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Despite their attempts to mitigate ecological impacts through sustainability initiatives, 

businesses are a major cause of the world's ecological problems. Some progressive businesses 

are attempting to move beyond “net zero” in terms of achieving neutral environmental impacts 

and instead are now pursuing a goal of net positive. Net positive refers to the idea that business 

activities could contribute value-added benefits to earth’s ecological systems, for example, by 

using technologies that sequester and store carbon. However, except for a handful of high-profile 

corporate case studies, little is known about how companies are developing their strategies to 

become net positive and if it is even a realistic goal. Further, little is known regarding the 

measurements they are using to determine what net positive business practices are. My thesis 

research addressed three fundamental questions: (1) “What are the types and impacts of net 

positive strategies an established business might use?”; (2) “What are the measurement issues 

associated with evaluating the impacts of those strategies?”; and (3) What are the challenges a 

business faces when implementing net positive strategies? Based on data collected from an 

organic brewery in western Montana, Wildwood Brewing, my research evaluated two on-site 

negative emission technologies (NETs), short rotation coppice agroforestry (SRCA) and 

pyrolysis, as well as on-site energy generation through photovoltaics (PV). Using two 

environmental accounting methodologies—emergy analysis (EMA) and life cycle assessment 

(LCA)—to assess Wildwood’s ecological impact, results show that Wildwood must employ 

NETs over larger amounts of hectarage than it has available on-site in order to attain a net 

positive state. LCA proved a more useful approach to measuring net positive benefits to the 

environment over EMA because of its ability to express negative CO2e values from NETs. Based 

on in-depth interviews with the owner, the main challenges a business may face in achieving net 

positive include lack of personnel and infrastructure, poor cash flow to fund the initiatives, and a 

lack of a formal marketing and sales plan to generate greater revenue. 
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1 Introduction 

Resource extraction and other industrial impacts have negatively affected the planet’s ecological 

systems at local, regional, and global scales (Griffin, 2017; Hsu, 2006; Nriagu, 1996). Resource extraction 

and processing are responsible for over 90 percent of global biodiversity loss and water stress, and more 

than half of global climate change impacts (IRP, 2019). As a result, businesses have developed 

sustainability initiatives to “be less bad” (e.g., to reduce energy consumption or to reduce the use of 

environmentally harmful materials). These efforts to use resources efficiently are often described in ‘net 

neutral’ language; i.e., to offset 100% of electricity emissions by 2030.  

Several papers have argued that the goal of being net neutral does not go far enough; instead, 

business should find ways to rehabilitate and improve unsustainable circumstances (Birkeland & Knight-

Lenihan, 2016; Cole, 2012; Mang and Reed, 2012; McDonough & Braungart, 2002; Reed, 2007; Waldron 

& Miller, 2013). These leaders have boldly called for businesses to add value back to ecological systems. 

Referred to as net positive or regenerative business, the goal is for an organization to contribute positively 

to natural capital (soil, carbon, air, biodiversity, etc.) compared to its uses or negative impacts. 

A handful of high-profile companies1 have heeded this call and have worked to implement 

strategies that allow them to become regenerative to the natural environment. Examples of net positive 

strategies employed by these businesses include: Interface Inc.’s production of carpet that absorbs and 

stores carbon from the atmosphere by naturally and synthetically converting CO2 into bio-derived carbon 

and carbon-storing minerals and polymers, respectively (Interface, Inc., 2019), Kingfisher’s goal of 

 
1 Interface Inc., a commercial flooring company; Kingfisher, PLC, an international home improvement 

company; and Stripe, a payment platform technology company  
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generating more than 100% of its energy from renewable sources by implementing solar or wind energy 

in all their store locations (Kingfisher, 2018), and Stripe’s goal of more than offsetting 100% CO2 

emissions through direct air capture (Anderson, 2019) —a chemical scrubbing process that directly 

removes CO2 from the outside air (Socolow et al., 2011). 

