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Chair:  Dr. Kelsey Jencso 
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Stream restoration is increasingly being considered as a climate change mitigation tool, altering 

the storage and exchange capacities of streams and their adjacent alluvial aquifers. While 

previous research has shown that added geomorphic complexity and increased width-to-depth 

ratios can enhance hydraulic exchange and alluvial aquifer storage, few studies have used field 

data to link these changes in form to baseflow generation. In this paper, we quantify the effect of 

stream restoration on nested scales of hydraulic exchange and temporal patterns of alluvial 

aquifer recharge and discharge. Our work compares a restored and degraded reach on Ninemile 

Creek, Montana following extensive placer mining in the late 1800’s. Using a combination of 

topographic and morphologic surveys, well transects, piezometers and tracers, we monitored 

hydraulic exchange processes across multiple spatial scales and six flow stages. We then used 

222Radon and synoptic discharge measurements to evaluate reach-scale alluvial aquifer recharge 

and discharge over the 2016 hydrograph recession.  We found that changes in channel form 

increased transient storage and induced feature-scale vertical exchange not observed in the 

degraded reach. However, vertical exchange flux and depth in the restored reach were limited by 

reduced subsurface hydraulic conductivity. Lateral gradients showed increased alluvial aquifer 

recharge and underflow in the restored reach, in contrast to persistent alluvial aquifer drainage 

seen in the degraded reach. The cumulative impact of restoration resulted in a longer period of 

alluvial aquifer recharge early in the season, and higher volumetric discharge at baseflow. Our 

results support the theory that restoration can increase storage and baseflow discharge, while 

emphasizing that site-specific influences can outweigh the intended effects of restoration. This 

work is a critical step towards understanding the efficacy of restoration in improving late season 

flows in the context of a changing climate and increased demand for water resources. 
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1. INTRODUCTION  

 

The effect of stream restoration on hydraulic exchange and baseflow generation is poorly 

quantified. However, stream restoration is increasingly being considered as a climate change 

mitigation tool to improve the adaptability and resiliency of aquatic resources. One of the most 

emphasized climate change predictions for Western U.S. snow-dominated watersheds is the 

forecasted shift in spring snowmelt timing, resulting in earlier, more variable runoff (Barnett et al. 

2005; Green et al. 2011; Huntington and Niswonger, 2012; IPCC, 2014). This shift will likely 

have profound effects on groundwater recharge-discharge dynamics, with earlier drainage of 

alluvial aquifer reservoirs, resulting in reduced storage and amplified water shortages in mid-to-

late-summer (Barnett et al., 2008; Huntington and Niswonger, 2012). Trends in this region, in 

fact, already show patterns of reduced summer flows (Kim and Jain, 2010; Moore et al. 2007) 

with the most dramatic reductions occurring in the driest years (Luce and Holden, 2009).  

 

In reaction to these challenges, there is a growing interest across academic, policy and 

management communities to explore stream restoration techniques that can promote natural water 

storage. These techniques physically manipulate channel and floodplain form to increase 

volumetric storage capacity of the shallow alluvial aquifer and alter the hydraulic exchange 

processes that affect retention and discharge within storage zones. While many studies have 

linked channel geomorphic form to individual hydraulic exchange processes (e.g.  hyporheic 

exchange or transient storage), few evaluate the net impact of multiple forms of exchange, nor 

their influence on seasonal trends of alluvial aquifer recharge and discharge. Furthermore, little 

research has evaluated the efficacy of restoration for increasing volumetric base flow discharge 

outside of modeling frameworks. In their review of “River corridor science,” Harvey and Gooseff 

(2015) emphasize the challenge of - and need for - research linking small-scale mechanistic 

drivers of hydrologic exchange with large-scale fluvial and ecologic responses. Here, we quantify 

the effect of restoration on nested paths of hydraulic exchange and temporal patterns of alluvial 

aquifer recharge and discharge. 

  

In the last half century, our conceptual model of streams has shifted from “pipe-like” channels to 

dynamic systems of surface and subsurface exchange (e.g. Bencala et al, 2011; EPA, 2015; Hauer 

et al. 2016; Harvey & Gooseff, 2015; Stanford & Ward, 1993). Streams gain and lose water 

across a range of spatial scales, from centimeters in the near-bed hyporheic zone, to kilometers 

across groundwater systems and from upland environments. Our research focuses on the river 

corridor (sensu Harvey and Gooseff, 2015), encompassing both the channel and the alluvial 
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aquifer adjacent to, and beneath the stream. This is the area through which vertical, lateral and 

down-gradient hydrologic transport occurs, connecting the stream, groundwater, and hillslope 

hydrologic systems. Bidirectional exchange between these systems is often referred to as 

“hydrologic connectivity,” with high levels of connectivity associated with ecosystem buffering 

(EPA, 2015; Harvey and Gooseff, 2015; Hauer et al. 2016; Jencso et al., 2010; Standford & 

Ward, 1993). Human impacts on the landscape such as mining, roads and development can, 

therefore, disrupt natural patterns of hydraulic exchange and inhibit the physical and biotic 

processes that rely on hydrologic connections (Kasahara et al. 2009; Kondolf et al., 2006). In 

turn, restoration can alter, reinstate or amplify desired flowpaths and their associated hydrological 

and ecosystem functions.  

 

Hydraulic exchange forms an essential connection between terrestrial, subterranean and aquatic 

systems. Flowpath length and residence time in the subsurface exert a primary control over many 

chemical (Hill et al.,1996; Puckett et al., 2008; Valett et al., 1997), thermal (Arrigoni et al., 2008; 

Brunke and Gosner, 1997) and fluvial (Cardenas 2007; Helton et al., 2014; Payn et al 2012) 

processes. Flow paths through the river corridor often follow a nested, hierarchical pattern, with 

exchange initiated by variability in channel and floodplain topography (Berkowitz et al. 2006; 

Cardenas 2007; Gooseff et al. 2006; Poole et al., 2008; Stonedahl et al. 2010). The scale of the 

feature inducing exchange (wavelength and amplitude) positively correlates with the depth and 

residence time of subsurface flow (Marzadri et al., 2014; Stonedahl et al. 2010; Tonina & 

Buffington 2011). This results in residence times that often follow a power-law distribution, with 

numerous short-scale, rapid flow paths contained within increasingly larger-scale, longer-duration 

subsurface flows (Cardenas, 2007; Cardenas, 2008; Poole et al., 2008). Recent work has also 

shown that that these nested flow paths are highly influential on one another (Stonedahl et al. 

2010) and therefore cannot be studied in isolation.  

  

The length and residence time of exchange is dictated by the physical environment water moves 

through. Our work evaluates three scales of exchange: 1) Transient storage, representing the non-

advective portion of in-stream flow often associated with eddies and short-term hyporheic 

exchange. Transient storage increases with channel sinuosity (Patil et al., 2013; Gooseff et al. 

2007), bed roughness (Gooseff et al. 2007; Wondzell, 2006) woody debris (Harvey et al., 2003; 

Salehin et al., 2003) and decreased channel slope (Patil et al., 2013; Gooseff et al. 2007)  

2)Vertical hydraulic exchange that is driven by pressure gradients created by channel topography 

(e.g. bed roughness, riffles) and modulated by the hydraulic conductivity of the substrate, 
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regulating subsurface velocities and creating tortuous, preferential flow paths in heterogeneous 

substrates (Harvey and Bencala, 1993; Tonina and Buffington, 2009; Tonina et al. 2016; 

Woessner, 2000); and 3) Lateral to down-valley flow, driven by the relative elevations of the 

stream and water table (Woessner 2000) and strongly impacted by basin and aquifer 

characteristics such as valley slope, hydraulic conductivity, aquifer size (Larkin and Sharp, 1992; 

Woesser, 2000) and the degree of hydrologic connectivity with uplands environments (Jencso et 

al 2010; Payn et al. 2012).  

