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ABSTRACT 

Abundance and occupancy are two parameters of central interest to the field of 

ecology.  Furthermore, accurate (both precise and unbiased) estimates are key pieces to the 

puzzle of effective wildlife management decision-making. While there exist a variety of 

sampling techniques and statistical models for effectively estimating population parameters for 

frequently encountered and large mammals, methods for sampling unmarked and rare species are 

few and far between.  The first step to acquiring usable parameter estimates is through the use of 

sampling theory and incorporation of probabilistic sampling designs to collect count-data and 

occurrence-data. Often, it is assumed that probabilistic sampling designs will be ineffective in 

surveying for rare species due to insufficient encounters with the species of interest. However, 

many of these probabilistic-sampling methods remain untested, both with respect to modern 

statistical models and in the context of low-density species. The consequences of not 

incorporating probability-based sampling designs and not meeting field sampling assumptions 

are not well understood in the field of ecology and can thus provide uncertainty when making 

management decisions. In this paper, we test disparate field methods and statistical models that 

apply a complete random sampling design for estimating unbiased occupancy and abundance of 

mountain goats (Oreamnos americanus) – a low-density and difficult-to-study species. In doing 

so, we developed a novel data analysis approach that directly solves the problem of 

approximating the closure assumption in addition to successfully producing a method and 

modelling technique that yields unbiased estimates of mountain goat abundance. 
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INTRODUCTION 

Ecologists and policymakers need to have a good understanding of the distribution and 

abundance of the species they study for effective conservation management (Nichols and 

Williams 2006). Because populations vary through space and time, they require regular and 

effective monitoring. Recent advances in both the design of monitoring programs and statistical 

methods have allowed for improved accuracy in estimates of important population parameters 

(e.g., abundance, occupancy, mortality). However, adoption of some these methods has been 

slow and inconsistent.  In the field of ecology and conservation, we find that this is especially the 

case with rare and low-density species despite the fact that these species are often most important 

to monitor given they are of high conservation concern.  The lack of effective monitoring 

techniques for rare species may be due to challenges inherent to the dynamics of low-density 

species – for example, rare species often occur in complex terrain, making the regular 

implementation of robust monitoring programs difficult and incredibly resource-intensive. 

However, rare and low-density species are at the greatest risk of rapid declines due to 

inappropriate management adaptions and delayed conservation action (Martin et al. 2008). 

Because of this risk, it is imperative that ecologists and managers work together to obtain 

accurate estimates of critical population parameters for rare and low-density species populations 

(Yoccoz et al. 2001). 

Convenience sampling and haphazard data collection practices are widespread in ecology 

and wildlife biology despite a large body of work showing that population estimates derived 

from these data are biased and uninformative (see Anderson 2001, White 2001).  However, 

ecologists continue to use data collected in this manner to make important management 
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decisions. Fortunately, a number of probability-based sampling schemes that address these 

problems can be easily incorporated into wildlife field surveys. Probability-based sampling adds 

a level of randomness to the data collection process and makes data interpretable to the statistical 

models used in analyses.  By incorporating probabilistic sampling designs to the collection of 

field data, ecologists can effectively estimate unbiased parameters for the population of interest 

as a whole. However, many of these methods remain untested, both with respect to modern 

statistical models and in the context of low-density species. In this thesis, we evaluate multiple 

field methods and statistical models that apply a complete random sampling design to estimate 

occupancy (distribution) and abundance in an isolated mountain goat (Oreamnos americanus) 

population.  Specifically, we test two ground-based and non-invasive survey methods: remotely 

triggered camera traps and multiple-observer ground surveys.  

Furthermore, many wildlife studies fail to fully meet all field sampling and statistical 

model assumptions. A particularly difficult assumption to meet for large mammal studies is the 

assumption of geographic closure. The closure assumption is most often approximated as it can 

be difficult to align sampling unit size and survey period length with wildlife movement (Otto et 

al. 2013, Rota et al. 2009). Violating closure assumption can result in overestimating population 

sizes, which can have negative implications for management decisions. 

The Rocky Mountain goat is a high alpine-dwelling ungulate that is sparsely distributed 

throughout the northern Rocky Mountains. Because they occur at low densities and occupy 

remote habitat, mountain goats are difficult to monitor using traditional survey techniques (mark-

recapture methods, line-transect aerial surveys, etc.). While some populations remain stable 

enough for seasonal harvest, others have shown unexplained population declines (Festa-Bianchet 

and Cote 2008). Additionally, introduced mountain goat populations have some ecologists 
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concerned about competition with native bighorn sheep. Despite these concerns, irregular 

population monitoring has resulted in our ignorance of mountain goat population trends across 

the species’ range. The lack of regular mountain goat population monitoring may be a result of 

the presumed inability to obtain effective mountain goat abundance and occupancy estimates. 

Here, we focus on overcoming these difficulties using a mountain goat population in the 

Palisades Mountains in eastern Idaho as a model system. Using statistically rigorous sampling 

techniques, we test several disparate survey methods in a random sampling framework to build a 

reliable tool for estimating abundance and occupancy for low-density species. In so doing, we 

develop a novel analytical approach that solves critical and common model assumption 

violations, in addition to successfully producing unbiased estimates of mountain goat abundance.
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Chapter 1 

A Novel Approach to Meeting Closure Assumptions in  

Estimating Mountain Goat Abundance 

 

INTRODUCTION 

Abundance estimation of organisms is of central interest to the field of ecology (Ehrlich 

and Roughgarden 1987). With the use of effective sampling techniques and appropriate model 

applications to population count data, ecologists can accurately estimate abundance and track 

population trends over time (Mackenzie et al. 2005). Across the field of large mammal research, 

most efforts surrounding population estimation have focused on heavily harvested and common 

species, such as deer (Odocoileus spp.) and elk (Cervus canadensis).  As a result, population 

monitoring tools for low-density species remain few and far between (Thompson 2004).  Due to 

inherent qualities of rare and elusive species, obtaining unbiased parameter estimates for these 

species can be difficult.  Furthermore, while accurate estimates of abundance are difficult to 

procure, they are also imperative to making informed decisions regarding a given species 

conservation status (White 2001, Yoccoz et al. 2001).   

Rocky Mountain Goats (Oreamnos americanus) are high alpine-dwelling ungulates that 

occur in low densities throughout the steep and rocky habitat of the northern Rocky Mountains 

(Festa-Bianchet and Cote 2008). Because they are found at relatively low densities, exhibit 

grouping behavior and occupy difficult-to-access terrain, mountain goats have been challenging 

to monitor. While some populations remain stable for seasonal harvest, others have shown 

unexplained population declines (Johnson 1983, Glasgow et al. 2004, Festa-Bianchet and Cote 
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2008). Theories for these declines range from over-harvest to climate change (Festa-Bianchet 

and Cote 2008, Rice et al. 2009). In an attempt to manage for decreases in population size, 

wildlife departments introduced mountain goats to a variety of new mountain ranges across the 

northwestern United States (Cote and Festa-Bianchet 2003). Many of these introductions have 

been successful, with new mountain goat populations in Wyoming, Colorado, Utah, South 

Dakota, Nevada, Alaska, Idaho, Montana, and Washington (Hamel et al. 2006). While declining 

native mountain goat populations remains worrisome, the growth of introduced populations have 

ecologists concerned around disease transition and resource competition with vulnerable native 

bighorn sheep (Gross 2001, DeVoe et al. 2015, Varley et al. 1994, Houston et al. 1995; Flesch et 

al. 2016).  Regardless, neither population decline nor population growth concerns can be 

addressed without precise estimation of abundance.  

Currently, aerial surveys are the most common tool used for surveying mountain goats. 

Because aerial surveys are relatively efficient, they are among the most common method for low 

and high density ungulate population surveys (Rice et al. 2008, Unsworth et al. 1990). Count 

data from flights can be useful in estimating abundance when tools are available for estimating 

proportion of unobserved individuals in the population. One way to estimate unobserved 

individuals from aerial surveys is with sightability models wherein individuals are marked with 

radio and GPS collars to uniquely identify and track individuals in the population (Unsworth et 

al. 1990).  Alternatively, unobserved individuals can be estimated in unmarked populations when 

terrain allows for systematic surveying. However, such systematic sampling designs are 

ineffective in complex terrain (Buckland et al. 2001, Thomas et al. 2010). Therefore, application 

of these techniques can be reliable when conditions and funding allow for regular flights in 

homogenous terrain and animals are accessible for capture.  
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While aerial surveys can be efficient, they are also costly, dangerous, and rarely take into 

account correcting factors that need to be applied to count data collected during flights (Sasse 

2003, Caughley 1977). Additionally, due to the high cost and stress caused to wildlife, biologists 

have begun to incorporate noninvasive sampling techniques that do not require handling and 

collaring individuals.  While moving away from wildlife collaring has many positive attributes, 

little effort has been put forth to incorporate alternative means for correcting count data collected 

from the air.  As a result, wildlife biologists commonly use uncorrected counts of unmarked 

animals gathered from, often haphazardly conducted aerial surveys to inform management 

decisions (White 2001). It is therefore vital to the field of ecology that we seek a statistically 

rigorous, safe, and resource-efficient alternative to aerial survey-based wildlife monitoring.   

 The first step to obtaining informative abundance estimates is to incorporate effective 

sampling designs to the way in which count data are collected (Anderson 2001). An effective 

sampling design includes a probabilistic sampling component which adds a level of randomness 

to the way data are collected (i.e. complete random sample, stratified random sample, cluster 

sampling, etc.). Probability-based sampling differs from convenience sampling which involves 

collecting data from, for example, haphazard aerial surveys or counting animals seen from 

popular hiking trails.  By incorporating probabilistic sampling designs to the collection of count 

data, ecologists can effectively extrapolate about the population as a whole for an unbiased 

abundance estimates (Anderson 2001, White 2001). 

The second step to improving population estimates is refining our knowledge around if 

and when we fail to detect individuals in a population. Not accounting for imperfect detection is 

the most common source of measurement error when estimating species occupancy and 

abundance (Anderson 2001, Williams, Nichols & Conroy 2002). Imperfect detection can be 
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caused by a variety of factors including animal behavior, weather, vegetation cover, and 

personnel experience (Burton et al. 2015, White et al. 1982). However, there exist a variety of 

tools to mitigate and account for the effects of imperfect detection in count data including, but 

not limited to multiple observer surveys, replication in site surveys and distance sampling 

(Buckland et al. 2001, Royle 2004). Incorporating detection probability estimation into 

monitoring techniques allows ecologists to avoid biasing parameter estimates by effectively 

determining undetected individuals from count data (Mackenzie et al. 2002). 

The third step we address in this paper is meeting the critical assumption of demographic 

and geographic closure pertinent to many population surveys (Otis et al. 1978). As a review, 

closure is met when the size of the population of interest (or collected count data) is held 

constant during a period of investigation for a designated area (i.e. animals are not moving in and 

out of designated survey sites during designated sampling periods).  If geographic closure is not 

met, then the area of interest as it relates to abundance or occupancy cannot be defined (White et 

al. 1982). Despites its importance in wildlife population surveys, the closure assumption is often 

only approximated rather than met (Kery and Schaub 2012; Kendall 1999; Rota et al. 2009).  

