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ABSTRACT 

 

Wide-ranging species face many threats to genetic connectivity. In light of these threats, one 

major challenge is the efficient use of scarce resources for the conservation of these species. 

Setting conservation priorities for landscapes and connectivity can be informed using molecular 

genetics, and can ensure the efficient use of scare resources to maximize returns in biodiversity 

conservation. 

The greater sage-grouse (Centrocercus urophasianus; hereafter sage grouse) is a species 

of conservation concern that spans eleven state boundaries, land managed by multiple agencies, 

and one international boundary. Across the species’ distribution, the threats to the genetic 

connectivity range from agricultural conversion to energy development, to catastrophic wildfire. 

In order to prioritize management as threats loom, there is considerable interest in gaining insight 

into the species’ population genetic substructure, dispersal capabilities, and range-wide genetic 

connectivity. The insights gained and be used to prioritize management efforts to preserve or 

restore genetic diversity and connectivity. This dissertation is composed of an investigation of 

population genetic substructure, breeding season dispersal, and the characterization of a range-

wide genetic network for conservation prioritization. 

 Limitations in greater sage-grouse dispersal have resulted in the existence of five 

subpopulations across the northeastern range of the species, none of which appears to be 

genetically isolated. The genetic structure discovered appears to have been shaped by the natural 

landscape and ecological features. However, recent disturbances associated with human 

alteration of the landscape may have increased subpopulation divergence. Existing state 

conservation areas align well with genetic subpopulation structure allowing straightforward 

translation of management planning to the conservation of genetic diversity and connectivity. 

Simulation-based evaluation of the analytical methods used to detect subpopulation structure 

provided insight into interpretation of the evolutionary history of subpopulation divergence. 

 While many individuals remained philopatric to the same breeding sites (leks) year after 

year, more individuals dispersed to alternate leks. Evidence for sex-biased dispersal did not exist: 

either in tendency to disperse nor in distances traveled. Dispersal appears costly, as there was a 

greater occurrence of mortality among farther dispersing individuals. Individuals dispersed 

within, into and out of designated conservation areas, providing additional evidence that these 

areas are not isolated. Breeding dispersal likely counteracts the effect of philopatry, fostering 

gene flow. 

 Using network theory, I characterized the patterns of range-wide genetic connectivity 

among spring breeding congregations (leks), finding that connectivity is greatest among 

neighboring leks. The entire network is connected such that there are no isolated subunits. Hubs 

of genetic connectivity exist, evidenced by increased measures of both local and global network 

centrality, indicative of their importance to maintaining gene flow across the entire species’ 
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range. These high-centrality hubs are centrally located within the species’ distribution, with 

concentrations within the Upper Snake River Basin of Idaho and the Green River Basin of 

Wyoming. Conservation efforts to protect these areas could prove essential to securing range-

wide genetic connectivity into the future. Overall, this research provides insight into how to use 

molecular genetic analyses of substructure, dispersal, and connectivity of a continuously 

distributed species across a vast landscape to inform management and prioritize conservation 

actions. 
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CHAPTER 1 

 

INTRODUCTION AND OVERVIEW 

 

One major challenge in conservation is the efficient use of scarce resources for the protection of 

biodiversity. Optimization of resource use is often referred to as conservation triage (Bottrill et 

al. 2008). There is a large body of science on the approach by which to identify landscapes to 

target for conservation (Possingham et al. 2000). Within the field of landscape prioritization, 

where to target first is based on biodiversity targets and the cost of conservation action. This 

approach assumes different costs and different amounts of biodiversity within landscapes, and 

balances the two to select an optimal conservation target. However, this approach does not 

consider connectivity among landscapes. 

 Recently, conservation prioritization methods have been extended to consider 

prioritization of connectivity among patches, as isolated landscapes are undesirable (Dilkina et 

al. 2016). When prioritizing connectivity, the assumption is often made that all parts of the 

landscape are producing the same number of successful dispersers and so are of equal value to 

connectivity. Under this approach, the highest priority is to preserve connectivity among all 

landscapes. However, not all landscapes are of equal value, nor do all landscapes produce the 

same number of successful dispersers. At the forefront of conservation planning is the fusion of 

these two methods: landscape and connectivity prioritization. The overarching question of my 

research is how can we use molecular genetics to prioritize landscapes and connectivity for wide-

ranging species? 

 At the forefront of North American species of conservation concern is the greater sage-

grouse. The sage grouse is an iconic species of the American west and a sentinel species for 

sagebrush landscapes (Rowland et al. 2006, Thacker et al. 2012, Holloran & Anderson 2005, 

Hagen et al. 2007). In fact, they are so reliant upon sagebrush that through the winter months, 

their diet consists of over 97% sagebrush (Connelly et al. 2000). The remaining intact sagebrush 

ecosystems of the west face multiple large-scale threats that vary across the range of the species. 

These threats include agricultural conversion, wildfire, exurban development, pinyon-juniper 

expansion, and energy development. Sage grouse are very sensitive to the alteration of their 

sagebrush habitat such that they are considered the canary in the coalmine for the sagebrush 

ecosystem. The birds will vacate when disturbances become too great. Sage grouse once ranged 

across 1.2 million square kilometers extending from the southern part of Canada’s prairie 

provinces of Alberta, Saskatchewan & British Columbia south to Arizona, from the Pacific states 

east to Nebraska. Now, the species occupies less than 0.7 million square kilometers across eleven 

Western states and two Canadian provinces. Only 56% of pre-settlement range remains 

(Schroeder et al. 2004). Currently, these iconic birds exist in decreased density and increasingly 

isolated populations. In an unprecedented collaborative effort, state, federal, and private partners 

banded together to delineated priority areas for conservation (PACs) composed of the highest 

quality habitat with the greatest number of birds. These PACs encompass 271,000 square 

kilometers. However, there is concern that these PACs not become isolated islands of sage 

grouse, especially as threats increase and resources are limited (Finch et al. 2016). Therefore, 

there is an increasing desire to quantify population structure and connectivity for this wide-

ranging and continuously distributed species, and to prioritize crucial landscapes required to 

maintain connectivity. 



 

 2 

 My dissertation research asks the question: how can molecular genetic approaches be 

used to prioritize landscapes and connectivity for wide-ranging species? I address this question 

by coupling large landscape-scale sampling with population genetic analyses to better understand 

patterns of genetic connectivity. In the four interlocking chapters of this dissertation, I first, 

identify population substructure and use the findings to provide insight into management 

boundary delineation; second, test using simulations whether a common analytical approach used 

to detect substructure are valid; third, evaluate dispersal using genetic mark recapture; and 

finally, use network analysis to simultaneously quantify substructure and gene flow. Each of 

these chapters addresses the overarching goal of enhancing conservation prioritization. 

 

RESEARCH OBJECTIVES AND FINDINGS 

 

Hierarchical population structure and insight into management boundary delineation 

 

The previous chapter showed that sage grouse breeding dispersal occurs for both sexes across 

broad areas. Cumulatively dispersal patterns shape population structure. Therefore, in chapter 2 I 

asked the questions: 

 

 What patterns of genetic substructure exist across the northeastern range of the species? 

 Is the observed substructure consistent with management boundaries and landscape 

features? 

 

 I genotyped 1,499 individuals from 297 leks across the northeastern range of the sage 

grouse (Montana, North Dakota and South Dakota), and found five subpopulations separated by 

mountain ranges or valleys occupied by river-roadway corridors. Subpopulations also occupied 

different elevations and were surrounded by different dominant sagebrush subspecies. I detected 

“isolation by distance,” the genetic phenomena of increased genetic distance among individuals 

as distance increases. I also discovered genetic admixture among subpopulations at the most 

distal portions of the study area, which suggests that the cumulative effect of individual dispersal 

translates into long-range connectivity. Existing protected conservation areas aligned well with 

genetic subpopulations, and could be grouped in accordance with genetic subpopulation 

structure. 

 This chapter has been published in Conservation Genetics under the title “Hierarchical 

population structure in sage grouse provides insight into management boundary delineation,” and 

is co-authored by David Naugle, John Carlson, and Michael Schwartz. 

 

 

Validation of hierarchical analysis to detect genetic substructure in natural populations 

 

 The previous chapter relied heavily on a commonly used approach to delineate 

population substructure often referred to a hierarchical substructure analysis. Despite being used 

in over dozens of publications (e.g., Coulon et al. 2008; Balkenhol et al. 2014; Vähä et al. 2008; 

Lukoschek et al. 2008; Cheng et al. 2014; Warnock et al. 2010; Cross et al. 2016; Viricel & 

Rosel 2014) this approach has never been validated. In Chapter 3, I examined the validity of 

analyzing genetic subpopulation structure using hierarchical substructure analysis. This method 

entails first using Bayesian clustering analysis to detect genetic substructure and to group 
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samples into putative subpopulations by minimizing both gametic disequilibrium and deviation 

from Hardy-Weinberg Proportions within groups. Next, each subpopulation is independently 

analyzed to detect further genetic substructure. This process is repeated until each subpopulation 

appears panmictic. This method is suggested to reveal additional subpopulations that go 

undiscovered when only performing the first round of analysis and subdivision. I used this 

method in Chapter 3 after having seen its common use in the literature. In chapter 3, I simulated 

populations with known substructure to investigate whether using this method can reveal true 

subpopulation structure with greater sensitivity and precision. In this chapter, I addressed the 

following questions: 

 

 Does hierarchical substructure analysis reveal true subpopulation structure? 

 If so, does it do so with greater sensitivity and precision than traditional approaches? 

 

 I found that hierarchical substructure analysis does not reveal true subpopulation 

structure that would go undetected if only one round of analysis were completed. Instead, I found 

that the ΔK statistic reveals the most deeply rooted substructure, while the mean LnP(K) statistic 

reveals more recently subdivided subpopulations. I also found that with a greater the number of 

subpopulations involved (with increased complexity), there is lower sensitivity and precision in 

analysis results. My findings suggest that the hierarchical approach to population substructure 

analysis is not necessary to discover complex population substructure. With these insights, I still 

find that, despite the use of hierarchical analysis in Chapter 2, the population substructure 

discovered using a combination of the ΔK and mean LnP(K) statistics is defensible given similar 

population structure results with both the hierarchical method and the use of maximum mean 

LnP(K). 

 

 

Long-distance breeding dispersal 

 

 Due to the difficulty of documenting long movements in animal species, long distance-

dispersal is poorly understood. Field research has documented sage grouse natal dispersal 

distances, seasonal migration distances, and breeding behavior, but little is known about 

breeding dispersal distances. Furthermore, most of these studies have been limited in geographic 

extent and sample size. Therefore, in Chapter 4 I asked the following questions: 

 

 Is there evidence for breeding dispersal among genetically recaptured sage grouse? 

 If so, is there evidence for sex-bias in dispersal predisposition or distances traveled? 

 

 I addressed this question by using a dataset of 3,244 individuals from 763 leks throughout 

Idaho, Montana, North Dakota, and South Dakota to examine the occurrence of breeding 

dispersal and philopatry among spring breeding congregations (leks). I recaptured over 2% of 

individuals, finding 41 instances of breeding dispersal, with seven dispersal events > 50 km, 

including one of 194 km. I also documented 39 instances of philopatry, with capture and 

recapture spanning up to 5 years. I found no difference between the sexes in distance travelled or 

in the tendency to disperse versus remain philopatric. I also documented many movements 

within and among existing protected conservation areas. However, I did not observe any 

individuals moving among the five subpopulations discovered in Chapter 2. My genetic 
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approach to detecting dispersal is unprecedented in the number of captures of long-distance 

exchanges among animal populations largely due to both sample size and geographic scope. 

 This chapter has been published in The Condor: Ornithological Applications under the 

title “Genetic recapture identifies long-distance breeding dispersal in Greater Sage-Grouse 

(Centrocercus urophasianus),” and is co-authored by David Naugle, John Carlson, and Michael 

Schwartz. 

 

 

High-connectivity hubs of gene flow across the species’ range 

 

 Within this final chapter, I used recently developed network models to provide insight 

into how gene flow among leks relates to the population substructure evaluation in chapter 2 

when informed by the dispersal findings of chapter 4. More specifically, I sought to identify 

which leks were most important to maintaining gene flow locally and range-wide. In Chapter 5, I 

addressed the following questions: 

 

 Of the four common network classes, to which is the range-wide genetic network most 

similar? 

 What does network structure reveal about genetic connectivity? 

 Which leks are keystone (i.e., most important to maintaining network connectivity and 

persistence when ranked by centrality measures)? 

 

 I used a dataset of 6,723 individuals from 1,417 leks across the range of sage grouse 

coupled with network theory to model patterns of gene flow in order to gain insight into the 

importance of leks’ contributions to range-wide genetic connectivity. I found a completely 

connected network without any isolated subnetworks. This network was structured most 

similarly to the small-world class, which revealed that connectivity was greatest among 

neighboring leks, and that gene flow traverses the range quite rapidly often through leks that 

function as hubs of genetic connectivity. I also used measures of network centrality to discover 

multiple leks that appeared to function as the hubs of genetic connectivity. These leks were 

located within several major river basins across the West and are centrally located within the 

species’ range. Protecting these critical hubs would likely help to secure range-wide genetic 

connectivity into the future. 

 

SYNTHESIS AND SIGNIFICANCE 

 One of the greatest challenges in conservation is the efficient use of limited resources for 

the protection of biodiversity. To meet this challenge, managers must perform conservation 

triage, where decisions are made to prioritize conservation targets of highest importance (Bottrill 

et al. 2008). My research fuses two methods at the forefront of conservation prioritization: 

landscape and connectivity prioritization. By coupling large landscape scale sampling with 

population genetic analyses and simulations, I advance the approaches for discovering and 

interpreting patterns of genetic connectivity and the subsequent use of these patterns for the 

efficient prioritization of landscape and connectivity conservation for wide-ranging species 

 I implement a multi-pronged approach based in molecular genetics that provides a 

dynamic, cross-referenced means by which to prioritize conservation actions. I use network 

theory to identify crucial conservation targets in a way that can be scaled to any management-
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relevant extent, while considering each target’s importance to maintaining range-wide 

connectivity. Previous work has measured overall network structure (Bunn et al. 2000; Garroway 

et al. 2008), and here I provide new insight into the utility of network analysis by ranking 

populations by importance to maintenance of genetic connectivity and by identifying keystone 

populations that contribute disproportionately to connectivity, but which might be undervalued 

by measures of geographic centrality or abundance. I show that multiple hubs essential to genetic 

connectivity exist across the range, and that if conserved, these populations will have the greatest 

conservation benefit. I show that genetic connectivity discovered using network approaches can 

be validated by studying both genetic substructure and dispersal. I provide novel insight by 

demonstrating this validation: I first identify biologically meaningful groups based on genetic 

substructure, then show that genetic substructure is in agreement with both network structure and 

existing management boundaries, allowing for straightforward translation between management 

planning and the conservation of genetic diversity and connectivity. Furthermore, I provide 

insight into the use and interpretation of results from one of the most common Bayesian 

approaches to detecting genetic population substructure by demonstrating that the common 

method of hierarchical substructure analysis should be reconsidered given the method’s tendency 

to generate spurious results. Through genetic recapture, I provide novel insight into avian 

dispersal and movements among protected areas and show that dispersal patterns validate genetic 

substructure, network structure, and the resultant patterns of connectivity. Overall, my 

dissertation research provides a better understanding of the means by which population 

prioritization can be accomplished using molecular genetics. 

 These approaches and strategies can be applied with any species. Herein, I used greater 

sage-grouse as a model system. Persistence of sage grouse on the western landscape is a major 

conservation priority spanning eleven states and one international boundary, and involving many 

stakeholders including state and federal land and wildlife management agencies (U.S. Fish and 

Wildlife Service 2010, U.S. Fish and Wildlife Service 2015). In order to manage sage grouse 

effectively, these stakeholders seek science relevant to their conservation efforts. Given the scale 

of the conservation efforts, prioritizing conservation actions across the species’ range to 

maximize efficacy and efficiency of limited resources is a primary objective. My research 

advances the field of conservation prioritization from multiple angles: through an evaluation of 

population substructure, an evaluation of individual dispersal across vast landscapes, and an 

evaluation of a range-wide genetic network that simultaneously quantifies substructure and gene 

flow. 

 

DISSERTATION FORMAT 

 Chapters 2 and 4 were formatted and published in accordance with the guidelines of two 

specific peer-reviewed scientific journals. Chapter 2 was published in Conservation Genetics 

(Cross et al. 2016), and Chapter 4 was published in The Condor: Ornithological Applications 

(Cross et al. 2017). Chapters 3 and 5 are formatted for Molecular Ecology Resources and 

Molecular Ecology, respectively. Each one of these chapters is the product of important 

contributions from many other scientists. It is for this reason that I refer to this collaborative 

effort by using the collective “we” throughout the remainder of the dissertation.  
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CHAPTER 2 

 

HIERARCHICAL POPULATION STRUCTURE IN GREATER SAGE-GROUSE 

PROVIDES INSIGHT INTO MANAGEMENT BOUNDARY DELINEATION 

 

ABSTRACT 
 Understanding population structure is important for guiding ongoing conservation and 

restoration efforts. The greater sage-grouse (Centrocercus urophasianus) is a species of concern 

distributed across 1.2 million km2 of western North America. We genotyped 1499 greater sage-

grouse from 297 leks across Montana, North Dakota, and South Dakota using a 15-locus 

microsatellite panel, then examined spatial autocorrelation, spatial principal components 

analysis, and hierarchical Bayesian clustering to identify population structure. Our results show 

isolation by distance, suggesting that the cumulative effect of short-range dispersal translates to 

long-range connectivity. We found primary and secondary hierarchical genetic substructure. 

These subpopulations occupy significantly different elevations and are surrounded by divergent 

vegetative communities with different dominant subspecies of sagebrush, each with its own 

chemical defense against herbivory. We propose five management groups reflective of genetic 

subpopulation structure. These genetic groups are largely synonymous with existing priority 

areas for conservation. On average, 85.8 % of individuals within each conservation priority area 

assign to a distinct subpopulation. Our results largely support existing management decisions 

regarding subpopulation boundaries. 

 

INTRODUCTION 
 The evolution of species and their ecological communities is influenced by the effect of 

historic physiogeographic features (Carrol et al. 2007; Lomolino et al. 2006; Wiens 2007). 

Across northwestern North America, the advance and recession of glaciers, formation of 

mountains, and carving of river valleys have all sculpted modern landscapes into ecologically 

distinctive areas composed of distinct assemblages of soils, vegetation, and wildlife (Carstens et 

al. 2005; Shafer et al. 2010; Soltis et al. 1997). Many of these landscapes are being rapidly 

altered by anthropogenic forces (Ricketts 1999), which may affect genetic connectivity within 

and among wildlife populations (Short Bull et al. 2011). Big sagebrush (Artemisia tridentata) 

likely colonized and diversified in North America from Eurasia via Beringia during the late 

Tertiary or early Quaternary (McArthur and Plummer 1978; Stanton et al. 2002). 

 Big sagebrush is a topographic climax dominant species that provides soil stability and 

ground cover and functions as critical habitat for at least 350 species of birds, reptiles, and 

mammals (Allen et al. 1984; Green et al. 2001; Green and Flinders 1960; Monsen and Shaw 

2000; Wambolt 1996). However, the geographic extent of sagebrush and the plant and animal 

communities it supports has been drastically reduced and fragmented by anthropogenic 

disturbances including cultivation, energy development, invasive species, wildfire, and exurban 

development (Braun 1998; Braun et al. 2002; Copeland et al. 2009; Knick et al. 2003; Murphy et 

al. 2013; Naugle et al. 2004, 2006, 2011). The combined effect of sagebrush fragmentation and 

loss poses a major threat to the greater sage-grouse (Centrocercus urophasianus) a sentinel 

species for sagebrush ecosystem integrity (Smits and Fernie 2013). 

 Greater sage-grouse, henceforth sage grouse, is a species of conservation concern, an icon of 

sage-steppe ecotypes, an umbrella species for shrub-grassland communities (Rowland et al. 

2006), and an indicator species for landscape scale connectivity (Aldridge et al. 2008). Sage 
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grouse are sagebrush obligates—relying on sagebrush for every aspect of their life history: food 

(Thacker et al. 2012; Doherty et al. 2008; Wallestad and Eng 1975), nesting (Holloran and 

Anderson 2005), brood rearing (Hagen et al. 2007), and spring breeding congregations known as 

leks (Connelly et al. 2000; Wallestad and Schladweiler 1974). Males battle with one another to 

claim the center of the lek and energetically display to potential mates. Females appear to select 

their mate based on phenotypic traits (Gibson et al. 1991); this mate selection process can occur 

many times with multiple mates during a single breeding season (Semple et al. 2001). Most 

females nest within 5 km of the lek (Holloran and Anderson 2005). Lek attendance by males is 

significantly correlated with female lek attendance (Bradbury et al. 1989) and despite long 

seasonal migratory movements (up to 240 km; Smith 2012) and large home ranges (4–195 km2; 

Connelly et al. 2011a, b), fidelity to leks and stability in lek location is well documented (Dalke 

et al. 1963; Dunn and Braun 1985; Emmons and Braun 1984; Patterson 1952; Wallestad and 

Schladweiler 1974). However, sage grouse may shift or abandon leks because of persistent 

disturbance or alteration of sagebrush cover (Holloran et al. 2010; Walker et al. 2007). 

 Sage grouse once occupied over 1.2 million km2 (Edminster 1954; Schroeder et al. 2004). 

The species now occupies less than 0.67 million km2 across 11 western states and two Canadian 

provinces (Patterson 1952; Schroeder et al. 2004)—56 % of its range compared to pre-western 

settlement (Schroeder et al. 2004). An additional 29 % of the remaining species’ range is likely 

at risk of extirpation (Aldridge et al. 2008). Increased geographic isolation and declines of sage 

grouse populations range-wide coincides with fragmentation and loss of sagebrush (Copeland et 

al. 2009; Schrag et al. 2011). Due to loss of habitat and subsequent population declines, the U.S. 

Fish and Wildlife Service was petitioned to consider listing the species under the Endangered 

Species Act in 2010. The species was found warranted for listing but precluded by higher 

priority actions (U.S. Fish and Wildlife Service 2010); however, as a condition of a court 

approved settlement agreement, a status review was required. In September 2015, the USFWS 

determined the species is not warranted for listing, due to the species’ relative abundance (which 

increased since 2010), widespread distribution, and reduced extinction threat (U.S. Fish and 

Wildlife Service 2015). 

 In light of the USFWS listing decisions, state and federal agencies have drafted 

comprehensive conservation planning strategies. Using the current large-scale understanding of 

population structure, expert opinion, and published research, management agencies in all western 

states have collaborated to draft management plans that identify and protect the areas deemed 

most important for sage grouse survival and reproduction (U.S. Fish and Wildlife Service 2013). 

As part of their planning strategy, the Western Association of Fish and Wildlife Agencies 

(WAFWA), whose membership is composed of twenty-three states, has delineated seven 

Management Zones (MZs; Stiver et al. 2006) by grouping sage grouse populations and 

subpopulations that occur within common floristic provinces identified by Connelly et al. (2004). 

In addition, Montana Fish, Wildlife & Parks (MTFWP), North Dakota Game and Fish (NDGF) 

and South Dakota Game, Fish & Parks (SDGFP) have collectively delineated 20 Priority Areas 

for Conservation (PACs) to protect the highest densities of sage grouse based on male lek 

attendance. 

 The goal of these PACs is to protect important lek complexes and to conserve associated 

habitat (Montana Fish, Wildlife & Parks 2014). On public lands, the BLM and USFS completed 

their largest planning effort in history to implement regulatory mechanisms that safeguard sage-

steppe habitats (U.S. Fish and Wildlife Service 2015). Since 2010, the NRCS-led Sage Grouse 

Initiative (SGI) has reduced fragmentation of large and intact sage-steppe habitats, increasing the 
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acquisition of conservation easements by 1809 %, totaling 361,984 acres (NRCS 2015b). 

