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  Siberian tiger (Panthera tigris altaica) populations worldwide have been drastically reduced in 

number over the past several decades. The Primorye region of the Russian Far East remains one 

of the final strongholds for the estimated 400 Siberian tigers remaining in the wild. As a flagship 

species, Siberian tigers play a crucial socio-economic role in helping agencies and non-profits to 

motivate, fund, and implement broader conservation efforts. Even while defended by 

organizations such as the Wildlife Conservation Society (WCS), Siberian tigers in Primorye face 

an onslaught of threats to their continued existence. Profound land use changes due to the 

proliferation of wildfire (habitat loss), and the effects of wildlife poaching (loss of prey and 

individual tigers) represent the greatest threats to Siberian tigers in this region. Understanding 

where wildfire and poaching are most likely to occur can help inform fire management 

strategies, and anti-poaching ranger patrols led by WCS and the Russian National Park Service. I 

used a spatial statistics approach to model predictions of wildfire occurrence, and the likelihood 

of poaching violations across a 7,440 km2 portion of Southwest Primorye, which includes the 

2,620 km2 Land of the Leopard National Park. 

  I found that wildfires are tied to the presence of humans on the landscape. Proximity to 

settlements and roadways were highly correlated with an increased likelihood of burning. 

Additionally, terrain characterized by low slopes, and drier, south aspects were also at an 

increased risk of burning. Predictive mapping of wildfire indicated that coastal areas in the 

central portion of the study area, and much of the northern extent of the study area are the most 

likely to experience burning. My occupancy model-based investigation of poaching violations 

found that proximity to human development, and topographical features both affect the 

probability of rangers detecting a direct or indirect poaching violation on the landscape. In 

particular, my findings indicate that poaching is most likely to occur outside of protected areas in 

lower slope valleys where people are more easily able to traverse the landscape on foot or by 

vehicle. The northern terminus of the study area, and a northwest central pocket of the study area 

both indicated relatively high (~30%) probabilities of poaching violations occurring. By 

modeling and spatially mapping both wildfire and poaching violation likelihood, my work can 

help inform WCS and Russian Park Service management strategies to help maintain intact 

Siberian tiger habitat, and reduce the loss of tigers as a consequence of direct and indirect 

poaching. 

 

  



iii 

 

ACKNOWLEDGEMENTS 

The success of this project is due to the input, vision, and assistance of a multitude of 

individuals. I first want to thank Dr. Chris Servheen for his advisement and steadfast guidance 

throughout the course of my degree program. I also want to thank my committee members Dr. 

Sarah Halvorson, and Dr. Hugh Robinson for their critiques and patience. Dr. Robinson, I greatly 

appreciate the many informal statistics lessons, they were an invaluable contribution to my 

thesis. Members of the Wildlife Conservation Society, in particular director Dr. Dale Miquelle, 

and project leader Michiel Hotte, were indispensable in providing the background knowledge 

and spatial data at the heart of my investigations. Thank you for your time and patience. 

Funding for my work was indirectly provided through research grants with Dr. Alex Metcalf and 

Dr. Libby Metcalf. Your financial support broadened my academic horizons. Thank you for your 

support, your counsel, and our many laughs along the way. My work would have faltered from 

the start without the stalwart support of my family, friends, and in particular, my partner Lacey 

Hankin, many thanks to all. 

 

 

  



iv 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ........................................................................................................... iii 

LIST OF FIGURES & TABLES .................................................................................................... v 

BACKGROUND ............................................................................................................................ 1 

REFERENCES ........................................................................................................................... 5 

CHAPTER I: MODELING A PREDICTIVE LAYER OF THE LIKELIHOOD OF WILDFIRE 

OCCURRENCE IN SOUTHWEST PRIMORYE, RUSSIA ......................................................... 7 

INTRODUCTION ...................................................................................................................... 7 

Hypotheses .............................................................................................................................. 9 

Study Area ............................................................................................................................ 10 

METHODS & PROCEDURES ................................................................................................ 11 

Data Acquisition ................................................................................................................... 11 

Analysis Design .................................................................................................................... 12 

Model Selection & Covariate Development ......................................................................... 13 

Model Validation .................................................................................................................. 13 

RESULTS ................................................................................................................................. 14 

Model Selection .................................................................................................................... 14 

Predictive Model Layer Mapping ......................................................................................... 14 

DISCUSSION ........................................................................................................................... 14 

REFERENCES ......................................................................................................................... 18 

CHAPTER II: ANALYSIS OF RANGER PATROL DATA TO INFER SPATIAL PATTERNS 

OF POACHING-RELATED VIOLATIONS ACROSS SOUTHWEST PRIMORYE, RUSSIA 27 

INTRODUCTION .................................................................................................................... 27 

Hypotheses ............................................................................................................................ 30 

Study Area ............................................................................................................................ 31 

METHODS & PROCEDURES ................................................................................................ 31 

Data Acquisition ................................................................................................................... 32 

Analysis Design .................................................................................................................... 33 

Model Selection & Covariate Development ......................................................................... 35 

RESULTS ................................................................................................................................. 36 

Model Selection .................................................................................................................... 36 

Predictive Model Layer Mapping ......................................................................................... 37 

DISCUSSION ........................................................................................................................... 37 

REFERENCES ......................................................................................................................... 41 

 



v 

 

LIST OF FIGURES & TABLES 

CHAPTER I 

Figure 1. Map of project extent and notable model covariates, Southwest Primorye, Russian Far 

East…………………………………………………………………………………………….....20 

Figure 2. Map of all areas burned over the 21 year study period (red), and the grid cells used for 

the resource selection function analysis unit…………………………………………………….21 

Figure 3. Map of predicted likelihood of wildfire occurrence across Southwest Primorye, Russian 

Far East…..…………………………………………………………………………………........22 

Table 1. List of all covariates to be incorporated in model selection process for predicting 

likelihood of wildfire presence throughout Southwest Primorsky Krai…………………………23 

Table 2. Top five models outputted from MuMIn dredge function, and ranked by AIC. Top 

model, with weight =1, contains all 7 covariates. No model averaging was necessary…………24 

Table 3. Model coefficients for top-ranked model outputted from multi-model inference analysis. 

