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ABSTRACT 
 
Strait, Jeffrey T., Ph.D., Spring 2020    Fish and Wildlife Biology 
 
Quantifying the effects of non-native rainbow trout (Oncorhynchus mykiss) hybridization and 
environmental conditions on fitness-related traits of westslope cutthroat trout (Oncorhynchus 
clarkii lewisi) 
 
Co-Chairpersons: Dr. Lisa Eby and Dr. Gordon Luikart 
 

Human-mediated hybridization is a serious and growing threat to the conservation of 
biodiversity worldwide. Introgressive hybridization between introduced rainbow trout 
(Oncorhynchus mykiss, RBT) and westslope cutthroat trout (Oncorhynchus clarkii lewisi, WCT) 
is widespread across much of historical range of WCT and is considered one of the top threats to 
the persistence of remaining WCT populations. The ecological and evolutionary consequences of 
RBT hybridization and the role of environmental conditions in mediating those consequences is 
largely unknown but critical for making management decisions. I investigated three fitness-
related traits across multiple populations to improve our understanding of the genetic basis of 
fitness differences due to RBT admixture. Specifically, I asked: how does RBT admixture affect 
growth, migratory life history, and survival; do environmental conditions mediate the effects of 
RBT admixture; and does RBT introgression at specific loci explain differences in these traits? 

 
The environmental context in which hybridization occurs influences the outcomes of 

growth and survival, but not migratory behavior. I found that both growth and survival rates were 
variable among seasons and populations, likely due to the temporal and spatial environmental 
variation at these scales. While growth was significantly influenced by RBT admixture, this trait 
appeared to be less influential for determining the population-level consequences of hybridization 
as compared to survival and migratory behavior. Effects of RBT admixture on survival was 
highly variable, and ultimately reflected the population-level admixture. Interestingly, across 
these populations outbreeding depression was site-dependent and environmental gradients 
typically used for describing patterns in hybrid zones, such as thermal regimes, did not predict the 
variation in fitness consequences. A strong genomic association between RBT introgression on 
chromosome 29 and migratory behavior helps explain the rapid expansion of hybridization in 
systems through higher dispersal rates of hybrids. Overall, this research demonstrates that even 
low amounts of RBT admixture can substantially impact growth, survival and migratory behavior 
- all traits that can have large effects on population demography and evolution. This increases our 
knowledge of the impacts of RBT admixture on wild populations and provides valuable 
information regarding factors driving the spread of hybridization and local fitness consequences. 
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CHAPTER 1 

INTRODUCTION AND OVERVIEW 

 

Human actions have led to novel species interactions, including hybridization between introduced 

and native flora and fauna (Olden et al. 2004). Human-mediated hybridization (hybridization that is the 

direct result of human actions via translocations or habitat alterations) threatens biodiversity across the 

globe (Allendorf et al. 2001; Crispo et al. 2011; Grabenstein & Taylor 2018). Climate change will likely 

contribute to the continued expansion of human-mediated hybridization and the declines of native taxa in 

many systems (Kelly, Whiteley, & Tallmon 2010; Muhlfeld et al. 2014; Hunter et al. 2017). While, 

introgressive hybridization is a powerful evolutionary force that increases genetic diversity and can lead 

to speciation or adaptive introgression (Nolte & Tautz 2010; Abbott et al. 2013; Hedrick 2013; Jones et 

al. 2018), human-mediated hybridization can lead to the extinction of native genotypes through the 

formation of hybrid swarms, loss of locally adapted gene complexes, and outbreeding depression 

(Rhymer & Simberloff 1996; Abbott, Barton, & Good 2016; Kovach et al. 2016a; Todesco et al. 2016). 

Genomic extinction can occur if there is complete mixing of a population’s (or species’) genome, 

resulting in the irreversible loss of evolutionarily distinct lineages (Allendorf et al. 2001). While there is 

increasing documentation and quantification of non-native admixture in species of conservation concern, 

there are typically far fewer studies quantifying the evolutionary and ecological consequences of these 

events. This lack of scientific data can lead to debate on the urgency of the threat and the most appropriate 

mitigation actions, ultimately delaying or preventing effective conservation actions (Allendorf et al. 

2001). 

Outbreeding depression has often been considered a universal phenomenon following human-

mediated hybridization events in species that exhibit local adaptation (Rhymer & Simberloff 1996), yet 

there is increasing evidence that the relative fitness of hybrid genotypes can be environmentally 

dependent and change over time (Arnold & Martin 2010; Walsh et al. 2016a; Hunter et al. 2017; Zhang et 

al. 2019). The tension and mosaic hybrid zone models from hybrid zone theory (Arnold 1997) have been 

used to set expectations of the drivers and consequences of human-mediated hybridization (e.g., 

Grabenstein & Taylor 2018). Characterizing the model of hybridization in human-mediated events 

requires quantifying selection on hybrids across a range of environmental conditions to determine the 

extent of outbreeding depression and the role of environmental context on the outcomes (i.e., are tension 

or mosaic processes at work?). Such studies help researchers frame expectations regarding the spatial 

variation in selection, the evolutionary mechanisms driving hybridization and predict the responses to 

different management actions. Research that quantifies how local environmental conditions influence 

individual fitness differences in admixed populations is relatively common in plants (e.g., Emms & 
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Arnold 1997; Campbell & Waser 2001; Gramlich & Hörandl 2016), but extremely rare among vertebrates 

(Casas et al. 2012; Vallin et al. 2013; Culumber et al. 2015; Walsh, Olsen, et al. 2016a).  
Measuring the fitness consequences of human-mediated hybridization in the wild is challenging. 

Furthermore, the signal of selection on non-native admixture can vary depending on the trait investigated 

(McGinnity et al. 2004; Muhlfeld et al. 2009a; Ryan, Johnson, & Fitzpatrick 2009; Casas et al. 2012; 

Drinan et al. 2015; Fukui 2019). Few studies have linked the fitness consequences of human-mediated 

hybridization to environmental conditions in the wild (Arnold and Martin 2010; Hunter et al. 2017). If 

environmental conditions influence hybrid fitness, this can confound our ability to make broad 

conclusions and recommendations from single population or laboratory studies. Because of these 

challenges, landscape-admixture associations are often used to represent selection gradients or fitness-

environment associations in hybrid zones (Culumber et al. 2012; Walsh et al. 2016b). It should be noted 

that in some studies of natural hybrid zones, researchers have followed up landscape-admixture 

association studies to confirm genotype-by-environment selection on fitness traits (e.g., Culumber et al. 

2015; Walsh et al. 2016a), however, these studies are lacking in human-mediated hybridization events. 

Landscape patterns are driven by multiple factors including distance from source, dispersal, and selection 

and as such may not be honest indicators of selection alone. This confounds our ability to use landscape-

wide patterns of admixture between native and invasive species across heterogeneous landscapes to 

understand selection.  

The advances of next-generation sequencing techniques have greatly improved our ability to 

detect, characterize, and manage the rates and patterns of invasive introgression (McFarlane & Pemberton 

2019). Genomic approaches are also improving our understanding the evolutionary and ecological 

consequences of these events (Hedrick 2013; Fraïsse et al. 2014; Christe et al. 2016; Jones et al. 2018) 

including our understanding of the genetic basis of traits ( e.g., the number and effect sizes of genes 

explaining variation in phenotypic traits; Lindtke et al. 2013; Vestergaard et al. 2015). Salmonids have led 

in the application of genomic tools for conservation (Waples, Naish, & Primmer 2020), and we have 

begun to understand the genetic basis of many life history and fitness-related traits (Hecht et al. 2013; 

Johnston et al. 2014; Gutierrez et al. 2015; Prince et al. 2017; Kodama, Hard, & Naish 2018; Kelson et al. 

2019; Ali et al. 2020).  

Human-mediated hybridization is particularly common in fishes due to extensive human 

translocations for sport fishing and harvest (Epifanio & Nielsen 2000; Scribner, Page, &Bartron 2001) 

and more specifically is among the greatest threat to all cutthroat trout subspecies (Oncorhynchus clarkii) 

in western North America (Shepard, May, & Urie 2005). Rainbow trout (O. mykiss, hereafter RBT) is 

among the world’s most widely introduced invasive fish species (Behnke 1992; Halverson 2010), and 

naturalized populations of RBT hybridize with native cutthroat trout. Westslope cutthroat trout (O. clarkii 
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lewisi, hereafter WCT) have experienced substantial range retractions due to species introductions, land 

use practices (i.e., logging, mining, grazing), and overexploitation (Shepard, May, & Urie 2005). 

Rainbow trout having been stocked on many waters across western North America, and many populations 

of native WCT are experiencing introgressive hybridization with non-native RBT. In areas where their 

native ranges overlap, admixture is generally lower likely due to the evolution of spatial and temporal 

isolation of reproduction (Leary, Allendorf, & Sage 1995; Kozfkay et al. 2007). However, in their 

introduced range, RBT hybridize with WCT and threaten populations with genomic extinction through 

widespread admixture and the formation of hybrid swarms (Leary et al. 1988; Leary, Allendorf, & Sage 

1995; Allendorf et al. 2004). Shepard et al. (2005) estimated that nonhybridized populations of WCT 

existed at only 10% of their historic distribution, and that number is likely even lower today.  

There has been a plethora of research surrounding hybridization between cutthroat and rainbow 

trout since the mid-1980s (see Table 1.1). However, most of the research on CTxRBT hybridization has 

focused on characterizing the genetic divergence and quantifying the landscape patterns of hybridization. 

Fewer have quantified fitness differences between these species and their hybrids. Marker sets have 

improved greatly since the studies first identifying hybridization and characterizing genetic differences 

between these species. We have gone from relatively few allozyme or microsatellite loci to thousands of 

single nucleotide polymorphisms (SNP) mapped to the rainbow trout reference genome (Berthelot et al. 

2014). These advancements have fueled our understanding of the patterns and extent of hybridization 

between these species and also our ability test for and quantify the effects of admixture on fitness-related 

traits and selection on RBT alleles and hybrids. 

The many published studies on CTxRBT hybridization are landscape level analyses describing 

the landscape patterns of hybridization and testing for associations between site-level admixture and 

environmental drivers or landscape features (see Table 1.1). Generally, these studies agree in their 

findings of the environmental factors associated with the patterns and driver of hybridization between 

these species. Specifically, distance from source populations, site elevation, and stream temperature are 

positively associated with proportion RBT admixture in many studies and river basins across western 

North America. These patterns align with known differences in thermal tolerance between these species 

(Bear, McMahon, & Zale 2007; Yau & Taylor 2014), however, there is considerable variation in the 

pattern of RBT hybridization unexplained by these environmental predictors (see Muhlfeld et al. 2017). 

There are fewer studies quantifying the effects of RBT admixture on fitness related traits (Table 

1.1). Many of these studies are limited as they are restricted to F1 generation or early generation 

backcrosses, laboratory conditions, or a single population. For example, the studies by Leary et al. (1995) 

and Drinan et al. (2015) show conflicting results of the effect of RBT admixture on embryonic and 

juvenile survival. Furthermore, the effect of RBT admixture varied from positive to negative depending 
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on the developmental traits (Drinan et al. 2015). Not only do these data suggest that the fitness effects of 

admixture likely vary among families and populations, but also caution that we might expect different 

signals depending on the fitness traits measured in a study.  

As with other salmonid studies (Araki, Cooper, & Blouin 2007; Christie, Ford, & Blouin 2014; 

Glover et al. 2017), Muhlfeld et al. (2009a) found a strong decrease in reproductive success associated 

with RBT admixture in one wild population (e.g., 50% fewer offspring with only 20% RBT admixture). 

However, given the landscape studies suggesting there are environmental gradient mediating admixture 

and its effects on fitness, conclusions from a single population should be taken with caution. To help 

contextualize data on the fitness effects of hybridization, the landscape patterns, and environmental 

drivers of admixture it is crucial to quantify the effects of non-native admixture on fitness-related traits in 

wild populations across a range of environmental conditions. 

The work presented in the following three chapters is focused on improving our understanding of 

the ecological and evolutionary consequences of human-mediated hybridization. Furthermore, this 

research informs the conservation and management of cutthroat populations threatened by hybridization 

with rainbow trout. Each chapter is written to be a stand-alone publication and written in the first person 

plural writing style to reflect the contributions of many persons who will serve as coauthors when these 

chapters are submitted for publication. This study is not only the first in cutthroat-rainbow hybridization, 

but one of few in vertebrate taxa that use individual based data to examine fitness by measuring multiple 

fitness-related traits across multiple populations and environmental conditions. I quantified the effects of 

individual proportion rainbow trout admixture on multiple fitness-related in three populations that differ 

substantially in environmental conditions previously shown to influence hybridization.  

These chapters add to the body of literature on human-mediated hybridization by: 1) quantifying 

the effect of admixture on multiple fitness-related traits, 2) testing for the effect of environmental 

conditions on those fitness outcomes, and 3) investigating the genetic basis of fitness differences by 

testing for locus-specific effects of introgression on these traits. More specifically, it adds to a body of 

literature and informs a debate on the fitness consequences and factors driving landscape patterns of 

hybridization between RBT and WCT. I examined the effect of RBT admixture on seasonal growth rates 

and life history strategy in Chapter 2. I then quantified the effect of admixture on survival probabilities in 

Chapter 3. In the final chapter of my dissertation (Chapter 4), I looked for a genetic basis of differences in 

growth rate and migratory behavior by testing for locus-specific associations between RBT alleles and 

these traits. Additionally, Chapter 4 includes a power analysis using extensive simulations which is likely 

to help other researchers and advance the field.  

The study populations in my dissertation are all tributaries to the North Fork Flathead River, MT. 

While the Flathead is still considered a stronghold for large connected populations of WCT, the North and 
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Middle Forks have experienced substantial and increasing RBT introgression from source populations 

throughout in the system (Hitt et al. 2003; Boyer, Muhlfeld, & Allendorf 2008; Muhlfeld et al. 2014, 

2017). All sampling was conducted in populations Cyclone, Langford, and McGee Creeks. All 

populations are hybridized but contain nonhybridized WCT as well. Pertinent details concerning sampling 

and environmental conditions of each population is given in the relevant research chapter(s).  

 

What is the effect of rainbow trout admixture on growth rates and migratory life history?  

Do the effects differ across streams with varying environmental conditions? 

 

Chapter 2 highlighted that the effect of RBT admixture on growth rates was variable among 

seasons and populations. We found RBT admixture-by-environment interactions (GxE) at multiple scales; 

not only did admixture have opposing effects on growth during different seasons but interacted with 

temperature to influence summer growth rates. Summer growth rates increased positively with RBT 

admixture, and during warmer summers this relationship was increasingly positive in Cyclone and 

Langford. However, during the spring season, growth rate was negatively associated with RBT admixture 

at sites with cooler conditions. These results are consistent with studies showing RBT have a higher 

thermal tolerance, wider scope for growth, and higher metabolic rates than cutthroat trout (Bear, 

McMahon, & Zale 2007; Rasmussen, Robinson, & Heath 2010). Overall, the opposing effects of 

admixture on seasonal growth resulted in neutral effects of admixture on annual growth under cooler 

conditions. At the warmest site WCT did not have higher spring growth rates, and as a result RBT 

admixture had a positive effect on annual growth. This has implications for future conservation under 

climate change as hydrologic and thermal regimes are likely to change. If WCT do not grow faster than 

hybrids during the spring, this may result in positive effects of RBT admixture on annual growth across 

much of the landscape. 

In contrast to growth, the effect of RBT admixture on the probability of migration was 

environmentally independent. Migratory life history expression was consistently and positively impacted 

by RBT admixture (note: McGee was excluded from this analysis due to small sample sizes). These 

results are consistent with other studies suggesting that hybrids likely have higher dispersal rates that 

WCT (Boyer, Muhlfeld, & Allendorf 2008; Kovach et al. 2015). In addition to a higher propensity to 

express a migratory life history, juvenile hybrids were also more likely to emigrate from their natal stream 

at a smaller size than WCT, again consistent with work from Kovach et al. (2015). This shift in the timing 

of this trait has potential tradeoffs between river survival, size and age at maturation, and generation 

interval. Overall, these results offer an explanation for the rapid spread of hybridization in some systems, 

despite evidence of lower reproductive success. Furthermore, the strong association between RBT 
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admixture and migratory behavior suggests there is a strong genetic basis affecting differences in the 

propensity to express a migratory life history between these species. The genetic basis of differences in 

growth and migratory life history due to hybridization are investigated further in Chapter 4. 

 

What is the effect of rainbow trout admixture on survival rates?  

Do the effects differ among populations with varying environmental conditions? 

 

The effects of RBT admixture on survival were variable across our study streams. This supports a 

mosaic hybrid zone theory as the mechanism influencing landscape patterns of hybridization and is one of 

few empirical studies demonstrating environmentally dependent fitness consequences in vertebrates 

(Arnold & Martin 2010; Walsh et al. 2016a; Hunter et al. 2017). Specifically, the effect of RBT 

admixture on survival varied by season and population. These seasonal effects resulted in different 

associations between admixture and annual survival probabilities in these populations – there was a 

positive effect of RBT admixture on juvenile survival at the coldest site, while the warmest site had a 

negative effect of RBT admixture on survival of all size classes. Interestingly, the effect of admixture on 

survival reflected the population-level consequences of RBT admixture. The population with the strongest 

negative effect of admixture on survival also had the lowest population level admixture. Given that all 

streams reflect negative selection against admixture during early life history stages (Kovach et al. 2015), 

selection across multiple life history stages may be necessary to prevent a population from becoming 

highly admixed. This analysis also revealed that significant admixture-environment associations with 

temperature previously described for these species (e.g., Muhlfeld et al. 2014; Young et al. 2016; 

Muhlfeld et al. 2017) might not predict the variation in selection across life history stages.  

 

What is the genetic basis of differences in growth and migration due to RBT admixture? 

 

Based on the strong association between genome-wide RBT admixture and the fitness traits 

investigated in Chapter 2, I further investigated the genetic basis of RBT admixture on these traits. Given 

the paucity of power analyses in the literature for genomic wide association analyses (GWAA), I initially 

simulated a river network and the evolution of these populations due to hybridization from a source of 

non-native alleles. I simulated a locus that had a range of effects sizes on the phenotype and then sampled 

the populations and tested for associations between loci across the genome and the phenotype. Power was 

most influenced by the effect size of the locus itself, specifically if the effect size of the locus was 

relatively high (>0.5; 50% of variation in the phenotype was explained by that locus) there was a high 

probability the association test would detect it. Power dropped quickly as the effect size of the locus 
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declined, suggesting that a trait would need to be influenced by a large effect locus in order for the 

association analysis to detect it with high certainty. These results will help guide other researchers looking 

to conduct such genome scans for the genetic basis of phenotypic traits in admixed populations. 

The results of the GWAA revealed a large effect SNP on chromosome 29 significantly associated 

with migratory behavior in these populations. Individuals with one of more RBT alleles at this locus had a 

significantly higher probability of being migratory and this locus better explained migratory behavior than 

genome-wide admixture alone. These results are consistent with other literature in salmonids, where there 

is increasing evidence that traits associated with anadromy and migratory are associated with large effect 

loci (e.g., Johnston et al. 2014; Prince et al. 2017; Kelson et al. 2019; Pearse et al. 2019; Sinclair-Waters 

et al. 2020). Our association scan of summer growth rate did not detect large effect loci influencing this 

trait consistently among populations and years. This not surprising for a trait such as growth rate that is 

environmentally dependent and highlights the challenges of conducting such a study in wild populations 

where sample size and environmental conditions are not controlled by the researcher. This analysis 

advances our understanding of the genetic basis of these traits and provides further evidence that hybrids 

across the landscape will have a higher dispersal rate. This will contribute to the rapid and continued 

expansion of hybridization regardless of the local fitness consequences.  

 

Contributions to studies of human-mediated hybridization 

 

My dissertation adds to a small but growing body of literature that shows outbreeding depression 

in vertebrates due to human-mediated hybridization can be mediated by spatial and temporal 

environmental variation (Arnold & Martin 2010; Walsh et al. 2016a; Hunter et al. 2017). Indeed, human-

mediated hybridization of closely related taxa likely operates under mosaic hybrid zone patterns and 

processes, especially when strong physiological differences exist among the parental species. The 

differences in the effect of non-native admixture on fitness-related traits and across environmental 

conditions highlights the need for careful research design and the importance of long-term studies – for 

example, what traits are most important for fitness, how many populations should be studied, and what 

environmental conditions should be monitor? The contrasting results between admixture-environment 

associations and the fitness consequences of admixture in my study populations bring up hypotheses for 

other important selective forces influencing evolution in human-mediated hybrid zones. Populations that 

appear as outliers in admixture-environment associations might demonstrate other important selective 

forces at work such as density or frequency dependent processes ( i.e., soft selection; Wallace 1975).  
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Contributions to westslope cutthroat trout conservation 

 

My dissertation also informs the conservation and management of westslope cutthroat trout by 

informing debates over the threat of widespread admixture and genomic extinction as well as genetic 

thresholds for conservation status (Allendorf et al. 2004). WCT were denied U.S. Endangered Species Act 

(ESA) listing in 2002 (Shepard, May, & Urie 2005); the relatively wide distribution of WCT and 

uncertainty regarding the prevalence of RBT admixture and its fitness consequences played a large role in 

this decision. Allendorf et al. (2004) were critical of the inconsistency to which these policies have been 

applied to cutthroat trout conservation. Demonstrating this point, arbitrary levels of 10% or 20% RBT 

admixture have been used as thresholds for determining a populations conservation status at the state and 

federal levels. Since the ESA ruling in 2002, genetic marker panels have improved as has our ability to 

precisely determine both individual and population levels of RBT admixture. My work shows that there 

are significant evolutionary and ecological differences between nonhybrid WCT and hybrid individuals in 

populations with < 20% RBT admixture.  

Furthermore, my dissertation shows that while stream temperature and distance to source 

population are important for predicting broad landscape patterns, they may not reflect the evolutionary 

processes at work within populations. I found further evidence that the spread of hybridization is driven 

by increased dispersal associated with RBT introgression, suggesting that admixture will continue to 

spread regardless of the fitness consequences. Populations that appear to resist admixture over many 

generations might represent unique ecological or evolutionary processes and understanding these would 

help managers better focus conservation efforts. Cyclone Creek was the only population to show strong 

selection against admixture across all life stages, however, it differs in many other ways from Langford 

and McGee Creeks. First, Cyclone Creek has the strongest resident life history form (e.g., the highest 

proportion of adult residents) which might help resist admixture from migratory hybrids dispersing from 

other populations. Secondly, it has the highest density of fish and might represent a population where the 

high density of WCT and low frequency of hybrids allows selection to act most efficiently on non-native 

admixture (i.e., soft selection). Further investigation of these “outlier” populations might allow managers 

to understand the factors that prevent widespread admixture. Overall, my dissertation fills critical gaps in 

knowledge of the fitness consequences and drivers of hybridization across a heterogeneous landscape and 

will aid efforts to conserve westslope cutthroat trout threatened by rainbow trout hybridization. 
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Table 1.1: A summary of major studies in cutthroat x rainbow trout hybridization. These studies represent work that 
has advanced our understanding of hybridization between these species by: 1) describing genetic divergence and 
identifying molecular markers diagnostic purposes, 2) describing landscape patterns of hybridization and 
environmental drivers of admixture, and 3) laboratory and field based studies quantifying differences in 
developmental, life history, and fitness-related traits. These studies have helped improve our understanding of the 
factors driving hybridization/admixture across the range of WCT and the evolutionary and ecological consequences 
of hybridization between these species. These studies have helped inform conservation and management actions and 
inform the debate on the urgency of the threat of hybridization and has implications for future ESA listing. 
 

Area of investigation Description of advancement Peer-reviewed study 

Genetic tool development genetic diversity & divergence in RBT/CT Leary et al. 1987; Leary et al. 1988; Allendorf & Leary 1988 

 genomic patterns of RBT introgression Hohenlohe et al. 2013 

 identify and map RAD markers  Amish et al. 2012; Hand et al. 2015 

Patterns/extent of hybridization environmental drivers Weigel et al. 2003 (Clearwater, ID) 

 environmental drivers Bennet et al. 2010 (Kootenay, BC, CA) 

 environmental drivers Rasmussen et al. 2010 (Oldman, AB, CA) 

 environmental drivers Muhlfeld et al. 2009b, 2014 (Flathead, MT) 

 environmental drivers Muhlfeld et al. 2017 (MT - ID) 

 pattern/extent Hitt et al. 2003; Boyer et al. 2008 (Flathead, MT) 

 pattern/extent McKelvey et al. 2016 (MT - ID) 

 environmental drivers Young et al. 2016 (MT - ID) 

 environmental drivers Yau & Taylor 2013 (BC - AB, CA) 

 environmental drivers Carim et al. 2013 (Blackfoot, MT) 

 environmental drivers Corsi et al. 2013 (Jocko, MT) 

 selection across landscape Kovach et al. 2016b (Flathead, MT) 

 environmental drivers Mandeville et al. 2019 (Shoshone, WY)Y  

 pattern/extent Kovach et al. 2011 (Snake, WY)Y 

 pattern/extent Loxterman et al. 2014 (Salmon, ID) 

 pattern/extent Rubidge & Taylor 2004 (Kootenay, BC, CA) 

 environmental drivers Rubidge &Taylor 2005 (Kootenay, BC, CA) 

 pattern/extent Kozfkay et al. 2007 (Salmon, ID) 

Laboratory studies developmental traits Leary et al. 1995; Drinan et al. 2015 

 thermal tolerance, scope for growth Bear et al. 2007** 

 Growth, morphology, performance Seiler & Keeley 2007Y; , 2009Y F1 

 thermal tolerance Yau & Taylor 2014 

 gene expression in growth related genes Ostberg et al. 2015 Y BC 

 growth and survival Allendorf & Leary 1988 F1; Leary et al. 1995F1 

Field Based studies Growth*, fecundity, migration timing Corsi et al. 2013 (Jocko, MT) 

 migration timing Muhfeld et al 2009c (Flathead, MT) 

 juvenile migration timing, selection Kovach et al 2015 (Flathead, MT) 

 reproductive success Mulhfeld et al 2009a (Flathead, MT) 

 phenology & spawning location Heim et al 2019 (Lamar, MT) 

 
developmental traits, MTDNA-DNA 
associations Forbes & Allendorf 1991a, 1991b 

 metabolic traits, life history traits Rasmussen et al. 2010 (Oldman, AB, CA) 
*Otolith-based growth; Y = Yellowstone cutthroat trout; F1 = F1s only ** parental species only – no hybrids 
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CHAPTER 2 

INTROGRESSIVE HYBRIDIZATION ALTERS GROWTH AND LIFE HISTORY EXPRESSION OF 

WESTSLOPE CUTHROAT TROUT 

 

Abstract 

 

Human-mediated hybridization threatens many native species, but the effects of introgressive 

hybridization on life history expression are rarely quantified, especially in vertebrates.  We quantified the 

effects of non-native rainbow trout admixture on important life history traits including seasonal growth, 

annual growth, and migratory behavior in three populations of native cutthroat trout over five years. 

Rainbow trout admixture increased summer growth rates in all populations, and decreased spring growth 

rates in two populations with cooler spring temperatures. These results show that non-native admixture 

may increase growth under warm conditions, but cutthroat trout have higher growth rates during cooler 

periods. Non-native admixture consistently increased the expression of migratory behavior in all 

populations, suggesting genomic differences in life history strategy between these species, despite 

environmental and growth differences among populations.  Our results show the effects of interspecific 

hybridization on fitness traits can be the product of genotype-by-environment interactions even when 

there are only slight differences in environmental optima among hybridizing species. While 

environmentally mediated traits like growth may play a role in population-level consequences of 

admixture, strong genomic control of migratory life history differences among these species likely 

explains the continued spread of non-native alleles at the landscape-level despite selection against hybrids 

at the population-level. 
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Introduction 

 

Hybridization with introduced species is a serious and growing threat to the conservation of 

biodiversity and native species worldwide (Rhymer & Simberloff 1996; Allendorf et al. 2001; Olden et al. 

2004; Crispo et al. 2011; Grabenstein & Taylor 2018). Although natural hybridization can lead to 

evolutionary novelty and speciation (Abbott et al., 2013; Nolte & Tautz, 2010), human-mediated 

hybridization and introgression can lead to the extinction of native genotypes, loss of locally adapted gene 

complexes and outbreeding depression (Rhymer & Simberloff 1996; Einum & Fleming 1997; Araki, 

Cooper, & Blouin 2007; Todesco et al. 2016). Climate change will likely contribute to the continued 

expansion of human-mediated hybridization and the declines of native taxa (Kelly, Whiteley, & Tallmon 

2010; Muhlfeld et al. 2014). Therefore, understanding the ecological and evolutionary consequences of 

introgression is critical for conservation of native species experiencing or threatened with non-native 

hybridization. However, data demonstrating the effects of hybridization on ecologically and 

evolutionarily important traits are limited for native species in the wild and this lack of scientific data can 

delay or prevent effective conservation and management (Allendorf et al. 2001). 

Understanding the consequences of hybridization in wild populations is challenging as genomic 

(G) and environmental (E) factors, as well as their interactions (GxE) can lead to fitness differences 

among parental and hybrid individuals (Arnold 1997; Arnold & Martin 2010; Hunter et al. 2017; Zhang et 

al. 2019).  The impacts of human-mediated hybridization vary depending on the taxa and the phenotypic 

traits examined by researchers (McGinnity et al. 2004; Muhlfeld et al. 2009a; Ryan, Johnson, & 

Fitzpatrick 2009; Casas et al. 2012; Fukui 2019). While laboratory studies can be key for isolating the 

effects of ancestral differences in phenotypic traits, these studies are often limited to early generation 

hybrid crosses and often lack environmental variation to assess environmental or GxE interactions on 

phenotypic traits (Leary, Allendorf, & Sage 1995; Seiler & Keeley 2007, 2009; Drinan et al. 2015). 

Studies of GxE interactions in vertebrate hybrid zones are often limited to association analyses between 

genotypes and environmental variables or coarse habitat classifications (Culumber et al. 2012; Walsh et 

al. 2016b). And of the relatively few studies that demonstrate the effects of non-native hybridization on 

fitness-related traits, few have linked these consequences in multiple populations to differences in 

ecologically important environmental conditions in the wild (Arnold & Martin 2010; Hunter et al. 2017).  

This lack of understanding limits our understanding of the factors (G, E, or GxE) that drive landscape-

wide patterns of introgression between native and invasive species across heterogeneous landscapes. 