Through 2018, SGI has committed another US$211 million to conserve an additional 3.5 million 

acres range-wide (NRCS 2015a). In Montana and the Dakotas, 870,000 acres of priority habitat 

will be conserved by acquiring additional conservation easements, prioritizing restoration of 

intervening croplands and by grazing livestock sustainably across the landscape (NRCS 2015a. 

In Montana, an executive order and US$10 million for conservation projects back the 

implementation of conservation actions within and among these PACs to benefit sage grouse and 

sage grouse habitat via the Greater Sage Grouse Stewardship Act (State of Montana 2014, 2015). 

The agencies involved have recognized the need for continued incorporation of the best available 

science in executing their conservation strategies such that their focus is not only directed at 

conservation management within individual PACs, but also at planning for connectivity among 

PACs to prevent isolation and divergence of existing populations in the future (Finch et al. 

2016). 

 Relatively little is known about sage grouse genetic variation, genetic population structure, 

and population connectivity at a high-resolution, regional scale relevant to state and regional 

federal managers. At the broad scale, mitochondrial DNA analysis yielded 80 haplotypes, 

distributed into two distinct monophyletic clades, both of which showed signals of allopatric 

fragmentation and gene flow restricted by distance (Oyler-McCance et al. 2005), also known as 

isolation by distance (IBD; Wright 1943). All of the populations across the northeastern range 

belonged to clade II, which is hypothesized to have expanded northward after the last glacial 

maximum (Zink 2014). The most comprehensive evaluation of population structure and genetic 

diversity examined range-wide genetic structure using samples from 46 locations. Nuclear 

marker analysis showed that geographic distance was the most significant factor shaping ten 

genetic subpopulations across the species’ range (Oyler-McCance et al. 2005). Three of the 

subpopulations occupy the northeastern portion of the species’ range (hereafter ‘‘the northeastern 

range’’)—two in Montana, and one in North Dakota and South Dakota (Oyler-McCance et al. 

2005). In a high-resolution, small-scale population structure analysis of northern Montana and 

southern Canada two subpopulations were discovered that were located north and south of the 

Milk River (Bush et al. 2011).  

 In this study, we had three objectives. Our primary objective was to quantify sage grouse 

genetic population structure and gene flow at a high resolution. Our secondary objective was to 

compare existing management group boundaries (MZs and PACs) to genetic population structure 

and characterize gene flow among management groups. Our final objective was to initiate 

exploration of the relationship between population structure and major landscape features 

(vegetation and elevation) across the northeastern range of the species. To address our objectives 

we used a combination of individual and population-based approaches. 

 

METHODS 

Study area and sampling 

 We used 3481 spatially referenced sage grouse feather and blood samples representative of 

the northeastern range of the species in the United States of America (154,800 km2 of sagebrush-

dominated ecosystems in Montana, North Dakota, and South Dakota; Fig. 2.1). Feather samples 

were collected from leks using non-invasive methods (Bush et al. 2005, Segelbacher 2002) 

where they were dropped or plucked by sage grouse during lekking activity, while blood samples 

were collected from sage grouse on leks as part of radio telemetry research efforts. Samples were 

collected from 351 leks (median: 9 samples per lek, interquartile range [IQR]: 8) between 2009 
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and 2012 by field biologists and technicians with the Bureau of Land Management, MTFWP, 

and the Montana Audubon Society. 

Laboratory analysis 

DNA Extraction 

 Feather DNA was extracted from the quill (calamus) using QIAGEN’s DNeasy Blood and 

Tissue Kit and the user developed protocol for purification of total DNA from nails, hair, or 

feathers. We modified the protocol by incubating samples for a minimum of 8 h after addition of 

Proteinase K and by eluting DNA with 100 µl of Buffer AE. Feather samples were extracted in a 

lab used only for non-invasive DNA extraction in order to avoid potential contamination from 

samples with higher DNA concentrations. Blood samples were extracted using QIAGEN’s 

DNeasy Blood and Tissue Kit and the protocol for nucleated blood. 

Microsatellite DNA amplification and electrophoresis 

 We amplified 15 variable microsatellite loci and one sex-diagnostic locus in eight multiplex 

polymerase chain reactions (PCR) (Table 2.4 in Supplementary Material). We initially used 16 

microsatellite loci; however, we removed TUD3 due to a significant heterozygote excess. Results 

were nearly identical with and without the inclusion of TUD3. The total PCR volume of 10 µl 

contained 2.0 µl of DNA template and 8 µl reagent mix. Locus specific reaction mixes, annealing 

temperatures, and thermal cycler profiles are listed in Tables 2.2 and 2.3 in the Supplementary 

Material. PCR mixes included 1 µM dye-labeled forward primer (IDT® Custom DNA Oligos), 1 

µM reverse primer (Eurofins MWG Operon Custom DNA Oligos), 1 U Taq polymerase 

(Invitrogen™), 1X reaction buffer (Invitrogen™), 200 µM of each dNTP, 2.0 mM MgCl2 

(Invitrogen™), and 1.5 mg/ml BSA. Each PCR included two samples of known genotype to 

allow for calibration of genotypes across gels, for identification of PCR-generated stutter, and for 

identification of sample contamination. 

 We loaded PCR product into a 6 % polyacrylamide gel in a Li-Cor Biosciences 4300 DNA 

Analyzer (Li-Cor Biosciences, Lincoln, Nebraska USA) and electrophoresed for 2 h 30 min at 

1500 V, with a current of 40 mA, and a power of 40 W. PCR products were visualized and 

genotypes were determined using Li-Cor Biosciences’ e-Seq software. 

Genotyping 

 To ensure correct genotypes from low quality and low quantity feather DNA samples, each 

sample was PCR amplified at least twice across the 15 variable microsatellite loci to screen for 

allele dropout, stutter artifacts, and false alleles. To minimize genotyping error, two independent 

observers scored each genotype. If there was any discrepancy between the first two genotypes or 

if samples failed to amplify in both replicates, samples were PCR amplified and genotyped an 

additional two times. If successful in this repeat analysis, genotypes were retained. If the repeat 

analysis failed, the sample was assigned a missing score for that locus. 

 To screen samples for quality control, we removed from analysis any individual for which 

amplification failed at five or more loci. After removal of poor quality samples, genotypes were 

screened to ensure consistency between allele length and length of the microsatellite repeat 

motif. We used program DROPOUT v2.3 (McKelvey and Schwartz 2005) and package 

ALLELEMATCH v2.5 (Galpern et al. 2012) in R (R Core Team 2016) to screen for genotyping 

error and to identify and remove multiple captures of the same individual from the same lek in 

the same year. We quantified the power of our microsatellite locus panel to discern individuals 

using probability identity (PID; Evett and Weir 1998): the probability that two individuals drawn 

at random from the population could have the same genotype across all loci. 

Population genetic descriptive statistics 
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 We calculated the average number of alleles across 15 loci (A), expected heterozygosity (He), 

and observed heterozygosity (Ho) in the R package GSTUDIO (Dyer 2014). We calculated FIS 

for each locus, and tested for deviation from Hardy–Weinberg proportions (HWP) and gametic 

disequilibrium among loci correcting for multiple tests for significance using Bonferroni 

corrected p-values using program GENEPOP v4.5.1 (Rousset 2008). Finally, we calculated 

allelic richness (AR; El Mousadik and Petit 1996) using program FSTAT v2.9.3.2 (Goudet 

1995). 

 Sampling scheme has been shown to have an effect on Bayesian clustering analyses in the 

presence of spatial autocorrelation (Schwartz and McKelvey 2009). Therefore, we tested for IBD 

using Mantel tests for correlation (Mantel 1967) between matrices of genetic distance (i.e., 

individual-based analysis of molecular variance [AMOVA; Excoffier et al. 1992] distance 

calculated in the R package GSTUDIO) and Euclidean geographic distance (calculated in the R 

package VEGAN; Oksanen et al. 2015) using the Pearson product-moment correlation 

coefficient (r). We calculated r for 80 even-distance classes and tested for significance of spatial 

autocorrelation using 999 permutations of the distance matrices with a Bonferoni corrected α of 

0.05 in the R package VEGAN. We visualized spatial autocorrelation between samples using a 

Mantel correlogram. Within the correlogram, each individual bin distance was determined using 

the Sturges equation (Sturges 1926) to optimize the number of data points in each bin. 

Individual-based analyses 
 We tested for spatial structure using individual-based spatial principal components analysis 

(sPCA) calculated in the R package ADEGENET (Jombart and Ahmed 2011). We also 

conducted a group-based principal component analysis (PCA) conducted in the R package 

GSTUDIO. The group-based PCA was calculated by computing the mean component scores for 

all individuals located within each PAC (n = 1116; individuals located outside of PACs were 

excluded from this analysis). To estimate the number of subpopulations within the study area, we 

used the Bayesian clustering program STRUCTURE v2.3.4 (Pritchard et al. 2000). 

STRUCTURE groups samples so that gametic disequilibrium and deviation from HWP are both 

minimized within each cluster (K). Therefore, it can be used to evaluate the most probable K 

from the pool of individual genotypes, and to summarize genetic admixture calculated as the 

percent assignment to each of the clusters (Q-values). We used STRUCTURE to analyze all 

individuals for values of K from one to seven. We used settings recommended by Falush et al. 

(2003) for detecting subtle population subdivision using the admixture model, correlated allele 

frequencies among populations, and with the allele frequency distribution parameter (λ) set to 1. 

We allowed STRUCTURE to infer the value of the model’s Dirichlet parameter (α), for the 

degree of admixture, from the data. We set the length of burn-in period before the start of data 

collection to 1,000,000, the number of MCMC repetitions after burn-in to 1,000,000, and used no 

prior. That is, we did not use user-defined population-of-origin for each individual, nor user-

defined sampling location for each individual. We completed ten replicate runs for each value of 

K. 

 To determine the most probable value of K, we used STRUCTURE HARVESTER v0.6.94 

(Earl and vonHoldt 2012) to plot the mean and standard deviation of the natural log of the 

probability of each value of K [Ln P(K)] and to plot ΔK, a second-order statistic formulated by 

Evanno et al. (2005). We selected the most probable K by examining the plots generated and 

selecting the value of K at which ΔK is greatest and/or at which the Ln P(K) plot asymptotes. The 

most probable number of K clusters was determined as one if the ΔK plot indicated a K of two 

but the Ln P(K) plot clearly exhibited the highest Ln P(K) at K = 1. Once we determined the most 
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probable value of K, we used program CLUMPP v 1.1.2 (Jakobsson and Rosenberg 2007) to 

average individual assignment to each of the K clusters across the ten STRUCTURE replicates 

for each value of K. In CLUMPP, we used 30,000 repeats of the greedy method with greedy 

option two and the pairwise matrix similarity statistic, G. 

 We examined hierarchical subpopulation structure following determination of the primary 

substructure. First, we split the pool of sample genotypes based on each individual’s maximum 

percent ancestry (Q-value). Next, we independently analyzed each of the primary hierarchical 

clusters for additional substructure using STRUCTURE and the same settings as above. We 

continued our hierarchical analysis in this way until we inferred that the most likely number of 

clusters was one (K = 1) for each sample pool analyzed (according to our interpretation of the Ln 

P(K) plot), as suggested by Coulon et al. (2008). Within each inferred primary and secondary 

cluster we calculated HWP and gametic disequilibrium among loci, A, AR, He, Ho, and FIS as 

described above. Among clusters, we calculated FST (Weir and Cockerham 1984) using program 

GENEPOP v4.5.1 (Rousset 2008), and constructed an FST-based dendrogram by first 

transforming the pairwise FST matrix to a maximum distance matrix (using the supremum norm) 

and then via the single linkage method (closely related to a minimal spanning tree) using the R 

package STATS (R Core Team 2016). 

 As an independent verification of subpopulation structure, we compared the results of 

STRUCTURE to those of program TESS v. 2.3 (Francois et al. 2006; e.g., Chen et al. 2007). 

TESS is another Bayesian analysis, which uses not only each sample’s genotype but also a prior 

informed by both global trend surfaces and spatial autocorrelation to determine the most 

probable number of population clusters. In TESS we completed 10 iterations for each value of K 

from two to ten, allowing admixture, using the conditional autoregressive (CAR) Gaussian 

model, the default program values for spatial interaction parameter (0.6) and degree of trend 

[Linear (1)], with 12,000 MCMC sweeps and a burn-in of 2,000 sweeps for each run. From the 

output of TESS, we selected K by calculating the change in mean Deviance Information 

Criterion (ΔDIC: averaged across all ten replicates for each value of K) between successive K 

values and selecting the value of K for which we calculated the greatest value of ΔDIC (largest 

decrease). After selecting the most probable value of K, we again used CLUMPP to average 

individual assignment to each of the K clusters across the 20 TESS replicates for the most 

probable value of K. Here we used the same CLUMPP parameter options as stated above. 

Comparison of population structure to priority areas for conservation and landscape 

characteristics 
 After we determined the most probable hierarchical population structure via the individual-

based analyses described above, we calculated the percent of each genetic subpopulation within 

each of the current sage grouse PACs recognized by the U.S. Fish and Wildlife Service (2013) 

and within management zones recognized by WAFWA (Stiver et al. 2006). We then compared 

genetic population structure to landscape characteristics to explore factors that may have 

influenced population structure, as follows. First, we buffered all sampled leks by 5 km, a 

management buffer suggested for the protection of nesting habitat (Connelly et al. 2000). Next, 

we calculated the percent area within the buffer covered by the three big sagebrush subspecies 

(basin big sagebrush: Artemisia tridentata tridentata, mountain big sagebrush: A. t. vaseyana, 

and Wyoming big sagebrush: A. t. wyomingensis) and associated vegetation, basing our 

calculations on a broad-scale remote-sensed vegetation map of the western USA (Comer et al. 

2002). Second, we used a digital elevation map (Gesch et al. 2002) to measure elevation—a 

proxy for abiotic factors such as temperature and precipitation–within each 5 km buffer. We 
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calculated the range and variability of elevation across all 5 km buffers in each subpopulation. 

Finally, we compared mean elevation across all 5 km buffers in each subpopulation using the 

Kruskal–Wallis rank sum test. 

 

RESULTS 

Genotyping 
 After removing inferior quality samples (those that did not genotype across at least 2/3 of all 

loci; n = 718) and all duplicate genotypes (the same individual sampled from the same lek in the 

same year; n = 1260) we retained 1499 of 3481 samples genotyped (43.1 %). The 1499 

genotypes from feathers (n = 1445) and bloods (n = 54) were from 324 leks (mean of 4.6 

samples per lek ± 3.69 [SD]): 1393 samples from 297 leks in Montana (mean = 4.69 samples per 

lek ± 3.75 [SD]), 15 samples from eight leks in North Dakota (mean = 1.88 samples per lek ± 

0.99 [SD]), 69 samples from 17 leks in South Dakota (mean = 4.06 samples per lek ± 2.98 [SD]), 

and 22 samples from three leks across the northern border of Wyoming (mean = 7.33 samples 

per lek ± = 2.08 [SD]). Samples sizes per lek in North Dakota are low; however, our sampling 

reflects the lek counts, where there was an average of 4.82 males per lek counted on an average 

of 14 leks during the time we collected samples (Robinson 2014). Using our 15-locus panel, P ID 

was 8.24 x 10-18, providing substantial power to discern individuals. We were able to determine 

sex for 1487 (99.2 %) of the final individual genotypes (Table 2.1). Each occurrence of an 

individual recaptured at more than one lek in the same year (n = 22), or in more than one year at 

the same (n = 18) or at different leks (n = 7) was retained for all analyses. 

Population genetic descriptive statistics 

 Before taking into account any population structure, 12 of the 15 loci showed a deficit of 

heterozygotes (Table 2.2), and 47 out of 120 pairwise locus comparisons showed gametic 

disequilibrium. Within the sample pool there were an average of 13.60 alleles per locus ranging 

from seven alleles at TUT3 to 32 alleles at MSP11 (Table 2.4 in Supplementary Material), with 

an expected heterozygosity of 0.752, and an FIS of 0.045 (Table 2.3a). 

Individual-based analyses 

 We found substantial genetic spatial structure using the PAC-based PCA. The sampled PACs 

sorted by geographic location from west to east as PC1 values increase and from north to south 

as PC2 values increase (Fig. 2.2). Together, the first (35.6 %) and second (17.2 %) principal 

components (PC) captured 52.8 % of the variance in the data. 

 The first eigenvector (Fig. 2.5a in Supplementary Material) and second eigenvector (Fig. 2.5b 

in Supplementary Material) of the sPCA show the major north–south and east–west genetic 

divergence patterns. We retained both the first and second eigenvectors, as they composed 5.1 

and 2.9 % of the variation in the data respectively. The eigenvalues of both the first and second 

eigenvector were highly spatially auto-correlated. When decomposed into genetic variance and 

spatial autocorrelation components (measured by Moran’s I), the first eigenvector was composed 

of 76.1% genetic variance and 26.6% spatial autocorrelation while the second eigenvector was 

composed of 60.4% genetic variance and 19.3% spatial autocorrelation (Fig. 2.6 in 

Supplementary Material). 

 We used the Bayesian clustering results—both the natural log of the probability of K [Ln 

P(K)] and ΔK statistic plots—to infer that the sample genotypes represented three spatially 

distinct population clusters (Fig. 2.7 in Supplementary Material): a subpopulation in 

southwestern Montana (SW), a subpopulation in northern Montana (N), and a subpopulation in 
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southeastern Montana, North Dakota, and South Dakota (SE). Genetic admixture was present 

among these subpopulations (Fig. 2.1b). 

 After assigning each individual to one of the three primary subpopulations by maximum Q-

value, we proceeded with STRUCTURE analysis of each subpopulation independently. We 

discovered secondary hierarchical population structure within both the SE and the SW 

subpopulations (Fig. 2.1c and d), but not within the N subpopulation (Fig. 2.4a and d in 

Supplementary Material). The SE group divided into secondary eastern (SE-E) and western (SE-

W) subpopulations (Figs. 4b, e and 5b all in Supplementary Material) while the SW 

subpopulation split into secondary northern (SW-N) and southern (SW-S) subpopulations (Figs. 

4c, f and 5c all in Supplementary Material). 

 We discovered no evidence for additional hierarchical substructure. The cumulative primary 

and secondary subpopulations in Fig. 2.1a depict each individual as a member of a subpopulation 

if its Q-value was at least 70% for that cluster. Despite the disparity in sample sex ratio (Table 

2.1), the STRUCTURE results for females and males analyzed independently were consistent 

with substructure identified with the full dataset (results not shown). 

 After grouping samples into primary hierarchical subpopulations based on maximum Q-

value, no loci were out of HWP in more than one subpopulation (Table 2.2). However, five loci 

were out of HWP in the southeastern subpopulation and one locus was out of HWP in the 

southwestern subpopulation. Only one locus pair was in significant gametic disequilibrium in 

more than one subpopulation (BG16/SGCA5 in the N and SE subpopulations; a = 4.167 x 10-4; p 

< 0.001). After grouping samples into the secondary hierarchical subpopulations, no loci were 

out of HWP in more than one subpopulation (Table 2.2, α = 3.333 x 10-3), and only one locus 

pair was significantly in gametic disequilibrium in more than one population (MS06.8/MSP11 in 

both the N and SW-S subpopulations). When grouping samples by PAC, no loci were found 

significantly out of HWP in more than one PAC (only BG16 in Carter, and SGCTAT1 in 

McCone-Garfield), and none of the locus pairs was in gametic disequilibrium in more than one 

PAC. 

 When both primary and secondary hierarchical substructure were considered, the average 

number of alleles per locus, per population ranged from 8.73 in the SW-N subpopulation to 

11.73 in the N subpopulation (mean = 10.39 ± 4.12 [SD]). Averages for He across all 

subpopulations were 0.747 ± 0.16 [SD] (Table 2.3a). The average number of alleles per locus, 

per PAC ranged from 5.27 in the North Dakota (ND) PAC to 10.07 in the South Phillips (SP) 

PAC (mean = 8.31 ± 3.17 [SD]). Within PACs, average He was 0.723 ± 0.17 [SD] (Table 2.3b). 

 We found a significant positive correlation between increasing geographic distance between 

individuals and increasing genetic divergence (Mantel test: r = 0.271, p = 0.001; Fig. 2.10 in 

Supplementary Material). Genotypes were significantly positively correlated for samples up to 

242.6 km apart and significantly negatively correlated for samples over 311.9 km apart. 

 Divergence among geographically proximal subpopulations and PACs, as measured by FST, 

was low compared to those that were distal (Fig. 2.3a, b; raw values in Table 2.7a, b in 

Supplementary Material, respectively). The dendrogram revealed divergence relationships 

among the subpopulations detected using Bayesian clustering analyses. The greatest divergence 

was found between the two most distal subpopulations, the SE-E and SW-N subpopulations (FST 

= 0.0777), while the least divergence was found between the two most proximal subpopulations, 

the SE-E and SE-W subpopulations (FST = 0.0174). Mean FST among all genetic subpopulations 

discovered using STRUCTURE was 0.0473 ± 0.0243 [SD]. Mean FST among all PACs was 

0.0380 ± 0.0216 [SD]. The dendrogram of the PACs (Fig. 2.3b) highlights that while the 
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Beaverhead 1 and Beaverhead 2 PACs are less diverged (FST = 0.004) than are the Beaverhead 2 

and Beaverhead 3 PACs (FST = 0.005), it is the greater divergence between Beaverhead 1 and 

Beaverhead 3 (FST = 0.009) that drives Beaverhead 2 and Beaverhead 3 to cluster more closely. 

 Finally, we found strong concordance between the resulting individual assignment of TESS 

and that of the primary substructure analysis in STRUCTURE (Fig. 2.11 in Supplementary 

Material). In TESS, three clusters (K = 3) showed the largest drop in DIC between successive 

values of K = 2–3 (ΔDIC = 2748.2). 

Comparison of population structure to priority areas for conservation and landscape 

characteristics 

Management zones and priority areas for conservation (PACs) 

 The N and SE-E subpopulations are located almost entirely within WAFWA MZ-I (99.4 and 

99.7 %, respectively; Fig. 2.12 in Supplementary Material). Similarly, the SW-N subpopulation 

is entirely contained and the SW-S subpopulation is nearly entirely contained within MZ-IV 

(96.1 %). The SE-W subpopulation spans MZ-I (74.7 %), II (21.1 %) and IV (4.2 %). 

 On average, 85.8 % of the individuals within each PAC belong to the same subpopulation 

(Fig. 2.4). Six PACs encompass a majority of the N subpopulation (mean = 80.6 %), five PACs 

envelop a majority of the SE-E subpopulation (mean = 88.7 %), two PACs envelop a majority of 

the SE-W subpopulation (mean = 87.7 %), one PAC encompasses a majority of the SW-N 

subpopulation, and two PACs envelop a majority of the SW-S subpopulation (mean = 92.0 %). 

Vegetation 

 Within 5 km of leks in the N subpopulation, grasses dominated the landscape (53 %) and 

Wyoming big sagebrush (19 %; Table 2.5; Fig. 2.13 in Supplementary Material) was the 

dominant sagebrush subspecies. Within 5 km of leks in the SE-E subpopulation, grasses 

dominated the landscape (61 %) and Wyoming big sagebrush (10 %) was the dominant 

sagebrush subspecies. The 5 km buffer of the SE-W subpopulation leks contained mixed xeric 

shrubland (39 %) and grasses (31 %) with Wyoming big sagebrush (15 %) and mountain big 

sagebrush (2 %) as the dominant structural elements. In the SW-N subpopulation, mountain big 

sagebrush was dominant within the 5 km buffer of leks (63 %) and was interspersed with basin 

big sagebrush (24 %). Finally, within 5 km of the leks in the SW-S subpopulation, mountain big 

sagebrush (77 %) and Wyoming big sagebrush (15 %) were the most prevalent subspecies of 

sagebrush with a minority cover of grasses (4 %). 

Elevation 

 Mean elevation within 5 km of leks in each subpopulation was significantly different among 

subpopulations (Kruskal–Wallis rank sum test, H = 642.77, 4 d.f., p < 0.001), and there was little 

to no overlap in elevations occupied (Fig. 2.14 in Supplementary Material). Most notably, the 

southwestern subpopulations occupy far higher elevations than do the other three subpopulations. 