Estimates were back-transformed from logit scale to be presented in probabilities. Parameters 

with estimates >0.5 have a positive relationship with occurrence of wildfire...............................25 

CHAPTER II 

Figure 1. Map of project extent and notable model covariates, Southwest Primorye, Russian Far 

East…………………………………………………………………………………………….....41 

Figure 2. Map of all GPS recorded routes patrolled over the course of the 49 month study period 

(January 2012 – January 2016, and all direct and indirect poaching violations.……..………….42 

Figure 3. Map of predicted likelihood of poaching and poaching related events across Southwest 

Primorye, Russian Far East…………………………………………………………………........43 

Table 1. List of all covariates to be incorporated in model selection process for predicting 

likelihood of poaching violation presence (occupancy) across the Southwest Primorsky Krai 

focus area...............................................................................................…………………………44 

Table 2. Top ten models outputted from MuMIn dredge function, and ranked by AIC. Top eight 

models (ΔAIC < 2) were used in subsequent model averaging for the best predictive 

performance…………………………………………………………………………...…………45 

Table 3. Model coefficients for average of eight top-ranked models outputted from multi-model 

inference analysis. Estimates were back-transformed from logit scale to be presented in 

probabilities. Parameters with estimates >0.5 have a positive relationship with the occurrence of 

poaching and poaching related events………………………………………...............................46 

 

  



1 

 

BACKGROUND 

The Primorye region in the southern reaches of the Russian Far East is one of the more 

densely forested regions of Russia. These lush forests support a wide variety of flora and fauna, 

many of which are endemic (Newell 2004). Since the late 1800s when the Russian government 

commenced a more vigorous effort to develop this region, there has been widespread natural 

resource extraction (Newell 2004). Despite the international attention from organizations such as 

Wildlife Conservation Society (WCS) focused on conserving biodiversity in this area, as Newell 

(2004) states, “little progress has been made to develop sustainable communities living within 

these ecosystems. This deficiency needs to be resolved if people are to be permanently dissuaded 

from poaching endangered species and illegally harvesting…natural resources.” WCS, and their 

branch in Russia, focus on protecting some of the world’s rarest and most unique species as a 

means to achieve biodiversity conservation, and promote the protection of critical wildlife 

habitats (WCS Russia 2017). One of the most iconic and endangered species WCS focuses on is 

the Siberian (or Amur) tiger (Panthera tigris altaica). 

The Siberian tiger is one of eight traditional subspecies, three of which have gone extinct 

within the past 80 years (Luo et al. 2004). Historically, tiger populations totaled over 100,000 in 

number, and inhabited much of Asia; however, all remaining subspecies continue to face a 

variety of pressures in the form of habitat loss, fragmentation, human persecution in response to 

the loss of human life or livelihood, and the combined effects of direct and indirect (tiger prey) 

poaching (Luo et al. 2004, Goodrich et al. 2011, Nowell & Jackson 1996). As recently as the 

1890s Siberian tigers numbered as many as 3,000 individuals, and ranged from eastern Mongolia 

to the Russian Far East, northeastern China, and the Korean Peninsula (Tian et al. 2011). Today, 

their populations extend across a far smaller geography, restricted to dwindling habitats 

primarily in the Russian Far East (Nowell & Jackson, 1996). 
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Siberian tigers are the largest, and northernmost of the remaining tiger subspecies, with 

males often weighing over 250kg (550lbs) (Tian et al. 2011, Nowell & Jackson 1996). Siberian 

tigers are restricted to forest-covered landscapes throughout the Russian Far East, typically 

Korean pine forests (Carrol & Miquelle 2006). Southwest Primorye offers a relative abundance 

of forested land that provide the three key habitat requirements for Siberian tiger survival; 

adequate prey, cover, and water (Nowell & Jackson 1996). 

Tigers have long been considered flagship species due to their general popularity, cultural 

importance, and charismatic nature (Bowen-Jones & Entwistle 2002).  Unlike keystone species 

which are critical components of an ecosystem’s health, flagship species are known for 

performing a socio-economic role, and are most often used for raising public awareness and 

garnering funds for conservation (Walpole & Leader-Williams, 2002, Bowen-Jones & Entwistle, 

2002) Given the extensive exploitation of Amur tiger habitat, furthering the protection of this 

subspecies can aid in the stimulation of conservation awareness and action locally in the Russian 

Far East and globally (Miquelle et al. 2005, Bowen-Jones & Entwistle 2002). 

Relatively low genetic diversity, combined with increased human-tiger interactions both 

inside and outside protected areas levy serious threats to the already strained Siberian tiger 

population (Luo et al. 2004, Woodroffe & Ginsberg 1998). The primary pressures that Siberian 

tigers face in Russia’s Primorye region are habitat loss and fragmentation, the reduction of key 

prey species, and the direct killing of tigers for traditional Chinese medicine (Miller et al. 2013). 

The loss of critical tiger prey species (mainly wild boar, red deer, and roe deer) from both legal 

and illegal hunting, and the actual poaching of individual tigers present the most pressing short-

term threats to Siberian tigers, while the destruction of habitat (mostly as a result of fire) is a 

growing threat to the long-term stability of the Siberian tiger population in Russia (Miller et al. 
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2013). In the end, the success of Siberian tiger conservation hinges on reducing human effects 

across the landscape (Kerley et al. 2002). 

This thesis will address two of the major pressures on Amur tiger survival: the loss of 

forested tiger habitat due to fire, and loss of tigers due to direct (killing of tigers) and indirect 

(killing of tiger prey species) poaching (Kerley et al. 2002). Specifically, I sought to determine if 

spatial statistics would allow for the predictive mapping of these two issues. Following this 

introductory chapter, Chapter 1 presents my work focused on predicting the spatial distribution 

of wildfire across the Southwest Primorye landscape. I examined how human features and 

activities across Southwest Primorye such as settlements, roads, and railways, and the varying 

terrain of the region are linked to the likelihood of wildfires occurring on the landscape. 

Understanding where wildfire is most likely to happen can aid WCS and the Russian Park 

Service in designating where limited firefighting resources should be directed. Reducing the 

prevalence of wildfire would play a critical role in maintaining the last remaining large tracts of 

high quality Siberian tiger habitat found in Southwest Primorye. 

In Chapter 2 I turn my attention to an investigation centered on the direct and indirect 

poaching of Siberian tigers and their prey base. I examined the vast amount of ranger patrol data 

compiled in WCS Russia’s SMART (Spatial Monitoring and Reporting Tool) program and 

analyzed the spatial relationships between recorded poaching events, and various geospatial 

covariates related to the locations at which poaching events were encountered. Understanding 

which variables influence the spatial distribution of poaching violations informs predictive 

mapping of where poaching is likely occurring. As poaching remains one of the most pressing 

short-term threats to the survival of Siberian tigers, increasing the effectiveness of anti-poaching 

patrols could go a long ways towards increasing tiger population numbers. 
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Fewer than 400 Siberian tigers are estimated to remain in the wild, the vast majority of 

them in Russia’s Primorye region (Kerley et al. 2002). Despite the relatively small population of 

existing Amur tigers, WCS has good reasons to remain optimistic about their Siberian Tiger 

Project as, “the Amur tiger may have a greater chance of survival than other subspecies [of tiger] 

because it inhabits a large block of relatively unfragmented and undisturbed habitat in the 

Russian Far East with low human population density” (Kerley et al. 2002). This current state of 

affairs is tenuous, however, as increasing pressures on several fronts threaten to destabilize Amur 

tiger populations. 