However, with an appropriate sampling design and sampling period, closure can be met and thus 

produce unbiased parameter estimates (Otis et al. 1978).   

In this paper, we use an N-mixture model to estimate mountain goat abundance based on 

count data collected using a complete random sampling design. The N-mixture model (also 

known as binomial mixture model) is a generalized linear mixed-effects model that estimates 

abundance corrected for imperfect detection from repeat count data (Kery 2010; Royle 2004).  

N-mixture models use a Poisson random variable distributed around mean abundance parameter 

per site (λ). With a common λ across all sites we can estimate the total number of animals in the 
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population and study area. Total population is calculated by multiplying λ times the number of 

total sites in the study area. This total population is assumed constant during the designated 

survey season (Royle 2004).  However, while the total number of animals in the study area 

remains constant, the λ parameter can vary by site and site visit based on covariate influences on 

λ.  Therefore, this approach allows flexibility in how count data are collected and analyzed 

(Joseph et al. 2009, Kery 2010).  

As with many population monitoring efforts that leverage variation in count data to 

estimate detection probability, N-mixture models require repeat surveys to estimate detection 

probability to inform abundance (Royle 2004). Traditionally, survey repetition is met by 

conducting multiple visits to survey sites within a temporal period that is biologically relevant to 

assume closure (Kery 2010).  However, variation in count data can also be obtained from 

spatially replicated surveys using multiple, independent observations of the same site (Royle 

2004). Spatial replication means that multiple observers collect independent count data from 

spatially disparate vantages of a survey site. With the spatial replication approach, no time exists 

between surveys since the two surveys are conducted at the same time – therefore meeting the 

assumption of closure. 

We take a novel approach to sampling rare and elusive species that demonstrates the 

ability to (1) collect informative count data of low-density species using probability-based 

sampling, (2) estimate detection probability with temporally or spatially replicated count data, 

and (3) analyze count data such that closure assumptions are met.  By following these three 

steps, we directly address issues associated with haphazardly collected data (a result of no 

probability-based sampling design) and biased parameter estimates (a result of violating field 

assumptions and ineffectively accounting of imperfect detection). Finally, we determine that by 
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using an N-mixture model with a common λ across all sites, we can effectively estimate a total 

population of an area while allowing for animal movement among sites between survey 

occasions, which solves a major problem in sampling large mammals.  

 

METHODS & MODELS 

Study Area   

In this study, we analyzed data from a single season of independent double-observer 

ground surveys in a 200 km2 region of the Palisades Mountains in eastern Idaho. The specific 

study area (an isolated region within the Palisades Mountains) was selected based on information 

gathered from decades of aerial mountain goat population surveys conducted by Idaho 

Department of Fish and Game and Wyoming Department of Game and Fish (Idaho Department 

of Fish and Game 2015, Fralick 2015).  Additionally, GPS collars were fit to 11 mountain goats 

in 2011 and 2012 as part of an earlier study. GPS collar data assisted in specific study area 

selection by providing detailed information around mountain goat population distributions and 

movement throughout the Palisades Mountains (Lowery et al. 2017). The Palisades Mountains 

sit in the southwestern corner of the Greater Yellowstone Ecosystem (GYE) and border the 

Teton Range to the north, the Snake River Canyon to the East, and Palisades Reservoir and 

Snake River to the south and west. The terrain is largely characterized by steep drainages and 

high peaks. Elevations in the area vary from 1700 to 3100 meters and barely reach above tree 

line.  

Sampling Design and Survey Methods 



7 
 

 To delineate survey sites, a 500 x 500 meter grid was overlaid across the Palisades study 

area. 70 sampling units were selected (for information on sample size, see Appendix VI) using 

the generalized random-tessellation stratified (GRTS) sampling tool with the R package spsurvey 

(Kincaid and Olsen 2017, R Core Team 2015). Once sample sites were selected, we used an 

independent double-observer point count technique (for information on data collection protocol 

and processes, see Appendix I; for information regarding testing and selection of field methods 

used in this project see Appendix VII) to survey sites a minimum of 2 times throughout the field 

season in order to test different periods of sampling closure (July 2, 2019 and August 23, 2019). 

During each visit, sites were surveyed by two observers who collected independent and 

simultaneous mountain goat count information from observation points outside of the survey site 

(between 100 and 2500 meters from the nearest site boundary) (for more information of survey 

protocol, see Appendix II). Surveys were conducted during daylight hours between 07:00 and 

20:00 MST.  Independent double-observers surveys account for imperfection detection and 

estimate detection probability from variation in collected count data – offering both temporal and 

spatial repeat counts (Royle 2004; Kery 2010; Kery and Schaub 2012). Spatially replicated 

counts were collected because observers surveyed from different observation points with 

disparate vantages of survey sites (for detailed field method protocols see Appendix II).   

N-mixture Abundance Model 

 We used an N-mixture model in a Bayesian framework to estimate mountain goat 

abundance (Royle 2004). N-mixture models estimate abundance using information gathered from 

repeat counts (Royle 2004). N-mixture models estimate total population abundance by 

calculating a mean abundance per site (λ). N-mixture models estimate abundance from a two-part 

process: the biological process which estimates true abundance (at site i, for occasion k) as a 
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random draw from a Poisson distribution centered around λ and an observation process which 

leverages count data (and variation between repeat counts) as a random draw from a binomial 

distribution centered around true abundance (Nik) with a probability of success (pijk) (from site i, 

for observer j, during occasion k) (see Equation 1). N-mixture model estimate total population 

abundance by multiplying λ by the total number of sites in the study area.  The model can use 

both spatially or temporally replicated counts (Royle 2004, Kery and Schaub, 2012). Here, we 

use three disparate approaches to analyze count data collected. 

Equation 1: 

Nik ~ Poisson(𝜆 ) 

yijk ∼ Binomial (Nik , pijk ) 

Analysis 

(1) Season Abundance model – Assumes closure during July-August field season 

 The first approach analyzes mountain goat count data using the most traditional N-

mixture model.  This approach uses information from temporally replicated counts to obtain an 

abundance estimate that is adjusted based on variation in counts between visits.  This model 

assumes closure between repeat surveys and therefore, produces a single abundance estimate for 

the field season.  

(2) Occasion Abundance Model– Assumes closure within occasion 

 The second approach analyzes mountain goat count data using a modified N-mixture 

model to estimate abundance. This approach uses information from temporally and spatially 

replicated counts to obtain an abundance estimate that is adjusted based on variation in counts 
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between observers and within survey occasion.  This model assumes closure within a survey 

occasion and therefore, produces four abundance estimate (four is the maximum number of visits 

a site received). From the four abundance estimates, we can calculate a mean abundance for the 

total population throughout the field season.  

(3) Daily Abundance Model– Assumes closure within survey-day 

The third approach analyzes mountain goat count data using the same modified N-

mixture model to estimate abundance as the Occasion Abundance Model. Again, this approach 

uses information from temporally and spatially replicated counts to obtain an abundance estimate 

that is adjusted based on variation in counts between observers within survey occasion. A survey 

occasion is defined as a single day for the Daily Abundance Model.  This model assumes closure 

within a survey-day and therefore, produces 29 daily abundance estimates (we completed 29 

survey-days throughout the field season). From the 29 abundance estimates, we can calculate a 

mean abundance for the total population throughout the field season.  

 

RESULTS 

 During the 2019 field season, 70 randomly selected sampling units were surveyed 

between two and four times from July 2 and August 23, 2019 – totaling 29 survey-days. In this 

paper a survey-day consisted of surveys conducted by a minimum of one survey team (two 

observers) and a maximum of 3 survey teams (six observers).  Therefore, a survey-day was 

defined as a day that more than one site was surveyed by a minimum of two observers. 

Observers recorded mountain goats detected inside or outside of sites. As a result, crews 

recorded nine separate mountain goat detections within sites – totaling 26 individuals counted 
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within survey sites. From the 9 separate detections, two were repeat detections in sites. For more 

information on goat detections inside and outside of sites, see Appendix II and Appendix V.  

By using a GRTS sample, we derived an exact proportion of the study area surveyed. The 

sampling fraction survey was 70/574 = 0.12 of the study area. This proportion was included in 

each N-mixture model to estimate total population abundance. 

Analysis 

(1) Season Abundance model – Assumes closure during July-August field season 

In the first approach to analyzing abundance, we used a standard N-mixture modelling 

technique. This approach estimated the Palisades mountain goat abundance at 435 with a 95 % 

credible interval of between 113 and 721 mountain goats (Figure 1).  These data were analyzed 

using a traditional encounter history format where each site was visited between two and four 

times. In the likelihood, when modelling the observation process, observations were drawn from 

a binomial distribution of imputed abundance at site (i) with a probability of success being the 

estimated detection probability of observer j. Here, the estimated abundance is based on the 

maximum observed counts across all occasions – requiring the population is closed at the site 

level from July 2 to August 23. Because few repeat visits produced similar counts from occasion 

to occasion, this approach estimated a low detection probability of 0.14 and a 95% credible 

interval of between 0.08 and 0.22. 

Occasion Abundance Model (2) – Assumes closure within occasion 

In the second approach to analyzing and modelling abundance, we made a slight 

alteration to the N-mixture model’s observation process in which abundance was estimated for 

each of the four survey occasions (producing 4 abundance estimates). This approach estimated 
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the total mountain goat abundance at 104 with a 95 % credible interval of between 78 and 144.  

Abundance estimates vary from occasion to occasion with the first occasion estimating a 239 

mountain goats with a 95 % credible interval of between 213 and 287; the second estimating a 32 

mountain goats with a 95 % credible interval of between 8 and 73; the third estimating a 43 

mountain goats with a 95 % credible interval of between 16 and 90; and the fourth estimating a 

103 mountain goats with a 95 % credible interval of between 41 and 180.  

These data were analyzed using a traditional encounter history format where each site 

was visited between two and four times (Figure 2). In the likelihood, when modelling the 

observation process, we added a second level of indexing such that abundance estimates were 

drawn from site i by observer j at occasion k. Here, the estimated abundance was based on the 

observed counts within each occasions – requiring the population is closed at the site level within 

a cycle of site surveys (typical length of time to conduct a complete survey cycle was 2 – 3 

weeks). Replication for this approach was acquire from the independent double-observers 

surveying from spatially distinct vantage points. Because site-level populations were closed 

within repeat visits, the true population size within each site is no longer assumed constant 

between visits. However, this model likely violated the closure assumption due to the length of 

assumed closure period.  Finally, since most mountain goat detections between observer pairs 

produced similar counts, we estimated a higher detection probability of 0.53 and a 95% credible 

interval of between 0.38 and 0.69 with this approach (Figure 4). 