Elevation increased from N to SE-E to SE-W to SW-N to SW-S subpopulations (IQR: 781–998, 

910–1022, 1007–1258, 1858–2003, 2043–2202 m). The subpopulations spanned an elevation 

range of 671–2411 meters. 

 

DISCUSSION 

 We detected discontinuities in sage grouse genetic connectivity across the northeastern range 

of the species. These discontinuities indicate divergence in allele frequencies between three 

primary subpopulations, and secondary hierarchical subpopulations within two of the primary 

subpopulations (Fig. 2.4). The greater divergence among the primary subpopulations compared 
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to divergence among the secondary subpopulations may be indicative of the chronology in which 

these subpopulations diverged. 

 We detected the pattern of population structure using both spatially independent (PCA: Fig. 

2.2, and STRUCTURE: Fig. 2.1a) and spatially dependent (sPCA: Fig. 2.5 in Supplementary 

Material, and TESS: Fig. 2.11 in Supplementary Material) analyses. Concordance between the 

non-spatial and spatial analyses supports the patterns of genetic subpopulation structure detected, 

as does the concordance between the two Bayesian clustering methods (STRUCTURE and 

TESS) and the two ordination methods (PCA and sPCA). Using the hierarchical approach to 

analyze genetic structure, we detected genetic substructure within the SE and SW subpopulations 

that otherwise would have remained cryptic. If we had not independently analyzed the primary 

substructure subpopulations, we would not have found the substructure resulting from low 

divergence among secondary subpopulations. This oversight may occur if divergence among 

primary subpopulations is far greater than divergence among secondary subpopulations (Latch et 

al. 2006). 

 The primary population structure we detected (i.e., three subpopulations across the 

northeastern range: N, SE, SW) supports results of Oyler-McCance et al. (2005). However, our 

sampling intensity allowed us to define spatial subpopulation structure with greater resolution. 

Furthermore, we detected additional substructure within two of these primary subpopulations: 

both in the southwestern Montana subpopulation (SW) and in the southeastern Montana/ North 

Dakota/South Dakota subpopulation (SE). 

 Within the southeastern portion of our study area, our results align with those of Schulwitz et 

al. (2014) who discovered hierarchical structure within sage grouse populations in northwestern 

Wyoming and southeastern Montana. They found that their Southeastern Montana, South 

Powder River Basin, and North Powder River Basin sampling locations constituted a single 

subpopulation (that which we have called the SE-E subpopulation). Furthermore, their results 

indicate that there is genetic discontinuity between this subpopulation and subpopulations 

throughout the rest of Wyoming. The magnitude of genetic divergence among the 

subpopulations identified in both studies were similar (see Table 2.7b in Supplementary Material 

and Table 2 in Schulwitz et al. 2014). 

 We did not find the same subpopulation substructure that Bush et al. (2011) found within the 

N subpopulation via their analysis of thirteen microsatellite loci. Our results may differ due to 

our lack of samples from sage grouse in Alberta and Saskatchewan. Alternatively, there may 

have been a change in substructure between the years during which Bush et al. sampled and the 

years during which we sampled. 

 Similar to prior studies, we detected a signal of IBD. Prior research has suggested IBD as one 

of the primary drivers of genetic divergence for sage grouse (Bush et al. 2011; Davis et al. 2015; 

Oyler-McCance et al. 2005; Schulwitz et al. 2014). We found IBD, which suggests that despite 

the relatively short dispersal distances documented (7–9 km; Dunn and Braun 1985), the 

cumulative effect of these dispersals translates into long-range connectivity. 

Physiogeographic correlates with genetic subpopulations 

 We found evidence for the effect of pre-European physiogeographic landscape processes on 

contemporary subpopulation structure. First, elevations occupied by the subpopulations are 

significantly different (Fig. 2.14 in Supplementary Material). The two southeastern 

populations—most notably the SE-W subpopulation—occupy elevations more similar to the two 

southwestern subpopulations, which may facilitate gene flow among these subpopulations if 

individuals are locally adapted to habitats at this elevation. The smaller divergence among these 
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subpopulations (FST = 0.0508) compared to the divergence of the N and southwestern 

subpopulations (FST = 0.0590) may be due to gene flow among the southwestern and 

southeastern clusters through subpopulations located in Idaho and Wyoming which are outside 

the geographic extent of this study. Future research could examine whether genetic connectivity 

through subpopulations in Idaho and Wyoming fosters gene flow among the southeastern and 

southwestern subpopulations. 

 Second, there are stark differences in the vegetative community assemblage concomitant 

with subpopulations. Most notable are the differences in dominant subspecies of sagebrush, a 

plant vital to the species’ requirements for food, cover, and nest success (Connelly et al. 2011a, 

b). We found that the two southwestern subpopulations occur on a landscape dominated by 

mountain big sagebrush, a subspecies that grows on high-elevation mountain slopes (Jaeger et al. 

2016). These two subpopulations are also surrounded by basin big sagebrush, a subspecies that 

grows in deep-soil drainage basins (Jaeger et al. 2016). Basin big sagebrush does not occur 

within proximity of leks in any other subpopulation and mountain big sagebrush only composes 

2 % of the vegetation proximal to leks in the SE-W subpopulations. The SW-N subpopulation 

has far more basin big sagebrush proximal to leks (24 %) than does the SW-S subpopulation (3 

%) which occupies significantly higher elevation. 

 The three sagebrush subspecies within our study area differ in terpene composition and 

quantity. Terpenes are chemical compounds found in plants that function as anti-herbivory 

agents (Byrd et al. 1999; Thacker et al. 2012; Jaeger et al. 2016). Differences in terpenes among 

sagebrush subspecies could be an important factor in diet selection (Frye et al. 2013). Sage 

grouse prefer the palatability of mountain big, to Wyoming big, over basin big sagebrush 

(Rosentreter 2004), and diet selection appears linked to both lower monoterpene content and 

higher crude protein content within the preferred sub-species (Remington and Braun 1985). 

 Given the stark differences in both elevation and in prevalent sagebrush subspecies among 

subpopulations, it is possible that these physiogeographic factors have affected both 

subpopulation divergence and adaptive divergence. For example, it is possible that adaptations to 

terpene metabolism have arisen within subpopulations, allowing for improved digestion of the 

most prevalent sagebrush subspecies. Similar to our findings, Schulwitz et al. (2014) found that 

sage grouse subpopulations across northwest Wyoming occupied distinct ecoregions, composed 

of distinct assemblages of species and shaped by different environmental processes. 

Major river-highway corridors 

 In the Rocky Mountain west, the landscape is composed of basin and range topography. 

Major highways are routed along large river valleys across this landscape. The combination of 

direct and indirect effects of these river-highway corridors and associated landscape alteration 

may have shaped sage grouse genetic population structure. The vast majority (95.9 %) of the N 

subpopulation is north of the Interstate 90/Interstate 94/Yellowstone and Bighorn River corridor, 

while 89 % individuals in the southern subpopulations (SE-E, SE-W, SW-N, and SW-S) existed 

south of the corridor (individually, 69.4 % of the southeastern subpopulation and 100 % of the 

southwestern subpopulation). 

 We found the greatest admixture within individuals on leks closest to these major river-

highway corridors. That is, there was a significant negative correlation between distance from 

major highways that co-occur with major rivers and percent admixture (r(1499) = -0.164, p < 

0.001, 95 %CI -0.212 – -0.115). This indicates that gene flow is occurring across these corridors 

but that these areas appear to be where subpopulations interface. However, it is difficult to 
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discern whether the effects of transportation or that of the natural landscape features within the 

corridors influence genetic structure. 

 Major river-highway corridors may have increased genetic divergence among 

subpopulations. Divergence among the N and SE-E/SE-W subpopulations (Figs. 2 and 5a in 

Supplementary Material) may have been influenced by impeded gene flow across the 

Yellowstone River and Interstate 94 corridor. Much of this area has been converted to 

cultivation, lek attendance has declined, and lek extirpation has been observed. The effect of 

highways on genetic connectivity and genetic diversity are detailed across multiple taxa 

(Holderegger and Di Giulio 2010; Jackson and Fahrig 2011; Proctor et al. 2005), especially that 

of wider highways with high traffic volume such as the Interstate 90/Interstate 94 corridor. 

Highways surrounded by cultivated land are a documented barrier to sage grouse gene flow 

(Bush et al. 2011). Distance to highways can lead to nest failure (Webb et al. 2012) and can 

decrease peak male sage grouse lek attendance by over 70 % (Blickley et al. 2012). Furthermore, 

road noise has been linked to the reduction of breeding bird densities in multiple avian species 

(Parris and Schneider 2009; Slabbekoorn and Ripmeester 2008). 

Management and conservation implications 

 The five subpopulations we detected span the boundaries of the MZs recognized by 

WAFWA. The main discrepancy we found between genetic population structure and the 

boundaries of these MZs is that the SE-W population overlaps the boundaries of the three 

northeastern MZs: MZ-I, MZ-II and MZ-IV (Fig. 2.12 in Supplementary Material). Depending 

on the goal of managing populations, it may be useful to use genetic structure in addition to 

common floristic provinces to set boundaries of MZs. 

 MTFWP, NDGFD, and SDGFP delineated management areas, called PACs, to protect areas 

with the greatest abundance of birds (U.S. Fish and Wildlife Service 2013). Our results provide 

insight into how these units can be functionally managed at multiple scales that reflect genetic 

connectivity. Existing PACs align very well with genetic population structure, allowing 

relatively simple assembly into management groups (Fig. 2.1a). These management groups could 

serve as the conservation units used when setting conservation goals, modifying policy, targeting 

conservation resources, evaluating connectivity, translocation, and regulation of harvest. For 

example, translocations may wish to use sage grouse from within a genetically identified 

subpopulation. We suggest grouping PACs into five management groups based on genetic 

structure: a Northern management group composed of the Fergus, McCone-Garfield, 

Musselshell, North Rosebud, North Valley, and South Phillips PACs; a Southeastern-East 

management group composed of the Carter, Cedar Creek, PRB, North Dakota and South Dakota 

PACs; a Southeastern-West management group composed of the Carbon 3 and Golden Valley 

PACs; a Southwestern-North management group composed of solely the Beaverhead 3 PAC; and 

a Southwestern-South management group composed of the Beaverhead 1 and Beaverhead 2 

PACs (Fig. 2.4). 

 Each PAC encompasses a group of individuals almost entirely from a single subpopulation, 

with the exception of the North Rosebud PAC (Fig. 2.4). North Rosebud is the most diverse PAC 

by population membership, being composed mostly of individuals in the N subpopulation and 

nearly equal parts SE-E and SE-W (Fig. 2.4). When measuring divergence among PACs, values 

of F ST were smaller than when measuring divergence among genetic subpopulations. This is 

likely the result of mixed genetic subpopulation membership when pooling individuals by PAC. 

 In the PAC-based dendrogram (Fig. 2.3b), the Golden Valley PAC, located in the 

Southeastern-West management group, aligns more closely with PACs in the Northern 
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management group (Fergus, McCone-Garfield, Musselshell, North Rosebud, North Valley, and 

South Phillips) than it does with the PACs in the Southeastern-East management group (Carter, 

Cedar Creek, PRB, North Dakota, and South Dakota). We might expect Golden Valley to align 

most closely with the PACs within the southeastern primary subpopulation. However, the 

unexpected dendrogram alignment is likely due to grouping individuals from within each PAC, 

which for Golden Valley means 30 % of the individuals in the pack assign to the N 

subpopulation. Despite these few caveats, state-delineated PACs align very well with genetic 

subpopulation structure. 

Future research directions 

 We sampled genetic data from sage grouse subpopulations located across multiple 

landscapes with different physiogeographic histories. These subpopulations exist at different 

elevations, surrounded by different assemblages of vegetation, and persist in spite of novel 

landscape disturbances. Maintaining connectivity and minimizing habitat fragmentation within 

and among these subpopulations is critical to the persistence of the species. A thorough analysis 

of which landscape features and disturbances have the greatest effect on genetic connectivity 

would lead to a better understanding of which areas on the landscape are essential to maintaining 

connectivity. These areas could be the targets for management action. Therefore, we suggest that 

future research should focus on discerning whether anthropogenic landscape alteration or natural 

features have had the greatest influence on genetic structure. 

 The coincidence of breaks in genetic continuity and underlying physiogeography suggests 

that it is possible that adaptive differences have arisen within subpopulations. These adaptive 

differences could in turn restrict contemporary gene flow among subpopulations. Therefore, 

quantification of adaptive variation across not only the northeastern portion, but also the entire 

range could lend a much better understanding of the species’ phylogeography. A comparison of 

our analysis of subpopulation structure, an understanding of adaptive variation, and an analysis 

of fine-scale connectivity among leks within and among subpopulations—using network theory 

or a similar approach—would provide a powerful set of tools to assist managers as they set 

management objectives to preserve genetic diversity across multiple scales (Manel et al. 2010). 
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Table 2.1. Sample representation by sex across the 4 years of collection (2009–2012) 

 

Sex 2009 2010 2011 2012 Total 

Females 34 86 147 22 289 

Males 533 176 119 370 1198 

Unknown 5 7 0 0 12 

Total 572 269 266 392 1499 
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Table 2.2. Per-locus tests for deviation from Hardy–Weinberg proportions. Results for subpopulations for both primary and secondary 

hierarchical substructure are shown. Primary and secondary subpopulations are abbreviated as follows: N (northern), SE 

(southeastern), SW (southwestern), SE-E (southeastern-east), SE-W (southeastern-west), SW-N (southwestern-north), SW-S 

(southwestern-south). Indicative adjusted nominal level (5 %) for multiple comparisons was 0.0033; all loci that significantly deviated 

from expected proportions are bold and marked with an asterisk 

 

 Locus All   Primary Subpopulations   Secondary Subpopulations 

   N SE SW  N SE-E SE-W SW-N SW-S 

BG6 0.000*  0.310 0.006 0.043  0.306 0.140 0.064 0.063 0.379 

BG16 0.000*  0.015 0.000* 0.224  0.017 0.311 0.000* 0.729 0.357 

BG18 0.007  0.032 0.047 0.903  0.031 0.449 0.169 0.724 0.924 

MS06.4 0.002*  0.509 0.068 0.072  0.496 0.108 0.115 0.024 0.272 

MS06.6 0.000*  0.045 0.138 0.003*  0.037 0.036 0.819 0.684 0.000* 

MS06.8 0.0247  0.511 0.218 0.045  0.515 0.297 0.594 0.034 0.785 

MSP11 0.000*  0.386 0.209 0.308  0.364 0.309 0.463 0.162 0.489 

MSP18 0.002*  0.024 0.000* 0.468  0.026 0.001* 0.335 0.765 0.448 

SGCA5 0.002*  0.138 0.003* 0.074  0.135 0.251 0.016 0.589 0.090 

SGCA11 0.000*  0.116 0.671 0.048  0.111 0.791 0.526 0.188 0.063 

SGCTAT1 0.000*  0.006 0.000* 0.122  0.005 0.068 0.001* 0.695 0.192 

TTD6 0.000*  0.049 0.015 0.485  0.052 0.006 0.572 0.877 0.258 

TTT3 0.000*  0.279 0.215 0.008  0.282 0.833 0.010 0.012 0.318 

TUT3 0.014  0.263 0.207 0.418  0.260 0.537 0.169 0.524 0.782 

TUT4 0.002*  0.133 0.003* 0.760  0.136 0.007 0.013 0.368 0.974 
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Table 2.3. Measures of genetic diversity across 16 microsatellite loci within each of the 

subpopulations detected using STRUCTURE for both primary and secondary hierarchical 

substructure (a) and within each of the greater sage-grouse PACs (b) 

 

a        

Hierarchical 

Substructure 
Subpopulation (abbreviation) n A AR Ho He FIS 

All Samples  1499 13.60 13.51 0.718 0.752 0.045 

Primary 

Northern (N) 767 11.73 10.26 0.711 0.727 0.023 

Southeastern (SE) 579 11.93 10.63 0.713 0.737 0.033 

Southwestern (SW) 153 10.53 10.51 0.774 0.788 0.021 

Secondary 

Northern (N) 767 11.73 9.14 0.711 0.727 0.023 

Southeastern-east (SE-E) 323 10.33 8.72 0.710 0.722 0.019 

Southeastern-west (SE-W) 256 10.87 9.08 0.718 0.739 0.031 

Southwestern-north (SW-N) 62 8.73 8.70 0.747 0.754 0.017 

Southwestern-south (SW-S) 91 10.27 9.91 0.792 0.793 0.008 

 

b        

PAC Abbreviation n A AR Ho He FIS 

Beaverhead 1 B1 19 7.47 6.36 0.813 0.766 -0.035 

Beaverhead 2 B2 69 10.00 6.87 0.806 0.787 -0.017 

Beaverhead 3 B3 53 8.93 6.51 0.746 0.765 0.035 

Carbon 3 C3 37 7.80 6.06 0.751 0.735 -0.008 

Carter C 112 9.80 6.07 0.716 0.727 0.020 

Cedar Creek CC 39 7.20 5.59 0.716 0.709 0.003 

Fergus F 208 9.67 5.74 0.706 0.707 0.007 

Golden Valley GV 120 8.87 5.81 0.730 0.727 -0.000 

McCone-Garfield MG 39 7.60 5.69 0.704 0.702 0.010 

Musselshell M 62 8.53 5.70 0.715 0.713 0.007 

North Dakota ND 11 5.27 5.17 0.665 0.660 0.040 

North Rosebud NR 44 8.73 5.98 0.701 0.709 0.023 

North Valley NV 49 8.20 5.76 0.722 0.713 -0.001 

Powder River Basin PRB 25 6.86 5.65 0.677 0.707 0.060 

South Dakota SD 59 7.93 5.54 0.690 0.691 0.010 

South Phillips SP 196 10.07 6.00 0.732 0.733 0.003 

n sample size, A average number of alleles across 15 loci, AR allelic richness, He expected 

heterozygosity, FIS = 1-(Ho/He)—a measure of departure from HWP within 

groups/subpopulations (positive values indicate a deficit of heterozygotes, negative values 

indicate an excess of heterozygotes)  
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Figure 2.1. Primary and Secondary genetic population structure for greater sage-grouse sampled 

in Montana, North Dakota and South Dakota as determined using STRUCTURE. Points show 

>70 % membership of individuals to each of the primary K = 3 clusters [N (northern): red, SE 

(southeastern): blue/yellow, and SW (southwestern): orange/purple], and the primary/secondary 

K = 5 clusters [N (northern): red, SE-E (southeastern-east): blue, SE-W (southeastern-west): 

yellow, SW-N (southwestern-north): purple, SW-S (southwestern-south): orange, and 

unassigned: white]. Individuals with <70 % assignment to any subpopulation are unassigned. 

Individuals and PACs (colored polygons) are colored by suggested management group 

membership in accordance with genetic subpopulations. PACs, listed from west to east by 

centroid: B3 (Beaverhead 3), B1 (Beaverhead 1), B2 (Beaverhead 2), GV (Golden Valley), C3 

(Carbon 3), F (Fergus), M (Musselshell), SP (South Phillips), NR (North Rosebud), NV (North 

Valley), PRB (Powder River Basin 1, 2 and 3), MG (McCone-Garfield), C (Carter), CC (Cedar 

Creek), ND (North Dakota), SD (South Dakota). Also shown are state lines (dashed grey lines). 

Admixture plots are shown for the primary K = 3 clusters b and the secondary K = 2 clusters 

discovered within both the southeastern c and southwestern d primary subpopulations. 

Admixture plot subpopulation abbreviations are as listed above, and colors correspond to map 

(a) 
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Figure 2.2. Microsatellite-genotype-based PCA plot of the mean PC score for all individuals 

within each of the 16 PACs. PAC abbreviations listed alphabetically: Beaverhead 1 (B1), 

Beaverhead 2 (B2), Beaverhead 3 (B3), Carter (C), Carbon 3 (C3), Cedar Creek (CC), Fergus 

(F), Golden Valley (GV), Musselshell (M), McCone-Garfield (MG), North Dakota (ND), North 

Rosebud (NR), North Valley (NV), Powder River Basin (1, 2 and 3) (PRB), South Dakota (SD), 

South Phillips (SP) 

 

 
  



 

 26 

Figure 2.3. Genetic divergence among the five greater sage-grouse subpopulations detected 

using STRUCTURE (subpopulation abbreviations provided in caption to Fig. 2.1) (a), and 

among the 16 PACs sampled (PAC abbreviations provided in caption to Fig. 2.2) (b). 

Divergence is measured in pairwise comparisons using Wright’s FST (Wright 1949). Greater 

divergence—higher FST —is shown as darker shades of grey. Subpopulation abbreviations listed 

alphabetically: N (northern), SE-E (southeastern-east), SE-W (southeastern-west), SW-N 

(southwestern-north), SW-S (southwestern-south). PAC abbreviations listed alphabetically: B1 

(Beaverhead 1), B2 (Beaverhead 2), B3 (Beaverhead 3), C (Carter), C3 (Carbon 3), CC (Cedar 

Creek), F (Fergus), GV (Golden Valley), M (Musselshell), MG (McCone-Garfield), ND (North 

Dakota), NR (North Rosebud), NV (North Valley), PRB (Powder River Basin 1, 2 and 3), SD 

(South Dakota), SP (South Phillips) 
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Figure 2.4. Subpopulation composition within 16 PACs sorted by majority assignment 

percentage. PACs listed in order of display: NV (North Valley), SP (South Phillips), F (Fergus), 

MG (McCone-Garfield), M (Musselshell), NR (North Rosebud), SD (South Dakota), CC (Cedar 

Creek), C (Carter), ND (North Dakota), PRB (Powder River Basin 1, 2 and 3), C3 (Carbon 3), 

GV (Golden Valley), B3 (Beaverhead 3), B1 (Beaverhead 1), B2 (Beaverhead 2) 
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SUPPLEMENTARY MATERIAL 
Table 2.4. Forward and reverse primer sequences. Asterisks indicate primers that required a redesign to increase efficacy with non-

invasive samples. Repeat motif, size range, number of alleles, probability identity—PID, probability identity sibling—PIDsib, and the 

source for the primer sequence are shown for the 16 variable microsatellite loci and 1 diagnostic sex locus (1237). After finding a 

heterozygote excess at TUD3 (italicized) across both primary and secondary hierarchical substructure, we dropped the locus and 

repeated all analyses 

 

Locus F Primer Sequence (5'–3') R Primer Sequence (5'–3') Repeat 
Size 

Range 

# 

Alleles 
PID PIDsib Source 

1237 GAGAAACTGTGCAAAACAG TAAAGCTGATCTGGAATTTCA* Bi-Allelic 224 / 252 2 — — 3 

BG6 AAAGAGGCAAGCACTCACAATG CCCTTGGAATATCCTTTAACAAAAC (GATA)15 199–311 18 0.02 0.30 5 

BG16 GTCATTAGTGCTGTCTGTCTATCT TGCTAGGTAGGGTAAAAATGG (CTAT)15 125–177 11 0.07 0.37 5 

BG18 CCATAACTTAACTTGCACTTTC CTGATACAAAGATGCCTACAA (CTAT)17 135–171 10 0.65 0.82 5 

MS06.4 CCTGGAGCAACTTGAGG GTGACATTICCCCCCAC (GATA)2(GGTA)6(GATA) 130–178 11 0.06 0.36 4 

MS06.6 CAAACAACTGTCTTCCAGTAAGAC AGAGCCTICATTTCTGGCAG (CAT)16 125–185 20 0.03 0.33 4 

MS06.8 GCAAAATCAATAGAAGTAGAGAGG CAGTAGCAGCTTTGTTTGG (GATA)17 107–159 13 0.04 0.33 4 

MSP11 GGTGAAAAGTGTGGCAACTG* CATTGTCAGCTTGCAGAC (CA)22 206–272 32 0.02 0.31 4 

MSP18 CAATGACAGTATTTCCCAGATTA GAATGGTAATATACTAAGCACAGG (CA)14 98–120 12 0.03 0.33 4 

SGCA5 CGGACAGGTACATCCTGGAA* GGGAAAAGATGTCAGAATCTACAAA* (CA)12 120–140 11 0.06 0.36 7 

SGCA11 GCAGTAAAGAAAATTTGGAAGCA* TCTTGAACTGATGTTGGATTTG* (AC)14(AG)2(CA)5 181–203 11 0.08 0.38 7 

SGCTAT1 GCGACACTGCTCCCACCT GAAAGGTTGTAAGAGGTCGT (CTAT)11 93–133 11 0.06 0.36 7 

TTD6 GGACTGCTTGTGATACTTGCT CATGCAGATGACTTTCAGCA (CA)17 115–151 15 0.05 0.35 1 

TTT3 TAGCAAACGAACCAGCCAAC* GCTCTGAATCTGCCCATCTCT (CATC)n 196–228 11 0.13 0.44 2 

TUD3 TCCAAGGGGAAAATATGTGTG TTCTTCCAGCCCTAGCTTTG (TG)12 154–222 26 0.01 0.29 6 

TUT3 CAGGAGGCCTCAACTAATCACC CGATGCTGGACAGAAGTGAC (TATC)11 140–168 7 0.16 0.46 6 

TUT4 GGAGCATCTCCCAGAGTCAG* TCAGCTGTGAACCAGCAATC* (TATC)8 163–199 8 0.04 0.34 6 

1Caizergues et al. 2001, 2Caizergues et al. 2003, 3Kahn et al. 1998, 4Oyler-McCance and St. John 2010, 5Piertney and Höglund 2001, 
6Segelbacher et al. 2000, 7Taylor et al. 2003  
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Table 2.5. Microsatellite locus multiplexes, primer annealing temperatures, and reagent mixes used in polymerase chain reactions 