Interspecific hybridization is particularly common in fishes due to limited pre- or postzygotic 

barriers to interbreeding among closely related species; and humans have translocated many non-native 

fish species for sportfishing and harvest (Scribner, Page, & Bartron 2001).  Rainbow trout (Oncorhynchus 
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mykiss, RBT) is among the world’s most widely introduced invasive fish species (Behnke 1992; 

Halverson 2010), and readily hybridize with native cutthroat trout subspecies (O. clarkii spp.) throughout 

their native ranges. Hybridization is one of the greatest threats to all cutthroat trout subspecies in western 

North America, including remaining populations of westslope cutthroat trout ( O. clarkii lewisi, WCT; 

Shepard, May, and Urie 2005). Hybridization between WCT and non-native RBT is widespread in 

populations inhabiting a range of environmental conditions despite strong selection against non-native 

alleles (Kovach et al. 2015; Lowe, Muhlfeld, & Allendorf 2015; Kovach et al. 2016). However, many 

non-hybridized populations persist in cooler headwater streams (Mckelvey et al. 2016; Young et al. 2016; 

Muhlfeld et al. 2017), and this genotypic gradient is likely due to historic stocking locations and 

environmental variation regulating spread thereafter (Muhlfeld et al. 2017). Similar environmental 

gradients have been observed in other hybrid zones (Culumber et al. 2012; Walsh et al. 2016b; Abbott 

2017)(Walsh, Rowe, et al. 2016; R. J. Abbott et al. 2018), suggesting that environmental variation may 

partly explain the distribution of admixture across space, but the underlying mechanisms that produce 

these patterns are rarely understood. Examining the effects on non-native admixture on multiple 

individual fitness traits and across a range of environmental conditions is needed to gain a more complete 

understanding of the consequences of hybridization on native biota. 

Hybridization between RBT and WCT provides an excellent model to study the effects of 

hybridization and environmental conditions on fitness outcomes due to the strong environmental 

differences that can exist among nearby populations and the known contributions of both genomic and 

environmental factors on fitness traits like growth and migratory life history strategy.  Growth and 

migratory life history expression are important fitness traits in salmonids influencing survival and 

fecundity (e.g., Sogard 1997; Thompson & Beauchamp 2016; Janowicz et al. 2018). Furthermore, both 

traits can be influenced by genomic (Hecht et al. 2013; Kelson et al. 2019; Pearse et al. 2019; Ali et al. 

2020), environmental (Olsson et al. 2006; Vøllestad & Olsen 2008; Kanno et al. 2015; Thompson & 

Beauchamp 2016), and GxE factors (Bærum et al. 2013; Yates et al. 2015; Nater et al. 2018). Growth is 

influenced by a suite of environmental condition (Kovach et al. 2016c), and the effects of temperature on 

growth and interspecific differences in temperature tolerance have been well described in these species 

(Bear, McMahon, & Zale 2007).  This suggests there are likely differences in seasonal growth rates 

between these species and their hybrids in wild populations.  Increased migratory behavior and dispersal 

of hybrids have been hypothesized mechanisms to explain the landscape patterns of differentiation among 

WCT populations and the rate of spread of RBT admixture (e.g., Boyer, Muhlfeld, & Allendorf 2008). In 

many taxa, partial migration is thought to be a conditional strategy where genetics, relative body 

conditions, and environmental context influence the threshold of the reaction norm for migration (Sloat et 

al. 2014; Kendall et al. 2015; Berg et al. 2019). Partial migration in salmonids refers to populations where 
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some portion of individuals mature within their natal stream as residents while others migrate to larger 

rivers or lakes for at least one year before returning as much larger migratory adults to spawn. Since 

fecundity increases exponentially with length in salmonids (Downs, White, & Shepard 1997; Janowicz et 

al. 2018), there are large fitness tradeoffs associated with migratory life history strategy. Therefore, 

hybridization and local environment likely mediate individual growth and life history expression leading 

to variable fitness outcomes across a heterogeneous landscape. 

 Here, we examine how individual growth rate and migratory life history expression are 

influenced by proportion RBT admixture (pRBT; G), environmental conditions (E), and the interaction of 

pRBT and environment (GxE) in three native WCT populations inhabiting streams with varying thermal 

and hydrologic conditions. Specifically, we addressed two main questions: 1) Does pRBT affect 

individual seasonal and annual growth rates and do environmental conditions influence these genetic 

effects? and 2) Does pRBT affect the propensity to express a migratory life history strategy and do 

environmental conditions influence these genetic effects?  

 

Methods 

 

Study Sites 

We sampled populations of WCT in Cyclone, Langford, and McGee creeks in the North Fork 

Flathead River in northwestern Montana, USA (Figure 2.1a; 2013-2017).  These sites were selected 

because they were known to contain both  non-admixed WCT and a wide range of admixed individuals 

(Figure 2.1b), and despite being geographically close, the streams differ in key environmental drivers 

(temperature and flow) thought to influence growth and the rate of spread of RBT admixture (Figure 2.2, 

Table S2.1; Hitt et al. 2003; Muhlfeld et al. 2009; Muhlfeld et al. 2014). Admixture was first detected in 

Langford in the 1980’s, but RBT alleles were not detected in Cyclone and McGee until the late 1990s 

(Muhlfeld et al. 2014). Genetic admixture has been occurring in each population for at least five to ten 

generations, allowing substantial time for backcrossing and recombination. 

 

Environmental Data Collection 

To test for environmental effects and their interactions with pRBT on growth rates, we collected 

data on factors known to affect growth in salmonids (i.e., temperature, stream flow, and Oncorhynchus 

spp. density). We used Onset HOBO Water Temperature Pro v2 Data Loggers to measure hourly water 

temperatures from March through November each year. To characterize the growing conditions during 

the spring and summer periods, we calculated both median daily temperature and growing-degree-days 

(GDD) for each year and season (summer – suGDD, spring - spGDD). For each annual growth period we 
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calculated GDD (aGDD) to characterize growing conditions. We calculated spGDD and aGDD by 

assuming the growing season begins on the first day of the week in which mean daily water temperature 

reaches and remains above 5°C and ends at the end of the week in which mean daily water temperature 

drops below 4°C and remains below this threshold (Coleman & Fausch 2007). Langford was the coldest 

site and least variable among years (see Figure 2.2a-c, Table S2.1). Given the strong snowmelt hydrology 

in Cyclone and McGee, these sites had warmer and more variable median summer temperatures than 

Langford. While McGee was the warmest site, Cyclone had much warmer spring conditions than McGee 

(Figure 2.2b, Table S2.1). 

Stream flow was determined with several measures. First, stage gauges were present at each site 

and stage height was recorded daily from April through July every year. Second, Onset HOBO Water 

Level Data Loggers were added to each site in 2015, recording in-stream and atmospheric pressure every 

hour throughout the sampling season. Finally, stream discharge was measured using a SonTek 

FlowTracker2 at regular intervals (at least once a week) within a sampling season from April through 

October. Using the stage gauge or water pressure measures, we created discharge rating curves to 

quantify seasonal stream discharge. Discharge rating curves were created for each year by fitting a 

polynomial regression to the stage height (or HOBO water level data loggers) and flow (m3/s) measures. 

From these stream discharge data, we computed average summer base flow (~July 1 - November 1), 

maximum spring flow, and average spring flow (~April 1 - July 1; Table S2.1). Due to equipment 

malfunctions, we did not have spring discharge data from 2017, so stream flow was not included in the 

modelling of spring growth rates.  Being groundwater influenced, Langford had the lowest spring peak 

flows, but similar base flows to McGee (Figure 2.2d & 2.2e, Table S2.1).  Cyclone had the highest mean 

spring flow, however, McGee had a higher mean peak spring flow. 

The abundance of Oncorhynchus spp. was estimated using the model of constant effort developed 

by (Otis et al., 1978) and implemented in the Fishmethods package (Nelson 2016) in Program R. We 

calculated average wetted stream width at base flow (measured every 50m longitudinally along study 

reach).  The average density of Oncorhynchus spp. in each study reach for each year was estimated by 

dividing the mean abundance estimate by the average wetted width at base flow (# fish/m2). Densities 

were highest in Cyclone and lowest in McGee (Figure 2.2f; Table S2.1). These characteristics 

demonstrate the differences in seasonal growing conditions among our study populations. 

 

Genetic Analyses 

To estimate genome wide proportion RBT admixture (pRBT) for each individual, we extracted 

DNA using the SPRI bead extraction protocol described in Ali et al. (2016). DNA quality (260/280 ratio) 

and quantity were measured using a Nanodrop 2000 Spectrophotometer (Thermo Scientific, Waltham 
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MA). The concentration of double stranded DNA was measured using QuantIt Picogreen assays (Thermo 

Fisher Scientific, Waltham, Massachusetts) after diluting samples to less than 20ng/ul.  

Sequencing libraries were prepared using the bestRAD and Rapture (RAD-capture) protocols (O. 

A. Ali et al. 2016) using 50 nanograms of input DNA for each sample. RAD libraries were sheared to an 

average fragment size of 350 base pairs using a Covaris E220 Ultrasonicator (Covaris Inc., Woburn, 

Massachusetts). Libraries were amplified for 12 cycles using a plate specific indexing primer, purified 

using Ampure XP beads, and quantified using Quantit Picogreen assays. Plates were pooled in groups of 

6 (83ng from each library) before enriching for 3015 RAD loci previously found to be informative for 

estimating admixture coefficients. Enrichment was performed using a custom Mybaits target enrichment 

kit (V3., Arbor Biosciences, Ann Arbor, Michigan). This panel included a combination of baits 

complementary to RAD loci containing WCT polymorphic SNPs  and WCT, YCT, and RBT species 

diagnostic SNPs (Amish et al. 2012; Hohenlohe et al. 2013; Hand et al. 2015; Kovach et al. 2016b). Loci 

were chosen for capture based on their genotyping quality, reliability for distinguishing each (sub)species 

and even distribution across the assembled rainbow trout genome (Amish et al. 2012; Berthelot et al. 

2014; Hand et al. 2015; Kovach et al. 2016b). Pooled libraries were amplified post-capture for 10-12 

cycles and quantified using Quantit Picogreen assays before being sequenced 6 libraries/lane on an 

Illumina HiSeq X (Novogene Corporation, Sacramento, CA). 

 

Bioinformatics and Genotype Calling 

Read quality was assessed using FASTQC v0.11.5 and duplicates reads were removed using the 

clone_filter program from Stacks v1.44 (Catchen et al. 2011).  Sequencing adapter contamination was 

removed from reads using Trimmomatic and reads were truncated whenever the mean Phred score across 

a window of 4 nucleotides dropped below q15. We further required reads to be greater than 60 bp after 

applying the trimming steps above. We then used a custom script to exchange reads between read 1 and 

read 2 fastq files whenever the inline index for an individual was found at the beginning of read 2. 

Properly oriented fastq files were demultiplexed by individual barcode using process_radtags v1.44. 

Reads were mapped to the RBT reference genome (Berthelot et al. 2014) using bwa-mem and resulting 

sam files were sorted, converted to bam format, and indexed using samtools v1.4. We then used 

HaplotypeCaller v3.7 to generate gVCF files for each individual, combined gVCF files across individuals 

using CombineGVCFs v3.7, and called genotypes using GenotypeGVCFs v3.7 (McKenna et al. 2010). 

The resulting VCF file was filtered using vcftools ( LGPLv3; Danecek et al. 2011).  

RBT diagnostic loci were separated from WCT polymorphic loci and only diagnostic markers 

were used in the following analyses. Genotypes were set to missing if the genotype quality score was less 

than 30 and minimum read depth was less than 7. In addition, an allele balance between 0.25 – 0.75 and a 
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minimum read depth of 10 was required for all heterozygote genotypes.  Loci were removed if they were 

missing genotypes in more than 10% of individuals and individuals were dropped from the analysis if 

they did not have genotypes at greater than 20% of remaining loci after filtering. Proportion RBT 

admixture (pRBT) was estimated for each individual as the number of RBT alleles / (2 * number of 

genotyped diagnostic loci). 

We genotyped over 3,245 individuals across all sites. We retained 650 RBT diagnostic loci after 

filtering. The median number of loci per individual was 536, and individuals were genotyped at a 

minimum of 160 RBT diagnostic loci. While each population contained non-admixed WCT individuals, 

the proportion of the population that was non-admixed varied greatly among the populations (Figure 2.1b, 

Table 2.1). The distribution of pRBT in Cyclone was skewed strongly towards WCT with a median of 

0.013 pRBT. Langford and McGee had higher median pRBT (Langford = 0.34; McGee = 0.39) and less 

skewed distributions of pRBT than Cyclone.  

 

Field Sampling: Growth Rates 

We used a mark-recapture in each tributary to quantify seasonal and annual growth rates across 

five years (2013-2017). Reaches of each tributary were sampled via electrofishing twice annually (July 

and October). We completed a single electrofishing pass of each study reach (~2km) and collected as 

many individuals as possible. In addition to this single pass, we conducted two 150-meter three-pass 

depletions in July of each year to estimate trout abundance/density. For each individual we measured total 

length (TL, mm) and mass (g), and collected a tissue sample for genetic analysis.  Fish >70mm TL were 

implanted with a unique PIT tag (passive integrated transponder) at first capture and, if previously tagged, 

their tag number was recorded. Each study reach had PIT-tag antennae at the downstream end of the reach 

and two of the three study reaches also had a PIT tag antennae at the upstream end. Antennae were active 

from early April through November. This allowed us to measure movement out of the study reach to 

exclude individuals that left the system from our growth analyses. Electrofishing twice annually allowed 

us to estimate daily growth over three distinct intervals: summer (July – October), winter/spring (October 

to July), and annually. We obtained growth and genotypic data from 918 individuals with a total of 1,262 

growth measurements (Table 2.1). 

 

Field Sampling: Life History Strategies 

To capture individuals expressing a migratory life history strategy, we installed migrant fish traps 

each spring in Cyclone and Langford for four year (2013-2016).  These traps captured immigrating adults 

moving upstream to spawn and emigrating juveniles moving downstream (presumably moving to the 

mainstem river to carry out a migratory life history strategy). Traps were checked daily from early April 
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through July (until traps failed to catch any individuals for two weeks) and were removed for the 

remainder of the year. For each individual caught in the traps, we followed the same sampling protocol 

for individuals captured via electrofishing.  Fish captured migrating upstream allowed us to examine how 

introgression influenced migratory fish coming into the system to spawn. We used samples from the 

migrant trap and the downstream fixed PIT-tag antennae to estimate emigration from the creeks. 

 

Data Analyses: 

Effect of pRBT on Growth Rate 

To test for the effects of pRBT, environmental conditions, and their interactions on seasonal 

growth rates, we analyzed growth rate in both length (mm/day) and weight (g/day) during the summer 

(Julyt - Octobert), winter/spring (Octobert - Julyt+1; hereafter, spring), and annual intervals (Julyt - Julyt+1 

or Octobert - Octobert+1). This analysis included four years of summer, spring, and annual growth. We 

modeled growth separately in each population using multiple linear regression to avoid differences in the 

distributions of pRBT, sample sizes, and growth rates among populations from influencing model results. 

Since these populations are partially migratory, we excluded putative adults from the analyses to 

reduce effects of individuals that have slowed somatic growth. We assumed individuals over 160mm TL 

are likely to be mature resident fish (Downs, White, & Shepard, 1997; Janowicz et al., 2018). For each 

individual (i) captured in stream j and at time t, we calculated growth rate as: 

 

Gijt (mm/days) = total length t2 (TL2)  -  total length t1 (TL1)  /  days(t2-t1) 

Gijt (g/days) = weight t2 (W2)  -  weight t1 (W1)  /  days(t2-t1) 

 

In addition to proportion RBT admixture (pRBT), we considered both abiotic and biotic factors 

known to impact growth rate as potential covariates in our global model. Biotic conditions included 

individual size at first capture (TL1 or W1), individual body condition at first capture (K), and the density 

of Oncorhynchus spp (Table S2.1). Size at first capture (TL) was included to correct for any size-based 

biases in growth due to energy allocation toward gametes instead of somatic growth in mature 

individuals. K was estimated as an individual’s residual value from a population length-weight regression 

(as in Al‐Chokhachy et al., 2019). Abiotic conditions included metrics to characterize seasonal 

temperature and stream flow (Figure 2.2; Table S2.1).  

To reduce the number of correlated environmental covariates (Tables S2.2 & S2.3), we explored 

linear regressions of each environmental metric to growth rate. First, we chose the temperature metric 

with the lowest AICc to include in our model, as we expected temperature would have a stronger effect 

on growth. For summer growth our temperature metric with the lowest AICc was median daily 
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temperature (compared with suGDD or maximum seven-day average), and for the spring modelling it was 

spGDD (compared to mean daily temperature). In the annual growth modelling we used aGDD as our 

temperature covariate. We then tested for collinearity between our top temperature metric and potential 

flow and density metrics and only included metrics that were not correlated with temperature (r2 < 0.6).  

We used the nlme package in Program R (Pinheiro et al. 2017) to conduct linear modelling 

following the model selection protocol of (Zuur et al. 2009). We modelled growth (both length and mass) 

in each population and season separately. We first found the best supported variance structure correcting 

for pRBT and/or year as there was evidence of heteroscedasticity in the residuals plotted against pRBT. 

Next, we tested for the significance of a random intercept model (year), however, this was never 

supported. We then performed top-down model selection beginning with a saturated global model (all 

hypothesized covariates and interactions), removing the least significant term at each step until only the 

intercept remained. In addition to these hypothesized models, we tested several null models (model 

selection without pRBT covariate). To avoid selecting models with spurious associations and 

uninformative parameters (Arnold 2010), we used a p-value threshold of 0.05 and only considered models 

that contained all supported parameters (Tables S2.4 – S2.12).  

 

Effect of pRBT on Migratory Life History Strategy 

To test for the effect of pRBT on life history expression, we used a combination of migratory trap 

and electrofishing datasets collected from 2013-2016. We evaluated the influence of RBT admixture on 

the probability of expressing a migratory life history versus a resident life history. We used migratory 

traps and fixed PIT tag stations to identify immigrating adults (hereafter, migratory adults) and emigrating 

juveniles (hereafter migratory juveniles) moving into and out of our study tributaries between April 1 and 

July 1 of each year. Catch data from annual summer electrofishing surveys of each tributary (June 20 -

July 31) were used to identify resident individuals each year. To assign individuals as adults or juveniles, 

we used a total length threshold of 160mm ( juveniles ≤ 160; adults > 160mm; Downs et al. 1997; 

Janowicz et al. 2018). We captured and genotyped 206 and 129 immigrating adults and 107 and 192 

emigrating juveniles from 2013-2016 in Cyclone and Langford, respectively (Table 2.1). We then used 

generalized linear modelling (GLM) with a logit link function to test for an effect of pRBT on migratory 

life history strategy separately in the adult and juvenile classes (1 = migratory, 0 = resident). 

In addition to pRBT, we considered other biotic and abiotic factors thought to influence life 

history strategy in salmonids. We included total length (TL) and individual condition (K) in our global 

model as both have been shown to influence propensity for migration (Kendall et al. 2015; Ferguson et al. 

2019)(Ferguson et al. 2019; Kendall et al. 2015). We then included capture year in our model as a 
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blocking factor to account for any environmental conditions that might lead to variation migratory 

behavior over time. 

We used the lme4 package in Program R (Bates et al. 2015; nlme cannot perform a logit-link) to 

conduct generalized linear modelling with a logit link for both life stage classes (adult versus juvenile) 

and population. McGee was excluded due to insufficient effectiveness of the migrant trap. We performed 

the similar model selection process as described in the previous selection and compared supported models 

using AICc (Tables S2.13 & S2.14).  

 

Results 

 

Effect of RBT Admixture on Growth Rate 

Growth was highest during the spring season in all populations, and mean spring growth was 

similar among populations (Figure 2.3). McGee had the highest mean spring growth (1.2x Cyclone & 

1.05x Langford). Mean summer growth was more variable among populations. Langford had the highest 

mean summer (1.8x Cyclone & 1.2x McGee) and annual growth rates (1.4x Cyclone & 1.02x McGee). 

Cyclone had the lowest mean growth rates across all seasons. Regardless of whether we considered length 

or mass we found that the effects of pRBT on growth rate were largely consistent (except for spring 

growth in McGee) and so we focus on results for length (mm/d). Results for mass are available in 

Appendix A. 

We found strong evidence of GxE interactions influencing summer growth.  Both within a season 

and among seasons, RBT admixture had a positive effect on growth rates under warmer environmental 

conditions and negative effects under cooler conditions.  During summer, pRBT was positively associated 

with growth rates in all populations (Figures 2.4a, 2.4c, & 2.4e). Additionally, in Langford and Cyclone, 

higher admixture led to a significantly greater increase in growth during higher median summer 

temperatures than WCT (Figures 2.4b & 2.4d; Tables S2.4a & S2.5a). Only in one stream (McGee) was 

density supported in a top model (Table S2.6b). In both Cyclone and Langford our top models remained 

unchanged when testing these additional density models (Tables S2.4 & S2.5).  

There were significant negative effects of pRBT on spring growth rates in Langford, but not in 

Cyclone or McGee (Figure 2.5b; Tables S2.7 – S2.9).  Spring growth was also explained by a significant 

positive effect of temperature in Langford.  It is worth noting that in McGee while pRBT did not have a 

significant effect on growth in length, there was a significantly negative effect of pRBT on growth in 

mass (Table S2.9). In the McGee length model, spring growth was only explained by a negative effect of 

starting size. There was no evidence of a significant effect of pRBT on growth rates in CYC. Instead, 

growth was explained only by size, condition and temperature. 
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On an annual basis, pRBT had a significant positive effect on growth rates in Cyclone only 

(Figure 2.5a; Tables S2.10 – S2.12).  In addition to pRBT, annual growth in Cyclone was explained by 

starting size and body condition as well as an interaction between pRBT and condition (Table S2.10). 

Langford and McGee showed no evidence of pRBT on annual growth rates. Growth was only explained 

by size in McGee. In addition to size, growth in Langford was explained by negative effects of body 

condition and temperature.  

 

Effect of RBT Admixture on Migratory Life History Strategy 

The probability of migration was consistently and positively associated with pRBT for juvenile 

and adult trout (Figure 2.6).  In fact, within a reproductive class (i.e., juveniles or adults), both 

populations supported identical covariate structure (Tables S2.13 & S2.14).  The covariate structure for 

the juveniles and adults included condition (K), total length (TL), pRBT, and year effects. Generally, 

coefficients had the same direction of effect (positive or negative), although the magnitude of effect sizes 

differed slightly among populations.  For example, in Langford adult migration probability increases 

~20% for an individual with pRBT=0.4 versus a non-admixed WCT. The increase in Cyclone was ~31%.  

Juvenile migration probability was also influenced by a significant interaction between pRBT and total 

length (Figure 2.6a & 2.6c). More specifically, the probability of emigration increases with total length 

for non-admixed WCT and individuals with low levels of admixture. For moderately or highly admixed 

hybrids, the probability of emigration decreases as total length increases. This relationship indicates that 

hybrids are more likely to emigrate at smaller sizes than WCT, however the strength of this relationship 

differs between Cyclone and Langford. 

 

Discussion 

 

Our study was the first to evaluate how non-native hybridization and the environment interact 

(GxE) to affect individual fitness traits in wild populations. We found that non-native admixture 

influenced both seasonal growth rates and migratory life history expression. Environmental conditions 

worked to mediate the effects of admixture on seasonal growth rates, but not migratory behavior. Our 

analysis of seasonal growth rates revealed RBT admixture x environment interactions (GxE) at multiple 

scales; not only did RBT admixture interacted with temperature to influence summer growth rates, but it 

had varying effects on growth by season. Migratory life history expression was consistently and 

positively impacted by admixture.  Non-native hybridization clearly impacts ecologically and 

evolutionarily important traits in native trout, and these results highlight how environmental differences 
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among populations can influence these outcomes.  These impacts have the potential to disrupt locally-

adapted phenotypic optima in traits with strong impacts on local fitness outcomes. 

 

Admixture x Environment Interactions on Growth Rates 

Non-native admixture led to increasingly higher summer growth rates for hybrids across a range 

of temperatures suitable for WCT growth. From 2013-2016, median summer temperature at our study 

sites ranged from 10.2 ºC to 14.3 ºC, a range that is well within the limits of growth for WCT and RBT 

which were found to have very similar thermal optima for growth (Bear, McMahon, & Zale, 2007; WCT 

= 13.7 ºC, RBT = 13.2 ºC) . Given that pRBT positively interacted with temperature across this range, it 

is likely that RBT and hybrids have an advantage in growth during the summer across much of the 

Flathead River basin.  Even at our coldest site (Langford), where average median summer temperatures 

did not exceed 10.7 ºC in any year, hybrids still grew faster than WCT.  Higher growth rates even under 

cooler summer conditions supports the hypothesis that hybrids may have metabolic or physiological 

advantages over WCT (Morinville & Rasmussen 2003; Rasmussen et al. 2012) that may lead to 

competitive advantages over cutthroat  (Seiler & Keeley 2007, 2009). 

Lower summer growth rates may be inconsequential to the fitness outcomes of hybridization if 

WCT are able to make up this lag in growth during the more favorable spring growing season.  In the 

populations with cooler spring conditions (Langford and McGee), pRBT was negatively associated with 

growth rates. In these same populations, there was no annual impact of pRBT on growth. This suggests 

that a pRBT x season interaction could exist in many populations across the landscape.  In the population 

that did not show any evidence of a negative effect of admixture on spring growth (Cyclone), this site 

accumulated on average 27% and 48% more growing-degree-days than McGee and Langford during the 

spring.  Although we did not detect a pRBT x temperature interaction during the spring, if cooler water 

temperatures are contributing to higher WCT growth rates in the spring, it is not surprising that WCT are 

unable to grow faster than hybrids given the drastically warmer conditions in Cyclone.   

Climate change induced shifts in thermal and hydrologic regimes will likely only lead to more 

favorable conditions for RBT and hybrids in the Flathead River basin (Jones et al. 2014).  Altered thermal 

and hydrologic conditions over the last three decades have already been associated with increased 

expansion of hybridization in the Flathead River (Muhlfeld et al. 2014). Increasing summer water 

temperatures should only exacerbate the positive effects of pRBT on summer growth rate as RBT have a 

wider scope-for-growth and can continue to grow at water temperatures over 20 ºC (Bear, McMahon, & 

Zale 2007).  These climatic shifts could alter the growth patterns seen in other seasons as well. As spring 

conditions warm, WCT might begin to experience a larger portion of this season where they grow more 
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slowly than sympatric RBT and hybrids; seasonal and annual growth patterns like those seen in Cyclone 

might become more common across the region.  

 Not only do differences in annual growth have potential implications for fitness differences 

among WCT and hybrids, but patterns the seasonal growth play an equally important role in fitness, even 

in cases where there are no net annual differences in growth. Consistently higher annual growth may lead 

to differences in life history traits such as age at maturation, migration versus residency, and fecundity 

(Kendall et al. 2015; Janowicz et al. 2018). However, differences in seasonal growth rate might have 

important implications for survival, such as size-selective overwinter survival (Sogard 1997; Carlson, 

Olsen, & Vøllestad 2008), that might favor individuals going into winter at larger sizes or better condition 

(Uthe et al. 2016; Al‐Chokhachy et al. 2019). If seasonal growth and survival are linked, not knowing the 

survival outcomes in these systems means we are potentially underestimating the effect of RBT admixture 

differences in seasonal growth rates.  Investigating the effects of non-native admixture on seasonal 

survival rates is a critical next step in understanding the complex interactions between these fitness traits 

and the environment. 

 

Genetic Driver of Partial Migration 

The consistent effect of admixture probability of migration adds critical knowledge to a rich list 

of literature on life history differences among these species (Muhlfeld et al. 2009c; Corsi, Eby, & Barfoot 

2013; Kovach et al. 2015). Our results add further evidence to the findings of Boyer et al. (2008) that 

dispersal of hybrids is likely higher than that of WCT. Our results also confirm those found by Kovach et 

al. (2015) showing juvenile hybrids tend to emigrate out of natal streams at a smaller size (earlier age) 

than WCT. By showing that RBT admixture not only influences the phenology of life history events, but 

leads to a higher expression of migratory behavior we begin to understand a mechanism behind the 

continued expansion of RBT admixture in this system and others. Given the size differences that typically 

exist between resident and migratory trout (Downs, White, & Shepard 1997), this represents a life history 

trade-off with potentially massive consequences for reproductive success and fitness. 

Our conclusions of a strong genomic driver of life history variation align with recent findings 

from salmonids (Hecht et al. 2013; Prince et al. 2017; Kelson et al. 2019; Pearse et al. 2019) and other 

vertebrate taxa (mammals - McDevitt et al. 2009; Berg et al. 2019; birds - Delmore & Irwin 2014; 

Delmore et al. 2016; Ralston et al. 2019). Interestingly, many studies of partially migratory populations 

suggest the slowest growing individuals are most likely to adopt the migratory strategy as they cannot 

acquire enough energy in local food sources and must seek more productive areas to grow large enough to 

mature (e.g., Yates et al. 2015; Berg et al. 2019; Ferguson et al. 2019). Our results do not indicate a 

connection between non-native admixture effects on growth rates and its effects on migration. While 
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Cyclone and Langford creeks differed in their effect of RBT admixture on annual growth, pRBT had 

consistent effects on the probability of migration.  Our study is one of a few across vertebrate taxa to 

demonstrate effects of hybridization on partially migration behavior. Furthermore, our findings parallel 

those of Yates et al. (2015) where genetic differences explained more variation in the probability of 

freshwater maturation in Atlantic salmon (Salmo salar) than environmental treatments. Determining the 

true mechanisms underlying migratory life history expression is challenging (Kendall et al. 2015; Berg et 

al. 2019); perhaps the genetic association with migration in hybrid zones represent interspecific 

differences in the threshold reaction norm associated with the switch point from migratory to residency 

(Sloat et al. 2014). Using new genomic techniques (i.e., admixture mapping, genome-wide association 

analyses) we might gain insight into the genomic structure of partial migration life history and the effects 

hybridization has on it. 

While juvenile growth is generally considered an important fitness trait linked to competition, 

survival, maturation and life history strategy (Sogard 1997; Seiler & Keeley 2009; Berg et al. 2019; 

Ferguson et al. 2019), our study demonstrates its complex nature might make it uninformative or 

misleading when trying to predict fitness outcomes and the spread of non-native admixture in this system.  

Interestingly, Cyclone, which shows positive effects of pRBT on annual growth rates and probability of 

migration has the lowest population level pRBT. This suggests there are factors other than stream 

temperature and growth rates influencing invasion and admixture by RBT in this system. Reproductive 

success and survival across life stages may play an important role in regulating introgression.  These data 

provide further evidence that hybrid dispersal is the critical mechanism driving the spread of introgressive 

hybridization between these species, not necessarily species-specific differences in thermal performance 

(Kovach et al. 2015; Lowe, Muhlfeld, & Allendorf 2015). Our study provides important supporting 

evidence of these hypotheses explaining the patterns of fitness and hybrid zone expansion. 

 

Implications: 

Knowing the fitness consequences of human-mediated hybridization and whether environment 

mediates these effects is critical to understanding and predicting the future expansion of hybrid zones.  

Studies demonstrating how environment influences the effects of non-native hybridization on important 

phenotypic traits in wild populations are rare.  This limits our understanding of drivers of introgression 

across a heterogeneous landscape and may hinder our ability to make appropriate conservation actions.  

Changes in the seasonal growth patterns and migratory proportion might represent disruption of locally 

adapted phenotypic optima and have unforeseen consequences on long-term evolutionary trajectories and 

population persistence.  While environmentally dependent (or mediated) traits maybe important for 



 24 

determining local fitness dynamics and introgression, they maybe inconsequential for the spread of non-

native alleles compared to traits with consistent effects under stronger genomic control. 