Daily Abundance Model (3) – Assumes closure within survey-day 

In the third approach to analyzing and modelling abundance, we used the same model as 

the second approach to the N-mixture model’s observation process. However instead of 

estimating abundance on an occasion basis, we rearranged the data such that data were analyzed 
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on a daily basis (Figure 3).  This approach estimated the mean total mountain goat abundance at 

104 with a 95 % credible interval of between 68 and 153.   Since these data were analyzed by 29 

survey-days (between 3 and 14 sites were surveyed during a survey-day), we obtained 29 

abundance estimates. The 29 mean estimates varied from 88 to 166 mountain goats. Data were 

analyzed using the same model as the second approach, where occasions are equivalent to 29 

survey-days rather than 4 survey occasions. Thus, estimated abundance was based on the 

observed counts within each survey day. Replication for this approach was acquired from the 

independent double-observers surveying from spatially distinct vantage points. Because 

populations at the site level were closed within each survey-day, variation in counts from day to 

day were no longer related. Finally, since most mountain goat detections between observer pairs 

produced similar counts, we estimated a higher detection probability of 0.54 and a 95% credible 

interval of between 0.38 and 0.68 with this approach (Figure 4). 

 

DISCUSSION 

In this paper, we present a novel approach to sampling rare and elusive species. This 

approach demonstrates that low-density species abundance can be estimated by (1) collecting 

informative count data using probability-based sampling, (2) estimating detection probability 

from temporally or spatially replicated count data, and (3) analyzing of count data such that 

closure assumptions can be tested and met. By following the steps outlined in this paper, we 

collected data in a systematic way that produce an unbiased population estimate by directly 

address the problem with haphazardly collected data (no probability-based sampling design) and 

biased parameter estimates (a result of violating field assumptions and ineffectively accounting 

of imperfect detection).   
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Here, we evaluated three disparate mountain goat abundance estimates from N-mixture 

models.  Each model analyzed the same count data while assuming different periods of 

geographic closure. From model results, we examined the varying levels of impact that violating 

closure assumptions has on parameter estimates. The first model evaluated count data that 

assumed closure within the field season (Season Abundance Model, Figure 1). The second model 

evaluated count data that assumed closure within survey occasions (Occasion Abundance Model, 

Figure 2). The third model assumed closure within a single survey-day (The Daily Abundance 

Model, Figure 3). 

In the Season Abundance Model, abundance estimates were far greater than those 

estimated in the Occasion Abundance Model and Daily Abundance Model. An overestimated 

abundance (N = 435) is likely explained by the largely underestimated detection probability 

(Figure 1). Underestimation of detection probability is an expected result of violating the closure 

assumption in the Season Abundance Model.  Therefore, overestimation of the abundance 

parameter is supported by the results of this model.  Conversely, both the Daily Abundance 

Model and the Occasion Abundance Model estimated similar mean total abundances of 104 

individuals – note that mean total abundance was calculated from multiplying λ (mean 

abundance per site) by the total number of sites in the study area.  Because λ was estimated 

similarly from both models (Occasion Abundance Model and Daily Abundance Model), total 

abundance was also similar in both models.   Variability among Occasion Abundance Model 

estimates (Figure 2) indicates the closure assumption was likely not met for this model as well. 

This makes sense biologically as mountain goats can move between sites within the period of 

assumed closure used in the Occasion Abundance model (survey occasion). However, the 

consistency and statistically equivalent estimates produced from the Daily Abundance Model 
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(Figure 3) demonstrate that this model most accurately estimates abundance.  We know that 

closure was met (producing an unbiased estimate) since field assumptions incorporated count 

data that were collected within a time period that matches mountain goats movement. Therefore 

demonstrating that the Daily Abundance Model the most effective model for estimating 

mountain goat abundance.   

To sufficiently apply the Daily Abundance Model and effectively estimate mountain goat 

abundance, we suggest that ecologists follow the three steps discussed in this paper. Our first 

step to obtaining an unbiased abundance estimate was to incorporate a probability-base sampling 

scheme. The Daily Abundance Model’s statistically equivalent abundance estimates are a due, in 

part to application of a complete random sample survey design.  Random sampling worked in 

this study because we chose a grid cell size based on area that would be both small enough to 

effectively survey and big enough that mountain goats would likely not move in or out of sites 

during surveys.  Additionally, we found that when we analyzed temporal and spatial covariate 

influence on occupancy (distribution), we were unable to gather enough information to define 

disparate strata and therefore rejected use of a stratified sampling design (see Chapter 2). In 

conclusion, we show that a complete random sample sufficiently surveyed mountain goats while 

also demonstrating that simplified sampling efforts can be effective for low-density species 

abundance estimation.   

The second step to estimating unbiased abundance was the use of spatial replication as a 

replacement to repeated site visits. Spatial replication allowed the Daily Abundance Model to 

estimate detection probability while meeting closure assumptions. Estimation of detection 

probability is a key process to correctly modelling for abundance (Royle 2004, Mackenzie and 

Royle 2005). N-mixture models require that repeated and variable counts be gathered in order to 
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estimate abundance (Royle 2004, Kery 2010). We demonstrate that with spatial repeat surveys 

we meet this requirement of the N-mixture model.  Ideally, we could investigate the influence of 

site- and observer-level covariates on detection probability. However, applying covariates to 

estimating detection probability required that we had more detections of mountains goats in sites. 

To make up for this, we assumed a constant detection probability between observers and 

estimated overall a precise detection probability (Figure 4). 

The third step to obtaining unbiased abundance estimates was defining a study area that 

was biologically relevant such that the closure assumption could be met at the study area level. 

Furthermore, survey occasions were defined biologically to match animal movement in and out 

of sites meeting the closure assumption at the site level. Additionally, since sites were surveyed 

simultaneously from spatially unique vantage points, the survey replication requirement – that 

assumes variation in count data to estimate detection probability – was also met. With the Daily 

Abundance Model, we define our survey occasion as a single survey-day.  Within a survey-day 

and during survey periods of 20 minutes, mountain goats did not move between sites, again, 

resulting in meeting the closure assumption. Finally, we demonstrate the efficacy of the Daily 

Abundance Model from its consistent and statistically equivalent estimates of each daily 

abundance.  

An advantage of the Daily Abundance Model is its ability to leverage λ - the mean 

abundance estimate across all sites. A mean abundance estimate (λ) fits well here because it 

allows goats to rearrange between survey occasions (in this case, rearrange each day).  

Additionally, λ allows for flexibility when accounting for mountain goat distribution across sites 

(i.e. it does not matter whether all of the goats are in one site versus some sites) while assuming a 

constant total population size. With N-mixture models, true abundance is a function of a random 
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draw from a Poisson distribution that has a mean around λ. Because true abundance (Nik) of site i 

for occasion (or day) k is a function of a Poisson random variable, Nik can vary within sites from 

survey-day to survey-day, all the while λ remains constant.  

N-mixture models have three important assumptions (1) the population is closed at the 

site level during survey period; (2) independent and identical detection probability for all 

individuals within a site (detection probability can vary between sites if defined by site-level 

covariates); and (3) absence of double counting individuals/or other false positive errors (Kery 

2010, Royle 2004). Until now, many research projects when applying count data to N-mixture 

models found the closure assumption difficult to meet (Kery 2010, Joseph 2009). To date, one 

way that ecologists approach closure assumption violations in N-mixture models is through the 

development of a generalized N-mixture model (Dail and Madsen 2011).  This approach aims to 

address the closure assumption by removing it and making the generalized N-mixture model 

applicable to open populations. While this increasing generalizability can be advantageous, it 

adds a level of complexity to the model itself.  With our Daily Abundance Model, we solve the 

assumed closure violation at the site level with a simple rearrangement of the repeat count data.  

During the 2018 and 2019 field seasons, Idaho Department of Fish and Game conducted 

aerial counts as a part of their current mountain goat monitoring efforts.  These flights include 

minimum count surveys and have served as the primary tool for mountain goat population 

counts.  We compared our abundance estimates to the aerial surveys and found that, in both 

years, we estimated higher abundance than aerial surveys counted.  The 2018 flight counted 101 

mountain goats in this study area while the 2019 flight counted 48 mountain goats. These flight 

counts can be helpful as a means to ensure that our abundance models produce an estimate that is 

at least greater than the aerial survey counts.  As a result, variability in minimum counts suggests 
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that aerial surveys are not only unreliable, but also do not offer any measure certainty around 

aerial counts.  

While estimating abundance of wildlife populations can be difficult, it is imperative to 

conservation and management of future ecosystems. Challenges that exist around obtaining 

useful abundance estimates are further increased when access to the population of interest is 

limited. In this paper, we present a tool that directly addresses that challenge. The field of 

ecology has often relied on minimum counts or indexes of relative abundance to inform 

management decisions around low-density species populations.  We provide a solution to 

sampling and parameter estimation that directly address the need to rely on relative abundance 

and minimum counts to make management decisions. By following the steps outlined in this 

paper, ecologists can finally begin to obtain unbiased estimates and begin to improve precision 

around abundances estimates of rare and elusive species – a goal that was, until now, thought 

difficult to achieve. 
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Figure 4: Estimated detection probability (detect) 

from the Season Abundance Model, Occasion 

Abundance Model & Daily Abundance Model. 

The blue vertical line in the Season Abundance 

Model plot and Occasion Abundance Model plot 

represents the mean detection probability 

estimated from the Daily Abundance Model. Note 

that we set the two observers’ probability of 

detection equal to one another, thus producing a 

since estimate of detection probability. 
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Chapter 2 

Understanding Mountain Goat Occupancy Patterns to Improve 

Abundance Estimation  

INTRODUCTION 

In the field of ecology, occupancy, or the presence-absence matrix of a species, has 

been described as a fundamental unit of analysis (Gotelli 2001, McCoy and Heck 1987).  

Occupancy, as a tool, serves to measure species occurrences, species ranges and species 

distribution through estimating the probability that a sampling unit is occupied by a species of 

interest (Mackenzie et al. 2006, Kery 2010).  Additionally, occupancy is a parameter that can 

be effectively estimated for a variety of taxa (Mackenzie and Royle 2005). Because of its 

flexibility, occupancy can be a more efficient parameter to estimate for species that span a 

variety of densities and habitat types. Occupancy, can therefore offer additive information or 

supplementary information to species abundance estimates by describing where and when 

species are detected across the landscape. 

Occupancy is further defined as the assessment of species presence/absence on a 

sampling unit. Specific habitat characteristic can often help define the probability that a unit 

contains the species of interest (Thompson 2004, Mackenzie et al. 2006). Additionally, 

estimating the probability of occupancy on a sampling unit requires identifying if and when we 

fail to detect individuals in a sampling unit (otherwise thought of as false negatives) (Tyre et al. 

2003). Accounting for imperfect detection can be accomplished by estimating a probability of 

detection for the species of interest. Incorporating detection probability into occupancy 
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estimation allows ecologists to avoid biasing parameter estimates by effectively determining 

undetected individuals from occurrence data (Mackenzie et al. 2006).  

Variation in estimates of detection probability and occupancy can be caused by a variety 

of factors including animal behavior, geographic landscape, vegetation cover, and personnel 

experience (White et al. 1982).  Once identified, factors driving estimates of species occupancy 

and detection probability can help more precisely model parameters of interest with the use of 

stratifying sampling efforts (e.g. Scott et al. 2002). Occupancy can therefore be a tool to guide 

appropriate sampling designs. Selecting an appropriate sampling design is of particular 

importance for low-density species as unbiased occupancy estimates can be difficult to come by 

with decreased encounters (Thompson 2004, Engler, Guisan & Rechsteiner 2004). 