 I completed this work as a student enrolled in the International Conservation & 

Development (ICD) degree option of the Resource Conservation degree program. At the core of 

the ICD program is the goal of providing graduate students the opportunity to engage with 

international conservation and social justice organizations focused on implementing real 

environmental change. In a serendipitous moment, my advisor Dr. Chris Servheen connected me 

with Dr. Dale Miquelle (WCS Russia) while I was in the middle of reading the thrilling book The 

Tiger: A True Story of Vengeance and Survival, by John Valliant. Dr. Miquelle is mentioned on 

several occasions throughout the book, and I was immediately hooked on the idea of being able 

to contribute in whatever small way possible to WCS’ Siberian tiger conservation efforts. My 

academic and professional background provided a strong foundation for pursuing a spatial and 

statistical investigation related to Siberian tiger conservation. The biggest downside to this 

computationally heavy project was that I could conduct my work in its entirety sitting at a 

computer over 5,000 miles from my study site. Perhaps in the future I will set foot amongst the 

Korean pine forests where the last Siberian tigers still roam wild. 
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CHAPTER I: SIBERIAN TIGER CONSERVATION: MODELING A PREDICTIVE 

LAYER OF THE LIKELIHOOD OF WILDFIRE OCCURRENCE IN SOUTHWEST 

PRIMORYE, RUSSIA 

INTRODUCTION 

 The mission of the Wildlife Conservation Society (WCS) is, broadly, to “conserve the 

world’s largest wild places…home to more than 50% of the planet’s biodiversity” 

(www.wcs.org). WCS studies and leverages charismatic megafauna, such as great cats and 

elephants, to drive their global effort of protecting terrestrial and marine areas. WCS focuses on 

these large, iconic wildlife in order to best protect vast landscapes. In doing so, WCS helps 

maintain ecosystem health, and biodiversity found within these conserved areas. WCS also 

employs wildlife experts to study and implement strategic conservation plans for these species of 

concern. In the Southwest Primorye region of the Russian Far East, the WCS concentrates much 

of its work on defending what remains of the Siberian (Amur) tiger population. A core 

component of their tiger conservation effort is the protection and maintenance of high quality 

habitat. In Southwest Primorye, wildfires − most often ignited by humans − present one of the 

greatest threats to the continued long-term health of Siberian tiger populations. 

Unlike many places around the world (areas of the western United States for example), 

the landscape in Southwest Primorye is not composed of flora and fauna that co-evolved 

alongside a regular fire regime. To the contrary, “primary aboriginal tribes as a whole have tried 

to protect their areas from fire damage” (Sheingauz 2000). The Russian Far East was largely 

unsettled by any outside ‘modernized’ civilization until the 1800s when Slavic migrants arrived 

who, “were not habitual to forests…were afraid of it and very often they burnt it as their enemy, 

seeing it as a source of wild animals that destroyed their fields and mosquitos that bit them and 

their cattle” (Sheingauz 2000). These migrants arrived in large part as a result of Russia’s 

burgeoning interest in the North American fur trade (Bassin 1999). A concerted push from the 



8 

 

central Russian government recognized the value in developing the Primorye region as a base 

from which fur-related commercial activities could be funneled and supported (Bassin 1999). 

Well over a century has now passed since the rapid settlement of the Primorye region by 

Slavic peoples occurred, and the past several decades have seen a major increase in the presence 

of fire on the landscape. While low severity burns offer the potential for renewed understory 

growth, the forests of Southwest Primorye have been, for the most part, experiencing stand-

replacement fires which pose an ever increasing threat to traditional Siberian tiger habitat and 

populations (Cushman and Wallin 2000, Loboda 2008). Mature Korean pine (Pinus koraiensis) 

forests, prime Siberian tiger habitat, have been nearly eliminated at lower elevations, and are 

being steadily reduced at higher elevations as well (Cushman and Wallin 2000). It is estimated, 

from remotely sensed satellite data that, over half of Southwest Primorye burns at least once 

every decade, with the outcome that today, less than 57% of the region remains forested (WCS 

Russia 2012). 

Starting fires due to a general fear of the unknown, has since become somewhat of a 

“spring tradition” for residents in the Primorye area as they seek to gain more highly productive 

hayfields, or sometimes simply in order to burn their fields before neighbors set their fires 

(Sheingauz 2000, D. Matikhina*). In addition, out in the forests, a wide variety of flame sources 

such as campfires, and cigarettes are often responsible for fires (Sheingauz 2000). On rare 

occasions, poachers commit arson in order to divert the efforts of local fire and ranger brigades 

away from the poacher’s desired hunting grounds (D. Matikhina*). Lastly, the rapid expansion of 

the logging road network brought with it many people with minimal knowledge of the value of 

forests to ecosystem function.  Many of these newcomers held the belief that the Russian Far 

East was so vast and abundant with forests that forest fires didn’t represent a significant threat to 
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the landscape (Sheingauz 2000). In addition to fire, the hyper-proliferation of logging roads 

throughout Southwest Primorye is also a threat to tigers and has accelerated since the early 

1990s. Timber harvest and road building have been damaging due to weakened forestry 

governance caused by political disorder and an ongoing economic crisis in the Russian Far East 

(Inoue & Isozaki 2003).  

 The catastrophic intensity and increasing frequency with which many fires burn results in 

the reversion of significant amounts of tiger habitat to early successional forests (Cushman and 

Wallin 2000, Cushman and Wallin 2002). These fires fragment and degrade tiger habitat. Once a 

mature stand of forest is burned by a high-intensity wildfire, areas dominated by Korean pine − 

traditionally high-quality tiger habitat − will not return to dominance for 90-100 years (Chen, Li, 

and Lin 2003).  

In response to the burgeoning pressures of wildfire on large cat habitat in Southwest 

Primorye, the Wildlife Conservation Society (WCS) developed a collaborative Fire Management 

Program to help coordinate local and international NGOs, regional and local governments, and 

protected area managers to develop a “comprehensive response to seasonal ground fires” (WCS 

Russia 2012). My work assists in the goals of this program by providing predictions of where 

wildfire is most likely to occur moving forward. Understanding the spatial proliferation of fire 

across the region is critical to increasing our understanding of the future of wildfire in Southwest 

Primorsky Krai. This work can help inform wildfire management to better protect intact Siberian 

tiger forested habitat. 

Hypotheses 

This investigation focused on studying the relationship between different socio-spatial 

variables and wildfire prevalence in order to; 1) describe the current geographic distribution of 
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wildfire on the landscape; 2) produce a statistical model to identify areas where wildfire is likely 

to occur in the future; and, 3) create a predictive layer of future wildfire likelihood (probability) 

for the study area. 

I predicted that close proximity (short distance) from human development and travel 

corridor variables (settlements, roadways, rivers, railways) would increase the likelihood of 

wildfire occurring, and that areas with steep slopes, southern aspects, and high mean climatic 

water deficit would also experience a higher probability of burning (Albini 1976, Abatzoglou & 

Williams 2016). I hypothesized that with increasing percent protected there would be a decrease 

in the likelihood of fire. Lastly, I predicted that as elevations increased further from coastal 

regions the likelihood of fire would decrease due to increased precipitation, and insulation from 

human development (Mermoz et al. 2005). 

