 ± 0 1 ± 1 3 ± 2 3 ± 1 3 ± 1 1 ± 0 0 ± 1 1 ± 1 
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Table 5. ANOVA summary results for snow accumulation and melt characteristics for neighborhood type and a neighborhood type 

year interaction. O is opening, C is clump, I is individuals pooled across species, L is larch, E is evergreen species pooled, Pi is 

ponderosa pine, and Ps is Douglas-fir, Num is numerator, Den is denominator, Diff. stands for average difference across years. When 

days is used as a unit it is days since peak snow. Statistically significant values are bolded.  

    Snow water equivalent (cm) Snow depth (cm) fSCA50 (days) AUCfSCA (fSCA*days) 

  
Num 

df 

Den 

df 

p-value Diff. 

± SD 

p-value Diff. 

± SD 

Num 

df 

Den 

df 

p-value Diff. 

± SD 

p-value Diff. 

± SD 

Neighborhood Type 4 25 <0.0001 
 

<0.0001 
 

4 25 <0.0001 
 

<0.0001 
 

 
O vs. C 1 25 <0.0001 3.3 ± 0.5  <0.0001 17.7 ± 2.8 1 25 <0.0001 9.7 ± 1.9 <0.0001 984.1 ± 192.3 

 
                 O vs. I 1 25  0.0001 1.8  ± 0.4 <0.0001 10.8 ±  2.2 1 25 0.1320 5.5 ± 1.8 0.1826 578.4 ± 177.0 

 
L vs. E 1 25  0.1468 0.8 ± 0.4  0.2359 4.1 ± 2.3 1 25 0.0082 3.2 ± 1.0 0.0027 290.0 ± 86.5 

 
Pi vs. Ps 1 25  0.2914 0.4 ± 0.4  0.3297 2.6 ± 2.6 1 25 0.4069 1.1 ± 1.0 0.6759 75.2 ± 105.7 

Neighborhood:year 8 48  0.0043 
 

 0.0003 
 

8 50 0.0246 
 

0.0084 
 

 
O vs. C 2 48  0.0001 

 
<0.0001 

 
2 50 0.0775 

 
0.0678 

 

 
                 O vs. I 2 48  0.0647 

 
 0.0122 

 
2 50 0.0413 

 
0.1335 

 

 
L vs. E 2 48  0.3560 

 
 0.0523 

 
2 50 0.2689 

 
0.0091 

 

  Pi vs. Ps 2 48  0.6306    0.0602   2 50 0.2591   0.4381   
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Figures 

 
 

Figure 1. Study site located in western Montana, USA. Top image shows local topography and 

forest conditions. The inset, taken from an oblique angle indicates the position of each 4.48 ha 

(160 x 280 m) plot within the forest bisected by a central gravel road. The lower images provide 

an example of each local neighborhood environment sampled. 
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Figure 2. Example of two fractional snow cover melt curves from the 2017 season. Fifty percent 

of sample points remain snow covered along the horizontal dashed line and the vertical dashed 

lines represent the day since peak snow when 50% cover is reached.  
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Figure 3. Stem maps of a mixed-conifer forest in western Montana. Tree locations are colored 

by species with a projected 6 m canopy diameter. Clump size follows a color gradient from light 

to dark. Openings are delineated by the solid black line and the buffer distance a dashed line. 

Background coloration illustrates nearest neighbor distances in meters. 
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Figure 4. The relationship between average snow accumulation characteristics and 

neighborhood type across years. Boxes extend from the 25th to 75th percentiles, the central bold 

line the median, whiskers extend 1.5 times the interquartile range, and outliers are represented as 

individual points. 
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Figure 5. Relationship between average snow melt characteristics based on fSCA melt curves, 

by neighborhood type across sampling years. Box and whiskers are the same as in Figure 4. 

fSCA50 are best fit model estimates of the day at which 50% of the snow remained in each 

neighborhood. fSCA50 days is days since peak snow.
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CHAPTER 3. Ground and LiDAR derived forest canopy metrics perform 

equally in estimating snow accumulation and persistence in a mixed-conifer 

forest 
 

Abstract 

The spatiotemporal patterns of snow accumulation and disappearance in montane forests control 

the annual timing and availability of freshwater. Patterns of snow characteristics have been 

modeled using 1-2 year of data and regression trees, with vegetation classes. We used four years 

of high resolution snow measurements paired with random forest models and detailed forest 

structural predictors from ground and LiDAR data that influence the physical processes of forest-

snow interactions. Ground based and LiDAR derived models performed equally well in 

estimating snow accumulation (SWE) and disappearance (SDD). Peak SWE and SDD were best 

predicted with the Hegyi index and tree density from ground metrics and crown density and 

coefficient of variation for height with LiDAR metrics. Local stem density of Larix was also 

important for SWE. In general, SWE increased with decreases in overstory density and cover. 

Peak snow density was not predictable with canopy or terrain metrics. Importance of the same 

variables for peak SWE as SDD suggest that the hydrologic processes are driven by the same 

principles, and that canopy metrics explain one-third to nearly half the variation in accumulation 

and melt. The use of LiDAR metrics over ground metrics offers resource managers a rapid, 

spatially continuous, and increasingly cost-effective tool for predicting ecohydrologic processes 

following changes to forest canopy structure due to silvicultural practices or natural disturbances. 

Capturing a range of annual snow conditions also provides insight into future snow patterns 

under climate change. 

 

Introduction 

The spatiotemporal patterns of snow accumulation and disappearance in mountain forests 

control the annual timing and availability of much of the freshwater runoff globally (Cheng 

2003). This runoff is critical for downstream ecosystems, communities, and economies (Bales et 

al. 2006). Climate and elevation exert first order controls on snow accumulation and ablation, 

while vegetation and topography control heterogeneous patterns of snowpack at local scales 

(Varhola et al 2010a). Variability in snow properties over short distances make it particularly 

difficult to model. However, current runoff predictions are made using data sources that avoid 

the influence of vegetation, and typically perform well only under long-term average conditions, 

which are becoming less frequent with climate change (Balk and Elder 2000, Molotch et al. 
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2005).  A better understanding of vegetation’s role in snow accumulation and melt responses are 

needed to improve models of ecohydrologic processes (Varhola et al. 2010a).  

There is a complex interplay between forest vegetation and the mass and energy balance 

of the snowpack (Moeser et al. 2015). Conifer canopies can intercept up to 60% of the total 

incoming snowfall (Martin et al. 2013), which can sublimate back to the atmosphere, or can later 

be removed from the canopy by mass release or meltwater drip, generally decreasing snow 

accumulation (Storck et al 2002). Forest canopies absorb and reflect incoming shortwave 

radiation, shading the snow beneath and retarding melt (Lawler and Link 2011); and they emit 

and trap longwave radiation which can enhance melt beneath (Musselmann et al. 2013). The 

vertical profile of the forest also alters turbulent heat transfer and wind redistribution (Link and 

Marks 1999). This leads to difficulties in quantifying and attribution of canopy structural effects 

on snow in space and over time. Addressing this limitation requires longitudinal, high-resolution 

forest structure and snow measurements paired at process relevant scales.      

Modeling can help to elucidate, and test conceptualizations of the mechanistic controls 

observed at micro-scales to management relevant units (Musselmann et al. 2008). Statistical 

models trained on field data, particularly regression tree models have proved promising for 

exploring the non-linear relationships between snow accumulation and melt patterns, and local 

terrain features (slope, aspect, net radiation) and cover type (forest vs. no forest) (Molotch et al. 

2005, Erxleben et al. 2002, Musselmann et al. 2008, Elder et al. 1995). Spatially distributed 

regression tree models that account for the location of these predictor variables often outperform 

(Balk and Elder 2000, Molotch et al. 2005) regression trees (Elder et al. 1995, 1998) or 

geospatial techniques alone (Carroll and Cressie 1996). This reinforces the results of Moeser et 

al. (2015) which highlight the importance of feature location, not just average canopy 
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characteristics for predicting snow processes. However, most snow models are too coarse to 

explicitly account for the fine-scaled processes controlled by structural and spatial complexity of 

the forest canopy (Uhlmann et al. 2018). 

 Light detection and ranging (LiDAR) offers an alternative approach for quantifying fine-

scale surface and vegetation features (Kostadinov et al. 2019). Traditional ground-based snow 

sampling and forest measurements are time consuming, expensive and limited in extent 

compared to LiDAR (Deems et al. 2013, Jeronimo et al. 2018), which has become a readily 

accessible data source for researchers and land managers. Næsset et al. (2002), Kane et al. 

(2010b), and Wiggins et al. (2018) have found high levels of correlation between field 

measurements and LiDAR based canopy metrics. LiDAR has been used to describe forest 

structural and spatial complexity from individual trees to spatial patterns including tree clumps 

and openings over increasingly large extents (Kane et al. 2011, Kane et al. 2010b, Kane et al. 

2010a, Jeronimo et al. 2018). LiDAR derived metrics of: 95th percentile height, mean height, the 

L moments of height, canopy cover or density, and rumple (a measure of canopy surface 

roughness) have accurately captured forest structural complexity (Jeronimo et al. 2018, Moran et 

al. 2018, Kane et al. 2011). Despite the prevalence and extensive use of airborne LiDAR derived 

forest canopy metrics in other disciplines, and the known significant influence of canopy 

complexity on snow distribution (Schneider et al. 2019), these metrics have not been used as 

predictors in a spatially explicit regression tree models to estimate snow properties. Rather, 

hydrologic studies have used LiDAR surface models to estimate and map snow depth, snow 

water equivalent (SWE), melt rates or snow covered area (Harplod et al. 2014, Zheng et al. 2016, 

Hopkinson et al. 2004, Nolan et al. 2015, Broxton et al. 2019).  
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 The objectives of this study were to assess the roles of forest structure in explaining the 

variation in snow characteristics to better understand the controls of complex forest structure on 

snow driven ecohydrologic processes at multiple scales by developing a spatially explicit, 

regression tree model. Precisely geolocated forest structure and snow sampling locations enabled 

snow and vegetation characteristics to be explicitly linked. We first report snow properties within 

and between years to confirm and describe the presence of spatial heterogeneity across the site. 

We were then able to ask if forest canopy metrics can explain the observed variation in snow 

properties within the forest. We further asked how two different methods for deriving forest 

canopy metrics (ground vs. LiDAR) performed in predicting snow characteristics, as LiDAR is a 

widely available, cost efficient alternative to ground based measurements.  

Methods 

Study area 

We conducted this research in Lubrecht Experimental Forest, 50 km northeast of 

Missoula, Montana, USA (46°55´N, 113°27´W). Three, 4.48 ha plots were installed to quantify 

forest vegetation and within stand snow characteristics (Figure 1). The site is characterized by a 

structurally complex and spatially heterogeneous forest dominated by Douglas-fir (Pseudotsuga 

menziesii; 55%), ponderosa pine (Pinus ponderosa; 37%), and a lesser component of western 

larch (Larix occidentalis; LAOC 8%). Average site density is 283 trees per hectare (≥10 cm 

dbh), average basal area is 23.62 m2ha-1 and overstory tree diameters at breast height range from 

10.0-79.5 cm. Forest structure and composition at the study site are the product of early 19th 

century large-tree harvest, fire exclusion, periodic grazing and a more recent (ca. 1984) thinning 

to a target basal area of 16 m2 ha-1 (Maher et al. 2019). Schneider et al. (2019) provides a detailed 
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description of forest structure, composition, and spatial characteristics for the site. The study site 

is located at 1,220 m a.s.l. 

Peak SWE, peak snow density and snow disappearance were measured within the study 

area annually from 2014-2017. During the study period mean winter temperature was -4o C 

(range: -8o – 2o F), with snow present from November to March (Figure S1). Peak accumulation 

occurred between February 13 and March 5, which is consistent with the local long-term average 

(Lubrecht Flume SNOTEL 604, NRCS, https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=604). 

Wind ranged from 0 – 1.8 m/second on site during the winter of 2016.  