An example of a low-density species that is difficult to obtain precise parameter estimates 

for is the Rocky Mountain Goat (mountain goats). Mountain goats are high alpine-dwelling 

ungulates that occur in low densities throughout the steep and rocky habitat of the northern 

Rocky Mountains (Festa-Bianchet and Cote 2008). Because they are found at relatively low 

densities, exhibit grouping behavior and occupy difficult-to-access terrain, mountain goats have 

been challenging to monitor. While some populations remain stable for seasonal harvest, others 

have shown unexplained population declines (Glasgow et al. 2004, Festa-Bianchet and Cote 

2008). Theories for these declines range from over-harvest to climate change (Festa-Bianchet 

and Cote 2008, Rice et al. 2009). In an attempt to manage for decreases in population size, 

wildlife departments introduced mountain goats to a variety of new mountain ranges across the 

northwestern United States (Cote and Festa-Bianchet 2003). Many of these introductions have 

been successful, with new mountain goat populations in Wyoming, Colorado, Utah, South 

Dakota, Nevada, Alaska, Idaho, Montana, and Washington (Hamel et al. 2006). While declining 
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native mountain goat populations remain worrisome, the growth of introduced population 

distributions have ecologists concerned about disease transmission and resource competition 

with vulnerable native bighorn sheep (Gross 2001, DeVoe et al. 2015, Varley et al. 1994, 

Houston et al. 1995; Flesch et al. 2016).  Therefore, there is a need to better understand shrinking 

and expanding mountain goat population ranges. Such questions around population distributions 

can be directly addressed from obtaining unbiased estimates of occupancy.  

Incorporation of a probabilistic sampling design is essential to obtaining an informative 

occupancy estimate (Anderson 2001, Mackenzie et al. 2006). In the case of this paper, an 

effective sampling design means applying a completely random sample of all possible survey 

sites to effectively identify if and how mountain goat occupancy might vary across spatial and 

temporal covariates. Probability-based sampling is different from convenience sampling which 

involves collecting data from, for example, hiking trails or heavily populated areas where people 

are more likely to encounter the species of interest (i.e. disease prevalence and occurrence) 

(Nusser et al. 2008).  By incorporating random sampling to the collection of occurrence data, 

ecologists can effectively extrapolate about the population as whole for an unbiased occupancy 

estimate – even for low-density species like mountain goats (Mackenzie and Royle 2005, 

Thompson 2004). 

Random sampling is the most basic form of theoretically driven sampling. Results from 

random samples can often guide sampling designs for further and more involved sampling 

efforts (Lohr 2010).  Complete random sampling designs are often used to evaluate overall 

spatial and temporal covariate effects on occupancy and detection probability estimation.  By 

answering the question of what type of habitat variables define occupied sites and what temporal 

frames optimize species detection, ecologists can better define sampling designs for future 
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abundance surveys (as in Chapter 1).  Identifying covariate correlation with mountain goat 

occurrence, allows ecologists to determine how best to stratify sampling designs.  Stratified 

sampling designs are appealing as they can increase precision of estimators (Lohr 2010).  It is 

critical, however, that correct supplementary knowledge on species distribution is gathered prior 

to implementing stratified sampling scheme (Cochran 1977, Lohr 2010).  

A wildlife monitoring tool that has been largely utilized in recent years is the 

remotely-triggered camera trap (camera trap).  Camera traps offer a promising solution for 

population monitoring as rapid technological advances and decreasing prices have made 

camera traps a cost effective, efficient, non-invasive tool for estimating species occupancy 

and abundance (O’Connell et al. 2011). Recent advancements in statistical models applied to 

camera trap data have further enhanced the versatility of remotely-triggered cameras. Again, 

with application of camera traps to probability based sampling schemes, ecologists have 

begun to see improvements in parameter estimates (O’Connell et al. 2011).  Since camera 

traps are widely applicable and significant model advancements have been made, we sought 

to test their efficacy as an efficient tool for determining unbiased occupancy estimates of a 

low-density species in rugged terrain. 

Because abundance is often of more interest to wildlife managers, few studies have 

thoroughly estimated mountain goat occupancy (DeVoe et al. 2015, Lowrey et al.  2017, 

O’Reilly et al. 2012). DeVoe at al. (2015) conducted independent double-observer surveys 

over three field seasons (June – October) to estimate occupancy in the northern Absaroka and 

Gallatin Ranges of Wyoming and Montana. While this technique proved successful and 

informative, it also excluded mid-elevation and below treeline habitat resulting in potential 

bias and required extensive and prolonged field efforts making this technique quite expensive.  
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Here, we test an alternative technique that aims to reduce field sampling effort in addition to 

leveraging a completely random sample sampling design to include all potential mountain 

goat habitat. 

Based on mountain goat habitat selection criteria from Lowrey et al. (2017) and 

occupancy estimation from DeVoe et al. (2015), we selected four covariates to evaluate with 

mountain goat occupancy: variation in elevation (elev), mean slope angle (slope), mean aspect 

(aspect) and mean forest cover (cover) (DeVoe et al. 2015, Gross et al. 2002, Poole and Heard 

2003).  The covariates we chose to evaluate were selected based on habitat characteristics that 

were predicted to correlate with mountain goat occurrence.  Because mountain goats are 

typically found at high elevations and on steep slopes, we predicted a positive relationship 

between mountain goat occupancy and covariates of elevation and slope angle.  Additionally, 

we predict that high temperatures in the summer would suggest mountain goats, a cold-

adapted species, seek cooler temperatures on northern aspects.  Therefore, predicting that 

mountain goat occupancy have a positive relationship with north-facing aspects. Finally, we 

chose to evaluate cover as we predicted that mountain goats would seek habitat near and 

above treeline, suggesting a negative relationship between mountain goat occupancy and 

cover. Again, evaluation of these various models aims to guide future abundance and 

distribution survey efforts.  

In this paper, we used camera traps with a completely random sampling design to 

estimate unbiased mountain goat occupancy (presence/absence) as a proxy to measure 

mountain goat distribution.  We were interested in variation across mountain goat 

distributions for both spatial and temporal covariates.  We address whether camera traps could 

be at tool for estimating spatial variation by measuring elevation, slope angle, aspect and 
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cover influence on mountain goat occupancy estimates. In addition to assessing whether 

camera traps function as a tool to assess where mountain goats were encountered we sought to 

examine if we could detect when mountain goats were encountered (i.e. does occupancy vary 

by disparate time periods within the survey season). Obtaining an accurate and firm grasp of 

how mountain goat encounters vary temporally and spatially could inform further population 

monitoring efforts and guide future sampling designs for increased parameter precision.  

 

METHODS & MODELS 

Study Area    

We conducted a single season of camera trap surveys during the summer of 2019 in a 200 

km2 region of the Palisades Mountains in eastern Idaho. The study area selection was based on 

decades of mountain goat population surveys conducted by Idaho Department of Fish and Game 

and Wyoming Department of Game and Fish (Idaho Department of Fish and Game 2015, Fralick 

2015).  Additionally, GPS collars were fit to 11 mountain goats in 2011 and 2012 as part of an 

earlier study. GPS collar data provided detailed information for specific study area selection and 

population distributions (Lowery et al. 2017) (Appendix I). The Palisades Mountains sit in the 

southwestern corner of the Greater Yellowstone Ecosystem (GYE) and border the Teton Range 

to the north, the Snake River Canyon to the East, and Palisades Reservoir and Snake River to the 

south and west. The terrain is largely characterized by steep drainages and high peaks. Elevations 

in the area vary from 1700 to 3100 meters and barely reach above tree line.  

Sampling Design and Survey Methods 
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 To delineate survey sites, a 500 x 500 meter grid was overlaid across the Palisades study 

area. 70 sampling units were selected using the generalized random-tessellation stratified 

(GRTS) sampling tool with the R package spsurvey (Kincaid and Olsen 2017, R Core Team 

2015). Camera traps were placed in all physically accessible sites (i.e. no cliffs or hazardous 

terrain such that technicians could access sites safely), totaling 61 survey sites. Once sample sites 

were selected, we placed a camera trap in each site such that photos captured the maximum 

amount of space in an image. For further camera placement information and protocol, see 

Appendix III. All cameras were placed on the landscape between the dates of July 19, 2019 and 

August 12, 2019. Each camera was placed on a time-lapse setting such that a photo was taken 

every 15 minutes between the hours of 0530 and 2130 each day.  A time-lapse setting was 

selected in order to maximize capturing photos of mountain goats in a mostly open landscape. 

This technique allowed us to evaluate camera traps as a tool for unbiased occupancy estimates.  

Analysis 

 Prior to camera trap data analysis, images were scored using the program Timelapse 

(Greenberg et al. 2019).  Timelapse allows the viewer to count the total number of individuals 

captured per image. Additionally, the program allows image viewers to track individual animal 

species, sex and age.  However, most images captured mountain goats at a distance such that sex 

and age were undetectable. For a full description of camera trap viewing protocol, see Appendix 

IV.    

 A site-occupancy model was used in a Bayesian framework to measure mountain goat 

distribution across sampling units (Mackenzie et al. 2006).  In this model, the true state of each 

site (zi) is a random draw from a Bernoulli governed by the occupancy parameter ψ.  We can 

identify the probability of detecting the species of interest through modelling the observation 
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process of site i during survey j (yij), which is the result of a random draw from a Bernoulli 

distribution around true occupancy per site (zi) multiplied by the probability of detection (pij). In 

this model, both ψ and p were separately estimated by repeated site visits (Kery 2010). 

Additionally, given occurrence data are available, the model can estimate the influence of 

covariates on both parameters.  

zi ~ Bernoulli (ψ) 

yij ∼ Bernoulli  (zi , pij ) 

 In order to account for repeat visits with camera traps (a technique that has the ability to 

survey continuously), we selected arbitrary time frames with which to define a survey occasion.  

Here, a survey occasion was defined as 4 days. By defining this time frame, we determined if a 

goat was detected in a photo within each 4-day period. Within the field season, this amounted to 

six four-day occasions – or 6 visits per site.   

Spatial and Temporal Analyses 

In total, we ran 11 occupancy models: a constant model, 2 periods of occupancy models, 

3 periods of occupancy, a time-varying model and 4 spatial covariate models.  To test for 

influence of temporal variation in mountain goat occupancy, we analyzed data in three different 

time intervals: (1) full field season (6 occasions in July 18 – August 11); (2) two periods of 12 

days (3 occasions per period in July 18 – July 30 and July 31 – August 11); and (3) three periods 

of 8 days (2 occasions per period in July 18 – July 26, July 27 – August 3, August 4 – August 

11). Additionally, we ran a time-varying model to evaluate variation in detection probability in 

the constant model.  
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To evaluate spatial covariate influence on mountain goat occupancy estimates, a 

summary value was calculated for each survey site. Covariates measured were: variation in 

elevation (elev), mean slope angle (slope), mean aspect (aspect) and mean forest cover (cover). 

For elevation and slope, we compared the variable mean to variable standard deviation (a 

measure of covariate variation). Using DIC and model convergence, we determined that standard 

deviation was more effective for measuring elevation influence on occupancy and mean was 

more effective for measuring slope influence on mountain goat occupancy.  