  



 25 

 
  



 26 

 
 
Figure 2.1: Map of our study system, the North Fork Flathead River in Northwestern Montana, USA (a). 
We sampled Cyclone (1), Langford (2), and McGee (3) creeks using migrant fish traps and seasonal 
backpack electrofishing surveys to capture, tag, and recaptured Oncorhynchus ssp. from 2013 – 2017. 
These populations contain WCT and hybrids but differ in their distributions of individual proportion RBT 
admixture (pRBT). Panel b) shows the distributions of pRBT from 2015 sampling efforts. These 
distributions are typical of the distributions within each population throughout the entire study. See 
Appendix A, Figure S2.1 for distributions of RBT admixture within each population by sampling year. 
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Figure 2.2: Boxplots of key environmental variables: median summer temperature (ºC; a; ANOVA p = 
0.031), growing-degree-days accumulated during the spring season (b; ANOVA p < 0.00005) and 
annually (c; ANOVA p < 0.00005), summer base flow (m3/sec; d; ANOVA p = 0.51), mean spring flow 
(m3/sec; e; ANOVA p = 0.27), and Oncorhynchus spp. density (fish/m2; f; ANOVA p < 0.0077). See 
Appendix A, Table S2.2 for full environmental data. 
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Figure 2.3: Boxplots of annual, spring, and summer growth in length (mm, top) for each population. 
Growth during the spring season is significantly higher than summer growth in all populations                
(t-test, p < 0.00001).  Summer and annual growth in Cyclone is lower than growth in Langford or McGee      
(p < 0.00001), however, there are no significant differences in growth among populations during the 
spring season.  
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Figure 2.4: The left column shows the predicted relationship between pRBT and daily growth rate from 
the top supported models of summer growth rate (mm/d) in each population: Cyclone (a), Langford (c), 
McGee Creeks (e). The right column shows the interaction between pRBT and median summer 
temperature on growth rates for Cyclone (b) and Langford Creeks (d), where the different lines depict 
different RBT admixture (non-admixed WCT - solid, 0.25 RBT admixture - dotted, and 0.5 RBT 
admixture - dashed). 
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Figure 2.5: Predicted relationship between pRBT and daily growth rate (mm/d). On an annual basis, only 
Cyclone had a positive effect of pRBT on growth rate (a). During the spring, Langford had a negative 
effect of pRBT on daily growth on length (b), however, McGee had a negative effect of pRBT on daily 
growth in mass (see Appendix A, Table S2.9b).  
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Figure 2.6: Predicted relationship between pRBT and the probability of expressing a migratory life 
history strategy in CYC and LAN for juveniles (left column) and adults sampled (right column).  Plots a) 
and c) show the negative effect of pRBT on probability of emigration as total length increases for a non-
admixed WCT (solid), 0.25 admixed individual (dotted), and 0.5 admixed individual (dashed). Plots b) 
and d) show the positive effect of pRBT on the probability of captured adults being migratory.  
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CHAPTER 3 

NON-NATIVE HYBRIDIZATION HAS VARIABLE EFFECTS ON SURVIVAL IN DIFFERENT 

SALMONID POPULATIONS 

 

Abstract 

 

Human-induced hybridization increasingly threatens global biodiversity. However, variation in 

fitness consequences of human-mediated hybridization across heterogeneous landscapes is poorly 

understood. Introgressive hybridization with introduced rainbow trout (Oncorhynchus mykiss) threatens 

all subspecies of cutthroat trout (O. clarkii) and environmental conditions are thought to influence 

hybridization. We used mark-recapture of over 5,200 individuals in three wild populations of westslope 

cutthroat trout (O. clarkii lewisi) to parameterize a multistate mark-recapture survival model. We 

quantified the effects of non-native rainbow trout genetic admixture (measured with >500 species 

diagnostic-SNPs) and environmental variation (season, temperature, and population density) on survival 

rates. Summer survival was positively associated with non-native hybridization at two sites, however, 

overwinter survival was negatively associated with non-native admixture at the warmest site. Site-level 

variation in temperature and density did not interact with admixture to influence survival rates. Annual 

survival was negatively associated with rainbow trout admixture at the warmest site, while positively 

associated with admixture at the coldest site. These results show that outbreeding depression in the wild is 

context-dependent, and that environmental gradients typically used for describing patterns in hybrid 

zones, such as thermal regimes, may poorly predict variation in fitness consequences across the 

landscape. 
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Introduction 

 

Non-native hybridization is a serious and growing conservation problem threatening numerous 

species worldwide (Allendorf et al. 2001; Crispo et al. 2011; Grabenstein and Taylor 2018). Human-

mediated hybridization (hybridization that is the direct result of human actions via translocations or 

habitat alterations) can lead to the extinction of native genotypes (hybrid swarms), loss of locally adapted 

gene complexes, and outbreeding depression (Rhymer & Simberloff 1996; Abbott, Barton, & Good 2016; 

Todesco et al. 2016). Outbreeding depression has typically been considered a universal phenomenon 

following human-mediated hybridization events in species that exhibit local adaptation (Rhymer and 

Simberloff 1996), yet there is increasing evidence that the relative fitness of hybrid genotypes can be 

environmentally dependent and change over time (Arnold & Martin 2010; Walsh et al. 2016a; Hunter et 

al. 2017; Zhang et al. 2019). The tension and mosaic hybrid zone models from hybrid zone theory 

(Arnold 1997) have been used to set expectations of the drivers and consequences of human-mediated 

hybridization (e.g., Grabenstein & Taylor 2018). Research that quantifies how local environmental 

conditions regulate individual fitness differences in admixed populations is relatively common in plants 

(e.g., Emms & Arnold 1997; Campbell & Waser 2001; Gramlich & Hörandl 2016), but extremely rare in 

vertebrates (e.g., Culumber et al. 2015; Walsh et al. 2016a). Indeed, there are only a few studies that 

quantify the fitness consequences of human-mediated hybridization in wild vertebrate populations (e.g., 

Casas et al. 2012), and there is a lack of research on the interaction between environmental variation and 

admixture on fitness-related traits in these populations (but see Hunter et al. 2017).  

In contrast, a large body of literature has examined landscape patterns of human-mediated 

hybridization relative to environmental gradients, and these efforts typically invoke differences in fitness 

as one explanation for environmental-admixture correlations (Culumber et al. 2012; Walsh et al. 2016b; 

Muhlfeld et al. 2017). Studies of landscape patterns are rarely followed by more intensive studies of 

fitness traits to confirm if fitness differences are environmentally influenced in wild populations (see 

Walsh et al. 2016b & Walsh et al. 2016a). Therefore, studies linking fitness consequences of non-native 

hybridization with environmental variation (temporally and spatially) are key to understanding the 

prevalence of outbreeding depression and the factors driving the spread of non-native hybridization across 

heterogeneous landscapes. 

Human-mediated hybridization is particularly common in fishes due extensive human 

translocations for sport fishing and harvest (Epifanio & Nielsen 2000; Scribner, Page, & Bartron 2001). 

Decreased reproductive success associated with human-mediated hybridization is well documented in 

salmonids (Araki, Cooper, & Blouin 2007; Christie, Ford, & Blouin 2014; Glover et al. 2017). These 

studies often assume outbreeding depression to be independent of environmental conditions (as typically 
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described in tension zones rather than mosaic hybrid zones). Furthermore, few studies have looked 

beyond the early life history to the effects of hybridization on fitness-related traits in juvenile through 

adult life histories (but see Fukui 2019; Chapter 1).  

Hybridization is among the greatest threats to cutthroat trout in western North America, including 

remaining populations of westslope cutthroat trout (Oncorhynchus clarkii lewisi, hereafter WCT; 

Shepard, May, & Urie 2005). Rainbow trout (O. mykiss, hereafter RBT) is among the world’s most 

widely introduced fish species (Behnke 1992; Halverson 2010), and naturalized populations of RBT 

hybridize with native cutthroat trout. RBT admixture has continued to expand across the landscape 

despite decreased reproductive success across a range of different environmental conditions (Muhlfeld et 

al. 2009a; Kovach et al. 2015; Kovach et al. 2016; Muhlfeld et al. 2017)(R. P. Kovach et al. 2015; Ryan 

P. Kovach, Hand, et al. 2016; Muhlfeld, Kalinowski, et al. 2009; Muhlfeld et al. 2017). Furthermore, the 

expansion of  RBT hybridization and population-level admixture has been associated with stream 

temperature and other environmental features (Weigel, Peterson, a& Spruell 2003; Boyer, Muhlfeld, & 

Allendorf 2008; Bennett et al. 2010; Rasmussen, Robinson, & Heath 2010; Muhlfeld et al. 2014; Carim, 

Eby, & Pierce 2015; Young et al. 2016; Muhlfeld et al. 2017). These hybridization patterns align with 

known differences in thermal tolerance between these species (Bear, McMahon, & Zale 2007; Yau & 

Taylor 2014), however, there is considerable variation in the pattern of RBT hybridization unexplained by 

these environmental predictors (see Muhlfeld et al. 2017). To better understand variation in landscape 

patterns of admixture it is crucial to understand if non-native admixture influences survival, and if 

differences in survival (i.e., selection) is environmentally-independent (tension zone model) or -dependent 

(mosaic model). 

Here, we quantified the effects of proportion RBT admixture (pRBT) on seasonal survival rates in 

three populations of WCT. Specifically, we asked the following questions: (1) how does RBT admixture 

affect seasonal survival probabilities and do environmental factors influence these effects; (2) if there are  

significant relationships between admixture and survival, do they correlate with observed population-level 

admixture;  and (3) do they align with landscape patterns previously described for these species (e.g., 

admixture increases with stream temperature)? These results fill a critical void in the literature by 

demonstrating the effects of human-mediated hybridization can vary substantially as a function of spatial 

and interannual environmental variation. Furthermore, previously published environmental associations 

do not seem to predict the strength of selection against non-native admixture. 
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Methods 

 

Study Sites 

We sampled populations of WCT in Cyclone, Langford, and McGee Creeks on the North Fork 

Flathead River in northwestern Montana, USA (Figure 3.1). These sites were selected because they were 

known to contain both non-hybridized WCT and individuals with a range of admixture (Figure 3.2). The 

sites, while geographically close, differ in key environmental drivers (temperature, flow, density) that 

influence salmonid survival (Vøllestad & Olsen 2008) and are associated with landscape patterns of non-

native admixture (Bear, McMahon, & Zale 2007; Muhlfeld et al. 2017; Chapter 2; Table S3.1). Genetic 

admixture has been occurring in each population for at least five to ten generations, allowing substantial 

time for backcrossing and recombination.  

 

Mark-Recapture Field Sampling 

We used a seasonal mark-recapture design in each tributary to quantify seasonal survival rates 

across five years (2013-2017). We completed a single electrofishing pass of each study reach (~2km) 

twice annually (July and October). For each individual > 70mm total length (TL, mm), we measured TL, 

collected a tissue sample for genetic analysis, and double-marked each with a unique PIT tag (passive 

integrated transponder) and an external adipose fin clip. Recaptures were identified visually by the 

absence of an adipose fin, and then by detecting PIT tags previously implanted. If a fish’s adipose was 

clipped but it did not register a PIT tag, it was assumed to have shed its PIT tag; this occurred for < 1% of 

released tags (see Table 3.1).  

In addition to recapturing tagged individuals via electrofishing, we used mobile PIT tag surveys 

to relocate tagged fish. We searched for PIT tag detections using a single pass across the entire study 

reach. Upon detection of a PIT tag, we determined whether the signal was from a live, tagged fish or if 

the tag was shed (i.e., due to mortality, live shedding of tag through the incision, or spawning). We 

determined this by agitating the water around the detected tag, forcing the fish to move from its current 

position. We called a tag as “live” if the tag signal moved positions after agitation. We called a tag “shed” 

if the signal failed to move after sufficient attempts to agitate the fish.  

We installed duel PIT-tag antennae at the downstream end of all study reaches and at the 

upstream end of two study reaches. We ran these antennae from early April through November allowing 

us to detect the direction of movement and measure movement rates out of the study reaches (i.e., 

permanent emigration). We obtained capture and genotypic data from 5,249 individuals in our study 

populations (Table 3.1). 
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Environmental Data Collection 

Since survival in salmonids is influenced by individual size and environmental conditions 

(Hokanson, Kleiner, & Thorslund 1977; Henderson & Cass 1991; Meyer & Griffith 1997; Sogard 1997; 

Vøllestad & Olsen 2008), we accounted for all their impacts in addition to testing for effects of individual 

proportion RBT admixture (pRBT) on survival probability. To test for environmental effects and their 

interactions with pRBT on seasonal survival rates, we collected data for factors known to affect survival 

in salmonids: stream temperature (Bear, McMahon, & Zale 2007) and Oncorhynchus spp. density 

(Vøllestad & Olsen 2008). We measured water temperature and density as detailed in Strait et al. (in 

prep). To characterize the severity of the summer conditions we calculated the maximum seven-day 

average temperature each year. We estimated growing-degree-days (GDD; Coleman & Fausch 2007) to 

characterize the winter/spring conditions (as in Chapter 2).  Langford was the coldest site and least 

variable among years (Table S3.1). Cyclone and McGee had warmer and more variable summer 

temperatures. Oncorhynchus spp. densities were highest in Cyclone and lowest in McGee (Table S3.1). 

 

Laboratory and Bioinformatic Analyses 

To estimate genome wide proportion RBT admixture for each individual, we followed the 

laboratory analyses in Strait et al. (Chapter 2). We extracted and quantified DNA prior to RAD-capture 

procedures. Genetic samples were prepared and sequenced according to the bestRAD protocol and 

Rapture (RAD-capture) for genotyping (Ali et al. 2016). The capture was performed with the same 3015 

customized mybaits produced by Arbor Biosciences to capture RAD-tags that contain any combination of 

WCT polymorphic SNPs or WCT, YCT, and RBT species diagnostic SNPs. SNP loci were chosen for 

capture based on their genotyping quality, reliability for distinguishing each subspecies or species (i.e., 

subspecies- or species-diagnostic), and even distribution across the assembled rainbow trout genome (see 

Amish et al. 2012; Berthelot et al. 2014; Hand et al. 2015). We followed the same bioinformatic steps and 

quality control thresholds and the same set of RBT diagnostic loci as in Strait et al. (Chapter 2); on 

average all individuals were genotyped at 512 RBT diagnostic markers. Proportion RBT admixture 

(pRBT) was estimated for each individual as the number of RBT alleles / (2 * number of loci). 

We genotyped 5,249 individuals across all sites. While each population contained non-admixed 

WCT individuals, the proportion of the population that was non-admixed varied greatly among the 

populations (Figure 3. 2). The distribution of pRBT in Cyclone was skewed strongly towards WCT with a 

median of 0.013 pRBT. Langford and McGee had higher median pRBT (Langford = 0.34; McGee = 0.39) 

and less skewed distributions of pRBT than Cyclone. 
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Data Preparation and Model Development 

To quantify the effects of RBT admixture on survival rates, we developed a Bayesian multistate 

Cormack-Jolly-Seber capture recapture modeling framework for each population independently (hereafter 

MSCJS; Lebreton et al. 2009). This framework has been used in stream salmonids to account for size 

structure (size classes), permanent emigration from study areas, and movement across space within a 

study area (Letcher & Horton 2008; Horton, Letcher, & Kendall 2011)(Horton, Letcher, and Kendall 

2011; Letcher and Horton 2008). We made novel use of this framework by incorporating size-based-

states (hereafter size classes) to deal with unknown sizes of individuals redetected with a mobile PIT 

reader as well as emigration (Figure 3.3). We developed and ran our MSCJS models in JAGS (Plummer 

2013). JAGS runs Bayesian hierarchical models using Markov Chain Monte Carlo (MCMC) simulations 

to generate the posterior probability distributions for all parameters and model covariates. We formulated 

all models and tested each using the jagsUI package in Program R (Kellner 2015). Our formulation of the 

MSCJS allowed us to test for the effect of pRBT on seasonal survival (Ss) and transition (𝛹s-s+1) 

probabilities for each of s size classes.  

We chose the multistate formulation of the CJS capture-recapture model because this framework 

allowed us to achieve three key goals: 1) account for permanent emigration for the study reach, 2) divide 

each population into distinct life history stages that we hypothesized would have significantly different 

survival and emigration rates, and 3) reduce bias in our ability to accurately estimate the sizes of 

individuals resampled via mobile PIT tag reader when true size was unknown. Like many taxa, survival 

rates in salmonids vary across life history stages and furthermore, variation in environmental conditions 

can have different impacts on the survival of different size classes (Xu, Letcher, & Nislow 2010; Kanno 

et al. 2015) And finally, because a large proportion of our recaptures came from mobile PIT tag 

detections (Table 3.1), grouping individuals into size classes reduced potential bias associated with our 

imprecision when estimating unknown sizes.  

We considered two key features of data collected using a mobile PIT tag unit when we chose our 

modeling framework: 1) unknown lengths of resampled live individuals and 2) shed tag detections. When 

an individual’s length was unknown, we estimated its length based on Von Bertalanffy (VB) growth 

curves estimated from individuals in each population separately (Table S3.3). We estimated each 

individual’s age at first capture using the VB growth curves, which allowed us to estimate its age 

throughout the duration of the study. For any individual i resampled via mobile PIT tag reader at time t, 

we then estimated lengthi,t at a given agei,t from the VB equation. Finally, we adjusted lengthi,t by adding 

residuali from the mean size at age of the growth curve to adjust its estimated lengths across time. This 

ensured that imprecision in our estimates of length did not cause individuals to shrink over time (i.e., 

estimated lengthi,t is greater than a known lengthi,t+1). Since there was uncertainty whether a shed tag was 
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due to mortality or tag loss from a live individual, we censored individuals from the model at the occasion 

they were first detected as a shed.  

Our multistate CJS model consisted of four states, three size classes (juvenile, sub-adult, and 

adult) and one permanent emigration state (E, Figure 3.3). In addition to the assumptions of CJS models 

(Lebreton et al. 1992), we assumed emigration was permanent, occurred prior to mortality, and was 

perfectly detected. We recoded all encounter histories from measured or estimated total lengths to the size 

classes. If an individual was captured at a total length < 120 mm it was assigned to the juvenile class 

(juv), individuals at lengths > 120 mm and < 180 mm were assigned to the sub-adult class (sub), and 

individuals at lengths > 180 mm were assigned to the adult class (ad). These size classes were taken from 

life history work within WCT which found females to generally be mature at 180 mm TL (Downs, White, 

& Shepard 1997; Janowicz et al. 2018)(Janowicz et al. 2018; Downs, White, and Shepard 1997). We 

assumed released individuals survived with a size-class-specific probability Ss. We allowed individuals to 

transition across size class between any consecutive sampling occasions. It was assumed that individuals 

survived in their current size class and transitions occurred just prior to capture or detection. Individuals 

were not allowed to move from juv to ad without first moving into sub for at least one period and 

individuals could never transition back to smaller size classes. Transition probabilities for the juv and sub 

size classes were estimated from a multinomial distribution. We estimated the probability an individual 

remained in its current class	(𝛹juv-juv, 𝛹sub-sub), transitioned to the next larger class (𝛹juv-sub, 𝛹sub-ad), or 

emigrate permanently from the system (𝛹juv-E, 𝛹sub-E) between sampling occasions. Adult emigration 

probability was estimated from a binomial distribution (𝛹ad-E). Once an individual emigrated from the 

system, its probability of detection and transition probability out of state E was fixed to zero (emigration 

is permanent). 

 

Model Parameterization and Testing 

We built and tested MSCJS models for each population by the following steps: 1) we determined 

the most appropriate covariate structure on probability of detection (ps), 2) we tested our null and 

hypothesized covariate structure on survival (Ss), 3) we tested our null and hypothesized covariate 

structures on transitions (𝛹s-s+t), and 4) we ran each full model with supported structure on p, S, and 𝛹. 

Our goal was to parameterize final MSCJS models that minimized the number of necessary covariates for 

p and included only supported covariates for S and 𝛹. We tested the covariate structure for p under a fully 

saturated (time-varying) covariate structure for Ss to avoid variability in Ss over time being partitioned 

into variability in ps. We tested for state-specific, fully time-varying, and crew effects on ps. We used 

slightly informative priors to increase the speed of MCMC chain convergence by informing the prior 

distributions based on probability of detection estimates from the multiple pass depletion conducted every 
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July at each site (Table S3.2). After setting the covariate structure on ps, we tested several hypothesized 

covariate structures on Ss and then 𝛹s1-s2. We tested a fully-time varying structure, seasonal effects, pRBT 

effects, and a pRBT*season interaction on state-specific Ss and 𝛹 s1-s2. Additionally, we tested for the 

effect of seasonal temperatures and densities on Ss (Table S3.8). 

We tested the covariate structure on all parameters using uninformative (uniform) prior 

distributions on all coefficients and ran three parallel MCMC chains for a minimum of 10,000 repetitions. 

In some cases, we used slightly informative priors to speed up chain convergence (see Appendix B). We 

assessed Markov chain convergence by inspecting the Gelman-Rubin diagnostic (𝑅&) for each parameter 

and through visual inspection of the Markov chain trace plots (Tables S3.4-S3.6). We considered a 

covariate to be supported if the 95% credible interval (C.I.) of the posterior distribution did not overlap 

zero. In order for an environmental covariate to be considered supported, we required 1) that its 95% 

C.I.’s did not overlap zero, and 2) it demonstrated consistent effects across size classes and seasons (i.e., 

never switch from positive to negative in different size classes or seasons). After we determined the 

supported covariate structure on pi, Si, and 𝛹 i-j, we ran all final models for a minimum of 50,000 MCMC 

repetitions, with 10,000 burn-in repetitions and 5,000 adaptive steps to estimate our final posterior 

distributions for all parameters (Tables S3.3-S3.5). 

 

Results 

 

Probability of Detection 

We found support for size class-specific probability of detection, but there was not support for 

time varying or crew effects on probability of detection. There was substantial overlap between the 

posterior distributions of detection probabilities among some size classes in each population (e.g., 

juvenile and subadult probability of detection was not different). As a result, we parameterized constant 

detection probability for the juveniles and subadults (pjuv/sub), and separately for adults (pad) in Langford 

and McGee Creeks (Tables S3.4 & S3.5). In Cyclone Creek we parameterized constant detection 

probability for juveniles (pjuv) and a separate detection probability for sub-adults and adults (psub/ad, Table 

S3.3).  

We found significant differences in seasonal emigration and size class transition probabilities in 

all populations, however, as these results are not the focus of this paper and have been previously 

described in these populations (Chapter 2), we do not discuss these any further. All results for emigration 

and transition probabilities are discussed further in the Appendix B (section S3.1.1)  
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Effects of pRBT and Season on Survival Probabilities 

Monthly survival probabilities varied among summer and winter seasons and each population had 

a unique pattern of season survival differences (Figures S3.1 & S3.4; Tables S3.4 – S3.6). For example, 

monthly survival probability was higher during the winter in all size classes in Cyclone Creek (Table 3.2). 

However, fish of all size classes in McGee Creek had a higher monthly survival probability during the 

summer. And in Langford there was no difference in seasonal monthly survival probabilities for the 

juvenile or subadult size classes, but the adult size class higher monthly survival probability during the 

summer. 

The effect of pRBT on survival probabilities also varied among populations and seasons (Table 

3.2). In populations where pRBT significantly influenced survival, there was a positive effect on summer 

survival and a negative effect on winter survival. In Cyclone, pRBT positively influenced summer 

survival in subadults and adults and negatively influenced winter survival in all size classes (Figure 3.5a-

c). In Langford only juvenile summer survival probability was positively affected by pRBT (Figure 3.4a). 

We found no evidence that RBT admixture affected survival probabilities in McGee Creek (all posterior 

distributions for coefficients of pRBT overlapped zero).  

In Cyclone and Langford Creeks, the impacts of pRBT on seasonal survival rates, led to 

differences in annual survival probabilities associated with RBT admixture (Table 3.2). In Langford, the 

positive effect of pRBT on juvenile summer survival resulted in 20% higher annual survival for 

individuals with a hybrid score of 0.3 pRBT relative to a nonhybridized WCT (Figure 3.4b). In Cyclone 

Creek, despite the positive effect of pRBT on summer survival, the negative effect during the winter 

resulted in lower annual survival for individuals with increasing pRBT (Figure 3.5d-f). For example, in 

all size classes nonhybridized WCT had ~25% higher annual survival probability than individuals with 

hybrid scores of 0.25 pRBT. 

 

Effects of Temperature and Density on Survival 

While seasonal variation in environmental conditions generally had strong impacts on survival 

and interacted with pRBT, we found no evidence that interannual variation in temperatures or fish 

densities interacted with pRBT to influence survival. The effect of pRBT on survival was not influenced 

by inter-annual variation in temperature or density consistently in any population (Table S3.7). However, 

variation in summer temperatures did positively influence survival in all juvenile and subadult classes 

(Table S3.7) and in Cyclone, adult summer survival was also positively associated with temperature. 

There was little evidence that pRBT interacted with summer temperature to influence survival as only one 

(of nine) coefficients estimating this interaction had a posterior distribution that did not overlap zero 

(Table S3.7).  
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There was weak evidence that winter temperature (GDD) affected survival as only three (of 

eighteen) coefficients’ posterior distributions did not overlap zero. Furthermore, these effects did not 

impact the same size class and did not have the same direction of effect. For example, in Cyclone, winter 

temperature negatively affected adult survival, while it positively affected sub-adult survival in McGee, 

and in Langford there was a positive interaction between winter temperature and pRBT on survival 

probability.  

Density only had significant effects on survival in Cyclone Creek. Density had significant 

negative effects on juvenile and sub-adult survival, additionally there was a negative interaction between 

density and pRBT on sub-adult summer survival (Table S3.7). Winter survival was less consistent; 

juvenile survival was negatively affected by density, while sub-adult and adult survival was positively 

affected by density. There was also a positive interaction between pRBT and density on juvenile winter 

survival. In Langford, all twelve coefficients of density on survival overlapped zero and only one 

coefficient did not in McGee. 

 

Survival, Population-level pRBT, and Landscape Patterns 

Variation in the effect of pRBT on survival reflected the variation in population-level pRBT 

among our study sites (Figure 3.2; Table 3.2). Populations that displayed neutral or positive effects of 

pRBT on annual survival probabilities had much higher site-level pRBT. There was no significant effect 

of pRBT on survival in McGee Creek and this population had the highest pRBT admixture (mean pRBT 

= 0.34). There was a positive effect of pRBT on juvenile annual survival in Langford Creek and while 

there were still many nonhybridized WCT, there was a high proportion of hybrids in this populations 

(mean pRBT = 0.31). Finally, Cyclone Creek had the lowest population-level pRBT (mean pRBT = 0.11) 

and was the only population to have significant negative effects of pRBT on annual survival.  

Population-level pRBT and its effects on survival did not align with previous associations 

between environmental variation and population pRBT (Table 3.2). Although, positive associations 

between stream temperature and site pRBT has been documented in numerous studies (Muhlfeld et al. 

2014; Carim, Eby, & Pierce 2015; Young et al. 2016; Muhlfeld et al. 2017), our sites did not follow this 

pattern. First, the site with coolest summer temperatures (mean August temperature 11.3ºC) had a positive 

effect of pRBT on juvenile survival and high population pRBT (Table S3.1). Moreover, at the site with 

the warmest conditions (mean August temperature 14.1ºC), there were strong negative effects of pRBT on 

survival and low population-level admixture. While density has not been shown to predict landscape 

patterns of hybridization, we found density was negatively correlated with pRBT at our sites (Table 3.2). 

Cyclone Creek had the highest and most variable fish density while McGee had the lowest and least 

variable fish density (Table S3.1). 
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Discussion 

 

Our study is among the first in vertebrate taxa to quantify the effects of non-native hybridization 

and environmental conditions on a trait directly influencing fitness in wild populations. We found that the 

effect of non-native admixture on survival varied by season and among populations, ranging from 

strongly negative to positive. There is evidence that spatial variation in environmental conditions 

mediated the effects of RBT admixture on survival rates, but not as predicted from landscape patterns 

previously described for these species (Table 3.2). Interestingly, the differences in annual survival due to 

proportion RBT admixture reflected the population level admixture at each site. This indicates that 

selection against hybrids at later life-stages might be a necessary mechanism to prevent widespread 

admixture from occurring.  

Human-mediated hybridization is often documented to result in wide-spread admixture 

(Allendorf et al. 2001; Grabenstein & Taylor 2018), yet this is not uniform across the landscape as 

variation in the extent of RBT admixture is attributed to landscape patterns of introductions and 

environmental conditions (Muhlfeld et al. 2017). Previous research in the Flathead River, MT has 

demonstrated that extensive admixture can occur despite decreased reproductive success and selection 

against hybrids (Muhlfeld et al. 2009a; Kovach et al. 2015); Cyclone and Langford Creeks have been 

extensively studied for over two decades. Previous research found strong signals of selection against 

hybrids in Langford and Cyclone during early life history stages, yet population-level admixture is high in 

Langford (pRBT = 0.34) and remains relatively low in Cyclone (pRBT = 0.11). This suggests that 

selection during the early life history alone may not prevent admixture from reaching a high level, 

particularly in highly fecund taxa that produce 100s or 1000s of offspring. In such species, strong 

reductions in survival of later life history stages (juvenile-adult) are likely necessary to limit non-native 

admixture in the face of continuous gene flow from source populations.   

The variation in the effect of non-native admixture on survival and the population-level 

consequences found in this study were different from the previous described trends of higher site-level 

pRBT associated with warmer stream temperatures (Muhlfeld et al. 2014; Young et al. 2016; Muhlfeld et 

al. 2017; Table 3.2). However, the strength of selection on RBT hybridization did match the site-level 

admixture. This has important implications for a wide body of research that documents association 

between environmental variation and hybridizations (e.g., Culumber et al. 2012; Walsh et al. 2016b). 

Specifically, significant environment-admixture associations may be extremely poor predictors of spatial 

variation in fitness and natural selection.  
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Although density-dependent growth and survival is well documented in a wide range of taxa 

(Clutton-Brock et al. 1987; Vøllestad & Olsen 2008), density has not been shown to explain the landscape 

patterns of hybridization (Weigel, Peterson, & Spruell 2003; Muhlfeld et al. 2009b; Rasmussen, 

Robinson, & Heath 2010; Mckelvey et al. 2016; Young et al. 2016; Muhlfeld et al. 2017). However, this 

could be due to the collinearity between density and other landscape features (i.e., stream width and 

elevation). Moreover, density itself may not be the mechanism responsible for differences in growth, 

survival, or landscape patterns of hybridization, but density relative to the carrying capacity of the local 

environment (e.g., Bowyer et al. 2014). We found density-dependent effects on survival only in the 

population with the highest (1.3-3.2x higher) and most variable density (Cyclone, Table S3.1). The lack 

of evidence for density-dependent survival in the other populations could be due to a lack of interannual 

variation in density or that density is not near the carry-capacity of that site. This suggest the strength of 

selection against non-native admixture could be both density and frequency dependent (i.e., soft selection; 

Wallace 1975). Under the soft selection hypothesis, selection against hybrids should be strongest when 

density is high and the frequency of hybrids is low, and this is exactly what we observed in this study.  