Despite the appeal of these examples, very little literature exists to guide businesses in their 

pursuit of net positive strategies and more specifically, how to measure the environmental impacts of 

possible net positive business practices. Hence, I investigated three possible strategies businesses might 

pursue in order to both offset existing impacts and generate net positive benefits to the environment. 

These strategies include two negative-emission technologies (NETs), short-rotation coppice agroforestry 

(SRCA) and pyrolysis, and the use of solar photovoltaics (PV) to generate energy. More specifically, 

using an existing business as a case study, this research tackles the measurement issues in gauging the 

impact of these strategies by analyzing carbon footprints via a life cycle assessment (Onat et al., 2014) as 

well as an approach developed by Odum (1996) referred to as “emergy analysis”. This case study 

approach (Crowe et al., 2011) lends itself well to understanding the challenges businesses face in 

pursuing net positive strategies and offers insights into measurement issues and implications.   

2 Literature Review  

2.1 Contexts for Exploring Net Positive/Regenerative Strategies 

One context that has gained some traction in exploring net positive strategies is the built 

environment. The built environment, or man-made structures, was one of the early adopters of net 

positive practices. Sustainable building initiatives such as Leadership and Energy and Environmental 

Design (LEED) provided an assessment method for builders to evaluate the environmental impacts of 
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their building designs (Cole, 2012). However, some LEED builders sought to create “net zero buildings” 

or “zero carbon buildings”—buildings that either fully offset annual operational energy or return the 

amount they consume to the grid via on-site (or in some cases, off-site) energy production (Torcellini, 

2006; U.S. Department of Energy, 2015).  

Pushing further, Cole and Fedoruk (2015) advocated that designers go beyond net zero and 

instead, design net positive energy buildings, in which more electricity is put back into the grid than is 

used throughout the building’s lifetime. To do so, building designers must account for the building’s 

complete life cycle energy including that which is expended during both the construction of the 

building—something known as its “embodied energy” (Cole and Fedoruk, 2015)—as well as the ongoing 

operations of the building over its lifetime. This complete measurement approach is in marked contrast to 

most net zero energy measurements which focus solely on accounting for a building’s operational energy 

usage (Cole & Kashkooli, 2013). Moreover, net positive buildings must also develop partnerships with 

energy companies and/or other members of the grid for whom the excess on-site solar or wind energy is 

provided (Cole, 2012; Cole & Kashkooli, 2013).  

 Another area where net positive approaches to business are gaining traction is in regenerative 

agriculture. Regenerative agriculture is a system of farming principles and practices that aims to go 

beyond sustainable by increasing biodiversity, enhancing ecosystem services, and capturing carbon in soil 

and above-ground biomass to reverse current global trends of atmospheric accumulation (Terra Genesis 

Institute, 2019). The notion of returning more organic matter to the soil than is used during cultivation (a 

cornerstone of regenerative agriculture) has been cited in many traditional farming practices (Howard, 

1943; King, 1922; Smith, 1953). Yet, it wasn’t until the latter half of the twentieth century that the term 
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regenerative agriculture began appearing in the literature (Harwood, 1983; Harwood & Madden, 1982; 

Liebhardt, Francis, & Sands, 1985). The Rodale Institute began using the term (Gates, 1996) after it was 

coined in the early 1980’s by Robert Rodale (Dahlberg, 1993).  

Since the early 2000’s, there has been an increase in publications on regenerative agriculture. 

Recent findings from the literature have shown regenerative farming practices to increase soil organic 

carbon stocks and decrease greenhouse gas emissions (De Ponti et al. 2012; Gattinger et al., 2012; Kenne 

& Kloot, 2019), maintain yields (Pimentel et al., 2005), improve water retention and plant uptake (Lotter, 

2003), improve farm profitability, (Pimentel et al., 2005) and revitalize traditional farming communities 

(Wittman, 2009), while ensuring biodiversity and resilience of ecosystem services (Crowder et al., 2010, 

Lotter, 2003). The interest in regenerative agriculture has increased as advocacy groups have emerged in 

recent years (i.e., The Carbon Underground, Regeneration International). A 2017 initiative received 

signatories from over 140 agriculture firms endorsing regenerative agriculture (The Carbon Underground, 

2017) and widespread coverage continues in academic literature (Elevitch, Mazaroli, & Ragone, 2018; 

Hes & Rose, 2019; Kenne & Kloot, 2019; LaCanne & Lundgren, 2018; Rhodes, 2017). 