In order to assess influence of variables on mountain goat occupancy, we used model 

selection criteria (DIC), coefficient parameter values, MCMC model outputs and R̂ values.   

 

RESULTS 

 We ran the constant occupancy model on each of the three temporal models (the single-

period model, 2-period model, and 3-period model).  We found that the occurrence data collected 

from camera traps did not have sufficient encounters to determine variation in occupancy across 

disparate temporal periods as models failed beyond a single period (Table 1, Figure 4). After 

identifying a single temporal period for which to analyze occurrence data, we ran a time-varying 

model to identify if detection probability could be modeled as varying across time in the constant 

model (Table 2). Because the time-varying model did not fully converge, we did not further 

evaluate temporal variation across the spatial covariate models (Figure 2, Table 2).  

The constant model did successfully converge (Table 3), suggesting it an effective model 

in estimating overall occupancy. For the constant model, our mean occupancy estimate was 

0.157 per cell with a 95% credible interval between 0.064 and 0.294 (Figure 1a). Mean detection 
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probability from the constant model was estimated 0.304 with a 95% credible interval of 0.084 

and 0.475 (Figure 1b).      

 All four spatial model results (variation in elevation, mean slope, mean cover and mean 

aspect) suggested no influence on mountain goat occupancy as our 95% credible intervals all 

straddled 0 (Figure 3). Therefore, we found neither weak nor strong correlation between 

covariates and mountain goat occupancy. Upon careful evaluation of convergence statistics such 

as R̂ (a value less than 1.1 is one evaluation technique for model convergence) and MCMC 

model outputs, we found that most spatial covariate models meet convergence requirements 

(Table 4, Table 5, Table 6, Table 7). However, MCMC trace plots and density plots along with 

the MCMC effect size from the slope model and aspect model suggest the models did not 

converge. In addition to model convergence evaluation, we used model selection criteria (DIC) 

to further confirm that the constant model was clearly rated our top model (Table 3).  

 

DISCUSSION 

In this paper, we estimate overall mountain goat occupancy (ψ) and probability of 

detection (p) using camera trap data in a Bayesian occupancy model with a complete random 

sample survey design. While we did estimate overall occupancy, we did not find any correlation 

between spatial or temporal covariates and occupancy (Figure 3, Table 1).  Contrary to 

assumptions that mountain goat occupancy is influenced by covariates such as elevation and 

slope angle (DeVoe et al. 2015, Lowrey et al. 2017), we found that the constant model was our 

top model for occupancy estimation. Likely explanations for these results are: (1) mountain goats 

are widely distributed throughout the study area and mountain goats do occur beyond high 
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elevations and steep slopes; (2) the size of our survey sites was large enough that sites contained 

varying covariate values; (3) or we did not have enough mountain goat encounters in our camera 

trap data to confidently detect covariate influences on occupancy estimates. While these results 

do not help define strata that would allow increased precision in future study design efforts, we 

were able to examine the efficacy of camera trap surveys and random sampling for estimating 

mountain occupancy across temporal and spatial variations.  By using a random sample, we 

avoided biasing our estimates from incorrect assumptions about goat distribution.   

One explanation for the lack of support for spatial covariate correlation with mountain 

goat distribution is that mountain goats are widely distributed across geographical areas. 

Previous research suggests that mountain goat surveys have underrepresented non-alpine habitat 

characteristics (DeVoe et al. 2015, Varley et al. 1997, Lowrey et al. 2017).  The 

underrepresentation of non-alpine habitat variables is largely due to the assumption that 

mountain goats occupy only high elevation and steep terrain. However, from GPS collar data 

(Lowrey et al. 2017) and camera trap data analysis, we know that mountain goat ranges expand 

beyond the alpine. The hypothesis that mountain goat distribution varies more widely than 

ecologists assume has been the driving force behind selection of a completely random sample for 

the study design behind this paper.  While further investigation could provide more information 

on habitat characteristics that define mountain goat distribution, our results suggest that this 

population of mountain goats cannot be defined by the spatial covariates that we evaluated in this 

paper. Therefore, our results support the hypothesis that mountain goat distribution is not highly 

correlated with spatial covariates and suggests that mountain goat distribution varies throughout 

this study area. These results are further supported by the fact that goats occupy habitat in the 

Black Hills of South Dakota and at sea level in Alaska (Hamel et al. 2006). 
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Another factor for explaining the lack of support for spatial covariate correlation with 

mountain goat distribution is the synthesis of complex terrain to a single value per sampling unit. 

Here, we used camera traps to survey 500 x 500 meter grid cells (our sampling unit) for which to 

estimate presence and absence of mountain goats.  In the Palisades study area, a 500 meter grid 

cells included significant variation across covariate values. Variation in covariates that fit into a 

single sampling unit include, but are not limited to: (1) entire mountain-tops that include all slope 

aspects; (2) large cliffs in which 500 horizontal meters include 1000 meters in elevation change; 

and (3) steep drainages with flat valleys which offer 0 degrees up to 90 degree slope angles.  In 

conclusion, due to variation of spatial covariates across complex terrain, synthesis of habitat 

characteristics to a single value per sampling unit should be viewed with caution. 

 The third explanation for no correlation between spatial covariates and mountain goat 

occupancy is insufficient numbers of mountain goat encounters. While camera traps offer a tool 

for continuous monitoring (especially when applying a time-lapse setting), mountain goats 

remain a low-density species.  With low-density species, we should expect infrequent species 

encounters when obtaining unbiased estimates from a complete random sampling design 

(Mackenzie and Royle 2005).  As a result, of 24 total survey-days with photos taken every 15 

minutes, we encountered mountain goats in 7 of the 53 usable camera-sites and 5 sites containing 

repeat encounters between survey occasions. While these data provide enough information for 

overall parameter estimation, it is insufficient to extrapolate beyond overall occupancy.  Ways to 

address this issue in the future are to increase the length of survey time or increase the number of 

cameras deployed.  

While these results do not suggest strata definition or inform future study design efforts, 

we were able to examine the efficacy of camera trap surveys and random sampling for estimating 
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mountain goat occupancy across temporal and spatial variations. Recently, camera traps have 

showed significant promise as a useful tool for gathering population monitoring data (O’Connell 

et al. 2011). They offer the opportunity to collect continuous information on spatial use by a 

variety of taxa, especially when using time-lapse photos and the potential for capturing close 

images of the species of interest are available. We found that although camera traps have proved 

useful for estimating species occupancy for a variety of taxa, that they do not offer an effective 

tool for measuring temporal period or spatial covariate effects on mountain goat occupancy or 

detection probability in this study area.  Because we did not find any support for stratifying 

future sampling designs to estimate occupancy or abundance of mountain goats, we can feel 

confident in the results we obtained from Chapter 1 – a study where we successfully estimated 

abundance using a complete random sample.   

For effective implementation of stratified sampling, multiple variables must be taken into 

account. First, ecologists must have sufficient information about the population of interest in the 

sampling frame in order to guide strata definitions. Second, ideally ecologists have information 

about how many and what proportion of the population belong to each strata.  Third, individuals 

within the population cannot move between strata. Finally, stratification is most effective when 

mean covariate values vary widely between each strata (Cochran 1977, Lohr 2010).  

Consequences of incorrectly defining strata in stratified sampling designs result in heavily 

biasing estimates in addition to adding complexity.  Cochran (1977) describes the effects of 

errors in defining strata within a sampling design as: (1) producing biased estimates, and (2) 

nullifying the precision gained from stratifying because of introduced bias that cannot be made 

up for by increasing sample size within a strata. Therefore, the consequences of wrongly 

stratifying do not out-weigh the low encounter rates obtained from a complete random sample.  
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We demonstrate that while it is often assumed that only occupancy can be estimated for 

low-density and rare species, this is not always true.  In Chapter 1, we show that abundance can 

be estimated for a low-density and difficult-to-monitor species using non-invasive, ground-based 

sampling. Here, in Chapter 2, we show that we can also use non-invasive, ground-based 

sampling to estimate overall occupancy.  We found that with double-observer ground surveys 

(methods from Chapter 1), mountain goats were detected in 10% of our sites (see Appendix V) 

while occupancy estimates suggest that mountain goats occur in 15% of our sites. We find that 

mean detection probability was slightly higher in our N-mixture models (0.54) than our 

occupancy models (0.30). However, because the 95% credible intervals from both studies’ 

detection probability estimates overlap, we can infer that two estimates are statistically equal (see 

results from Chapter 1).  Therefore, we show that for near equal personnel effort and less cost 

(no cameras or batteries), we can estimate the abundance of mountain goats (Chapter 1) with 

better results than occupancy (Chapter 2). 

In this paper, we present the value of random sampling when surveying for low-density 

species distributions. Application of smart sampling designs avoid limiting information gain 

during the initial stages of species population parameter estimation. When surveying for a rarely-

encountered species, a common goal is to identify when and where those species occur.  Random 

sampling can be a useful tool in ensuring information gain is not limited to specific habitat 

characteristics that may be misguided, leading to biased parameter estimates. When effectively 

estimated, occupancy can help fill in information regarding how species are distributed across 

the landscape.  Because we did not find any support for stratification by temporal or spatial 

variables, we show that for this study, a random sample was a good fit for estimating occupancy.   
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FIGURES

 

Figure 1: Estimates of occupancy and detection probability from the constant model. The 

black line denotes the mean estimated value for each parameter. 
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Figure 2: Estimates of occupancy and detection probability from the time-varying model. The 

black line denotes the mean estimated value for each parameter from the constant model. Time-

varying models estimate a probability of detection for each survey occasion and results suggests 

high levels variation in probability of detection. Note that during the sixth occasion, the model 

fails as there were not enough mountain goat encounters. 
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Figure 3: Parameter estimates for spatial covariates in blue (elevation, cover, slope & aspect). The x-

axis shows values for various spatial covariates. The dashed gray line denotes zero intercepting the x-

axis and demonstrates little to no correlation between occupancy and spatial covariates. 

 

Table 1: Results from 

occupancy estimates 

from 2 temporal 

periods (July and 

August). Here, we 

estimated occupancy as 

it varied temporally. It 

is clear from Figure 4 

that there are various 

measures of model 

convergence. In Figure 

4, we show trace plot 

results because the 

models clearly do not 

converge suggesting 

that these results are 

insufficient in 

modelling occupancy.  
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 Figure 4: Trace plot and posterior density plot results from occupancy estimates from July only. We 

estimated occupancy from 2 temporal periods (July and August) to determine if mountain goat 

occupancy varied temporally. It is clear from Table 1 that there are various measure of model 

convergence and here we demonstrate that models did not converge despite an acceptable R-hat value. 

Additionally, we do show trace plot results because they also do not converge. 
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Table 2: Time-varying model 

results demonstrate detection 

probability as it varies through 

time.  The table shows a 

disparate detection probability 

for each sampling of the 6 

sampling occasions. Similar to 

estimates of occupancy as it 

varies temporally, we find that 

our time-varying model does 

not converge when measuring 

variation in detection 

probability. The distinct decline 

in detection probability in the 

last survey occasion 

(mean.p[6]) suggests 

uncertainty in model results. 