The number of generations that admixture has been occurring might also explain the variable 

effects of RBT admixture on survival rates. RBT admixture was detected in Langford about two 

generations before it was detected in Cyclone. Recombination and selection during that period, would 

result in small chromosomal segments than a more recently admixed population and result in potentially 

weaker selection against hybrids. Similarly, once a population is nearly a hybrid swarm (few or no 

parental species; as in McGee Creek) detecting selection due to genome-wide admixture might be very 

difficult. First, selection is likely to have removed the most deleterious alleles from the population, and 

due to recombination, individuals of approximately the same hybrid index may have very different 

chromosomal admixture.  

Quantifying fitness consequences of human-mediated hybridization in vertebrates is challenging.  

This challenge is further complicated since the relative fitness of hybrids can depend on temporal or 

spatially varying factors and the fitness-related trait(s) measured. This works adds to a small but growing 

body of literature that shows outbreeding depression due to human-mediated hybridization is context-

dependent. Our data confirm that non-native hybridization can reduce survival of juvenile through adult 

life histories and prevent extensive admixture in some populations despite constant invasion from 

hybrids. Our work also cautions that previously reported environmental gradients in human-mediated, 

mosaic hybrid zones may not reflect the factors mediating the fitness consequences of hybridization. 

Studies reporting landscape patterns of hybridization should also attempt to quantify the fitness 

consequences to pull apart propagule pressure from selection. Populations that resist non-native 
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admixture might represent the robust populations where (soft) selection is most efficient at removing non-

native alleles from the population. 
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Table 3.1: Mark-recapture sample sizes used in the multistate Cormack-Jolly-Seber models for each 
population. Reported for each population, 1) the number of uniquely tagged individuals, 2) total number 
of live recaptures (electrofishing or mobile PIT unit), 3) unique fish recaptured via electrofishing surveys, 
4) unique individuals recaptured via electrofishing surveys at least twice, 5) unique fish recaptured via 
mobile PIT surveys, 6) unique fish recaptured via mobile survey at least twice, 7) permanent emigrants 
detected via stationary PIT arrays, 8) unique fish detected as “shed” via mobile PIT surveys, and 9) the 
number of unique fish found to have “shed” their original PIT tag via electrofishing survey recaptures. 
 

  Langford Cyclone McGee 
1 Number of unique tags deployed 1220 2913 1116 
2 total live recaptured 472 1207 493 
3 tags recaptured via electrofishing 375 987 434 
4 tags recaptured via electrofishing > 1 time 302 768 353 
5  tags recaptured via mobile survey 312 960 219 
6 tags recaptured via mobile survey > 1 time 237 676 180 
7 permanent emigrants 29 185 72 
8 tags detected as shed vua mobile survey 37 118 31 
9 fish found to have shed original PIT tag 8 34 2 
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Table 3.2: Summary of the hypothesized versus detected population-level proportion RBT admixture 
(pRBT) based on landscape correlations between stream temperature and pRBT. Cyclone and McGee 
Creeks are relatively warm sites (mean August temperature > 13.8 C; mean annual growing-degree-days 
> 1250). Langford Creek is on average much colder (mean August temperature < 11.3 C; mean annual 
GDD < 940). These differences in stream temperature should correlate with lower site-level pRBT in 
Langford than either Cyclone or McGee. Additionally, we predicted that the effect of individual pRBT on 
survival rates would be positive at the warmer sites and negative at the colder site. However, we detected 
similarly high site-level pRBT at Langford and McGee (L = 0.31; M = 0.34), while Cyclone had 
relatively low admixture (CYC = 0.11). Furthermore, we found strong positive effects of pRBT on 
juvenile survival at the coldest site and strong negative effects of pRBT on survival at the warmest site. 
 

 
 

 
population-level 

admixture 
Hypothesized effect of 

pRBT on survival 
detected effect of 
pRBT on survival 

population density temperature hypothesized detected sum win ann sum win ann 
Cyclone high warmest high low + + + + - - 
Langford medium cold low high - / N - - + N + 
McGee low warm high high + + + N N N 
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Figure 3.1: Map of our study system (study tributaries in red) in the North Fork Flathead River in 
Northwestern Montana, USA. We sampled Cyclone (1), Langford (2), and McGee (3) Creeks using a 
combination of seasonal backpack electrofishing and mobile PIT tag surveys to capture, tag, and 
recapture Oncorhynchus ssp. from 2013 – 2017. These tributaries differed in key environmental factors 
that we hypothesized would influence the extent of RBT admixture and the effects of RBT admixture on 
fitness traits (see Appendix B, Table S3.1). 
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Figure 3.2: The distributions of proportion RBT admixture (pRBT) among individuals in Cyclone, 
Langford, and McGee Creeks. These populations contain non-admixed WCT and hybrids, but differ in 
their distributions of pRBT. Cyclone Creek is predominantly WCT with relatively few hybrids above 0.5 
pRBT (mean pRBT = 0.11). Langford and McGee Creeks both have WCT, but have a much higher mean 
proportion RBT admixture (Langford = 0.31, McGee = 0.34).  
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Figure 3.3: Formulation of a multistate Cormack-Jolly-Seber capture recapture model. States represent 
distinct life history stages separated by total length: juveniles < 120 mm TL, sub-adults > 120mm TL < 
180mm TL, adults > 180 mm TL. The fourth state represents permanent emigration from the study area 
(E). We estimated state-specific survival probabilities (Ss) and transition probabilities (𝛹s1-s2) and the 
effect of proportion RBT admixture on each survival and transition probability. 
 
  

Emigration

SJ * ѱJE SS * ѱSE SA * ѱAE

SJ * ѱJS

SJ * ѱJJ

SS * ѱSA

SS * ѱSS SA
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Figure 3.4:  The predicted probabilities of proportion RBT admixture (pRBT) on monthly (a) and annual 
survival probabilities (b) for Langford. The red and blue lines indicate summer and winter/spring 
relationships respectively. (a) Juvenile summer survival was positively associated with proportion RBT 
admixture in Langford Creek during the summer. (b) Combined, the seasonal influence of pRBT on 
survival resulted in a net positive effect of pRBT on annual juvenile survival probabilities in Langford.  
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Figure 3.5:  The predicted relationships between proportion RBT admixture (pRBT) and monthly survival 
(top row) and annual survival (bottom row) probabilities for Cyclone. In Cyclone there were positive 
effects of pRBT on monthly summer survival probabilities (red lines) in the sub-adult (b) and adult size 
classes (c). During the winter/spring season (a-c, blue lines) pRBT had negative effects on monthly 
survival in all size classes. Combined, the seasonal influence of pRBT on survival resulted in a net 
negative effect of pRBT on annual for juveniles (d), sub-adults (e), and adult (f) survival probabilities in 
Cyclone. 
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CHAPTER 4 

GENOME-WIDE SNP ANALYSIS REVEALS LOCI LINKED TO FITNESS-RELATED TRAITS IN A 

SALMONID HYBRID ZONE 

 

Abstract 

 

Introgressive hybridization due to anthropogenic factors is a growing conservation concern. 

Understanding the genetic basis of fitness traits associated with hybridization will help manage and 

predict long-term consequences of hybridization. Hybridization with introduced rainbow trout 

(Oncorhynchus mykiss) threatens all subspecies of cutthroat trout (O. clarkii) across their native ranges. 

We investigated the genetic basis of individual growth rate and migratory behavior in three hybridized 

populations in northwest Montana (2013-2016). We conducted a genome-wide association analysis 

(GWAA) using >2000 polymorphic and species-diagnostic single nucleotide polymorphisms (SNPs) to 

identify loci associated with growth and migratory behavior. Power analysis suggested we had high 

power (>0.8) to identify large effect loci (effect size >0.5) but lower power (<0.8) to detect multiple small 

effect loci associated with a phenotypic trait (growth or migration). We expected multiple loci of small 

effect to underly growth rates but predicted that migratory behavior would have loci of large effect. 

Consistent with these expectations, we found no SNPs associated with growth, however we found 

rainbow trout diagnostic alleles on chromosome 29 strongly associated with migratory behavior. The 

genetic basis of differences in migratory behavior between cutthroat trout and hybrids could help explain 

the rapid expansion of hybridization in systems where hybrid dispersal appears to be a mechanism leading 

to hybrid swarm formation. If this genomic association persists in many populations, managers may have 

a way to target the suppression of individuals and populations (with highest frequency of these alleles) to 

reduce the spread of hybridization across the landscape. This study illustrates how genomic approaches in 

hybridized populations can potentially improve understanding and management of spread of invasive 

hybridization. 
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Introduction 

 

Human-mediated hybridization is a serious conservation problem threatening both plant and 

animal taxa and has been increasing due to factors such species introductions, land use practices and 

climate change (Allendorf et al. 2001; Kelly, Whiteley, & Tallmon 2010; Crispo et al. 2011; Grabenstein 

and Taylor 2018). Fortunately, genomics has greatly improved our ability to detect, characterize, and 

manage the rates and patterns of invasive introgression (McFarlane & Pemberton 2019). Genomic 

approaches are also improving  our understanding the evolutionary and ecological consequences of these 

events (Hedrick 2013; Fraïsse et al. 2014; Christe et al. 2016; Jones et al. 2018) including our 

understanding of the genetic basis of traits (e.g., the number and effect sizes of genes explaining variation 

in phenotypic traits; Lindtke et al. 2013; Vestergaard et al. 2015).  

The rapid expansion of some introduced species has led researchers to investigate the 

evolutionary mechanisms for this phenomenon. The hybridization-invasion hypothesis suggests an 

evolutionary advantage due to introgressive hybridization with the native taxon which allows non-native 

alleles to spread (Ellstrand & Schierenbeck 2000). The hybridization-invasion hypothesis (hereafter, H-I) 

suggests that introgressive hybridization enhances invasiveness of species by creating novel genotypic or 

phenotypic variation that increases the fitness of these individuals relative to the parental species or by 

masking deleterious alleles in the native populations (Hovick and Whitney 2014). Most of the research on 

H-I has focused on understanding if non-native hybridization positively impacts traits associated with 

individual fitness and population growth rate (i.e., fecundity, growth, or survival; Ryan, Johnson, and 

Fitzpatrick 2009; Whitney et al. 2015). However, few studies and tests of the H-I hypothesis have looked 

at traits directly related to migration and dispersal rates (see Lowe, Muhlfeld, & Allendorf 2015). Another 

evolutionary mechanism by which invasive hybridization might expand across the landscape is through 

spatial sorting (Shine, Brown, & Phillips 2011; Lowe, Muhlfeld, & Allendorf 2015). Spatial sorting 

suggests the genotypes associated with higher dispersal rates should be more frequent at the range edge of 

an expanding species and can fuel the spread of invasive hybridization regardless of the fitness 

consequences (e.g., decreased reproductive success or survival). Understanding the evolutionary 

mechanisms by which invasive hybridization spreads and the genetic basis of traits related to fitness and 

dispersal will aid our conservation efforts and our understanding of evolutionary consequences of 

hybridization. 

The genomic era has ushered in many recent advances in our understanding of the genetic basis 

of fitness traits and the consequences of introgressive hybridization (Abbott, Barton, & Good 2016; 

Gompert, Mandeville, & Buerkle 2017), including the genomic mechanisms underlying reproductive 

isolation (Payseur & Rieseberg 2016; Schumer et al. 2017; Baiz, Tucker, & Cortés-Ortiz 2019; Knief et 
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al. 2019) and adaptive introgression (e.g., Hedrick 2013), and patterns of selection in hybrid zones 

(Payseur 2010; Fraïsse et al. 2014; Schumer & Brandvain 2016; Walsh et al. 2016c; Ryan et al. 2017; 

Schumer et al. 2018). Searching for evidence of adaptive introgression in cases of natural and human-

mediated hybridization is of great interest (Hedrick 2013; Abbott, Barton, & Good 2016), but it remains 

difficult to identify underlying genes associated with phenotypic variation (Rieseberg 2011; Song et al. 

2011; Jones et al. 2018). Hybrid zones are useful for identifying genomic regions underlying phenotypic 

differences between the hybridizing taxa as linkage disequilibrium extends long distances early in the 

admixture process and so detecting these genomic regions can be done with relatively few loci (Gompert, 

Mandeville, & Buerkle 2017). Not only have these advances fueled evolutionary biology, but they can 

also inform conservation questions in a broad range of taxa (Allendorf, Hohenlohe, &Luikart 2010; 

Harrisson et al. 2014; Shafer et al. 2015; Garner et al. 2016; Supple & Shapiro 2018).  

Salmonids have led in the application of genomic tools for conservation (Waples, Naish, & 

Primmer 2020), and we have begun to understand the genetic basis of many fitness related traits such as 

growth, development, and maturation (e.g., Johnston et al. 2014; Gutierrez et al. 2015; Kodama, Hard, & 

Naish 2018; Ali et al. 2020) and migratory behaviors such as phenology and partial migration/anadromy 

(Hecht et al. 2013; Barson et al. 2015; Hess et al. 2016; Prince et al. 2017; Kelson et al. 2019; Pearse et al. 

2019). Growth and migratory life history behavior are important traits in salmonids that influence 

individual fitness and the spread of hybridization (e.g., Sogard 1997; Thompson & Beauchamp 2016; 

Janowicz et al. 2018). Growth is likely influenced by many genes of small effect as factors such as 

maternal effects, conspecific density, and abiotic conditions influence growth rates (Vøllestad & Olsen 

2008; Xu, Letcher, & Nislow 2010; Bærum et al. 2013; Falica et al. 2017). Due to a long history of 

aquaculture in rainbow trout (Oncorhynchus mykiss) we have discovered numerous growth related genes 

(Wringe et al. 2010; Gonzalez-Pena et al. 2016; Reis Neto et al. 2019; Ali et al. 2020). In contrast, there is 

accumulating evidence across salmonid species that traits associated with discrete migratory phenotypes 

are controlled by few large effect loci (Prince et al. 2017; Pearse et al. 2019), and likely many small effect 

loci as well (Sinclair-Waters et al. 2020). Similarly, fewer genomic factors might play a role in partially 

migratory freshwater salmonid populations (Arostegui et al. 2019). Understanding the genetic basis of 

traits that influence fitness or the rate of spread of human-mediated hybridization, which includes both 

growth and migration, would be valuable for conservation by improving our understanding, and our 

ability mitigate and predict long-term consequences of hybridization. 

Invasive hybridization is among the greatest threats to all cutthroat trout subspecies (O. clarkii) in 

western North America, including remaining populations of westslope cutthroat trout (O. clarkii lewisi, 

hereafter WCT; Shepard, May, and Urie 2005). Rainbow trout (Oncorhynchus mykiss, hereafter RBT) is 

among the world’s most widely introduced invasive fish species (Behnke 1992; Halverson 2010), and 
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naturalized populations of RBT hybridize with native cutthroat trout. Despite evidence of lower 

reproductive success and selection against hybrids, RBT admixture has continued to spread and threatens 

many of the remaining populations of WCT with hybridization (Muhlfeld et al. 2009a; Kovach et al. 

2015; Kovach et al. 2016b; Muhlfeld et al. 2017). Multiple studies have found evidence that RBT and 

hybrids have higher dispersal rates (i.e., a lack of natal site-fidelity) than WCT (e.g., Boyer, Muhlfeld, & 

Allendorf 2008; Kovach et al. 2015; Bourret et al., unpublished). In stream-spawning freshwater fishes, 

migrants have a higher probability of dispersal (i.e., spawning in a non-natal site) than residents due to 

their migrations from natal sites and their larger body size (Radinger & Wolter 2014). Furthermore, Strait 

et al. (Chapter 2) found positive associations between genome-wide proportion RBT admixture and daily 

summer growth rates and migratory behavior. Understanding the genetic basis of these two traits would 

help us better understand the evolutionary mechanism(s) (i.e., H-I, spatial sorting) leading to the spread of 

RBT alleles in some systems. 

Our objectives were to test for locus-specific effects of RBT introgression on growth rates and 

migratory behavior in WCT. First, we conducted a power analysis to quantify our ability to detect RBT 

alleles associated with growth and migratory behavior. Specifically, we asked 1) What is the statistical 

power for detecting large-effect loci (and small-effect loci) influencing pehnotypes using our sample sizes 

of individuals and loci? We used our empirical data to ask 2) are there specific RBT alleles associated 

with higher summer growth rates in hybrids and RBT, and 3) are there specific RBT alleles associated 

with expression of migratory life history behavior? 

 

Methods 

 

Study Sites and Sample Collection 

We sampled populations of WCT in Cyclone, Langford, and McGee Creeks on the North Fork 

Flathead River, Montana, USA (2013-2016; Figure S4.1). Hybridization has been occurring in each 

population for at least five to ten generations, allowing substantial time for backcrossing and 

recombination. Admixture was first detected in Langford in the 1980’s, but was not detected in Cyclone 

and McGee until the late 1990s (Muhlfeld et al. 2014). These sites were selected because they differ in 

mean RBT admixture as well as the distribution of individual RBT admixture (Figure S4.2). Cyclone 

Creek is predominantly non-admixed WCT, while Langford and McGee are both highly admixed 

populations. We expected stronger linkage disequilibrium and therefore higher power to detect genotype-

phenotype associations in the more recently admixed populations. 

We used both migrant fish traps and backpack electrofishing to capture individuals; detailed field 

methods can be found in Strait et al. (Chapter 2). For each individual captured, we measure total length 
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(TL, mm), implanted each individual with a unique PIT tag (passive integrated transponder), and took a 

tissue sample for genetic analysis. We sampled each tributary via backpack electrofishing in July and 

October for resident adult and juvenile trout. For all fish collected, we assigned individuals as adults or 

juveniles using a total length threshold of 160mm ( juveniles ≤ 160; adults > 160mm; Downs, White, & 

Shepard 1997; Janowicz et al. 2018). For resident juvenile trout (< 160mm TL) captured in the stream in 

July and October of the same year, we measure daily summer growth rate (daily growth rate = TL2 – TL1 

/ # days; mm/d). We also trapped migratory (fluvial) adults entering each tributary to spawn using 

migrant traps during the spring (~April 1 – July 1) of each year. In addition to the metrics taken above, 

sex of migratory adults was determined visually before release.  To identify loci associated with 

migratory behavior, we contrasted the genotypes of migratory adults against putatively resident adults 

captured via electrofishing during July electrofishing surveys. Each study reach had PIT-tag antennae at 

the downstream end to detect movement of tagged individuals from the study reach. Any individuals 

tagged during electrofishing surveys that were detected emigrating from the stream were not included in 

the growth or migratory behavior analysis.  

 

Laboratory and Bioinformatic Analyses 

We extracted DNA from tissue samples using the SPRI bead extraction protocol described in Ali 

et al. (2016). DNA quality (260/280 ratio) and quantity were measured using a Nanodrop 2000 

Spectrophotometer (Thermo Scientific, Waltham MA). The concentration of double stranded DNA was 

measured using QuantIt Picogreen assays (Thermo Fisher Scientific, Waltham, Massachusetts) after 

diluting samples to less than 20ng/ul. Sequencing libraries were prepared using the bestRAD and Rapture 

(RAD-capture) protocols (Ali et al. 2016) using 50 nanograms of input DNA for each sample. RAD 

libraries were sheared to an average fragment size of 350 base pairs using a Covaris E220 Ultrasonicator 

(Covaris Inc., Woburn, Massachusetts). Libraries were amplified for 12 cycles using a plate specific 

indexing primer, purified using Ampure XP beads, and quantified using Quantit Picogreen assays. Plates 

were pooled in groups of 6 (83ng from each library) before enriching for 3015 RAD loci previously found 

to be informative for estimating admixture coefficients. Enrichment was performed using a custom 

Mybaits target enrichment kit (V3, Arbor Biosciences, Ann Arbor, Michigan). This panel included a 

combination of baits complementary to RAD loci containing WCT/RBT polymorphic SNPs and WCT, 

YCT, and RBT species diagnostic SNPs (Amish et al. 2012; Hohenlohe et al. 2013; Hand et al. 2015; 

Kovach et al. 2016b; Figure S4.3). Loci were chosen for capture based on their genotyping quality, 

reliability for distinguishing each (sub)species and even distribution across the assembled rainbow trout 

genome. Pooled libraries were amplified post-capture for 10-12 cycles and quantified using Quantit 

Picogreen assays before being sequenced 6 libraries/lane on an Illumina HiSeq X (Novogene Corporation, 
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Sacramento, CA). 

Read quality was assessed using FASTQC v0.11.5 and duplicates reads were removed using the 

clone_filter program from Stacks v1.44 (Catchen et al. 2011). Sequencing adapter contamination was 

removed from reads using Trimmomatic and reads were truncated whenever the mean Phred score across 

a window of 4 nucleotides dropped below q15. We further required reads to be greater than 60 bp after 

applying the trimming steps above. We then used a custom script to exchange reads between read 1 and 

read 2 fastq files whenever the inline index for an individual was found at the beginning of read 2. 

Properly oriented fastq files were demultiplexed by individual barcode using process_radtags v1.44. 

Reads were mapped to the RBT reference genome (Berthelot et al. 2014) using bwa-mem and resulting 

sam files were sorted, converted to bam format, and indexed using samtools v1.4. We then used 

HaplotypeCaller v3.7 to generate gVCF files for each individual, combined gVCF files across individuals 

using CombineGVCFs v3.7, and called genotypes using GenotypeGVCFs v3.7 (McKenna et al. 2010). 

The resulting VCF file was filtered using vcftools ( LGPLv3; Danecek et al. 2011).  

We performed an initial quality control on loci and individuals. Genotypes were set to missing if 

the genotype quality score was less than 30 and minimum read depth was less than 7. In addition, an 

allele balance between 0.25 – 0.75 and a minimum read depth of 10 was required for all heterozygote 

genotypes. Loci were removed if they were missing genotypes in more than 10% of individuals and 

individuals were dropped from the analysis if they did not have genotypes at greater than 20% of 

remaining loci after filtering. Species diagnostic loci were separated from WCT/RBT polymorphic loci.  

Proportion RBT admixture (pRBT) was estimated for each individual as the number of RBT alleles / (2 * 

number of genotyped diagnostic loci). After sub-sampling our entire sequencing dataset to the individuals 

presented in this paper, we filtered the individuals and loci to have < 30% missing genotypes.  

 

Power Analysis 

We used simulations to assess our power to detect a QTL with varying effects sizes on survival 

across a range of marker densities and sample sizes of individuals. We quantified changes in power at 

relatively low, medium, and high marker density and over a range of individual sample sizes. All scripts 

are available in the supplemental materials. We ran individual-based simulations of three populations of 

native fish in a river network for eight generations using a package written in Program R (Figure S4.4; 

package available in supplemental materials). For the first six generations, 500 non-native fish were 

stocked at the bottom of the river network. To allow hybridization to occur and spread during the 

simulation, dispersal probability had a mean of 0.1 and maximum of 0.4 for all individuals. Random 

mating among individuals within a population occurred each generation and the population size was held 

constant at 2000 individuals per population. Individuals matured at age 1, lived to a maximum of 2 years 
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(Table S4.4) and the age structure of each population was held constant at 0.5 age zero, 0.3 age one, and 

0.2 age two.  

For simplicity and efficient computing, we simulated one QTL that was randomly placed on one 

of two chromosomes, each 100 centiMorgans (cM) long. We then sampled 50, 75, or 100 loci per 

chromosome. We varied the QTL effect size on survival directly, ranging from slightly deleterious (20% 

reduction in survival) to strongly deleterious (80% reduction in survival). This allowed the evolution of 

these systems to resemble those found in the wild with a range of non-native admixture in different 

populations (Figure S4.4). We also varied the number of individuals sampled in each population from 200 

to 1000. We then simulated 500 repetitions of each level of a full factorial design of QTL effect size, 

marker density, and sample size.  We simulated 84 combinations of QTL effect size, marker density, and 

individual sample sizes each for 500 independent repetitions (Table S4.4). After each simulation 

repetition, we performed a genome wide association study using the programs Plink (Purcell et al. 2007) 

and GCTA (Yang et al. 2011a) and recorded if the QTL was detected in the GWAA. To estimate power, 

we calculated the number of independent simulations in which the GWAA successfully detected the QTL 

divided by the total number of simulation repetitions. This framework allowed us to explore the effects of 

QTL effect size, marker density, and sample size on our ability to detect a locus-specific effect of RBT 

introgression on fitness traits in wild populations. 

 

Genome-wide Association Analyses 

We conducted all GWAA using the package GenABEL (Aulchenko et al. 2007) in Program R. 

We used the same approach for identifying potential loci underlying differences in growth rate and 

migratory behavior in admixed populations. For each phenotypic trait, we conducted GWAA using data 

from the three populations combined, and then analyzing data from each population independently. We 

then compared the top supported loci from each approach as in Hecht et al. (2013). The mixed effects 

models accounted for population structure and factors known to affect growth rates and migratory 

behavior in salmonids, as well as relatedness among individuals. We fitted and tested mixed effects 

models with the following forms for 1) daily summer growth rate and 2) migratory life history behavior: 

 

1) Growth	~	𝛽/0	𝑇𝐿 + 𝛽456𝑆𝑁𝑃 + 𝛽:;:	𝑃𝑜𝑝 + 	𝐺 + 	𝜀 

 

2) Migration	~	𝛽/0	𝑇𝐿 + 𝛽456𝑆𝑁𝑃 + 𝛽:;:	𝑃𝑜𝑝 + 	𝐺 + 	𝜀 

 

where TL is a vector of fixed-effects of the total length (mm, TL) of each individual and 𝛽/0 is the 

coefficient on TL. Previous analysis showed that TL was an important predictor of growth rate and 
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migratory behavior in these populations (Chapter 2). SNP is the design matrix of the SNP genotypes 

(coded as 0, 1, or 2) and 𝛽456 is the matrix of SNP coefficients. G is the random genetic effect controlling 

for relatedness and population structure and 𝜀 is the error term. Pop is a vector of fix-effects of each 

individual’s population of capture and 𝛽:;: is the corresponding coefficient for population (note: a fixed-

effect of population was only included in models when data from all populations were combined). For a 

list of all models tested, see the Appendix C (Table S4.5). 

 

Controlling for Genomic Inflation and Multiple Testing 

We assessed the results of our GWAA using P-values that were corrected for genomic inflation 

and multiple testing. We tested multiple methods for accounting for population structure and relatedness 

provided within GenABEL including: 1) eigenstrat method (Price et al. 2006; eg.score() function) , and 2) 

genomic kinship matrix (ibs() function). The Eigenstrat method combines structured association and 

genomic kinship by creating principle components from the genomic kinship matrix and thus accounts for 

structured associations among larger strata (i.e., populations), as well as, more subtle structure through the 

genomic kinship matrix. Ultimately, we used the method of controlling for relatedness that best reduced 

the genomic inflation (𝜆), however, inflation of the test statistic is expected in polygenic traits even after 

accounting for population structure (Yang et al. 2011b). Before interpreting results from the GWAA, we 

corrected P-values for genomic inflation, by dividing the test statistic by the genomic inflation factor and 

used a false discovery rate (FDR, p.adjust() function) to prevent Type I error. 

 

Further Investigation of Migratory Behavior 

We followed the GWAA with several other analyses to further investigate our finding of an RBT 

allele on chromosome 29 associated with migration. First, we checked the allele frequencies of all loci on 

this chromosome. We split the data set by phenotype (migrants and residents) to determine which species 

diagnostic allele was associated with migratory behavior and to confirm that all populations displayed the 

same pattern. Since we did not know sex of all individuals in this analysis, we then checked for sex bias 

in our migrant dataset, as there is evidence of female-biased migratory behavior in partially migratory 

salmonids (e.g., Koizumi, Yamamoto, & Maekawa 2006). We did not have a sex-diagnostic marker on 

our Rapture marker set, and so we confirmed sex visually in the field where possible.  

Since chromosome 29 is known to be the location of the sex-determining genes in rainbow and 

cutthroat trout (Yano et al. 2013; Berthelot et al. 2014), we checked for a sex bias in our results. We 

looked at the sex ratio of the migratory fish and ultimately removed all known females (n = 112) and 

reran the GWAA on males only. Our final step to confirm these results, we re-analyzed the generalized 

linear models for predicting probability of migration from Strait et al. (Chapter 2). We performed the 
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same top down model selection with three sets of global models: 1) including a fixed effect for genome-

wide proportion RBT admixture (pRBT), 2) including fixed effects for pRBT and the genotypes at the 

putative QTL on chromosome 29 for migration phenotype, 3) including only the genotypes at the putative 

QTL on chromosome 29. We then performed model selection based on Akaike’s Information Criterion 

corrected for small sample sizes (AICc). 

 

Results 

 

Power Analysis of GWAA Via Simulations 

Power was most improved by increasing the locus effect size on survival. Power ranged from less 

than 0.1 to nearly 1.0 as the effect size increased (Figure 4.1, Table S4.5). Even at the highest sample size 

of individuals (n = 1000), power rapidly dropped below 80% as the QTL effect size on the survival 

dropped below 0.45 (i.e., the locus explained 45% of the variation in the phenotype). These results clearly 

demonstrate that a locus must control a large proportion of the phenotypic variance (> 0.5) in order to 

avoid false negative results in our GWAA of growth rate and migratory life history behavior. It is 

important to note that since we simulated a marker that directly impacted survival probability, power in 

our simulation decreased as the effect size of the QTL increased about ~0.7. While this was necessary to 

allow evolution the simulated populations, we did not expect the same decrease in power at larger QTL 

effect sizes because our phenotypes of growth and migratory behavior do not directly influence survival. 

Power was also strongly affected by sample size of individuals. The maximum power to detect 

the locus associated survival differences was ~ 60% if we sampled 200 individuals. Power increased to 

~87% if the sample size was increased to 500 individuals, and to ~100% if we sampled 1000 individuals. 

Power was minimally affected by marker density. For example, in simulations where we sampled 500 

individuals maximum power ranged from 0.82 (50 loci/chromosome) to 0.84 (100 loci/chromosome). 

Overall, these estimates suggest that our empirical sample sizes should give us adequate power to detect 

large effect loci associated with growth and migration.  

 

No Evidence for a Large Effect Locus on Growth Rate 

We obtained growth and genotypic data from 435 juvenile trout that passed the quality control 

(QC) and filtering steps for genotype calling (Table S4.1). Through the QC filtering, we retained a total of 

2,140 SNPs distributed across the RBT genome assembly, including 1,264 polymorphic SNPs and 876 

species diagnostic SNPs for estimating relatedness and conducting the genome-wide association analyses 

(Table S4.3). 
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None of the 2,140 SNPs were statistically significantly associated with growth rates in our 

GWAA of all populations combined or when analyzed within each population separately (Figure S4.5). 

When all populations were combined, the model that best accounted for genomic relatedness included 

fixed effects for total length and population as well as a random genetic effect using the eigenstrat 

method (Table S4.6). The model of all populations combined had genomic inflation of the test statistics 

(𝜆) was 1.03 and the genomic estimate of the heritability was h2 = 0.007.  