 

Cumulatively, the combination of nested exchange processes can have significant  

influence on temporal patterns of alluvial aquifer recharge and discharge. Alluvial aquifers can be 

filled and drained through several mechanisms. First, longer hydraulic exchange flowpaths 

inherently result in longer subsurface residence times. Water leaving the stream and entering the 

subsurface is slowed by its interaction with the substrate and can be drawn away from the stream 

towards areas of lower hydraulic potential in the alluvial aquifer. Bank storage, for example, is a 

well-documented process (Todd, 1956; Whiting and Pomeranets, 1997) that occurs when stream 

stage exceeds the water table height (usually during Spring snowmelt in the Rocky Mountains), 

creating a gradient away from the stream that recharges the alluvial aquifer. As stream stage 

recedes, this gradient reverses, supporting streamflow. Inflows from hydrologically connected 

hillslopes are also a major source of alluvial water, as saturated flow from steep, upslope 

positions moves towards lower gradient valleys. Finally, groundwater discharges into the alluvial 

aquifer from deeper, broader aquifer sources. These three processes jointly fill the alluvial 

aquifer, which functionally “stores” water until it is discharged as streamflow down-gradient 

minutes, hours, days, months or years later (Cardenas, 2007; Helton et al. 2014) . The residence 

time of water in the aquifer, and the duration of the recharge and discharge period is highly 

influenced by the relative elevations of the stream and groundwater (Schilling et al. 2006; 

Woessner, 2000; Whiting and Pomeranets, 1997), the volume of the alluvial aquifer 

(Hammersmark et al. 2008; Jensco et al, 2010; Whiting and Pomeranets, 1997), and the hydraulic 

conductivity of the substrate (Whiting and Pomeranets, 1997; Woessner, 2000). While stream 

restoration has little impact on upslope and broad aquifer characteristics, it can substantially alter 

valley and channel form, and thus surface and alluvial aquifer exchange. Incised channels, for 

example, have a stronger lateral flow component (Larkin and Sharp, 1992), resulting in a 

narrower spatial zone of influence, shorter bank storage period and rapid drainage of stored 

alluvial water (Schilling et al. 2004, 2006). Reducing channel incision reduces overall gradients 

between the stream and alluvial groundwater system, and can result in a stronger down-valley 
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underflow component (Larkin and Sharp, 1992), longer duration of aquifer recharge and a 

prolonged release of stored water, shortening the base flow period (Hammersmark et al., 2008).  

 

Our research evaluates a common stream restoration approach that simultaneously impacts 

multiple scales of exchange, and thus temporal trends water storage and discharge dynamics 

(Appendix A, Figure 1). This approach includes 1) Increasing the complexity of stream bed 

elevations to enhance vertical exchange; 2) Increasing sinuosity to activate transient storage zones 

and enhance exchange through banks and bars; and 3) Raising the channel bed elevation to 

neutralize the lateral gradient, promoting a longer bank storage storage period, a prolonged 

release of stored water and increased volumetric discharge at low flows. Using a combination of 

wells, piezometers, discharge measurements and groundwater tracers, we quantified the effects of 

restoration on nested sales of exchange and the resulting temporal patterns of alluvial aquifer 

recharge and discharge. 

 

2. STUDY AREA 

2.1. Climate, Soils and Lithology 

Ninemile Creek is a tributary to the Middle Clark Fork River in Northwest Montana, USA 

(Appendix A, Figure 2a). The research site is located approximately 30 km upstream from the 

Clark Fork River confluence at approximately 1200 meters elevation. The basin contributing area 

from the downstream-most point of the study area is 60.5 km2 and is primarily coniferous forest, 

managed by Lolo National Forest.  

 

Watersheds in this region are snowmelt-dominated, with peak discharge occurring in May-June. 

Following snowmelt, the hydrograph recedes towards a base flow period in August-September 

with small increases in flow that are associated with fall precipitation in the form of rain and 

snow. Discharge at the project site ranged from approximately 100-900 liters sec-1 in 2016. There 

are no perennial surface flows into the study area, though small ephemeral return flows occur at 

the break in slope between the valley and convergent uplands during snowmelt runoff.  

 

The Precambrian Belt Supergroup comprises the underlying lithology of the Ninemile basin. The 

lithology is dominated by the Missoula Group of the Belt Supergroup consisting of 

metasedimentary argillites, quartzites, and limestones. Valley alluvium is composed of weathered 

Belt, tertiary colluvial sediments and glacial lacustrine deposits from Glacial Lake Missoula. The 

river flows down the strike of the Ninemile fault, a regional normal fault, which was likely the 
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source of gold deposits extracted from the region.  

 

 2.2 Mining and Restoration History 

Gold placer deposits were discovered in the late 1800’s and were mined through the 1950’s 

primarily via dry-land dredging. This resulted in a straightened, incised channel (Appendix A, 

Figure 2c) with 10-meter tall overburden piles and dredge ponds throughout the floodplain extent. 

In 2014, Trout Unlimited initiated restoration of the Ninemile Creek, removing overburden piles, 

filling dredge ponds and establishing a new, single-thread meandering stream channel (Appendix 

A, Figure 2c) with adjacent floodplain wetlands. Restoration designs included raising the channel 

bed elevation to increase lateral connectivity between the stream and floodplain and adding 

sinuosity and riffle-pool sequences (typical of a Pool-Riffle channel sensu Montgomery and 

Buffington,1997). The new channel was constructed using sorted alluvial fill from the project 

site. 

 

This research compares a portion of the 2014 restoration site (351 m reach length) to a , 

downstream reach still in post-mining condition (224 m reach length, with a 200-meter break 

between reaches) (Appendix A, Figures 2b-d ). The valley and floodplain width through the 

project area (disregarding channel incision) are approximately 125 meters and 35 meters wide 

respectively, with a valley slope of 0.015. One important anomalous feature in the degraded reach 

is a channel-spanning beaver dam approximately 80 meters from the top of the reach.  

 

3.0 METHODS 

3.1 Sampling Design 

We selected the restored and degraded reaches based upon restoration-induced differences in 

topographic and morphologic characteristics known to influence surface and subsurface water 

movement. These included channel width-to-depth ratios, slope, sinuosity and bedform 

complexity. A review of geologic maps (Natural Resource Conservation Services), aerial imagery 

(Google Earth, 2016) and mining records (Montana Bureau of Mines and Geology) indicated that 

the restored and degraded reaches were analogous in terms of their soils, geology, upslope 

topography and basin land cover. Valley slope and valley width were also consistent among the 

restored and degraded reaches. The hillslope area contributing to the restored and degraded 

reaches were 0.54 km2 and 0.33 km2 respectively. Field observations and conversations with 

restoration project managers confirmed that the selected sites offered a viable comparison of the 
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impact of restoration.  

 

Each of the stream reaches was instrumented in March and April 2016.  Appendix A, Figures 2c 

and 2d illustrate the locations of well transects and piezometers. We equipped shallow 

groundwater wells and stilling wells with pressure transducers (Solinst 3001 Levelogger Junior 

Edge M10, Georgetown, ON, Canada) to measure hourly groundwater and stream heights from 

April – November 2016. We also completed synoptic surveys of piezometers and discharge, and 

collected water samples for 222Radon analysis six times from May 24-November 11, 2016, with 

the goal of evenly characterizing the hydrograph recession.  

3.2 Hydrometeorology  

Precipitation and snowmelt data were collected from the nearest USDA SNOTEL site, Sleeping 

Woman (#783) at 1875 m. elevation. This site is 600 meters above and 25 km. east-southeast of 

the project area, with similar characteristics to the upper basin that drains towards Ninemile 

Creek. These data were included in our analysis to represent the timing (not magnitude) of 

precipitation events in the area and to evaluate the seasonal snowmelt trends that contributed to 

hydrologic responses measured at our project site.  

3.3 Characterization of channel and floodplain topography and geomorphology 

We conducted geomorphic and topographic surveys to quantify differences in the physical form 

of the channel and floodplain in restored and degraded reaches. Using a total station, we surveyed 

the longitudinal profiles of each reach (approximately 1-meter resolution), and interpolated a 10 

cm resolution spline to that profile for more detailed feature analyses. We also surveyed cross-

sections (9 in degraded and 10 in restored) to calculate width-to-depth ratios. Survey points were 

georeferenced and transformed using benchmark points collected with a high resolution GPS unit 

(Trimble Nomad with GPS Pathfinder ProXRT receiver, Trimble Navigation Limited, 

Westminster, CO, USA).  From these survey data, we calculated average streambed slope 

(upstream riffle to downstream riffle), bankfull stage, width-to-depth ratios and sinuosity (valley 

length/stream length). We described streambed topographic complexity by calculating thalweg 

variation, following the methods of Walters et al. (2003). We fit a linear regression to the 

longitudinal profile using the upstream and downstream-most elevations. Large residuals around 

the trendline correspond to prominent bed features, so a lower r2 value and larger standard 

deviation of residuals indicate more complex streambed topography.  