Furthermore, MCMC posterior 

trace plots and posterior density 

plots present lack of 

convergence similar to that of 

Figure 4. 
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 Table 4: Results from the elevation model. This model was evaluated using Rhat, effect size, MCMC 

model outputs and DIC. 

 

 

Table 4: Results from the elevation model. This model was evaluated using Rhat, effect size, MCMC 

model outputs and DIC. 

 

 

Table 3: Results from the constant model. This model was evaluated using Rhat, effect size, MCMC 

model outputs and DIC. 
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Table 5: Results from the forest cover model. This model was evaluated using Rhat, effect size, 

MCMC model outputs and DIC. 
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 Table 6: Results from the slope model. This model was evaluated using Rhat, effect size, MCMC 

model outputs and DIC. 

 

 

 

Table 7: Results from the aspect model. This model was evaluated using Rhat, effect size, MCMC 

model outputs and DIC. 
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APPENDIX I: PALISADES STUDY AREA MAP 
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APPENDIX II: INDEPENDENT DOUBLE-OBSERVER FIELD PROTOCOL 
BY: MOLLY MCDEVITT, JUNE 2019  

 

The most common method that Mountain Goat Monitoring Crew will use to survey 

mountain goats is called the Independent double-observer method. The independent 

component simply implies that each observer will conduct their own survey without 

communication with your partner. This method is a regularly implemented technique for 

estimating a variety of species population sizes.  In this project, we aim to adapt this method to a 

system and species in a way that it has not been utilized to estimate population. This is really 

cool! With the development of a method that is novel to mountain goat population surveying, 

there will be some kinks to work through.  With that, I ask for patience and feedback to improve 

the technique. Thank you! 

How it works: 

Each observer pair will have a set of grid cells to survey each day (see Palisade Mountain Goat 

Study Area map p.5). Each cell will have a minimum of 2 observation points (OPs). Surveys of 

these cells are conducted in teams of 2 an each observer will have their own OP from which they 

survey from. These OPs will be separated in such a way that each observer obtains a different 

viewshed of the cell. Observers will need to communicate via radio to determine when each 

individual has reached their OP as some OPs will take longer to travel to than others. Know the 

label of each OP regardless of whether you are establishing a new OP or simply revisiting one. 

Make sure you have thought about your route to each OP ahead of time as terrain can be difficult 

to navigate and the viewshed can be different than expected. Once an observer has reached an 

OP, move around to improve viewshed as needed. OP coordinates are reference locations and 

observers can move up to 50 meters from the reference point. Finally, survey for a minimum of 

20 minutes per OP. 

Make a plan. Be safe. Look for goats.  

All survey and observation data will be collected on the Survey123 data collection app (see Data 

Collection with Survey123 above for more information).  

Preparing for a cell survey 

1) Know your list of cell OPs to survey for each day (as a team and as an individual 

observer). 

2) Plan route to OPs accordingly. 

3) Identify who Observer 1 and Observer 2 is. 

4) Communicate with one another to determine when each observer has reached their OP. 

Length of survey does not need to be equal, this is simply for communication with one 

another about where you are in the survey process. 

5) Upon arrival to an OP, each observer will proceed with one of the following: 

o Establish a new OP and Survey a cell 
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▪ Establish a new OP if your current OP does not already exist (the same 

goes for any OP within in a 50 meter radius). 

OR 

o Survey a cell 

Establish a New Observation Point (OP) Form instructions 

If an observation point (OP) has not been establish for a cell (i.e. we have not surveyed this cell 

before or we have discovered a new/improved OP), then once you arrive to this new OP, you will 

open Survey123 and select “Establish new OP”. At the start of the field season, and any time a 

cell is surveyed for the first time, a new OP needs to be established. Make sure to record and 

label the new point correctly in your GPS. Once OPs have been established for each cell and we 

begin to repeat cell surveys, we will no longer need to fill this form out when surveying a cell.  

Note that an OP includes the 50 meters within the recorded coordinates. 

1) Observer Name: your name – the one filling out this form. 

2) Date and start time of survey – This should automatically be filled out in Survey123. 

3) Cell ID – For 2019 surveys, 1 – 70 (these will remain constant throughout a season. 

4) OP ID – Observation point ID. This identifies which OP with respect to THAT cell you 

are surveying from: A, B, C, D, E, F (this would be 6 points for a single cell and will vary 

between cells depending on the complexity of the terrain in THAT cell). 

5) GPS ID -- which GPS are you using to record your OPs and observations from (1 – 6) 

a. Datum – Check to make sure that the Datum is set to the appropriate one – 

WGS84. 

b. Record coordinates in GPS for format 01A or 12B 

6) OP latitude – Your OP’s latitude 

7) OP longitude – Your OP’s longitude 

8) Do you want to survey a cell now? – Confirm that you want to survey a cell now and the 

form will appear. 

Note: Hard copies of this form are not available as the critical information can be recorded in a 

GPS (Cell ID, Point ID, GPS ID, Coordinates and Date collected). 

Cell Survey Form instructions 

9) Observer Name: Your name – the one filling out this form. 

10) Date and start time of survey – This should automatically be filled out in Survey123. 

11) Observer ID – Are you Observer 1 or Observer 2? This can vary from cell to cell, but will 

be the same within a cell survey, no matter the number of OPs a cell has. 

12) Cell ID – For 2019 surveys, cell IDs will fall between 01 and 70 (these will remain 

constant throughout a season). 
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13) OP ID – Observation point ID. This identifies which OP with respect to THAT cell you 

are surveying from: A, B, C, D, E, F (this would be 6 points for a single cell and the 

number will vary between cells depending on the complexity of the terrain in that cell). 

14) GPS ID -- which GPS are you using to record your OPs and observations (1 – 6) 

a. Datum – Check to make sure that the Datum is set to the appropriate one – 

WGS84. 

15) Number of groups of goats detected -- Fill out 0 if you do not detect goats during a cell 

survey. 

16) Confirm your information – YES! 

17) End of survey time – When did you finish surveying your cell? 

18) Notes: Add ‘em if you at all think that I cannot read your mind. 

Once your survey is complete, check with you partner to determine how much more time, if any, 

they need to complete their survey. 

IF goats are observed during a cell survey by only one observer: 

• Once both observers have completed their surveys, ask one another (while you are both 

still at your respective OPs) if you have goat(s) in view.  

• If one observer has goats in view and the other does not, have the observer without goats 

join the observer with goats. However! Do not tell them how many! Just point out the 

goat(s) general direction. 

o When the observers are together and have goats in view, they will conduct 

independent counts of the goat(s). This is key for estimating observer detection 

probability and estimating misidentification rates of males and female 

mountain goats*.  

* Please ask me questions about this if you have them. This is a cool parameter 

estimation step in this research that is pretty fun to learn about.  

o The observer who did not detect goats initially will fill out Record an 

observation form separate from their Cell Survey form. Please add Notes to 

describe the situation in both observers’ forms. 

Definitions: 

*OP = Observation Point 

**MG = Mountain goat 

***Mountain goat group is >= 2 MG within 100 meters. 

****Kid is young of the year – born summer of 2019 

*****Yearling is a MG born the summer before (summer 2018) 
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CELL SURVEY FORM 

Cell ID:  

 

Observer Name:  Observer ID:   Date: 

_____ / _____ / 2019 

OP ID: 

_______ 

OP Latitude:  

43. ______________ 

OP Longitude:  

-111. ______________ 

GPS ID:    (Circle one)                 

 

1      2      3      4      5      6 

Number of mountain 

goat groups detected:          

                                         _________ 

Start time: ____:____:____ 

End time: ____:____:____ 

Notes (DID YOU FILL OUT AN OBSERVATION FORM IF NUMBER OF GOAT GROUP IS > 0??): 

 

Cell ID:  

 

Observer Name:  Observer ID: Date: 

_____ / _____ / 2019 

OP ID: 

_______ 

OP Latitude:  

43. ______________ 

OP Longitude:  

-111. ______________ 

GPS ID:    (Circle one)                 

 

1      2      3      4      5      6 

Number of mountain 

goat groups detected:          

                                         _________ 

Start time: ____:____:____ 

End time: ____:____:____ 

Notes (DID YOU FILL OUT AN OBSERVATION FORM IF NUMBER OF GOAT GROUPS IS > 0??): 

 

Cell ID:  Observer Name: Observer ID: Date: 

_____ / _____ / 2019 

OP ID: 

_______ 

OP Latitude:  

43. ______________ 

OP Longitude:  

-111. ______________ 

GPS ID:    (Circle one)                 

 

1      2      3      4      5      6 

Number of mountain 

goat groups detected:          

                                         _________ 

Start time: ____:____:____ 

End time: ____:____:____ 

Notes (DID YOU FILL OUT AN OBSERVATION FORM IF NUMBER OF GOAT GROUPS IS > 0??): 

 

Cell ID:  Observer Name:  Observer ID: Date: 

_____ / _____ / 2019 

OP ID: 

_______ 

OP Latitude:  

43. ______________ 

OP Longitude:  

-111. ______________ 

GPS ID:    (Circle one)                 

 

1      2      3      4      5      6 

Number of mountain 

goat groups detected:          

                                         _________ 

Start time: ____:____:____ 

End time: ____:____:____ 

Notes (DID YOU FILL OUT AN OBSERVATION FORM IF NUMBER OF GOAT GROUPS IS > 0??): 
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Observation Form instructions 

• This form is for any observation of an individual goat or group of goats observed either 

inside or outside of a cell.  

• Please note that this “Record an observation” form is to be filled out independent of your 

partner given you detect an individual goat or group of goats during a cell survey. 

• Fill in every spot – Nothing is left blank. This means that if you see a group of 10 

mountain goats (8 nannies and 2 kids), you will fill out: Total group size: 10 // Adult 

male: 0, Adult female: 8, Neo: 2, Yearling: 0.  

• What is a different group? – A group is considered greater than or equal to 1 mountain 

goat within 100 meters of one another. This means if there are 2 goats ~ 90 meters apart 

from one another (you can eye ball this), this is 1 group of goats.  

 

For observations made within a cell:  

• Please fill out “Survey a cell” form in Survey123 first.  

• Within this “Survey a cell” form, you will select the number for groups of goats detected 

in the cell (regardless of 1 individual or multiple goat groups). This will automatically 

add space to include separate observations for the number of groups you detect within the 

cell.  

For observations made outside a cell: 

• Simply fill out “Record an observation” form in Survey123.  

 

1) Observer Name: Your name – the one filling out this form. 

2) Date and start time of survey – This should automatically be filled out in Survey123 

3) Group in cell? – This is for redundancy in the data. 

a. If “Yes”, then there is a “Survey a cell” form filled out with the associated cell 

containing the goats.  

b. Obviously, if “No”, then you are recording an observation and no associated cell 

data will be collected. 

4) Adult female:  Individuals > or = 2 years old (born summer 2017 or earlier). Estimate the 

number of females in the group. 0 if none detected. Nothing is left blank. 

5) Adult male:  Individuals > or = 2 years old (born summer 2017 or earlier Estimate the 

number of males in the group. 0 if none detected. Nothing is left blank. 