Snow characteristics 

Accumulation  

Snow accumulation was characterized by peak snow water equivalent and snow density. 

Peak accumulation is defined as the point at which cumulative increases in snowfall have ceased 

and the snowpack is isothermal allowing liquid water to be released. The timing of peak 

sampling was determined using a local SNOTEL site (Lubrecht Flume) and extended forecasts 

for the area. Peak accumulation was measured on March 5, February 20, February 13, and 

February 21 for 2014-2017.  

Peak snow depth and bulk density were collected along a fixed 20 m x 20 m grid (9 rows 

x 15 columns; n = 135/plot) in each plot (Figure 2-layer A). Sub-grid variation (Schneider et al. 

2015) was assessed using “intensive” samples collected along two, 9 m transects separated by 

90o (Figure 2-layer B). Intensive samples were located on one randomly selected grid point per 

column and sampled at 1 m intervals (n = 270/plot). Snow depth was collected at each point and 

density at approximately every other point (Figure 2-bottom highlight). Following the 2014 snow 

season, it was determined that sampling points did not span the full range of within forest canopy 

https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=604
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conditions. Additional sampling points referred to as “neighborhoods” were added across the site 

(see Schneider et al. 2019). Neighborhoods consisted of two, centrally bisecting 14 m transects 

sampled at 1 m intervals (Figure 2-layer C). Depth was collected at each point and density at 

every other point (Figure 2-upper highlight). Snow depth and density were collected with a 

standard Federal snow sampling tube and scale (Rickly Hydrological Company, Columbus, OH, 

USA). SWE values were calculated using observed snow depth and density values.  

Disappearance 

Our high-resolution snow disappearance monitoring protocols were designed to capture 

as much spatial variation under various canopy conditions as possible. Snow disappearance was 

monitored at all peak snow sampling points and at an additional 2,700 points per plot. Additional 

points were distributed at 1 m intervals along fifteen, 160 m transects extending the length of 

each grid column (Figure 2-layer D). Sampling occurred approximately every third day from 

peak accumulation until no snow remained at any of the sampling points. A snow disappearance 

date (SDD) was assigned to each point corresponding to the sampling day snow no longer 

covered each point. This resulted in an interval censored variable with a precision based on the 

days between sampling campaigns. Snow disappearance was only monitored in plot 1 in 2016 

due to time constraints. 

Fractional snow covered area (fSCA), the number of snow covered points over the total 

number of sampling points, was used to provide plot scale metrics for snow disappearance 

(Dickerson-Lange et al. 2015).  

Predictor variables 

Ground measurements 
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 All overstory trees, defined as trees with a diameter at breast height (DBH) greater than 

10.0 cm were mapped and measured. For each plot, mapping was done with a Leica survey grade 

total station, and a control loop used to quantify mapping error (linear misclosure ≤0.49 m). Each 

tree was tagged with a unique number; and species, DBH, total height, and canopy depth were 

measured.  

 Mapped locations were georeferenced using an Emlid Reach RS unit (point error less 

than 3.0 cm). Local coordinates were converted to global coordinates by rotating local 

coordinates by the angle of difference between local and global positioning of plot origin to the 

first point on the control loop. Rotation RMSE was 0.44 m on plot 2 using thirteen control 

points. The angle of rotation was determined using the same methods for the remaining plots. 

Alignment was visually assessed using a LiDAR model of maximum heights.  

Ground based predictors 

 Predictor variable selection was based on our understanding of the mechanistic processes 

that influence snow accumulation and disappearance processes. Field measured predictors 

included stem density (Lundquist et al. 2013; Hubbart et al. 2015), number of neighboring Larix 

(Schneider et al. 2019), canopy strata (intermediate, co-dominant, dominant), Hegyi index, sum 

of nearest neighbor distance (Moeser et al. 2015), slope, aspect, and January-June shortwave 

radiation (Musselmann et al. 2008, Elder et al. 1995). SWE was used as a predictor variable for 

density and SDD (Dickerson-Lange et al. 2017; Table 1).  

 Vertical canopy strata were used to characterize layering within of the canopy profile 

(Kane et al. 2011). Designations were based on the local distribution of heights and height-DBH 

relationships (Schneider et al 2019). Intermediate trees had a DBH < 17.1 cm, co-dominant trees 

were 17.1-35.5 cm DBH, and dominant trees were >35.5 cm DBH. These values closely 
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correspond with the 25th, 50th and 75th percentiles of heights. The Hegyi index is a measure of 

competition that accounts for the size and distance of neighboring trees (Contreras et al. 2011). 

To calculate a standardized Hegyi index for each snow sampling point the “focal tree” dbh was 

fixed at 10 cm. Nearest neighbor distance was calculated using the spatstat package and distmap 

function in R.v.3.5.3. at a 1 m resolution (Baddeley et al. 2015, R Core Team 2017). The pixel 

image is a function of the shortest distance from each sampling point to every tree on site. This 

image was rasterized and imported into ArcGIS 10.1 to extract point values. Net daily shortwave 

radiation was modeled using a 1m DTM and the Potential Incoming Radiation module using 

System for Automated Geoscientific Analysis (SAGA GIS) software and summed from January 

to June for each sampling point (Conrad et al. 2015). 

LiDAR acquisition 

LiDAR data collection was conducted in June of 2015 by Quantum Spatial using a Leica 

ALS70 laser sensor with a pulse rate of 180-193 kHz (https://quantumspatial.com). Low flight 

altitude (1450 m), multiple returns per pulse, 60% side-lap (100% overlap) and opposing 

directional flight paths were utilized to optimize vegetation detection. Vertical accuracy was 

0.097 m (n = 211) and first return point density was 20.07 points/m2. Calibration corrections, 

filtering of erroneous points, and point classifications were carried out by Quantum Spatial. A 

digital terrain model (DTM) was created using 1 m mean elevations in a triangulated irregular 

network. To normalize point height, the elevation of LiDAR points was subtracted from 

underlying DTM values. Forest canopy metrics were calculated using FUSION software and a 1 

m DTM (McGaughey 2015). 

LiDAR based predictors 

https://quantumspatial.com/
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We used the four L-moment height features, coefficient of variation for height, 95th 

percentile height, 99th percentile height, and canopy density as predictors (Table 1). All metrics 

describe the vertical distribution of forest canopy structure except canopy density which 

characterizes the horizontal distribution (Kane et al. 2010b, Jeronimo et al 2018, Moran et al. 

2018, Varhola et al 2010a). The four L-moments are ordered statistics that are analogous to 

distributional descriptors of mean (L-1), standard deviation (L-2), skewness (L-2) and kurtosis 

(L-4). These metrics have been used to describe canopy structure (Moran et al. 2018, Frazer et al. 

2011, Valbuena et al. 2017). 99th percentile height represents maximum height values that are 

free from outlying maximum height points.   

 All vegetation predictor variables were calculated over a range of distances from each 

sample point. A circular area with a radius ranging from 1-15 m (1-8 m for LiDAR metrics due 

to computational limits) was centered on each sample point. Ground and LiDAR metrics were 

calculated within this area. For ground metrics, sample size was reduced with increasing radial 

distance due to buffering for edge effects since forest structure outside of the plots is unknown. 

A linear mixed effects model was used to regress each predictor variable on each snow response 

across all radial distances. Fixed effects where the metric of interest, year, and an interaction 

between the metric and year. Sample point was modeled as a random effect allowing the model 

to acknowledge the repeated measures aspect of the study. Fit was assessed using AIC (Table S1, 

S2). LiDAR metrics of skewness and kurtosis could not be fit with the random factors due to a 

lack of convergence, so a simplified fixed effects model was used. Analysis was done using the 

lmer4 package in R.v.3.5.3 (R Core Team 2017, Bates et al. 2015). 

Modeling 
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Regression trees are hierarchical, non-parametric, machine learning algorithms where 

predictor variables are recursively partitioned based on a set of decision rules (Prasad et al. 

2006). Because regression tree models account for interactions and non-linear relationships 

between variables, they are often used to model the distribution of snow (Elder et al. 1995, 

Winstral et al 2002). Regression trees predict the response variable, in this case snow 

characteristics, based on recursive partitioning of a dataset utilizing a set of decision rules 

(Breiman et al. 1984). Random forests (RF) offer an improvement in prediction accuracy over 

traditional regression trees by reducing the variance of single trees by aggregating multiple 

bootstrap trees (Breiman and Cutler 2003). Within each bootstrap sample, a tree is grown where 

each split is based on a random selection of a subset of possible predictor variables which 

reduces correlation among trees. Trees over all samples are averaged, yielding the most 

influential variables. However, the gain in prediction accuracy is at the expense of 

interpretability. Variable importance measures the influence of a predictor on model accuracy 

and gives an idea of the strength of a variable’s relationship with the response. Permutation 

importance is measured as the difference in MSE between the out-of-bag (OOB) sample tree and 

a tree using the same OOB sample, where the values of each variable are randomly permuted 

separately and then averaged over all trees in the forest. Mean variable importance values were 

calculated from 100 permutations of each predictor (Table 1). For each RF, an 80:20 random 

partitioning into a training and validation dataset was constructed allowing for a 20 fold cross-

validation.  

To account for the first order effects of annual climate variability all response variables 

were normalized within year. Normalization was carried out by subtracting the annual mean and 

dividing by the standard deviation.   
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Increased performance of regression trees with the use of residual interpolation has also 

been observed for snow characteristics (Balk and Elder 2000, Erxleben et al. 2002). Ordinary 

kriging (OK) was used to model any remaining spatial dependencies in the regression model 

residuals. Interpolated residual estimates were added to the regression tree models and examined 

for increased performance. All RF model performance was evaluated using cross-validated 

RMSE values.  

Results 

Snow characteristics 

Accumulation 

 Spatial variation defines the patterns of peak SWE, snow density, and snow 

disappearance beneath a heterogeneous forest canopy. Year-to-year climate variability exerted a 

strong first order control on the amount of peak SWE and patterns of snow disappearance 

captured by our four year collection period (Table 2 and 3). 2014 was an above average snow 

year (Figure S1). Peak accumulation occurred earlier with more mid-winter melt events in 2015 

than other years. 2016 was a dry year with below average snowfall. The 2017 snow season was 

above average with a large, late snow event.  

Within the forest, SWE covered a range of values which always included locations with 

no snow and averaged between 1.1 and 8.4 cm from 2014-2017 within the study area (Table 2). 

The greatest variation (CV = 1.36 and 0.71) in peak SWE occurred in years with lower SWE 

(2015 & 2016), exhibiting a reverse J distribution (Figure 3). In above average years the 

distribution of SWE was less variable and followed a normal distribution (Figure 3, Table 2). 

Despite different winter conditions, average snow density was near 20% normally distributed 

with a slight right skew across all years (Figure 4). Sampled at a 2:1 ratio with snow depth, peak 
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snow densities ranged from 0.02 – 0.49 g/cm3 in 2014, 0.04 – 0.47 g/cm3 in 2015, 0.06 – 0.85 

g/cm3 in 2016, and 0.02 – 0.82 g/cm3 in 2017 (Table 2). Average peak SWE (used as a proxy for 

snow depth) was around 1.5 times more variable than snow density, except in 2015 where SWE 

was four time more variable (Table 2).   

Disappearance  

 The snow melt season lasted between 31 and 59 days and the snowpack had mostly or 

completely melted by April 1 (Table S3). A transition point in the rate of snow disappearance, 

from a steady decline to rapid drop in fSCA was a defining feature across all years, but the time 

of this point depended on annual snow conditions (Figure 5). In 2015 and 2016 the transition to 

rapid melt occurred around a quarter of the way through the melt season, while in 2014 and 2017 

this point was much later in the season, occurring more than halfway through the melt season 

(Table S3).  