2.2 Net Positive Strategies 

Negative emission technologies (NETs) are technologies that remove the major greenhouse gas, 

CO2, from the atmosphere (EASAC, 2018). NETs have become increasingly important strategies in 

meeting international climate goals (Luderer et al., 2013, 2016; Minx et al., 2017, 2018; Peters, 2016; 

Rogelj et al., 2015, 2018). The acronym “NETs” is a blanket term for many approaches that remove CO2 

from the atmosphere (i.e., carbon mineralization, iron fertilization, direct air capture, and 
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biosequestration2). Due to limited data availability and because many NETs are still in their infancy 

(National Academies of Sciences, Engineering, and Medicine, 2019), only short rotation coppice 

agroforestry (SRCA), a system of harvesting wood from fast growing woody species, and pyrolysis, the 

chemical decomposition of woody biomass, are considered in this study. SRCA and pyrolysis may be 

combined as promising options for carbon sequestration and storage, respectively (Bruckman, 2016).  

SRCA systems usually consist of fast-growing tree species such as willow or poplar. The trees are 

planted at high densities of 12,000 (or more) plants per hectare in a planting pattern that allows for 

mechanical harvest on a “rotation” of every 2-6 years (Kumar & Nair, 2011). Carbon sequestration from 

SRCA involves bio-sequestration, or carbon capture and storage in plant biomass through photosynthesis. 

Trees are harvested at the base when the plants are dormant and the “resprouting” after cutting allows for 

several rotational harvests to be taken before yields decline (20-30 years after planting). In addition to 

being used as biochar, coppice biomass is also used for woody energy crops (e.g., bio-oil) (Pleguezuelo et 

al., 2015). 

 
2 Carbon mineralization refers to removal of carbon dioxide (CO2) from the air and storing it in the form 

of carbonate minerals such as calcite or magnesite. Iron fertilization is the intentional introduction of iron 

to iron-poor areas of the ocean surface to stimulate phytoplankton production and the CO2 they sequester 

from the atmosphere. Direct air capture is a chemical scrubbing process that directly removes CO2 from 

the outside air. Biosequestration captures and stores carbon in living organisms such as plants and algae. 
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Figure 1 Short Rotation Coppice Agroforestry. Shoots emerge from epicormic buds that form on the stumps of 

recently harvested biomass. Growth is allowed for several years before harvesting again. © Photo copyright Chris 

McAuley and licensed for reuse under Creative Commons License 

 

The second NET, pyrolysis, involves the chemical decomposition of organic matter through the 

application of heat. Depending upon the type of pyrolysis process used (e.g., use of charcoal or bio-oil to 

generate the heat), by-products are produced. For example, one key by-product is biochar, a stable, 

charcoal-like material rich in carbon. Producing biochar through pyrolysis and incorporating it into the 

soil diverts carbon from the atmosphere-biosphere pool, or stocks of carbon that are exchanged between 

the land and atmosphere, and into a stable carbon that decomposes slower than the parent feedstock, 

avoiding the generation of CO2 from natural decay or burning (Crombie et al., 2013, Liang et al., 2008; 

Spokas, 2010). 
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Two concerns with biosequestration-based NETs include their potential to compete or overlap 

with land availability for reforestation/afforestation and food production (EASAC, 2018) and their 

potential to dramatically change ecosystems (Williamson et al., 2016). Therefore, the spatial scope of 

NETs is confined to the employment of strategies on-site in order to alleviate these concerns. 

 

 

Figure 2 Biochar from the pyrolysis process. Image Credit: This file is licensed under the Creative 

Commons Attribution-Share Alike license and is attributed to Wikimedia username K.salo.85. 