 

To characterize grain size distributions of the streambed, we used a modified Wolman Pebble 
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Count (Wolman, 1954). Bed surface textural patches were visually assessed and mapped to 

estimate percent cover of each patch, and transect locations for pebble counts were stratified 

based on these textural patches. In the degraded reach, we identified 3 textural patches, with 105-

172 total grains measured per patch. In the restored reach, we evaluated 2 patches with 208-210 

grains measured per patch.  

 

Subsurface saturated hydraulic conductivity was estimated at baseflow (August 24th and 29th) 

using a falling head test following Horslev (1951). 500 mL of water was poured into each 

piezometer (n=82) and well (n=12) equipped with a pressure transducer (Solinst 3001 Levelogger 

Junior Edge M10, Georgetown, ON, Canada) recording water levels at a 1-second interval until a 

baseline water height was reached. The Horslev method estimates the decay of the drawdown 

ratio of an elevated water height to baseline water height, described by the following equation 

from Schwartz & Zhang (2003): 

 

Ht = Ho*exp(-KF/A*t) 

(1) 

 

Where A is the cross-sectional area of the well, K is the hydraulic conductivity and F is a shape 

factor describing the well or piezometer design (here, 𝐹 =
11 𝑅

2
 for a cased hole of radius R with 

soil flush with the bottom), and Ht and H0  are the drawdown ratios at times to and t2 (Schwartz & 

Zhang, 2003).  We estimated K by fitting the observed drawdown ratio at all times with equation 

(1) using a Marquart-Levenberg technique. 

3.4 Quantification of lateral and vertical exchange  

To quantify lateral exchange dynamics, each reach was instrumented with three well transects.  

Transects consisted of two shallow groundwater wells, manually driven into riparian zones with a 

steel driving rod to approximately 1.5-meters depth. Along the transect we also installed one in-

stream stilling well, mounted on a T-post and sited 1-2-meters downstream of the groundwater 

wells to account for down-valley movement of water along subsurface flowpaths.  Wells were 

constructed from 3.81cm PVC pipe, horizontally screened along the entire subsurface length. The 

total potential in the wells was measured as the water surface elevation and was characterized 

hourly, from spring runoff to base flow, using continuously recording water level meters (Solinst 

3001 Levelogger Junior Edge M10, Georgetown, ON, Canada).  We calculated lateral hydraulic 

gradients (
𝑑ℎ

𝑑𝑙
)and specific discharge (q) between groundwater and stilling wells to determine the 
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direction (towards or away from the stream) and flux of groundwater flow: 

q =−𝑘𝑠𝑎𝑡(
𝑑ℎ

𝑑𝑙
)  

(2) 

Where ksat is saturated hydraulic conductivity 𝑑ℎ is the change in total potential measured in the 

groundwater and stilling wells, 𝑑𝑙 is the distance between points.  

 

To estimate vertical exchange between the channel and the hyporheic zone, we instrumented the 

reaches with 41 nested pairs of in-stream piezometers (degraded=18 pairs, restored n=23 pairs). 

The piezometers were constructed from 2.54 cm PVC, screened along the bottom 1 cm, and 

manually driven into the bed using a steel driving rod and post pounder. Piezometer nests were 

sited in the thalweg at 5-10 meter intervals that captured transitions between bed features (e.g. 

pools, riffles) expected to induce upwelling or downwelling (and later characterized by local 

slope). Each piezometer nest was comprised of a piezometer driven to 20 cm and 50 cm below 

the bed surface. We purged the piezometers of fine sediments using a drill pump at low speed, 

and they were allowed to equilibrate for one week before sampling. Head within the piezometers 

and relative stream stage were synoptically sampled six times during the study period with a 

water level meter (Solinst Mini Water Level Meter, Model 102M, Solinst Canada Ltd. 

Georgetown, ON, USA). Similar to the wells, total head in piezometers was measured as the 

water surface elevation within the piezometer. We calculated the vertical hydraulic gradient and 

specific discharge for shallow flowpaths (20 cm to the bed surface, measured as the height of the 

stream water surface) and deep flowpaths (50 cm to 20 cm below the bed) using Eq. 2 above, 

where 𝑑𝑙 is the vertical distance between points, measured from the base of the paired 

piezometers.  

 

To evaluate the influence of feature scale (e.g. cobble vs. large riffle) on patterns of vertical, 

subsurface exchange, we compared pieziometric vertical hydraulic gradients to the local slope of 

the area upstream of the piezometer nest. A positive bed slope (e.g. riffle) is generally associated 

with downwelling, while a negative slope (e.g. pool) is associated with upwelling. To account for 

different scales of topography inducing vertical exchange, we varied the distance across which 

slope was calculated from small bed undulations (0.5 meters) to large bedforms (5-15 meters). 

We also wanted to represent the variable length of large bedforms. Because piezometers were 

intentionally sited to capture changes in bed slope associated with vertical exchange, we used the 

average slope between piezometers as our variable length scale for analysis. We plotted vertical 
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hydraulic gradients against this range of local bed slopes and fit regression lines to each 

relationship. All regressions were tested for significance (p=<0.05) and significant results were 

compared in terms of their resulting r2 values. The length scale resulting in the best fit (highest 

r2), was interpreted as being the feature scale driving vertical exchange. 

 

3.5 Well, Piezometer and Stream Specific Conductance 

Environmental tracers can be used to determine the sources, fractions and residence times of 

water flowing along different subsurface paths. By comparing the chemical composition of 

stream water source endmembers (e.g. groundwater, soil water) we can evaluate streamflow 

composition, timescales of transport and degree of exchange (e.g. Sheets et al. 2002; Wett et al. 

2002 Hooper et al. 1997; Rice and Hornberger 1998; Cook and Herczeg 2000; Hoeg et al. 2000). 

Specific conductance (SC) measures water’s ability to conduct an electrical charge, and is used as 

a proxy for the concentration of dissolved ions in solution. As water travels through the 

subsurface, dissolved ions are accumulated, generally resulting in increased SC with increased 

contact time (Pilgrim et al. 1979). Here, we use SC as a simple tool to evaluate relative residence 

time and flushing behaviour in the subsurface. SC measurements were collected using a handheld 

YSI EC 300 probe (YSI Environmental, YSI Incorporated, Yellow Springs, OH, USA) from 

wells (n=12), in-stream piezometers (n=82) and stream sources (n=42) during each of the six 

synoptic surveys. We also identified four groundwater seeps which were measured 2-3 times over 

the study period.  Prior to measurement, wells and piezometers were slowly pumped with a drill-

powered, peristaltic pump until 2x the water volume had been flushed.  

3.6 Stream Tracer Experiments: Net Change in Discharge and Transient Storage 

We used dilution gauging (Day, 1976) to measure discharge (Q) and transient storage at the reach 

and sub-reach scales. The net change in discharge (dQ) represents the net flux of water (gains 

plus losses) between the surface and subsurface systems over a given stream or valley length (dx): 

 

𝑁𝑒𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 =
𝑑𝑄

𝑑𝑥 
  

(3) 

 

A positive net change in flow, therefore, indicates a net gaining stream, where more water is 

discharging to the stream from the adjacent valley bottom and hyporheic zone than is being lost 

from the stream. We divided each reach into three consecutive sub-reaches (53-120m length) and 

collected discharge measurements at each sub-reach boundary, six times over the study period.  
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Dilution gauging methods apply conservation of mass principles to measure instantaneous 

discharge at a given location. A known mass of NaCl was injected upstream of a sub-reach 

boundary. At the downstream measurement location, an electrical conductivity probe, attached to 

a datalogger, measured the SC breakthrough curve (BTC) as the salt solution passed (Campbell 

CR1000 data logger and CS-547A temperature/conductivity probe, Campbell Scientific, Inc., 

Logan, Utah, United States). By integrating under the breakthrough curve, we calculate discharge 

(Eq. 4, from Covino et al., 2011) at each measurement location using a previously quantified 

linear relationship between SC and Cl- (1 uS cm-1 increase in SC relates to 0.5 g liter-1 NaCl): 

𝑄 =  
𝑇𝑀𝐴

∫
𝑡

0
𝑇𝑐(𝑡)𝑑𝑡

                         

(4) 

 

where Q is discharge, TMA is the tracer mass (NaCl) added and Tc is the background corrected 

tracer concentration. Even mixing of the salt solution throughout the water column is imperative 

for reliable measurements, so a mixing length (variable length, dependent on discharge) was 

included upstream of the reach boundary and Rhodamine dye was co-injected to visually assess 

mixing. To calculate precision error in our discharge measurements, we performed two replicate 

injections per flow stage, injecting a second NaCl slug after the first injection had passed and 

baseline SC had been maintained for at least 10 minutes. We then compared the resulting 

discharge estimates. The repeatability of our dilution gauging measurement was 4.3% of 

discharge (maximum error 7.6%, minimum error 0.2% of discharge).  