Random Forest Modeling 

 Random forest (RF) models parameterized with ground and LiDAR derived canopy 

metrics performed nearly identically when estimating snow characteristics (Table 3). RFs 

parameterized with forest canopy metrics provided better predictions for peak SWE and the 

timing of snow disappearance than snow density (Figure 6). Our models were able to explain 30 

and 35% of the variation in peak SWE using ground and LiDAR metrics respectively with an 

associated RMSE of 0.93 cm and 0.91 cm (Table 3). 47% of the variation in SDD was explained 

with ground and LiDAR canopy metrics. However, the predictive accuracy for peak snow 

density was very poor with R2 of 0.05 and 0.00 for ground and LiDAR methods respectively. 

Because residual interpolation did not improve the fit of SWE or density models and contributed 
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to marginal improvements in SDD estimation (data not shown), it was not included in the final 

models. 

 The optimal radius for predictor variable calculation was constant within each ground 

based predictor variable, often the largest distances having the smallest AIC (Figure S2, Table 

S1). Radial distance selection varied within and between snow responses for LiDAR predictors, 

with the lowest AIC values falling in mid-range distances (Table S2). Overall, there were weak 

to moderate correlations (0 – 0.54) between ground and LiDAR predictor metrics (Figure S3). 

Based on cross-validation the optimal number of variables selected at each node ranged from 4-5 

for ground metrics and 3-4 for LiDAR values, which is consistent with the RF default values.  

All predictor variables contributed to model learning, however the Hegyi index and tree 

density were most important for SWE and SDD (Figure 7). Although used by the models, many 

of the explanatory variables had little predictive power. The Hegyi competition index was 4 and 

2.7 time more important than the next most influential variable, tree density, for predicting SWE 

and SDD respectively. The effect of the Hegyi index on peak SWE was linear, with decreasing 

snow water with increasing Hegyi values (Figure 8). SDD decreased (i.e., earlier melt) with 

increasing Hegyi, with the earliest snow melt occurring in areas with a Hegyi index greater than 

20 (Figure 9). In general, as local tree density increased peak SWE was reduced, while 

increasing Larix stem density increased peak SWE.  

Canopy density (CD) was the most influential LiDAR predictor of SWE and SDD, 

reducing the amount of SWE and leading to earlier melt (Figure 8 & 9). The amount of variation 

(CV) and the distribution of biomass in the canopy (skewness) were also important LiDAR 

predictors of SWE (Figure 7). As the amount of alternating areas of open and dense canopy 

increases across the horizontal canopy surface (i.e. CV) and the vertical biomass is focused at the 
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top or bottom of the canopy (i.e. skewness) there is a general increase in SWE (Figure 8). Figure 

9 shows that when canopy foliage is focused in the lowest portions of the canopy (negative 

skewness) and local tree height exceeded 5 m, the LiDAR RF model predicted the earliest 

disappearance dates.  

Although all predictor variables were used by the RF models of snow density, they 

explained little to no variation with and R2 of 0.05 and 0.00 for ground and LiDAR models 

respectively (Figure 7, Table 3). Ground method performance was primarily driven by peak 

SWE, followed by net shortwave radiation, slope, and the Hegyi index. Partial dependency plots 

indicated a linear relationship between snow density and SWE and Hegyi which plateaued 

around 10 (Figure 10). The relationships between density with shortwave radiation and slope are 

non-linear with density minimized around 440,000 kJ/m2 and maximized around 10% slope. All 

variables led to similar improvements in accuracy within the LiDAR model (Figure 6). Canopy 

density and the variation in canopy heights (CV) were slightly more important with density 

increases associated with an increase in both variables but plateauing around 0.65 for CV (Figure 

10).  

Discussion 

 Understanding the mechanisms driving the patterns in snow accumulation and 

disappearance in mountain forests is critical for accurately forecasting water availability. We 

found that detailed forest canopy metrics and the most basic terrain features account for one-third 

to nearly half of the variation in peak snow accumulation and snow disappearance processes in a 

mountain forest. Model performance did not depend on the source of canopy metrics. Ground 

and LiDAR parameterized models performed equally well. Thus, models based on LiDAR 

derived measures of forest canopy structure may offer an efficient, cost effective tool for 
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managers to predict snow characteristics, including outcomes of silvicultural practices and 

disturbance processes over management relevant extents (Winkler and Moore 2006, Varhola et 

al. 2010a).   

Snow characteristics 

Patterns of snow accumulation and disappearance beneath a complex forest canopy are 

highly variable. A gradient of interception capacities present within the forest is thought to drive 

greater variation in peak snow beneath the forest than in adjacent non-forested areas 

(Musselmann et al. 2008, Woods et al. 2006, Winkler et al. 2005, Jost et al. 2007). We observed 

the coefficient of variation for peak SWE to range on average from 0.36-1.36 within the forest 

(Table 2). All but the largest CV values are consistent with reported CV values (0.1 – 0.70) for 

peak SWE in watersheds with varying amounts of forest vegetation (Varhola et al. 2010a, Balk 

and Elder 2000, Molotch et al. 2005, Jost et al. 2007, Woods et al. 2006).  

The greatest variation in peak SWE (CV = 1.36) occurred during 2015, a snow season 

characterized by early onset of melt and multiple mid-winter melt events (Table 2, Figure S1). 

Earlier melt and increases in the frequency of mid-winter melt are expected with climate change 

in the western U.S. (Lute et al. 2015). The results of this study suggest that greater variation in 

peak SWE could be expected in forested watersheds as climate change leads to warmer winters. 

Greater variation of SWE (and SDD) will have strong impacts on microclimate dynamics and 

key ecosystem processes such as patterns of species diversity and nutrient cycling 

(Vanwalleghen and Meentemeyer 2009). 

Melt curves highlight the interannual variability of snow characteristics with different 

dates for peak SWE, fSCA at peak, and different curve shapes (Figure 5, Table S3). This is not 

surprising as climate exerts a first order control on annual snowpack characteristics (Lundquist et 
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al. 2013, Varhola et al. 2010b). A consistent pattern in SDD emerged over time, where fSCA 

transitioned from a steady decrease to a rapid drop. This pattern is captured in other work where 

the fSCA was changing by 6% in the first part of the melt season but increased to 62% midway 

through the melt season (Molotch et al. 2005, Elder et al. 1995, Varhola et la. 2010a). Field 

observations suggest that this threshold may be related to nightly low temperatures or advective 

warming from an increasing fraction of adjacent bare ground with a lower albedo.  

Adequately capturing snow density is necessary to accurately calculate water availability 

as density provides the link between snow depth and water content. However, snow density is 

typically assumed to be much less variable than snow depth, and consequently sampled at much 

lower frequencies (30:1; Sturm et al. 2010). Estimates of snow water using a single average 

density value may misrepresent the total amount of snow water stored in a watershed (Wetlaufer 

et al. 2016). Our high sampling ratio of snow density to depth (2:1) at micro-scales (1-20 m), 

unmatched by previous studies, may contribute to the larger CV for snow density observed (0.27 

– 0.45; Table 2). Using fewer samples, but at 1 m resolution, Molotch et al. (2005) observed a 

CV of 0.17 for snow density in the Sierra Nevada alpine. Whereas high frequency measurements 

taken at a larger resolution (>100 m) in the Spanish Pyrenees had a snow density CV range of 

0.05-0.32 (López-Morano et al. 2013). A global analysis of peak snow densities revealed a CV 

range of 0.08-0.23 (Jonas et al. 2009). Greater variation in snow density at our site may be driven 

by stronger temperature and radiation gradients within the forest compared to more sparsely 

vegetated sites or due to mid-winter melt events at our lower elevation (López-Morano et al. 

2013). These results emphasize the need for increased sampling to capture the variability of peak 

density, where even small differences in density lead to large differences in calculated SWE and 

predicted water output (Wetlaufer et al. 2016).  
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Modelling  

 Different statistical models with varying terrain and or vegetation explanatory variables 

have been widely used to describe the patterns in snow accumulation and ablation. Recently, the 

use of machine learning techniques such as random forests are being used as an alternative for 

increased predictive power over regression tree and linear models (Breiman 2001). Our RF 

models using detailed ground and LiDAR forest canopy predictors and basic terrain features 

explained 30% and 35% of the variation in peak SWE respectively (Table 3).   

 The outcome of snow distribution models depends on various environmental and data 

conditions. The geographic location of a study site determines the dominant winter conditions 

(i.e. average winter temperature) which drive forest-snow patterns and determine the prevalence 

of contributing factors such as wind (Lundquist et al. 2013, Dickerson-Lange et al. 2017). 

Catchment size is also important because the factors that control local snow dynamics function 

over a small range of conditions leading to better model performance in smaller watersheds 

(Elder 1995). Most snow modelling studies also characterize accumulation with snow depth, 

however the variation observed in SWE has been found to be primarily driven by the variation in 

depth (Balk and Elder 2000). Sample size, the type of predictors used, and the length of 

regression trees grown also contribute to model performance. Larger regression trees are 

typically able to explain more variation, but this may lead to overfitting and poor predictive 

power (Molotch et al. 2005).  

Regression tree models using terrain features alone (e.g., slope, aspect, radiation) were 

able to explain 34 – 37% of the variation in peak snow depths in the alpine of the Sierra Nevada 

(Molotch et al. 2005). The addition of vegetation type or distance to canopy predictors to terrain 

features explained 17 – 68% of the variation in peak snow depth from the steep relief in Rocky 



 

95 

 

Mountain National Park to the alpine of New Mexico and the flatter forests of the Colorado 

Front Range (Balk and Elder 2000, Erxleben et al. 2002, Musselmann et al. 2008, Elder et al. 

1995). Using both ground and LiDAR based canopy metrics consistent with ours, with multiple 

linear regression, Varhola et al. (2010a) found models with LiDAR metrics explained 51% of 

variation while ground based canopy metrics explained only 25% of the variation in peak SWE 

in the boreal forests of British Columbia.  

Although these studies provide context for our results, they differ in important ways. This 

study involved random forest modelling of high resolution snow measurements within a small, 

fully forested site on gentle topography. The relatively flat nature of our site may have 

eliminated some of the more complex terrain interactions, as terrain features were not prominent 

drivers in our models (Figure 7). The smaller extent of our study area may also potentially alter 

the relationships observed between snow distribution and predictors due to the resolution of 

controlling factors (Molotch et al. 2005, Elder 1995).   

Variables related to the amount, size, and location of neighboring trees were most 

important for predicting SWE and SDD (Figure 7). Overlapping variables for peak SWE and 

disappearance suggest that these hydrologic processes are driven by the same principles. This is 

consistent with studies that found a similar effect on snow accumulation and melt processes 

following changes to forest structure (Anderson and Gleason 1960, Hardy et al. 1998, 

McGuaghey and Farnes 2001, Jost et al. 2007). Our study predictors explained more variation in 

SDD than peak accumulation suggesting that there is more variation in the factors influencing 

accumulation processes that may not be captured by our current understanding. Further research 

is needed into identify these additional mechanisms.  



 

96 

 

The predictive power of forest canopy metrics affirms the long-standing observation that 

forest vegetation is a strong secondary driver of variation in snow accumulation and melt 

patterns (Varhola et al. 2010a, b). Decreasing SWE with increases in tree density and Hegyi 

index is consistent with the interception hypothesis where variation in peak SWE is primarily 

driven by overhead interception capacity (Martin et al. 2015, Dickerson-Lange et al. 2017, 

Schneider et al. 2019). Using ground and LiDAR predictors, Varhola et al. 2010a also found 

LiDAR derived canopy cover, equivalent to our canopy density, was the best predictor of the 

distribution of SWE.  

The positive relationship between disappearance date and tree density from 10 to 32 

neighborhood trees (Figure 9) is not supported by the literature or field observations. (Dickerson-

Lange et al. 2016; Varhola et al. 2010a, Lundquist et al. 2013). However, the highest density 

areas (> 32 trees) were associated with the latest snow disappearance dates. This later portion of 

this relationship is likely due to thickets of the smallest trees which have low interception 

efficiency and provide deep shade retarding melt. The relationship between mean tree height and 

SDD within the LiDAR model add further support. When the local neighborhood is composed of 

trees less than 5 m tall final snow disappearance occurs later. These observations are consistent 

with disappearance dynamics in dense regeneration neighborhoods (Schneider et al. 2019).  