 

Finally, I assessed another strategy, photovoltaics (PV). PV, or solar panels, rely on the 

absorption of sunlight as a source of energy to generate direct current electricity and is an important way 

to minimize carbon-intensive energy usage (Panwar et al., 2011). Although PV could produce more 

energy than a business “consumes,” PV does not offset CO2 emissions from other business activities and 

as such, is not technically a NET. Yet, since there is substantial agreement among scientists that NETs 
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should not be a substitute for mitigation of emissions (EASAC, 2018), PV could serve an important role 

in lowering a company’s emission footprint and minimize the extent of NET employment.  

2.3 Assessment/Measurement Methodologies 

To assess the scope and effectiveness of on-site net positive business strategies requires two 

steps: measuring the life cycle business impacts3 and measuring the life cycle impacts of the net positive 

strategies. According to Renger et al. (2015), life cycle impacts must be defined and then measured using 

tools that are modified and integrated into a net positive framework. Various tools exist to assess 

environmental impacts of business operations. One tool, life cycle assessment (LCA), is widely used to 

assess the ecological burdens connected with the complete life cycle (creation, use, end-of-life) of 

products, processes and activities (Klöpffer, 2014). Based on the LCA, businesses can make decisions 

that improve the ecological performance of industrial activities (El-Haggar, 2007, Krishna et al., 2017).  

One way that LCA measures ecological impacts is through the Global Warming Potential (GWP). 

GWP is the radiative forcing due to a pulse emission of a given greenhouse gas (GHG), over some given 

time period (or horizon) relative to a pulse emission of CO2 (Shine, 2005). The given time period relative 

to a pulse emission of CO2 is commonly 20, 100, or 500 years (although the latter is being phased out) 

(IPCC, 2018). For example, the 100-year GWP of methane is 28, which means that if the same weights of 

methane and CO2 were introduced into the atmosphere, methane will trap 28 times more heat than the 

CO2 over the next 100 years (Myhre et al., 2013). GWPs are factored to kilograms of CO2 equivalents 

(CO2e)—a common unit for describing different greenhouse gases—by multiplying the amount of the 

 
3 Life cycle business impacts refers to environmental impacts that occur throughout the business’s entire 

existence beginning with early stages such as construction to end of life stages such as 

demolition/disposal. 
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GHG by its GWP (e.g. if 1 kg of methane is emitted, this can be expressed as 28 kg of CO2e or 1 kg CH4 

* 28 = 28 kg CO2e) (Brander, 2012). 

Another environmental accounting tool, emergy analysis, can also be used to assess the 

ecological performance of industrial processes (Cavalett & Ortega, 2009; Feng et al., 2009; Siracusa et 

al., 2007; Yang et al., 2003). Emergy is the total energy used—all the work done and fuel spent—to make 

a product or service (Odum, 1996). Because it is useful to compare different products and services using a 

common unit, and because sunlight is both the largest source of available energy entering the biosphere 

(Campbell, 2016) as well as the source from which most kinds of available energy derive (Chen et al., 

2006), emergy is expressed as solar emjoules (seJ)—the amount of solar energy it took to do something.  

The emergy analysis involved four parts. I first created energy system diagrams according to 

emergy input and output items across spatial distributions. Material and energy flows from building 

construction, operations, and end-of-life phases were then inventoried. I next calculated the material 

weight values, quantities, and determined the material lifetime values. Lastly, I derived unit emergy 

values from the literature to calculate emergy. Deriving weights are critical to the emergy analysis 

because UEVs of most materials are expressed as emergy/kg of material. Further, denoting a material 

lifetime value (also Step 3) is important in reflecting the repeated replenishment and corresponding 

emergy of depreciable materials across the lifetime of the business. 