(PCR). Values in columns 3 through 12 are measured in µl. Columns F1–F3 indicate the amount of forward primer added to the 

reaction, as columns R1-R3 indicate the amount of reverse primer added to the reactions. All Reactions use: 1µM IDT® Custom DNA 

Oligos Forward Primer, 10µM Eurofins MWG Operon Custom DNA Oligos Reverse Primer, Invitrogen™ 5 U/µL AmpliTaq® Gold 

DNA Taq Polymerase, Invitrogen™ GeneAmp 10x PCR Buffer II (100 mM Tris-HCl, 1.5 mL pH 8.3, 500mM KCI), New England 

Biolabs® Inc. Deoxynucleotide Set (25 µmol 100mM ultrapure dATP, dCTP, dGTP, dTTP)—dNTP; Invitrogen™ 25mM MgCl2, 

Bovine Serum Albumen (~66kDA, used to stabilize enzymes during digestion of DNA—to prevent adhesion of the enzyme to 

reaction tubes, to inactivate contaminating nucleases and proteases, to stabilize nucleic acid modifying enzymes, as a blocking agent 

to minimize background, and to increase PCR yield from low purity templates), and nuclease-free water. TUD3 is in italics, as we 

dropped this locus and repeated all analyses after finding a heterozygote excess at this locus for subpopulations in both the primary 

and secondary population substructure 

 

 

Primer Multiplex 

Annealing 

Temperature 

(°C) 

F1 F2 F3 R1 R2 R3 Taq 
10x 

Buffer 
dNTP MgCl2 BSA H2O 

1237 / BG18 / MSP18 54 0.10 0.10 — 0.20 0.20 — 0.26 1.00 1.00 0.80 0.10 4.24 

BG16 / MS06.8 / MSP11 52 0.10 0.07 0.10 0.20 0.20 0.20 0.26 1.00 1.00 0.80 0.10 3.97 

BG6 / MS06.4 / SGCA5 54 0.10 0.20 0.07 0.20 0.20 0.20 0.26 1.00 1.00 1.20 0.10 3.47 

MS06.6/ TUT4 53 0.10 0.10 — 0.20 0.20 — 0.26 1.00 1.00 0.80 0.10 4.24 

SGCA11 / SGCTAT1 60 0.10 0.10 — 0.20 0.20 — 0.26* 1.00 1.00 0.80 0.10 4.50 

TTD6 / TUT3 56 0.13 0.20 — 0.20 0.20 — 0.26 1.00 1.00 1.20 0.10 3.71 

TTT3 / TUD3 55 0.20 0.10 — 0.20 0.20 — 0.26 1.00 1.00 0.80 0.10 4.14 

 

Table 2.6. Phase, temperature, time, and number of cycles used to amplify microsatellite loci using a PCR thermocycler. Specific loci 

multiplexes and primer annealing temperatures are listed in Table 2 in supplementary material 

 

Phase Temperature (°C) Time (min) Cycles 

Initial Denaturation 94 11:00 1 

Denaturation 94 1:00 

44 Primer Annealing see Table 2 1:00 

Extension 72 1:00 

Holding 12 ∞ 1 
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Table 2.7. Genetic divergence among greater sage-grouse subpopulations detected using STRUCTURE—abbreviated as: northern 

(N), southeastern (SE), southwestern (SW), southeastern-east (SE-E), southeastern-west (SE-W), southwestern-north (SW-N), 

southwestern-south (SW-S) (a), and among the 16 priority areas for conservation (PACs)—abbreviated as: B1 (Beaverhead 1), B2 

(Beaverhead 2), B3 (Beaverhead 3), C (Carter), C3 (Carbon 3), CC (Cedar Creek), F (Fergus), GV (Golden Valley), M (Musselshell), 

MG (McCone-Garfield), ND (North Dakota), NR (North Rosebud), NV (North Valley), PRB [Powder River Basin (1, 2 and 3)], SD 

(South Dakota), SP (South Phillips) (b). Divergence is measured in pairwise comparisons using Wright’s FST (Wright 1951) 

calculated across 15 microsatellite loci 

 

Hierarchical 

Substructure 
Subpopulation Comparison FST 

Primary 

N SE 0.0174 

N SW 0.0615 

SE SW 0.0547 

Secondary 

N SE-E 0.0227 

N SE-W 0.0205 

N SW-N 0.0735 

N SW-S 0.0618 

SE-E SE-W 0.0174 

SE-E SW-N 0.0777 

SE-E SW-S 0.0603 

SE-W SW-N 0.0645 

SE-W SW-S 0.0547 

SW-N SW-S 0.0196 

(a) 
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PAC B1 B2 B3 C3 C CC F GV MG M ND NR NV PRB SD 

B1 0.000               

B2 0.018 0.000              

B3 0.027 0.011 0.000             

C3 0.052 0.059 0.044 0.000            

C 0.069 0.069 0.066 0.040 0.000           

CC 0.059 0.055 0.052 0.028 0.016 0.000          

F 0.079 0.066 0.064 0.033 0.023 0.022 0.000         

GV 0.077 0.074 0.058 0.022 0.030 0.032 0.025 0.000        

MG 0.072 0.063 0.051 0.034 0.026 0.034 0.025 0.025 0.000       

M 0.070 0.061 0.048 0.021 0.025 0.022 0.017 0.015 0.018 0.000      

ND 0.071 0.071 0.064 0.055 0.024 0.019 0.054 0.064 0.041 0.048 0.000     

NR 0.058 0.052 0.045 0.012 0.013 0.010 0.005 0.017 0.018 0.008 0.037 0.000    

NV 0.082 0.072 0.074 0.041 0.026 0.025 0.018 0.040 0.032 0.026 0.064 0.013 0.000   

PRB 0.074 0.074 0.076 0.048 0.011 0.028 0.031 0.049 0.035 0.047 0.035 0.023 0.035 0.000  

SD 0.074 0.061 0.059 0.035 0.005 0.008 0.021 0.032 0.026 0.017 0.022 0.010 0.018 0.022 0.000 

SP 0.061 0.057 0.049 0.020 0.021 0.018 0.007 0.023 0.019 0.013 0.048 0.002 0.013 0.028 0.017 

(b)  
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Table 2.8. Percent vegetative land cover for 14 classes of land cover within each of the five subpopulations identified. Subpopulations 

are abbreviated as northern (N), southeastern (SE), southwestern (SW), southeastern-east (SE-E), southeastern-west (SE-W), 

southwestern-north (SW-N), southwestern-south (SW-S) 

 

Vegetative Land cover N SE-E SE-W SW-N SW-S 

Agriculture 0.02 0.00 0.00 0.02 0.00 

Aspen 0.00 0.00 0.00 0.02 0.00 

Badlands 0.07 0.14 0.12 0.00 0.00 

Basin big sagebrush 0.00 0.00 0.00 0.24 0.03 

Grasses 0.53 0.61 0.31 0.03 0.04 

Forest 0.00 0.01 0.00 0.00 0.00 

Juniper 0.00 0.02 0.00 0.00 0.00 

Mesic shrubs 0.00 0.00 0.00 0.00 0.00 

Mixed xeric shrubland 0.18 0.05 0.39 0.02 0.00 

Mountain big sagebrush 0.00 0.00 0.02 0.63 0.77 

Riparian 0.00 0.02 0.00 0.00 0.00 

Salt desert scrub 0.00 0.03 0.01 0.00 0.00 

Wyoming big sagebrush 0.19 0.10 0.15 0.05 0.15 

Unknown 0.02 0.01 0.00 0.00 0.00 
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Figure 2.5. Spatial PCA of all sampled individuals' PC1 scores (a) and PC2 scores (b), which 

capture 74.2% and 61.2% of the genetic variation in the data and each of which are spatially 

autocorrelated (0.22 and 0.20 as measured by Moran’s I), respectively. Each square represents an 

individual genotyped. The shading and size of the squares indicate the principal component score 

for each sample. The shading of the points indicates principal component scores increasing from 

negative (white) to positive (black). The size of the square increases with greater magnitude PC 

scores 

 
(a) 

 
(b)  
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Figure 2.6. Plot of eigenvalues decomposed into their two components: variance and spatial 

autocorrelation (measured by Moran’s I). The vertical dashed line indicates the maximum 

attainable variance by a linear combination of alleles. The range of variation of Moran’s I is 

indicated by the horizontal dashed lines. The first two global structures (associated with 

eigenvalues 1 and 2) ae the largest in terms of variance and of spatial autocorrelation 
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Figure 2.7. L(K) (a) and ∆K (b) plot for primary hierarchical substructure analysis plotted using 

STRUCTURE HARVESTER (Earl and vonHoldt 2012). For each value of K, 20 independent 

STRUCTURE runs were performed. In plot (a), the mean estimated Ln probability of each value 

of K is plotted with the standard deviation (SD) of the 20 runs shown with the error bars. Plot (b) 

shows the resulting graph from using the Evanno method (Evanno et al. 2005) to calculate the 

change in the likelihood between values of K between successive values of K. Using both the Ln 

P(K) and Evanno (∆K) methods, K = 3 was selected as the most likely number of subpopulations 

 
(a) 

 
(b)  
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Figure 2.8. Secondary hierarchical STRUCTURE analysis likelihood plots (a–c) and ∆K plots 

(d–f) of K clusters within each of the primary K = 3 groups: northern (a, d), southeastern (b, e), 

and southwestern (c, f). For each value of K, 20 independent STRUCTURE runs were 

performed. The mean estimated Ln probability of each value of K is plotted with the standard 

deviation (SD) of the 20 runs shown with the error bars. The most likely subpopulation structure 

was determined to be K = 1 within the northern subpopulation, K = 2 within the southeastern 

subpopulation, and K = 2 within the southwestern subpopulation. Evanno method (Evanno et al. 

2005) plots were created using STRUCTURE HARVESTER (Earl and vonHoldt 2012) to 

calculate the change in the likelihood of each value of K between successive values of K 

 
(a)       (d) 

 
(b)       (e) 

 
(c)       (f)  
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Figure 2.9. Genetic population substructure maps and genetic admixture plots of Q-values for 

the primary K = 2 (a), K = 4 (b), K = 5 (c) and for the secondary K = 2 within the southwestern 

[SW-N (southwestern-north): purple, SW-S (southwestern-south): orange] (d) and southeastern 

[SE-E (southeastern-east): blue, SE-W (southeastern-west): yellow] (e) hierarchical substructure 

for greater sage-grouse sampled in Montana, North Dakota and South Dakota as determined 

using STRUCTURE. Individuals with <70 % membership (measured by Q-value) to any 

subpopulation are unassigned (open circles). Also shown are state lines (dashed grey lines). 

Individual genetic admixture plots (of Q-values) are shown where subpopulation abbreviations 

are as listed above, and colors correspond to map 

 

 

 
(a)  
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(b)   
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(c)  
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(d)  
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(e)  
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Figure 2.10. Mantel correlogram of spatial autocorrelation among greater sage-grouse 

microsatellite genotypes across the study area. Each point indicates a 9.9 km distance bin. The 

dashed line marks the point at which no positive or negative correlation is present in the data. 

Black squares indicate distance classes at which the spatial autocorrelation, as measured by the 

Mantel test for significant correlation (r), is statistically significant (p < 0.05, Bonferroni 

corrected, 999 permutations); white squares indicate non-significance. Size of square indicates 

the number of pairwise distances compared for each distance class 
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Figure 2.11. Genetic structure for greater sage-grouse sampled in Montana, North Dakota, and 

South Dakota as determined using TESS, which incorporates both the microsatellite genotype 

and spatial coordinates of each sample. Points show majority membership of individuals to each 

of the K = 3 clusters (determined to be the most likely value of K) according to majority TESS 

admixture value 
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Figure 2.12. Percent location of subpopulations within the currently recognized USFWS 

management zones 
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Figure 2.13. Percent vegetative land cover within each of the five subpopulations 
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Figure 2.14. Elevation ranges occupied by leks within each of the five subpopulations. Mean 

elevation in meters is displayed above the x-axis for each subpopulation and is depicted with a + 

on the plot. Box width is proportional to the square root of the number of samples within each 

group 
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CHAPTER 3 

 

IS HIERARCHICAL GENETIC SUBSTRUCTURE ANALYSIS VALID? 

 

ABSTRACT 
 Bayesian clustering has been used extensively by researchers seeking to identify genetic 

population substructure and is often used to delineate conservation units. It has become 

commonplace to use Bayesian clustering in a hierarchical fashion. That is, after identifying 

primary genetic subpopulations in a first round of analysis, each subpopulation is independently 

analyzed to test for secondary substructure. Whether hierarchical analysis accurately reveals 

population substructure is unclear; it is unknown whether secondary substructure identified 

within each primary subpopulation is a product of the population’s evolutionary history or 

whether these signals may arise as an artifact of analysis. Here we simulated multiple scenarios 

of population divergence and used the known evolutionary histories to test whether hierarchical 

Bayesian clustering is valid for identifying genetic substructure within populations that would 

otherwise go undetected during the analysis of the primary substructure alone. Under our 

simulated conditions, we show that the hierarchical method to analysis does not reveal any 

additional substructure that cannot be detected using the mean LnP(K) statistic. We found that 

while the ΔK statistic will sometimes reveal the more deeply rooted substructure, the ΔK statistic 

can also be misleading, indicating spurious groupings. We also discovered that at lesser 

divergence among subpopulations or with greater substructure complexity, misassignment of 

individuals to clusters is common. We conclude that the hierarchical approach to population 

substructure is misleading, and we provide some guidelines for how to interpret STRUCTURE 

results from analysis of genetic data from natural populations. 

 

INTRODUCTION 

 Determination of population genetic substructure is essential to understanding the natural 

processes that drive genetic divergence and is increasingly relied upon to inform wildlife and 

natural resource management decisions. Neutral, multi-locus genetic data is commonly used to 

quantify the substructure present within a population and to delineate management units. One of 

the most common approaches to evaluate genetic substructure (implemented in program 

STRUCTURE) uses algorithms to cluster multi-locus genotypic data such that gametic 

disequilibrium and deviation from Hardy-Weinberg proportions is minimized within clusters 

(Pritchard et al. 2000; Hubisz et al. 2009). While this approach can be used to test a priori 

hypotheses about population substructure, it is most commonly used as an exploratory tool to 

identify population substructure lacking clear a priori expectations. Lacking a priori 

expectations, STRUCTURE is used to group a genotypic sample into 1, 2,...,n groups (K); where 

the K with the greatest likelihood is assumed to indicate the most appropriate grouping (Pritchard 

et al. 2000). The most common practice is to use STRUCTURE to analyze a dataset multiple 

times for each value of K, then to calculate and identify the maximum mean log-likelihood of the 

data given K [equation 12 in Pritchard et al. 2000; henceforth: mean LnP(K)]. This method also 

allows the user to visualize the “uncertainty” of an estimate of K in the form of the standard 

deviation around the mean log-likelihood. 

 However, using mean log-likelihood scores to pick an appropriate K has proven difficult, 

leading to a variety of alternate ad-hoc approaches. Perhaps the most common ad-hoc approach 

is to use the rate of change in log-likelihood between successive K values (henceforth: ∆K), 
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where K is selected as the value with the maximum ∆K value (Evanno et al. 2005). Evanno et al. 

(2005) found that using the ∆K statistic allowed for precise identification of the uppermost or 

primary substructure in a hierarchical island model (Wright 1931). Once K is identified, 

individuals are assigned to a subpopulation based on the percentage of their genotype attributed 

to each of the identified subpopulations (i.e., percent admixture, known as Q-value). 

 Following the derivation of the ∆K statistic and discovery that it can reveal the primary 

substructure, it became common practice in peer-reviewed literature to perform hierarchical 

substructure analysis. This approach entails using STRUCTURE to probe datasets for additional, 

or secondary, population substructure within each of the primary subpopulations (Coulon et al. 

2008; Balkenhol et al. 2014; Vähä et al. 2008; Lukoschek et al. 2008; Cheng et al. 2014; 

Warnock et al. 2010; Cross et al. 2016; Viricel & Rosel 2014). The hierarchical approach, first 

implemented by Coulon et al. (2008), entails first analyzing the complete sample of genotypes to 

determine the most likely number of primary subpopulations [using ∆K and mean LnP(K)]. After 

the samples are subsequently partitioned into subpopulations, each subpopulation is 

independently analyzed using STRUCTURE, K is inferred, the sample divided, and the process 

repeated until the inferred number of subpopulations detected within each partition is only one as 

determined by mean LnP(K). This method seems to reveal subpopulation substructure that was 

not evident when initially analyzing the complete sample. 

 Despite extensive use in published literature, hierarchical substructure analysis has only seen 

limited cross-examination to determine how best to interpret the additional substructure 

identified when using the method (see Balkenhol et al. 2014). Questions remain, such as whether 

additional substructure discovered is the result of underlying evolutionary processes undetected 

in the primary analysis, or the result of inaccurate clustering of individuals to the primary 

subpopulations. 

 To test whether hierarchical substructure analysis is required to detect population 

substructure resulting from evolutionary processes that would be otherwise undetected, we 

simulated several different population subdivision and divergence scenarios using a model of 

Wright-Fisher ideal population. We used these evolutionary models to address one primary 

objectives and two secondary objectives. 

 In this study, our overarching goal was to answer the question: does the use of hierarchical 

substructure analysis detect population substructure that would otherwise go undetected when 

using a single analysis? Nested within this main objective were two objectives. Our first 

objective was to answer the question: is the sensitivity of the ΔK and mean LnP(K) statistics to 

correctly identifying population substructure influenced by the complexity of the evolutionary 

scenario (i.e., the number of subpopulations involved in analysis and whether the scenario 

involve a single or multiple branching events)? We define sensitivity as the magnitude of 

divergence among subpopulations (FST; Weir & Cockerham 1984) required to identify “true K.” 

We define true K as the number of known subpopulations in the simulation at each generation. 

Our second objective was to answer the question: is the accuracy with which individuals are 

assigned to their respective subpopulations influenced by the magnitude of divergence and the 

complexity of the evolutionary scenario? We hypothesized that accuracy of individual clustering 

would increase with an increase in divergence, and decrease with an increase in the complexity 

of the evolutionary scenario. 

 

SIMULATIONS 
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 To address our two questions, we constructed a simple simulation model composed of 

sexually reproducing, non-selfing individuals with non-overlapping generations, random mating, 

and single-step mutation. Within the resulting Wright-Fisher idealized populations, the rate of 

genetic change (and therefore the degree to which subpopulations diverged) was affected solely 

by population size (genetic drift), and the rate of mutation. We simulated five different 

evolutionary scenarios (Fig 3.1). Each simulation began with the same single founder population 

of 1000 diploid individuals, which was created in EASYPOP (Balloux 2001). These individuals 

were genotyped across 10 codominant neutral microsatellite loci, with free recombination 

between loci (i.e., unlinked loci; r = 0.5), and a mutation rate of 10-3 per generation (Ellegren 

2000). We used a single-step mutation model, with a maximum of 10 alleles per locus, and 

allowed our founder population to burn-in for 1000 generations in order to reach mutation-drift 

equilibrium. For each simulation, we performed three independent replicates. We wrote our 

simulation models for the program R version 3.2.2 (R Core Team 2016) and scripts are available 

upon request. 

Non-branching scenario simulations 

 We simulated three hierarchical evolutionary scenarios without a branching event to model 

two, three and four diverging subpopulations (A, B, and C in Fig 3.1). These three simulations 

started with the same founder population of 1000 individuals which was allowed to randomly 

mate for one generation, producing a population of 2000 (scenario A), 3000 (scenario B), and 

4000 (scenario C) progeny. We randomly divided the first-generation populations into 

subpopulations of 1000 (scenario A= 2 subpopulations, scenario B = 3 subpopulations, scenario 

C = 4 subpopulations). In generations following the primary split, we allowed populations to 

drift without gene flow among subpopulations. We calculated FST at each generation and allowed 

each replicate of the model to drift until FST reached 0.10 for all pairwise subpopulation 

comparisons. We selected this terminal FST as it well exceeded the amount of divergence at 

which STRUCTURE could correctly assign all individuals to their population of origin 

(discovered in preliminary analyses). We conducted all calculations of FST using the FSTAT 

function in R package GENELAND (Guillot & Santos 2009). 

Branching scenario simulations 

 We simulated two different branching evolutionary scenarios to model populations that have 

undergone more than a single subdivision in the past (D and E in Fig 3.1). These evolutionary 

simulations began with the same founder population of 1000 individuals as the non-branching 

simulations. This founder population was allowed to randomly mate for one generation, 

generating a population of 2000 progeny. The first-generation populations were each randomly 

divided into subpopulations of 1000 (two primary subpopulations). Following this splitting 

event, we simulated drift as we did for the aforementioned scenarios until FST among primary 

subpopulations reached 0.025. We chose this divergence threshold after preliminary non-

branching analyses showed accurate detection of true K and accurate clustering of individuals to 

the true subpopulation at this magnitude of divergence. In the generation following that in which 

the divergence threshold was met, we simulated a branching event by allowing one 1000 

member primary subpopulation to generate 2000 progeny (via random mating with mutation) 

which we then randomly divided into two independent 1000 individual secondary 

subpopulations. Meanwhile, the remaining non-branching subpopulations were allowed to drift 

for that generation. This process resulted in three secondary subpopulations for scenario D, and 

four secondary subpopulations for scenario E. In subsequent generations, each subpopulation of 
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1000 individuals was allowed to drift without gene flow among subpopulations until FST reached 

0.10 for all pairwise subpopulation comparisons (Fig 3.1). 

 

METHODS 

Analysis of population substructure 

 We sampled 100 individuals from each population, every 10 generations from 1 to 151 

generations from each of the 3 replicates within each of the 5 evolutionary scenario simulations. 

For each sample, we used the Bayesian clustering program STRUCTURE (Pritchard et al. 2000) 

to test for genetic population substructure. We tested for K clusters from one to seven. We ran 

three replicates of STRUCTURE for each value of K. We used internal program settings that 

followed those of Falush et al. (2003), and which are recommended for detecting subtle 

population substructure. Specifically, analyses were run using the default settings under the 

admixture model with correlated allele frequencies among populations, the allele frequency 

distribution parameter (λ) set to 1, where STRUCTURE is allowed to infer the value of the 

model’s admixture parameter (α) from the data. We set the length of burn-in period before the 

start of data collection to 10,000, the number of MCMC repetitions after burn-in to 10,000, and 

used no prior (no use user-defined population-of-origin, nor user-defined sampling location for 

each individual). 