Melt dynamics are primarily driven by the amount of available energy (Lawler and Link 

2011). In early spring sun angles are still low and the radiation balance is dominated by air 

temperature (i.e., longwave radiation; Lundquist et al. 2013). Under these conditions bole 

heating, and the radiation attenuation of forest structures in general, strongly influence below 

canopy ablation processes by controlling energy availability (Musselman et al. 2012, Bohren et 

al. 1973, Link and Marks 1999, Davis et al. 1997). An early melt season (February – April) and 
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the primary importance of canopy metrics in our snow disappearance models is explained and 

supported by these previous findings. The absence of our radiation predictor variable which 

quantifies incoming shortwave radiation adds further evidence to the dominance of longwave 

radiation as the mechanistic driver of observed melt dynamics.  

Larix, a deciduous conifer, was also important for estimating peak SWE. The importance 

of Larix in modeling the distribution of snow accumulation is expected with reduced interception 

capacity in the winter during times of foliage loss, however little research on Larix-snow 

dynamics is available (Schneider et al. 2019). The global extent of Larix, the potential 

importance of their unique biophysical feedbacks with snow accumulation and melt for global 

climate, and their susceptibility to climate change highlight the importance of this circumboreal 

genus for future empirical research and the incorporation of functional traits (deciduousness) in 

linked vegetation-earth system models.  

Little to no variation in peak snow density was explained by canopy structure or terrain 

metrics (Figure 4 & 6, Table 3). The importance of SWE, radiation, and slope as predictor 

variables for explaining some variation in ground density models (R2 = 0.05, Figure 6) is 

consistent with current research and hydrologic theory, where increases in radiation and the 

weight of overlying snow causes compaction and greater density (Figure 10; Sturm et al. 2010, 

Jonas et al. 2013, López-Morano et al. 2013, Bormann et al. 2013, Kojima et al. 1967, Molotch 

et al. 2005, Balk and Elder 2000, Wetlaufer et al. 2016, Svoma 2011). However, these same 

predictors were unable to explain any variation when paired with LiDAR canopy metrics.  

Unlike our models, Broxton et al. (2019) was able to explain 30% of density patterns 

using topographic and canopy features with a neural network, an alternative machine learning 

approach. Multiple linear regression (MLR) and regression tree (RT) techniques were also more 
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successful at predicting snow density than our RF approach. Radiation and elevation were used 

to describe 39% (MLR) and 41% (RT) of variation in snow density in southwestern Montana 

(Wetlaufer et al. 2016), while radiation and slope only captured 10% (RT) of the spatial 

distribution of snow density in the Sierra Nevada (Molotch et al. 2005).  Poor model 

performance may be attributed to our much larger sample size capturing a fuller range of 

variation. Our choice of variables also did not fully account for all unique combinations or 

interactions between potentially important physiographic parameters like the temporal variability 

in temperature and precipitation and their interactions with forest structural components.  

  Ground and LiDAR derived metrics produced RF models that performed equally well in 

predicting SWE and SDD. This suggests that the elements of structural complexity captured by 

LiDAR metrics characterizing the arrangement and density of canopy cover are related to snow 

interception and ablation processes. We expected LiDAR data to perform better than ground 

metrics, as observed by Varhohla et al. (2010a), since the biomass of the canopy directly over 

snow sampling points intercepting incoming snowfall and reflecting radiation, is also reflecting 

laser pulses. Whereas the position of tree boles does not always correspond to direct overhead 

canopy biomass due to tree lean, no accounted for by our ground based measurements (Wiggins 

et al. 2019). In addition, ground surveys captured only overstory trees (≥ 10 cm), while LiDAR 

captured all forest biomass above 2 m, including dense areas of regenerating saplings. 

The comparison between ground and LiDAR metrics also inadvertently examined the 

role of tree density based metrics to canopy cover attributes as the source of better predictive 

outcomes for snow dynamics. Ground based predictors used metrics calculated from stem size, 

functional traits (evergreen conifers vs. deciduous Larix) and location; while LiDAR metrics 

described the vertical and horizonal distribution of canopy cover. The equal model performance 
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and generally low correlation of ground and LiDAR predictor variables (Figure S3) suggest that 

these contrasting vegetation measurements are capturing different mechanisms through which 

vegetation influences snow characteristics.  

Conclusions  

Our results emphasize the importance of forest canopy structure on the processes of snow 

accumulation and ablation. The presence of overlapping predictors between accumulation and 

snow disappearance implies that the same factors are driving these linked processes (Anderson 

and Gleason 1960, Hardy et al. 1998, McCaughey and Farnes 2001). Previous research indicates 

a clearer delineation between controlling factors with snow accumulation driven by canopy 

interception, and snow disappearance driven by the energy balance than we found in this study, 

especially in relation to snow disappearance (Dickerson-Lange et al 2017, Schneider et al. 2019). 

Our inability to explain observed variation of snow density means we still have an incomplete 

understanding of controlling physical processes and interactions. Our study highlights the need 

for further investigation into the most accurate and efficient variables that capture the most 

important processes influencing the spatial distribution of snow accumulation and ablation. 

Climate change is already having an impact in these environments so being able to accurately 

predict the amounts and location of snowpack, and the melt dynamics under a range of winter 

conditions, is needed to forecast water resource availability.  

Management Implications 

 Climate change is contributing to winter conditions and snow characteristics beyond the 

range of long-term averages. In this context it is important to develop predictive models that 

accurately estimate snowpack characteristics and account for vegetation heterogeneity at 

management relevant scales (Musselmann et al. 2008). Existing research already supports the use 
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of LiDAR a primary data source for canopy metrics (Kane et al. 2011, 2013, Asner et al. 2013). 

The superior performance of LiDAR canopy metrics for predicting snow properties found by 

Varhola et al. (2010a) and the near equivalent model performance between ground and LiDAR 

derived canopy metrics of this study for estimating snow accumulation and ablation further 

emphasize the importance of LiDAR as a management tool. The use of LiDAR derived forest 

canopy metrics with predictive models such as ours offers managers a quick, affordable, and 

repeatable method for estimating snow characteristics that are critical for forecasting the timing 

and quantity of water availability (Kane et al. 2013). Models such as ours may also be used to 

help estimate alterations in snow controlled hydrologic processes following changes in the forest 

canopy structure. 
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Tables 

Table 1. Canopy structure predictor variables used in regression analysis with snow accumulation and disappearance. Radius indicates 

the radial distance of a circular around each sampling point the given variable was calculated within listed for SWE, density, SDD. 

Range (obsv.) is the range of values observed within the given radius.    

Source Variable 

(Abbreviation) 

Units Radius 

(m) 

Range (obsv.) Description 

Ground Density (t.den) count 15, 4, 15 2 - 55 | 0 - 11 Total number of trees within the given 

radius.  
Larch 

(Abs.LAOC) 

count 15, 4, 15 0 - 29 | 0 - 7 Total number of western larch within the 

given radius. Describes the species 

compositions  
Intermediate 

(Abs.intermed) 

count 15, 4, 15 0 - 25 | 0 - 7 Total number of trees in the intermediate 

strata. Describes the density of the lowest 

canopy layer.   
Codominant 

(Abs.codom) 

count 15, 4, 15 0 - 38 | 0 - 6 Total number of trees in the codominant 

strata. Describes the density of the middle 

canopy layer.  
Dominant 

(Abs.dom) 

count 15, 4, 15 0 - 15 | 0 - 4 Total number of trees in the dominant strata. 

Describes the density of the tallest canopy 

layer.  
Hegyi index 

(Hegyi) 

None 

(index) 

15, 4, 15 1.11 - 163.14 | 0 - 156.167 ∑ 𝑑𝑖
(𝑑 × 𝑑𝑖𝑠𝑡𝑖)

⁄𝑛
𝑖=1  Competition index 

based on size and distance of neighboring 

trees (Contreras et al. 2011). Focal point 

given a 10 cm diameter.    
Sum Nearest 

Neighbor 

(NN.Sum) 

meters 15, 4, 15 0 - 2604.02 | 0 - 445.09 Total of the distance transformed nearest 

neighbor pattern of trees with in the given 

radius.   
Slope % point 0 - 21.6 Steepness of the ground surface.   
Aspect degrees point 0 - 360 Direction of sun exposure, influencing 

temperature.  
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LiDAR Mean Height 

(mean.ht) 

meters 3, 3, 4 0.02 - 22.88 | 0.02 - 20.3 Average value of height returns.  

 
Standard 

deviation  

(SD) 

meters 2, 3, 2 0 - 6.37 | 0 - 6.46 2nd L-moment: standard deviation of height 

returns. Describes vertical canopy 

complexity.   
Coefficient of 

Variation of 

Height (CV) 

None 

(ratio) 

4, 6, 6 0.17 - 0.94 | 0.25 - 0.94 Coefficient of variation of height returns. A 

normalizes metric of vertical canopy 

complexity.   
Skewness (skew) None 

(ratio) 

4, 4, 5  -0.39 - 0.95 Ratio of 3rd/2nd L-moments. Describes the 

symmetry of the height distribution; bottom 

or top-loading.   
Kurtosis (Kurt.) None 

(ratio) 

2, 4, 5 -0.25 - 0.99 | -0.21 - 0.91 | 

-0.20 - 0.89 

Ratio of 4th/2nd L-moments. Describes the 

tailed nature of the vertical foliage 

distribution.   
95th Percentile 

Height (ht.95) 

meters 2, 2, 2 0.04 - 32.18 95th percentile of height returns. 

 
99th Percentile 

Height (ht.99) 

meters 2, 2, 2 0.04 - 32.54 99th percentile of height returns. Describes 

maximum tree height.  

  Canopy density 

(CD) 

% 3, 5, 4 0 - 100 | 0 - 94.7 | 0 - 98.2 Similar to canopy cover. The percent of first 

laser returns above 2 m to the total number 

of returns. 
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Table 2. Snow accumulation metrics for four consecutive snow years within 3 mixed-conifer stands forming a single research site. n is 

sample size, CV is coefficient of variation, ± standard deviation.  

    SITE PLOT 3 PLOT 2 PLOT 1 

Year   SWE (cm) Density (%) 
SWE 
(cm) 

Density 
(%) 

SWE 
(cm) 

Density 
(%) 

SWE 
(cm) 

Density 
(%) 

2014 n 809 569 405 284 404 285 NA NA 

  CV 0.36 ± 0.06 0.28 ± 0.01 0.40 0.28 0.32 0.27 NA NA 

  average 8.4 ± 0.4 20.1 ± 1.8 8.7 21.3 8.1 18.8 NA NA 

  range 0 - 18.0 2.4 - 49.7 0 - 18 3.7 - 49.7 0 - 16.4 2.4 - 44.1 NA NA 

2015 n 2196 329 812 198 687 62 697 69 

 CV 1.37 ± 0.22 0.33 ± 0.06 1.12 0.30 1.45 0.40 1.53 0.30 

 average 1.1 ± 0.2 20.6 ± 2.5 1.4 22.9 1 17.9 1 21.1 

 range 0 - 11.9 4.1 - 46.6 0 - 11.2 5.0 - 46.6 0 - 11.9 4.1 - 39.8 0 - 6.7 11.1 - 37.3 

2016 n 2104 1349 744 396 699 498 661 455 

  CV 0.71 ± 0.04 0.44 ± 0.02 0.74 0.45 0.74 0.42 0.67 0.45 

  average 2.4 ± 0.3 22.7 ± 0.3 2.5 22.6 2.1 23 2.7 22.5 

  range 0 - 14.9 5.5 - 85.3 0 - 8.7 5.7 - 74.6 0 - 9.3 6.0 - 74.6 0 - 14.9 5.5 - 85.3 

2017 n 2214 1326 819 493 697 416 698 417 

 CV 0.47 ± 0.02 0.31 ± 0.03 0.49 0.34 0.46 0.31 0.46 0.28 

 average 6.2 ± 0.2 19.3 ± 0.6 6.2 18.6 6 19.8 6.4 19.6 

  range 0 - 14.9 2.3 - 82.1 0 - 14.9 2.3 - 59.7 0 - 14.2 3.0 - 67.9 0 - 14.2 4.3 - 82.1 
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Table 3. Summary of RF model optimization and performance. mtry is the number of random 

variables selected at each split, # trees is the total number of bootstrapped trees computed for 

each split. The squared correlation coefficient and root means squared error is given for RF 

model predictions and standardized response variables using a 20 fold cross-validation. 