Unit Emergy Value, UEV, is defined as the amount of emergy that is needed to make one unit of 

product or service and is generally measured in joules or grams (Saladini et al., 2018). UEVs are the 

intensive expression of the unit of emergy, the solar emergy joule (sej). Deriving UEVs from published 
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papers or calculating UEVs are necessary in order to determine the solar emergy of a product or service, 

which is determined according to the following formula: 

𝐸𝑚 = ∑ 𝐸𝑖𝑈𝐸𝑉𝑖

𝑛

𝑖=1

 

where Ei stands for the energy content of the i-th independent input flow to the system and UEVi is the 

Unit Emergy Value of the i-th input flow. All the UEVs used in this study refer to the global emergy 

baseline4 of 12.0E+24 seJ y−1 (Brown et al., 2016). 

To evaluate the viability of the net positive business strategies—the two NETs (SRCA and 

pyrolysis) and PV—and to understand how traditional LCA methods and the relatively less well-known 

emergy analysis can be used to assess these net positive strategies, I collected data from a case study of a 

brewery in western Montana.  

3 Methods 

3.1 Case Study Selection  

According to Patton (2014, p. 279), a case study requires that the case selected be “information-

rich and correspond with the phenomenon of interest intensely”. For my purposes, the case company 

needed to be striving to optimize its material and energy flows, incorporating techniques to generate 

energy on-site (e.g. PV), and demonstrating a philosophy of sustainability that embodies net positive 

practices. 

Based on these criteria, I selected Wildwood Brewing, an organic brewery one mile north of 

Stevensville, Montana. Located in the Bitterroot Valley on a two-hectare plot of land (46˚31’47.84” N, 

 
4 Global emergy baseline refers to the total flow of emergy resources driving the biosphere and is a 

necessary component for calculating UEVs (see Ulgiati et al., 2011) 
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114˚06’30.82”) (see Figure 3), Wildwood mainly serves organic beer to Montana craft beer markets in 

Western and Central Montana. In 2018, Wildwood was in its eighth year of production and was producing 

on average 300 brewer’s barrels or 35,100 liters per year. 

 

 

 

Figure 3: Wildwood Brewing in Stevensville, Montana. 

3.2 Qualitative Data Collection  

 The research also included in-depth interviews with the owner, which allowed for insight 

into challenges and barriers a business faces in achieving a net positive state. Data collection 
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entailed the following steps. First, two one-hour long semi-structured interviews were conducted 

with the owner on separate days in January 2019. This qualitative methodology is ideal for the 

analysis of “how” and “why” questions (Yin, 1994), and more importantly, allows for an in-

depth understanding of a dynamic phenomenon in a real-life context (Nordin et al., 2017). The 

questions, shown in Appendix 1, were wide ranging, detailed, and context-specific. These 

interviews were completed prior to the collection of other measurements in order to build rapport 

with the owner and to familiarize myself with the brewery. Given the extensive data that was 

required for the technical analysis, this rapport was critical for obtaining the owner’s 

commitment to the project. The interviews were recorded and transcribed. The analysis of the 

qualitative data followed an abductive research approach5, characterized by an iterative process 

of systematic confrontations of the desired end state (in this case, net positive) with reality 

(Dubois & Gadde, 2002).  

3.3 Energy System Diagramming: Wildwood’s Inputs, Interactions, and Flows Within the Study’s 

System Boundary 

Systems tend to be very complex, and thus quite difficult to study. One way to distill the 

system to its essentials, choosing the key variables and interactions to focus on, is through 

creating energy system diagrams, which are commonly used in the fields of ecological 

engineering and systems ecology (Ayers, 2009). Using specific symbols referred to as the 

“energy system language” (Figure 4), energy system diagrams show the ways in which energy, 

materials, and information interact with one another and the system of analysis, providing an 

understanding of the system’s functioning as a whole (Odum, 1996). 

 
5 A form of logical inference that seeks to find the simplest and most likely explanation of an observation. 
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Figure 4: Symbols used in the energy systems language. System Boundary: The spatial extent of the 

system under analysis. Source: an outside source of energy delivering forces according to a program 

controlled from outside; a forcing function. Pathway of Material or Energy Flow: a flow of energy, often 

with a flow of materials. Storage: A compartment of energy storage within a system storing a quantity as 

the balance of inflows and outflows; a state variable. Process: Represented here as a “black box” to show 

a simplified process, or sub-system, and not its inner workings. Production: These include units that 

collect and transform various inputs into a particular product. Heat sink: Dispersion of potential energy 

into heat that accompanies all real transformation processes and storages; loss of potential energy from 

further use by the system (Odum, 1996). 