 

Tracer BTC’s were also analyzed to quantify advective velocity and transient storage based on 

the rising and tailing behavior of curves (Harvey et al. 1996). We collected three measurements 

per reach (along each sub-reach) at 6 flow stages. Advective velocity was calculated as the 

injection mixing length divided by the elapsed time from injection to peak concentration (tp). 

Transient storage was evaluated following methods from Patil et al. (2013), quantifying BTC 

tailing behavior. We normalized each curve by peak concentration (to account for different 

masses of NaCl injected) and time to peak (to account for different mixing lengths). The 

breakthrough curve tail was defined as all concentration measurements from tstart to tend where tend 

was the time where background concentration in reestablished and tstart was the midpoint between 

time of peak concentration (tp) and tend (Patil et al 2013): 

𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑝 +
𝑡𝑒𝑛𝑑 − 𝑡𝑝

2
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(5) 

 

This concentration breakthrough curve tail was then fit with an exponential function: 

𝐶 = 𝐶0𝑒−𝑟𝑡 

(6) 

 

where (C0) is the peak concentration, t is time and r is the exponential decay coefficient that 

represents tailing behavior. In this case, an r value closer to zero (low slope of the breakthrough 

curve tail) represents more extended tailing behavior, thus higher transient storage. We 

normalized r-values by velocity to allow for comparisons across the different flow periods.  

3.7 222Radon: Groundwater discharge modeling 

 

222Radon (hereafter referred to as radon) is commonly used as a tracer for estimating groundwater 

discharge to surface water systems. It is a naturally occurring gas produced through the uranium 

decay series with a 3.82-day half-life. Radon is produced in aquifer sediments and its 

concentration is regionally variable. As groundwater moves through the aquifer, radon is rapidly 

accumulated until a maximum concentration is reached and maintained at secular equilibrium 

(where the rate of production equals the rate of radioactive decay). Because radon is not present 

in the atmosphere, any contact with the atmosphere initiates degassing from the water body. 

These properties allow us to distinguish groundwater and stream water end members and 

approximate groundwater discharge into a stream based on the change in radon concentration 

over a given stream length. 

 

3.7.1 Radon sampling methods 

Synoptic sampling of stream water occurred five times from May-November 2016 at the 

upstream and downstream extent of degraded and restored reaches. Samples were collected in 

250 mL, sample-rinsed glass bottles. Alluvial aquifer samples were collected from floodplain 

wells and in-stream piezometers three times over the same period using a peristaltic pump. Prior 

to sample collection, wells and piezometers were pumped at a low rate until 2x the initial volume 

had been purged.  

 

Radon concentration was measured using a solid state alpha detector (RAD7 with RADH20 

accessory unit, Durridge Company Inc, Billerica, MA, USA).  To quantify instrument counting 
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error (the largest potential source of error in estimating radon concentrations), we collected five 

replicate samples each at high and low flow periods. At average radon concentrations of 127 Bq 

m-3 and 570 Bq m-3, the percent error associated with one standard deviation from the mean was 

42% and 5% respectively. We assumed a linear relationship between concentration and error to 

estimate error at interim radon concentrations.  

 

3.7.2 Radon modeling theory 

To estimate groundwater seepage into Ninemile Creek, we applied a one-dimensional advective 

transport model adapted from Cook et al. (2006). The discharge mass balance over a given length 

is the sum of inflows (I), outflows (O) and evaporative loss (E) over stream length x: 

 

𝑑𝑄

𝑑𝑥
= 𝐼(𝑥) − 𝑂(𝑥) − 𝐸(𝑥)  

(7) 

 

The measured change in radon concentration over that reach was used to calculate groundwater 

inflows (I, in m3 day-1meter stream-1), accounting for gas exchange with the atmosphere, in-

stream radioactive decay and production and decay in the hyporheic zone. The change in radon 

concentration (c) over distance (x) is given by (Cook et al. 2006): 

 

𝑄
𝑑𝑐

𝑑𝑥
= 𝐼(𝑐𝑖 − 𝑐) + 𝑤𝐸𝑐 − 𝑘𝑤𝑐 − 𝑑𝑤𝜆𝑐 +

𝛾ℎ𝑤𝜃

1 + 𝜆𝑡ℎ
−

𝜆ℎ𝑤𝜃

1 + 𝜆𝑡ℎ
𝑐 

 (8) 

 

where ci is the radon concentration in groundwater [Bq m-3] , 𝑐 is the mean concentration between 

upstream and downstream measurement points [Bq m-3], w is channel width [m], d is the channel 

depth [m], k is the gas transfer velocity [m day-1], 𝜆 is the decay coefficient [day-1], y is 

production of radon in the hyporheic zone [Bq m-3 day-1], h is the depth of the hyporheic zone [m] 

and 𝜃 is the porosity of the hyporheic zone.   

 

We assumed spatial homogeneity for each of our parameters, and steady-state flow conditions at 

each measurement time interval. By using 𝑐 to represent in-stream radon concentrations, we 

adopt a mixing model approach, assuming that the change in radon over the reach length is linear. 

We assume that the hyporheic zone is homogenous, well mixed and that the mean HZ residence 

time is representative of the existing range of flow path residence times (Cook et al., 2006; 
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Bourke et al., 2014). Within the stream, we assume even mixing of radon in the water column and 

that diffusion of radon from sediments is negligible with respect to the influence of advective 

fluxes of radon from groundwater or hyporheic sources.  

 

It is important to note that the “groundwater” signature of radon at secular equilibrium is present 

in any water with a subsurface residence time greater than approximately two weeks. This means 

that regional groundwater is indistinguishable from most bank storage or parafluvial sources. 

“Groundwater,” in this model, is therefore defined as alluvial aquifer water that has reached 

secular equilibrium. This is in contrast to short, hyporheic flow paths. Hyporheic exchange can 

affect in-stream radon concentrations, as seen in the final two terms of Eq. (8).  

 

3.7.3 Parameterization and radon modeling methods 

To evaluate temporal trends in groundwater discharge on restored and degraded reaches of 

Ninemile Creek, we approximated Eq. (8), discretizing our model over the full reach length and 

applying the selected parameter values (Appendix A, Table 1). We then optimized our model to 

match observed upstream and downstream radon concentrations by manipulating I. Groundwater 

discharge flux was modeled for each reach, at each of the five time intervals from May-

November 2016.   

 

Direct measurements of stream radon concentrations, stream discharge and stream channel 

dimensions provided reliable estimates of these parameters and their associated errors. Gas 

exchange and hyporheic zone (HZ) parameters were more challenging to accurately estimate. 

Because they were not directly measured, a reasonable range of values was determined for each, 

informed by existing literature and field measurements of associated parameters. A series of 

sensitivity analyses were conducted to evaluate model response to any parameter that was not 

measured directly. Each unknown parameter was allowed to vary over its estimated range, 

holding all other parameters constant. We modeled each equation independently, manually 

adjusting I to match measured dc/dx values. The range in I resulting from this variation provides 

insight into the sensitivity of the model to that parameter.   

 

Accurate estimates for gas exchange velocity is especially difficult in low-order streams with 

highly variable geometry, velocity and temperature. Because k was not measured in the field, we 

placed a special emphasis in evaluating the sensitivity of our model to k. We used four common 

equations (Appendix A, Table 2) to approximate k and applied the mean of the results for each 
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sampling period to our final model. All equations rely on physical measurements of velocity (V), 

slope (S) and depth (D) which were measured at the project site throughout the season.4.  