Influential variables are variables that the RF model significantly relies on for estimates.  

   mtry  # trees R2 RMSE 

Ground SWE 5 500 0.30 0.93  

 Density 5 500 0.05 0.95 

 
SDD 4 500 0.47 0.94 

LiDAR SWE 4 500 0.35 0.91 

 Density 3 500 0.00 1.43 

  SDD 3 500 0.47 0.91 
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Figures  
 

 

 

Figure 1. Study site located in western Montana, USA. The site is populated by a mixed-conifer 

forest. Three plots were installed to aid in stem mapping and avoid a centrally bisecting road.  
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Figure 2. Snow sampling diagram. Point sampling layers were added progressing from A-D in 

each plot. Snow depth and density was measured at all points in layer A. In layers B and C snow 

depth was collected at all points and depth + weight was collected at every other point along 

each intensive (layer B bottom highlight) and neighborhood (layer C top highlight) to yield snow 

density. Snow disappearance was measured at all points in layers A-D.  
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Figure 3. Distribution of peak snow water equivalent as % of points from 2014 – 2017 across a 

mixed-conifer forest. SWE is in 2 cm size classes.  
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Figure 4. Distribution of peak snow density as % of points from 2014 – 2017 across a mixed-

conifer forest. Density is in 5% size classes.  
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Figure 5. Melt curves across four different snow seasons. fSCA is the percentage of sample 

points with snow cover remaining for each given day.    
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Figure 6. Fit for random forest models of snow characteristics using ground and lidar based 

canopy predictors. Response variables have been normalized by year. The dashed line is a 1:1 

line indicating perfect model fit.  

 



 

116 

 

 

Figure 7. The marginal permutation importance for ground and LiDAR predictor variables for 

SWE, snow density, and SDD. learning. Central vertical lines display the mean increase in model 

accuracy from 100 random permutation of the variable. Variables below the solid zero line do 

not contribute to model performance.   
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Figure 8. Partial dependency plot of the marginal effects of significantly important of forest 

canopy predictors on the estimates of SWE from a RF model. Rug plots indicate the distribution 

of predictions. Dashed lines enclose a 95% confidence interval. Response variables are 

normalized by year.  
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Figure 9. Partial dependency plot of the marginal effects of significantly important of forest 

canopy predictors on the estimates of SDD from a RF model. Rug plots indicate the distribution 

of predictions. Dashed lines enclose a 95% confidence interval. Response variables are 

normalized by year.  
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Figure 10. Partial dependency plot of the marginal effects of significantly important forest 

canopy structural predictors on the estimates of snow density from a RF model. Rug plots 

indicate the distribution of predictions. Response variables have been normalized by year. 

Dashed lines enclose a 95% confidence interval. 
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CHAPTER 1 Supplementary Material  
 

Table S1: Stand structure and compositional attributes of 10 old-growth Sitka spruce-western hemlock forest stands. Medium density 

represents forests with 40-60% canopy closure and full density is 70-100% canopy closure. Overstory, midstory, and understory trees 

are ≥ 25 m, 10-25 m, and <10 m in height respectively. TPH is trees per hectare. PISI = Sitka spruce; TSHE = western hemlock; 

CHNO = yellow cedar; POTR = black cottonwood; ALRU = red alder. 

  All  Overstory Midstory Understory 

  
Specie
s 

Density 
(TPH) 

Basal 
area 

(m2/ha) 

DBH 
range 
(cm)  

QMD 
(cm) 

Density 
(TPH) 

Basal 
area 

(m2/ha) 
Density 
(TPH) 

Basal 
area 

(m2/ha) 
Density 
(TPH) 

Basal 
area 

(m2/ha) 

Medium density     

Plot 
104 PISI 226 55.25 7.6 - 122.2 46.8 

109 49.18 
110 6.02 6 0.05 

 TSHE 82 5.08 7.6 - 77.5 23.6 4 1.66 63 3.27 15 0.14 

 POTR 6 0.80 15.2 - 44.5 33.7 2 0.42 3 0.37 1 0.02 

 ALRU > 1 0.07 30.7 30.7 0 0.00 1 0.07 0 0.00 

 Total 315 61.20 7.6 - 122.2 41.8 115 51.26 177 9.73 22 0.21 

                
Plot 
130 PISI 42 4.28 7.6 - 97.0 30.1 

6 3.26 
33 1.00 4 0.20 

  TSHE 623 59.40 7.6 - 132.6 29.2 86 42.33 323 14.84 213 2.22 

  Total 665 63.67 7.6 - 132.6 29.3 92 45.59 356 15.84 217 2.24 
                        
Plot 
132 PISI 33 10.98 7.9 - 177.5 54.5 

11 9.77 
21 1.20 1 0.01 

 TSHE 379 67.56 7.6 - 123.2 40.0 90 55.95 191 10.54 98 1.06 

 ALRU 11 0.81 8.4 - 43.2 25.3 1 0.15 6 0.59 5 0.07 

 Total 423 79.34 7.6 - 177.5 41.0 102 65.87 218 12.33 104 1.14 
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Plot 
141 PISI 32 7.04 7.9 - 101.3 44.1 

13 6.27 
17 0.76 2 0.02 

  TSHE 487 46.00 7.6 - 95.3 29.1 84 31.19 234 13.03 169 1.76 

  Total 519 53.03 7.6 - 101.3 30.3 97 37.46 251 13.80 171 1.78 
                        
Plot 
220 PISI 113 14.37 7.6 - 100.6 33.8 

33 11.79 
72 2.53 8 0.06 

 TSHE 553 52.00 7.6 - 109.0 29.0 85 35.02 289 15.12 179 1.84 

 Total 666 66.37 7.6 - 109.0 29.9 118 46.81 361 17.65 187 1.90 

                

Full density     

Plot 32 PISI 67 
21.76 

20.1 - 
101.6 

53.7 
62 

21.00 
6 0.42 0 0.00 

 TSHE 531 66.00 7.6 - 75.7 33.4 146 37.09 343 28.47 41 0.43 
 CHNO 56 4.82 10.7 - 55.6 27.9 0 0.00 50 4.71 6 0.10 
 Total 654 92.58 7.6 - 101.6 35.6 208 58.43 399 33.61 47 0.53 

                

Plot 76 PISI 129 20.56 7.6 - 111.8 37.8 47 17.13 76 3.38 7 0.05 

  TSHE 535 59.13 7.6 - 120.7 31.5 94 41.96 266 15.38 174 1.80 

  Total 664 79.70 7.6 - 120.7 32.8 141 59.09 342 18.76 181 1.85 

                        
Plot 
111 PISI 109 

40.97 8.1 - 113.3 58.0 74 
39.29 

34 1.66 2 0.01 

 TSHE 259 52.96 7.6 - 133.6 42.8 108 44.73 103 7.76 47 0.48 
 Total 368 93.93 7.6 - 133.6 47.8 182 84.02 137 9.42 49 0.49 

                
Plot 
143 PISI 84 

40.57 
23.9 - 
135.6 

65.9 82 
40.41 2 

0.16 
0 

0.00 

  TSHE 224 49.73 7.6 - 104.6 44.6 112 42.09 88 7.40 24 0.23 

  Total 308 90.30 7.6 - 135.6 51.2 194 82.50 90 7.56 24 0.23 
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Plot 
161 PISI 71 

64.65 
23.1 - 
162.1 

90.3 68 64.44 3 0.21 0 0.00 

 TSHE 175 50.52 7.6 - 126.5 50.8 95 46.94 55 3.32 25 0.26 

  Total 246 115.17 7.6 - 162.1 64.7 163 111.38 58 3.53 25 0.26 
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Table S2. Gap analysis summary statistics for 10 stem mapped plots in southeast Alaska. Gaps were calculated using no plot edge 

buffer. Height is a fixed value designating canopy tree threshold (i.e., 20, 25, 30 m); S and G indicate gap sampling method: S = 

shadow length, G = geometric. SEM is standard error of the sampling mean.  
   

        Number of gaps in size class [proportion of total plot area]  (m2) 

Plot 

Height-

method 

Gaps 

ha-1 

Mean area ± 

SEM (m2) 0-50 

51-

100 

101-

200 201-300 

301-

400 401-500 

501-

600 600+ 

        Medium density 

104 20-S 8 242.4 ± 47.1 0 [0.00] 2 [0.01] 5 [0.06] 2 [0.04] 1 [0.02] 1 [0.03] 1 [0.04] 0 [0.00] 

 20-G 13 264.7 ± 90.8 4 [0.01] 6 [0.03] 1 [0.01] 3 [0.06] 1 [0.03] 0 [0.00] 1 [0.04] 2 [0.17] 

 25-S 7 274.2 ± 58.5 0 [0.00] 2 [0.01] 2 [0.01] 2 [0.04] 0 [0.00] 4 [0.13] 0 [0.00] 0 [0.00] 

 25-G 11 302.0 ± 84.4 1 [0.0] 4 [0.02] 3 [0.03] 2 [0.03] 1 [0.03]  2 [0.06] 0 [0.00] 2 [0.14] 

 30-S 5 404.7 ± 151.0 0 [0.00] 2 [0.01] 2 [0.02] 0 [0.00] 0 [0.00] 1 [0.03] 0 [0.00] 2 [0.13] 

 30-G 4 710.5 ± 461.8 0 [0.00] 2 [0.01] 1 [0.01] 0 [0.00] 1 [0.03] 1 [0.04] 0 [0.00] 1 [0.21] 

130 20-S 7 251.5 ± 43.0 0 [0.00] 1 [0.01] 4 [0.05] 2 [0.04] 2 [0.05] 0 [0.00] 1 [0.04] 0 [0.00] 

  20-G 15 229.3 ± 60.6 6 [0.01] 5 [0.02] 5 [0.05] 0 [0.00] 0 [0.00] 1 [0.03] 3 [0.12] 2 [0.12] 

  25-S 3 380.9 ± 68.9 0 [0.00] 0 [0.00] 0 [0.00] 1 [0.02] 1 [0.02] 1 [0.03] 1 [0.04] 0 [0.00] 

  25-G 13 271.0 ± 36.4 1 [0.00] 2 [0.01] 3 [0.03] 3 [0.10] 2 [0.05] 3 [0.09] 2 [0.08] 0 [0.00] 

  30-S 4 412.9 ± 84.4 0 [0.00] 0 [0.00] 0 [0.00] 3 [0.06] 1 [0.02] 0 [0.00] 0 [0.00] 2 [0.10] 

  30-G 8 559.3 ± 214.8 0 [0.00] 1 [0.01] 0 [0.00] 6 [0.11] 0 [0.00] 1 [0.03] 0 [0.00] 3 [0.29] 

132 20-S 6 201.3 ± 54.9 0 [0.00] 2 [0.01] 3 [0.03] 1 [0.01] 1 [0.02] 0 [0.00] 1 [0.04] 0 [0.00] 

 20-G 15 195.8 ± 39.3 3 [0.01] 4 [0.02] 8 [0.08] 2 [0.03] 1 [0.02] 1 [0.03] 0 [0.00] 2 [0.09] 