 

GWAA Discovers SNPs Associated with Migratory Behavior 

We captured and genotyped 364 migratory adults and 510 resident adults (Table S4.2). After QC 

filtering this migratory dataset, we retained a total of 2,292 SNPs distributed across the RBT genome 

assembly, including 1,323 polymorphic SNPs and 969 species diagnostic SNPs for estimating relatedness 

and genome-wide association analyses (Table S4.3). 

Our GWAA of all populations revealed a RBT diagnostic SNP on chromosome 29 significantly 

associated with migratory behavior (omy_29_28901336; FDR p = 0.03; Figure 4.2). The model that 

minimized genomic inflation included total length, population, and relatedness using the genomic kinship 

matrix. There was evidence of genomic inflation of the test statistics (𝜆 = 1.32, Figure S4.6 Table S4.7) 

and the genomic estimate of the heritability was h2 = 0.220. Closer examination of chromosome 29 

revealed a large region, including SNP omy_29_28901336, where the frequency of the RBT diagnostic 

allele was at higher frequency in the migrants than the residents (Figure 4.3a).   

There was no evidence that female bias drove the association between migratory behavior and 

omy_29_28901336. Specifically, the RBT allele was similarly associated with migratory behavior in 

males and females. We found no evidence for difference in the allele frequencies on chromosome 29 

between males and females (Figure 4.3b). After removing the 112 known females from the dataset, our 

GWAA results showed the same association between migratory behavior and the RBT allele at 

omy_29_28901336 (FDR p = 0.0597, Figure S4.6).  

Model selection of generalized linear models explaining migratory behavior showed that models 

including the genotypes at locus omy_29_28901336 had lower AICc than models with only genome-wide 

proportion RBT admixture. The probability of migration was positively affected by RBT introgression at 

locus omy_29_28901336 (Figure 4.4). Our generalized linear models showed positive effects of RBT 

alleles at omy_29_28901336 in a mixed effects framework (with random population intercept), and 

Cyclone and Langford when we modelled each population separately. McGee did not have a significant 

effect of genotypes at omy_29_28901336 or genome-wide proportion RBT admixture on migratory 

behavior (Figure 4.4c, Table S4.8c), however, the RBT allele was at much higher frequency in the 

migrants than the residents (a pattern consistent among all populations; Figure 4.3a), suggesting that this 
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effect may also be present in McGee but undetected due to low power. The top supported model in 

Cyclone and Langford included condition (K), total length (TL), pRBT, and year effects (Table S4.8a & 

b). The effect of RBT alleles on migratory behavior was strongest in Cyclone Creek, individuals that were 

heterozygous and homozygous for the RBT allele had 34% and 99% higher probability (respectively) of 

being migratory over individuals that were homozygous for the WCT allele. In Langford, the probability 

of migration was 3.5% and 4.7% higher for heterozygotes and homozygotes for the RBT allele, 

respectively. 

 

Discussion 

 

Our results substantially advance our understanding of the genetic basis of fitness-related traits 

associated with hybridization with a non-native species in multiple wild populations. Although summer 

growth rate was positively affected by genome-wide non-native admixture (Chapter 2), our power 

analysis and genome-wide association study suggest the trait is not likely impacted by large-effect loci. 

On the other hand, migratory behavior was positively affected by a large-effect locus on chromosome 29. 

The presence of a large effect locus underlying the genetic basis of a trait linked to dispersal likely 

contributes to the rapid expansion of hybridization is some systems (Boyer, Muhlfeld, & Allendorf 2008; 

Kovach et al. 2015).   

Few studies provide a power analysis before conducting GWAA, yet other studies warn 

researchers about the dangers of interpreting negative results from GWAA without inspecting the 

probability of type II error (Kardos et al. 2015). We cannot overstate the benefit of conducting a power 

analysis a priori to aid study design and guide expectations and interpretation of results. Our power 

analysis showed that even in admixed populations where linkage disequilibrium among loci is high, 

detecting SNPs that have a small effect size on the phenotype was very low.  Power analyses should be 

done during study design to inform the sample sizes and marker density necessary to achieve acceptable 

power.  Since we were dealing with fairly-recently admixed populations, marker density within the range 

we expected to achieve from our multipurpose Rapture array unlikely had a substantial impact on power.  

Using our genotyping Rapture array with > 2000 loci we expected our largest sample sizes from 

field work could not achieve power greater than 80% to identify small effect loci for polygenic traits (like 

growth rate). These limitations supported our decision to combine populations during GWAA of growth 

rate and migratory behavior (to maximize power). For example, in the growth analyses if we ran each 

population separately, we did not even have power to detect a large effect locus with certainty and so we 

opted to run all the populations together to improve power. However, combining populations in this way 

is not problematic since we corrected for population substructure with random genetic effects, chose the 
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model that most reduced genomic inflation of the test statistic, and corrected p-values for genomic 

inflation. And even though there was evidence of genomic inflation in the GWAA models for growth rate 

and migratory behavior, genomic inflation is expected in polygenic traits even if population structure is 

perfectly accounted for with random genetic effects (see Yang et al. 2011b).  

Our inability to detect any RBT alleles associated with summer growth rates has several potential 

explanations. First, this suggests that growth is not likely influenced by large effect loci (> 0.5). However, 

given the additive effect of genome-wide admixture on this phenotype (Chapter 2), there are likely 

smaller effect loci that we did not have the power to detect in this study. Secondly, Strait et al. (Chapter 

2) also found substantial variation in growth rates among populations and years associated with 

environmental variation. The low estimated heritability of summer growth rate (h2 = 0.007) supports the 

hypothesis that both genome-wide admixture and environmental conditions driver variation in this trait. 

This estimate is on the lower end of the distribution of heritability for life history and growth traits in 

salmonids (Carlson & Seamons 2008), but is not surprising since those estimates predominantly come 

from controlled crosses and laboratory studies where environmental conditions are held constant. We 

grouped multiple populations and years of data together for this analysis, and both interannual and spatial 

variation in environmental conditions (i.e., temperature, flow, density, productivity) likely reduced the 

estimate of heritability as well as our ability to detect a strong association between growth rates and any 

SNP locus. 

While the impact of RBT admixture on other fitness traits is variable among populations and 

influenced by environmental conditions (i.e., growth rate and survival), increased migratory behavior has 

been consistently and positively associated with RBT admixture (Boyer, Muhlfeld, & Allendorf 2008; 

Kovach et al. 2015; Chapter 2). Higher propensity to migrate in RBT and hybrids can explain the patterns 

of continued expansion of hybridization despite selection against RBT alleles in many populations. The 

large effect locus influencing migration might reflect a relatively simple genetic basis for differences in 

the propensity to migrate between these species. This is also consistent with other literature in salmonids 

and other species that have found large effect loci controlling traits related to migration and anadromy 

(Johnston et al. 2014; Barson et al. 2015; Prince et al. 2017; Kelson et al. 2019; Pearse et al. 2019; 

Sinclair-Waters et al. 2020). Multiple studies have reported the presence of a large inversion on 

chromosome 5 associated with the expression of anadromy in RBT/steelhead populations (Arostegui et al. 

2019; Kelson et al. 2019). We found no evidence of SNPs on chromosome 5 influencing migratory and 

resident behaviors in our system. This could be due to different genetic bases of anadromy and fluvial 

behaviors or due to the hatchery origin of the rainbow trout that founded these populations; indeed, we 

found no evidence that this inversion was segregating in our populations.  
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The variation in the strength of the RBT allele at omy_29_28901336 on migratory behavior when 

we investigated each population separately is likely due in part to differences in the proportion of 

migrants and the distribution and recombination of alleles in each population. Both Cyclone and Langford 

had highly significant effects of the RBT allele at omy_29_28901336 on migratory behavior, yet in 

Cyclone there was approximately a 99% increase in the probability of migration for homozygotes for the 

RBT allele while in Langford this was only about 4.8% increase (Figure 4.4). These differences are likely 

mostly due to differences among populations in the proportion of migratory versus resident adults.  For 

example, Langford Creek supports almost an entirely migratory adult population, while Cyclone has a 

large resident (non-migratory) adult population (see Chapter 2).  

While McGee did not show the same strength of this association as Cyclone or Langford Creeks 

in the GLMs, the RBT allele was still at higher frequency in the migrants in this population (Figure 4.3a). 

This weaker signal between RBT alleles and migration could be due to the distribution of admixture in 

this population. McGee is essentially a hybrid swarm; there were very few nonhybridized WCT and no 

RBT present in our samples from this population. Unlike Cyclone and Langford which both have 

substantially more WCT, there is no WCT population segment to compare the effect of RBT alleles on 

migratory behavior in McGee (i.e., all migrants and residents are hybrids). Furthermore, extensive 

recombination of the parental genomes in this population likely means that linkage disequilibrium 

between omy_29_28901336 and the casual locus/loci are potentially very low and therefore difficult to 

detect. The fact that we did not detect a significant association between alleles at omy_29_28901336 and 

migration in McGee Creek is of little consequence to conservation since essentially any disperser from 

this population would be a hybrid of some form and contribute to the spread of hybridization. 

There has been great interest in documenting and describing adaptive introgression, however we 

hesitate to speculate that adaptive RBT alleles are linked to migratory behavior. Increased migratory life 

history expression is not likely to be adaptive across an entire river basin, as the selective pressures acting 

on migration likely vary spatially as well as temporally. Instead, migration is an effective invasive 

behavior allowing for widespread admixture regardless of the consequences for other fitness traits such as 

reproductive success, growth, and survival. 

 

Conclusions and Implications 

Our results suggest that RBT hybridization and invasion success is in partly due to the higher 

migration rate of non-native RBT and hybrids due to genetic variation at a single genomic region on 

chromosome 29. This supports hybridization as a mechanism through which invasive species and their 

genes can rapidly spread (i.e., hybridization-invasion hypothesis – H-I; spatial sorting) by demonstrating a 

direct link between an invasive hybridization and higher movement rates in hybrids. While most of the 



 65 

evidence for H-I focuses on increased fitness of hybrids and population growth rate, spatial sorting 

suggests genotypes and phenotypes associated with dispersal should be at higher frequency on the range 

edge of a species. Our work shows that both hypotheses provide valuable insight to the evolutionary 

mechanisms by which invasive species spread in novel systems. First, our work shows that the effects of 

hybridization on fitness-related traits can be environmentally mediated, traits related to movement and 

dispersal can consistently lead to higher rates of migration in hybrids (regardless of the local fitness 

consequences). Second, our work suggests that positive effects of hybridization on dispersal might not be 

limited to the leading edge of an expanding invasive species but can promote movement and the spread in 

populations within the hybrid zone that have been experiencing admixture for many generations. 

Furthermore, we add to a growing body of literature demonstrating large effect loci impact traits 

associated with differences in migratory life history expression (Diopere et al. 2013; Liedvogel, Åkesson, 

& Bensch 2011; Saastamoinen et al. 2018; Sinclair-Waters et al. 2020). 

Invasive introgression in this study is not necessarily linked to adaptive behaviors and provides a 

mechanism for non-native admixture to continue to spread despite selection against non-native alleles. 

Evidence for a large effect locus positively affecting migratory behavior adds to the urgency of 

conservation actions to mitigate and prevent the further spread of non-native alleles among native 

populations as recombination across the rest of the genome will have a minimal impact on the portion of 

phenotypic variation associated with this locus. Individuals with a wide range of non-native admixture are 

still likely to possess this allele and therefore be more likely to migrate and disperse. Researchers 

studying human-mediated hybridization should not only consider the effects of admixture on traits related 

to local fitness outcomes but should consider how admixture itself might influence traits related to 

movement and dispersal of hybrids. This study illustrates how genomic approaches in hybridized 

populations could improve understanding and management of spread of invasive hybridization and alleles 

driving invasion. 
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Figure 4.1:  Results of a GWAS power analysis from a simulated river network using the program 
admixRiver in Program R. Each panel displays the proportion of independent simulations where the QTL 
impacting survival was detected (power) as the effect size of the locus is increased from weakly negative 
to strongly negative (20% to 80% reduction in survival, respectively). Colored lines represent different 
sample sizes of individuals in the simulated populations, and each panel represents different marker 
densities from 50, 75, to 100 SNPs per chromosome.  Generally, power was most affected by QTL effect 
size and sample size impact power more than marker density.  Power was high (>0.8) if the QTL had 
greater than a 50% impact on survival and we sampled greater than 500 individuals. Power greatly 
declined as QTL effect size dropped below 0.4. These results show that power is low to detect a QTL 
with a small effect size on the phenotype (i.e., highly polygenic traits), but high for traits controlled by a 
large effect locus.  
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Figure 4.2: Manhattan plot of the genome-wide association scan of adult life history behavior (migratory 
versus resident) after correcting for population substructure using a kinship matrix. P-values were 
corrected for multiple testing using a false discovery rate (FDR).  The red and blue lines indicate genome-
wide significance levels equivalent to p = 0.05 and p = 0.10, respectively, after the FDR was applied to p-
values.  Point colors alternate by chromosome. There is one RBT-diagnostic SNP on chromosome 29 
(locus omy_29_28901336) that meets the genome-wide significance threshold associated with migratory 
behavior in these populations.  A second adjacent locus approaches the significance threshold of p = 0.1. 
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Figure 4.3: a) The differences in RBT allele frequencies between migrants and residents at species 
diagnostic loci on CHR 29. The loci are order by position along CHR 29 and the difference in frequency 
is shown separately for individuals captured in Cyclone (blue squares), Langford (red triangles), and 
McGee (black circles) creeks. Positive y values indicate the RBT allele is at higher frequency in the 
migratory fish (than the resident adults). Panel b) shows the differences in RBT allele frequencies 
between migratory females and males at the same loci. The difference in allele frequencies is shown for 
each population as in panel a) and the results show at most loci the difference in RBT allele frequency 
between migratory females and males is very small. These results show that migratory fish do have higher 
frequencies of RBT alleles at loci on CHR 29 and that there is no difference in allele frequencies between 
females and males that might be influencing these results. 
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Figure 4.4: Predicted relationship between the genotypes at locus omy_29_28901336 and the probability 
of being migratory from generalized linear models in (a) Cyclone, (b) Langford, and (c) McGee creeks. In 
Cyclone and Langford Creeks, the probability of migration is highest for homozygotes for the RBT allele 
(0), intermediate for the heterozygotes (1), and lowest for the homozygotes for the WCT allele (2). 
McGee Creek showed no evidence of an increased probability of being migratory in the homozygotes or 
heterozygotes for the RBT allele. (d) Is the full data set (three creeks), where we included a random effect 
of population in the generalized mixed-effects model. 
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APPENDIX A 

CHAPTER 2 SUPPLEMENTAL MATERIALS 

 
Section S2.1 Supplemental Figures and Tables 
 
 

 
 

Figure S2.1: Distributions of proportion RBT admixture in each population across the study period (2013-
2017). Distributions within each population remain relatively stable across the study period. 
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Figure S2.2: Length frequency distributions for each population. The vertical dashed line at 160mm total 
length was the maximum starting length allowed for individuals in growth analyses. This was done to 
remove the influence of mature resident adults on growth rates.  
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Figure S2.3: The distributions of proportion RBT admixture (pRBT) in adults (a) and juvenile datasets (b) 
sampled between 2013-2016 in Cyclone and Langford Creeks.  Resident individuals (0) were sampled via 
electrofishing during July surveys and migratory individuals (1) were sampled via migrant fish traps from 
April-July. 
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Figure S2.4: The length frequency distributions (TL, mm) of adults (a) and juveniles (b) sampled between 
2013-2016 in Cyclone and Langford Creeks.  Resident individuals (0) were sampled via electrofishing 
during July surveys and migratory individuals (1) were sampled via migrant fish traps from April-July. 
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Table S2.1: Summary statistics of environmental data collected at each study site from 2013-2017. We 
measured stream temperature using HOBO dataloggers and then estimated summer daily median 
temperature (ºC), spring growing-degree-days (GDD), and annual GDD for each population and year. We 
also measured stream flow (m3/s) through the year at each site and estimated summer base flow, mean 
spring flow, and maximum spring flow. Finally, we estimated Oncorhynchus ssp. density (# fish/m2) from 
multi-pass depletion estimates of abundance and stream width measurements from each population taken 
every July. 
 

  seasonal temperature metrics flow metrics (m^3/sec)  

population year summer 
median 

spring 
GDD 

annual 
GDD 

summer 
base 

spring 
mean 

spring 
max 

summer 
density 

Cyclone 2013 13.61 - - 0.179 - - 0.12 

 2014 11.33 640 1250.5 0.437 1.884 2.837 0.16 

 2015 11.73 733.6 1367.2 0.0828 0.559 1.126 0.15 

 2016 10.4 771.5 1380.1 0.1023 0.552 1.124 0.22 

 2017 - 648 1210.8 - - - - 

Langford 2013 10.34 - - 0.157 - - 0.16 

 2014 10.24 333.4 771.7 0.145 0.389 0.729 0.13 

 2015 10.66 317.5 897 0.081 0.136 0.223 0.08 

 2016 11.45 407.2 1034.4 0.0976 0.075 0.174 0.08 

 2017  397.3 1063.8 - - - - 

McGee 2013 - - - - - - - 

 2014 12.11 - - 0.123 - - 0.05 

 2015 13.63 544.5 1385.2 0.0833 0.343 0.667 0.05 

 2016 14.29 504.9 1340.7 0.1628 0.902 3.714 0.03 

 2017 - 484.3 1300.5 - - - - 
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Table S2.2:  Correlation matrix of environmental covariates considered in the linear modelling of summer 
growth rates. 
 

 stdmedianT stdd7maxT stdgdd stdflow stdflow.d stddensity 
stdmedianT 1      
stdd7maxT 0.51 1     

stdgdd 0.872 0.535 1    
stdflow 0.051 0.102 -0.052 1   

stdflow.d -0.333 0.24 -0.318 -0.167 1  
stddensity -0.74 -0.37 -0.74 0.034 0.388 1 
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Table S2.3: Correlation matrix of environmental covariates considered in the linear modelling of spring 
growth rates. 
 

 std.total.gdd std.meanT std.max.meanT std.med.flow std.max.flow 
std.total.gdd 1     
std.meanT 0.904 1    

std.max.meanT 0.914 0.978 1   
std.med.flow 0.397 0.517 0.46 1  
std.max.flow 0.214 0.286 0.191 0.751 1 
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Table S2.4: Supported models considered in our AICc model selection for summer growth rates for 
length (a) and mass (b) in Cyclone Creek. We only considered models that contained only significant 
parameters (p = 0.05). The models below are ranked by AICc and the coefficients for these competing 
models are shown. Coefficients are shown for models that contain covariates for stream flow (flow), 
relative condition factor (K), median summer temperature (MedT), proportion RBT admixture (pRBT), 
total length (TL), weight (W), density (D), and any combination of interactions between these covariates 
that were supported. The coefficient for the intercepts are also shown (INT) and the number of parameters 
(PAR) for each model. The top model is bold and underlined. 
 
a) 

Cyclone 
Length INT flow K MedT pRBT TL 

pRBT * 
MedT 

pRBT 
* TL D PAR logLik AICc delta weight 

1 0.098 0.011 0.013 0.033 0.032 0.005 0.015 0.024  13 454.535 -881.691 0.000 0.776 

2 0.092 0.011 0.013 0.023 0.024 0.004  0.022  12 452.081 -878.984 2.707 0.201 

3 0.086 0.010 0.013 0.023 0.014 -0.012    11 448.589 -874.186 7.505 0.018 

4 0.090 0.011 0.015 0.023 0.012     10 445.965 -871.105 10.586 0.004 

5 0.082 0.011 0.017 0.022      9 442.822 -866.972 14.720 0.000 

10 0.102  0.014  0.023 0.002  0.021 -0.025 11 444.867 -866.741 14.951 0.000 

11 0.097  0.014  0.014 -0.013   -0.026 10 441.796 -862.768 18.923 0.000 

12 0.101  0.016  0.011    -0.025 9 438.510 -858.348 23.343 0.000 

6 0.080  0.018 0.023      8 436.862 -857.189 24.503 0.000 

9 0.083 0.010 0.017 0.023      5 433.593 -856.966 24.725 0.000 

13 0.092  0.019      -0.023 8 435.838 -855.141 26.551 0.000 

7 0.070  0.021       7 425.908 -837.400 44.291 0.000 

14 0.070  0.021       7 425.908 -837.400 44.291 0.000 

8 0.068         6 407.171 -802.031 79.660 0.000 
 
b) 

Cyclone 
Weight INT K pRBT W 

pRBT 
* W MedT D PAR logLik AICc delta weight 

1 0.031 -0.006 0.037 0.034 0.055   10 609.154 -1197.483 0.000 0.963 

2 0.031  0.034 0.035 0.054   9 604.818 -1190.965 6.519 0.037 

4 0.017  0.011     7 586.006 -1157.598 39.886 0.000 

3 0.015  0.011 -0.003    8 586.190 -1155.844 41.639 0.000 

5 0.009       6 578.968 -1145.627 51.857 0.000 

6 0.005     -0.011  3 559.340 -1112.592 84.891 0.000 

7 0.002      0.007 3 553.249 -1100.410 97.074 0.000 
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Table S2.5: Supported models considered in our AICc model selection for summer growth rates for 
length (a) and mass (b) in Langford Creek. We only considered models that contained only significant 
parameters (p = 0.05). The models below are ranked by AICc and the coefficients for these competing 
models are shown. Coefficients are shown for models that contain covariates for stream flow (flow), 
relative condition factor (K), median summer temperature (MedT), proportion RBT admixture (pRBT), 
total length (TL), weight (W), density (D), and any combination of interactions between these covariates 
that were supported. The coefficient for the intercepts are also shown (INT) and the number of parameters 
(PAR) for each model. The top model is bold and underlined. 
 
a) 

Langford 
Length INT MedT pRBT 

pRBT * 
MedT PAR logLik AICc delta weight 

1 0.186 0.011 0.048 0.048 9 163.632 -307.900 0.000 0.583 

4 0.173    6 159.448 -306.273 1.626 0.258 

3 0.187 0.015   7 159.763 -304.689 3.210 0.117 

2 0.188 0.019 0.003  8 159.865 -302.647 5.252 0.042 
 
b) 

Langford 
Weight INT flow K MedT pRBT W 

pRBT 
* flow 

pRBT * 
MedT D PAR logLik AICc delta weight 

1 0.079 -0.039 -0.007 -0.001 0.048 0.041 0.022 0.053  13 232.637 -436.431 0.000 0.398 

12 0.074  -0.007   0.050   -0.027 9 227.420 -435.476 0.955 0.247 

2 0.073 -0.043  -0.008 0.048 0.038 0.025 0.054  12 230.663 -434.907 1.524 0.186 

13 0.074     0.050   -0.025 8 225.177 -433.272 3.159 0.082 

3 0.092 -0.017  0.009 0.027 0.054  0.029  11 227.984 -431.937 4.493 0.042 

4 0.105   0.023 0.035 0.056  0.036  10 226.803 -431.927 4.503 0.042 

6 0.105   0.027  0.052    8 221.714 -426.345 10.086 0.003 

5 0.107   0.030 0.003 0.055    9 222.036 -424.708 11.723 0.001 

7 0.084     0.053    7 219.405 -423.973 12.457 0.001 

9 0.086 -0.036    0.054    4 210.798 -413.304 23.127 0.000 

8 0.058         6 211.550 -410.478 25.952 0.000 

10 0.093     0.064    3 204.992 -403.809 32.621 0.000 

11 0.063 -0.044        3 203.921 -401.669 34.762 0.000 
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Table S2.6: Supported models considered in our AICc model selection for summer growth rates for 
length (a) and mass (b) in McGee Creek. We only considered models that contained only significant 
parameters (p = 0.05). The models below are ranked by AICc and the coefficients for these competing 
models are shown. Coefficients are shown for models that contain covariates for stream flow (flow), 
relative condition factor (K), median summer temperature (MedT), proportion RBT admixture (pRBT), 
total length (TL), weight (W), density (D), and any combination of interactions between these covariates 
that were supported. The coefficient for the intercepts are also shown (INT) and the number of parameters 
(PAR) for each model. The top model is bold and underlined. 
 

a) 
McGee 
Length INT pRBT year PAR logLik AICc delta weight 

1 0.132 0.019  6 192.556 -372.507 0.000 0.948 

2 0.142   5 188.424 -366.420 6.087 0.045 

3 0.157  + 4 185.494 -362.704 9.803 0.007 
 

b) 
McGee 
Weight INT MedT pRBT flow D PAR logLik AICc delta weight 

6 -0.078  0.011  -0.087 7 257.303 -499.795 0.000 0.761 

1 0.005 0.019 0.011   7 255.709 -496.607 3.188 0.155 

7 -0.067    -0.081 6 253.778 -494.951 4.843 0.068 

2 0.030  0.010   6 251.513 -490.422 9.373 0.007 

4 0.015 0.018  0.012  4 248.942 -489.600 10.195 0.005 

5 0.010 0.021    3 247.619 -489.070 10.725 0.004 

3 0.034     5 249.072 -487.715 12.080 0.002 
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Table S2.7: Supported models considered in our AICc model selection for spring growth rates for length 
(a) and mass (b) in Cyclone Creek. We only considered models that contained only significant parameters 
(p = 0.05). The models below are ranked by AICc and the coefficients for these competing models are 
shown. Coefficients are shown for models that contain covariates for relative condition factor (K), spring 
growing-degree-days (GDD), proportion RBT admixture (pRBT), total length (TL), weight (W), and any 
combination of interactions between these covariates that were supported. The coefficient for the 
intercepts are also shown (INT) and the number of parameters (PAR) for each model. The top model is 
bold and underlined. 
 

a) 
Cyclone 
length INT K GDD TL PAR logLik AICc delta weight 

1 0.131 -0.005 0.016 -0.023 5 289.766 -569.101 0.000 0.667 

2 0.145 -0.004  -0.022 4 287.522 -566.758 2.343 0.207 

3 0.145   -0.022 3 285.976 -565.781 3.320 0.127 

4 0.155    2 276.292 -548.500 20.600 0.000 
 

b) 
Cyclone 
weight INT K W PAR logLik AICc delta weight 

1 0.105 -0.009 0.052 4 317.573 -626.861 0.000 0.999 

2 0.103  0.045 3 308.461 -610.752 16.109 0.000 

4 0.085 -0.006  3 296.417 -586.664 40.197 0.000 

3 0.085   2 293.107 -582.130 44.731 0.000 
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Table S2.8: Supported models considered in our AICc model selection for spring growth rates for length 
(a) and mass (b) in Langford Creek. We only considered models that contained only significant 
parameters (p = 0.05). The models below are ranked by AICc and the coefficients for these competing 
models are shown. Coefficients are shown for models that contain covariates for relative condition factor 
(K), spring growing-degree-days (GDD), proportion RBT admixture (pRBT), total length (TL), weight 
(W), and any combination of interactions between these covariates that were supported. The coefficient 
for the intercepts are also shown (INT) and the number of parameters (PAR) for each model. The top 
model is bold and underlined. 
 
a) 

Langford 
length INT pRBT GDD PAR logLik AICc delta weight 

1 0.263 -0.013 0.065 4 127.627 -246.683 0.000 0.822 

2 0.222  0.042 3 124.102 -241.866 4.817 0.074 

3 0.162   2 122.119 -240.071 6.612 0.030 
 
b) 

Langford 
weight INT K pRBT GDD W PAR logLik AICc delta weight 

1 0.268 -0.016 -0.011 0.085 0.090 6 140.225 -267.216 0.000 0.890 

2 0.239 -0.018  0.069 0.094 5 136.927 -262.984 4.232 0.107 

3 0.141 -0.010   0.090 4 131.306 -254.040 13.176 0.001 

6 0.141 -0.010   0.090 4 131.306 -254.040 13.176 0.001 

4 0.136    0.078 3 129.115 -251.892 15.324 0.000 

7 0.136    0.078 3 129.115 -251.892 15.324 0.000 

8 0.175   0.047  3 121.504 -236.671 30.545 0.000 

5 0.110     2 119.266 -234.365 32.851 0.000 
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Table S2.9: Supported models considered in our AICc model selection for spring growth rates for length 
(a) and mass (b) in McGee Creek. We only considered models that contained only significant parameters 
(p = 0.05). The models below are ranked by AICc and the coefficients for these competing models are 
shown. Coefficients are shown for models that contain covariates for relative condition factor (K), spring 
growing-degree-days (GDD), proportion RBT admixture (pRBT), total length (TL), weight (W), and any 
combination of interactions between these covariates that were supported. The coefficient for the 
intercepts are also shown (INT) and the number of parameters (PAR) for each model. The top model is 
bold and underlined. 
 

a) 
McGee 
length INT TL PAR logLik AICc delta weight 

1 0.161 -0.021 5 108.544 -205.998 0.000 0.923 

2 0.167  4 104.877 -201.040 4.958 0.077 
 
b) 

McGee 
weight INT pRBT W K PAR logLik AICc delta weight 

1 0.146 -0.019 0.061  4 113.244 -217.775 0.000 0.520 

4 0.132  0.063 -0.015 6 115.202 -216.849 0.925 0.328 

2 0.132  0.060  3 110.864 -215.308 2.467 0.152 

3 0.116    2 104.157 -204.106 13.668 0.001 
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Table S2.10: Supported models considered in our AICc model selection for annual growth rates for length 
(a) and mass (b) in Cyclone Creek. We only considered models that contained only significant parameters 
(p = 0.05). The models below are ranked by AICc and the coefficients for these competing models are 
shown. Coefficients are shown for models that contain covariates for year, relative condition factor (K), 
annual growing-degree-days (GDD), proportion RBT admixture (pRBT), total length (TL), weight (W), 
and any combination of interactions between these covariates that were supported. The coefficient for the 
intercepts are also shown (INT) and the number of parameters (PAR) for each model. The top model is 
bold and underlined. 
 
a) 

Cyclone 
length INT K pRBT TL year 

pRBT 
* K PAR logLik AICc delta weight 

1 0.149 -0.007 0.008 -0.024 + -0.012 9 513.648 -1008.516 0.000 1.000 

7 0.146   -0.023 +  6 501.167 -989.975 18.541 0.000 

2 0.129 -0.009 0.008 -0.025  -0.014 6 500.201 -988.042 20.474 0.000 

4 0.127  0.005 -0.024   4 486.561 -964.953 43.563 0.000 

3 0.127 -0.002 0.006 -0.025   5 487.326 -964.396 44.120 0.000 

5 0.125   -0.024   3 484.969 -963.837 44.679 0.000 

6 0.137      2 471.112 -938.174 70.342 0.000 
 
b) 

Cyclone 
weight INT GDD pRBT W year 

pRBT 
* GDD PAR logLik AICc delta weight 

1 0.123 -0.024 0.001 0.063 + 0.022 9 535.797 -1052.814 0.000 0.958 

2 0.099 0.023 0.000 0.061  0.024 6 529.316 -1046.273 6.541 0.036 

7 0.123 -0.039  0.065 +  7 528.024 -1041.567 11.247 0.003 

8 0.118   0.065 +  6 525.929 -1039.498 13.316 0.001 

3 0.103 0.012 0.006 0.061   5 523.740 -1037.226 15.589 0.000 

4 0.101 0.013  0.063   4 520.786 -1033.403 19.411 0.000 

5 0.105   0.064   3 517.381 -1028.660 24.154 0.000 

6 0.075      2 487.638 -971.225 81.590 0.000 
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Table S2.11: Supported models considered in our AICc model selection for annual growth rates for length 
(a) and mass (b) in Langford Creek. We only considered models that contained only significant 
parameters (p = 0.05). The models below are ranked by AICc and the coefficients for these competing 
models are shown. Coefficients are shown for models that contain covariates for year, relative condition 
factor (K), annual growing-degree-days (GDD), proportion RBT admixture (pRBT), total length (TL), 
weight (W), and any combination of interactions between these covariates that were supported. The 
coefficient for the intercepts are also shown (INT) and the number of parameters (PAR) for each model. 
The top model is bold and underlined. 
a) 

Langford 
length INT GDD K TL year PAR logLik AICc delta weight 

1 0.000 -0.063 -0.012 -0.030 + 8 186.084 -354.473 0.000 0.578 

4 0.149   -0.027  3 179.224 -352.181 2.293 0.184 

3 0.160 0.009  -0.028  4 179.937 -351.425 3.048 0.126 

2 0.060 -0.038  -0.027 + 7 183.202 -351.102 3.371 0.107 

5 0.164     2 174.747 -345.362 9.111 0.006 
 
b) 

Langford 
weight INT GDD K W year PAR logLik AICc delta weight 

1 -0.016 -0.070 -0.019 0.087 + 11 194.143 -363.067 0.000 0.931 

2 0.128  -0.014 0.086 + 10 190.228 -357.806 5.261 0.067 

3 0.149  -0.006 0.094  7 182.457 -349.612 13.455 0.001 

4 0.150   0.093  6 181.196 -349.426 13.641 0.001 

5 0.102     5 171.328 -331.974 31.093 0.000 
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Table S2.12: Supported models considered in our AICc model selection for annual growth rates for length 
(a) and mass (b) in McGee Creek. We only considered models that contained only significant parameters 
(p = 0.05). The models below are ranked by AICc and the coefficients for these competing models are 
shown. Coefficients are shown for models that contain covariates for year, relative condition factor (K), 
annual growing-degree-days (GDD), proportion RBT admixture (pRBT), total length (TL), weight (W), 
and any combination of interactions between these covariates that were supported. The coefficient for the 
intercepts are also shown (INT) and the number of parameters (PAR) for each model. The top model is 
bold and underlined. 
 

a) 
McGee 
length INT TL year PAR logLik AICc delta weight 

1 0.153 -0.024  3 138.919 -271.509 0.000 0.755 

3 0.157  + 4 138.349 -268.143 3.366 0.140 

2 0.164   2 135.856 -267.550 3.959 0.104 
 
b) 

McGee 
weight INT W PAR logLik AICc delta weight 

1 0.153 0.107 3 147.371 -288.413 0.000 1.000 

2 0.105  2 134.069 -263.975 24.438 0.000 
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Table S2.13: Supported models considered in our AICc model selection for the GLM analysis of 
migratory life history strategy of juvenile Oncorhynchus spp. in Cyclone and Langford Creeks. We only 
considered models that contained only significant parameters (p = 0.05). The models below are ranked by 
AICc and the coefficients for these competing models are shown. Coefficients are shown for models that 
contain covariates for year, relative condition factor (K), annual growing-degree-days (GDD), proportion 
RBT admixture (pRBT), total length (TL), weight (W), and any combination of interactions between 
these covariates that were supported. The coefficient for the intercepts are also shown (INT) and the 
number of parameters (PAR) for each model. The top model is bold and underlined. 
 