Error rate in identification of true K 

 We wished to quantify the proportion of times structure identified the true K, defined as the 

number of subpopulations modeled in the simulation at a given generation. For each sample, we 

identified K using the maximum value of the mean LnP(K) statistic (Pritchard et al. 2000) and 

the maximum value of the ∆K statistic (Evanno et al. 2005). To calculate these statistics across 

three STRUCTURE replicates, we used STRUCTURE HARVESTER (Earl & vonHoldt 2012) 

and compared the results to the divergence measured among samples. 

Accuracy in individual clustering 

 We evaluated if the magnitude of divergence and the complexity of the evolutionary scenario 

influenced the assignment of individuals to populations. We first identified the most supported 

value of K by finding the maximum mean LnP(K) from K=1-7 in STRUCTURE. We 

subsequently used program CLUMPP v 1.1.2 (Jakobsson and Rosenberg 2007) to average Q-

values for each individual across the three STRUCTURE replicates for each sample. In 

CLUMPP, we used 30,000 repeats of the “greedy method” with greedy option two and the 

pairwise matrix similarity statistic, G. We calculated the cluster to which the maximum 

proportion of each individual’s genome was assigned based on maximum Q-value. 

 We calculated the proportion of individuals correctly assigned for each of the three scenario 

replicates. Within each of the non-branching scenarios (A–C), true K did not change through the 

generations. For the branching scenarios (D and E), true K changed when primary 

subpopulations underwent the branching event after reaching the divergence threshold of FST = 

0.025 (i.e., splitting to form secondary subpopulations). 

Hierarchical analysis 

 For all samples where maximum mean LnP(K) indicated a K of greater than one, we 

conducted hierarchical substructure analysis. We divided individuals into a subset of K 

respective groups, assigning each individual to a group based on its maximum Q-value. For each 

subset, we used STRUCTURE to analyze for additional substructure, used STRUCTURE 

HARVESTER to summarize across STRUCTURE replicates, and used CLUMPP to average Q-
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values all as detailed above. We continued this process until maximum mean LnP(K) indicated a 

K of one. 

 

RESULTS 

Sensitivity to identification of true K 

 We found a relationship between the magnitude of divergence among subpopulations and the 

sensitivity of STRUCTURE to correctly identifying true K as measured by maximum mean 

LnP(K) (Fig. 3.1). In all three non-branching scenarios (A, B and C), maximum mean LnP(K) 

first correctly detected subpopulation structure when FST measured from 0.023 to 0.026. In non-

branching scenarios, maximum ΔK often indicated spurious values of K when divergence among 

subpopulations was low (e.g., FST < 0.03). In non-branching scenarios, the maximum ΔK 

statistic ranged from 2–6, including all values in between, but never equaling one (as this is 

impossible). We did not find a relationship between scenario complexity and identification of 

true K. 

 In all branching scenarios, maximum mean LnP(K) revealed both primary and secondary 

branching structure once FST within the branches crossed a comparable threshold to that 

observed in the non-branching scenario A. Across all scenario D replicates, maximum mean 

LnP(K) first indicated three subpopulations at a mean FST of 0.014 among subpopulations. 

Within scenario D, we measured FST within the branch from the point of the secondary split in 

the simulation (indicated by the horizontal dashed line in Fig. 3.1). Across all scenario E 

replicates, maximum mean LnP(K) first indicated four subpopulations at a mean FST of 0.017 

among subpopulations. Within scenario E, we calculated mean FST from both within-branch 

measures (see previous note). For branching scenarios (D and E), ΔK most often identified K 

corresponding to the primary subpopulation structure (Fig. 3.1D and E). In branching scenarios, 

when maximum mean LnP(K) did not indicate the true K, it usually indicated a value of K where 

the resulting clusters were composed of individuals sampled from two of the three (D) or two of 

the four total populations (E). 

Accuracy of individual clustering 
 Correct clustering of sampled individuals to their population of origin increased with 

increasing FST across all scenarios (Fig. 3.2). While complexity of the scenario did not affect 

detection of true K using either statistic, it did affect the percent correct clustering of individuals 

with their true population. Greater divergence is required for correct clustering of individuals as 

complexity increases from A to B to C, and within branches for D and E. For example, mean 

correct clustering of individuals to their population of origin was 94.0% for scenario A, 88.1% 

for B, 84.3% for C, 84.2% after secondary split for D, and 86.7% after the branching event for E. 

The percent correct clustering of individuals was lower at any given value of within-branch (two 

subpopulations) FST when compared to percent correct clustering of individuals in scenario A 

(two subpopulations). 

Hierarchical analysis 
 Following the first round of analysis of STRUCTURE for all repetitions of all scenarios, use 

of CLUMPP to average Q-values, division of individuals into subsets based on maximum mean 

LnP(K) for all scenarios where maximum mean LnP(K) was greater than one, and a second 

round of STRUCTURE analysis and summary in HARVESTER, we found that maximum mean 

LnP(K) always indicated a K of one within subsets. Therefore, there was no evidence for further 

(hierarchical) population substructure within subsets. 
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DISCUSSION 

Hierarchical analysis 

 We find no evidence for the necessity of hierarchical substructure analysis. We found that the 

maximum mean value for the LnP(K) statistic indicated the true number of clusters in all 

branching scenarios once the magnitude of divergence among subpopulations within the 

branches was equivalent to the magnitude of divergence at which substructure was revealed in 

non-branching scenarios. 

 We believe that the practice of hierarchical analysis arose from the shift to using the ΔK 

statistic to determine substructure. The maximum value of the ΔK statistic was not intended to 

indicate the value of K that would reveal all substructure, but only the secondary substructure, 

and was originally tested on a model of five-island model populations each composed of five 

island model subpopulations (Evanno et al. 2005). We confirmed that maximum ΔK sometimes 

identifies the deepest-rooted population structure when true K is 2 or greater, and propose that if 

used in concert with maximum mean LnP(K), one can gain insight into the evolutionary history 

of populations. Selecting maximum ΔK can reveal deeply rooted substructure. Selecting 

maximum mean LnP(K) most often reveals all substructure. 

 We also found evidence that the use of hierarchical analysis can be misleading, both because 

maximum ΔK alone can never indicate a K of one (Coulon et al. 2008), and because this metric 

spuriously identifies values of K when true K is equal to one. We found that maximum mean 

LnP(K) more consistently identifies true K than does ΔK. In non-branching scenarios, maximum 

ΔK also tended to veer away from identifying true K more often than did maximum mean 

LnP(K). Only when maximum ΔK differs from, and is less than maximum mean LnP(K), does it 

reveal the more deeply rooted structure. When the maximum value of ΔK indicated a greater 

value of K than did the value of maximum mean LnP(K), the ΔK resultant clusters were 

composed of individuals from multiple different subpopulations. 

 Given our findings, we believe it is imperative to provide both ΔK and LnP(K) plots and 

figures for the both the reviewer’s and reader’s comparison. For example, in our review of Cross 

et al. (2016), we found that if we selected a K of four rather than three (as indicated by maximum 

ΔK) within the primary hierarchical substructure, we would have revealed one of their secondary 

splits. Divergence among the three primary subpopulations was greater than that within the 

secondary subpopulations, which agrees with our finding that maximum ΔK identifies more 

deeply rooted substructure and that there is value in comparing ΔK and LnP(K). 

Sensitivity to identification of true K and accuracy of individual clustering 
 We found that with two, three, and four subpopulations STRUCTURE reliably correctly 

identified the true number of subpopulations at an FST of 0.023 and 0.026. Similarly, Latch et al. 

(2006) found that a threshold FST of 0.030 was required for STRUCTURE to identify the true 

number of subpopulations with five non-hierarchical subpopulations. 

 Counter to our expectations, the number of subpopulations involved in a scenario did not 

seem to affect the sensitivity of LnP(K) nor the ∆K statistics to detecting true population 

substructure. However, scenario complexity and divergence of subpopulations did affect the 

accuracy of individual clustering (i.e., whether sampled individuals clustered with other 

individuals sampled from the same source population). STRUCTURE had greater accuracy 

clustering individuals with their sample of origin in scenarios of reduced complexity and at 

greater divergence. As expected, these results confirmed the findings of Latch et al. (2006) that 

the average number of individuals assigned to the correct subpopulation increased as FST 

increased. 
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Recommendations: inference of true K within natural populations 

 We see several potential issues applying hierarchical analysis to natural populations. The first 

issue is that of poor individual assignment during the initial grouping. This can happen when one 

selects a poorly supported value of K, individual admixture is high, or when the underlying 

evolution scenario is complex (as we saw here). In these cases, it is possible to have mixed sub-

groups from the primary round of STRUCTURE, which might then separate into spurious 

subpopulations during the secondary analysis. In natural populations, individuals could be 

incorrectly assigned to a subpopulation at the first determination of population substructure, 

which could result in the appearance of hierarchical substructure upon independent analysis of 

the primary subpopulations. However, in these situations, the uncertainty of assignment will 

likely be show in the standard deviation around estimates of the mean LnP(K) and in the lack of 

clear bins when viewing admixture plots of Q-values. Therefore, it is important to review 

possible values of K using both ΔK and LnP(K), and then to review individual admixture plots of 

Q-values and spatial plots of admixture to examine the biological plausibility of substructure. 

Our results indicate that if population subdivision among clusters identified using STRUCTURE 

measured at an FST of less than 0.01, these resultant clusters may be spurious. However, with 

more loci, or when natural processes such as migration are involved, these “thresholds” may 

vary. Still we advise caution. 

 The second issue is the existence of latent gradients or clines within the subpopulation that 

are too weak to produce separate groups in the initial clustering. We did not simulate genetic 

gradients/clines but anticipate that clines will further complicate correct identification of true K. 

Prior research has shown that gradients or clines in natural populations may be the source of 

spurious hierarchical population structure (e.g., Schwartz and McKelvey 2009). 

 The third and final issue is that identification of hierarchical structure in other studies may 

have resulted as an artefact of sampling such that some organisms might group together 

erroneously (e.g., Tucker et al. 2014; for a thorough review, see Schwartz and McKelvey 2009). 

We sampled the same number of individuals, randomly, from each population and individuals 

were in a Wright-Fisher ideal population and with no spatial distribution. Therefore, we do not 

see an instance where sampling could have factored into our analysis. However, in natural 

populations, where one does not have a census of the population, sampling effects could lead to 

the appearance of branching substructure. 

Conclusions 

 When using STRUCTURE to analyze natural populations, true K could be greater than the 

greatest value of K tested in STRUCTURE. This will result in missing the true primary 

population substructure, as the mean LnP(K) plot will not asymptote. Additionally, because the 

∆K statistic is a second order analysis, it cannot indicate that K is equal to one even if that is the 

biological “truth” (Coulon et al. 2008), and we found that ∆K statistic may only recover the 

uppermost substructure (also suggested by Waples and Gaggiotti 2006). Finally, selecting K 

clusters based on a combination of maximum ∆K, maximum mean LnP(K), and an interpretation 

of the biological plausibility of the spatial pattern of individuals in the K clusters inherently 

introduces interpretational bias. This bias is based on one’s perception of the drivers of 

population divergence, or based on a visually discernable spatial pattern at the scale and 

resolution of the study. For these reasons, Hubisz et al. (2009) have incorporated the ability to 

set a Bayesian prior within STRUCTURE by using sample coordinates. However, using the 

“LOCPRIOR” setting may bias the analysis of the true genetic signal. For example, when the 
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location prior is used, the F1 of a long distance disperser might show suppressed admixture do to 

its spatial proximity to the multi-generational resident individuals with which it is grouped. 

 Using STRUCTURE with an awareness of the potential for the analytical or interpretational 

errors above, we encourage researchers to use maximum mean LnP(K) to determine the most 

likely contemporary population substructure. We urge researchers to only interpret maximum ΔK 

in light of the fact that it may indicate the most deeply rooted substructure (only when it differs 

from and is less than the maximum mean LnP(K)). In other words, we recommend comparing 

maximum mean LnP(K) to ΔK. ΔK will identify deep-rooted substructure and maximum mean 

LnP(K) can identify more recent substructure (FST = 0.025). Hierarchical analysis as first 

proposed by Coulon et al (2008), and widely used since, can be misleading when detecting 

population substructure. 
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Figure 3.1. Scenarios of evolutionary history used to evaluate the validity of the hierarchical 

analysis method in STRUCTURE. Scenarios are depicted as cladograms where generations, 

indicated by t, increase from t0 (panmictic founder population of 100 individuals) to the most 

divergent branches of the scenario (1000 individuals per subpopulation). All scenarios start at 

generation t = 1. The dotted line indicates the generation at which the hierarchical branching 

event occurs, where FST among subpopulations in the previous generation had reached 0.025. For 

scenarios D and E, the primary substructure is above the dotted line, and the secondary 

substructure is below the dotted line. All scenarios drifted until all pairwise subpopulations reach 

a divergence of FST ≥ 0.10 
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Figure 3.2. Effect of divergence (FST) among populations on the maximum value of both the 

mean LnP(K) and ΔK statistics for scenarios (A–E) in the primary round of hierarchical analysis. 

Filled black circles indicate maximum mean LnP(K) and open triangles indicate maximum ΔK 

for one sample. For scenarios D and E, results are shown for analyses after the hierarchical split 

(before the split, results were similar to scenario A). For scenario (A) true K = 2, (B) true K = 3, 

(C) true K = 4, (D) true K = 3, (E) true K = 4, where true K is defined as the number of 

subpopulations modeled in the simulation at a given generation. The dotted line indicates the 

mean value of FST at which the maximum mean LnP(K) statistic correctly identifies true K (the 

number of simulated subpopulations). 

 

 
(A) 
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Figure 3.3. Effect of divergence (FST) among populations on the percent correct assignment 

[using maximum mean LnP(K)] of sampled simulated individuals to their true population of 

origin by STRUCTURE. For scenarios D and E, results are shown for analyses after the 

hierarchical split (before the split, results were similar to scenario A). For scenario (A) true K = 

2, (B) true K = 3, (C) true K = 3, (D) true K = 3, (E) true K = 4. Mean FST is shown when more 

than two subpopulations are involved (B, C and E) and was calculated among subpopulations 

within the hierarchical branches for D and E. 
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CHAPTER 4 

 

GENETIC RECAPTURE IDENTIFIES LONG-DISTANCE BREEDING DISPERSAL IN 

GREATER SAGE-GROUSE (CENTROCERCUS UROPHASIANUS) 

 

ABSTRACT 

 Dispersal can strongly influence the demographic and evolutionary trajectory of 

populations. For many species, little is known about dispersal, despite its importance to 

conservation. The greater sage-grouse (Centrocercus urophasianus) is a species of conservation 

concern that ranges across 11 western U.S. states and 2 Canadian provinces. To investigate 

dispersal patterns among spring breeding congregations, we examined a 21-locus microsatellite 

DNA dataset of 3,244 greater sage-grouse sampled from 763 leks throughout Idaho, Montana, 

North Dakota, and South Dakota, USA, across 7 yr. We recaptured ~2% of individuals, 

documenting 41 instances of breeding dispersal (median dispersal distance = 15 km), with seven 

dispersal events of >50 km, including one of 194 km. We identified 39 recaptures on the same 

lek up to 5 yr apart, which supports the long-held paradigm of philopatry in lekking species. We 

found no difference between the sexes in breeding dispersal distances or in the tendency to 

disperse vs. remain philopatric. We also documented movements within and among state-

delineated priority areas of conservation importance, further supporting the need to identify 

movement corridors among these reserves. Our results can be used to inform the assumptions of 

count-based population models and the dispersal thresholds used to model population 

connectivity. 

 

INTRODUCTION 
 Dispersal is crucial to maintaining population connectivity. It is the precursor to gene 

flow, influencing evolutionary processes such as local adaptation and speciation, and 

demographic processes such as population growth and persistence (Ronce 2007, Ellstrand and 

Rieseberg 2016). Rates of dispersal are influenced by intrinsic factors such as population density 

and access to mates, and by extrinsic, or environmental factors such as habitat quality and 

resource availability (Clobert et al. 2009). Offspring often disperse away from parents at a 

breeding site (natal dispersal) due to kin competition and inbreeding avoidance (Gandon 1999, 

Platt and Bever 2009). Individuals may also disperse among breeding sites following attempts at 

reproduction (breeding dispersal) to enhance mating opportunities and increase lifetime 

reproductive success (Johnson and Gaines 1990). 

 Long-distance dispersal may be important for population persistence of wide-ranging 

species (Bohrer et al. 2005). This is especially true in naturally fragmented or human-altered 

landscapes (Bohrer et al. 2005), where individuals must disperse through unsuitable habitat with 

limited available resources along the way. The main limitation to connectivity is the distance 

between populations that individuals are capable of dispersing; a single successful disperser per 

generation can transport genes across the landscape, eliminating inbreeding depression and 

increasing population fitness, survival, and viability (Mills and Allendorf 1996, Schwartz and 

Mills 2005, Whiteley et al. 2015). Therefore, the occurrence of long-distance dispersal can be 

vital to some species’ persistence. 

 Long-distance dispersal is well documented for plant species (Nathan 2006). However, 

due to the difficulty of documenting long movements, it is less well known in animals (but see 

Lowe 2009, Moriarty et al. 2009, Hawley et al. 2016). The frequency and extent of emigrating 
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individuals is often underestimated because the quantification of long-distance dispersal is not 

the primary purpose of many studies (compared with, e.g., fine-scale habitat assessment), 

because sample sizes are too small to capture rare long-distance dispersal events, and because 

individuals dispersing long distances may leave the study area and be lost from detection 

(Koenig et al. 1996, Hassal and Thompson 2012). Furthermore, in studies designed expressly to 

quantify long-distance movements by tracking individuals using global positioning technology or 

geologgers, cost can be prohibitive (Bridge et al. 2013, Earl et al. 2016). Noninvasive genetic 

approaches can help to fill this knowledge gap. Genetic recapture, or the use of molecular 

genetics to identify individuals captured in different places and times, can be used to estimate 

dispersal frequency and distance when the focus of such studies is the spatial redistribution of 

large numbers of marked animals across large areas. However, events between capture and 

recapture go undetected (Nathan et al. 2003). Such approaches allow landscape-scale sampling 

of great numbers of individuals at relatively low cost per sample, and the collection of data that 

can additionally be used to plan biodiversity conservation. 

 The greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) is a lekking 

gallinaceous bird. Every spring, between March and May, individuals congregate on leks across 

the western United States and southern Canada. Lek locations are highly stable over generations, 

such that, following natal dispersal, most individuals are thought to exhibit philopatry, returning 

to the same lek every spring throughout their lifetime (Patterson 1952, Dalke et al. 1963, 

Emmons and Braun 1984, Dunn and Braun 1985). Natal dispersal of females is reported to be 

greater than that of males (median 8.8 vs. 7.4 km). However this oft-cited dispersal distance is 

based on a study in which the maximum distance between monitored leks was 13.1 km (Dunn 

and Braun 1985), and genetic data from 1 northern California population suggest that distances 

traveled by females may be underestimated (Davis et al. 2015). 

 On leks, a few territorial males may command the vast majority of mating, while 

nonterritorial adult and second-year males occupy the fringes (Semple et al. 2001), leading to 

high variation in breeding success (Payne 1984). Subdominant males may find mating 

opportunities by displaying and mating off the lek (Dunn and Braun 1986), or by visiting 

multiple leks within one breeding season to increase their chances of displacing dominant males 

or of finding females off the lek (Semple et al. 2001). Females are also known to visit multiple 

leks in a breeding season (Dunn and Braun 1985, Semple et al. 2001), occasionally visiting 

multiple leks within a week (Semple et al. 2001). Breeding dispersal and mate selection may 

occur multiple times with multiple mates during a single breeding season. However, distances 

traveled during breeding dispersal are unknown. 

 Field data show that sage-grouse are capable of long-distance movements. Among 

seasons, migratory sage-grouse may move 20 km (Tack et al. 2012), 30 km (Dunn and Braun 

1986), or even 80 km (Connelly et al. 1988, Leonard et al. 2000) depending on habitat 

availability. Annual, obligate migrations of 122 km and 240 km have been documented by 

telemetry studies (Tack 2009, Tack et al. 2012). Most migratory movements are made in 

stepping-stone fashion (Tack 2009), but abrupt singular movements are possible when suitable 

habitat is lacking (Dunn and Braun 1986). 

 Research has documented sage-grouse natal dispersal distances, seasonal migration 

distances, and breeding behavior, but little is known about breeding dispersal distances. 

Furthermore, most studies of lek-site philopatry have been limited in geographic extent and 

sample size. New dispersal information would come at a critical time for sage-grouse, an 

imperiled species added to the federal Endangered Species Act (ESA) candidate list in 2010 
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following several petitions for protection (U.S. Fish and Wildlife Service 2010). A U.S. Fish and 

Wildlife Service determination in September 2015 found current efforts by state and federal 

agencies and other partners adequate to obviate the need for listing, but significant conservation 

challenges remain and the species’ status will again be reviewed in 2020 (U.S. Fish and Wildlife 

Service 2015). 

 Understanding breeding dispersal is a critical step toward comprehending the relationship 

between the distribution and abundance of extant populations in fragmented landscapes. State 

wildlife management agencies across the range of sage-grouse in the western U.S. have 

collectively delineated Priority Areas for Conservation (PACs) to conserve population 

strongholds. This conservation strategy is directed at conservation management within individual 

PACs and planning for connectivity among PACs to prevent isolation and divergence of existing 

populations in the future (Finch et al. 2016). Understanding the distance and frequency of 

breeding dispersal vs. philopatry is critical to ongoing conservation planning (Crist et al. 2017). 

 As part of a larger study examining genetic substructure and how it relates to PAC 

delineation (Cross et al. 2016), we used molecular genetics tools to analyze thousands of sage-

grouse feathers collected from hundreds of leks scattered across Idaho, Montana, North Dakota, 

and South Dakota, USA, to quantify breeding season dispersal. Our 4 primary objectives were: 

(1) to evaluate patterns of sage-grouse lek-site philopatry; (2) to quantify distances, frequency, 

and patterns of breeding season dispersal among leks; (3) to evaluate differences in breeding 

season dispersal characteristics between the sexes; and (4) to examine the relative cost of 

breeding season dispersal using known mortalities from a subset of dispersing individuals. 

 

METHODS 

Study area and sampling 

 For our analyses we used 7,629 spatially referenced sage-grouse feather (n = 7,399) and 

blood (n = 230) samples from across the northeastern extent of the species’ range in Idaho, 

Montana, and North and South Dakota. Feather samples were collected noninvasively 

(Segelbacher 2002, Bush et al. 2005) from leks, mostly during the months of March through 

May. These samples were supplemented by blood and feather samples collected from sage-

grouse trapped on leks as part of a radio-telemetry project in central Montana. Samples were 

collected from 835 leks (median: 9 samples per lek, IQR: 7 samples) of 2,292 known active leks 

from 2007 to 2013 by field biologists and technicians with the Bureau of Land Management, 

Montana Fish, Wildlife and Parks, and Montana Audubon (see Cross et al. 2016 for detailed 

methods). 

Laboratory analysis 

 DNA extraction. Feather DNA was extracted from the quill (calamus) using the DNeasy 

Blood and Tissue Kit (QIAGEN, Valencia, California, USA) and the user-developed protocol for 

purification of total DNA from nails, hair, or feathers (QIAGEN). We modified the protocol by 

incubating samples for a minimum of 8 hr after addition of Proteinase K (QIAGEN) and by 

eluting DNA with 100 µL of Buffer AE (QIAGEN). Feather samples were extracted in a lab 

used only for noninvasive DNA extraction to avoid potential contamination from samples with 

greater DNA concentrations. Blood samples were extracted using QIAGEN’s DNeasy Blood and 

Tissue Kit and protocol for nucleated blood. 

 Microsatellite DNA amplification and electrophoresis. We amplified 21 variable 

microsatellite loci and 1 sex-diagnostic locus in 8 multiplex polymerase chain reactions (PCR). 

We used procedures detailed in Cross et al. (2016), with the addition of the following loci: 
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SG21, SG28, SG29, SG36, and SG39 (Appendix Table 4.3). Primers and locus-specific reaction 

mixes, annealing temperatures, and thermal cycler profiles are presented in Appendix Table 4.3, 

4.4, and 4.5. 