 

RESULTS 

4.1 Seasonal streamflow and precipitation response: 

Precipitation and discharge trends followed a pattern typical of snowmelt-dominated mountainous 

regions, with peak flows associated with basin snowmelt in April and May, and rain events (June, 

July and October) that contributed to coincident rises in stream discharge (Appendix A, Figure 3). 

Baseflow occurred in September and was preceded by a period of 6-weeks with minimal 

precipitation. Average stream discharge measured on our sampling dates (dashed lines in 

Appendix A, Figure 3) were 666, 411, 292, 156, 112 and 149 l sec-1 for May 24th, June 9th, July 

7th, August 17th, September 14th and November 4th respectively.  

 

Regional snow water equivalent reached 34 cm, 86% of the median for the period of record 

(measured at the Sleeping Woman SNOTEL site). The date of peak snow water equivalent was 

consistent with the historic record (first week of April), but the last day of recorded snowpack 

was May 4th, 23 days before the median historic date of full melt. Precipitation accumulation was 

at, or slightly above, the historic median throughout the study period.  

4.2 Physical characterization of restored and degraded sites  

Analysis of topographic and geomorphic survey data revealed notable differences between the 

restored and degraded reaches (Appendix A, Figure 4 and 5, Table 3). The restored reach 

exhibited increased sinuosity, bed complexity width-to-depth ratios. Sinuosity increased from 

1.05 in the degraded reach to 1.33 in the restored reach. This added stream length resulted in a 

50% decrease in stream slope, from 0.015 to 0.010. Width-to-depth ratios increased from 12 in 

the degraded reach to 18 in the restored reach. Bed complexity was higher in the restored reach, 

with a lower r2 value (0.927 vs. 0.978) and higher standard deviation of residuals (32.4 vs. 10.3) 

when a regression line was fit to the surveyed longitudinal profiles.  

 

Textural analysis of the stream bed (Appendix A, Figure 5a) revealed that the restored reach had 

a coarser composition overall, most notably in the large cobble-small boulder size classes 

(>128mm) which comprised 49% of grains sampled in the restored reach and only 30% in the 

degraded reach. The restored reach median grain size was 90 mm (cobble) in contrast with 64 

mm (large pebble) in the degraded reach. Finer grain size classes were similar between reaches. 
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Grains 2.0-5.6 mm (sand-granule) made up of 7% of the total grains sampled in both reaches. The 

degraded reach had 4% more silt and sand (< 2 mm), but most of these samples occurred in the 

pool upstream of the beaver dam. Discounting the beaver dam, silt and sand comprised only 1% 

of the total grain size distribution of the bed surface in both reaches.  

 

Analysis of the saturated hydraulic conductivity of subsurface stream sediments from piezometers 

(Appendix A, Figure 5b) shows that the restored reach had a lower median conductivity and 

lower variability at both 20 and 50 cm depths. Median hydraulic conductivities in the restored 

reach were 8.6 cm hr-1 (50 cm depth) and 52.2 cm hr-1 (20 cm depth), in contrast to 14.5 (50cm 

depth) and 367.6 cm hr-1 (20 cm depth) in the degraded reach. The interquartile range of 

conductivities at 20 cm and 50 cm depth were 58.7 and 137.6 cm hr-1 in the restored reach and 

308.2 and 462.8 cm hr-1 in the degraded reach. There was also a clear differentiation between 

hydraulic conductivities at 20 and 50 cm for both treatments, with higher conductivity at 

shallower depths. This stratification was particularly evident in the degraded reach (difference 

between median values = 353.1 cm hr-1 in degraded and  43.6 cm hr-1 in restored).  

 

4.3 Exchange  

4.3.1 Advective velocity and transient storage 

Analyses of dilution gauging breakthrough curves showed 5-34% lower in-stream mean 

velocities for the restored reach at moderate to low flows. At the highest measured flows (May), 

the velocity in the restored reach was 11% higher than in the degraded reach (Restored monthly 

mean velocity: 0.89, 0.68, 0.45, 0.26, 0.29, 0.39 m sec-1; Degraded monthly mean velocity: 0.80, 

0.72, 0.57, 0.39, 0.39, 0.48 m sec-1). When we consider velocity in terms of the valley length, 

describing the rate of surface water movement out of the valley bottom, values were 8-48% lower 

in the restored reach due to increased sinuosity (Restored monthly mean velocity: 0.66, 0.50, 

0.33, 0.19, 0.20, 0.28 m valley sec-1; Degraded 0.71, 0.68, 0.53, 0.37, 0.37, 0.46 m valley sec-1). 

 

We evaluated transient storage at peak (May), moderate (June) and low (September) flows 

(Appendix A, Figure 6). Transient storage in the restored sub-reaches was higher (r-values closer 

to zero) than degraded sub-reaches (Appendix A, Figure 6). Transient storage in the degraded 

reach increased as streamflow decreased (mean of r-values = -0.031, -0.028 and -0.026 for May, 

June and September respectively). In the restored reach, transient storage was consistent at high 

and moderate flows (-0.014 and -0.015 for May and June), decreasing at base flow (-0.017 in 
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September). Transient storage in the degraded reach was consistently highest in the beaver dam 

sub-reach (circled in black in Appendix A, Figure 6). When these values were removed from 

consideration, transient storage in the degraded reach was further decreased (mean of r-values = -

0.034, -0.033, -0.030 for May, June and September). 

 

4.3.2 Vertical exchange  

Vertical hydraulic gradients were similar between the restored and degraded reaches (Appendix 

A, Figure 7). In both reaches, there was a clear separation of gradients by flowpath depth, with 

deeper flowpaths dominantly downwelling (median gradient by month degraded: -0.19, -0.14, -

0.09, -0.11, -0.01, -0.11; median gradient by month restored: -0.11, -0.11, -0.15, -0.17, -0.02, -

0.12) , and shallow flowpaths generally exhibiting an even distribution of upwelling and 

downwelling (median gradient by month degraded: 0.08, 0.38, 0.08, 0.04, 0.12, 0.03; median 

gradient by month restored: 0.05, 0.08,0.05, 0.00, 0.04, 0.04). 

 

The length scale of feature inducing vertical exchange differed between reaches. Regardless of 

the length-scale used to calculate the slope (0-15 meters), the degraded reach showed no 

significant relationship between vertical hydraulic gradient and local bed slope. In the restored 

reach, and at shallow depths (0-20 cm), there were significant negative relationships (p>0.05) in 

four of six months and at several length scales (Appendix A, Table 4). We also evaluated slope at 

a variable length scale to account for the variable lengths of stream bed features. This was defined 

as the average slope between two subsequent piezometers that were cited to capture changes in 

slope generally associated with upwelling or downwelling. The variable length scale predicted 

vertical hydraulic gradients best (highest r2 value of all significant relationships) in May, July and 

September (r2 of 0.20, 0.26 and 0.19 respectively). In November, a 5-meter length provided the 

best fit (r2 = 0.27). The variable length scale for the restored reach ranged between 7-35 meters, 

with a mean length of 19 meters. There were no significant relationships in the restored reach in 

June or August using any length scale of bed slope. Deep flow paths (20-50 cm), which were 

predominantly downwelling, showed no significant relationships at any time or length scale with 

the exception of September base flow at the variable length-scale in the restored reach.  

 

Despite the two reaches having similar vertical hydraulic gradients, when we evaluated specific 

discharge, the degraded reach had a much higher exchange flux due to its higher hydraulic 

conductivity (Appendix A, Figure 8 a-b). The median absolute value of fluxes in the degraded 

reach ranged from 80.7 cm hr-1 at peak flows to 74.2 cm hr-1 at base flow. In the restored reach 
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the flux values were substantially reduced, ranging from 5.0 cm hr-1 to 2.7 cm hr-1 at peak and 

base flows.  