6) Yearlings: Individuals 1 year old (born summer 2018). 0 if none detected. Nothing is left 

blank. 

7) Kids: Individuals 1 year old (born this summer 2019). 0 if none detected. Nothing is left 

blank. 

8) Total group size: Will automatically update when you enter the above values for the 

number of individuals in the group. Make sure it matches what you see.  

9) Observer latitude: Your latitude.  
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a. If observation is outside of a cell survey, record this point in the GPS as PalNA – 

no need to record the label of the OP if the observation is in a cell as the 

associated information is recorded in the Cell and Point ID. 

10) Observer longitude: Your longitude. 

11) Estimated distance to goat(s): If you have a range finder, use it and take an average of 3 

distances. Otherwise, use your GPS or map to estimate straight line distance to the 

goat(s). 

12) Bearing to goat(s): Use compass to get bearing in degrees. Include declination. For 

Palisades ~  + 11 degrees (+ means to the east). 

13) Estimated goat(s) latitude: Use your GPS/map to estimate goat(s) latitude. You do not 

need to label this location in the GPS. 

14) Estimated goat(s) longitude: Use your GPS/map to estimate goat(s) longitude. You do not 

need to label this location in the GPS. 

15) Observation time: What time did you detect the goats? 

16) Notes: Add ‘em if you at all think that I canNOT read your mind. 
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MOUNTAIN GOAT OBSERVATION FORM: 
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APPENDIX III: CAMERA TRAP FIELD PROTOCOL 

 

CAMERA SITE SELECTION – MOUNTAIN GOAT EDITION 
D. Ausband, IDFG, April 17, 2018  

Modifications for mountain goat cameras by M. McDevitt June, 2019 

 
1) You can place the camera anywhere within 500 x 500 meter cell. This provides flexibility 

for you to use your on-the-ground knowledge to find an ideal location for the camera 

station. Remember that these mountain goat cameras are set on a motion sensor and time 

lapse setting. This means that cameras must be placed to capture photos of animals both 

moving in front of the camera AND animals that will not trigger the camera but will still 

be captured in the photo frame – potentially up to 500 meters away.  

 

2) Ideally, within that 500 x 500 meter cell there will be an open space (meadow, cliff band, 

open slope, mountain face) OR hiking trail/game trail to use for camera station 

placement. If open slopes are not available, junctions of trails are good places for camera 

station deployment provided you capture the junction with the camera’s detection zone 

(the “walk-test” – see below - will let you know if you’ve adequately covered the area). 
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3) Any limbs, branches and tall brush that are directly in front of the camera should be cut 

and removed. Envision wind and the potential for vegetative growth when choosing what 

to cut. Using the “walk-test” and shaking branches is a good way to test if a branch will 

yield false detections. Theft has been minimal. Placing cameras high in trees and locking 

them deters most theft so be liberal about cutting away limbs and branches that may 

interfere with camera images and flash. 

 

4) Placing the camera several feet off the trail or road yields a larger detection zone. Trees 

(or fence posts in some Regions) right along the edge of the trail or road will have a 

smaller detection zone. Place the camera as far off the trail as you can (up to 25 ft) as 

long as ground vegetation and trees are not obstructing the camera’s detection zone. In 

most field settings, you should be able to place your camera 10-20 ft off the trail or road 

yielding a detection zone that is 12-16 ft in length. 
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An example of a camera station with an adequate detection zone. 
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CAMERA STATION PROTOCOL 

 

1) Cameras are deployed on a grid system across the study area beginning June 10, 2019. 

Cameras are provided by research are programmed with the proper settings and passcode, 

2264. Python locks provided by research use a 3918 key.  We will install a 32 GB or 64 

GB memory card and adjust settings for 3 pictures per trigger event, “Rapidfire”, no 

delay between triggers, high sensitivity, high resolution (3.1 MP), and “balanced” night 

mode.   
 

2) Cameras are deployed at sites that will maximize ability to capture photos of mountain 

goats. Cameras should face open slopes, open meadows, or cliffs that could likely host 

mountain goats – remember that we are also place cameras on a timelapse setting (photos 

every 15 minutes from 0530 and 2130 to capture images of animals that are too far away 

to trigger the motion sensor yet still in the photo frame. Second best option will be facing 

a hiking or game trail to capture animals moving in front of the camera – this applies the 

motion sensor setting.  Both are helpful.   

 

Note: When placing cameras that face uphill at a cliff or an open mountain slope, the 

detection zone can be difficult to find. If you cannot perform a “walk test” because the 

camera if facing uphill in such a way that is too steep, it is OK. Since timelapse photos 

are ideal for capturing images of mountain goats, the motion sensor trigger (and “walk 

test” function) can be difficult to capture. Again, this is OK as this camera will be a 

timelapse camera more than a motion triggered camera.   
 

3) Heavily used trails are not ideal because of false detections (vehicles, people) and 

increased chance of theft. If this is your only option, be discrete with the camera 

placement. Use your judgement. 
 

4) When possible, cameras should be deployed at a height >6 feet on a tree that is >6 inches 

in diameter. Small trees sway in the wind leading to false detections. If you must use a 

small tree you can cut the top and most branches off the tree to create a “fence post” that 

will not sway in the wind. Generally, at a height of >6 feet, cameras will need to be 

angled downward slightly to capture movement on the trail or road below. If facing 

upslope, the camera will need to be dramatically angled upwards. We provided tree-

mounts screw-in that screw into trees for this purpose. Be sure all screws on mounts are 

tight! If you do not have a mount, placing a stick between the top of the camera and tree 

will work. If you are in an area without trees, mounting the camera on a fence post or 

using a t-post is recommended. Sage will sway in the wind and is not an ideal camera 

mount. 
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5) If on a trail, cameras should be several feet off of the road or trail. Junctions are best. 

Vegetation that could interfere with the camera should be removed. We recommend 

carrying a collapsible saw.  

 

 
Example photo where obstructing vegetation was not removed and detections at night were diminished. 
 

6) Once camera is affixed and positioned properly, you should test it using the “walk test” in 

the Reconyx menu. The red light on the front of the camera will flash to let you know 

where the detection zone is for the current camera position. Crawling or using a very low, 

stooped walk in front of the camera is recommended for optimal results. Ideally, your 

detection zone should be 15-20 feet long. Please record the length (meters) of your 

detection zone on the data form. Once you’re satisfied with your detection zone you can 

simply leave the camera after you have locked the cable. After 2 minutes of no further 

walk test detections the camera will arm itself automatically.  
 

7) Please let the camera take a photo of you holding a piece of paper (e.g., the back of your 

data form) that has the cell ID and camera ID number written on it. Ensure you are 

reasonably close to the camera when doing this (a few feet). This helps ensure data 

quality when memory cards become separated from cameras.  
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8) Please record information about the camera station location on the data form (attached p. 

5). 

9) Return after August 15 to retrieve the camera.  

10)  Please walk through the camera’s detection zone when you retrieve the camera. Images 

taken during retrieval provide assurance that the camera was still working properly. 

Thank you for all your efforts!!! 
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APPENDIX IV: CAMERA TRAP PHOTO ANALYSIS PROTOCOL  
BY: KAITLYN STRICKFADEN, JUNE 2019  

 

Getting started with Timelapse2 
1) Download the Timelapse2 software from 

http://saul.cpsc.ucalgary.ca/timelapse/pmwiki.php?n=Main.Download2. Unzip the folder. Click 

on the “Timelapse2” application to start Timelapse2. It must stay in that folder with the rest of the 

files in order to work. If you want to make it easier, create a desktop shortcut. 

 

2) Copy and paste the template document into a folder containing the images you want to 

analyze. Every folder (IDFG2827 – IDFG2916) must have its own copy of the template. 

 

3) Open Timelapse2. Go to “File” and select “Load template, image, and video files.” Find the 

folder containing the images you want to analyze and click on the template file in that folder. 

 

4) Timelapse2 will read in the images. This may take a while. 

 

5) Once the images have been loaded in, fill in the following three fields: 

a. “Viewed By” with your name. 

b. “Date Processed” with the date in the format 

“mm/dd/yyyy” (ex; 01/19/2019 or 10/02/2019) 

c. “Cell Number” with the PAL number shown by the 

technicians setting up the camera. This will probably 

not be the first photo in the camera, so scroll through 

photos until you find it. Otherwise, you can find the 

cell number in a spreadsheet in the Box folder called 

“9_4_cam_data_backup”. 

 

6) Fill in these fields on all photos by right-clicking on the field 

and selecting either “Copy forward to end” or “Copy to all.”  

a. The “Copy forward” option is helpful for a lot of things. For instance, if you have 1000 

pictures in a row of fog, then change the Operating State to “foggy weather” and copy 

that value forward until the weather clears up. Then change the operating state back to 

“normal” and copy it forward. 

 

7) When you are done looking through a set of photos, go to “File” and select “Export data for 

this image set as a .csv file” to create a CSV containing the data. 

 

8) Go to the folder containing the images you just reviewed and find the CSV file.  

 

9) Copy the CSV file and paste it into the “CSV” folder in the “2019 MoGo CamTraps” folder. 

 

10) Rename the CSV so it matches the name of the camera. 

 

11) Copy a template into a new folder and do it all again! 

Camera Operation 

http://saul.cpsc.ucalgary.ca/timelapse/pmwiki.php?n=Main.Download2
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12) Fill in the Operating State for every photo as follows: 

a. “maintenance” when technicians are setting up or taking down the camera (generally 

right at the beginning and right at the end). 

i. NOTE: you don’t have to fill in a “Human” count during maintenance photos. 

b. “normal” for normal camera operation. 

c. “malfunction” when there is some kind of electronic error with the camera. 

d. “tilted” when the camera is bumped by something but the original field of view is still 

mostly there. Use your best discretion when the camera is shaking in the wind; if it’s only 

shaking a little, don’t bother to change the operating state. 

e. “misdirected” when the camera is facing down the tree trunk, is on the ground, or has 

been tilted enough that the original field of view is no longer visible. 

f. “vegetation obstruction” when a tree or leaf has blocked the field of view significantly. 

g. “sun” when light conditions are probably impacting your ability to see an animal. 

Applies to both sun glares and to complete darkness. Use your best judgment; if you 

think you could miss a goat because of the light conditions, use this operating state. 

i. If an animal motion-triggers the camera at night, then any photos of that animal 

should be marked as “normal” operating state. 

h. “snow on lens” when snow is blocking your field of view. 

i. “foggy lens” when the lens is fogged up. 

j. “foggy weather” when there is fog in the air affecting your ability to see. 

k. “poop/slobber” when a bear or other animal has messed with the camera and left 

something on the lens that blocks your field of view. 

 

13) The cameras have two settings: motion-trigger and timelapse.  

a. Motion-trigger photos are marked with a “1/3”, “2/3”, or “3/3” at the top-center of the 

image. This denotes that three pictures were taken because the camera detected motion. 

Sometimes, this occurs because of vegetation moving in the wind, but it generally occurs 

when an animal walks by the camera. 

b. Timelapse photos are taken every 15 minutes whether or not an animal is in the frame.  