Study Area 

My investigation focused on the Southwest portion of Primorsky Krai (Primorye) in the 

Russian Far East. This region is defined geographically by the Pacific Coast for much of the 

eastern border, following the Razdolnaya River north to the border with China. The border with 

China defines almost the entirety of the western and southern boundaries of the study area, with 

the exception of an approximately 11 mile border shared between Russia and North Korea 

(Figure 1). My study area stretches from approximately 42 o to 45o north latitude, and between 

130o to 132o longitude. Vladivostok, the largest city in the region is just outside the study area 

and overlooks Golden Horn Bay at the eastern terminus of the Trans-Siberian Railway. The local 

economy has a rich history of resource extraction (timber, metals, and coal) which has continued 

through the modern era primarily in the form of food production, fish processing, and logging 

(Lieberman & Nellis 1995). Southwest Primorye is sparsely populated, with the majority of 
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citizens residing in a few of the larger settlements such as Slavyanka, Barabash, and Andreyevka 

(Goodrich et al. 2010). 

The forests of Southwest Primorye consists predominantly of Korean pine (Pinus 

koraiensis) at higher elevations, and a wide variety of deciduous trees such as oak (Quercus 

mongolica) at lower elevations (Goodrich et al. 2010, Newell 2004). The Sea of Japan to the east 

moderates the local climate, which is known for dry, cold winters, and hot, wet summers 

(Goodrich et al. 2010). The Primorye region is home to the most sizeable intact tract of Siberian 

tiger habitat in Russia (Miquelle et al. 2015).   The majority of prime Siberian tiger habitat in 

Southwest Primorye lies within the recently established Land of the Leopard National Park, a 

262,000 hectare mosaic of protected and unprotected land that constitutes almost 50% of the 

Southwest Primorye study area. 

METHODS AND PROCEDURES 

Data Acquisition 

Geospatial datasets such as settlements, roadways, rivers, and railroads were provided by 

the WCS Russia office for use in this investigation. Annual data of area burned by wildfire was 

also provided by the WCS Russia office across a 21 year period of time spanning from 1996-

2016 with the exception of 1999 and 2000 (Figure 2). This data was generated by manual 

digitization of burned areas using satellite imagery. Digital elevation models (DEM) for the 

study area were downloaded at 1-arc second (~30m) resolution from the USGS EarthExplorer 

portal (http://earthexplorer.usgs.gov). This data was collected by NASA’s Shuttle Radar 

Topography Mission (SRTM) which was flown aboard the space shuttle Endeavour over an 11 

day period in February, 2000 (https://lta.cr.usgs.gov/SRTM1Arc). These DEMs were used to 

generate slope, elevation, and aspect datasets. Annual climate water deficit data was procured for 
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the same 21 year study period – excluding 1999 and 2000 – from TerraClimate, a product of the 

Climatology Lab at the University of Idaho (Abatzoglou et al. 2018). 

Analysis Design 

The analysis focused on the spatial relationships between fire prevalence, and various 

human and natural features on the landscape (roads, railways, elevation, slope, etc.) that 

potentially influence the presence or absence of wildfire. I adopted a resource selection function 

approach to draw inferences about the likelihood of wildland fire on the landscape. The study 

area within Southwest Primorye outlined above was divided into a grid with cells 1-km2 in area. 

A cell size of 1-km2 was chosen as it attained a balance between a large enough area for efficient 

spatial data processing, and small enough to incorporate the predictive layer into a fire 

management strategy context. I hypothesized that a host of 9 biophysical (land cover, slope, 

elevation, etc.) and human (distance to road, distance to settlement, etc.) spatial covariates would 

best predict the presence of wildfire on the landscape (Table 1). Each grid cell was given either a 

value of 1 (presence) if any portion of it had burned at least once over the 21 year study period or 

a value of 0 (absence) if no portion of the cell had burned at all (Figure 2). In addition, each grid 

cell was given the mean values for each of the 9 specified covariates.  

For this investigation, I assumed perfect detection wherever wildfire was recorded as 

having burned. I used a generalized linear model with a logit link to model the presence/absence 

of wildfire based on the mean grid values. I then projected my predictive model across the entire 

study area where the probability of a fire occurring (𝐵) is given by the equation 

 

𝐵 =  
exp (𝛽+ 𝛽1𝑋1+ 𝛽2𝑋2+⋯+ 𝛽𝑝𝑋𝑝) 

1+ exp (𝛽+ 𝛽1𝑋1+ 𝛽2𝑋2+⋯+ 𝛽𝑝𝑋𝑝)
           (Manly et al. 2002)      
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All data curation and necessary generation was completed using ArcGIS 10.4.1. All statistical 

analysis was conducted using the statistical environment R (R Core Team 2017). 

Model Selection & Covariate Development 

All covariates were extracted at the sampling unit level. For each 1-km2 covariate values were 

determined as the mean of all pixel values within that grid cell. Exceptions were all covariates 

related to distance between human development objects and grid cells. Distances were computed 

from the centroid of each cell to the nearest object of concern. In such cases where a sampling 

cell overlaid a human development object, a value of 0 was given. I determined correlation 

values between all initial covariates, and where necessary removed covariates so that all 

remaining variables had correlation values below ±0.5. I defined a global logistic regression 

model with all remaining non-correlated covariates, and used the dredge function from R 

package MuMIn to perform an automated model selection which outputs all possible 

combinations of model variables (Barton 2018, Burnham & Anderson 2010). Using the final 

selected model from the dredge function (ΔAIC < 2), I computed fitted values for each cell, and 

then generated a map of predicted wildfire probability across the study area in ArcMap 10.4.1. 

Model Validation 

I performed a model assessment test on the top-ranked model discussed above. I withheld a 

random 20% subset (n = 1,604) of the overall dataset for testing, and trained the model based on 

the remaining 80% (n = 6,418). For each grid cell in the test dataset, a value of 0 for unburned or 

1 for burned was predicted based off the results of the trained model. I determined a cell to have 

burned if the predicted probability was greater than the overall mean number of cells burned 

(0.506). Lastly, I compared predicted burn presence to actual burn presence in the test dataset to 

determine model accuracy. 
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RESULTS 

Model Selection 

I dropped both covariates elevation and distance to nearest railway from potential inclusion in 

the final model due to correlation values > ±0.5. The top-ranked model for probability of burning 

(weight =1) from the dredge results included all of the remaining 7 covariates (Table 2). The 

most influential predictors of wildland fire were slope, mean climatic water deficit, and percent 

of the grid cell protected (Table 3). With the two exceptions of the effect of increasing slope, and 

increasing distance from nearest river on the likelihood of wildfire occurring, model results 

supported my theoretical hypotheses (Table 1). My model predicts that wildfires are more likely 

to occur on lower angled slopes and southern aspects with higher annual climate water deficit 

(Table 3). In addition, fires are more likely to burn in proximity to human development and 

infrastructure such as roads and settlements (Table 3). Model validation resulted in an 81.3% 

accuracy assessment of withheld data. 