Cyclone 
Juveniles INT K pRBT TL year 

pRBT 
* TL PAR logLik AICc delta weight 

1 -1.688 -0.912 0.279 1.118 + -0.737 8 -340.110 696.321 0.000 0.964 

2 -1.615 -0.901 0.624 1.018 +  7 -344.434 702.945 6.624 0.035 

3 -2.015 -0.939 0.620 0.975   4 -351.577 711.181 14.861 0.001 

4 -2.428 -1.006 0.590    3 -357.962 721.941 25.620 0.000 

6 -1.863 -0.474  0.883 +  6 -363.580 739.218 42.897 0.000 

5 -2.612  0.441    2 -370.606 745.220 48.899 0.000 

10 -2.046 -0.562  0.812   3 -370.978 747.972 51.651 0.000 

8 -2.106   0.943   2 -375.229 754.467 58.146 0.000 

7 -2.557    +  4 -373.775 755.577 59.257 0.000 

9 -2.394 -0.646     2 -375.930 755.868 59.548 0.000 
Langford 
Juveniles INT K pRBT TL year 

pRBT 
* TL PAR logLik AICc delta weight 

1 -1.437 -0.732 -0.247 -0.820 + -1.771 8 -306.403 629.000 0.000 1.000 

3 -0.921 -0.752 0.530  +  6 -331.278 674.669 45.669 0.000 

2 -1.056 -0.739 0.505 -0.274 +  7 -330.591 675.333 46.333 0.000 

6 -1.282 -0.694  -0.497 +  6 -342.112 696.336 67.336 0.000 

4 -1.039 -0.711   +  5 -344.599 699.278 70.278 0.000 

5 -0.916    +  4 -372.652 753.357 
124.35

7 0.000 

9 -1.137 -0.769  -0.334   3 -388.899 783.829 
154.82

9 0.000 

8 -0.989 -0.782     2 -390.221 784.457 
155.45

7 0.000 

7 -1.284   -0.471   2 -424.629 853.274 
224.27

4 0.000 
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Table S2.14: Supported models considered in our AICc model selection for the GLM analysis of 
migratory life history strategy of adult Oncorhynchus spp. in Cyclone and Langford Creeks. We only 
considered models that contained only significant parameters (p = 0.05). The models below are ranked by 
AICc and the coefficients for these competing models are shown. Coefficients are shown for models that 
contain covariates for year, relative condition factor (K), annual growing-degree-days (GDD), proportion 
RBT admixture (pRBT), total length (TL), weight (W), and any combination of interactions between 
these covariates that were supported. The coefficient for the intercepts are also shown (INT) and the 
number of parameters (PAR) for each model. The top model is bold and underlined. 
 

Cyclone 
Adults INT K pRBT TL year PAR logLik AICc delta weight 

1 -1.446 -2.078 0.545 1.482 + 7 -234.219 482.611 0.000 1.000 

2 -1.527 -1.872  1.598 + 6 -243.773 499.675 17.064 0.000 

6 -2.698 -1.661  1.635  3 -260.450 526.938 44.326 0.000 

4 -2.784   1.504  2 -298.566 601.150 118.539 0.000 

5 -0.568 -1.226    2 -377.384 758.785 276.174 0.000 

3 0.148    + 4 -392.434 792.929 310.318 0.000 
Langford 

Adults INT K pRBT TL year PAR logLik AICc delta weight 

1 -0.485 -2.075 0.597 1.968 + 7 -75.103 164.708 0.000 0.968 

3 -0.135 -1.971  1.751 + 6 -80.077 172.528 7.820 0.019 

2 -1.818 -1.873 0.601 1.905  4 -82.619 173.414 8.706 0.012 

7 -1.514 -1.785  1.696  3 -88.500 183.107 18.399 0.000 

6 0.724 -2.157    2 -113.537 231.126 66.418 0.000 

5 -2.223   1.928  2 -114.145 232.342 67.634 0.000 

4 1.649    + 4 -148.480 305.136 140.428 0.000 
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APPENDIX B 

CHAPTER 3 SUPPLEMENTAL MATERIALS 

 
Section S3.1 Supplemental Results 
 
S3.1.1 Effects of pRBT and season on emigration and size class transition probabilities 

We found strong seasonal differences in emigration and size class transition probabilities in all 

populations, however the effect of pRBT on these probabilities was inconsistent. Emigration rates were 

lower than previously described (Strait et al. in prep), less than 8% of tagged individuals emigrated from 

any study stream (Table 1). In all populations, mean emigration probabilities for juvenile (𝛹juv-E) and 

subadult (𝛹sub-E) classes was highest during the spring/winter period (Figs S3 & S6). In addition to this 

mean effect, emigration during the spring for sub-adults in Langford negatively interacted with pRBT. 

Adult emigration did not vary by season in Langford or McGee, however, in Cyclone adult emigration 

was higher during the spring and positively interacted with pRBT (Fig S6c).  

Size class transition probabilities varied significantly among seasons in all populations and 

interacted with pRBT in Cyclone and Langford Creeks.  In all populations, juvenile-subadult (𝛹juv-sub) and 

subadult-adult (𝛹sub-ad) transition probabilities were higher during the spring than the during the summer 

(Figs S4 & S7).  In Cyclone creek, we found a significant, positive interaction between pRBT and 

juvenile-subadult transition probability (𝛹juv-sub). In Langford, we found negative effects of pRBT on the 

spring juvenile-subadult and subadult-adult transitions. 
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Section S3.2: Supplemental Materials: JAGS models 
 
S3.2.1: Final JAGS model for Cyclone Creek 
 
model { 
      # ------------------------------------------------- 
      # Parameters: 
      # phiA: survival probability in size class A (juveniles) 
      # phiB: survival probability in size class B (subadults) 
      # phiC: survival probability in size class C (adults) 
       
      # psiA[1]: probability of remaining in class A 
      # psiA[2]: probability of transitioning from class A to class B 
      # psiA[3]: probability of individuals in class A emigrating permanently 
      # psiB[1]: probability of remaining in class B 
      # psiB[2]: probability of transitioning from class B to class C 
      # psiB[3]: probability of individuals in class B emigrating permanently 
      # psiCE: probability of individuals in class C emigrating permanently 
     
      # pA: recapture probability in for A class 
      # pBC: recapture probability in for larger sizes (B and C) 
      # pE: Set this to 1.0 (assuming perfect detection of migrants) 
      # ------------------------------------------------- 
      # States (S): 
      # 1 alive in A 
      # 2 alive in B 
      # 3 alive in C 
      # 4 recent emigrant 
      # 5 old emigrant 
      # 6 dead 
      # ------------------------------------------------- 
      # Observations (O):   
      # 1 seen in A  
      # 2 seen in B 
      # 3 seen in C 
      # 4 seen recent emigrant 
      # 5 not seen 
      # ------------------------------------------------- 
     
     # Priors and constraints for probability of detection 
      for( t in 1:( n.occasions-1 ) ){ 
        pA[t] <- mean.pA 
        pBC[t] <- mean.pBC 
      } 
        mean.pA ~ dunif(0.1, 0.9)      # Priors for mean state-spec. recapture 
        mean.pBC ~ dunif(0.1, 0.9)      # Priors for mean state-spec. recapture 
     
   # priors for state-specific survival 
  # priors for state-specific survival 
    b0.phiA ~ dnorm( 0, 0.001 )T(-10,10) 
    b0.phiB ~ dnorm( 0, 0.001 )T(-10,10) 
    b0.phiC ~ dnorm( 0, 0.001 )T(-10,10) 
    b1.phiA ~ dnorm( 0, 0.001 )T(-10,10) 
    b1.phiB ~ dnorm( 0, 0.001 )T(-10,10) 
    b1.phiC ~ dnorm( 0, 0.001 )T(-10,10) 
    b2.phiA ~ dnorm( 0, 0.001 )T(-5,5) 
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    b2.phiB ~ dnorm( 0, 0.001 )T(-5,5) 
    b2.phiC ~ dnorm( 0, 0.001 )T(-5,5) 
    b3.phiA ~ dnorm( 0, 0.001 )T(-5,5) 
    b3.phiB ~ dnorm( 0, 0.001 )T(-5,5) 
    b3.phiC ~ dnorm( 0, 0.001 )T(-5,5) 
     
   # Priors for mean transitions from C to E 
    # just mean CE, no season or pRBT effect 
    b0.psiCE ~ dnorm( 0, 0.001 )T(-10,10) 
    b1.psiCE ~ dnorm( 0, 0.001 )T(-10,10) 
    b2.psiCE ~ dnorm( 0, 0.001 )T(-10,10) 
    b3.psiCE ~ dnorm( 0, 0.001 )T(-10,10) 
     
  # Transitions: multinomial logit 
  # Normal priors on logit of all but one transition probability 
     b0.lpsiAB ~ dnorm(0, 0.001)T(-10,10) 
     b0.lpsiAE ~ dnorm(0, 0.001)T(-10,10) 
     b1.lpsiAB ~ dnorm(0, 0.001)T(-10,10) 
     b1.lpsiAE ~ dnorm(0, 0.001)T(-10,10) 
     b2.lpsiAB ~ dnorm(0, 0.001)T(-10,10) 
     b2.lpsiAE ~ dnorm(0, 0.001)T(-10,10) 
     b3.lpsiAB ~ dnorm(0, 0.001)T(-10,10) 
     b3.lpsiAE ~ dnorm(0, 0.001)T(-10,10) 
     
     b0.lpsiBC ~ dnorm(0, 0.001)T(-10,10) 
     b0.lpsiBE ~ dnorm(0, 0.001)T(-10,10) 
     b1.lpsiBC ~ dnorm(0, 0.001)T(-10,10) 
     b1.lpsiBE ~ dnorm(0, 0.001)T(-10,10) 
     b2.lpsiBC ~ dnorm(0, 0.001)T(-10,10) 
     b2.lpsiBE ~ dnorm(0, 0.001)T(-10,10) 
     b3.lpsiBC ~ dnorm(0, 0.001)T(-10,10) 
     b3.lpsiBE ~ dnorm(0, 0.001)T(-10,10) 
 
  # logit transformations of all priors 
  # phi's 
  # derive period survival estimates 
    summer.phiA <- ilogit(b0.phiA)^4 
    winter.phiA <- ilogit(b1.phiA)^8 
    summer.phiB <- ilogit(b0.phiB)^4 
    winter.phiB <- ilogit(b1.phiB)^8 
    summer.phiC <- ilogit(b0.phiC)^4 
    winter.phiC <- ilogit(b1.phiC)^8 
     
  # monthly survivals 
    m.summer.phiA <- ilogit(b0.phiA) 
    m.summer.phiB <- ilogit(b0.phiB) 
    m.summer.phiC <- ilogit(b0.phiC) 
     
    m.winter.phiA <- ilogit(b1.phiA) 
    m.winter.phiB <- ilogit(b1.phiB)    
    m.winter.phiC <- ilogit(b1.phiC)  
 
  # psi's 
    logit(summer.psiCE) <- b0.psiCE 
    logit(winter.psiCE) <- b2.psiCE 
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  # Derive summer and winter estimates fo movement probabilities 
  # Constrain the transitions such that their sum is <1 
       # Psi A transitions for summer and winter and pRBT  
        psiAB.sum <- exp(b0.lpsiAB ) / (1 + exp(b0.lpsiAB ) + exp(b0.lpsiAE ) ) 
        psiAE.sum <- exp(b0.lpsiAE ) / (1 + exp(b0.lpsiAB ) + exp(b0.lpsiAE ) ) 
        psiAB.win <- exp(b2.lpsiAB ) / (1 + exp(b2.lpsiAB ) + exp(b2.lpsiAE ) ) 
        psiAE.win <- exp(b2.lpsiAE ) / (1 + exp(b2.lpsiAB ) + exp(b2.lpsiAE ) ) 
 
       # Psi B transitions for summer and winter and pRBT 

psiBC.sum <- exp(b0.lpsiBC ) / (1 + exp(b0.lpsiBC ) + exp(b0.lpsiBE ) ) 
 psiBE.sum <- exp(b0.lpsiBE ) / (1 + exp(b0.lpsiBC ) + exp(b0.lpsiBE ) ) 

psiBC.win <- exp(b2.lpsiBC ) / (1 + exp(b2.lpsiBC ) + exp(b2.lpsiBE ) ) 
psiBE.win <- exp(b2.lpsiBE ) / (1 + exp(b2.lpsiBC ) + exp(b2.lpsiBE ) ) 

 
    # calculate the last transition probability 
        psiAA.sum <- ( 1 - psiAB.sum - psiAE.sum ) 
        psiAA.win <- ( 1 - psiAB.win - psiAE.win ) 
        psiBB.sum <- ( 1 - psiBC.sum - psiBE.sum ) 
        psiBB.win <- ( 1 - psiBC.win - psiBE.win ) 
 
    for( i in 1:nind ){ 
      for( t in f[i]:(when.cens[i]-1) ){ 
       
        phiA[i,t] <- ilogit( b0.phiA*summer[t] + b1.phiA*winter[t] + b2.phiA*summer[t]*prbt[i] + 
b3.phiA*winter[t]*prbt[i] )^power[t] 
        phiB[i,t] <- ilogit( b0.phiB*summer[t] + b1.phiB*winter[t] + b2.phiB*summer[t]*prbt[i] + 
b3.phiB*winter[t]*prbt[i] )^power[t] 
        phiC[i,t] <- ilogit( b0.phiC*summer[t] + b1.phiC*winter[t] + b2.phiC*summer[t]*prbt[i] + 
b3.phiC*winter[t]*prbt[i] )^power[t] 
         
     # Psi's for state C  
        logit(psiCE[i,t]) <- b0.psiCE*summer[t] + b1.psiCE*summer[t]*prbt[i] + b2.psiCE*winter[t] + 
b3.psiCE*winter[t]*prbt[i] 
         
   # Psi's for state A 
        psiAB[i,t] <- exp( b0.lpsiAB*summer[t] + b2.lpsiAB*winter[t] + b1.lpsiAB*summer[t]*prbt[i] + 
b3.lpsiAB*winter[t]*prbt[i] ) /  
        (1 + exp(b0.lpsiAB*summer[t] + b2.lpsiAB*winter[t] + b1.lpsiAB*summer[t]*prbt[i] + 
b3.lpsiAB*winter[t]*prbt[i]) +  
        exp(b0.lpsiAE*summer[t] + b2.lpsiAE*winter[t] + b1.lpsiAE*summer[t]*prbt[i] + 
b3.lpsiAE*winter[t]*prbt[i]) ) 
 
        psiAE[i,t] <- exp(b0.lpsiAE*summer[t] + b2.lpsiAE*winter[t] + b1.lpsiAE*summer[t]*prbt[i] + 
b3.lpsiAE*winter[t]*prbt[i]) /  
        (1 + exp(b0.lpsiAB*summer[t] + b2.lpsiAB*winter[t] + b1.lpsiAB*summer[t]*prbt[i] + 
b3.lpsiAB*winter[t]*prbt[i]) +  
        exp(b0.lpsiAE*summer[t] + b2.lpsiAE*winter[t] + b1.lpsiAE*summer[t]*prbt[i] + 
b3.lpsiAE*winter[t]*prbt[i]) ) 
 
        psiAA[i,t] <- ( 1 - psiAB[i,t] - psiAE[i,t]) 
 
   # Psi's for state B 
        psiBC[i,t] <- exp( b0.lpsiBC*summer[t] + b2.lpsiBC*winter[t] + b1.lpsiBC*summer[t]*prbt[i] + 
b3.lpsiBC*winter[t]*prbt[i] ) /  
        (1 + exp(b0.lpsiBC*summer[t] + b2.lpsiBC*winter[t] + b1.lpsiBC*summer[t]*prbt[i] + 
b3.lpsiBC*winter[t]*prbt[i]) +  
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      exp(b0.lpsiBE*summer[t] + b2.lpsiBE*winter[t] + b1.lpsiBE*summer[t]*prbt[i] + b3.lpsiBE*winter[t]*prbt[i])) 
 
        psiBE[i,t] <- exp(b0.lpsiBE*summer[t] + b2.lpsiBE*winter[t] + b1.lpsiBE*summer[t]*prbt[i] + 
b3.lpsiBE*winter[t]*prbt[i]) /  
        (1 + exp(b0.lpsiBC*summer[t] + b2.lpsiBC*winter[t] + b1.lpsiBC*summer[t]*prbt[i] + 
b3.lpsiBC*winter[t]*prbt[i]) +  
      exp(b0.lpsiBE*summer[t] + b2.lpsiBE*winter[t] + b1.lpsiBE*summer[t]*prbt[i] + b3.lpsiBE*winter[t]*prbt[i])) 
 
        psiBB[i,t] <- ( 1 - psiBC[i,t] - psiBE[i,t]) 
      } 
    } 
       
      # Define state-transition and observation matrices 
      for (i in 1:nind){   
      # Define probabilities of state S(t+1) given S(t) 
        for (t in f[i]:(when.cens[i]-1)){ 
         
          ps[1,i,t,1] <- phiA[i,t] * psiAA[i,t] 
          ps[1,i,t,2] <- phiA[i,t] * psiAB[i,t] 
          ps[1,i,t,3] <- 0 
          ps[1,i,t,4] <- phiA[i,t] * psiAE[i,t] 
          ps[1,i,t,5] <- 0 
          ps[1,i,t,6] <- 1-phiA[i,t] 
           
          ps[2,i,t,1] <- 0 
          ps[2,i,t,2] <- phiB[i,t] * psiBB[i,t] 
          ps[2,i,t,3] <- phiB[i,t] * psiBC[i,t] 
          ps[2,i,t,4] <- phiB[i,t] * psiBE[i,t] 
          ps[2,i,t,5] <- 0 
          ps[2,i,t,6] <- 1-phiB[i,t] 
           
          ps[3,i,t,1] <- 0 
          ps[3,i,t,2] <- 0 
          ps[3,i,t,3] <- phiC[i,t] * (1-psiCE[i,t]) 
          ps[3,i,t,4] <- phiC[i,t] * psiCE[i,t] 
          ps[3,i,t,5] <- 0 
          ps[3,i,t,6] <- 1-phiC[i,t] 
           
          ps[4,i,t,1] <- 0 
          ps[4,i,t,2] <- 0 
          ps[4,i,t,3] <- 0 
          ps[4,i,t,4] <- 0 
          ps[4,i,t,5] <- 1 
          ps[4,i,t,6] <- 0 
           
          ps[5,i,t,1] <- 0 
          ps[5,i,t,2] <- 0 
          ps[5,i,t,3] <- 0 
          ps[5,i,t,4] <- 0 
          ps[5,i,t,5] <- 1 
          ps[5,i,t,6] <- 0 
           
          ps[6,i,t,1] <- 0 
          ps[6,i,t,2] <- 0 
          ps[6,i,t,3] <- 0 
          ps[6,i,t,4] <- 0 
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          ps[6,i,t,5] <- 0 
          ps[6,i,t,6] <- 1 
           
          # Define probabilities of O(t) given S(t) 
          po[1,i,t,1] <- pA[t] 
          po[1,i,t,2] <- 0 
          po[1,i,t,3] <- 0 
          po[1,i,t,4] <- 0 
          po[1,i,t,5] <- 1-pA[t] 
           
          po[2,i,t,1] <- 0 
          po[2,i,t,2] <- pBC[t] 
          po[2,i,t,3] <- 0 
          po[2,i,t,4] <- 0 
          po[2,i,t,5] <- 1-pBC[t] 
           
          po[3,i,t,1] <- 0 
          po[3,i,t,2] <- 0 
          po[3,i,t,3] <- pBC[t] 
          po[3,i,t,4] <- 0 
          po[3,i,t,5] <- 1-pBC[t] 
           
          po[4,i,t,1] <- 0 
          po[4,i,t,2] <- 0 
          po[4,i,t,3] <- 0 
          po[4,i,t,4] <- 1 
          po[4,i,t,5] <- 0 
                     
          po[5,i,t,1] <- 0 
          po[5,i,t,2] <- 0 
          po[5,i,t,3] <- 0 
          po[5,i,t,4] <- 0 
          po[5,i,t,5] <- 1 
           
          po[6,i,t,1] <- 0 
          po[6,i,t,2] <- 0 
          po[6,i,t,3] <- 0 
          po[6,i,t,4] <- 0 
          po[6,i,t,5] <- 1 
        } #t 
      } #i 
      # Likelihood  
      for (i in 1:nind){ 
        # Define latent state at first capture 
        z[i,f[i]] <- y[i,f[i]] 
        for (t in (f[i]+1):when.cens[i]){ 
          # State process: draw S(t) given S(t-1) 
          z[i,t] ~ dcat(ps[z[i,t-1], i, t-1,]) 
          # Observation process: draw O(t) given S(t) 
          y[i,t] ~ dcat(po[z[i,t], i, t-1,]) 
        } #t 
      } #i 
  } 
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S3.2.2: Final JAGS model for Langford Creek 
 
model { 
      # ------------------------------------------------- 
      # Parameters: 
      # phiA: survival probability in size class A (juveniles) 
      # phiB: survival probability in size class B (subadults) 
      # phiC: survival probability in size class C (adults) 
       
      # psiA[1]: probability of remaining in class A 
      # psiA[2]: probability of transitioning from class A to class B 
      # psiA[3]: probability of individuals in class A emigrating permanently 
      # psiB[1]: probability of remaining in class B 
      # psiB[2]: probability of transitioning from class B to class C 
      # psiB[3]: probability of individuals in class B emigrating permanently 
      # psiCE: probability of individuals in class C emigrating permanently 
     
      # pAB: recapture probability in for A and B classes 
      # pC: recapture probability in for largest size 
      # pE: Set this to 1.0 (assuming perfect detection of migrants) 
      # ------------------------------------------------- 
      # States (S): 
      # 1 alive in A 
      # 2 alive in B 
      # 3 alive in C 
      # 4 recent emigrant 
      # 5 old emigrant 
      # 6 dead 
      # ------------------------------------------------- 
      # Observations (O):   
      # 1 seen in A  
      # 2 seen in B 
      # 3 seen in C 
      # 4 seen recent emigrant 
      # 5 not seen 
      # ------------------------------------------------- 
     
     # Priors and constraints for probability of detection 
      for( t in 1:( n.occasions-1 ) ){ 
        pAB[t] <- mean.pAB 
        pC[t] <- mean.pC 
      } 
        mean.pAB ~ dunif(0.2, 0.8)      # Priors for mean state-spec. recapture 
        mean.pC ~ dunif(0.2, 0.8)      # Priors for mean state-spec. recapture 
     
   # priors for state-specific survival 
  # priors for state-specific survival 
    b0.phiA ~ dnorm( 0, 0.001 )T(-10,10) 
    b0.phiB ~ dnorm( 0, 0.001 )T(-10,10) 
    b0.phiC ~ dnorm( 0, 0.001 )T(-10,10) 
    b1.phiA ~ dnorm( 0, 0.001 )T(-10,10) 
    b1.phiB ~ dnorm( 0, 0.001 )T(-10,10) 
    b1.phiC ~ dnorm( 0, 0.001 )T(-10,10) 
    b2.phiA ~ dnorm( 0, 0.001 )T(-10,10) 
    b2.phiB ~ dnorm( 0, 0.001 )T(-10,10) 
    b2.phiC ~ dnorm( 0, 0.001 )T(-10,10) 
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    b3.phiA ~ dnorm( 0, 0.001 )T(-10,10) 
    b3.phiB ~ dnorm( 0, 0.001 )T(-10,10) 
    b3.phiC ~ dnorm( 0, 0.001 )T(-10,10) 
 
   # Priors for mean transitions from C to E 
    # just mean CE, no season or pRBT effect 
    b0.psiCE ~ dnorm( 0, 0.001 )T(-10,10) 
    b1.psiCE ~ dnorm( 0, 0.001 )T(-10,10) 
    b2.psiCE ~ dnorm( 0, 0.001 )T(-10,10) 
    b3.psiCE ~ dnorm( 0, 0.001 )T(-10,10) 
     
  # Transitions: multinomial logit 
  # Normal priors on logit of all but one transition probability 
     b0.lpsiAB ~ dnorm(0, 0.001)T(-10,10) 
     b0.lpsiAE ~ dnorm(0, 0.001)T(-10,10) 
     b1.lpsiAB ~ dnorm(0, 0.001)T(-10,10) 
     b1.lpsiAE ~ dnorm(0, 0.001)T(-10,10) 
     b2.lpsiAB ~ dnorm(0, 0.001)T(-10,10) 
     b2.lpsiAE ~ dnorm(0, 0.001)T(-10,10) 
     b3.lpsiAB ~ dnorm(0, 0.001)T(-10,10) 
     b3.lpsiAE ~ dnorm(0, 0.001)T(-10,10) 
     b0.lpsiBC ~ dnorm(0, 0.001)T(-10,10) 
     b0.lpsiBE ~ dnorm(0, 0.001)T(-10,10) 
     b1.lpsiBC ~ dnorm(0, 0.001)T(-10,10) 
     b1.lpsiBE ~ dnorm(0, 0.001)T(-10,10) 
     b2.lpsiBC ~ dnorm(0, 0.001)T(-10,10) 
     b2.lpsiBE ~ dnorm(0, 0.001)T(-10,10) 
     b3.lpsiBC ~ dnorm(0, 0.001)T(-10,10) 
     b3.lpsiBE ~ dnorm(0, 0.001)T(-10,10) 
 
  # logit transformations of all priors 
  # phi's 
  # derive period survival estimates 
    summer.phiA <- ilogit(b0.phiA)^4 
    winter.phiA <- ilogit(b1.phiA)^8 
    summer.phiB <- ilogit(b0.phiB)^4 
    winter.phiB <- ilogit(b1.phiB)^8 
    summer.phiC <- ilogit(b0.phiC)^4 
    winter.phiC <- ilogit(b1.phiC)^8 
     
  # monthly survivals 
    m.summer.phiA <- ilogit(b0.phiA) 
    m.summer.phiB <- ilogit(b0.phiB) 
    m.summer.phiC <- ilogit(b0.phiC) 
     
    m.winter.phiA <- ilogit(b1.phiA) 
    m.winter.phiB <- ilogit(b1.phiB)    
    m.winter.phiC <- ilogit(b1.phiC)  
 
  # psi's 
    logit(summer.psiCE) <- b0.psiCE 
    logit(winter.psiCE) <- b2.psiCE 
 
  # Derive summer and winter estimates fo movement probabilities 
  # Constrain the transitions such that their sum is <1 
       # Psi A transitions for summer and winter and pRBT  
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        psiAB.sum <- exp(b0.lpsiAB ) / (1 + exp(b0.lpsiAB ) + exp(b0.lpsiAE ) ) 
        psiAE.sum <- exp(b0.lpsiAE ) / (1 + exp(b0.lpsiAB ) + exp(b0.lpsiAE ) ) 
        psiAB.win <- exp(b2.lpsiAB ) / (1 + exp(b2.lpsiAB ) + exp(b2.lpsiAE ) ) 
        psiAE.win <- exp(b2.lpsiAE ) / (1 + exp(b2.lpsiAB ) + exp(b2.lpsiAE ) ) 
 
       # Psi B transitions for summer and winter and pRBT 

psiBC.sum <- exp(b0.lpsiBC ) / (1 + exp(b0.lpsiBC ) + exp(b0.lpsiBE ) ) 
psiBE.sum <- exp(b0.lpsiBE ) / (1 + exp(b0.lpsiBC ) + exp(b0.lpsiBE ) ) 
psiBC.win <- exp(b2.lpsiBC ) / (1 + exp(b2.lpsiBC ) + exp(b2.lpsiBE ) ) 

 psiBE.win <- exp(b2.lpsiBE ) / (1 + exp(b2.lpsiBC ) + exp(b2.lpsiBE ) ) 
 