Genotyping and identification of recaptures 

 To ensure correct genotyping from low-quality and low-quantity feather DNA samples, 

each sample was PCR-amplified across the 22 loci to screen for allele dropout, stutter artifacts, 

and false alleles (DeWoody et al. 2006). To minimize genotyping error, two observers scored 

each sample. If any locus failed to amplify in either replicate, or if there was a discrepancy 

between locus genotypes as scored by the 2 observers, PCR-amplification and genotyping was 

repeated twice more. If a genotype was confirmed by this repeat analysis then it was retained. If 

a genotype failed again, the sample was assigned a missing score at the failed locus. To screen 

samples for quality control, we removed from analysis any individual for which amplification 

failed at >1/3 of the loci (i.e. >7 loci). After removal of poor-quality samples, genotypes were 

screened to ensure consistency between allele length and length of the microsatellite repeat 

motif. 

 To screen for and correct genotyping error, we used DROPOUT 2.3 (McKelvey and 

Schwartz 2005 as implemented in Schwartz et al. 2006) and package ALLELEMATCH 2.5 

(Galpern et al. 2012) in R 3.3.0 (R Core Team 2016). In ALLELEMATCH, we used the 

amUnique function to generate a list of all potentially matched sample genotypes, using an 

alleleMismatch setting of 6 (as calculated using the amUniqueProfile function). The 

alleleMismatch setting is approximately equivalent to matching samples with up to six pairwise 

mismatched loci. We used the list of potentially matched samples as a basis for reexamination 

and repeat analysis to confirm the genotype scores. We reviewed all potentially matching 

samples, confirming a recapture only when we found no mismatch in genotype across the 22-

locus panel. Detection of philopatry required that the same individual attend the same sampled 

lek in 2 different sampling years, shedding a feather in both years that was then both collected 

and successfully genotyped in the lab. Detection of a dispersal event required that an individual 

successfully emigrate from a sampled lek of first capture and successfully immigrate to a 

sampled lek of recapture, shedding a feather at each lek that was both collected and successfully 

genotyped in the lab. We calculated great-circle distance between all confirmed pairs of 

recaptures using the coordinates for each sample collection location with the spDistsN1 function 

in the SP package in R 3.3.0 (Pebesma and Bivand 2005, Bivand et al. 2013). 

 For all individuals, across all 22 loci, we quantified the power of our microsatellite locus 

panel to discern individuals by calculating probability identity (PID; Evett and Weir 1998)—the 

probability that two individuals drawn at random from the population could have the same 

genotype across all loci—using DROPOUT 2.3. Because we knowingly sampled from multiple 

populations (Cross et al. 2016), we did not test for deviation from Hardy-Weinberg proportions 

or gametic disequilibrium among loci. 

Sex-biased breeding season dispersal 

 Because bias in natal dispersal has been documented (Dunn and Braun 1986), we tested 

whether the frequency of breeding season dispersal differed between the sexes by performing a 

Fisher’s exact test for count data. To test whether males or females dispersed farther we 

performed a Mann-Whitney U-test, and to evaluate whether breeding season dispersal distances 

differed between the sexes within or among years we performed a Kruskal-Wallis rank sum test. 

We performed all tests in R (R Core Team 2016). 

Mortality and breeding season dispersal 
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 Dispersal can be costly to individuals. Therefore, the cost of dispersal combined with 

varied reproductive success in different habitats may affect the propensity of individuals to 

disperse (Leturque and Rousset 2002). In lek breeding systems, reproductive success varies 

greatly for individuals (Payne 1984). Therefore, individuals may hazard long-distance 

movements to improve breeding opportunity by visiting distant leks. To test whether breeding 

season dispersal distances differed between individuals recaptured as known mortalities and all 

other recaptures, we performed a Mann-Whitney U-test in R (R Core Team 2016). 

 

RESULTS 

Genotyping 

After removing samples of inferior quality (those that failed at >7 loci; n = 1,782, ~23%) and 

recaptures of the same sage-grouse at the same lek on either the same or different day within the 

same year (n = 2,603), we retained 3,244 of 7,629 samples analyzed (~43%). The 3,244 high-

quality genotypes from feathers (n = 3,017) and blood samples (n = 227) were from 763 leks, 

with a median 3 samples per lek (IQR: 3 samples, range: 1–62 samples per lek). We determined 

sex for 3,212 (99%) of the final individual genotypes: 600 females (~19%) and 2,612 males 

(~81%). Using our 22-locus panel (21 autosomal loci and 1 sex-linked locus), PID was 2.20 x 10-

29, providing substantial power to discern individuals, given a suggested PID of 0.001–0.0001 for 

law enforcement forensic applications in natural populations (Waits et al. 2001). 

Identification of recaptures 

 We recaptured ~2% of captured individuals, with 80 recaptures of 78 individuals from 

3,244 total captures of 3,164 individuals. Recaptures matched initial capture genotypes across all 

22 loci. Of 78 recaptured individuals, 9 were females (~12%) and 69 were males (~88%); ~2% 

of the 582 females and ~3% of the 2,472 males were genotyped. 

 Individuals were either recaptured in different years at the same lek (35 males and 3 

females; Table 4.1, Figure 4.1A), in the same year at different leks (26 males and 5 females; 

Figures 4.1B, 4.1C, 4.2A), or in different years at different leks (10 males and 1 female; Figures 

4.1B, 4.1C, 4.2A). Two males were recaptured twice; all other individuals were recaptured just 

once. One of the males was captured twice in the same year (2012) at different leks (14 km 

apart) and once one year later (2013) at a different lek 30 km away. We captured the second 

male three times in the same year (2013) at three different leks that were 21 km, 73 km, and 90 

km apart. Five years was the longest time between capture and recapture at the same lek, but we 

also recaptured three individuals three years apart and another nine individuals two years apart. 

Median time between capture and recapture was 350 days (IQR: 373 days, range: 0–1,809 days, 

n = 80). 

 Thirty-three breeding season dispersal movements were within, among, out of, or into a 

PAC (Table 4.2). Breeding season dispersal events within sage-grouse PACs was greater than 

double the number of movements documented outside PACs. Twenty-four movements occurred 

within PAC boundaries and another 10 occurred outside PAC boundaries. Three movements 

occurred among PACs, all in Idaho, in which 3 different sage-grouse made 31 km, 35 km, and 70 

km movements. Another six individuals dispersed into or out of PACs. Two individuals moved 

into PACs, both from a distance of 62 km. One other individual was first captured within a PAC 

and then recaptured outside that PAC, moving 13 km. Three individuals moved into or out of 

PACs, traveling 14 km, 127 km, and 194 km in a single season. 

Sex-biased breeding season dispersal 
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 The frequency of breeding season dispersal was similar between the sexes (Fisher’s exact 

test for count data: P = 0.49, 95% CI = 0.35–12.16, odds ratio = 1.83, 2-tailed). Among 

dispersing individuals, the distance moved across all years was similar between the sexes (Mann-

Whitney U-test: W = 133, P = 0.53, 2-tailed), as was distance moved within and among years 

(Kruskal-Wallis rank sum test: χ2 = 1.54, df = 3, P = 0.67). Dispersing females moved a median 

12 km (IQR: 16 km, range: 3–35 km, n = 6) and dispersing males moved a median 15 km (IQR: 

24 km, range: 0–194 km, n = 38; Figures 4.2A, 4.2B). 

Mortality and breeding season dispersal 

Feathers from five recaptured sage-grouse (all male) were collected from known mortalities 

found on or near active leks. Four of the carcasses showed evidence of predation. Two of these 

were recaptured in the same year: one was 127 km from its lek of origin, and the second had 

been captured previously live at two different leks 73 km and 90 km away. The other two sage-

grouse were recaptured a year after initial capture: one near the same lek and the second 13 km 

from its original capture site. The fifth known mortality had struck a powerline 43 km away from 

initial capture. Individuals recaptured as mortalities dispersed significantly farther than did all 

other recaptures (Mann-Whitney U-test: W = 31, P = 0.01, 2-tailed). Individuals recaptured as 

mortalities moved a median 73 km (IQR: 46 km, range: 13–127 km, n = 5), whereas all other 

recaptured individuals moved a median 14 km (IQR: 18 km, range: 0–194 km, n = 39; Figure 

4.2A). 

 

DISCUSSION 

 Collectively, our findings support the long-held paradigm of lek philopatry in sage-

grouse, yet we also identified highly mobile segments of breeding populations that readily 

dispersed farther than previously known. Long-distance dispersal events are certainly more 

common than we were able to detect. Individuals showed strong philopatry to leks across the 4-

state study region, both within and between years, with evidence of recapture at the same site 

five years apart. The lek selected during natal dispersal (Dunn and Braun 1985) likely establishes 

the lek to which most sage-grouse remain philopatric (Schroeder and Robb 2003). However, 

breeding season dispersal also shapes populations. Our genetic approach to documenting 

dispersal is the first of its kind in sample size and geographic scope, and is novel for capturing 

long-distance exchanges in sage-grouse populations, documenting 7 movements of >50 km, 6 of 

which occurred within a single lekking season. Our estimates of philopatry and dispersal are 

biased low, given the events required to successfully capture and recapture an individual using 

genetic sampling. Furthermore, the number of dispersers recaptured is more biased than the 

number of philopatric individuals recaptured as we sampled only 36% of known active leks (n = 

835, N = 2,292), thereby missing any dispersal from or to unsampled leks. 

 Sage-grouse genetic structure is governed by the process of isolation by distance, 

whereby the cumulative effects of many short- and fewer long-distance dispersals shape patterns 

of relatedness (Oyler-McCance et al. 2005, Bush et al. 2011, Schulwitz et al. 2014, Davis et al. 

2015, Cross et al. 2016). Lek-based mating systems should result in inbreeding depression, but 

dispersal as documented here may alleviate such a deleterious effect (Tallmon et al. 2004, 

Whiteley et al. 2015) and may also function to extend the neighborhood of advantageous 

adaptations (Richardson et al. 2014). 

 Breeding season dispersal may present additional mating opportunities as grouse visit 

multiple leks, although further study is needed because breeding outcomes for dispersing sage-

grouse are unknown. Dominant males may simply be maximizing reproductive opportunity, their 
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subdominant counterparts may be displaced by dominant males, or males may disperse following 

unsuccessful mating attempts. Females may disperse following nest failure near their first 

attended lek, or may disperse to mate with males at other leks, which could result in multiple-

paternity broods (Bush et al. 2010). Regardless of mechanism, we could not detect a difference 

in breeding season dispersal behavior between the sexes, likely due to low statistical power. 

Male-biased sampling is an artifact of the greater amount of time that males spend on leks 

compared with females, and of energetic male display and fighting on leks compared with 

relatively quiescent female behavior; male behaviors are more likely to result in a great number 

of dropped feathers, which can be collected. Widely assumed, but undocumented until now, 

however, is a potential tradeoff for dispersing to increase mating opportunities: based on a small 

sample of mortalities, heightened risk appears to accompany long-distance breeding season 

dispersal. 

 Greater breeding season dispersal distances within years compared with across years is 

likely not an underlying biological driver but instead an artifact of higher sampling intensity in 

later years (Hassall and Thompson 2012). We may have misclassified year of capture or 

recapture because feathers can persist for multiple years on a lek. However, feathers weather 

poorly, and we avoided extracting DNA from feathers which appeared aged (feathers that were 

dirty, physically damaged, or for which the calamus had become opaque from extended UV 

exposure). In harsh sagebrush environments, high UV radiation and freeze–thaw cycles should 

rapidly degrade and shear DNA, rendering most old samples incapable of producing a viable 

genotype (Segelbacher 2002). Regardless, we likely underestimated the frequency and maximum 

distance of breeding season dispersal events, estimates of which will increase with continued 

feather collection (Hassall and Thompson 2012). Still, our estimates are valuable for 

parameterizing individual-based models (Wood et al. 2015) and for seeding scenarios that 

evaluate connectivity under variable dispersal rates and distances (Knick and Hanser 2011, 

Knick et al. 2013, Crist et al. 2017). Furthermore, population trends are monitored by counting 

males annually on hundreds of leks across the 11-state, 2-province sage-grouse range, and our 

dispersal estimates may be incorporated into trend or density modeling to account for breeding 

season dispersal among leks and the reality that some individuals are counted more than once 

(McCaffery et al. 2016). 

 Having documented breeding season dispersal within, between, and outside PACs, we 

recommend that future connectivity research focus on resistance surface–based modeling (Wade 

et al. 2015) to identify low-cost paths that facilitate continued movement. To date, conservation 

planning for imperiled sage-grouse has relied on the findings of a few localized dispersal and 

migratory behavior studies as a surrogate for understanding long-distance dispersal. Localized 

dispersal studies have revealed short-distance movements—mostly <10 km, with few >20 km—

and have drawn lek fidelity into question (Dalke et al. 1963, Wallestad and Schladweiler 1974, 

Dunn and Braun 1985, Hanf et al. 1994, Schroeder and Robb 2003). Research into sage-grouse 

migratory behavior has revealed that some individuals move in stepwise fashion among 

stepping-stones of intact habitat, and are capable of 250-km round trips (Smith 2012, Tack et al. 

2012). Now, in addition to the understanding that behavioral research has provided, it is possible 

to parameterize connectivity models using dispersal distances and genetic data gained from this 

large-scale, high-sampling-resolution research. Resultant findings will allow managers to 

quantify connectivity and prioritize leks for conservation according to those that contribute the 

most to gene flow (Jacoby and Freeman 2016). 
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Table 4.1. Summary of genetic capture of Greater sage-grouse in Idaho, Montana, North Dakota, 

and South Dakota, USA, including year of genetic sample collection (Year), total number of 

individuals genotyped each year (N), total number of captures (nc) and recaptures (nr) each year, 

other collection years in which captured individuals were recaptured at the same lek as their lek 

of initial capture and how many were recaptured in each year (Recaptured same lek (n)), and 

collection years in which captured individuals were recaptured at a different lek from their lek of 

initial capture and how many were recaptured in each year (Recaptured different lek (n)). 

 

Year N nc nr Recaptured same lek (n) Recaptured different lek (n) 

2007 85 2 0 (0) (0) 

2008 25 1 0 (0) (0) 

2009 590 14 3 2007 (1), 2008 (1) 2009 (1) 

2010 276 9 9 2009 (5) 2009 (3), 2010 (1) 

2011 269 9 9 2009 (3), 2010 (2) 2009 (1), 2010 (1), 2011 (2) 

2012 1,045 35 31 2007 (1), 2010 (5), 2011 (6) 2012 (19) 

2013 954 8 28 2009 (1), 2011 (1), 2012 (12) 2012 (5), 2013 (9) 

Total 3,244 78 80 38 42 
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Table 4.2. The number of Greater sage-grouse breeding season dispersal movements among, 

entering (incoming) or leaving (outgoing), outside, or within priority areas for conservation 

(PACs) in Idaho, Montana, North Dakota, and South Dakota, USA, 2007–2013. Also shown are 

summary statistics for distances in each direction of movement. 

 

  Distance (km) 

Direction 
Number of 

movements 
Minimum Median Mean ± SD Maximum 

Among 3 31.30 34.73 45.28 ± 21.31 69.80 

Incoming or 

outgoing 
6 13.37 62.40 67.64 ± 59.04 194.39 

Outside 10 0.27 17.40 26.60 ± 30.34 89.77 

Within 24 0.26 9.05 16.62 ± 22.65 109.61 
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Figure 4.1. Greater sage-grouse recapture locations based on feather genotypes at (A) the same 

lek in different years (philopatry), and (B) in the same or different years at different leks in 

Idaho, USA, and (C) Montana, USA, 2007–2013. Arrows show breeding season dispersal 

between capture (tail) and recapture (head) locations. The dotted black line represents the North 

American continental divide, solid black lines represent state boundaries, solid light gray lines 

represent major rivers, and dashed dark gray lines represent major highways. 
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Figure 4.2. (A) Individual distances between capture and recapture locations and (B) distribution 

of distances travelled by Greater sage-grouse in Idaho, Montana, North Dakota, and South 

Dakota, USA, 2007–2013. In (A), points represent individuals plotted in order of increasing 

dispersal distance. In (B), the dotted line indicates the median dispersal distance for females 

(12.02 km), and the dashed line indicates the median dispersal distance for males (15.08 km). 

Philopatry is not plotted. 

 

 
(A) 

 
(B) 
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APPENDIX 

Appendix Table 4.3. Forward and reverse primer sequences used to genotype Greater sage-grouse in Idaho, Montana, North Dakota, 

and South Dakota, USA, 2007–2013. Repeat motif, size range, number of alleles (# alleles), probability identity (PID), probability 

identity sibling (PIDsib), and sources for the primer sequence are shown for the 21 variable microsatellite loci and 1 diagnostic sex 

locus (1237) used in this study. Primers that required redesign to increase efficacy with noninvasive samples are indicated with an 

asterisk. 

 
Locus Forward primer Reverse primer Repeat motif Size 

range 

# 

alleles 

PID PIDsib Source 

1237 GAGAAACTGTGCAAAACAG TAAAGCTGATCTGGAATTTCA* Bi-allelic 224 & 

252 

2 0.702 0.8401 a 

BG6 AAAGAGGCAAGCACTCACAATG CCCTTGGAATATCCTTTAACAAAAC (GATA)15
 199–

311 

18 0.0172 0.3034 b 

BG16 GTCATTAGTGCTGTCTGTCTATCT TGCTAGGTAGGGTAAAAATGG (CTAT)15 125–

185 

12 0.0698 0.3712 b 

BG18 CCATAACTTAACTTGCACTTTC CTGATACAAAGATGCCTACAA (CTAT)17 135–

171 

10 0.6538 0.8166 b 

MS06.4 CCTGGAGCAACTTGAGG GTGACATTICCCCCCAC (GATA)2(GGTA)6(GATA)5 118–

178 

14 0.0602 0.3604 c 

MS06.6 CAAACAACTGTCTTCCAGTAAGAC AGAGCCTICATTTCTGGCAG (CAT)16 122–

185 

22 0.0275 0.3208 c 

MS06.8 GCAAAATCAATAGAAGTAGAGAGG CAGTAGCAGCTTTGTTTGG (GATA)17 103–

159 

15 0.0336 0.3276 c 

MSP11 GGTGAAAAGTGTGGCAACTG* CATTGTCAGCTTGCAGAC (CA)22 206–

280 

35 0.0207 0.3091 c 

MSP18 CAATGACAGTATTTCCCAGATTA GAATGGTAATATACTAAGCACAGG (CA)14 96–

120 

13 0.0333 0.3294 c 

SG21 AGGCAAAACAGTCACACATGC ATCACAAGCAGAGTGCAGGC (TC)54 180–

138 

67 0.0128 0.2956 d 

SG28 ACAGGGGAAGGACAGACTGG ACCTCTGCTTTTCCATTGCC (AC)50 113–

169 

29 0.0114 0.2926 d 

SG29 AAGGGGCTTAGGGTTTTAATGG AGTTAACTAAGTTGGGCAGGGG (AC)50 110–

154 

21 0.0207 0.3086 d 

SG36 TTCCAGACATTTTGGGAGCC CACATGTCCATCCAACCACC (ATGG)52 103–

251 

14 0.0794 0.3816 d 

SG39 GAAAGTCTGAATGCTGGAGAACC AAGCGTACTGTTTGCTCCCC (ATC)45 148–

184 

12 0.0441 0.3414 d 

SGCA5 CGGACAGGTACATCCTGGAA* GGGAAAAGATGTCAGAATCTACAAA* (CA)12 120–

144 

13 0.0604 0.3612 e 

SGCA11 GCAGTAAAGAAAATTTGGAAGCA* TCTTGAACTGATGTTGGATTTG* (AC)14(AG)2(CA)5 181–

203 

11 0.0759 0.3806 e 
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SGCTAT1 GCGACACTGCTCCCACCT GAAAGGTTGTAAGAGGTCGT (CTAT)11 93–

133 

11 0.0607 0.3587 e 

TTD6 GGACTGCTTGTGATACTTGCT CATGCAGATGACTTTCAGCA (CA)17 107–

153 

20 0.0443 0.341 f 

TTT3 TAGCAAACGAACCAGCCAAC GCTCTGAATCTGCCCATCTCT (CATC)n 192–

228 

10 0.1243 0.429 g 

TUD3 TCCAAGGGGAAAATATGTGTG TTCTTCCAGCCCTAGCTTTG (TG)12 154–

222 

29 0.0108 0.2909 h 

TUT3 CAGGAGGCCTCAACTAATCACC CGATGCTGGACAGAAGTGAC (TATC)11 140–

172 

9 0.1431 0.4462 h 

TUT4 GGAGCATCTCCCAGAGTCAG* TCAGCTGTGAACCAGCAATC* (TATC)8 163-

203 

11 0.0412 0.3369 h 

aKahn et al. (1998) 
bPiertney and Höglund (2001) 
cOyler-McCance and St. John (2010) 
dS. Oyler-McCance personal communication 
eTaylor et al. (2003) 
fCaizergues et al. (2001) 
gCaizergues et al. (2003) 
hSegelbacher et al. (2000) 
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Appendix Table 4.4. Microsatellite locus multiplexes, primer annealing temperatures, and reagent mixes used in polymerase chain 

reactions (PCR) to genotype Greater sage-grouse samples from Idaho, Montana, North Dakota, and South Dakota, USA, 2007–2013. 

Columns 3–14 (F1, F2, F3, R1, R2, R3, Taq, 10x buffer, dNTP, MgCl2 , BSA, and H2O) are measured in µL. F1–F3 indicate the 

amount of forward primer added to the reactions, and R1–R3 indicate the amount of reverse primer added to the reactions. All 

reactions used 1 µM IDT Custom DNA Oligos Forward Primer (Integrated DNA Technologies, Coralville, Iowa, USA), 10 µM 

Eurofins MWG Operon Custom DNA Oligos Reverse Primer (Eurofins Scientific, Lancaster, Pennsylvania, USA), Invitrogen 5 U µL-

1 AmpliTaq Gold DNA Taq Polymerase (Thermo Fisher Scientific, Waltham, Massachusetts, USA), Invitrogen GeneAmp 10x PCR 

Buffer II (100 mM Tris-HCl, 1.5 mL pH 8.3, 500 mM KCI; Thermo Fisher Scientific), New England Biolabs Deoxynucleotide Set (25 

µmol 100 mM ultrapure dATP, dCTP, dGTP, dTTP)—dNTP (New England Biolabs, Ipswich, Massachusetts, USA), Invitrogen 25 

mM MgCl2 (Thermo Fisher Scientific), bovine serum albumen (~66 kDA, used to stabilize enzymes during digestion of DNA—to 

prevent adhesion of the enzyme to reaction tubes, to inactivate contaminating nucleases and proteases, to stabilize nucleic acid 

modifying enzymes, as a blocking agent to minimize background, and to increase PCR yield from low purity templates; Thermo 

Fisher Scientific), and nuclease-free water (Thermo Fisher Scientific). 

 

Primer multiplex Annealing 

temperature 

(°C) 

F1 F2 F3 R1 R2 R3 Taq 10x 

Buffer 

dNTP MgCl2 BSA H2O 

1237 / BG18 / MSP18 54 0.10 0.10 — 0.20 0.20 — 0.26 1.00 1.00 0.80 0.10 4.24 

BG16 / MS06.8 / MSP11 52 0.10 0.07 0.10 0.20 0.20 0.20 0.26 1.00 1.00 0.80 0.10 3.97 

BG6 / MS06.4 / SGCA5 54 0.10 0.20 0.07 0.20 0.20 0.20 0.26 1.00 1.00 1.20 0.10 3.47 

MS06.6 / SG21 / SG28 60 0.10 0.10 0.10 0.20 0.20 0.20 0.26 1.00 1.00 0.80 0.10 3.94 

SG29 / SG36 / SG39 60 0.10 0.07 0.20 0.20 0.20 0.20 0.26 1.00 1.00 0.80 0.10 3.87 

SGCA11 / SGCTAT1 / 

TUT4 

60 0.10 0.10 0.13 0.20 0.20 0.20 0.26 1.00 1.00 0.80 0.10 4.17 

TTD6 / TUT3 56 0.13 0.20 — 0.20 0.20 — 0.26 1.00 1.00 1.20 0.10 3.71 

TTT3 / TUD3 55 0.20 0.10 — 0.20 0.20 — 0.26 1.00 1.00 0.80 0.10 4.14 
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Appendix Table 4.5. Polymerase chain reaction (PCR) thermocycler phase, temperature, time, and number of cycles used to amplify 

microsatellite loci for Greater sage-grouse samples from Idaho, Montana, North Dakota, and South Dakota, USA, 2007–2013. 