Predictive Model Layer Mapping 

My top-ranked model suggests that wildfire is most likely to burn along eastern coastal areas, the 

northern portion of the study region, and much of the southern tip of Southwest Primorye (Figure 

3). There is a lower estimated probability of wildland fire occurrence in central, and western 

portions of the study area (Figure 3). 

DISCUSSION 

My results demonstrate that the distribution of wildfire throughout Southwest Primorye 

can be tied to both human development on the landscape, as well as biophysical features of the 

local terrain. As I hypothesized, areas in close proximity to towns and roadways are much more 

likely to experience fires (Table 3, Figures 3). As discussed earlier, fires in Southwest Primorye 

are most often caused directly by humans either intentionally (springtime burns, field clearing, 
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poaching distractions, etc.) or unintentionally (discarded cigarettes, neglected campfires, etc.); 

therefore, it comes as no surprise that the covariates distance to nearest town and distance to 

nearest road are negatively related – further away, less vulnerable – to probability of burning 

(Sheingauz 2000). 

 My model indicates that there are biophysical conditions that are more likely to facilitate 

a wildfire burning than the human factors. Contrary to my original hypothesis, areas of high 

slope are less likely to burn (Table 3). The strong effect of terrain features relative to human 

features may be the result of most settlements and roads existing in low-lying, coastal regions 

where slopes are on average less steep than the interior. So, steeper slopes simply exist further 

from ignition sources than gradual slopes, which contributes to the negative relationship between 

slope and likelihood of burning. The results support my hypothesis that mean climatic water 

deficit (mm H2O) positively influences the likelihood of fire occurrence. Considering that 

increasing climatic water deficit indicates increasing aridity, it makes sense that drier areas 

where there is a greater difference between potential and actual evapotranspiration are more 

susceptible to burning (Abatzoglou & Williams 2016). The positive influence of southern aspects 

on increasing aridity is widely known, and my model supports this understanding as drier, 

southerly facing terrain features are more likely to burn than steep, shaded northern slopes 

(Dobrowski 2011). The relationship between distance to nearest river and probability of burning 

is a less obvious conclusion. The high density, and universal distribution of rivers makes it 

difficult to establish why as distance from nearest river increases, the probability of burning 

increases. I had hypothesized the opposite effect as I had thought that waterways would be used 

in a similar fashion as roadways for transportation and the movement of peoples in general 

which would bring with it an increase in potential ignition sources. The positive relationship may 
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be due to the vegetative landscape being less fire prone adjacent to waterways than in more arid, 

higher areas. 

 Although hypothesized correctly, the effect of protected land on the likelihood of fire is 

particularly interesting. While thoroughly dissected by roads, most of the protected lands across 

the region lie among the furthest reaches from human settlements (Figure 1). Logically, 

roadways nearest to settlements should experience greater traveler rates (potential fire ignition 

sources) than those further from settlements. While distance from human fire sources is partly 

responsible for the negative relationship between percent protected land and likelihood of 

burning, the on the ground efforts of Russian firefighters could also be linked to the low 

probability of fires taking off in protected lands (WCS Russia 2012). This finding aligns with the 

results from WCS Russia’s on-the-ground efforts to curb wildfire in Siberian tiger habitat, which 

have had a demonstrably positive effect (WCS Russia 2012). However, the results of my model 

suggest that large portions of protected land in the north, and central portions of Southwest 

Primorye remain at high-risk to wildfires, and it is recommended that WCS Russia rekindles 

their Fire Management Program in these regions in order to minimize the loss of tiger habitat and 

safeguard the future for a healthy Siberian tiger population (Figure 3). 

LIMITATIONS & FUTURE RESEARCH 

In this particular region of the world, geospatial data availability limitations make it 

difficult to develop robust models. Future efforts could focus on generating better quality 

datasets such as higher-resolution land cover data across the entire study area, and for multiple 

year chronological sequences. By including land cover data future models could better take into 

account the varying frequencies and intensities of wildfire across Southwest Primorye’s diverse 

topography.  As an example, low vegetation or grasslands are more likely to burn faster and 
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more frequently, and as a result forested tiger habitat on the periphery of such grasslands would 

be in greater danger of burning than areas deep in the forest core. 

Another limitation of my investigation was my assumption of perfect detection of 

wildfire. Any cell that intersected with the fire boundaries provided by WCS was considered as 

having burned over the 20 year study period. The hand-digitized fire boundaries could contain 

errors where technicians either failed to delineate areas that had burned, or had included areas 

that had not actually burned. Future research could turn to further investigating the quality, and 

precision of the fire data. Modeling techniques – such as occupancy modeling – could be used to 

take into account the imperfect fire data generation process. 
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Figure 1. Map of project extent and notable model covariates, Southwest Primorye, Russian Far East.  
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Figure 2. Map of all areas burned over the 21 year study period (red), and the grid cells used for the resource 

selection function analysis unit. 
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Figure 3. Map of predicted likelihood of wildfire occurrence across Southwest Primorye, Russian Far East.  
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CHAPTER II: SIBERIAN TIGER CONSERVATION: ANALYSIS OF RANGER 

PATROL DATA TO INFER SPATIAL PATTERNS OF POACHING-RELATED 

VIOLATIONS ACROSS SOUTHWEST PRIMORYE, RUSSIA 

INTRODUCTION 

The mission of the Wildlife Conservation Society (WCS) is, broadly, to “conserve the 

world’s largest wild places…home to more than 50% of the planet’s biodiversity” 

(www.wcs.org). WCS studies and leverages charismatic megafauna, such as great cats and 

elephants, to drive their global effort of protecting terrestrial and marine areas. WCS focuses on 

these large, iconic wildlife in order to best protect vast landscapes. In doing so, WCS helps 

maintain ecosystem health, and biodiversity found within these conserved areas. WCS also 

employs wildlife experts to study and implement strategic conservation plans for these species of 

concern. In the Southwest Primorye region of the Russian Far East, the WCS concentrates much 

of its work on defending what remains of the Siberian (Amur) tiger population. Core components 

of their tiger conservation effort are to monitor threats to tigers, and reduce human-tiger conflict. 

Direct (killing of tigers) and indirect (killing of tigers’ prey) poaching is the most pressing short-

term threat Siberian tigers face across their range. 

In a prey-depleted environment such as Southwest Primorye a relatively small, and 

seemingly benign increase in tiger poaching can trigger extinction (Damania et al. 2003). The 

immediacy of the poaching issue, and the socioeconomic factors that add complexity to the issue 

make poaching a daunting and difficult task for those involved in tiger conservation. Adding to 

research difficulties, despite a fenced boundary between Russia and China, Siberian tigers in 

Russia have been found to make use of habitat across the border in the Changbaishan Mountains 

(Miquelle et al. 2015). 