 25-S 5 272.4 ± 67.7 0 [0.00] 0 [0.00] 3 [0.02] 1 [0.02] 1 [0.02] 1 [0.03] 1 [0.04] 0 [0.00] 

 25-G 9 376.7 ± 87.0 1 [0.00] 0 [0.00] 3 [0.03] 3 [0.05] 1 [0.02] 1 [0.03] 3 [0.12] 1 [0.09] 

 30-S 5 290.4 ± 54.5 0 [0.00] 0 [0.00] 2 [0.02] 3 [0.06] 1 [0.02] 0 [0.00] 1 [0.04] 0 [0.00] 

 30-G 8 389.4 ± 100.3 0 [0.00] 1 [0.01] 2 [0.02] 4 [0.07] 2 [0.05] 0 [0.00] 1 [0.04] 2 [0.15] 

141 20-S 6 186.2 ± 15.6 0 [0.00] 0 [0.00] 4 [0.04] 4 [0.06] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

  20-G 17 176.2 ± 29.4 5 [0.01] 5 [0.03] 6 [0.06] 4 [0.07] 0 [0.00] 4 [0.13] 0 [0.00] 0 [0.00] 

  25-S 5 213.4 ± 28.2 0 [0.00] 0 [0.00] 4 [0.04] 2 [0.04] 1 [0.02] 0 [0.00] 0 [0.00] 0 [0.00] 

  25-G 16 209.4 ± 25.9 2 [0.01] 3 [0.02] 8 [0.09] 5 [0.09] 2 [0.05] 3 [0.09] 0 [0.00] 0 [0.00] 

  30-S 3 1498.7 ± 784.6 0 [0.00] 0 [0.00] 1 [0.01] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 3 [0.41] 

  30-G 3 2028.0 ± 1298.5 0 [0.00] 0 [0.00] 1 [0.01] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 3 [0.56] 
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220 20-S 5 146.1 ± 20.9 0 [0.00] 1 [0.01] 5 [0.05] 1 [0.02] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

 20-G 16 149.4 ± 21.4 4 [0.01] 6 [0.03] 7 [0.07] 4 [0.07] 1 [0.03] 1 [0.03] 0 [0.00] 0 [0.00] 

 25-S 4 281.3 ± 71.8 0 [0.00] 0 [0.00] 2 [0.01] 1 [0.02] 2 [0.05] 0 [0.00] 1 [0.04] 0 [0.00] 

 25-G 13 251.5 ± 70.4 2 [0.01] 4 [0.02] 6 [0.06] 3 [0.05] 0 [0.00] 1 [0.03] 0 [0.00] 2 [0.14] 

 30-S 4 880.4 ± 509.6 0 [0.00] 0 [0.00] 1 [0.01] 2 [0.03] 1 [0.02] 0 [0.00] 0 [0.00] 2 [0.31] 

 30-G 4 1188.2 ± 712.3 0 [0.00] 1 [0.01] 1 [0.01] 0 [0.00] 0 [0.00] 2 [0.06] 0 [0.00] 2 [0.42] 
    Full density 

32 20-S 0 0.0 ± 0.0 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

 20-G 1 81.6 ± 0.0 0 [0.00] 1 [0.01] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

 25-S 1 206.9 ± 0.0 0 [0.00] 0 [0.00] 0 [0.00] 1 [0.01] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

 25-G 5 96.6 ± 34.7 1 [0.00] 5 [0.02] 0 [0.00] 0 [0.00] 1 [0.02] 0 [0.00] 0 [0.00] 0 [0.00] 

 30-S 2  1570.8 ± 647.0 0 [0.00] 0 [0.00] 0 [0.00] 1 [0.02] 0 [0.00] 0 [0.00] 0 [0.00] 2 [0.31] 

 30-G 4 1096.7 ± 551.6 0 [0.00] 0 [0.00] 2 [0.02] 0 [0.00] 2 [0.05] 0 [0.00] 0 [0.00] 2 [0.40] 

76 20-S 5 160.6 ± 25.7 0 [0.00] 2 [0.01] 3 [0.03] 2 [0.03] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

  20-G 11 135.6 ± 27.5 4 [0.01] 3 [0.01] 5 [0.04] 2 [0.03] 1 [0.02] 1 [0.03] 0 [0.00] 0 [0.00] 

  25-S 4 211.2 ± 37.4 0 [0.00] 0 [0.00] 2 [0.02] 3 [0.05] 1 [0.02] 0 [0.00] 0 [0.00] 0 [0.00] 

  25-G 11 199.9 ± 48.2 3 [0.01] 4 [0.02] 3 [0.03] 3 [0.05] 1 [0.03] 1 [0.03] 0 [0.00] 1 [0.05] 

  30-S 5 412.8 ± 141.8 0 [0.00] 0 [0.00] 2 [0.02] 3 [0.05] 0 [0.00] 0 [0.00] 0 [0.00] 2 [0.13] 

  30-G 6 533.3 ± 129.9 0 [0.00] 0 [0.00] 1 [0.01] 3 [0.05] 1 [0.02] 1 [0.03] 0 [0.00] 3 [0.22] 

111 20-S 3 187.0 ± 61.8 0 [0.00] 2 [0.01] 0 [0.00] 1 [0.02] 1 [0.02] 0 [0.00] 0 [0.00] 0 [0.00] 

 20-G 12 126.4 ± 10.8 2 [0.01] 3 [0.02] 

12 

[0.13] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

 25-S 1 105.4 ± 0.0 0 [0.00] 0 [0.00] 1 [0.01] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

 25-G 5 127.3 ± 26.5 0 [0.00] 4 [0.02] 1 [0.01] 2 [0.03] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

 30-S 1 106.4 ± 7.0 0 [0.00] 1 [0.01] 1 [0.01] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

 30-G 8 155.1 ± 29.9 0 [0.00] 4 [0.02] 4 [0.04] 2 [0.03] 0 [0.00] 1 [0.03] 0 [0.00] 0 [0.00] 

143 20-S 3 107.4 ± 17.6 0 [0.00] 2 [0.01] 2 [0.02] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

  20-G 12 126.4 ± 10.8 2 [0.01] 3 [0.02] 

12 

[0.13] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 
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  25-S 1 105.4 ± 0.0 0 [0.00] 0 [0.00] 1 [0.01] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

  25-G 5 127.3 ± 26.5 0 [0.00] 4 [0.02] 1 [0.01] 2 [0.03] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

  30-S 1 106.4 ± 7.0 0 [0.00] 1 [0.01] 1 [0.01] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

  30-G 8 155.1 ± 29.9 0 [0.00] 4 [0.02] 4 [0.04] 2 [0.03] 0 [0.00] 1 [0.03] 0 [0.00] 0 [0.00] 

161 20-S 4 167.8 ± 24.6 0 [0.00] 1 [0.01] 4 [0.05] 1 [0.02] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

 20-G 17 133.0 ± 19.6 6 [0.02] 2 [0.01] 

12 

[0.12] 3 [0.05] 0 [0.00] 1 [0.03] 0 [0.00] 0 [0.00] 

 25-S 1 151.2 ± 12.9 0 [0.00] 0 [0.00] 2 [0.02] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

 25-G 8 140.1 ± 23.0 2 [0.01] 3 [0.02] 3 [0.04] 3 [0.05] 0 [0.00] 1 [0.03] 0 [0.00] 0 [0.00] 

 30-S 1 165.6 ± 23.4 0 [0.00] 0 [0.00] 2 [0.02] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 

  30-G 5 146.8 ± 22.1 0 [0.00] 2 [0.01] 4 [0.04] 1 [0.02] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 
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Table S3. Gap analysis summary statistics for 10 stem mapped plots in southeast Alaska. Gaps were calculated using an edge buffer 

equal to the lower limit gap size (i.e. threshold distance). Height is a fixed value designating canopy tree threshold (i.e. 20, 25, 30 m); 

S and G indicate gap sampling method: S = shadow length, G = geometric. SEM is standard error of the sampling mean. 

 
 

        Number of gaps in size class [proportion of total plot area]  (m2) 

 Height-

method 

Gaps 

ha-1 

Mean area ± 

SEM (m2) 
0-50 51-100 

101-

200 

201-

300 

301-

400 

401-

500 

501-

600 
600+ 

        Medium density 

104 20-S 6 213.6 ± 34.2 

0 

[0.00] 

1 

[0.01] 

5 

[0.06] 

1 

[0.02] 

2 

[0.05] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

 20-G 8 332.8 ± 128.0 

1 

[0.00] 

4 

[0.02] 

0 

[0.00] 

3 

[0.05] 

0 

[0.00] 

1 

[0.03] 

0 

[0.00] 

2 

[0.16] 

 25-S 3 349.8 ± 85.4 

0 

[0.00] 

0 

[0.00] 

1 

[0.01] 

1 

[0.02] 

0 

[0.00] 

1 

[0.03] 

1 

[0.04] 

0 

[0.00] 

 25-G 6 331.7 ± 113.4 0 [0.0] 

2 

[0.01] 

2 

[0.02] 

3 

[0.05] 

0 

[0.00]  

0 

[0.00] 

0 

[0.00] 

2 

[0.12] 

 30-S 2 505.3 ± 130.9 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

2 

[0.09] 

 30-G 1 

1211.7 ± 

1112.7 

0 

[0.00] 

1 

[0.01] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

1 

[0.16] 

130 20-S 5 208.5 ± 18.5 

0 

[0.00] 

0 

[0.00] 

3 

[0.04] 

4 

[0.07] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  20-G 8 340.3 ± 64.1 

0 

[0.00] 

2 

[0.01] 

2 

[0.02] 

2 

[0.03] 

1 

[0.02] 

1 

[0.03] 

2 

[0.08] 

2 

[0.09] 

  25-S 1 220.5 ± 141.6 

0 

[0.00] 

1 

[0.01] 

0 

[0.00] 

0 

[0.00] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  25-G 10 251.5 ± 23.3 

0 

[0.00] 

0 

[0.00] 

3 

[0.03] 

8 

[0.14] 

2 

[0.05] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

  30-S 2 292.4 ± 43.4 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

2 

[0.04] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  30-G 6 404.2 ± 169.7 

0 

[0.00] 

2 

[0.01] 

2 

[0.02] 

2 

[0.03] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

2 

[0.16] 
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132 20-S 2 210.1 ± 56.7 

0 

[0.00] 

0 

[0.00] 

1 

[0.01] 

1 

[0.01] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

 20-G 9 215.0 ± 51.8 

2 

[0.00] 

2 

[0.01] 

3 

[0.03] 

3 

[0.05] 

1 

[0.03] 

1 

[0.03] 

0 

[0.00] 

1 

[0.05] 

 25-S 2 314.7 ± 82.5 

0 

[0.00] 

0 

[0.00] 

1 

[0.01] 

1 

[0.02] 

0 

[0.00] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

 25-G 6 381.4 ± 105.3 0 [0.0] 

0 

[0.00] 

4 

[0.04] 

1 

[0.02] 

0 

[0.00] 

1 

[0.03] 

2 

[0.08] 

1 

[0.07] 

 30-S 2 347.2 ± 72.9 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

1 

[0.02] 

1 

[0.02] 

0 

[0.00] 

1 

[0.04] 

0 

[0.00] 

 30-G 5 408.7 ± 165.4 

0 

[0.00] 

1 

[0.01] 

2 

[0.02] 

2 

[0.03] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

2 

[0.14] 

141 20-S 5 182.0 ± 12.8 

0 

[0.00] 

0 

[0.00] 

5 

[0.06] 

2 

[0.03] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  20-G 10 235.2 ± 73.7 

1 

[0.00] 

4 

[0.02] 

4 

[0.04] 

2 

[0.03] 

0 

[0.00] 

2 

[0.06] 

0 

[0.00] 

1 

[0.08] 

  25-S 1 265.7 ± 74.4 

0 

[0.00] 

0 

[0.00] 

1 

[0.01] 0[0.00] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  25-G 9 230.2 ± 38.6 1 [0.0] 

2 

[0.01] 