 

 

Recording data 
14) Record any animals or people you see in each photo. You need to fill in the count for every 

photo in which the animal appears, whether it’s the whole body, the hindquarters, the foot, 

or the tip of an ear. For instance, if a mule deer buck appears in 8 photos, then all 8 photos 

should have a “MD Buck” count of 1. 

 

15) There are two ways to fill in counts.  

a. click the up/down arrows in the count fields to add or subtract animals from your count.  

b. click on the name of the count field. The circle next to the name of the field will glow 

blue. Now you can click on the photo to mark the animals and add one count to your 

total. Helpful for marking mountain goats so you can find them later if you need to. 

If you need to remove a mark, hold your cursor over the mark and right-click. 

 

16) For most animals, there is just a Count field, but for Humans and Others, there is an additional 

“What” field for being more specific about the activity or species (Human what = hiker, Other 
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What = coyote). “Other What” also contains an “unknown” option for when you see an animal 

but can’t confidently identify it. 

a. Feel free to leave Comments if you have an idea of what an animal might be (ex. “either 

a bobcat or a lynx”). Also leave Comments for bird spp. squirrel/chipmunk spp., or 

weasel spp. if you happen to know what species it is (Red-tailed Hawk, Golden-mantled 

Ground Squirrel, etc.), but don’t get too caught up in doing this. 

 

17) More specifics about counts; 

a. For deer, elk, and moose: 

i. “Antlerless” categories for adult animals without antlers. This may apply to 

females or to males that do not have antlers or noticeable pedicles. 

ii. “Calf” or “Fawn” categories for young of the year. If you aren’t sure if it’s an 

adult or an older calf, then call it “antlerless.” 

iii. “Buck” or “Bull” for animals with antlers or noticeable pedicles. 

b. For predators: 

i. “Cub”, “Kitten”, or “Pup” for young of the year. 

ii. “Adult” for everything else. 

c. For humans: 

i. Fill in “human what” as appropriate. 

ii. Count for every source of disturbance. For instance, three hikers would have a 

count of 3, but a vehicle driving by would have a count of 1 even if there were 

three humans in the vehicle. 

d. For goats: 

i. “MountGoat” for any age and sex of goat 

 

 
Other Tips and Tricks 

18) Use the wheel on your mouse to scroll out and get a multi-photo view. From there, you can use 

the Ctrl and Shift keys to select several photos. Then you can fill in fields on several photos at a 

time. Ex. For the 8 MD Buck photos from before, rather than have to fill in the MD Buck count 

on every photo individually, you can go to multi-photo view, select the first photo, hold Shift, 

click on the last photo to select all 8, then fill in the count of 1. 

 

19) Alternatively, for filling in lots of data at once, you can fill in a count on the first photo, find the 

last photo, right-click the field, and select “propagate from last non-empty value to here.” This 

tells Timelapse2 to find the last value that isn’t zero and fill in every photo from that one to the 

one you are currently on with that value. So fill in 1 on the first MD Buck photo, go to the 8th 

photo, right-click the MD Buck field, and select “propagate from last non-zero value to here, and 

photos 1-8 will be filled with a count of 1. 

 

20) Timelapse2 has a few options for navigating photos. The arrows below the template allow you to 

go through photos without having to press the arrow keys (though I like the responsiveness of the 

arrow keys). A single triangle will go to the next/previous image, the two triangles will slowly 

cycle through the photos, and the three triangles will quickly cycle through the photos. A triangle 

with a rectangle next to it will take you to the first or last photo. There’s also a bar above the 

photos which allows you to scroll through the list of images. 
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21) A few other fields to know about: 

a. “Review?” is for photos that you want someone else to look at 

b. “Great picture” is for really cool or funny photos. Also add these photos to either the 

“Critter pics” or “Goat pics” folders. 

c. “Unique mark” is for animals that have collars, ear tags, or some kind of identifiable 

mark. Check this box for every photo of an animal with a unique mark and write a 

comment about the mark (“collar”, “ear tag”, “notch in left ear”) 
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APPENDIX V: SUMMARY STATISTICS TABLE 
 

2019 Season surveys and 

observations  

Double-observer 

crew 
Camera traps 

Total sites surveyed  70 61 

Total usable sites for analysis 

 
70 53 

Sites with goat detections 

 
7 7 

Sites with repeat goat detections  2 5 

Max number goats detected in sites 

 
26 23 

Number goats detected beyond 

survey period and survey site* 

 

163 58 

Number of survey days 

 
29 24 

 

* For camera traps, this includes photos with goats detected beyond designated survey periods 

(e.g. pictures of goats prior to all camera deployment as analysis only includes photos during 

which all cameras were on the landscape). For double-observer surveys, this includes goats 

detected inside and outside of survey sites. Note that no measurable effort can be calculated for 

goat detections outside of survey sites. Therefore, all goat detections beyond site surveys were 

collected opportunistically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX VI: INDEPENDENT DOUBLE-OBSERVER BOOTSTRAP SAMPLE MEAN AND 

VARIANCE 
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Sample size 
Total abundance mean 

estimate 

Total abundance 

standard error 

Total abundance 95 % 

credible interval 

70 106 12 82 – 130 

60 109 18 74 – 144 

50 109 28 54 – 164 

40 117 46 27 – 207 

30 134 77 0 – 285 

 
This table demonstrates the effect of decreasing sample size on abundance estimates and their 

variance. We used bootstrap sampling to calculate a mean abundance from a subset of samples, 

using 60, 50, 40, or 30 sites. In addition to calculating a mean abundance estimate per bootstrap 

sample, we present the bootstrap standard errors and 95% confidence interval around each mean 

abundance. We truncated confidence intervals that overlapped zero because negative abundances 

were nonsensical.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX VII:  FIELD METHODS TESTED AND EXPLANATIONS FOR FIELD METHODS 

USED FOR MOUNTAIN GOAT ABUNDANCE ESTIMATION 
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The Mountain Goat Monitoring project proposed a variety of disparate sampling methods that 

we aimed to test and then compare those that proved effective. First round field tests identified 

methods that were not feasible given field limitations while other methods proved unsuitable for 

field sampling and model assumptions. In the end, we identified one method in particular that 

was logistically feasible in complex and rugged terrain in addition to meeting all field and model 

assumptions.   

 

The following field methods were tested during the Mountain Goat Monitoring Project: 

1) Line-transects through survey sites (both double- and single-observer) 

2) Scat collection surveys for DNA analysis and mark-recapture surveys 

3) Camera trap surveys 

4) Double-observer point count surveys (observation points outside of survey sites)  

5) Single-observer point count surveys (observation points outside of survey sites) 

Below we provide a brief description of each method tested and reasons for method selection or 

removal from the study. 

 

Line-transect surveys  

Line-transect surveys were proposed as a usable method because of previous work done 

by Suryawanshi et al. (2012). Suryawanshi et al. (2012) used line-transects to travel through 

rugged terrain to estimate mountain ungulate abundance in the Himalaya.  Given limited work 

that aims to estimate abundance of mountain ungulate with non-invasive and ground-based 

means, we felt that the technique used by Suryawanshi et al. (2012) would be worth testing.  

 Once in the field and travelling through the Palisades Mountains, it became very clear 

that line-transects would prove infeasible in complex terrain with the grid-cell size used in this 

study. Suryawanshi et al. (2012) and the Mountain Goat Monitoring Project also had different 

sampling designs and in this study, we aimed to survey randomly selected sites rather than 

travelling through accessible valley drainages – as Suryawanshi et al. (2012) did.  

 Primary reasons for incompatibility of line-transects and collection of mountain goat 

count data are as follows: 

1) Particularly rugged sites were unnavigable due to terrain hazards (i.e. cliffs, rivers, 

thick underbrush). Because of this, not all sites could be surveyed, thus altering 

advantages of random site selection. 

2) Travel through sites proved extremely time-intensive since observers need to move 

slowly so as to thoroughly survey the complete site. 

3) Travel inside sites often offered less viewshed of a site due to forest cover and cliffs 

within sites. 

4) Increased likelihood of bumping mountain goats from sites due to close proximity to 

wildlife in 500 meter sites. This alters both detection and violates closure 

assumptions. 

 

Scat surveys for DNA analysis and mark-recapture surveys 

 DNA analysis from scat samples was proposed as a joint effort with line-transect surveys 

through sites. We chose to test this method as Poole et al. (2001) utilized scat surveys for 

mountain goat abundance estimates and we sought to determine the efficacy to DNA sampling in 

the our system. The aim with this method was to thoroughly survey each 500 meter grid cell for 

any mountain goat scat samples. This method proved infeasible for similar reasons as line-
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transect method in addition to high costs of DNA analysis which would prove unsustainable for 

future monitoring efforts: 

Primary reasons for incompatibility of scat surveys to estimate of mountain goat 

abundance are as follows: 

1) Particularly rugged sites were unnavigable due to terrain hazards (i.e. cliffs, rivers, 

thick underbrush).  

2) Due to unnavigable areas, there would it exist gaps in survey area, violating a key 

piece in the efficacy of mark-recapture surveys. 

3) Travel through sites proved even more time-intensive than simply collecting count 

data from inside sites since observers need to move very slowly to thoroughly survey 

the complete site. Furthermore, recaptures would prove unlikely given the time 

required to travel to and through each sites. 

4) Complete surveys of sites would be very difficult in complex terrain and few sites 

would provide quality samples for effective individual identification for mark-

recapture.   

 

Camera trap surveys 

 Camera trap surveys were proposed as a method to estimate abundance of mountain goats 

as a follow up to work done by Moeller et al. (2018).  We proposed to use Moeller et al.’s (2018) 

Space-to-event (STE) model to estimate abundance.  This model, while showing lots of potential, 

did not prove feasible with mountain goats for the following reasons: 

1) We are still learning about the assumptions made in the STE model.  

2) We found that we did not meet model assumptions in this specific study.  

It would be beneficial to revisit this technique in the future as we obtain a better grasp of the 

model function and field assumptions. 

 

Double-observer point count surveys 

 We decided to test the independent double-observer point count survey as a useful tool to 

survey mountain goats because DeVoe et al. (2015) used this field technique to gather population 

information about mountain goats. In this study, survey sites were a size that allowed us to 

effectively survey most sites from an average of two observation points. With two observers, the 

independent double-observer method proved effective for the following reasons: 

1) With two observers, we found that observations could be more efficient when observers 

split up and surveyed sites simultaneously from the two observation points.   

2) Since the two observation points were spatially distinct, we could obtain survey 

replication through spatial replication.  Spatial replication in surveys was achieved when 

observer 1’s vantage was different than observer 2’s with some overlap between the two 

vantages.  

3) Simultaneous and distinct surveys allows the closure assumption be met. 

With this approach we were both more efficient with surveys while, more importantly, 

developing a field method that meets field sampling assumptions. 

 

 

Single-observer point count surveys 

 Since we planned to conduct independent double-observer surveys using either line-

transects or point count surveys, we wanted to test whether abundance could be estimated in our 
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models with half the field effort using one observer rather than two. Given the most effective 

method required simultaneous, independent observations from two observers for efficiency and 

in order to meet closure assumptions, the single-observer method proved ineffective. 
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