Specific loci multiplexes and primer annealing temperatures are given in Appendix Table 4. 

 

Phase Temperature (°C) Time (min) Cycles 

Initial denaturation 94 11 1 

Denaturation 94 1 44 

Primer annealing See Appendix Table 4 1 44 

Extension 72 1 44 

Holding 12 ∞ 1 
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CHAPTER 5 

 

THE GENETIC NETWORK OF GREATER SAGE-GROUSE: RANGE-WIDE 

IDENTIFICATION OF KEYSTONE HUBS OF CONNECTIVITY 

 

ABSTRACT 

 Genetic networks can be used to characterize and rank nodes that are most important to the 

overall connectivity of a system allowing scarce resources to be guided towards nodes integral to 

connectivity. The greater sage grouse (Centrocercus urophasianus) is a species of conservation 

concern that breeds in individual leks that must be connected for population persistence. We 

genotyped 5,950 individuals, from 1,200 greater sage grouse leks, at 15 microsatellite loci across 

the entire species’ geographic range to quantify connectivity and identify the leks most essential 

to maintaining connectivity. We found a single robust network composed of 459 interconnected 

nodes. The network had small-world characteristics where genetic connectivity was influenced 

by geographic distance among nodes. We identify nodes and connections among nodes that are 

of high conservation importance. Nodes ranking in the top 1% of betweenness and closeness 

centrality, both measures of network-wide connectivity, were located toward the center of the 

species’ range. We also discovered that nodes near the northern periphery of the range rank in 

the top 1% of the clustering coefficient, indicative of groups within which gene flow is relatively 

unencumbered. Centrality measure distributions indicated the presence of keystone nodes, 

defined as nodes that have a greater influence on the network relative to the size of the lek. The 

loss of these hubs could result in the disintegration of the network into smaller, isolated sub-

networks. We recommend that, in addition to protecting keystone nodes occurring on public 

land, conservation and management agencies work to secure the protection of those on private 

land via conservation agreements. Maintaining existing network connections should ensure a 

resilient and viable population over time. 

 

INTRODUCTION 

Genetic network models can be used to gain an understanding of population structure and 

to quantify gene flow among populations in natural systems (Bunn et al. 2000; Dyer 2007; Dyer 

and Nason 2004; Connelly et al. 2011). Networks are constructed of components called nodes 

and edges, where nodes may represent populations and edges represent gene flow among 

populations (Sallaberry et al. 2013). Each node can be weighted by the genetic diversity within 

the local population and each edge by the genetic covariance among local populations (Bunn et 

al. 2000). Network models provide a means by which to rank the importance of each network 

component. 

Emerging properties of genetic networks can inform us of the sensitivity of the entire 

network to disturbances (Dunne et al. 2002). There are four common network structures: (1) 

single-scale (“regular”), (2) broad-scale (“random”), (3) small-world, and (4) scale-free (Amaral 

et al. 2000; Bray 2003). Regular networks are highly structured such that proximal nodes tend to 

be linked to each other while distant nodes tend not to be linked. This structure is comparable to 

the isolation by distance pattern commonly discovered in the population genetics literature 

(Wright 1943). In a regular genetic network, gene flow occurs easily between neighboring nodes 

and nodes separated by a greater number of edges will be more isolated from one another. Nodes 

separated by a greater number of edges should be more isolated from one another. Random 

networks are unstructured such that spatial proximity of nodes is irrelevant to whether nodes are 
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connected or not and to irrelevant to the strength of connections. This structure is most similar to 

the theoretical island model first proposed by Wright (1931), and is analogous to the population 

genetic concept of panmixia. In a random genetic network, gene flow can occur unencumbered 

across the entire network because the number of steps between any two nodes is relatively small 

such that close and distant nodes have equal chances of being linked. Physically close and distant 

nodes have equal chances of being linked. Small-world networks are composed of few highly 

connected nodes and a greater number of more-isolated nodes, much like the hub-and-spoke 

model characteristic of the familiar commercial airline model. In the airline industry, hubs are 

strategically selected to maximize efficiency of air traffic, while spokes are selected based on 

limited need for services. Most nodes can be reached from every other node by a small number 

of steps, often routed through central hubs, which foster connectivity among the spokes. 

Redundancy is an important characteristic of small-world networks. In small-world genetic 

networks, gene flow is greatest among nearest neighbor nodes, but gene flow can occur between 

any two nodes by a small number of steps through hubs which are nodes with concentrated gene 

flow that serve to connect other distal nodes (also known as, spokes). An extreme form of small-

world networks are scale-free networks. In scale-free networks, there is less redundancy in inter-

node connections and greater centrality for the hubs. Within any network’s structure, individual 

node importance to overall network connectivity can be measured by centrality indices. 

Therefore, these function-valued measures easily translate to rankings. 

In transportation networks, hubs and spokes are known. For wildlife populations, where 

populations serve as hubs and where spokes are unknown. Qualifying genetic network structure 

and identifying nodes that act as hubs can be very informative to conservation and management 

of wildlife species (Garroway et al. 2008). Knowledge of which nodes are connected and which 

nodes rank highly in network centrality can facilitate management prioritization. Network 

models of wildlife populations have shown identifying hubs and spokes is not intuitive (Bunn et 

al. 2000; Garroway et al. 2008; Koen et al. 2015; Garroway et al. 2011). Populations at the 

periphery of a species’ range can act as critical hubs, connecting populations across the network. 

Geographically central populations do not necessarily function as hubs (Bunn et al. 2000). 

The lek mating system of sage grouse caters to network analyses because leks are 

relatively fixed spatial locations where males display in the spring to attract females and breed 

with them. Sage grouse disperse short distances from natal to neighboring leks (Dunn and Braun 

1985). Following natal dispersal, they are largely philopatric to leks (Cross et al. 2017; Dalke et 

al. 1963; Dunn and Braun 1985; Emmons and Braun 1984; Wallestad and Schladweiler 1974). 

Occasionally, sage grouse disperse large distances during the breeding season (Cross et al. 

2017). Therefore, we would expect that the resulting network structure would be composed of 

clustered, hub-like nodes characteristic of a small-world network (Garroway et al. 2008). 

Prior research has modeled range-wide greater sage-grouse connectivity. Knick and 

Hanser (2011) weighted nodes using lek attendance and limited edge connections using 

hypothesized dispersal thresholds. Crist et al. (2017) used network approaches to generate 

several models of hypothesized connectivity among greater sage-grouse priority areas for 

conservation (PACs), which are areas that protect larger leks (i.e., those with more males visible 

during breeding) and surrounding area. They characterized the centrality of each PAC and 

concluded that several sub-networks exist across the species’ range. Imposed dispersal thresholds 

may have affected the resultant network structure. For example, Knick and Hanser (2011) used 

an exponential decay function to determine the probability of connectivity of leks. Imposing 

dispersal thresholds likely oversimplified the contribution that each PAC made to network 
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connectivity by assuming dispersal limitations are equal among all nodes regardless of the 

internal population dynamics within nodes and environmental conditions within and among 

nodes. These prior studies generate valuable testable hypotheses about range-wide connectivity, 

but require empirical validation.  

In this study, we had two primary objectives. First, we sought to determine the network 

structure of connectivity among leks, weighting edges by genetic divergence based on genetic 

covariance among leks. Second, we sought to identify which leks were important to maintaining 

overall population connectivity and persistence using measures of network centrality. Within this 

second objective, we also sought to identify keystone nodes, that is, nodes that act as more 

important to maintaining gene flow than their size or location within the species range alone 

would indicate. 

 

METHODS 

Study area and sampling 

We used 16,420 spatially referenced greater sage-grouse feather and blood samples 

collected from 2,139 leks (mean of 7.68 samples per lek) across the entire contiguous range of 

the species in the United States of America and Canada from 2005–2014. Feather samples were 

collected from leks using non-invasive methods (Bush et al. 2005; Segelbacher 2002) after 

having been dropped or plucked by sage grouse during breeding activity, while blood samples 

were collected from sage grouse on leks as part of radio telemetry field research. Samples were 

collected by field biologists and technicians with the Bureau of Land Management, California 

Department of Fish & Game, Colorado Division of Wildlife, Idaho Fish & Game, Montana Fish, 

Wildlife & Parks, Montana Audubon, Nevada Division of Wildlife, North Dakota Game and 

Fish, Natural Resources Conservation Service: Sage-Grouse Initiative, Oregon Fish & Wildlife, 

South Dakota Game, Fish & Parks, Utah Wildlife Resources, U.S. Forest Service (USFS), 

Washington Department of Fish and Wildlife, and Wyoming Game & Fish Department. The 

only location throughout the entire distribution of the species that we did not use was 

Washington State because samples from this location were collected off-lek and during a 

different time period (from 1992 – 1999) than the rest of the samples. 

DNA extraction 

 Genetic analysis was conducted at two molecular biological laboratories: the National 

Genomics Center for Wildlife and Fish Conservation at the USFS Rocky Mountain Research 

Station (hereafter, NGC) and the Molecular Ecology Lab at the USGS Fort Collins Science 

Center (hereafter, FORT). Protocols were established at the inception of the study to ensure 

consistency among lab genotyping and are described below. Feather DNA was extracted from 

the quill (calamus) using QIAGEN’s DNeasy Blood and Tissue Kit and the user developed 

protocol for purification of total DNA from nails, hair, or feathers. The protocol was modified by 

incubating samples for a minimum of 8 h after addition of Proteinase K and by eluting DNA 

with 100 µl of Buffer AE. Feather samples were extracted in a lab used only for non-invasive 

DNA extraction in order to avoid contamination from samples with higher DNA concentrations. 

Blood samples were extracted using QIAGEN’s DNeasy Blood and Tissue Kit and the protocol 

for nucleated blood. At FORT, portions of the extraction process were automated using a 

QiaCube (QIAGEN). 

Microsatellite DNA amplification and genotyping 
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We amplified 15 variable microsatellite loci and one sex-diagnostic locus [CHD gene, 

using the primers 1237L and 1272H (Kahn et al. 1998)]. Specifics on PCR conditions used at 

NGC and FORT can be found in Cross et al. (2016; 2017) and Row et al. (2015). 

To ensure correct genotyping from low-quality and low-quantity feather DNA samples, 

each sample was PCR-amplified twice across the 15 variable microsatellite loci to screen for 

allele dropout, stutter artifacts, and false alleles (DeWoody et al. 2006). To minimize genotyping 

error, two observers scored each sample. If any locus failed to amplify in either replicate, or if 

there was a discrepancy between locus genotypes as scored by the 2 observers, PCR-

amplification and genotyping was repeated twice more. If a genotype was confirmed by this 

repeat analysis then it was retained. If a genotype failed again, the sample was assigned a 

missing score at the failed locus. To ensure consistency among laboratories, both labs genotyped 

the same 70 individuals. Each lab’s genotypes for these individuals were compared, and 

necessary shifts to synchronize allele calls were made for all samples. 

To screen samples for quality control, we removed from analysis any individual for 

which amplification failed at 1/3 of the loci (i.e. 5 loci). After removal of poor-quality samples, 

genotypes were screened to ensure consistency between allele length and length of the 

microsatellite repeat motif using MICROCHECKER v2.2.3 (Van Oosterhout et al. 2004). To 

identify and remove multiple captures of the same individual, and to screen for and correct 

genotyping error, we used DROPOUT 2.3 (McKelvey and Schwartz 2005 as implemented in 

Schwartz et al. 2006), MICROCHECKER v2.2.3 (Van Oosterhout et al. 2004), and package 

ALLELEMATCH 2.5 (Galpern et al. 2012) in R 3.3.0 (R Core Team 2016). 

Network construction 

A minimum node size of four or more individuals is required to calculate within-node 

genetic variation (Dyer 2014). Therefore, before constructing the network, we performed a 

hierarchical clustering analysis. First, we built a distance-based tree of the lek locations of the 

6,723 individuals using geographic distance among leks (using the HCLUST function in base R), 

and clustered all leks within 15 km of one another (cut distance implemented using the CUTREE 

function in base R). We selected 15 km as the cut distance, as this is the best estimate of median 

breeding dispersal distance among leks for sage grouse (Cross et al. 2017). Second, we removed 

any clusters composed of fewer than four individuals. Following clustering, we constructed a 

weighted population network among the resulting clusters, which we henceforth refer to as 

nodes, following the methods of Dyer and Nason (2004), in the packages GSTUDIO (Dyer 

2014) and POPGRAPH (Dyer & Nason 2004) in program R (R Core Team 2016). 

We estimated genetic covariance, where microsatellite genetic covariance represents the 

weight of each network edge connecting nodes. These distances were calculated and stored as a 

genetic distance matrix and represented a saturated population network containing all possible 

pairwise edge connections. Because a saturated population network is biologically unlikely, we 

used POPGRAPH to identify and remove, or “prune,” network edges that did not significantly 

contribute to the total among-population genetic covariance structure (Dyer & Nason 2004). This 

method was based on conditional independence calculated as edge deviance. Wherein each edge 

in the network was analogous to a predictor variable and the pruning of an edge was contingent 

upon its removal not causing a significant decrease in the fit of the model to the genetic data 

(edges among node pairs with a partial correlation coefficient of 0; Dyer & Nason 2004). Two 

nodes shared an edge if and only if there was significant genetic covariance between the two 

after removing the covariation each population had with all remaining populations in the data set 

(Dyer 2007). We pruned the network using the same methods and default pruning parameters 
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(alpha = 0.05 and tolerance = 1 x 10-4) as detailed by Garroway et al. (2008). Alpha is the 

significance at which edges were tested in the topology of the Markov network. Tolerance is the 

lower bound at which a principal component axis of the data was retained in the multivariate data 

analysis (raw genotypes are converted to multivariate data, and then a principal component 

rotation is conducted to reduce the number of dimensions). Only columns of the principal 

component rotation for which the standard deviation is greater than the tolerance setting were 

retained. A lower tolerance might result in homogeneity within groups in the discriminant 

rotation, whereas a higher tolerance might result in the loss of relevant information of value to 

analysis. Following pruning, the resultant minimal incidence matrix contained the smallest set of 

edges that sufficiently capture the among-node genetic covariance structure (Dyer & Nason 

2004). When depicted, the resultant minimum edge set is also known as the minimum spanning 

tree (MST). 

Network structure determination 

In order to determine the network structure of the greater sage-grouse genetic network, 

we compared the degree distribution, clustering coefficient, and characteristic path length (CPL) 

to that of 1000 Erdos-Renyi model random networks with the same number of nodes, edges, and 

edge weight distribution as the range-wide sage grouse genetic network. The CPL is defined as 

the average shortest path length between all pairs of nodes in the network. It provides an 

understanding of how long it takes alleles to traverse the network. We generated the random 

networks using package IGRAPH (Csardi & Nepusz 2006) in program R, and tested for 

significant differences between the degree distribution, clustering coefficient, and CPL of the 

true sage grouse network and the random networks using permutation tests, following the 

methods of Garroway et al (2008). We used the results of these comparisons to determine 

whether network structure was purely a function of the number of nodes and edges or whether 

network structure was a result of non-random processes. For example, a CPL that is similar to 

the random networks and a clustering coefficient that is high relative to the random networks 

would indicate that the network has small-world or scale-free characteristics (Watts & Strogatz 

1998). Whereas a degree distribution that does not follow the power law (scale-free), is not 

binomial (random) or fixed (regular), but is fat-tailed would narrow the likely network structure 

to that of a small-world network. Further evidence for a small-world network is a short diameter 

which is the longest of all the shortest paths among nodes (i.e., the shortest distance between the 

two most distant nodes), and which is determined by the order in which the populations are 

connected (Dyer 2007) 

We measured pairwise conditional genetic distance (cGD) among all nodes. cGD is the 

length of the shortest path connecting each pair of populations conditioned on network structure 

(Dyer et al. 2010) or the relative strength of the genetic covariance between nodes along the 

connecting edges (Koen et al. 2013). When compared to geographic distance among nodes, cGD 

can provide insight into network structure. 

To quantify network connectivity, we calculated each of the centrality measures detailed 

in Table 5.1, and used these metrics to quantify connectivity and relative isolation of each node. 

For example, betweenness centrality quantifies the measure of importance of a node or edge in 

terms of the bottleneck to gene flow it creates, eigenvector centrality quantifies how connected a 

node is, and strength quantifies how strong the connection is between a node and all its 

neighboring nodes (Garroway et al. 2008). Eigenvector centrality measures both how well a 

node is connected and how well a node’s immediate connections are connected—in essence, 

measuring both direct and indirect connectivity. These properties make eigenvector a better 
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measure than betweenness if one is interested in quantifying the strength of connections as it 

factors in not only how well connected a given node is, but also how well connected the nodes 

are to which a given node is connected. When quantifying connectivity, we used the centrality 

measure of node strength rather than node degree, as Koen et al. (2015) found that strength more 

adequately depicts migration and gene flow than does degree. To examine relationships between 

measures of network centrality, we tested for pairwise correlation between all measures. We also 

tested for correlation between each measure of network centrality and sample size at each node. 

All measures of network centrality were calculated using the IGRAPH package in R, and all 

correlations were calculated in base R. 

We screened all nodes within the top 1% of each measure of network centrality (Table 

5.1), and within the top 50% of all node centrality measures combined in order to identify those 

nodes that were most important to local (regional) and global (range-wide) connectivity. These 

nodes represent the top hubs of genetic exchange that maintain connectivity at all scales. 

Keystone nodes 

We hypothesized that the mostly highly attended and most geographically central nodes 

would rank highest for centrality (i.e., abundance would be positively correlated with node 

centrality). We used the number of individuals genotyped per node as a surrogate for overall lek 

attendance to test for correlation with network centrality. The surrogate was supported by a 

positive correlation between the number of individual genotypes per lek and the overall high lek 

count from 2009 to 2014 in Montana (Wilcoxon rank sum test with continuity correction: W = 

657390, p < 2.2 x 10-16). 

We also tested for correlation between geographic centrality of a node and network 

centrality. We defined geographic centrality as the great-circle distance from the center of the 

network’s geographic center. We calculated geographic centrality as the distance of each node 

from the centroid of a minimum convex polygon (MCP) enveloping all nodes. We calculated the 

MCP using the GCONVEXHULL function, calculated the centroid of the MCP using the 

GCENTROID function in the RGEOS package (Bivand 2017), and calculated the distance of 

every node from the centroid using the RDIST.EARTH function in the FIELDS package 

(Nychka et al. 2015) all in R. 

Finally, we sought to identify nodes with greater importance to genetic connectivity than 

the magnitude of lek attendance within the node or node location within the species range alone 

might indicate. That is, we sought to identify nodes that were low in attendance or peripheral to 

the range, but that still ranked high in centrality. To identify these keystone nodes we plotted 

both the number of individuals genotyped per node and the geographic centrality of each node 

against each measure of network centrality. 

 

RESULTS 

Genotyping and network construction 

Our genotyping efforts resulted in 6,242 individual genotypes from 1,200 leks (median = 

3 genotypes per lek, IQR = 4 genotypes per lek, range = 1–62 individuals) following duplicate 

removal and quality control. Hierarchical clustering and removal of nodes with fewer than four 

individuals (n = 153) yielded 5,950 samples in 459 nodes (median = 10 individuals per node, 

IQR = 9, range = 4–90 individuals). We constructed a network composed of 459 nodes 

connected by 14,481 edges. The longest most direct path among nodes in the network (the 

diameter) spanned just five nodes from the Platte River Basin of Wyoming through the Sevier 

Lake Basin of Utah and into the Central Nevada Desert Basin. The MST was largely structured 
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by geography (Fig. 5.1). Montana nodes compose a large group within the MST and are joined to 

the rest of the network through nodes in Wyoming and Idaho. Nodes in Colorado also group 

together and are linked by nodes in Wyoming and Utah. Throughout most of the network, 

connections among many hubs and spokes crossed state lines (Fig. 5.1 and Fig. 5.2). There was 

strong evidence for a positive correlation between cGD and geographic distance (Wilcoxon rank 

sum test with continuity correction: W = 1.1 x 1010, p < 2.2 x 10-16; Fig. 5.6 in Supplementary 

Material), but no discernable geographic pattern for nodes with greater cGD than expected due to 

geographic distance (the cloud with cGD > 40 in Fig. 5.6 in Supplementary Material). 

Network structure determination 

The sage grouse genetic network showed small-world characteristics. The network 

deviated from random network structure in both mean clustering coefficient and mean CPL. Both 

measures were significantly greater for the sage grouse genetic network than for the 1000 

random networks with the same number of nodes, edges, and edge weight distribution as the 

sage grouse network. Furthermore, none of the random networks had a greater mean clustering 

coefficient or CPL than the greater sage-grouse network (CC: p < 0.001, CPL: p < 0.001). Both 

the mean clustering coefficient (0.19 ± 0.023 [SD]) and the mean CPL (1.88) were shorter than 

has been documented in other species (e.g. 0.254 and 2.26 (Garroway et al. 2008). The fat-tailed 

distribution of node degree for the sage grouse genetic network (Fig. 5.8 in Supplementary 

Material) confirmed small-world network structure by ruling out scale-free structure, for which 

the degree distribution follows a power-law. Finally, the effect of node removal on average CPL 

was not small, as is expected for networks with regular structure where a large decrease in CPL 

is expected with the removal of each node. 

Node properties 

Nodes within the Upper Snake River Basin in Idaho and the Green River Basin in 

Wyoming rank highly across multiple measures of centrality indicating the importance of these 

regions to gene flow across the network. Collectively, these two basins contained the nodes with 

the maximum measures of centrality (Fig. 5.3, Table 5.2). Many other regions contained high-

ranking nodes for one or more measures. Notably, the Bighorn River Basin in Wyoming and the 

Lower Missouri River Basin in Montana contain nodes that measure high for centrality indices 

indicative of their importance to local connectivity. The Powder/Tongue River Basin in 

Wyoming and the Southwest River Basin in Idaho contain nodes that measure high for centrality 

indices indicative of their importance to global connectivity (Fig. 5.3). 

Only five nodes measured in the top 50th percentile of all measures of network centrality, 

indicating importance to gene flow both locally and network-wide and the rarity of this 

combination of local and network-wide importance. The range of each centrality measure for 

these nodes was large (betweenness = 766–1314, closeness = 1.49 x 104–1.55 x 104, clustering 

coefficient = 0.179–0.202, eigenvector: ≥ 0.556, and strength = 622.1–688.1). Three of the nodes 

identified were located within the Upper Snake River Basin of Idaho, and two were located in 

Wyoming: one in the Green River Basin and one in the Powder/Tongue River Basin (Fig. 5.3 

and Table 5.2). The locations of these nodes were geographically central to the sampling extent 

and geographic range of the species. 

Nodes with high betweenness centrality act as bridges between different parts of the 

network, so their loss can have network-wide impacts on gene flow (Garroway et al. 2008). We 

identified several nodes ranking highly in betweenness. Three of the top 1% of nodes ranked by 

betweenness centrality were located in Wyoming—two in the Powder/Tongue River Basin, and 

one in the Green River Basin. Of the remaining two nodes, one was located in the Upper Snake 
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River Basin of Idaho and one in the Bear River Basin of Utah (Fig. 5.3 and Table 5.2). Of these, 

the node with the greatest measure of betweenness (1521) was located just south of Grand Teton 

National Park in the Green River Basin. This same node also measured high for strength (691.9). 

Most nodes in the network were important to network-wide connectivity (right-skewed 

distribution: median = 92.0, IQR = 258.5, Fig. 5.7A in Supplementary Material; Table 5.3). 