 

Prior to diagramming, an initial site assessment was conducted to understand the scope of 

business operations. The next step was to delineate the system of interest by showing the extent 

of the system boundary. Next, I defined the relevant inflows and outflows that drive the 
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production and processes (also defined), the state variables (storages), and interactions. Figure 5 

shows an energy system diagram of Wildwood. In line with Brown (2004) elements of the 

energy system diagram include the following: the “system boundary” represented by the round 

rectangle; the main “source” inputs represented by the circle symbols that cross the system 

boundary via “pathways of material or energy flow”; the “process” itself (e.g., the brewery) 

represented as a box; the NETs and agriculture represented as bullet shaped “production” 

symbols; and other “storage” symbols that represent material that builds up over time within the 

system due to a rate limiting process. The system boundary, and thus the scope of this research, 

does not represent energy and material flows after the point of beer distribution (e.g. once the 

beer enters the market). 

 

     

Figure 5: Energy system diagram of Wildwood Brewing with associated inputs, interactions, and flows.  
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The source inputs begin with sunlight energy and move clockwise across an energy 

concentration gradient6 ending with labor. The source inputs all feed into the main components 

within the system boundary—agriculture, the brewery, and the NETs. The brewery building, a 

facility designed and constructed for an estimated production volume of 10,000-barrels, is 

depicted as a black box—a simplified diagram that shows the main inputs and outputs of the 

brewery’s industrial activities rather than portraying all of its inner workings. Agriculture, which 

is separate from NETs to demonstrate ingredients imported from off site, and NETs are both 

given bullet shaped production symbols to demonstrate their ability to fix their own carbon 

through photosynthesis. Organic waste, garbage, and emissions are all storages (tank symbol) to 

represent stocks of materials that accumulate over time. NETs are depicted as being attached to 

the brewery to represent partial on-site application of SRCA and pyrolysis.  

The brewery, agriculture, and NETs each generate CO2 emissions whereas woody 

biomass (SRCA) and subsequently biochar (pyrolysis) act as CO2 sinks. There is also the 

“organic waste” sink (e.g. spent brewer’s grain) that could serve to cycle nutrients on-site and 

increase other sinks, such as soil, through composting initiatives (although this research does not 

analyze that potential). The well sink serves to provide water for SRCA and the brewing process. 

The thinner arrows that flow from the bottom of the internal components to outside of the system 

represent the heat sinks—loss of potential energy from further use by the system. Apart from 

 
6 Concentration gradient here refers to the concentrated amount of previously available energy that was 

used to create energy (sunlight), materials (concrete), or processes (labor) relative to one another. 
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sunlight that is re-emitted out of the system in the form of longwave radiation, the only other 

output that crosses the system boundary is beer.  

3.4 Inventory Process  

As shown in the energy system diagram, the process box, or the brewery, was depicted 

without detailing the inner workings. To understand the inner workings, I first conducted a site 

visit to evaluate the scope of materials, energy, and other processes that the brewery depends on 

for operations. A step-by-step account of the beer making process, explained during an on-site 

walk-through of the brew house, appears in Figure 6. 

 

 

 

Figure 6: Beer Processing Flow Diagram. Malt from three silos are sent to malt hopper via cable 

conveyors. Malt is dumped into malt mill, ground up, and sent to grist hopper. Malt enters bucket elevator 

that takes grist to chain drag conveyor. Chain drag conveyor sends grist to mash kettle, water, yeast and 

hops are added, and brewing process begins. Beer is fermented, filtered, packaged, and served on-

site/distributed. Image sourced from EDraw. 
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After the site visit, an analysis of architectural drawings, and other documentation shared 

by the owner, my comprehensive inventory grouped all the business’s life cycle materials and 

energy into categories that were then entered into a Microsoft Excel database. The categories 

included: Brewing Machine and Equipment; Canning Raw Materials; Beer Ingredients; Cleaning 