WCS and the Russian Park Service face a spectrum of both long-term and short-term 

threats to the remaining Siberian tiger populations. The proliferation of fires throughout the 
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Russian Far East, especially over the past few decades, has consistently been one of the leading 

long-term issues confronting the WCS Siberian Tiger Project. The flora and fauna of Southwest 

Primorye did not co-evolve alongside a wildfire regime, so recent fires lit by humans devastate 

the landscape and effectively eliminate high quality forested tiger habitat wherever they burn 

(Loboda 2008). On the other hand, poaching, driven largely by the demand for tiger parts in 

traditional Asian medicines, remains the most persistent short-term threat to tigers (Chapron et 

al. 2008). Wildlife poaching in the Russian Far East is highly detrimental to tiger populations as 

it reduces tiger population numbers on two fronts. The direct poaching of tigers for the chance to 

sell the bones and skin on the international black market for quick financial gain is clearly, and 

measurably detrimental to Amur tiger populations. Robinson et al. (2015) found poaching (and 

suspected poaching) to be the primary causes of Amur tiger mortality, leading to an estimated 

10% annual loss of population, making it difficult for the current tiger population to grow any 

larger than the 400 or so remaining individuals (Matyushkin 1996). Less quantifiable, but no less 

detrimental to the Siberian tiger population, is the impact of poaching of tiger prey species. 

Chapron et al. (2008) stated that despite the large swaths of existing suitable habitat, tigers are 

absent or at exceedingly low numbers, most likely due to a lack of prey.  

Efforts to curb tiger poaching remain a top priority for tiger conservation; however, the 

social and economic realities of tiger poaching in the Russian Far East make this a daunting task. 

Where other tiger subspecies exist in countries such as India, it is understood that there is, “a 

level of organization and confidence among trafficking networks…[to move] large consignments 

of skins to satisfy a growing market” (Banks & Newman 2004). In the Russian Far East the 

complex and rapid changes that swept the region over the past few decades have led to more 

unique politically and economically founded reasons for the sudden increase in Amur tiger 
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poaching. For the majority of the twentieth century the border between the Soviet Union and 

China was closed and well-manned so that access to the Asian black-market demand for tiger 

products was virtually impossible (Miquelle et al. 2005). 

The collapse of the Soviet Union in 1991 set off a turbulent period of time in the Russian 

Far East as the dominant communist economic ideology gave way to a market economy after a 

few years of transition (Åslund 2009).  The advent of capitalism throughout the region saw an 

immediate easing on border restrictions and gun laws, making it much easier to smuggle wildlife 

products into China (Miquelle et al. 2005). Local residents in the Primorye region had always 

relied on their surrounding natural resources to provide a subsistence lifestyle, but the sudden 

arrival of capitalism brought with it the privatization of many of the lands upon which locals had 

depended (Miquelle et al. 2005). Now, as the Soviet domain crumbled, villagers were suddenly 

forced to earn some form of income in a defunct economy suffering from massive inflation 

(Miquelle et al. 2005). The Siberian tiger population has continued to suffer as a result of this 

economic upheaval as tigers became a highly profitable resource almost overnight (Miquelle et 

al. 2005). 

One of the reasons that Amur tiger poachers have been an elusive target for WCS and 

government rangers is that tigers are rarely the target of a focused poaching effort, with most 

poached tigers falling victim to an opportunistic shot (Miquelle et al. 2005). Additionally, tigers 

can fall victim to being caught in snares set to illegally hunt other animals (Goodrich et al. 2011, 

Goodrich 2010). Unlike their counterparts in India deliberately heading into the forest to hunt 

tigers, hunters in the Primorye region are most often seeking to poach a deer or boar for 

immediate consumption to fulfill their subsistence needs. Provided the right circumstances some 

of these individuals may choose to cross the threshold to become a tiger poacher. Coming across 
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a tiger, or its tracks, in the forest presents the hunter with, “not only the prospect of commercial 

gain, but a complex mixture of emotions” (Miquelle et al. 2005). At this point, the hunter takes 

into account several different considerations including: perceived ability to kill the tiger; 

likelihood of being caught; current economic circumstances; personal values held regarding 

Amur tigers; and the prospect of finding a buyer (D. Miquelle†, personal communication, April 

18, 2017). 

Without such a clear-cut enemy to face in the field, WCS has focused its anti-poaching 

efforts on using modern law enforcement tactics such as the spatial monitoring and reporting tool 

(SMART) approach (WCS Russia 2017). At the core of the SMART program is a special 

software package built specifically for organizations combatting poaching, and is in use at more 

than 600 conservation sites in 55 countries worldwide (WCS Russia 2017, SMART Annual 

Report 2017). The SMART program was developed through a global partnership of nine 

conservation organizations, three governance councils, and eleven task forces. The software 

takes geospatial and categorical data inputs from ranger patrol efforts to continuously compare 

the results of patrols over time (WCS Russia 2017). As part of the project, greater 

communication is cultivated between staff from WCS, park inspectors, and government 

managers to constantly reassess patrol effectiveness, and to determine priority areas for future 

ranger efforts (WCS Russia 2017). By applying the SMART program, WCS hopes to provide the 

local ranger teams with a more rigorous and data-driven decision-making process regarding 

where, when, and how to patrol. My work leveraged the power of this accumulated geospatial 

data to generate poaching predictions across the study area. 

Hypotheses 
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I investigated the relationship between different socio-spatial variables and ranger-

recorded violations in order to; 1) identify general patterns of poaching, and the geography of 

these patterns, at present; 2) identify variables on the landscape that influence where poaching is 

likely to occur in the future; and, 3) create a predictive layer of these patterns to help inform 

future ranger patrol efforts. 

As opposed to a random distribution of poaching violations across the study area, I 

hypothesized that cells closer in proximity to human infrastructure (settlements) and travel 

corridors (roads, rivers, and railways) would be more likely to contain poaching violations as 

people present the greatest source of fire ignitions (Table 1). Similarly, I predicted that terrain 

features more difficult to traverse by vehicle or on foot (steep slopes, high elevations) would 

have a lower probability of poaching presences (Table 1).  Lastly, I anticipated that poachers 

would be most likely found in unburned, forested habitats found on wetter more northerly 

aspects as such environments provide better habitat for their quarry (Cushman and Wallin 2000, 

Table 1). 

Study Area 

My investigation focused on the Southwest portion of Primorsky Krai (Primorye) in the 

Russian Far East. This region is defined geographically by the Pacific Coast for much of the 

eastern border, following the Razdolnaya River north to the border with China. The border with 

China defines almost the entirety of the western and southern boundaries of the study area, with 

the exception of an approximately 11 mile border shared between Russia and North Korea 

(Figure 1). My study area stretches from approximately 42 o to 45o north latitude, and between 

130o to 132o longitude. Vladivostok, the largest city in the region is just outside the study area 

and overlooks Golden Horn Bay at the eastern terminus of the Trans-Siberian Railway. The local 
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economy has a rich history of resource extraction (timber, metals, and coal) which has continued 

through the modern era primarily in the form of food production, fish processing, and logging 

(Lieberman & Nellis 1995). Southwest Primorye is sparsely populated, with the majority of 

citizens residing in a few of the larger settlements such as Slavyanka, Barabash, and Andreyevka 

(Goodrich et al. 2010). 