 

4.3.3 Specific Conductance 

Mean specific conductance in groundwater seeps was 247 uS cm-1 (minimum:167 uS cm-1 

maximum: 322 uS cm-1) while streamwater ranged from a minium of 154 in May to a maximum 

of 180 in June. Baseflow SC was 172 in September. SC from subsurface water samples in the 

restored reach were consistently higher and more variable (20 cm depth: median=191 uS cm-1, 

range=995 uS cm-1; 50 cm depth: median = 181 uS cm-1 range =924 uS cm-1) than the degraded 

reach (20 cm depth: median=177 uS cm-1, range=149 uS cm-1 ; 50 cm depth: median = 185 uS 

cm-1 range =279 uS cm-1) (Appendix A, Figure 8 c-d). In both reaches, median SC values 

increased with subsurface depth.  

 

4.3.4 Lateral exchange 

We analysed lateral gradients of exchange between shallow groundwater wells and the stream to 

evaluate the direction of flow toward (positive gradient) or away from (negative gradient) the 

stream. Appendix A, Figure 9 presents hourly gradients at each of the twelve wells over time. The 

restored reach exhibited neutral to losing (negative) gradients, becoming more negative with the 

decline in stream stage. The degraded reach, in contrast, consistently gained (positive gradients) 

in the lateral direction.  

4.4 Temporal trends in Groundwater Recharge-Discharge   

4.4.1. Base flow discharge modeling using 222Radon  

In-stream radon concentrations ranged from a minimum of 146 Bq m-3 in May to a maximum of 

663 Bq m-3 in November. We selected a groundwater radon concentration of 26,250 Bq m-3 for 

our model, which was the maximum radon concentration measured at the site.  

 

Based on our sensitivity analyses, instrument counting error of radon concentration (c) produced 

the broadest range of model outcomes, followed by gas exchange velocity (k). Our final model of 

groundwater inflows (Appendix A, Figure 10a) presents modeled inflows plus or minus one 

standard deviation of radon concentration measurement error. Results are normalized by valley 

length to represent the valley-scale impact of restoration. The k value used in this model is the 

mean of the four gas exchange velocity equations. The restored reach demonstrated continuous 

groundwater inflows to the stream throughout the season (mean inflows: 1.70, 1.65, 0.78, 1.80 m3 
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day-1 m valley-1 for June, July, August and November samples), with 88-100% higher inflows 

than the degraded reach in July-November. The clear exception to this is in June, when the 

degraded reach shows a 17% higher inflow rate, which rapidly declines towards zero inflows by 

August (mean degraded inflows: 2.05, 0.20, 0.00, 0.10 m3 day-1 m valley-1 for June, July, August 

and November samples). In August, at lowest sampled streamflow, the restored reach had an 

inflow flux of 0.78 m3 day-1 m valley-1 while the degraded reach had 0.00 m3 day-1 m valley-1. 

 

4.4.2 Net change in discharge 

We also used net change in discharge from upstream to downstream to evaluate recharge and 

discharge dynamics over time (Appendix A, Figure 10b). Similar to the radon model, the 

degraded reach was gaining in June, with gains declining throughout the season until September 

base flow, when the net change in discharge was close to neutral (13.7, 15.3, 8.5, -0.4, 6.5 m3 day-

1 m valley-1 in June-November). The restored reach, in contrast, gained in early spring, then lost 

water during the early summer. As base flow approached in August, this dynamic switched, with 

the restored reach gaining groundwater as flows receded (0.65, -5.6, 6.5, 4.6, 2.0 m3 day-1 m 

valley-1 in June-November). At September base flow, the degraded reach was losing (-0.4 m3 day-

1 m valley-1), while the restored reach maintained gains of 4.6 m3 day-1 m valley-1. 

5. DISCUSSION 

Restoration altered hydraulic exchange processes across all spatial scales evaluated. Our results 

suggest 1) Increased in-stream residence time and transient storage 2) Initiation of feature-scale 

vertical exchange (though limited by substrate stratification) 3) Reduced vertical flux due to 

lower hydraulic conductivity and 4) Temporal shifts in lateral exchange dynamics, with more 

neutral to losing (storing) trends in the restored reach. Cumulatively, these changes in hydraulic 

exchange processes altered temporal patterns of alluvial aquifer recharge and discharge. These 

results were consistent with our conceptual model, showing increased early-season storage which 

later subsidized base flow. In the following sections, we discuss how physical alterations to the 

restored reach morphology led to differences in hydrologic exchange and reach-scale storage and 

discharge dynamics.  
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5.1 Effects of Restoration on Hydraulic Exchange 

 

5.1.1 Advective velocity and transient storage 

Restoration decreased velocity and increased transient storage at nearly all flow stages. This is 

clearly illustrated in our transient storage results, showing longer tailing behavior associated with 

back-eddies and short-term hyporheic flowpaths (Appendix A, Figure 6). While we do not have 

distributed data to link these trends to structural changes, we know that restoration increased the 

complexity of the channel in multiple dimensions (including sinuosity and bedform), while 

decreasing slope (Appendix A, Figure 4, Appendix A, Table 3). Each of these channel 

characteristics has been linked to increased transient storage, slowing and recirculating surface 

water within the channel and reducing the influence of advection (Gooseff et al., 2007; Harvey et 

al., 2003; Patil et al.,2013; Salehin et al., 2003; Wondzell, 2006). This type of exchange is crucial 

for short-term processes like biogeochemical transformations (Boulton et al. 1998; Findlay, 1995) 

but likely has little effect on seasonal trends in storage and baseflow discharge.  

 

5.1.2 Vertical exchange 

Our results highlight the importance of considering substrate hydraulic conductivity in 

conjunction with streambed topography when attempting to modify hyporheic exchange flows. 

The addition of larger streambed features (e.g.riffles, pools) did lead to predictable spatial 

patterns of upwelling and downwelling (Appendix A, Table 4) that were not observed in the 

degraded reach. However, this exchange was limited to the upper 20 cm of the subsurface. There 

was no evidence to suggest that the constructed features promoted the deeper flowpaths with 

longer residence times that have been observed in other field and model simulations (Marzadri et 

al., 2014; Stonedahl et al. 2010; Tonina & Buffington, 2011). We attribute this to the overall 

lower, and stratified hydraulic conductivity of the subsurface. Lower hydraulic conductivity was 

likely a result of compaction from the construction process that reduced median vertical flux in 

the shallow zone by 93-96%. In the degraded reach, we found no relationship between local 

bedslope and longitudinal patterns of upwelling and downwelling. This suggests that here, 

vertical exchange is controlled by features smaller than 50 cm (the resolution limit of our 

analysis), or by other factors such as heterogeneity in the substrate hydraulic conductivity. 

Stratification of the subsurface was particularly evident in the degraded reach (Appendix A, 

Figure 5b), resulting in higher fluxes in the upper 20 cm zone. These results are also supported by 

our SC data. SC in the degraded reach at 20 cm was similar to streamwater with little variance, 

indicating rapid flushing and little interaction with the substrate (Appendix A, Figure 8 c-d). In 
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the restored reach, at both 20 and 50 cm depths, SC was higher, more variable, and increased with 

depth. This suggests that longer subsurface residence times allowed for increased weathering 

reactions and/or mixing with solute-rich groundwater sources.  

 

5.1.3 Lateral Exchange 

The patterns of lateral groundwater-surface water exchange measured by our monitoring wells 

were consistent with our conceptual model. The degraded reach showed lateral gradient trends 

typical of an incised channel (Schilling et al. 2004) (Appendix A, Figure 9a). Throughout the 

year, the alluvial aquifer discharged to the degraded stream due to the gradient produced by an 

unnaturally low channel elevation. This lowered elevation eliminated bank storage processes at 

high flows and contributed to more rapid drainage of the alluvial aquifer (similar to results of 

Schilling et al. 2006). The restored reach, in contrast, had neutral to losing gradients throughout 

the season (Appendix A, Figure 9b).  Losses from the stream generally indicate alluvial aquifer 

recharge, while relatively neutral gradients may be indicative of dominant subsurface flow 

running parallel to the channel (underflow, sensu Larkin and Sharp, 1997), rather than in the 

lateral direction. Our instrumentation design did not directly evaluate the impact of increased 

sinuosity on parafluvial flow or underflow, but we believe that this was likely a substantial 

exchange process affected by restoration. This is supported by the generally neutral lateral 

gradient observed, as well as a wealth of literature showing a positive relationship between the 

degree of channel curvature and exchange flux through bars and banks (e.g. Boano et al. 2006; 

Cardenas et al., 2009; Gomez et al., 2012; Stonedahl et al., 2010).  