    # calculate the last transition probability 
        psiAA.sum <- ( 1 - psiAB.sum - psiAE.sum ) 
        psiAA.win <- ( 1 - psiAB.win - psiAE.win ) 
        psiBB.sum <- ( 1 - psiBC.sum - psiBE.sum ) 
        psiBB.win <- ( 1 - psiBC.win - psiBE.win ) 
 
    for( i in 1:nind ){ 
      for( t in f[i]:(when.cens[i]-1) ){ 
       
phiA[i,t] <- ilogit( b0.phiA*summer[t] + b1.phiA*winter[t] + b2.phiA*summer[t]*prbt[i] + 

b3.phiA*winter[t]*prbt[i] )^power[t] 
phiB[i,t] <- ilogit( b0.phiB*summer[t] + b1.phiB*winter[t] + b2.phiB*summer[t]*prbt[i] + 

b3.phiB*winter[t]*prbt[i] )^power[t] 
phiC[i,t] <- ilogit( b0.phiC*summer[t] + b1.phiC*winter[t] + b2.phiC*summer[t]*prbt[i] + 

b3.phiC*winter[t]*prbt[i] )^power[t] 
         
# Psi's for state C  
logit(psiCE[i,t]) <- b0.psiCE*summer[t] + b1.psiCE*summer[t]*prbt[i] + b2.psiCE*winter[t] + 

b3.psiCE*winter[t]*prbt[i] 
         
# Psi's for state A 
psiAB[i,t] <- exp( b0.lpsiAB*summer[t] + b2.lpsiAB*winter[t] + b1.lpsiAB*summer[t]*prbt[i] + 

b3.lpsiAB*winter[t]*prbt[i] ) /  
 (1 + exp(b0.lpsiAB*summer[t] + b2.lpsiAB*winter[t] + b1.lpsiAB*summer[t]*prbt[i] + 

b3.lpsiAB*winter[t]*prbt[i]) +  
exp(b0.lpsiAE*summer[t] + b2.lpsiAE*winter[t] + b1.lpsiAE*summer[t]*prbt[i] + b3.lpsiAE*winter[t]*prbt[i])) 
 
psiAE[i,t] <- exp(b0.lpsiAE*summer[t] + b2.lpsiAE*winter[t] + b1.lpsiAE*summer[t]*prbt[i] + 

b3.lpsiAE*winter[t]*prbt[i]) /  
(1 + exp(b0.lpsiAB*summer[t] + b2.lpsiAB*winter[t] + b1.lpsiAB*summer[t]*prbt[i] + 

b3.lpsiAB*winter[t]*prbt[i]) +  
exp(b0.lpsiAE*summer[t] + b2.lpsiAE*winter[t] + b1.lpsiAE*summer[t]*prbt[i] + b3.lpsiAE*winter[t]*prbt[i]) ) 
 
psiAA[i,t] <- ( 1 - psiAB[i,t] - psiAE[i,t]) 
 
   # Psi's for state B 
psiBC[i,t] <- exp( b0.lpsiBC*summer[t] + b2.lpsiBC*winter[t] + b1.lpsiBC*summer[t]*prbt[i] + 

b3.lpsiBC*winter[t]*prbt[i] ) /  
 (1 + exp(b0.lpsiBC*summer[t] + b2.lpsiBC*winter[t] + b1.lpsiBC*summer[t]*prbt[i] + 

b3.lpsiBC*winter[t]*prbt[i]) +  
exp(b0.lpsiBE*summer[t] + b2.lpsiBE*winter[t] + b1.lpsiBE*summer[t]*prbt[i] + b3.lpsiBE*winter[t]*prbt[i])) 
 
        psiBE[i,t] <- exp(b0.lpsiBE*summer[t] + b2.lpsiBE*winter[t] + b1.lpsiBE*summer[t]*prbt[i] + 
b3.lpsiBE*winter[t]*prbt[i]) /  
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 (1 + exp(b0.lpsiBC*summer[t] + b2.lpsiBC*winter[t] + b1.lpsiBC*summer[t]*prbt[i] + 
b3.lpsiBC*winter[t]*prbt[i]) +  
exp(b0.lpsiBE*summer[t] + b2.lpsiBE*winter[t] + b1.lpsiBE*summer[t]*prbt[i] + b3.lpsiBE*winter[t]*prbt[i])) 
 
psiBB[i,t] <- ( 1 - psiBC[i,t] - psiBE[i,t]) 
      } 
    } 
      # Define state-transition and observation matrices 
      for (i in 1:nind){   
      # Define probabilities of state S(t+1) given S(t) 
        for (t in f[i]:(when.cens[i]-1)){ 
         
          ps[1,i,t,1] <- phiA[i,t] * psiAA[i,t] 
          ps[1,i,t,2] <- phiA[i,t] * psiAB[i,t] 
          ps[1,i,t,3] <- 0 
          ps[1,i,t,4] <- phiA[i,t] * psiAE[i,t] 
          ps[1,i,t,5] <- 0 
          ps[1,i,t,6] <- 1-phiA[i,t] 
           
          ps[2,i,t,1] <- 0 
          ps[2,i,t,2] <- phiB[i,t] * psiBB[i,t] 
          ps[2,i,t,3] <- phiB[i,t] * psiBC[i,t] 
          ps[2,i,t,4] <- phiB[i,t] * psiBE[i,t] 
          ps[2,i,t,5] <- 0 
          ps[2,i,t,6] <- 1-phiB[i,t] 
           
          ps[3,i,t,1] <- 0 
          ps[3,i,t,2] <- 0 
          ps[3,i,t,3] <- phiC[i,t] * (1-psiCE[i,t]) 
          ps[3,i,t,4] <- phiC[i,t] * psiCE[i,t] 
          ps[3,i,t,5] <- 0 
          ps[3,i,t,6] <- 1-phiC[i,t] 
           
          ps[4,i,t,1] <- 0 
          ps[4,i,t,2] <- 0 
          ps[4,i,t,3] <- 0 
          ps[4,i,t,4] <- 0 
          ps[4,i,t,5] <- 1 
          ps[4,i,t,6] <- 0 
           
          ps[5,i,t,1] <- 0 
          ps[5,i,t,2] <- 0 
          ps[5,i,t,3] <- 0 
          ps[5,i,t,4] <- 0 
          ps[5,i,t,5] <- 1 
          ps[5,i,t,6] <- 0 
           
          ps[6,i,t,1] <- 0 
          ps[6,i,t,2] <- 0 
          ps[6,i,t,3] <- 0 
          ps[6,i,t,4] <- 0 
          ps[6,i,t,5] <- 0 
          ps[6,i,t,6] <- 1 
           
          # Define probabilities of O(t) given S(t) 
          po[1,i,t,1] <- pAB[t] 
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          po[1,i,t,2] <- 0 
          po[1,i,t,3] <- 0 
          po[1,i,t,4] <- 0 
          po[1,i,t,5] <- 1-pAB[t] 
           
          po[2,i,t,1] <- 0 
          po[2,i,t,2] <- pAB[t] 
          po[2,i,t,3] <- 0 
          po[2,i,t,4] <- 0 
          po[2,i,t,5] <- 1-pAB[t] 
           
          po[3,i,t,1] <- 0 
          po[3,i,t,2] <- 0 
          po[3,i,t,3] <- pC[t] 
          po[3,i,t,4] <- 0 
          po[3,i,t,5] <- 1-pC[t] 
           
          po[4,i,t,1] <- 0 
          po[4,i,t,2] <- 0 
          po[4,i,t,3] <- 0 
          po[4,i,t,4] <- 1 
          po[4,i,t,5] <- 0 
                     
          po[5,i,t,1] <- 0 
          po[5,i,t,2] <- 0 
          po[5,i,t,3] <- 0 
          po[5,i,t,4] <- 0 
          po[5,i,t,5] <- 1 
           
          po[6,i,t,1] <- 0 
          po[6,i,t,2] <- 0 
          po[6,i,t,3] <- 0 
          po[6,i,t,4] <- 0 
          po[6,i,t,5] <- 1 
           
        } #t 
      } #i 
       
      # Likelihood  
      for (i in 1:nind){ 
        # Define latent state at first capture 
        z[i,f[i]] <- y[i,f[i]] 
        for (t in (f[i]+1):when.cens[i]){ 
          # State process: draw S(t) given S(t-1) 
          z[i,t] ~ dcat(ps[z[i,t-1], i, t-1,]) 
          # Observation process: draw O(t) given S(t) 
          y[i,t] ~ dcat(po[z[i,t], i, t-1,]) 
        } #t 
      } #i 
  } 
  



 113 

S3.2.3: Final JAGS model for McGee Creek 
 
model { 
      # ------------------------------------------------- 
      # Parameters: 
      # phiA: survival probability in size class A (juveniles) 
      # phiB: survival probability in size class B (subadults) 
      # phiC: survival probability in size class C (adults) 
       
      # psiA[1]: probability of remaining in class A 
      # psiA[2]: probability of transitioning from class A to class B 
      # psiA[3]: probability of individuals in class A emigrating permanently 
      # psiB[1]: probability of remaining in class B 
      # psiB[2]: probability of transitioning from class B to class C 
      # psiB[3]: probability of individuals in class B emigrating permanently 
      # psiCE: probability of individuals in class C emigrating permanently 
     
      # pAB: recapture probability in for A and B classes 
      # pC: recapture probability in for largest size 
      # pE: Set this to 1.0 (assuming perfect detection of migrants) 
      # ------------------------------------------------- 
      # States (S): 
      # 1 alive in A 
      # 2 alive in B 
      # 3 alive in C 
      # 4 recent emigrant 
      # 5 old emigrant 
      # 6 dead 
      # ------------------------------------------------- 
      # Observations (O):   
      # 1 seen in A  
      # 2 seen in B 
      # 3 seen in C 
      # 4 seen recent emigrant 
      # 5 not seen 
      # ------------------------------------------------- 
     
     # Priors and constraints for probability of detection 
      for( t in 1:( n.occasions-1 ) ){ 
        pAB[t] <- mean.pAB 
        pC[t] <- mean.pC 
      } 
        mean.pAB ~ dunif(0.2, 0.9)      # Priors for mean state-spec. recapture 
        mean.pC ~ dunif(0.2, 0.9)      # Priors for mean state-spec. recapture 
     
   # priors for state-specific survival 
  # priors for state-specific survival 
    b0.phiA ~ dnorm( 0, 0.001 )T(-10,10) 
    b0.phiB ~ dnorm( 0, 0.001 )T(-5,5)    # adjusted priors based off first run 
    b0.phiC ~ dnorm( 0, 0.001 )T(-5,5)    # adjusted priors based off first run 
    b1.phiA ~ dnorm( 0, 0.001 )T(-10,10) 
    b1.phiB ~ dnorm( 0, 0.001 )T(-10,10) 
    b1.phiC ~ dnorm( 0, 0.001 )T(-10,10) 
    b2.phiA ~ dnorm( 0, 0.001 )T(-10,10) 
    b2.phiB ~ dnorm( 0, 0.001 )T(-5,5)    # adjusted priors based off first run 
    b2.phiC ~ dnorm( 0, 0.001 )T(-5,5)    # adjusted priors based off first run 
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    b3.phiA ~ dnorm( 0, 0.001 )T(-10,10) 
    b3.phiB ~ dnorm( 0, 0.001 )T(-10,10) 
    b3.phiC ~ dnorm( 0, 0.001 )T(-10,10) 
 
   # Priors for mean transitions from C to E 
    # just mean CE, no season or pRBT effect 
    b0.psiCE ~ dnorm( 0, 0.001 )T(-10,10) 
    b1.psiCE ~ dnorm( 0, 0.001 )T(-10,10) 
    b2.psiCE ~ dnorm( 0, 0.001 )T(-10,10) 
    b3.psiCE ~ dnorm( 0, 0.001 )T(-10,10) 
     
  # Transitions: multinomial logit 
  # Normal priors on logit of all but one transition probability 
     b0.lpsiAB ~ dnorm(0, 0.001)T(-10,10) 
     b0.lpsiAE ~ dnorm(0, 0.001)T(-10,10) 
     b1.lpsiAB ~ dnorm(0, 0.001)T(-10,10) 
     b1.lpsiAE ~ dnorm(0, 0.001)T(-10,10) 
     b2.lpsiAB ~ dnorm(0, 0.001)T(-10,10) 
     b2.lpsiAE ~ dnorm(0, 0.001)T(-10,10) 
     b3.lpsiAB ~ dnorm(0, 0.001)T(-10,10) 
     b3.lpsiAE ~ dnorm(0, 0.001)T(-10,10) 
     b0.lpsiBC ~ dnorm(0, 0.001)T(-10,10) 
     b0.lpsiBE ~ dnorm(0, 0.001)T(-10,10) 
     b1.lpsiBC ~ dnorm(0, 0.001)T(-10,10) 
     b1.lpsiBE ~ dnorm(0, 0.001)T(-10,10) 
     b2.lpsiBC ~ dnorm(0, 0.001)T(-10,10) 
     b2.lpsiBE ~ dnorm(0, 0.001)T(-10,10) 
     b3.lpsiBC ~ dnorm(0, 0.001)T(-10,10) 
     b3.lpsiBE ~ dnorm(0, 0.001)T(-10,10) 
 
  # logit transformations of all priors 
  # phi's 
  # derive period survival estimates 
    summer.phiA <- ilogit(b0.phiA)^4 
    winter.phiA <- ilogit(b1.phiA)^8 
    summer.phiB <- ilogit(b0.phiB)^4 
    winter.phiB <- ilogit(b1.phiB)^8 
    summer.phiC <- ilogit(b0.phiC)^4 
    winter.phiC <- ilogit(b1.phiC)^8 
     
  # monthly survivals 
    m.summer.phiA <- ilogit(b0.phiA) 
    m.summer.phiB <- ilogit(b0.phiB) 
    m.summer.phiC <- ilogit(b0.phiC) 
    m.winter.phiA <- ilogit(b1.phiA) 
    m.winter.phiB <- ilogit(b1.phiB)    
    m.winter.phiC <- ilogit(b1.phiC)  
 
  # psi's 
    logit(summer.psiCE) <- b0.psiCE 
    logit(winter.psiCE) <- b2.psiCE 
 
  # Derive summer and winter estimates fo movement probabilities 
  # Constrain the transitions such that their sum is <1 
       # Psi A transitions for summer and winter and pRBT  
        psiAB.sum <- exp(b0.lpsiAB ) / (1 + exp(b0.lpsiAB ) + exp(b0.lpsiAE ) ) 
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        psiAE.sum <- exp(b0.lpsiAE ) / (1 + exp(b0.lpsiAB ) + exp(b0.lpsiAE ) ) 
        psiAB.win <- exp(b2.lpsiAB ) / (1 + exp(b2.lpsiAB ) + exp(b2.lpsiAE ) ) 
        psiAE.win <- exp(b2.lpsiAE ) / (1 + exp(b2.lpsiAB ) + exp(b2.lpsiAE ) ) 
 
       # Psi B transitions for summer and winter and pRBT 
        psiBC.sum <- exp(b0.lpsiBC ) / (1 + exp(b0.lpsiBC ) + exp(b0.lpsiBE ) ) 
       psiBE.sum <- exp(b0.lpsiBE ) / (1 + exp(b0.lpsiBC ) + exp(b0.lpsiBE ) ) 
        psiBC.win <- exp(b2.lpsiBC ) / (1 + exp(b2.lpsiBC ) + exp(b2.lpsiBE ) ) 
       psiBE.win <- exp(b2.lpsiBE ) / (1 + exp(b2.lpsiBC ) + exp(b2.lpsiBE ) ) 
 
    # calculate the last transition probability 
        psiAA.sum <- ( 1 - psiAB.sum - psiAE.sum ) 
        psiAA.win <- ( 1 - psiAB.win - psiAE.win ) 
        psiBB.sum <- ( 1 - psiBC.sum - psiBE.sum ) 
        psiBB.win <- ( 1 - psiBC.win - psiBE.win ) 
 
    for( i in 1:nind ){ 
      for( t in f[i]:(when.cens[i]-1) ){ 
       
phiA[i,t] <- ilogit( b0.phiA*summer[t] + b1.phiA*winter[t] + b2.phiA*summer[t]*prbt[i] + 

b3.phiA*winter[t]*prbt[i] )^power[t] 
phiB[i,t] <- ilogit( b0.phiB*summer[t] + b1.phiB*winter[t] + b2.phiB*summer[t]*prbt[i] + 

b3.phiB*winter[t]*prbt[i] )^power[t] 
phiC[i,t] <- ilogit( b0.phiC*summer[t] + b1.phiC*winter[t] + b2.phiC*summer[t]*prbt[i] + 

b3.phiC*winter[t]*prbt[i] )^power[t] 
         
     # Psi's for state C  
logit(psiCE[i,t]) <- b0.psiCE*summer[t] + b1.psiCE*summer[t]*prbt[i] + b2.psiCE*winter[t] + 

b3.psiCE*winter[t]*prbt[i] 
         
   # Psi's for state A 
psiAB[i,t] <- exp( b0.lpsiAB*summer[t] + b2.lpsiAB*winter[t] + b1.lpsiAB*summer[t]*prbt[i] + 

b3.lpsiAB*winter[t]*prbt[i] ) /  
 (1 + exp(b0.lpsiAB*summer[t] + b2.lpsiAB*winter[t] + b1.lpsiAB*summer[t]*prbt[i] + 

b3.lpsiAB*winter[t]*prbt[i]) +  
exp(b0.lpsiAE*summer[t] + b2.lpsiAE*winter[t] + b1.lpsiAE*summer[t]*prbt[i] + b3.lpsiAE*winter[t]*prbt[i]) ) 
 
psiAE[i,t] <- exp(b0.lpsiAE*summer[t] + b2.lpsiAE*winter[t] + b1.lpsiAE*summer[t]*prbt[i] + 

b3.lpsiAE*winter[t]*prbt[i]) /  
(1 + exp(b0.lpsiAB*summer[t] + b2.lpsiAB*winter[t] + b1.lpsiAB*summer[t]*prbt[i] + 

b3.lpsiAB*winter[t]*prbt[i]) +  
exp(b0.lpsiAE*summer[t] + b2.lpsiAE*winter[t] + b1.lpsiAE*summer[t]*prbt[i] + b3.lpsiAE*winter[t]*prbt[i]) ) 
 
psiAA[i,t] <- ( 1 - psiAB[i,t] - psiAE[i,t]) 
 
   # Psi's for state B 
psiBC[i,t] <- exp( b0.lpsiBC*summer[t] + b2.lpsiBC*winter[t] + b1.lpsiBC*summer[t]*prbt[i] + 

b3.lpsiBC*winter[t]*prbt[i] ) /  
 (1 + exp(b0.lpsiBC*summer[t] + b2.lpsiBC*winter[t] + b1.lpsiBC*summer[t]*prbt[i] + 

b3.lpsiBC*winter[t]*prbt[i]) +  
exp(b0.lpsiBE*summer[t] + b2.lpsiBE*winter[t] + b1.lpsiBE*summer[t]*prbt[i] + b3.lpsiBE*winter[t]*prbt[i])) 
 
        psiBE[i,t] <- exp(b0.lpsiBE*summer[t] + b2.lpsiBE*winter[t] + b1.lpsiBE*summer[t]*prbt[i] + 

b3.lpsiBE*winter[t]*prbt[i]) /  
        (1 + exp(b0.lpsiBC*summer[t] + b2.lpsiBC*winter[t] + b1.lpsiBC*summer[t]*prbt[i] + 

b3.lpsiBC*winter[t]*prbt[i]) +  
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exp(b0.lpsiBE*summer[t] + b2.lpsiBE*winter[t] + b1.lpsiBE*summer[t]*prbt[i] + b3.lpsiBE*winter[t]*prbt[i])) 
 
psiBB[i,t] <- ( 1 - psiBC[i,t] - psiBE[i,t]) 
      } 
    } 
      # Define state-transition and observation matrices 
      for (i in 1:nind){   
      # Define probabilities of state S(t+1) given S(t) 
        for (t in f[i]:(when.cens[i]-1)){ 
         
          ps[1,i,t,1] <- phiA[i,t] * psiAA[i,t] 
          ps[1,i,t,2] <- phiA[i,t] * psiAB[i,t] 
          ps[1,i,t,3] <- 0 
          ps[1,i,t,4] <- phiA[i,t] * psiAE[i,t] 
          ps[1,i,t,5] <- 0 
          ps[1,i,t,6] <- 1-phiA[i,t] 
           
          ps[2,i,t,1] <- 0 
          ps[2,i,t,2] <- phiB[i,t] * psiBB[i,t] 
          ps[2,i,t,3] <- phiB[i,t] * psiBC[i,t] 
          ps[2,i,t,4] <- phiB[i,t] * psiBE[i,t] 
          ps[2,i,t,5] <- 0 
          ps[2,i,t,6] <- 1-phiB[i,t] 
           
          ps[3,i,t,1] <- 0 
          ps[3,i,t,2] <- 0 
          ps[3,i,t,3] <- phiC[i,t] * (1-psiCE[i,t]) 
          ps[3,i,t,4] <- phiC[i,t] * psiCE[i,t] 
          ps[3,i,t,5] <- 0 
          ps[3,i,t,6] <- 1-phiC[i,t] 
           
          ps[4,i,t,1] <- 0 
          ps[4,i,t,2] <- 0 
          ps[4,i,t,3] <- 0 
          ps[4,i,t,4] <- 0 
          ps[4,i,t,5] <- 1 
          ps[4,i,t,6] <- 0 
           
          ps[5,i,t,1] <- 0 
          ps[5,i,t,2] <- 0 
          ps[5,i,t,3] <- 0 
          ps[5,i,t,4] <- 0 
          ps[5,i,t,5] <- 1 
          ps[5,i,t,6] <- 0 
           
          ps[6,i,t,1] <- 0 
          ps[6,i,t,2] <- 0 
          ps[6,i,t,3] <- 0 
          ps[6,i,t,4] <- 0 
          ps[6,i,t,5] <- 0 
          ps[6,i,t,6] <- 1 
           
          # Define probabilities of O(t) given S(t) 
          po[1,i,t,1] <- pAB[t] 
          po[1,i,t,2] <- 0 
          po[1,i,t,3] <- 0 
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          po[1,i,t,4] <- 0 
          po[1,i,t,5] <- 1-pAB[t] 
           
          po[2,i,t,1] <- 0 
          po[2,i,t,2] <- pAB[t] 
          po[2,i,t,3] <- 0 
          po[2,i,t,4] <- 0 
          po[2,i,t,5] <- 1-pAB[t] 
           
          po[3,i,t,1] <- 0 
          po[3,i,t,2] <- 0 
          po[3,i,t,3] <- pC[t] 
          po[3,i,t,4] <- 0 
          po[3,i,t,5] <- 1-pC[t] 
           
          po[4,i,t,1] <- 0 
          po[4,i,t,2] <- 0 
          po[4,i,t,3] <- 0 
          po[4,i,t,4] <- 1 
          po[4,i,t,5] <- 0 
                     
          po[5,i,t,1] <- 0 
          po[5,i,t,2] <- 0 
          po[5,i,t,3] <- 0 
          po[5,i,t,4] <- 0 
          po[5,i,t,5] <- 1 
           
          po[6,i,t,1] <- 0 
          po[6,i,t,2] <- 0 
          po[6,i,t,3] <- 0 
          po[6,i,t,4] <- 0 
          po[6,i,t,5] <- 1 
           
        } #t 
      } #i 
       
      # Likelihood  
      for (i in 1:nind){ 
        # Define latent state at first capture 
        z[i,f[i]] <- y[i,f[i]] 
        for (t in (f[i]+1):when.cens[i]){ 
          # State process: draw S(t) given S(t-1) 
          z[i,t] ~ dcat(ps[z[i,t-1], i, t-1,]) 
          # Observation process: draw O(t) given S(t) 
          y[i,t] ~ dcat(po[z[i,t], i, t-1,]) 
        } #t 
      } #i 
  } 
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Section S3.3 Supplemental Figures and Tables 
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Figure S3.4: The predicted probabilities of individual proportion RBT admixture (pRBT) on monthly 
survival probabilities for each size class in Cyclone (top row), Langford (middle row), and McGee 
(bottom row) Creeks. The red and blue lines indicate summer and winter/spring relationships, 
respectively.  
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Figure S3.5:  The predicted probabilities of individual proportion RBT admixture (pRBT) on emigration 
probabilities for each size class in Cyclone (top row), Langford (middle row), and McGee (bottom row) 
Creeks. The red and blue lines indicate summer and winter/spring relationships, respectively. 
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Figure S3.6:  The predicted probabilities of individual proportion RBT admixture (pRBT) on size class 
transition probabilities for each size class in Cyclone (left column, a & d), Langford (middle column, b & 
e)), and McGee (right column, c & f) Creeks. The red and blue lines indicate summer and winter/spring 
relationships, respectively. 
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Table S3.1: Environmental metrics collected from 2013-2017. We measured temperature using HOBO 
dataloggers deployed at each study site and then calculated mean daily temperature, weekly mean 
temperature, growing-degree-days (GDD) during the summer, and GDD during the winter/spring period. 
During out MSCJS modelling, we tested for the effects of maximum weekly mean temperature on 
summer survival and spring GDD on winter/spring survival. In addition to temperature metrics, we 
estimated Oncorhynchus spp. abundance using multi-pass depletions and measured stream width (m) 
every 50m to estimate density (# fish/m2).  
 

population year 
Mean 

August temp 
summer 

median temp 
summer maximum 
weekly mean temp 

summer 
GDD 

spring 
GDD density 

Cyclone 2013 15.15 13.61 19.43 607.6 - 0.12 

 2014 14.88 11.33 20.28 611.9 640 0.16 

 2015 13.37 11.73 19.05 620.8 733.6 0.15 

 2016 13.86 10.4 13.35 532.2 771.5 0.22 

 2017 13.31 12.03 15.63 544.85 647.99 0.14 
Langford 2013 19.65 10.34 15.51 407.4 - 0.16 

 2014 10.58 10.24 15.08 432.1 333.4 0.13 

 2015 10.99 10.66 16.32 557.2 317.5 0.08 

 2016 12.28 11.45 13.26 599.4 407.2 0.08 

 2017 12.10 11.9 13.31 559.75 397.3 0.13 
McGee 2013 14.75 9.3* 16.76* 285.28 - 0.05 

 2014 - 12.11 19.97 762.13 491.2 0.05 

 2015 12.54 13.63 20.48 813.1 544.5 0.05 

 2016 14.18 14.29 15.104 803.2 504.9 0.03 

 2017 - 12.62 17.02 766 484.29 0.06 
*HOBO Datalogger deployed in August 2013, not in July as all other measurements 
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Table S3.2: Estimates of abundance of Oncorhynchus spp. (N), standard error (se), and probability of 
detection (p) from multi-pass depletions conducted each July from 2013-2017 in each population. 
 

population year N se p 
Cyclone 2013 63.43 27.41 0.26 
 2014 82.11 2.41 0.69 

 2015 79.46 3.54 0.68 

 2016 117.12 2.81 0.69 
 2017 75.3 2.84 0.67 
Langford 2013 54.3 1.17 0.75 

 2014 44.6 2.56 0.61 
 2015 28.74 1.77 0.57 

 2016 27.59 1.21 0.74 

 2017 64.82 1.23 0.77 
McGee 2013 34.37 2.15 0.62 

 2014 28 1.17 0.78 

 2015 28.81 2.43 0.67 
 2016 20.5 0.79 0.83 

 2017 33.91 1.38 0.72 
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Table S3.3:  Summary of Von Bertallanfy growth curve equation statistics  
(Formula: TL ~ Sinf * (1 - exp(-(K * (age - t0))))). 

 
population parameter Estimate Std. Error t value p-value 
Cyclone Sinf 937.456 364.529 2.572 0.010 

 K 0.055 0.025 2.197 0.028 

 t0 -0.893 0.094 -9.552 <2e-16 
Langford Sinf 475.720 274.930 1.730 0.084 

 K 0.161 0.129 1.254 0.211 

 t0 -0.397 0.213 -1.866 0.063 
McGee Sinf 269.381 51.222 5.259 0.000 

 K 0.349 0.134 2.609 0.010 

 t0 -0.332 0.194 -1.714 0.088 
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Table S3.4: Summary of final MSCJS model for the final model structure tested in Cyclone Creek. The 
table includes the parameter means, 2.5% and 97.5% credible intervals, Gelman-Rubin diagnostic (𝑹H), 
effective number of estimates, an indicator if the 95% CI of the posterior distribution overlapped 0, and 
the proportion of the posterior distribution that shared the same sign as the mean for each covariate tested 
in the final model. 
 

parameter covariate effect mean 2.5% 97.5% Rhat n.eff overlap0 f 

p  pA Mean 0.579 0.516 0.643 1 3851 0 1 

  pBC Mean 0.638 0.609 0.667 1 7200 0 1 

Sjuvenile Beta0 Summer 2.199 2.008 2.412 1.001 2060 0 1 

  Beta1 Winter 2.565 2.425 2.713 1 7200 0 1 

  Beta2 pRBT (summer) -0.022 -0.16 0.124 1.001 2409 1 0.631 

  Beta3 pRBT(winter) -0.241 -0.356 -0.128 1 7200 0 1 

Ssub-adult Beta0 Summer 2.189 2.028 2.361 1 7200 0 1 

  Beta1 Winter 2.475 2.351 2.603 1.001 1374 0 1 

  Beta2 pRBT (summer) 0.207 0.021 0.432 1 5433 0 0.985 

  Beta3 pRBT(winter) -0.206 -0.327 -0.078 1 7200 0 0.999 

Sadult Beta0 Summer 2.132 1.888 2.428 1 7200 0 1 

  Beta1 Winter 2.946 2.71 3.214 1 7200 0 1 

  Beta2 pRBT (summer) 0.5 0.177 0.914 1 7200 0 0.999 

  Beta3 pRBT(winter) -0.265 -0.489 -0.036 1 7200 0 0.988 

𝛹ad-E Beta0 Summer -4.17 -5.036 -3.432 1 5485 0 1 

  Beta1 pRBT (summer) 0.229 -0.61 0.937 1.001 2171 1 0.74 

  Beta2 winter -3.305 -4.153 -2.619 1 6455 0 1 

  Beta3 pRBT(winter) 0.924 0.377 1.518 1 7200 0 0.999 

𝛹juv-sub Beta0 Summer -1.336 -1.57 -1.097 1 7200 0 1 

  Beta1 pRBT (summer) 0.199 0.015 0.383 1 5478 0 0.983 

  Beta2 winter 3.481 2.851 4.217 1.002 6013 0 1 

  Beta3 pRBT(winter) -0.315 -0.857 0.313 1.001 4039 1 0.859 

𝛹juv-E Beta0 Summer -4.361 -5.135 -3.717 1.001 3784 0 1 

  Beta1 pRBT (summer) -0.143 -0.939 0.481 1 7200 1 0.63 

  Beta2 winter 1.076 0.383 1.865 1.001 5611 0 0.999 

  Beta3 pRBT(winter) -0.179 -0.798 0.503 1.001 2778 1 0.716 

𝛹sub-ad Beta0 Summer -2.337 -2.671 -2.029 1.001 3407 0 1 

  Beta1 pRBT (summer) 0.246 -0.075 0.542 1 7200 1 0.939 

  Beta2 winter 0.109 -0.129 0.333 1.001 2278 1 0.819 

  Beta3 pRBT(winter) -0.218 -0.508 0.069 1 7200 1 0.933 

𝛹sub-E Beta0 Summer -3.751 -4.499 -3.168 1 7200 0 1 

  Beta1 pRBT (summer) -1.252 -2.296 -0.453 1 7200 0 1 

  Beta2 winter -0.836 -1.106 -0.562 1.001 2630 0 1 

  Beta3 pRBT(winter) -0.135 -0.46 0.181 1 7200 1 0.8 
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Table S3.5: Summary of final MSCJS model for the final model structure tested in Langford Creek. The 
table includes the parameter means, 2.5% and 97.5% credible intervals, Gelman-Rubin diagnostic (𝑹H), 
effective number of estimates, an indicator if the 95% CI of the posterior distribution overlapped 0, and 
the proportion of the posterior distribution that shared the same sign as the mean for each covariate tested 
in the final model. 
 