However, seventeen nodes had a betweenness of zero, indicating relatively low importance to 

fostering gene flow across the network. These same nodes measured an average strength of 429.2 

(± 218.3 [SD]), indicating strong connections to other nodes despite low importance to network-

wide gene flow. Most of these nodes with the lowest measures of betweenness were located 

across the northeastern periphery of the species’ range. 

To identify nodes with the greatest genetic covariance with all other nodes in the 

network, we ranked nodes by closeness centrality. Closeness is a measure of the average shortest 

path between a node and all other nodes in the network. Hence, a smaller measure of closeness 

indicates shorter paths on average, and therefore, greater connectivity. The top-ranked closeness 

nodes were mostly located in the northeastern portion of the range and were geographically 

proximal. Two of the nodes in the top 1% of closeness centrality were located in the Lower 

Missouri River Basin of Montana, one in the Wind/Bighorn River Basin and one in the 

Powder/Tongue River Basin in Wyoming, and one in the Central Nevada Desert (Fig. 5.3 and 

Table 5.2). The node with the lowest closeness (4.88 x 10-5) was located in the far eastern 

Central Nevada Desert, and had low betweenness (0). The node with the greatest closeness in the 

network (1.59 x 10-4) was located just south of Grand Teton National Park in the Green River 

Basin of Wyoming, and had a relatively high betweenness (1521) and strength (691.9). There 

were a small number of very closely co-varying leks in the network (left skewed distribution: 

median = 1.37 x 10-4, IQR: 1.76 x 10-5; Fig. 5.7B in Supplementary Material and Table 5.3). 

To identify the most highly networked nodes, we examined node rankings by eigenvector 

centrality. Eigenvector centrality increases for nodes that are highly connected to other highly 

connected nodes. All but one of the top one percent of nodes ranked by eigenvector centrality 

was all located in the Great Basin, indicating increased genetic connectivity. These nodes are 

located in the Oregon Closed Lakes Basin, one in the Malheur River Basin, one in the South 

Lahontan River Basin, one in the Central Nevada Desert Basin (Fig. 5.3 and Table 5.2). The 

exception was a single node outside the Great Basin in the Southwest Basin of Idaho. The node 

with the greatest eigenvector centrality (1.00) was located in the Southwest River Basin, and had 

very high strength (1104.8), but very low betweenness centrality (4). The node with the lowest 

eigenvector centrality (0.064) was located in the Sevier Lake Basin of Utah, and was a terminal-

node on the MST (these terminal-nodes on the MST have only one edge, and are referred to as 

leaves). This same leaf also measured very low for strength (88.1) and betweenness (82), low 

centrality both locally and network-wide. Eigenvector centrality was normally distributed (mean 

= 0.54 ± 0.17 [SD]; Fig. 5.7E in Supplementary Material; Table 5.3). 

To identify nodes that anchor tightly knit groups connected by a high number of edges, 

we examined node rankings by clustering coefficient. Increased clustering coefficient is 

indicative of small-world characteristics. The nodes in the top 1% of clustering coefficient were 

found across the species’ range but mostly toward its periphery (Fig. 5.3 and Table 5.2). The 

southernmost node in the top 1% was in the Sevier Lake Basin of Utah. Other nodes in the top 

1% of centrality were located in the Southwest River Basin of Idaho, the Bighorn River Basin of 

Wyoming, and the Lower Missouri River Basin of Montana (n = 2). The node with the greatest 

clustering coefficient (0.35) was found in the Southwest River Basin. This node also had low 
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betweenness (0), strength (191.4), and eigenvector centrality (0.12). The node with the lowest 

clustering coefficient (0.13) was found in the found in the Bighorn River Basin of north-central 

Wyoming, and had low betweenness (8), strength (356.3), and eigenvector centrality (0.27). 

Network-wide, there was a low chance that any two nodes connected to a given node were also 

connected to one another (right-skewed distribution: mean = 0.19 ± 0.023 [SD], median = 0.18; 

Fig. 5.7C in Supplementary Material; Table 5.3). 

To determine which nodes co-varied closely with many other nodes, we measured the 

strength of each node. The top 1% of nodes ranked by strength were located in both the central 

and southern portion of the species’ range, indicating increased genetic covariance among a 

greater number of nodes (Fig. 5.3 and Table 5.2). Of the nodes with the greatest strength, one 

node was in the South Lahontan River Basin of California, one in the Central Nevada Desert 

Basin, one in the Southwest River Basin of Idaho, one in the Weber River Basin of Utah, and 

one in the Green River Basin of Wyoming. All five of the top 1% of nodes by strength were 

leaves on the MST. The nodes with the greatest and least strength (1105.0 and 88.1), located in 

the Southwest River Basin of Idaho and the Sevier Lake Basin of Utah, were also similarly 

ranked for eigenvector centrality (two measures for which there was very strong evidence for a 

positive correlation (ρ = 0.98, p < 2.2 x 10-16). The distribution of node strength was normally 

distributed (median = 627.1, IQR: 77.3; Fig. 5.7F in Supplementary Material; Table 5.3). 

We found evidence for positive correlation between betweenness and closeness centrality 

(rs = 0.9137852, p < 2.2 x 10-16) and eigenvector centrality and node strength (rs = 0.9829317, p 

< 2.2 x 10-16). 

Edge properties 

Edge weight is a measure of the magnitude of covariance between connected nodes and 

can be used to identify nodes most closely linked by gene flow. The strongest genetic covariance 

existed in the Central Nevada Desert basin. From here the top 0.1% of edges (n = 15) all radiate 

from a single node and connect to nodes across Nevada (n = 1), Idaho (n = 1), Montana (n = 6), 

Wyoming (n = 3), Colorado (n = 1) and Utah (n = 3). The single edge with the greatest genetic 

covariance connected a node in the Central Nevada Desert Basin and a node in the Northeast 

Wyoming River Basin in Wyoming (edge weight = 35.61). This edge linked nodes with the 

lowest closeness centrality. Both of these nodes also had low eigenvector centrality (0.31 and 

0.25) and very low betweenness (0). The edge of least weight connected two nodes within the 

Dirty Devil River Basin of Utah (in the south central UT group of nodes in Fig. 5.2). These 

nodes were of moderate importance to network-wide connectivity (betweenness: 119 and 144), 

but had low connectivity to other nearby nodes (eigenvector centrality: 0.10 and 0.13). Overall, 

gene flow among nodes has led to increased network connectivity, with the occurrence of some 

highly connected nodes evidenced by a skewed right distribution of edge weight (9.82 ± 2.23 

[SD], median = 9.68, IQR = 2.58); Fig. 5.7G in Supplementary Material; and Table 5.3). 

Keystone nodes 

It was common that the nodes with the highest centrality rankings were also those with 

lower numbers of individuals per node (Fig. 5.4). However, we found strong evidence for a 

positive correlation between the number of individuals sampled per node (a proxy for individual 

abundance) and betweenness, closeness, and clustering coefficient (betweenness: rs = 0.66, p < 

2.2 x 10-16, Fig. 5.4A; closeness: rs = 0.54, p < 2.2 x 10-16, Fig. 5.4B; clustering coefficient: rs = 

0.34, p = 4.37 x 10-14, Fig. 5.4C). We found a negative correlation between the number of 

individuals sampled per node and both eigenvector centrality and strength (eigenvector: rs = -

0.57, p < 2.2 x 10-16, Fig. 5.4D; strength: rs = -0.61, p < 2.2 x 10-16, Fig. 5.4E). 
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Across all centrality measures, we discovered 35 nodes that ranked high for network 

centrality despite having fewer individuals than nodes of similar ranking (Fig. 5.5). These 35 

nodes were located across the entire species’ range. Twenty-one of these keystone nodes ranked 

highly for more than one measure of centrality, with high rankings coupled for eigenvector 

centrality and strength and for betweenness and clustering coefficient. In all cases, these nodes 

were keystone for betweenness and closeness or for eigenvector and strength (measures for 

which we found evidence of correlation). 

We also found some evidence for correlation between geographic centrality and three of 

the measures of network centrality: closeness (rs = -0.013, p = 7.06 x 10-3), eigenvector centrality 

(rs = -0.22, p = 2.4 x 10-6), and strength (rs = -0.16, p = 6.4 x 10-4). However, there were no 

discernable patterns in the distance of nodes from the geographic center of the network and 

measure of network centrality. 

There was no evidence for correlation between geographic centrality and number of 

individuals per node (rs = -0.04, p = 0.35). 

 

DISCUSSION 

Emergent network properties 

We discovered that the greater sage-grouse range-wide genetic network most resembles 

the structure of a robust small-world network. Many hubs of connectivity within the network are 

located across the species’ range, with most leaves located along the periphery of the range. This 

hub-and-spoke topology is evident in the MST Fig. 5.2, with important hubs of genetic 

connectivity occurring in every state across the contiguous range, except North Dakota. Loss of 

one of these highly connected hubs within several major basins could sever overall network 

connectivity.  

We documented strong connectivity across the entire network. This means that some of 

the nodes may be able to recover should they be extirpated but the habitat remain intact or be 

restored, due to the network’s traversability (i.e., the apparent low resistance to gene flow). The 

MST revealed patterns of gene flow and can serve as a powerful guide in making management 

decisions related to the relative importance of individual nodes to overall landscape connectivity 

(Urban & Keitt 2001), as it is possible to model which nodes or which portions of the range will 

most likely be affected by the loss of any given node. 

Our results suggest that distance plays an important role in structuring gene flow 

(isolation by distance, Wright 1943). The vast majority of edges in the MST connect 

geographically proximal nodes (Fig. 5.1). Similarly, there is a correlation between cGD and 

geographic distance (Fig. 5.6 in Supplementary Material). These results support prior findings of 

isolation by distance within smaller portions of the species’ range (Cross et al. 2016; Bush et al. 

2011; Davis et al. 2015; Oyler-McCance et al. 2005; Schulwitz et al. 2014). Elevated 

eigenvector centrality, closeness centrality, and strength were identified toward the geographic 

center of the range (Fig. 5.3) showing this region is important to both local and network-wide 

genetic exchange. 

Cross et al. (2016) found that southwestern Montana is disconnected from the rest of the 

northeastern range, and is connected to the south into Idaho. The pattern of connectivity shown 

by our MST supports this finding because all edges emanating from southwestern Montana 

connect to nodes in Idaho (Fig. 5.2). Cross et al. (2016) also found that the population in 

Northern Montana was highly intra-connected, but was diverged from the subpopulation in 

Southeastern Montana and the Dakotas, and from the south-central Montana subpopulation (the 
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SE-W subpopulation in Cross et al. 2016). We confirm these findings here, showing nodes with 

very high clustering coefficient (indicative of highly interconnected network subunits) within the 

same regions (Fig. 5.2). We expect that the other top ranked nodes for clustering coefficient in 

the Southwest River Basin of Idaho, and the Sever Lake Basin in Utah might also be embedded 

at the core of subpopulations. Schulwitz et al. (2014) found that the subpopulations in southern 

and southeastern Montana and the Dakotas were both highly connected to leks in northern 

Wyoming. This pattern of connectivity is evident in the hub and spoke topology of the MST, 

where we a hub for Wyoming/south-central Montana is located in the Yellowstone River Basin 

of south-central Montana, and a hub for Wyoming/south-eastern Montana subpopulations is 

located within the Powder River Basin of Wyoming (Fig. 5.2). Davis et al. (2015) found that the 

small northern California population known to have experienced population declines had 

retained genetic diversity. We confirm this understanding by finding that the leks in this area 

show elevated local connectivity (covariance) within the area. We also found that gene flow into 

the northern California leks comes from leks to the north in Oregon (Fig. 5.2). Oyler-McCance et 

al. (2014) discovered a northern and a southern subpopulation within the bi-state population in 

southern California. We found the same break evidenced by a lack of edges connecting these two 

units in the MST (Fig. 5.2). This lack of inter-connectivity among nodes in the northern and 

southern groups is especially surprising, given that both groups exhibit greater covariance with 

far more geographically distant nodes (Fig. 5.2). 

Hubs of genetic exchange 

We identified 35 keystone nodes across the range of sage grouse that stand out with 

increased importance to genetic connectivity despite being composed of fewer individuals. These 

keystone nodes do not follow the trend of increased centrality with increased numbers of 

individuals per node (i.e., a proxy for population size for any given node), and include the 

highest-ranking nodes for each measure of centrality, regardless of the number of individuals. 

We believe that these keystone nodes and other nodes ranking high in centrality are top 

candidates for targeted conservation efforts, as their protection will likely help secure the hubs of 

range-wide genetic connectivity. The keystone nodes tend to be closer to the center of the range. 

However, the weak support for a correlation between measures of centrality and distance from 

the geographic center of the range indicates that while the nodes with the greatest closeness, 

eigenvector centrality, and strength tend to be located closer to the center of the range, a great 

deal of variation in this pattern exists. Therefore, neither geographic centrality nor number of 

individuals sampled alone should be trusted proxies for targeting conservation. 

In addition to keystone nodes, we also documented nodes with high importance to large-

scale, network-wide genetic connectivity (i.e., nodes with high betweenness; Fig. 5.2), and nodes 

within the top 50% of all centrality measures important to both network-wide and local 

connectivity. These top-ranked hubs are located in Idaho, Utah, and Wyoming, toward the 

geographic center of the species’ range. The locations of these hubs are in areas that should 

foster range-wide genetic connectivity due to their location in the topography of the western 

landscape. The Upper Snake Basin of Idaho forms a thumb terminating in Southwestern 

Montana to the northeast, and opening up over the Columbia Plateau into the Great Basin to the 

south. The Green River Basin of Wyoming sits just west of a low section of the North American 

Continental Divide connecting the Upper Snake Basin and Great Basin to the rest of Wyoming 

and farther up into the northeastern portion of the species range. The Green River Basin also sits 

just north of the Yampa/White River Basin in Colorado and the Bear River Basin in Utah, both 

connected by low valleys to the south. Similarly, the Powder/Tongue River Basin of Wyoming 
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connects to the north with both of the Dakotas and eastern Montana, while the Bighorn River 

Basin, which ranks lower for other connectivity measures, connects to the southeastern-west 

subpopulation in the Yellowstone River Basin of Montana (Cross et al. 2016). Finally, the 

Southwest River Basin in Idaho connects to the Malheur and Oregon Closed Lakes Basins to the 

west, and to the South Lahontan River Basin by way of the Central Nevada Desert to the 

southwest. We suspect that the topology of the genetic network is largely shaped by the topology 

of the landscape, a hypothesis previously posited for sage grouse (Schulwitz et al. 2014; Cross et 

al. 2016), and which has been found to influence genetic structure in other species (e.g., Roffler 

et al. 2014). 

Isolated populations 

We found that some of the nodes with the lowest measures of betweenness were located 

across the northeastern portion of the species’ range (Fig. 5.3). This pattern may indicate that the 

northeastern portion of the range does not play as large a role in range-wide genetic connectivity 

and may be more isolated, or at least, genetic exchange with the rest of the range is not as great 

here as it is toward the central portion of the range. While these northeastern nodes may not 

foster gene flow across the network, they may still be essential to generating genetic diversity. 

Population counts are high in this region, and there are high betweenness hubs (top 5%) located 

in every part of the range that function to connect spokes back into the rest of the network. The 

top 10% of nodes by eigenvector centrality (n = 49) are mostly in the central and southern 

portion of the range, with only two occurring in Montana, and none in the Dakotas. Confirming 

these patterns of connectivity with an evaluation of high-resolution, range-wide population 

structure and genetic diversity would be prudent to comprehending genetic connectivity. 

Limitations of the study 

Our analysis revealed connectivity and centrality measures determined by the species 

biology alone. In the analysis by Crist et al. (2017)—who determined the network of 

connectivity among PACs—patch size, shape, and boundary length all had an effect on the 

pattern of connectivity and centrality. Our analysis is based on genetic covariance, or the genetic 

network resulting from cumulative dispersal and breeding, a quantitative metric. We have 

confidence in the cut distance we used to cluster leks into nodes, as it is empirically based on the 

dispersal distances that the species is capable of (Cross et al. 2017). Our clustering approach 

increased genetic variance within nodes, but also increased covariance among nodes. Choice of 

cut distance depends on the desired scale of analysis for conservation and management 

application. While we could have performed this analysis using individual leks, that would have 

resulted in fewer individuals per node, and we would have to cut many leks altogether due to 

having fewer than four individuals. By clustering leks into nodes, we are able to make statements 

about the connectivity of landscapes that exceed the size of an individual lek, and that are 

representative of leks unsampled within the same landscape. 

We found evidence for correlation among measures of network centrality and between 

node size and centrality measures. Furthermore, the correlation between eigenvector centrality 

and node strength was also not surprising, as nodes score higher for eigenvector centrality when 

connected to other highly connected nodes. We also found evidence for a correlation between 

node size (the numbers of samples within each node) and many of the centrality measures; these 

correlations switched in sign between measures and were never greater than rs = 0.66 (range: -

0.61 to 0.66 or |0.34–0.66|). There was strong evidence for a negative correlation between 

strength and the number of individuals per node (rs = -0.31, p < 2.2 x 10-16), perhaps because 

when more individuals are clustered at a node, the genetic covariance within the node is greater 
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than that between that node and others in the network (Dyer & Nason 2004). Some of this 

correlation could be the result of greater propagule pressure and thus connectivity originating 

from larger populations, reflected in the number of samples genotyped per node. In this case, 

larger populations acting as hubs should be expected, as these highly populated hubs should 

house greater genetic diversity and could be the sources of dispersers. However, as discussed 

above, the highest-ranking nodes for each measure of centrality were never those with the largest 

sample size. 

Future directions 

We believe that the greatest utility of our network analysis will be its use in prioritizing 

and targeting conservation efforts to the nodes most important to maintaining network 

connectivity. This network approach allows for the ranking of nodes by multiple measures of 

centrality, indicative of different scales and different patterns of connectivity. Future work may 

want to examine networks at multiple scales. For example, constructing a genetic network where 

PACs serve as nodes may help prioritize conservation based on existing management boundaries 

at a landscape scale. It is worth noting that if PACs are treated as nodes, larger PACs may score 

higher for measures of centrality due to the proportion of the genetic covariance (and therefore 

centrality) contained within. Our hope is that the empirically based greater sage-grouse genetic 

network we constructed will prove a useful tool to conservation planners.  
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Table 5.1. Network parameters used to quantify connectivity, the unit for which each is 

calculated, and the definition of the parameter, and relation of the parameter as pertains to the 

greater sage-grouse population network. All but characteristic path length and weight are 

measures of centrality 

 

Network 

Parameter 

Network 

Unit 
Definition source 

Characteristic Path 

Length 
Network The mean of all pairwise network distances connecting nodes2 

Closeness 

Centrality 
Node 

The average shortest path between node and all other nodes 

(connected network) 

Clustering 

Coefficient 
Node 

The probability that two nodes connected to a given node are 

also connected (ranges from 0–1)2 

Degree Centrality Node The number of edges connected to a node2 

Eigenvector 

Centrality 
Node 

The direct and indirect connectivity: per node and immediate 

neighbors1 

Betweenness 

Centrality 
Node The number of shortest paths that a particular node lies on2 

Strength Node The sum of all edge weights2 

Weight Edge The magnitude of covariance between connected nodes 
1Garroway et al. 2008, 2Newman 2006
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Table 5.2. Major basin location of the maximum node (dark green), top 1% of nodes (light green), and minimum node (red) for each 

network centrality measure and of nodes in the top 50% (yellow) of all network centrality measures in the greater sage-grouse genetic 

network. A summary of what the centrality pattern indicates about the particular basin’s importance to the overall network is provided 

(Summary). In cases where both the top 1% and maximum are shown for the same basin, these rankings are both for a single node. 

Where multiple ranked nodes are located in the same basin, these nodes are identified by split cells within the same column 
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Table 5.3. Network parameters of centrality and connectivity for the range-wide greater sage-

grouse genetic network, the network unit upon which each was measured, and a four-number 

summary of each 

 

Network 

Parameter 

Network 

Unit 
Min Median Mean ± SD Max 

Betweenness 

centrality 
Node 0.00 92.00 204.20 ± 251.11 1521.00 

Closeness 

centrality 
Node 4.88 x 10-5 1.37 x 10-4 1.34 x 10-4 ± 1.51 x 10-5 1.59 x 10-4 

Clustering 

coefficient 
Node 0.13 0.18 0.19 ± 0.023 0.36 

Degree 

centrality 
Node 9.00 66.00 63.1 ± 17.04 100.00 

Eigenvector 

centrality 
Node 0.06 0.56 0.54 ± 0.17 1.00 

Strength Node 88.10 627.10 619.4 ± 181.51 1105.00 

Weight Edge 3.02 9.681 9.82 ± 2.23 35.61 
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Figure 5.1. Fruchterman-Reingold plot (layout with minimal edge overlap) of the range-wide 

greater sage-grouse genetic network minimum spanning tree (MST). The network is pruned such 

that only the most highly weighted edges are shown between all nodes (i.e., the strongest genetic 

connections). Node (n = 459) color indicates geographic location by state 
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Figure 5.2. Map of the range-wide greater sage-grouse genetic network nodes (n = 459) 

connected by edges retained within the minimum spanning tree (i.e., the network is pruned such 

that only the most heavily weighted edges—those with the strongest genetic connections—are 

left connecting nodes. Node color indicates geographic location by state 
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Figure 5.3. The top 1% ranking nodes (n = 25) in each of the six centrality measures. Nodes in 

the top 1% of more than one measure are offset to the right, such that touching points represent 

the same node 
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Figure 5.4. Relationship between the number of individuals in each node (n = 459) and that 

node’s measure centrality. Red circles show keystone nodes. The fitted linear model and 

confidence interval are shown (blue line with shaded CI). There was strong evidence for 

correlation between the two measures [betweenness: ρ = 0.66, S = 5.43 x 106, p < 2.2 x 10-16 (A); 

closeness: ρ = 0.54, S = 7.35 x 106, p < 2.2 x 10-16 (B); weighted clustering coefficient: ρ = 0.34, 

S = 1.06 x 107, p = 4.37 x 10-14 (C); eigenvector centrality: ρ = -0.57, S = 2.53 x 107, p < 2.2 x 

10-16 (D); strength: ρ = -0.61, S = 2.60 x 107, p < 2.2 x 10-16 (E)] 
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Figure 5.5. Keystone nodes (n = 37): nodes with greater importance to genetic connectivity than 

the magnitude of lek attendance within the node or node location within the species range alone 

might indicate. These nodes were low in attendance relative to their centrality rankings. Points 

representing keystone nodes of more than one measure are offset to the right, such that these 

offset touching points represent the same node 
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SUPPLEMENTARY MATERIAL 

Figure 5.6. Comparison plot of conditional genetic distance (the length of the shortest path 

connecting pairs of populations conditioned on network structure) and physical distance, 

measured as great circle geographic distance. There was very strong evidence for a positive 

correlation between conditional genetic distance and geographic distance (ρ = 0.33, S = 1.29 x 

1014, p < 2.2 x 10-16) 

 

 
  



 

 105 

Figure 5.7. Centrality measure distributions for all nodes (n = 459) in the greater sage-grouse 

genetic network. The solid vertical black line shows the reported measure of central tendency for 

each centrality measure. (A) betweenness: the number of shortest paths that a node lies on 

(median = 92, IQR = 258.5 shortest paths per node); (B) closeness: a weighted measure of 

distance from a given node to all other nodes (1.34 x 10-4 ± 1.51 x 10-5 [SD]); (C) clustering 

coefficient: the probability that two nodes connected to a given node are also connected (0.19 ± 

0.023 [SD]); (D) degree distribution: the number of edges emanating from each node (63.1 ± 

17.04 [SD] edges per node); (E) eigenvector centrality distribution: the direct and indirect 

connectivity for each node and its immediate neighbors (0.51 ± 0.18 [SD]); (F) node strength: 

the sum of all edge weights (619.4 ± 181.5 [SD]); (G) edge weight for all edges (n = 14,481) in 

the greater sage grouse genetic network (9.82 ± 2.23 [SD]) 
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Figure 5.8. Degree distribution of 1000 random graphs generated using the same number of 

nodes and edges as the sage grouse network. The degree distribution of the sage grouse network 

is shown in black 
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