The forests of Southwest Primorye consists predominantly of Korean pine (Pinus 

koraiensis) at higher elevations, and a wide variety of deciduous trees such as oak (Quercus 

mongolica) at lower elevations (Goodrich et al. 2010, Newell 2004). The Sea of Japan to the east 

moderates the local climate, which is known for dry, cold winters, and hot, wet summers 

(Goodrich et al. 2010). The Primorye region is home to the most sizeable intact tract of Siberian 

tiger habitat in Russia (Miquelle et al. 2015).   The majority of prime Siberian tiger habitat in 

Southwest Primorye lies within the recently established Land of the Leopard National Park, a 

262,000 hectare mosaic of protected and unprotected land that constitutes almost 50% of the 

Southwest Primorye study area. 

METHODS & PROCEDURES 

Data Acquisition 

Geospatial datasets such as settlements, roadways, rivers, and railroads were provided by 

the WCS Russia office for use in this investigation. Digital elevation models (DEM) for the 

study area were downloaded at 1-arc second (~30m) resolution from the USGS EarthExplorer 

portal (http://earthexplorer.usgs.gov). This data was collected by NASA’s Shuttle Radar 

Topography Mission (SRTM) which was flown aboard the space shuttle Endeavour over an 11 

day period in February, 2000. I used these DEMs to generate slope, elevation, and aspect 

datasets. Annual climate water deficit data was procured for the same 21 year study period from 

TerraClimate, a product of the Climatology Lab (Abatzoglou et al. 2018). 
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I was permitted access to the Russian Park Service’s SMART database. The SMART 

software is an open source, non-proprietary program that is used by the Russian Park Service to 

facilitate the storing and curation of GPS data collected by rangers. Rangers in Southwest 

Primorye use handheld GPS units to collect geospatial data on their patrol locations, times, and 

activities. Patrollers also use SMART to record all locations of direct or indirect poaching events.  

 

 

Analysis Design 

 My investigation focused on the spatial relationships between poaching and poaching 

related events, and a variety of human and biophysical features on the landscape that potentially 

influence the distribution and likelihood of poaching activities on the ground. I used an 

occupancy modelling approach, borrowed from wildlife biology and ecology fields where it was 

developed, and is most frequently used to draw inferences about species’ population numbers 

and distribution across an area (MacKenzie et al. 2006, Hines et al. 2011, Long et al. 2011). 

The field of occupancy modeling leverages the power of modern computing to estimate 

the likelihood of a species occupying a specific spatial locale as opposed to attempts at 

summarizing general species abundance across the landscape (MacKenzie et al. 2006). 

Biologists and ecologists employ a number of different monitoring approaches − from remote 

cameras to hair snares − in order to determine species presence or absence/pseudo-absence at a 

given point or within a given area (Long et al. 2011).  

Instead of using occupancy modeling to estimate a particular species presence, I applied 

occupancy modeling to GPS data collected by ranger patrols over a 49 month period from 

January 2012 to January 2016. This GPS data was curated and accessed from the SMART 

database maintained by the Russian Park Service and WCS Russia. Similar work has been done 
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in areas such as Nyungwe National Park in Rwanda where Moore et al. (2017) developed 

occupancy models with the objective of increasing ranger efficiency with the potential to reduce 

threats in a more cost-effective and logistically feasible manner. 

I divided the study area within Southwest Primorye outlined above into a grid of cells 1-

km2 in area. I chose a cell size of 1-km2 as it attained a balance between large enough area for 

efficient spatial data processing, yet small enough to provide rangers with practical areas to 

patrol and assess for poaching. I used a host of 11 biophysical (land cover, slope, elevation, etc.) 

and human (distance to road, distance to settlement, etc.) spatial covariates that I hypothesized 

would best predict the distribution of poaching events across the landscape (Table 1). 

My occupancy modelling relied upon three linked datasets in order to properly estimate 

which geospatial covariates influence poaching violation distribution (MacKenzie et al. 2006). I 

adapted my occupancy model to address spatial replication as the data had a high number of 

spatially indexed counts with a scarcity detected poaching violations. These indicates a large 

number of absences or zeros, and a small number of presences or ones. These datasets are site-

specific covariates (spatial variability), likelihood of detecting the event of interest (detection), 

and the recorded presence or pseudo-absence of the event of interest (occupancy) (MacKenzie et 

al. 2006). For my investigation, occupancy was the presence of a single or multiple poaching 

violation(s) for a given time series of patrol visits. Detection was determined by the extent to 

which each grid cell was visited by a ranger patrol. The spatial covariates inform the model as to 

which site specific variables influenced the presence or pseudo-absence of poaching violations.  I 

composed a spatial variability dataset using the mean values with each 1-km2 cell for the 10 

region wide covariates (Table 1). I accounted for variation in the probability of detection by 

calculating the number of times per month that ranger patrols visited any given cell. Detection is 
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described by the following equation wherein 𝑝 is the detection probability (probability that a 

poaching violation N appears in the count statistic C of times visited). 

 

𝑝̂ =  
𝐶

𝑁̂
    (MacKenzie et al. 2006) 

 

To quantify the amount of time ranger patrols spent in any give cell (detection), I divvyed 

up all ranger patrol routes into 250m segments. For each cell, by month, I summed the number of 

250m segments. I calculated occupancy for each grid cell based on whether or not the cell 

contained a poaching violation during each of the 49 months studied. My analysis sought to 

predict occupancy as the probability that a randomly selected site or sampling unit (grid cell) 

within the study area had the presence of a poaching violation. Occupancy () is described by 

the following equation wherein x is the number of occupied sites, and s is the number of total 

sites. 

 

̂ =
𝑥̂

𝑠
                                      (MacKenzie et al. 2006) 

 

I completed all data curation and final predictive mapping using ArcGIS 10.4.1. I 

conducted all statistical analysis using the package Unmarked in the statistical environment R 

(Fiske & Chandler, 2011, R Core Team, 2017). 

Model Selection & Covariate Development 

All covariates were extracted at the sampling unit level. So, for each 1-km2 covariate 

values were determined as the mean of all pixel values within that grid cell. Exceptions were all 

covariates related to distance between human development objects and grid cells. Distances were 

computed from the centroid of each cell to the nearest object of concern. In such cases where a 

sampling cell overlaid a human development object, a value of 0 was given. I determined 

correlation values between all initial covariates, and where necessary removed covariates so that 
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all remaining variables had correlation values below ±0.5. I compiled an unmarked framework 

from the three datasets (spatial variability, detection, and occupancy) to link data values from 

each respective dataset to the same cell. I tested for a relationship between visitation (detection) 

and occupancy. I defined a global occupancy model with all remaining non-correlated covariates, 

and used the dredge function from R package MuMIn to perform an automated model selection 

which outputs all possible combinations of model variables (Barton 2018, Burnham & Anderson 

2010). I averaged all models with the lowest AIC values within a ΔAIC < 2 of each other 

(Burnham & Anderson 2010). Using the final selected model, I computed fitted values for each 

cell, and then generated a map of predicted wildfire probability across the study area in ArcMap 

10.4.1. 