parameter covariate effect mean 2.5% 97.5% 𝑹H n.eff overlap0 f 

p  pAB Mean 0.734 0.672 0.789 1 7401 0 1 
 pC Mean 0.423 0.343 0.505 1.002 1343 0 1 

Sjuvenile 𝛽0 Summer 2.062 1.822 2.348 1 24000 0 1 
 𝛽1	 Winter 2.134 1.97 2.307 1 24000 0 1 
 Beta2 pRBT (summer) 0.438 0.199 0.712 1 24000 0 1 
 Beta3 pRBT(winter) -0.036 -0.203 0.128 1 22946 1 0.664 

Ssub-adult Beta0 Summer 2.117 1.846 2.455 1.001 3745 0 1 
 Beta1 Winter 1.998 1.83 2.188 1.001 1598 0 1 
 Beta2 pRBT (summer) 0.177 -0.1 0.51 1 13718 1 0.885 
 Beta3 pRBT(winter) 0.04 -0.127 0.206 1 4345 1 0.685 

Sadult Beta0 Summer 7.044 3.163 9.88 1.002 872 0 1 
 Beta1 Winter 2.011 1.735 2.321 1 8849 0 1 
 Beta2 pRBT (summer) 1.404 -2.997 5.951 1.001 3785 1 0.688 
 Beta3 pRBT(winter) -0.143 -0.42 0.131 1 9093 1 0.849 

𝛹ad-E Beta0 Summer -8.178 -9.935 -5.308 1 24000 0 1 
 Beta1 pRBT (summer) -0.493 -4.404 2.908 1 24000 1 0.573 
 Beta2 winter -7.59 -9.911 -4.011 1 9026 0 1 
 Beta3 pRBT(winter) -0.343 -5.165 3.887 1 24000 1 0.527 

𝛹juv-sub Beta0 Summer -0.074 -0.343 0.191 1 24000 1 0.706 
 Beta1 pRBT (summer) 0.053 -0.229 0.339 1 24000 1 0.644 
 Beta2 winter 4.399 2.826 6.81 1.004 1394 0 1 
 Beta3 pRBT(winter) -1.55 -3.418 -0.118 1.003 1309 0 0.984 

𝛹juv-E Beta0 Summer -5.911 -8.99 -3.815 1 24000 0 1 
 Beta1 pRBT (summer) -0.086 -2.966 2.278 1 24000 1 0.5 
 Beta2 winter 2.377 0.729 4.816 1.003 1499 0 1 
 Beta3 pRBT(winter) -1.523 -3.431 -0.019 1.003 1350 0 0.977 

𝛹sub-ad Beta0 Summer -1.417 -1.907 -0.948 1 6868 0 1 
 Beta1 pRBT (summer) 0.377 -0.062 0.813 1 24000 1 0.957 
 Beta2 winter 0.705 0.295 1.134 1.001 1722 0 1 
 Beta3 pRBT(winter) -0.48 -0.899 -0.079 1 7377 0 0.991 

𝛹sub-E Beta0 Summer -7.76 -9.9 -4.879 1 23157 0 1 
 Beta1 pRBT (summer) 1.634 -2.897 4.07 1 22439 1 0.862 
 Beta2 winter -1.751 -2.56 -1.051 1 24000 0 1 
 Beta3 pRBT(winter) -0.242 -1.023 0.506 1 24000 1 0.737 
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Table S3.6:  Summary of final MSCJS model for the final model structure tested in McGee Creek. The 
table includes the parameter means, 2.5% and 97.5% credible intervals, Gelman-Rubin diagnostic (𝑹H), 
effective number of estimates, an indicator if the 95% CI of the posterior distribution overlapped 0, and 
the proportion of the posterior distribution that shared the same sign as the mean for each covariate tested 
in the final model. 
 

parameter covariate effect mean 2.5% 97.5% Rhat n.eff overlap0 f 

p  pAB Mean 0.704 0.631 0.771 1.001 2958 0 1 

  pC Mean 0.423 0.344 0.506 1 24000 0 1 

Sjuvenile Beta0 Summer 3.096 2.514 4.214 1.005 1608 0 1 

  Beta1 Winter 2.017 1.82 2.225 1 6860 0 1 

  Beta2 pRBT (summer) 0.393 -0.068 0.99 1.002 2538 1 0.955 

  Beta3 pRBT(winter) -0.118 -0.343 0.102 1 24000 1 0.85 

Ssub-adult Beta0 Summer 3.16 2.611 4.134 1 24000 0 1 

  Beta1 Winter 1.876 1.729 2.032 1 18080 0 1 

  Beta2 pRBT (summer) 0.155 -0.332 0.703 1 12897 1 0.739 

  Beta3 pRBT(winter) 0.022 -0.129 0.172 1 7353 1 0.61 

Sadult Beta0 Summer 4.234 3.042 4.97 1 5051 0 1 

  Beta1 Winter 2.05 1.786 2.341 1 17926 0 1 

  Beta2 pRBT (summer) 0.177 -1.079 1.395 1 24000 1 0.6 

  Beta3 pRBT(winter) -0.054 -0.319 0.203 1 14400 1 0.657 

𝛹ad-E Beta0 Summer -4.03 -5.44 -2.994 1.001 4436 0 1 

  Beta1 pRBT (summer) -0.095 -1.171 0.963 1 24000 1 0.571 

  Beta2 winter -3.603 -5.448 -2.285 1 24000 0 1 

  Beta3 pRBT(winter) -0.717 -2.064 0.471 1 24000 1 0.874 
 
𝛹juv-sub 

Beta0 Summer 0.333 0.052 0.616 1 24000 0 0.99 

  Beta1 pRBT (summer) 0.071 -0.216 0.362 1 13767 1 0.685 

  Beta2 winter 4.258 2.592 6.671 1.004 759 0 1 

  Beta3 pRBT(winter) -1.075 -3.442 0.82 1.003 935 1 0.835 

𝛹juv-E Beta0 Summer -3.718 -5.05 -2.692 1 18463 0 1 

  Beta1 pRBT (summer) -0.439 -1.487 0.592 1 24000 1 0.802 

  Beta2 winter 2.46 0.692 4.948 1.004 734 0 0.998 

  Beta3 pRBT(winter) -0.699 -3.112 1.328 1.003 1019 1 0.721 

𝛹sub-ad Beta0 Summer -1.651 -2.128 -1.202 1 5233 0 1 

  Beta1 pRBT (summer) 0.068 -0.339 0.479 1 24000 1 0.629 

  Beta2 winter 0.541 0.099 0.984 1 24000 0 0.991 

  Beta3 pRBT(winter) 0.029 -0.464 0.526 1 7215 1 0.543 

𝛹sub-E Beta0 Summer -6.174 -9.148 -4.196 1 5509 0 1 

  Beta1 pRBT (summer) -1.169 -3.064 0.423 1 8124 1 0.92 

  Beta2 winter -0.036 -0.476 0.404 1 10059 1 0.564 

  Beta3 pRBT(winter) 0.153 -0.335 0.652 1 24000 1 0.727 
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Table S3.7:  Coefficient estimates from the Bayesian multistate Cormack-Jolly-Seber model (MSCJS). 
Beta coefficient’s that had a posterior distribution that overlapped 0 are represented by dashes (-). Values 
in the table represent coefficients with posterior distributions that did not overlap zero. We tested for 
effects of temperature and density on summer and winter monthly survival. Overall temperature had a 
positive effect on survival probabilities, but did not interact with proportion RBT admixture (except in the 
Cyclone sub-adults). Winter temperature was not supported by our MSCJS modelling.  
 

   
Cyclone Langford McGee 

size class season 
environmental 
covariate coefficient 

pRBT 
interaction coefficient 

pRBT 
interaction coefficient 

pRBT 
interaction 

juveniles summer temperature 0.446 - 0.557 - 1.075 - 

sub-adults   0.705 0.405 0.745 - 1.031 - 

adults   0.326 - - - - - 

juveniles winter temperature - - - - - - 

sub-adults   - - - 0.311 0.214 - 

adults   -1.326 - - - - - 

juveniles summer density -0.259 - - - - - 

sub-adults   -0.527 -0.398 - - 0.851 - 

adults   - - - - - - 

juveniles winter density -0.237 0.149 - - - - 

sub-adults   0.19 - - - - - 

adults   0.71 - - - - - 
 
 
 
  



 131 

Table S3.8: Model covariate structures tested for each parameter using a multistate Cormack-Jolly-Seber 
framework in JAGS.  We tested the following covariate structures on detection probabilities (p), survival 
probabilities (S), and transition probabilities (𝛹) for each size class (s) and time (t). 
 

parameter covariate structure hypothesis 

p ps ~ mean.ps state-specific 

 pst ~  ps2 + ps3.. + .. ps10 time-varying 

 pst ~  ps2013/2014 + ps2015-2017 crew effect 

S logit(Ss) ~ S mean s state-specific 

 logit(Ss) ~ Ss1 + Ss2 + Ss3 .. + .. Ss9 time-varying 

 logit(Ss) ~ Ss summer + Ss winter season 

 logit(Ss) ~ S mean s + S pRBT s  pRBT 

 logit(Ss) ~ Ss summer + Ss winter + Ss summer * pRBT + Ss winter * pRBT  season*pRBT 

𝛹 logit(𝛹s-s+1) ~ 𝛹 mean s-s+1 state-specific 

 logit(𝛹s-s+1)~ 𝛹summer s-s+1 + 𝛹 winter  (s-s+1) season 

 logit(𝛹s-s+1)~ 𝛹 mean s-s+1 + 𝛹 pRBT s-s+1 pRBT 

 
logit(𝛹s-s+1) ~ 𝛹	summer (s-s+1) + 𝛹winter (s-s+1) + 𝛹 summer (s-s+1) * 

pRBT + 𝛹 winter (s-s+1) * pRBT  
season*pRBT 
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APPENDIX C 

CHAPTER 4 SUPPLEMENTAL MATERIALS 

 

Section S4.1 Supplemental Figures and Tables 
 
 

 
 
Figure S4.1: Map of our study system, the North Fork Flathead River in Northwestern Montana, USA. 
Study tributaries are colored red, while second order tributaries and the main stem river are blue. The 
black outline is the boundary of the North Fork watershed. We sampled Cyclone (1), Langford (2), and 
McGee (3) Creeks using a combination of seasonal backpack electrofishing and migrant fish traps to 
capture, tag, and recapture Oncorhynchus ssp. from 2013 – 2016.  
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Figure S4.2: Distribution of individual proportion RBT admixture in the samples for the growth rate (a) 
and migratory behavior (b) genome-wide association studies for each population sampled. b) for the 
samples of individuals included in the migratory behavior analyses, the samples are separated by residents 
(0) and migrants (1). 
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Figure S4.3: Distribution of Rapture RAD locus bait set across the rainbow trout (Oncorhynchus mykiss) 
genome assembly. The 29 chromosomes are along the x-axis and position along each chromosome on the 
y-axis.  
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Figure S4.4:  Map of simulated river system from admixRiver package (Kardos, unpublished).  A visual 
representation of the simulated river network, demonstrating the admixture between native and non-native 
alleles after 8 generations. Each population had 2000 individuals with varying levels of admixture, 
represented by the histogram. Each vertical bar (see arrow) is an individual's genome, where the red 
portion is due to non-native fish ancestry, and grey represents native genetic ancestry. The arrow shows 
an individual with approximately 50% rainbow (red) and 50% WCT (grey).  
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Figure S4.5: (a) Manhattan plot of the genome-wide association scan for loci associated with growth rate 
after correcting for population substructure using the eigenstrat method (Price et al. 2006) from a genomic 
kinship matrix.  P-values were corrected for multiple testing using a false discovery rate (FDR) for the 
2142 loci.  The red and blue lines indicate genome-wide significance levels equivalent to p = 0.05 and p = 
0.10, respectively, after the FDR was applied to p-values.  Point colors alternate by chromosome. (b) The 
distribution of the observed test statistic (𝜒K) over the expected 𝜒K if growth was not affected by variation 
at any loci. The slope of this relationship is the estimate of genomic (𝜆 = 1.03). 
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Figure S4.6:  Manhattan plot of genome-wide association scan for loci (dots) associated with migratory 
life history behavior after removing all known females (n =112).  (b) The distribution of the observed test 
statistic (𝜒K) over the expected 𝜒K if migratory behavior was not affected by variation at any loci. The 
slope of this relationship is the estimate of genomic (𝜆 = 1.61). 
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Figure S4.7: The distribution of the observed test statistic (𝜒K) over the expected 𝜒K if migratory behavior 
was not affected by variation at any loci. The slope of this relationship is the estimate of genomic (𝜆 = 
1.32). 
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Table S4.1: Sample sizes of individuals (n) in growth GWAS and the mean (standard deviation) daily 
growth rate (mm/d; growth rate), length at first capture (length), and proportion RBT admixture (pRBT) 
for each populations and the whole combined dataset. 
 

population n growth rate length pRBT 

Cyclone 218 0.007   (0.035) 114.05   (21.5) 0.12   (0.156) 

Langford 98 0.183   (0.084) 117.43   (21.14) 0.37   (0.27) 

McGee 119 0.145   (0.065) 122.38   (18.58) 0.374   (0.181) 

All 435 0.119   (0.081) 117.08   (20.91) 0.246   (0.231) 
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Table S2: Total sample sizes of individuals (n), migrants, and residents in migratory behavior GWAS and 
the mean (standard deviation) of total length at capture (mm, length), weight at capture (g, weight), and 
proportion RBT admixture (pRBT) for each population and the whole combined dataset. 
 
population n migrants residents length weight pRBT 

Cyclone 510 169 341 219.61  (65.23) 127.31  (157.96) 0.11  (0.18) 

Langford 213 121 92 219.49  (150.06) 134.64   (150.06) 0.39  (0.33) 

McGee 151 74 77 212.09  (61.15) 111.71  (123.48) 0.35  (0.18) 

ALL 874 364 510 218.29  (65.59) 126.35  (150.7) 0.22 (0.26) 
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Table S4.3: Numbers of loci distributed on each chromosome (CHR) for growth and migratory analyses. 
Poly is polymorphic loci (used for relatedness assessment), RBT, WCT, and YCT are rainbow-, 
westslope-, and Yellowstone cutthroat trout diagnostic loci.   
 

 Migratory life history behavior Daily summer growth rate 
CHR TOTAL POLY RBT WCT YCT TOTAL POLY RBT WCT YCT 

1 179 108 31 20 20 165 102 30 19 14 
2 91 52 19 9 11 83 48 18 7 10 
3 88 58 18 8 4 85 56 18 8 3 
4 112 73 24 9 6 110 72 23 9 6 
5 134 84 34 11 5 128 82 33 11 2 
6 118 71 30 13 4 108 66 28 13 1 
7 97 57 20 11 9 89 54 20 11 4 
8 127 75 35 12 5 113 70 31 12 NA 
9 89 56 22 6 5 80 51 21 5 3 
10 86 41 32 9 4 84 40 31 9 4 
11 105 62 25 12 6 96 57 23 10 6 
12 97 50 34 10 3 90 48 32 10 NA 
13 35 19 7 6 3 31 18 5 6 2 
14 70 41 18 8 3 68 40 18 7 3 
15 65 37 17 7 4 58 33 16 7 2 
16 83 44 20 9 10 81 44 20 9 8 
17 79 48 21 6 4 75 44 21 6 4 
18 50 29 13 6 2 43 24 13 6 NA 
19 58 36 16 4 2 54 33 16 3 2 
20 61 33 18 6 4 57 30 17 6 4 
21 40 23 12 4 1 38 21 12 4 1 
22 46 32 7 3 4 41 31 7 3 NA 
23 69 42 19 4 4 63 39 17 4 3 
24 53 30 13 7 3 49 27 12 7 3 
25 86 50 19 9 8 79 47 18 9 5 
26 38 19 7 6 6 34 19 7 6 2 
27 50 21 19 6 4 45 20 18 5 2 
28 52 22 19 7 4 46 22 17 6 1 
29 34 10 17 2 5 47 26 16 2 3 

TOTAL 2292 1323 586 230 153 2140 1264 558 220 98 
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Table S4.4: Parameters and values used in simulation of admixed populations in a river network from 
admixRiver package (Kardos, unpublished).   
 

Simulation parameter Set value 

n populations 3 

population size 2000 

N stocked fish 500 

n generations 8 

n stocking generations 6 

mean dispersal prob 0.1 

max dispersal prob 0.4 

age at maturity 1 

maximum age 2 

population age structure 0.5 : 0.3 : 0.2 

n QTLs 1 

n chromosomes 2 

chromosome length 100 cM 
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Table S4.5: Power analysis results table. 500 reps of each factorial level of effect sizes, marker density, 
and sample sizes. The QTL affect size represents the reduction in survival probability resulting from an 
individual having the causal allele at the QTL. We also varied the number of fish sampled in each 
population (n individuals), the number of randomly sampled loci on each chromosome (n loci) in each 
independent simulation repetition. We then estimated the proportion of independent simulations 
repetitions where the QTL was successfully detected by a genome-wide association study, and the mean 
pRBT and QTL frequency in the simulated population after 8 generations of evolution and random 
mating.  
 

QTL effect 
size 

n 
individuals n loci 

Proportion 
detected 

Mean 
pRBT 

Mean QTL 
frequency 

Simulation 
reps 

-0.8 200 50 0.37 0.06 0.04 350 
-0.8 200 75 0.36 0.06 0.04 350 
-0.8 200 100 0.32 0.06 0.04 350 
-0.8 500 50 0.71 0.06 0.04 350 
-0.8 500 75 0.69 0.06 0.04 350 
-0.8 500 100 0.66 0.06 0.04 350 
-0.8 750 50 0.82 0.06 0.04 350 
-0.8 750 75 0.78 0.06 0.04 350 
-0.8 750 100 0.76 0.06 0.04 349 
-0.8 1000 50 0.85 0.06 0.04 350 
-0.8 1000 75 0.81 0.06 0.04 350 
-0.8 1000 100 0.81 0.06 0.04 350 
-0.7 200 50 0.62 0.14 0.12 350 
-0.7 200 75 0.56 0.14 0.12 350 
-0.7 200 100 0.55 0.14 0.12 350 
-0.7 500 50 0.84 0.14 0.12 350 
-0.7 500 75 0.84 0.14 0.12 350 
-0.7 500 100 0.82 0.14 0.12 350 
-0.7 750 50 0.92 0.14 0.12 350 
-0.7 750 75 0.91 0.14 0.12 350 
-0.7 750 100 0.90 0.15 0.12 350 
-0.7 1000 50 0.96 0.14 0.12 349 
-0.7 1000 75 0.97 0.14 0.12 349 
-0.7 1000 100 0.96 0.14 0.12 349 
-0.6 200 50 0.49 0.25 0.22 350 
-0.6 200 75 0.51 0.25 0.22 350 
-0.6 200 100 0.48 0.26 0.22 350 
-0.6 500 50 0.89 0.25 0.22 350 
-0.6 500 75 0.87 0.25 0.22 350 
-0.6 500 100 0.85 0.25 0.22 350 
-0.6 750 50 0.98 0.25 0.22 350 
-0.6 750 75 0.95 0.25 0.22 350 
-0.6 750 100 0.94 0.25 0.22 350 
-0.6 1000 50 0.97 0.25 0.22 349 
-0.6 1000 75 0.99 0.25 0.22 350 
-0.6 1000 100 0.99 0.25 0.22 349 
-0.5 200 50 0.25 0.35 0.32 350 
-0.5 200 75 0.22 0.35 0.32 350 
-0.5 200 100 0.18 0.36 0.32 350 
-0.5 500 50 0.66 0.36 0.32 350 
-0.5 500 75 0.59 0.36 0.32 350 
-0.5 500 100 0.58 0.36 0.32 350 
-0.5 750 50 0.83 0.35 0.32 350 
-0.5 750 75 0.78 0.35 0.32 350 
-0.5 750 100 0.80 0.36 0.32 350 
-0.5 1000 50 0.94 0.36 0.32 350 
-0.5 1000 75 0.91 0.36 0.32 350 
-0.5 1000 100 0.91 0.36 0.32 350 
-0.4 200 50 0.08 0.44 0.41 350 
-0.4 200 75 0.08 0.44 0.41 350 
-0.4 200 100 0.08 0.44 0.41 350 
-0.4 500 50 0.27 0.44 0.41 350 
-0.4 500 75 0.23 0.44 0.41 350 
-0.4 500 100 0.28 0.44 0.41 350 
-0.4 750 50 0.47 0.44 0.41 350 
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-0.4 750 75 0.50 0.44 0.41 350 
-0.4 750 100 0.48 0.44 0.41 350 
-0.4 1000 50 0.59 0.44 0.41 350 
-0.4 1000 75 0.57 0.44 0.41 350 
-0.4 1000 100 0.57 0.44 0.41 350 
-0.3 200 50 0.03 0.51 0.48 350 
-0.3 200 75 0.04 0.51 0.48 350 
-0.3 200 100 0.03 0.51 0.49 350 
-0.3 500 50 0.09 0.51 0.48 350 
-0.3 500 75 0.11 0.51 0.48 350 
-0.3 500 100 0.09 0.51 0.49 350 
-0.3 750 50 0.18 0.51 0.49 350 
-0.3 750 75 0.17 0.51 0.48 350 
-0.3 750 100 0.16 0.51 0.48 350 
-0.3 1000 50 0.25 0.51 0.48 350 
-0.3 1000 75 0.26 0.51 0.49 349 
-0.3 1000 100 0.23 0.51 0.48 348 
-0.2 200 50 0.01 0.56 0.55 350 
-0.2 200 75 0.01 0.56 0.55 350 
-0.2 200 100 0.01 0.56 0.55 350 
-0.2 500 50 0.03 0.56 0.55 350 
-0.2 500 75 0.02 0.56 0.54 350 
-0.2 500 100 0.01 0.56 0.54 350 
-0.2 750 50 0.03 0.56 0.55 350 
-0.2 750 75 0.04 0.56 0.55 350 
-0.2 750 100 0.02 0.56 0.55 350 
-0.2 1000 50 0.05 0.56 0.55 350 
-0.2 1000 75 0.06 0.56 0.55 349 
-0.2 1000 100 0.05 0.56 0.55 349 
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Table S4.6: Model structures tested and the genomic inflation of the test statistic from each model in the 
GWAS of growth rate. We tested model structures that included fixed effects for individual total length 
(TL, mm), year of capture (year), and population of capture. We ran GWAS in each population 
independently and all populations together (ALL). Finally, we tested different genomic random effects 
structures using the eigenstrat method (Price et al. 2006) or the full genomic kinship matrix. We 
considered the results from the model (bold and underlined) that best reduced the genomic inflation factor 
(𝜆). 
 

population model form 
random   

genetic effect 𝜆 notes 
Cyclone growth ~ TL none 1.84  
 growth ~ TL + year none 2.5  
 growth ~ TL eigenstrat 1.66  
 growth ~ TL + year eigenstrat 1.34  
 growth ~ TL genomic kinship 1.46  
 growth ~ TL + |year genomic kinship 1.84  
Langford growth ~ TL none 1 lambda < 1 

 growth ~ TL + year none 1 lambda < 1 

 growth ~ TL eigenstrat 1 lambda < 1 

 growth ~ TL + year eigenstrat 1 lambda < 1 

 growth ~ TL genomic kinship 1 lambda < 1 

 growth ~ TL + year genomic kinship 1 lambda < 1 
McGee growth ~ TL none 1.13  
 growth ~ TL + year none 1.12  
 growth ~ TL eigenstrat 1 lambda < 1 

 growth ~ TL + year eigenstrat 1 lambda < 1 

 growth ~ TL genomic kinship  lambda < 1 

 growth ~ TL + year genomic kinship 1 lambda < 1 
ALL growth ~ TL + population none 1.51  
 growth ~ TL + year + population none 1.44  
 growth ~ TL + population eigenstrat 1.03  
 growth ~ TL + year + population eigenstrat 1.03  
 growth ~ TL + population genomic kinship 1.17  
 growth ~ TL + year + population genomic kinship 1.23  
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Table S4.7: Model structures tested and the genomic inflation of the test statistic from each model in the 
GWAS of migratory behavior. We tested model structures that included fixed effects for individual total 
length (mm), weight (g), and population of capture. We ran GWAS in each population independently and 
all populations together (ALL). Finally, we tested different genomic random effects structures using the 
eigenstrat method (Price et al. 2006) or the full genomic kinship matrix. We considered the results from 
the model (bold and underlined) that best reduced the genomic inflation factor (𝜆). 
 

population model form 
random   

genetic effect 𝜆 notes 
Cyclone mig ~ total length none 3.18  
 mig ~ weight none 3.22  
 mig ~ total length eigenstrat 1 lambda < 1 

 mig ~ weight eigenstrat 1 lambda < 1 

 mig ~ total length genomic kinship 2.17  
 mig ~ weight genomic kinship 2.51  
Langford mig ~ total length none 2.49  
 mig ~ weight none 1.95  
 mig ~ total length eigenstrat 1.25  
 mig ~ weight eigenstrat 1.23  
 mig ~ total length genomic kinship 1.06  
 mig ~ weight genomic kinship 1.01  
McGee mig ~ total length none 1 lambda < 1 

 mig ~ weight none 1.16  
 mig ~ total length eigenstrat 1 lambda < 1 

 mig ~ weight eigenstrat 1 lambda < 1 

 mig ~ total length genomic kinship 1 lambda < 1 

 mig ~ weight genomic kinship 1.02  
ALL mig ~ total length + population none 3.2  
 mig ~ weight + population none 3.56  
 mig ~ total length + population eigenstrat 1.65  
 mig ~ weight + population eigenstrat 1.71  
 mig ~ total length + population genomic kinship 1.32  
 mig ~ weight + population genomic kinship 1.37  
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Table S4.8: Supported models considered in our AICc model selection for migratory life history expression in 
Cyclone (a), Langford (b), and McGee (c) creeks. Models are ranked by AICc. We also tested a mixed-effects 
framework, where we included a random effect of population (d). The models below are ranked by AICc. 
Coefficients are shown for models that contain covariates for year, relative condition factor (K), proportion RBT 
admixture (pRBT), total length (TL), and any combination of interactions between these covariates that were 
supported. The coefficient for the intercepts are also shown (INT) and the number of parameters (PAR) for each 
model. The top model is bold and underlined. 
a) 

INT K pRBT TL year 
K * 

pRBT 
TL * 

pRBT 
omy29 

28901336 PAR logLik AICc delta weight 

3.795 -1.176  1.755 +   + 8 -190.499 397.294 0.000 0.370 

2.821 -1.221 0.294 1.724 +   + 9 -189.823 398.017 0.723 0.258 

3.697 -1.229 0.247 1.735 +  0.311 + 10 -189.029 398.512 1.218 0.201 

3.881 -1.255 0.329 1.773 + -0.183 0.424 + 11 -188.581 399.707 2.413 0.111 

-0.019 -1.267 0.527 1.663 +    7 -194.469 403.162 5.868 0.020 

-0.019 -1.267 0.527 1.663 +    7 -194.469 403.162 5.868 0.020 

0.058 -1.276 0.557 1.683 + -0.171   8 -193.954 404.197 6.903 0.012 

0.098 -1.313 0.599 1.711 + -0.292 0.350  9 -193.050 404.461 7.167 0.010 
b) 

INT K pRBT TL year 
K * 

pRBT 
TL * 

pRBT 
omy29 

28901336 PAR logLik AICc delta weight 

7.774 -1.580 -0.920 3.612 +  -1.603 + 10 -45.714 112.678 0.000 0.551 

7.118 -1.502  3.780 +   + 8 -48.760 114.328 1.650 0.242 

7.847 -1.657 -0.917 3.563 + -0.213 -1.490 + 11 -45.562 114.634 1.955 0.207 

2.813 -1.604 0.230 3.570 +  -1.025  8 -64.000 144.747 32.068 0.000 

2.729 -1.588 0.634 3.450 +    7 -65.700 145.977 33.299 0.000 

2.812 -1.635 0.258 3.549 + -0.150 -0.932  9 -63.887 146.711 34.033 0.000 
c) 

INT K pRBT TL year 
K * 

pRBT 
TL * 

pRBT 
omy29 

28901336 PAR logLik AICc delta weight 

0.540 -3.553  3.925     3 -35.589 77.350 0.000 0.303 

2.512 -3.891  4.593 +    5 -33.595 77.624 0.274 0.264 

2.779 -3.961 -0.376 4.969 +    6 -32.928 78.469 1.119 0.173 

0.546 -3.517  3.867    + 5 -34.671 79.804 2.454 0.089 

2.706 -3.956 -0.209 4.875 +  0.384  7 -32.864 80.552 3.202 0.061 

0.843 -3.554 -0.248 3.970    + 6 -34.431 81.513 4.163 0.038 

2.671 -3.882 -0.313 4.722 +   + 8 -32.247 81.628 4.278 0.036 

2.678 -3.927 -0.182 4.834 + 0.185 0.333  8 -32.831 82.730 5.380 0.021 

2.407 -3.869 -0.057 4.633 +  0.564 + 9 -32.105 83.639 6.289 0.013 

2.385 -3.843 -0.034 4.600 + 0.184 0.503 + 10 -32.073 85.906 8.556 0.004 
d) 

INT K pRBT TL year 
K * 
pRBT 

TL * 
pRBT 

omy29 
28901336 PAR logLik AICc delta weight 

3.564 -1.374  2.123 +   + 9 -300.790 619.803 0.000 0.601 

3.430 -1.382 0.070 2.119 +   + 10 -300.692 621.656 1.853 0.238 

3.412 -1.398 0.085 2.129 + -0.102  + 11 -300.436 623.199 3.397 0.110 

3.470 -1.412 0.115 2.143 + -0.147 0.155 + 12 -300.172 624.732 4.929 0.051 

1.077 -1.444 0.407 2.105 +    8 -323.704 663.579 43.776 0.000 

1.132 -1.458 0.414 2.122 + -0.149   9 -323.111 664.435 44.632 0.000 

1.139 -1.475 0.452 2.132 + -0.206 0.186  10 -322.675 665.610 45.808 0.000 
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