5.2 Temporal trends in alluvial aquifer recharge and discharge 

Temporal trends in alluvial aquifer recharge and discharge were markedly different in the 

restored and degraded settings. Overall, our results support the hypothesis that restoration induced 

alluvial aquifer storage during spring snowmelt, allowing for more sustained and higher 

volumetric discharge at low flows. By comparing seasonal trends in lateral gradients to radon 

modeling and net change in discharge results, we can begin to elucidate the mechanisms behind 

the recharge-discharge dynamics observed.  

 

In June, the Ninemile basin was likely contributing a maximum amount of water to the Ninemile 

valley due to Spring snowmelt and precipitation. Our radon modeling, net change in discharge 

and lateral gradient results all indicate that in the degraded reach, this water moved rapidly into 

the stream system, causing high rates of groundwater discharge to the stream which rapidly 
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declined as the season progressed (Appendix A, Figures 9 and 10). These results align with 

results from Huntington and Niswonger (2012) showing maximum groundwater discharge 

following peak stream stage. In the restored reach, however, our radon model shows a buffered 

response to hillslope contributions, with lower early-season inflows compared to the degraded 

reach (Appendix A, Figure 10a). This suggests that contributions from hillslopes and bank 

storage were stored, producing the more gradual decline in alluvial aquifer discharge through the 

base flow recession. Net change in discharge results also support this observation, showing losses 

(storage) early in the season, shifting to gains (discharge) that sutained base flows (Appendix A, 

Figure 10b).  Of particular importance, both metrics show substantially higher volumetric 

discharge at the lowest measured streamflows (increase of 0.7 m3 day-1 m valley-1 of radon-

modeled groundwater discharge, and 5 m3 day-1 m valley-1 net gains).  

 

These trends generally agree with lateral gradient results, supporting our hypotheses that by 

reducing the elevation differential between the channel and floodplain, restoration neutralizes 

lateral gradients and increases the duration of the seasonal storage period. Dominant trends of 

storage and underflow in the restored reach fit our conceptual model (Appendix A, Figure 1) 

except at base flow where we would expect to see a reversal in the lateral gradient direction, with 

stored water discharging into the stream (as indicated by radon and net change in flow results). 

This inconsistency is most likely explained by well placement. Lateral gradient data was derived 

from six point measurements that may not be representative of the lateral dynamics of the reach 

as a whole. Two of the six locations have gradients towards the stream in September and may, 

therefore, represent key outflows of stored water that are supporting base flow.  

5.3 Restoration Implications: Transferring results outside of the Ninemile Creek Basin 

 

Stream restoration projects are generally designed to meet several, concurrent ecological goals 

including habitat enhancement, thermal regulation or water quality improvement through erosion 

control or increased biogeochemical processing. Each of these processes is intrinsically linked to 

hydraulic exchange. However, the flowpath length of maximum benefit varies depending on the 

process being considered. For example, frequent, shallow exchange delivers a consistent flow of 

dissolved oxygen to the near-bed hyporheic zone, essential to ecological processes such as 

nutrient assimilation or incubation of fish eggs. These short flow paths, however, have limited 

influence on stream temperatures or valley-scale retention when compared to longer-duration 

flowpaths (Arrigoni et al. 2008, Brunke and Gosner, 1997; Helton et al. 2014; Cardenas, 2007; 
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Poole et al., 2006).  

 

Our work focused on base flow generation, which is linked to the creation of larger-scale features 

inducing longer-duration flowpaths. This includes reducing channel incision (resulting in a lower 

lateral gradient between the stream and valley, increasing bank storage and slowing drainage), 

increasing sinuosity (widening the extent of the interactive alluvial aquifer and promoting 

underflow through longer, down-valley flowpaths) and inclusion of larger-scale vertical features 

like woody debris dams or beaver dams (inducing deeper vertical flux). It is unlikely that smaller 

geomorphic features will have a significant impact on baseflow, but their value in providing other 

ecological services is paramount. In this sense, increasing the variability of hydraulic exchange 

paths should be considered as an overarching restoration goal (Kondolf et al. 2006).  

 

If we accept the goal of achieving variable flowpath lengths, it’s important to consider how not 

only topography, but also hydraulic conductivity, affects flowpath length and residence time. Our 

vertical exchange results provide a key example. Compaction in the restored reach likely caused 

the low hydraulic conductivity reduced vertical flux observed. This impact could be minimized or 

avoided during construction. However, substrate stratification (also seen in the degraded reach) 

may be a natural result of fluvial sorting of the bed material material. In another system with 

more conductive, homogeneous alluvial material, construction of variable topography will induce 

deeper flowpaths. In systems like the Ninemile, the impact of these features is limited. Instead, 

flowpath length and residence time was strongly influenced by the hydraulic conductivity and the 

potential for substrate stratification. Heterogeneity in both topography and hydraulic conductivity 

will likely result in power law residence times distributions with concurrent short, medium and 

long flowpaths, even though the mechanisms driving these distributions differ. More work is 

needed to understand how ecological processes like nutrient uptake length, or physical processes 

like heat transfer, are impacted depending on the mechanism driving the exchange flux. 

 

Finally, and perhaps most importantly, it is essential to recognize that the hydrologic response of 

a stream to restoration will be strongly influenced by factors that valley-bottom restoration cannot 

impact. Climate, upland topography, lithology and basin form all control the rate, volume, 

location and timing of inflows into, and out of, the alluvial aquifer (Bergstrom et al., 2016; 

Harvey and Gooseff, 2015; Jencso et al., 2009; Jencso et al., 2010; Ward et al., 2016). Our 

research shows that manipulations of the physical form of the alluvial valley and stream can 

impact exchange and storage dynamics; the restored reach demonstrated predicted changes in 
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patterns of alluvial aquifer recharge and discharge, resulting in higher volumetric base flow. 

However, the effect of these manipulations will vary by local conditions. For example, raising the 

channel bed elevation in a system with minimal inflows from upland sources may result in 

reduced, or even loss of stream flow if the alluvial aquifer cannot be filled to match the new 

elevation. This response would clearly have concerning impacts on stream temperatures, habitat 

and survival of biota. Additionally, the relative effect of restoration on alluvial aquifer storage 

will decrease as aquifer volume increases. Surficial manipulations of topography, or increases in 

the volumetric storage capacity of an aquifer can have substantial effects in relatively small, 

shallow aquifers. In larger, lower-gradient river systems, a comparable effort would result in a 

much smaller relative increase in exchange and storage.     

 

6. CONCLUSION 

In this paper, we quantify the effect of channel restoration on nested scales of hydraulic exchange 

and temporal patterns of alluvial aquifer recharge and discharge. Using a combination of 

geomorphic and topographic surveys, hydrometrics, groundwater tracers and discharge 

measurements, we link changes in the physical form of the channel and valley to hydrologic 

responses to restoration across spatial and temporal scales. Restoration increased transient 

storage, likely due to increased sinuosity, bedform complexity and reduced slope. Introduction of 

larger, more variable bed features (riffles and pools) effectively induced vertical exchange, 

though the depth and rate of exchange was limited by the lower, stratified hydraulic conductivity. 

Lateral exchange trends in the restored reach were dominated by storage or underflow processes, 

in contrast to rapid aquifer drainage (discharge) in the degraded reach.    

 

The cumulative impact of these exchange processes resulted in a longer period of alluvial aquifer 

recharge early in the season, allowing for higher volumetric discharge to sustain base flow. This 

is evidenced by net losses in stream discharge (storage) in the restored reach at moderate flows 

and higher net volumetric gains (discharge) at base flow. Additionally, 222Radon modeling results 

reveal a more gradual, prolonged reduction in groundwater discharge from Spring to base flow, 

with higher rates of discharge at most time periods, most notably at the lowest flows.    