2 

[0.02] 

5 

[0.08] 

0 

[0.00] 

3 

[0.09] 

0 

[0.00] 

0 

[0.00] 

  30-S 3 642.2 ± 60.0 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

2 

[0.08] 

2 

[0.10] 

  30-G 4 924.0 ± 503.4 

0 

[0.00] 

0 

[0.00] 

1 

[0.01] 

1 

[0.02] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

2 

[0.27] 

 

 

220 20-S 3 146.1 ± 9.2 

0 

[0.00] 

0 

[0.00] 

4 

[0.04] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

 20-G 11 158.6 ± 28.5 

3 

[0.01] 

2 

[0.01] 

6 

[0.06] 

2 

[0.03] 

1 

[0.02] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

 25-S 2 318.9 ± 114.0 

0 

[0.00] 

0 

[0.00] 

1 

[0.01] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

1 

[0.04] 

0 

[0.00] 

 25-G 6 356.2 ± 104.2 

0 

[0.00] 

1 

[0.00] 

2 

[0.02] 

4 

[0.07] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

2 

[0.13] 
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 30-S 2 914.4 ± 483.3 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

2 

[0.18] 

 30-G 3 1041.3 ± 606.3 

0 

[0.00] 

0 

[0.00] 

1 

[0.01] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

2 

[0.27] 

        Full density 

32 20-S 0 0.0 ± 0.0 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

 20-G 1 78.3 ± 0.0 

0 

[0.00] 

1 

[0.01] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

 25-S 1 206.1 ± 0.0 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

1 

[0.01] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

 25-G 1 193.3 ± 108.0 

0 

[0.00] 

1 

[0.01] 

0 

[0.00] 

0 

[0.00] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

 30-S 2  855.6 ± 641.0 

0 

[0.00] 

1 

[0.00] 

0 

[0.00] 

0 

[0.00] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

1 

[0.15] 

 30-G 4 833.3 ± 525.7 

0 

[0.00] 

0 

[0.00] 

1 

[0.01] 

1 

[0.02] 

1 

[0.02] 

1 

[0.03] 

0 

[0.00] 

1 

[0.21] 

76 20-S 1 207.8 ± 33.2 

0 

[0.00] 

0 

[0.00] 

1 

[0.01] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  20-G 8 124.0 ± 38.1 

1 

[0.00] 

6 

[0.03] 

2 

[0.02] 

0 

[0.00] 

1 

[0.02] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

  25-S 1 334.3 ± 0.0 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  25-G 6 195.5 ± 56.7 

1 

[0.00] 

1 

[0.01] 

4 

[0.04] 

2 

[0.03] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

1 

[0.04] 

  30-S 1 422.6 ± 58.5 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

1 

[0.03] 

1 

[0.03] 

0 

[0.00] 

0 

[0.10] 

  30-G 4 414.8 ± 82.8 

0 

[0.00] 

0 

[0.00] 

2 

[0.03] 

0 

[0.00] 

1 

[0.02] 

0 

[0.00] 

1 

[0.04] 

2 

[0.09] 

111 20-S 0 0.0 ± 0.0 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

 20-G 7 123.8 ±32.1 

0 

[0.00] 

7 

[0.04] 

2 

[0.02] 0[0.00] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 
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 25-S 1 354.0 ± 0.0 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

 25-G 4 161.6 ± 65.6 0 [0.0] 

2 

[0.01] 

2 

[0.02] 

0 

[0.00] 

0 

[0.00] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

 30-S 1 448.8 ± 0.0 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

 30-G 2 381.7 ± 227.6 0 [0.0] 

0 

[0.00] 

2 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

1 

[0.06] 

143 20-S 0 0.0 ± 0.0 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  20-G 9 92.2 ± 13.8 

5 

[0.01] 

2 

[0.01] 

6 

[0.06] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  25-S 0 0.0 ± 0.0 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  25-G 2 135.2 ± 51.4 

1 

[0.00] 

0 

[0.00] 

1 

[0.01] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  30-S 0 0.0 ± 0.0 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  30-G 3 183.7 ± 14.7 

0 

[0.00] 

0 

[0.00] 

2 

[0.02] 

2 

[0.03] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

161 20-S 1 199.2 ± 63.4 

0 

[0.00] 

0 

[0.00] 

1 

[0.01] 

1 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

 20-G 12 123.6 ±26.4 

6 

[0.02] 

3 

[0.02] 

5 

[0.05] 

2 

[0.03] 

0 

[0.00] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

 25-S 0 0.0 ± 0.0 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

 25-G 4 180.2 ± 68.2 

0 

[0.00] 

3 

[0.02] 

0 

[0.00] 

1 

[0.01] 

0 

[0.00] 

1 

[0.03] 

0 

[0.00] 

0 

[0.00] 

 30-S 0 0.0 ± 0.0 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

  30-G 1 145.2 ± 9.4 

0 

[0.00] 

0 

[0.00] 

2 

[0.02] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 

0 

[0.00] 
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Table S4. Summary of within stand level spatial patterns of widely spaced individuals (i.e. patch 

size = 1) and patches of overstory trees for 10 Sitka spruce-western hemlock forests in SE 

Alaska. BA is basal area in meters squared and total density is per plot.  

 

  Patch size (number of trees) 

Plot  1 2-4 5-7 8-10 11-15 16+ 

Medium density 

104 # Patches ha-1 7 6 4 1 1 2 

 % Total density 6.1 14.6 18.3 4.9 15.2 40.9 

 %Total BA 6.5 16.6 15.1 4.9 15.2 41.4 

130 # Patches ha-1 14 14 3 1 1 1 
  % Total density 14.5 38.9 16.8 6.1 10.7 13.0 
  %Total BA 16.2 39.4 16.7 6.1 10.7 11.9 

132 # Patches ha-1 13 6 2 1 2 1 

 % Total density 12.4 15.9 11.7 5.5 24.8 29.7 

 %Total BA 14.0 16.5 10.7 5.5 24.8 24.0 

141 # Patches ha-1 12 12 3 2 1 1 
  % Total density 11.6 29.0 17.4 19.6 10.9 11.6 
  %Total BA 12.5 35.1 17.4 19.6 10.9 9.8 

220 # Patches ha-1 4 8 4 3 1 1 

 % Total density 3.6 16.8 21.6 21.6 15.0 21.6 

 %Total BA 3.2 12.8 23.4 21.6 15.0 18.5 

Full density 

32 # Patches ha-1 2 4 0 0 0 1 

 % Total density 1.0 5.4 0.0 0.0 0.0 93.6 

 %Total BA 1.4 5.8 0.0 0.0 0.0 92.8 

76 # Patches ha-1 4 4 2 1 0 2 
  % Total density 3.0 7.5 8.0 4.5 0.0 77.0 
  %Total BA 3.2 7.7 5.9 4.5 0.0 78.7 

111 # Patches ha-1 1 3 1 0 1 2 

 % Total density 0.8 4.2 2.7 0.0 9.3 83.0 

 %Total BA 0.4 4.9 5.2 0.0 9.3 77.9 

143 # Patches ha-1 6 3 1 0 0 3 
  % Total density 2.9 3.3 4.0 0.0 0.0 89.9 
  %Total BA 3.4 5.2 3.7 0.0 0.0 87.7 

161 # Patches ha-1 4 5 2 0 0 3 

 % Total density 2.6 9.9 7.8 0.0 0.0 79.7 
  %Total BA 1.8 9.8 9.4 0.0 0.0 79.0 
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Figure S1. Stem maps by plot for medium density Sitka spruce western hemlock forests in southeast Alaska. Tree boles are colored 

by species and size represents overstory, mid-story, and understory positions. A 4.44 m radius was used to project tree crowns on 

overstory trees to show patches at a fixed distance of 8.88 m. Patch size is the number of trees in a patch. Gaps and associated plot 

buffer distances are shown with a solid or dashed line. Background coloration is a graphical display of open area where colors indicate 

the distance to the nearest overstory trees in meters.  
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Figure S2. Stem maps by plot for full density Sitka spruce western hemlock forests in southeast Alaska. Tree boles are colored by 

species and size represents overstory, mid-story, and understory position. A 4.44 m radius was used to project tree crowns on 

overstory trees to show patches at a fixed distance of 8.88 m. Patch size is the number of trees in a patch. Gaps and associated plot 

buffer distances are shown with a solid or dashed line. Background coloration is a graphical display of open area where colors indicate 

the distance to the nearest overstory trees in meters.  
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Figure S3. Percent of total plot are in openings categorized as a shadow or geometric gap pooled 

by overstory density for old-growth Sitka-spruce western hemlock forest in southeast Alaska. 

Open area has no overstory canopy. 
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Figure S4. Average number of edge buffered gaps on a per hectare basis by size class for 10 old-

growth Sitka spruce-western hemlock forest in southeast Alaska pooled by canopy density. An 

edge buffer with a distance equal to the minimum gap distance was applied to the gap 

calculations. Error bars are one standard error of the mean. Shadow and geometric are the 

methods used to define a functional gap for the analysis. Minimum functional gap size is 42.3 m2 

and 15.5 m2 for shadow and geometric gaps respectively.  
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Figure S5. Pair correlation function for all overstory trees (≥ 25 m tall) in medium density plots 

and for all plots pooled. 
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Figure S6. Pair correlation function for all overstory trees (≥ 25 m tall) in full density plots and 

for all plots pooled. 
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Figure S7. Pair correlation function for overstory western hemlock (TSHE) trees (≥ 25 m tall) in 

medium density plots and for all plots pooled. Plot 104 was eliminated from the analysis due to 

insufficient sample size of overstory hemlock.  
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Figure S8. Pair correlation function for overstory hemlock (TSHE) trees (≥ 25 m tall) in full 

density plots and for all plots pooled. 
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Figure S9. Pair correlation function for all understory trees (≤ 10 m tall) in medium density plots 

and for all plots pooled. 
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Figure S10. Pair correlation function for all understory trees (≤ 10 m tall) in full density plots 

and for all plots pooled. 
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Figure S11. Bivariate pair correlation function for medium density plots and for all plots pooled 

for all understory trees in relation to all overstory trees.  
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Figure S12. Bivariate pair correlation function for full density plots and for all plots pooled for 

all understory trees in relation to all overstory trees.  
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CHAPTER 2 Supplementary Material  
 

Table S1. Summary of attributes for sampled neighborhoods within the site. n = 6 for each 

neighborhood type. Immediate neighborhood is the trees directly influencing the snow in these 

plots calculated as the number of trees within 10 m of plot center. Tree height to open width ratio 

uses average overstory tree height at the study site to the average opening diameter. Value 

following ± is standard deviation.  

 

Neighborhood Size range Mean Size Traits 

Individuals (dbh)   Total Crown Biomass (kg) 
ponderosa pine 42.3 - 70.2 54.1 ± 10.2 417.01 ± 176.61  

western larch 21.5 - 35.9 29.3 ± 4.7 43.15 ± 11.22 
Douglas-fir 31.7 - 61.9 43.9 ± 10.2 204.75 ± 115.02 

   
Immediate 

Neighborhood 
Clumps (# trees) 18 - 99 52.5 ± 35.7 14 ± 5 

   OpenWidth:TreeHeight 

Openings (m2) 234 - 930 446.5 ± 275.1  1.07 ± 0.32 
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Figure S1. Water year snow water equivalent recorded at Lubrecht Flume SNOTEL station 

(October 1-September 30). Lubrecht Flume is located at 1425 m, 175 m above and 11.38 km 

southeast of the study site. Long term station average is from 1980-2010. Peak SWE in 2017 = 

16.3 cm, 2016 =9.7 cm, 2015 = 15.5 cm, Average = 12.2 cm.  
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Figure S2. Distribution of tree density by size and species for a mixed-conifer forest. Tree size is 

presented in 5 cm diameter classes for trees >10.0 cm dbh and stacked by species, with the first 

tier representing tree snags (“dead”). The bottom right figure is average across all plots. PIPO is 

ponderosa pine, PSME is Douglas-fir, LAOC is western larch, and PICO is lodgepole pine. 