RESULTS 

Patrol Assessment 

Over the course of the 49 month study period, Russian rangers patrolled along a total of 

over 356,977 km of roadways, trails, and waterways (Figure 2). The rangers recorded a total of 

955 poaching and poaching related events. The majority of these encounters (n = 868) were 

illegal trespassing violations, considered a meaningful proxy of intent to poach†, and the 

remaining events (n = 87) were either direct poaching violations or possession of an illegal 

firearm (Figure 2). The vast majority of poaching violations were recorded in the central portions 

of the Southwest Primorye region where rangers logged the most kilometers of patrolling as well 

(Figure 2). 

Model Selection 

I developed an occupancy model to predict the probability of poaching violation 

occupancy (̂) as a function of various biophysical and human infrastructure variables. I 

removed elevation, aspect, and wildfire probability from potential inclusion in the final model 
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due to correlation values > ±0.5. The automated model selection analysis indicated eight top-

ranked models for subsequent model averaging. Top-ranked models were chosen by lowest AIC 

values where ΔAIC < 2 (Burnham & Anderson 2010). The eight models included to some extent, 

all 7 remaining possible covariates (Table 2). 

The result of the modeling predicts that poaching, and poaching related activities, are 

more likely to occur gradual terrain in close proximity to human infrastructure and transportation 

routes (Table 3). In addition, there is a higher probability of poaching violations being found in 

wetter parts of the region (Table 3). Lastly, grid cells with a higher percentage of protected land 

are more likely to contain poaching events (Table 3). 

Given the results of the averaged best model candidates, the most influential predictors of 

poaching occurrences are slope, and proximity to roads, rivers, and settlements, while the 

parameters slope and percent protected land were the most commonly applicable as they were 

found in all eight models used in the average (Table 2). With the single exception of the effect of 

protected lands on poaching likelihood, final averaged model results supported my theoretical 

hypotheses (Table 1).  

Predictive Model Layer Mapping 

My top-ranked averaged model suggests that poaching is most likely to occur throughout 

the central portion of the study area, and to a certain degree at the southern tip of Southwest 

Primorye (Figure 3). There is a very low estimated probability of poaching occurrence in the 

core northern and southern regions of the study area (Figure 3). 

DISCUSSION 

For anti-poaching applications, this is a powerful tool as it allows for meaningful 

assessment of entire landscapes to highlight regions or areas where poaching may be occurring 
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undetected. The power of occupancy modelling lies in its ability to decouple relationships which 

would otherwise drive the outcome of a modelling exercise. In this case, being able to account 

for the number of time each grid cell was visited addresses the difference in detection probability 

between cells. It comes as no surprise that proximity to human features throughout the region is a 

major driver of poaching likelihood (Table 3). Individual poachers in this study area are most 

likely beginning their forays from their homes, or after piloting a vehicle a short distance away 

(Miquelle et al. 2005). Although predicted as such, the effect of proximity to waterways and 

rivers was more significant than expected (Table 3). I surmise that waterways are heavily used as 

movement corridors for individuals seeking to engage in poaching behaviors, and could perhaps 

benefit from increased patrolling. The effect of slope on poaching events was also more 

influential than initially expected, but aligns with my prediction. My hypothesis, supported by 

analysis results, assumes that individuals traversing a landscape in search of an animal to harvest 

are most likely to try and move as efficiently as possible to conserve energy, which would 

involve avoiding steep slopes unless necessary (Table 3).  

Worthy of note is the positive effect of protected land status on the probability of 

poaching presences (Table 3). I had predicted that more stringent monitoring of protected areas 

would decrease the likelihood of poachers venturing into such regions; however, model results 

indicate that poaching is actually more likely to occur in grid cells with higher percentages of 

protected land (Table 3). This relationship may be the consequence of better habitat, easier to 

access solitude, and increased quarry numbers – all variables sought by a hunter or poacher – 

inside protected areas. 

When compared to the location of poaching events recorded throughout the study period 

(Figure 2), the predictive map (Figure 3) does indicate a few areas of interest where patrollers 
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spent little time or did not detect poaching occurrences, but my model specifies a moderate to 

high likelihood of poaching taking place. In the far northern portion of the study area there is a 

large reach where not a single patrol took place, and analysis results indicate poaching 

probabilities as high as 30% (Figures 2 & 3). Although well patrolled, there is a pocket of land in 

the northwest central region which also has probabilities in the range of 30-40% where not a 

single direct or indirect poaching event has been recorded (Figures 2 & 3). Finally, the southern 

tip of the study area contains likelihood values as high as 50%, yet has seen limited patrolling, 

and not a single poaching event documented (Figures 2 & 3). Integrating occupancy modelling 

into conservation action to curb Siberian tiger poaching has the potential to guide ranger patrol 

strategy development to insure that areas at potentially high risk of poaching are receiving the 

law enforcement attention necessary. 

LIMITATIONS & FUTURE RESEARCH 

In this particular region of the world, geospatial data availability limitations make it 

difficult to develop robust models. Future efforts could focus on generating higher quality 

datasets such as land use, and habitat layers that are currently lacking in either resolution or 

spatial coverage. Specifically, incorporating the distribution of Siberian tigers on the landscape 

into the anti-poaching model could enhance the model’s predictive power. This research 

directive would first require the development of a separate occupancy model would be required 

in order to determine the probability of tigers’ presence at any given point across the study area. 

This is due to the sparsity of population-level tiger locational data in Southwest Primorye. 

My analysis only scratched the surface of what could be done with the SMART program 

database. Time and statistical expertise limitations kept my investigation relatively simple, but 

future work could focus on teasing apart how different patrol types (foot versus vehicle versus 
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boat), different patrol teams (who and how many), and different temporal factors (time of day, 

seasons, etc.) factor into the efficacy of anti-poaching efforts. The SMART software itself could 

also be enhanced moving forward to ingrain predictive modeling into the workflow. With 

modern advances in spatial statistics and machine learning algorithms, predictive models could 

be continually augmented with the addition of every piece of patrol and violation data to 

constantly improve the model’s effectiveness . 

Further developments in this regard were also limited by my cursory knowledge of the 

inner workings of the SMART software, and my lack of familiarity with the Russian language. I 

remain optimistic that despite these obstacles, I was able to develop a predictive anti-poaching 

model. I have demonstrated that conservation organizations and government agencies could 

apply this approach and methodology to other areas around the globe where ranger patrols 

routinely collect data on their efforts. 
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Figure 1. Map of project extent and notable model covariates, Southwest Primorye, Russian Far East. 



44 

 

 

Figure 2. Map of all GPS recorded routes patrolled over the course of the 49 month study period (January 2012 – January 2016, and all 

direct and indirect poaching violations. 
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Figure 4. Map of predicted likelihood of poaching and poaching related events across Southwest Primorye, Russian Far East.  
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