 

Our findings support an assumed, but not well examined theory that stream restoration can 

prolong the baseflow recession, contributing larger volumes of stored alluvial aquifer water to the 

stream later in the season. This may have significant impacts on streamflow discharge and 

temperature, especially at base flow. This approach to restoration could, therefore, be effective in 
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buffering streams from climate change-induced variations in the water cycle. Basin characteristics 

such as climate, lithology and existing storage capacity must be considered to appropriately 

characterize how form may influence hydrologic function of disturbed and restored watersheds.  
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Restored Degraded

Hyporheic Zone

Subsurface flow 
paths

a)

b)

c)

High Flow 

Base Flow

Figure 1: Conceptual model of restoration impacts on exchange. Adding geomorphic 
complexity in the (a) longitudinal and (b) planform profiles results in longer, more variable 
flow paths and a larger hyporheic zone. (c) Raising the channel bed elevation increases 
water table height and prolongs the bank storage period at high flows (light blue) 
contributing to alluvial aquifer recharge. This results in higher volumetric storage and 
discharge at base flow (dark blue) .
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Parameter Units Values Method for Parameter Estimation

Stream discharge Q [m3 day-1] 12,874 - 57,542 Field measurement (synoptic flow gauging). Mean 

of upstream and downstream measurements.

222Rn 

concentration in 

stream

c [Bq m-3] Restored

150 - 663

Degraded

146 - 383

Field sample collection. Analyzed using the RAD7. 

Varies inversely with Q.

Distance 

downstream

x [m] Restored

351

Degraded

224

Field measurement

222Rn 

concentration in 

groundwater 

(Equilibrium radon 

concentration)

ci [Bq m-3] 26,250 Based on the highest measured seep/shallow well 

radon concentration. All water samples were 

analyzed using the RAD7.

Stream width w [m] Restored

7.0

Degraded

5.5

Mean of field measurements.

Evaporation rate E [m day-1] 0 Assumed to be negligible (Cook et al., 2006)

Gas transfer 

velocity across 

water surface

k [m day-1] 5.5 - 21.6 6.0 - 27.7 See Table 2

Stream depth d [m] Restored

0.28 - 0.45

Degraded

0.15 - 0.35

Mean of field measurements. Increases with Q.

Decay constant 𝜆 [d-1] 0.18 Constant

Production in HZ 𝛾 [Bq m-3 day-

1]

4,725 𝛾 = 𝜆 × 𝑐𝑖 (from Bourke et al., 2014) where 

ci=26,250 Bq/m3 (highest measured concentration) 

Depth of HZ h [m] 1 Radon concentrations at 0.5m depth were 

consistently lower than secular equilibrium values, 

inferring that hyporheic exchange is present at this 

depth. 

Porosity of HZ 𝜃 [--] 0.3 Estimated based on subsurface texture. 

Mean residence 

time in HZ

th [day] 0.25 0.4
𝑡ℎ =

𝑐−𝑐ℎ
𝜆𝑐ℎ−𝛾

From Bourke et al. (2014) where ch is 

the average radon concentration within the 

hyporheic zone.

Table 1. Radon model parameter values and methods of estimation. 

Equation Citation Equation

Raymond et al. 

(2012) 

𝑘600 = (𝑉𝑆)0.89±0.02× 𝐷0.54±0.03 × 5037 ± 604

Raymond et al. 

(2012) 

𝑘600 = (𝑉𝑆)0.76±0.027× 951.5 ± 144

O’Connor and 

Dobbins (1958) 𝑘 = 9.301 × 10−3(
𝑣0.5

𝑑1.5
)

Negulescu and 

Rojanski (1969)
𝑘 = 4.87 × 10−4(

𝑣

𝑑
)0.85

Table 2. Equations used to estimate gas transfer velocity (k) for radon modeling based on field 
measurements of velocity (V), slope (S), depth (D) and temperature (included in 𝑘600 calculation of 
Raymond et al., 2012 equations)  



Figure 3. Hydrograph and hyetograph of the study period. Vertical dashed  

lines represent synoptic sampling dates. The hydrograph was created using a 

rating curve developed with six dilution gauging discharge measurements 

from the project site and stream stage measurements from site stilling wells. 

Precipitation was measured at the Sleeping Woman (#783) SNOTEL site, 

located 25 kilometers southeast and 600 meters above the study site. 

Precipitation data are presented to represent the timing, not magnitude, of 

precipitation at the project site. 

Hydrograph and hyetograph of study period
Ninemile Creek, 2016



Figure 4. Topographic surveys completed in restored (blue) and degraded (red) reaches a) 
longitudinal profile of bed geometry with points collected at apx. 1-meter resolution along the 
thalweg b) sinuosity with points taken at apx. 1-meter resolution along the thalweg c) average 
channel cross-section with approximate bankfull stage (dashed line).
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Table 3. Summary of topographic and geomorphic surveys

a) Topographic survey results. All metrics are unitless

b) Summary of Subsurface hydraulic conductivities (units are cm hr-1)

Restored Degraded
Average Width-to-Depth 
Ratio

18 12

Stream Slope 0.010 0.015
Sinuosity 1.33 1.05
Thalweg variation: r2 0.927 0.978
Thalweg variation: SD of 
residuals

32.4 10.3

Restored Degraded
50 cm 20 cm 50 cm 20 cm

Median 8.6 52.2 14.5 367.6
Upper Quartile 61.3 146.5 312.7 613.8
Lower Quartile 2.6 8.9 4.5 150.2
IQR 58.7 137.6 308.2 462.8
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Figure 5 a) Surface grain size distribution measured using Wolman pebble count methods in restored 
(red) and degraded (blue) reaches  b) Boxplot of subsurface hydraulic conductivity using Horslev Slug 
Test Analysis in deep (50cm) and shallow (20 cm) piezometers (n=41 at each depth). Boxplots present 
median values (line), interquartile range (box) and 1.5x the IQR (whiskers). 
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Figure 6. Transient storage as evaluated by r, the decay 

coefficient of BTC tails. Three sub-reaches were evaluated at 

high (May), moderate (June) and low (September) flows in 

restored and degraded reaches. An r-value closer to zero 

represents higher transient storage (lower BTC tail slope). The 

degraded subreach influenced by a channel-spanning beaver 

dam is circled in black. 



Figure 7. Boxplots of vertical hydraulic gradients calculated from in-stream piezometers in restored 
(blue) and degraded (red) reaches (at each depth, n=18 in degraded, n=23 in restored). Gradients 
were calculated at two depths:  a) between 20 cm subsurface and the streambed (shallow) b)
between 50 cm and 20 cm subsurface (deep). Positive gradients represent upwelling, negative 
gradients represent downwelling. Boxplots present median values (line), interquartile range (box) and 
1.5x the IQR (whiskers). 

Table 4. R2 values of significant relationships between shallow vertical hydraulic gradient and local bed 

slope at different length scales in the restored reach. Slope was calculated as the average slope across a 

range of distances upstream of the piezometer where the hydraulic gradient was measured. The variable 

length scale accounts for the variable length of bed features and was calculated as the average slope 

between two sequential piezometers.  All significant relationships evaluated are shown, with the best fit 

(highest r2) shaded in grey. There were no significant relationships in the degraded reach. 
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Figure 8. Boxplots of vertical specific discharge and specific conductance from in-stream piezometers at 
two subsurface depths, (n=18 in degraded, n=23 in restored at each depth). Specific discharge was 
calculated for flowpaths between a) 20 cm subsurface and the streambed b) 50 cm – 20 cm subsurface. 
Absolute values represent the total flux (upwelling and downwelling). See figure 7 for gradients 
illustrating the direction of flow. SC measurements of water at  c) 20 cm and d) 50 cm subsurface. 
Boxplots present median values (line), interquartile range (box) and 1.5x the IQR (whiskers). 
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Figure 9. Lateral hydraulic gradients calculated between shallow groundwater wells and in-stream 

stilling wells in a) degraded and b) restored reaches. Plots present gradients over time for all wells 

(n=6 per treatment). Positive gradients represent gains to the stream while negative gradients 

represent losses. Water levels occasionally dropped below the well extent in degraded reach well D1 

left (no line).
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Figure 10. Temporal trends in alluvial aquifer recharge and discharge. a) Radon-modeled groundwater 
discharge over time. Center line represents mean modeled discharge . Shaded areas illustrate model results 
with +/- 1 standard deviation of radon concentration measurement error. b) Net change in discharge over 
time. Positive values represent a net gaining reach and negative values net losing. Shaded areas represent 
discharge measurement error. All measurements are normalized by valley length to represent the valley-
scale impact of restoration.
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