There is only 1 lodgepole in the entire site, in plot 3.  
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Figure S3. Height to diameter relationship for species in a western U.S. mixed conifer forest. 

n=1416 for PIPO, n=3435 for PSME, n=492 for LAOC, and n=1 for PICO. Included diameters 

range from 0.9 – 79.5 cm with a minimum height of 1.37 m and maximum height of 33.94 m.  
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Figure S4. Fractional snow cover melt curves for all neighborhoods from 2015-2017. Snow 

cover is presented as percent of sample points with snow remaining over time given in Julian 

days instead of days since peak melt.  
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Figure S5. Snow accumulation and melt characteristics across opening size. Dotted line is a 1:1 

relationship where openings of increasing size would have increasing values of snow 

characteristics.  
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CHAPTER 3 Supplementary Material 

  
Table S1. Radial distance selection model fitting criteria (AIC) for predictive ground variables for snow water equivalent (SWE), snow density, and 

snow disappearance date (SDD). Distances ranged from 1-15m. Bolded values correspond minimal AIC values and indicated the selected radius.   

 
Radius 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Variables Snow water equivalent (SWE) 

tree.den 31956.73 31157.14 30670.58 30301.34 29854.76 29434.57 29025.15 28635.89 28167.89 27832.49 27578.05 27205.72 26821.76 26388.06 25979.40 

Abs.LAOC 32071.12 31346.86 30921.14 30514.96 30038.82 29593.25 29158.08 28741.99 28247.62 27890.82 27632.74 27250.29 26861.47 26423.08 26005.63 

Abs.intermed 32067.33 31311.66 30875.20 30469.01 29992.88 29553.72 29133.30 28724.44 28246.78 27901.26 27644.02 27265.38 26880.49 26446.24 26036.33 

Abs.codom 32047.32 31290.06 30846.48 30441.66 29965.63 29536.85 29110.67 28712.48 28223.62 27885.75 27622.54 27249.79 26867.62 26438.82 26030.51 

Abs.dom 31993.34 31176.21 30682.20 30316.06 29863.96 29442.84 29009.33 28631.99 28173.85 27837.09 27609.73 27244.55 26871.18 26447.78 26035.11 

Hegyi 31961.13 31172.65 30693.38 30274.59 29783.75 29336.65 28892.77 28484.05 28000.83 27650.82 27395.98 27025.58 26645.84 26213.71 25798.73 

SumNN 31759.45 31152.32 30810.84 30456.91 30008.62 29588.57 29164.32 28765.27 28287.99 27943.38 27687.37 27309.42 26928.31 26497.98 26085.11 

  Snow density 

tree.den -5854.41 -5725.89 -5616.19 -6157.33 -6076.32 -5997.74 -5940.11 -5875.97 -5785.92 -5694.64 -5625.52 -5595.74 -5547.05 -5479.71 -5504.59 

Abs.LAOC -5854.17 -5723.25 -5606.11 -6136.31 -6047.87 -5975.78 -5916.67 -5853.29 -5765.71 -5678.37 -5614.95 -5587.23 -5539.89 -5473.99 -5498.58 

Abs.intermed -5854.34 -5724.10 -5608.86 -6138.32 -6056.08 -5978.08 -5921.40 -5856.57 -5768.90 -5681.86 -5617.20 -5589.74 -5540.93 -5474.37 -5498.10 

Abs.codom -5854.83 -5725.09 -5609.59 -6142.29 -6059.36 -5985.93 -5927.20 -5863.04 -5773.74 -5686.89 -5620.79 -5591.37 -5544.22 -5476.94 -5501.55 

Abs.dom -5855.11 -5724.78 -5616.27 -6165.67 -6082.25 -6005.27 -5950.12 -5884.38 -5790.87 -5692.67 -5623.44 -5594.43 -5545.28 -5479.09 -5504.35 

Hegyi -5854.68 -5723.71 -5607.69 -6143.87 -6061.07 -5989.81 -5934.03 -5871.61 -5784.40 -5695.95 -5631.54 -5600.45 -5553.40 -5488.65 -5515.20 

SumNN -5870.37 -5739.01 -5621.27 -6149.42 -6061.97 -5986.22 -5927.37 -5862.15 -5773.21 -5685.87 -5622.24 -5594.16 -5546.54 -5480.09 -5504.22 

  Snow disappearance date (SDD) 

tree.den 190807.57 187892.88 185455.16 183175.80 180772.33 178449.32 176151.68 173873.43 171370.33 168897.03 166451.59 163999.37 161540.16 158995.95 156527.42 

Abs.LAOC 190954.96 188136.09 185691.29 183370.42 180916.89 178512.37 176151.90 173812.66 171273.34 168769.87 166303.97 163830.61 161365.98 158810.12 156334.69 

Abs.intermed 190938.05 188119.34 185700.82 183419.63 181002.19 178643.42 176324.10 174023.51 171504.36 169012.70 166555.91 164087.54 161626.76 159082.94 156612.59 

Abs.codom 190899.82 188045.34 185611.21 183308.70 180875.07 178523.67 176217.15 173920.44 171400.87 168924.31 166471.88 164011.19 161548.19 159001.35 156532.95 

Abs.dom 190874.25 187940.92 185482.30 183160.79 180728.43 178389.82 176057.14 173783.79 171279.96 168794.21 166345.93 163892.11 161426.08 158877.04 156405.58 

Hegyi 190783.19 187855.10 185356.27 183014.48 180553.83 178179.28 175843.14 173536.12 171014.49 168528.97 166078.05 163622.41 161164.64 158617.51 156146.76 

SumNN 190645.78 187921.17 185603.78 183374.91 180978.12 178627.23 176312.52 174014.42 171497.58 169008.14 166552.70 164085.80 161625.92 159082.43 156611.81 
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Table S2. Radial distance selection model fitting criteria (AIC) for predictive LiDAR variables for snow water equivalent (SWE), 

snow density, and snow disappearance date (SDD). Distances ranged from 1-8m. L-skewness and L-kurtosis were fit with a model 

containing only fixed effects, others utilized a mixed effects model. Bolded values correspond minimal AIC values and indicated the 

selected radius.   

Radius 1 m 2 m 3 m  4 m 5 m 6 m 7 m 8 m 

Variable Snow water equivalent (SWE) 
Elev.mean 36357.5 29015.3 29008.4 29039.4 29101.7 29176.7 29263.7 29343.1 
Elev.L2 36494.2 29305.6 29378.6 29443.8 29490.1 29533.1 29576.3 29614.1 
Elev.L.CV 36589.4 29137.9 28982.7 28918.0 28948.7 29003.0 29069.9 29144.2 
Elev.L.skewness 38655.4 36416.0 36363.3 36361.9 36399.6 36447.3 36485.8 36528.3 
Elev.L.kurtosis 38649.5 36774.2 36780.6 36811.4 36820.1 36821.3 36827.2 36839.9 
Elev.P95 36388.1 29189.2 29281.9 29351.3 29415.6 29498.4 29571.2 29613.9 
Elev.P99 36388.5 29187.8 29280.8 29365.4 29446.1 29528.2 29578.0 29635.7 
Crown.cover 36261.9 28686.5 28614.2 28627.2 28702.7 28810.5 28929.1 29033.2 
  Snow density  
Elev.mean -7564.8 -7713.6 -7721.0 -7719.7 -7716.6 -7713.6 -7707.6 -7700.3 
Elev.L2 -7554.2 -7699.4 -7702.5 -7695.9 -7688.4 -7683.5 -7677.3 -7669.5 
Elev.L.CV -7546.6 -7683.2 -7705.6 -7717.2 -7725.6 -7734.6 -7724.3 -7716.6 
Elev.L.skewness -6657.7 -7682.1 -7699.4 -7705.0 -7703.1 -7700.6 -7690.0 -7683.4 
Elev.L.kurtosis -6659.3 -7659.0 -7676.9 -7679.6 -7677.6 -7677.0 -7665.1 -7660.4 
Elev.P95 -7558.0 -7710.5 -7710.3 -7692.1 -7684.6 -7676.8 -7670.8 -7664.0 
Elev.P99 -7557.6 -7713.3 -7700.6 -7694.6 -7682.1 -7674.4 -7668.8 -7658.0 
Crown.cover -7554.0 -7715.5 -7728.4 -7732.8 -7733.9 -7732.2 -7724.6 -7716.3 
  Snow disappearance date (SDD) 
Elev.mean 218883.2 157333.9 157088.7 157026.7 157170.2 157446.0 157799.6 158164.5 
Elev.L2 219192.4 158672.6 158776.3 158955.3 159190.9 159456.7 159749.5 160016.9 
Elev.L.CV 219289.6 158778.3 157871.7 157224.5 156928.7 156875.0 157052.9 157388.6 
Elev.L.skewness 228597.2 165593.5 164333.3 163497.0 163263.2 163495.8 164024.4 164743.6 
Elev.L.kurtosis 228596.7 169713.0 169342.4 169256.5 169296.1 169430.6 169665.8 169926.8 
Elev.P95 219003.3 158146.2 158338.1 158728.6 159158.8 159591.3 159984.3 160263.2 
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Elev.P99 219002.5 158164.1 158467.3 158919.0 159389.4 159838.7 160239.8 160520.4 
Crown.cover 218862.0 156963.0 156607.0 156517.6 156682.5 157031.3 157456.3 157879.8 
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Table S3. Snow disappearance metrics for four consecutive snow years in western Montana. 25, 

50, 75 and 90% melt indicate the progression through the melt season based on length of time 

from peak accumulation until final melt (melt length). Melt values are presented as fSCA 

(fractional snow covered area) associated with the given periods of the melt season. n is sample 

size. ± standard deviation.  

 

Year   SITE PLOT 3 PLOT 2 PLOT 1 

2014 n 5296 2652 2644 NA 

 melt length 49 46 49 NA 

 25% melt 88.5 ± 3.0 86.3 90.6 NA 

 50% melt 59.4 ± 5.6 63.3 55.4 NA 

 75% melt 6.1 ± 6.2 1.77 10.5 NA 

 90% melt 0.4 ± 0.4 0.1 0.6 NA 
2015 n 6013 3079 2934 NA 

 melt length 31 31 31 NA 

 25% melt 85.6 ± 19.8 99.6 71.5 NA 

 50% melt 19.9 ± 2.5 18.1 21.6 NA 

 75% melt 6.2 ± 3.1 4 8.4 NA 

 90% melt 0.6 ± 0.4 0.3 0.8 NA 
2016 n 8987 3083 2952 2952 

 melt length 43 41 43 43 

 25% melt 19.3 ± 4.2 19.4 23.5 15.1 

 50% melt 5.1 ± 3.7 1.8 9.1 4.4 

 75% melt 1.1 ± 0.5 0.7 1.6 1.1 

 90% melt 0.3 ± 0.3 0.03 0.2 0.7 
2017 n 6033 3083 2950 NA 

 melt length 59 59 55 NA 

 25% melt 88.5 ± 2.8 87 90 NA 

 50% melt 66.8 ± 5.9 62.6 71 NA 

 75% melt 2.5 ± 2.3 0.8 4.1 NA 
  90% melt 0.06 ± 0.02 0.04 0.07 NA 

 

 



 

155 

 

Figure S1. Lubrecht Flume SNOTEL snow water equivalent for 2014 – 2017. The dark line is 

the long term average.  
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Figure S2. Forest canopy metric subplot radius selection using a linear mixed effects model. 

Ground metrics were calculated over subplots with radii ranging from 1-15 m and LiDAR 

derived metrics from 1-8 m. Optimal radii were chosen based on minimized AIC.  
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Figure S3. Pearson’s correlation coefficients for SWE, density, and SDD for ground and LiDAR 

based predictor variables. Individual plots for response variables are given to reflect the variation 

in optimal radial distances used to select predictor variable inclusion. 