Supplies; Electricity; Heating; Labor; Vehicles & Travel; Furniture, Fixtures, and Equipment; 

Construction; and Other (see categories and measurements in Table 1). Individual items within 

each category were catalogued and unit weights were derived in order to create denominator 

values for emergy conversions (emergy/kg of material) and LCA conversions (kg of CO2e/kg of 

material) (see Appendix 2 for entire list). Some emergy and CO2e items (e.g. electricity and 

vehicles) are generally expressed in terms of kWh and VKT (vehicle kilometer traveled), 

respectively, and deriving unit weights was not necessary. 

Brewing Machinery/Equipment. The weight of brew house machinery/equipment was 

derived according to either manufacturer estimations of weight or found via serial number 

searches on manufacturer websites. 

Canning Raw Materials were weighed on an individual basis and verified through vendor 

records. Annual canning material calculations multiplied the annual output volume times the 

fraction of annual beer canned by Wildwood, divided by the amount of beer in a can.  

Beer Ingredients. As noted previously, Wildwood’s average annual production was 300 

brewer’s barrels, or approximately 10 brews per year. To produce this volume requires 600 kg of 

malt and ½ kg of hops per brew, 6 liters of concentrated yeast slurry per year, and 120,000 liters 

of water (including clean up) annually.  
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Cleaning Supplies. Annual usage of cleaning supplies was calculated via the amount of 

usage per brew batch as reported by the owner, times the number of batches brewed annually.  

Electricity & Heating data were obtained from the owner via physical documentation 

from past utility bills (see Appendix 3). 

Vehicles – Travel. Travel mileage from vehicle business activity was collected from 

owner’s records based on miles traveled per vehicle per year and the vehicle type. Vehicle 

emergy and CO2e data were calculated according sej/VKT per year and CO2e/VKT per year, 

respectively, where VKT = Vehicle Kilometer Traveled. 

Labor. The number of labor hours from building construction of the brewery was based 

on historical data reported by the owner. Annual labor hours to operate the brewery were also 

reported by the owner. 

Furniture, Fixtures, and Equipment & Building Construction. Data from furniture, 

fixtures, and equipment and building construction materials were collected on-site and 

catalogued from architectural drawings, respectively. Depending on the building construction 

material, data collection consisted of counting materials (e.g., 8”x8” support columns) and 

making calculations to determine their weights via the following formula: 

𝑊 = ∑  𝑉 ∗ 𝐷 ∗

𝑖

1

𝑃𝑟𝑚 

where W is weight of a given material, i is the number of component materials per inventoried 

item (if necessary), V is volume, D is density, and Prm is the percentage of the component 

material.  
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Category Data Collection Method Formulas for Denominator Values (Em/LCA) 

Brewery 

Machines & 

Equipment 

Inventoried from on-site walk 

through and corresponded with 

manufacturer or from website to 

obtain equipment specs/weights. 

  

Canning Raw 

Materials 

Material specs weighed & 

verified by 3rd party suppliers. 

Collected on-site. 

kg/unit*number of annual units 

Beer 

Ingredients 

Calculated with owner from 

numbers reported to the IRS. 

AI = (BY + BH + BM + BW)*n = , where AI is 

ingredients, BY = yeast per brew, BH = hops per 

brew, BM = malt per brew, BW = water per brew, 

and n = brews/year 

Cleaning 

Supplies 

Obtained from owner's cleaning 

regimen. 

Cleaning chemical per brew * brew/year 

Electricity Obtained from utility bills. Yearly expenditure of kWh (electricity) and therms 

(natural gas for heating) obtained by averaging 

available data from Jan. 2015–Sept. 2018 

Heating Obtained from utility bills. Yearly expenditure of kWh (electricity) and therms 

(natural gas for heating) obtained by averaging 

available data from Jan. 2015–Sept. 2018 

Labor Referenced from tax documents 

reported by owner to IRS. 

 

Vehicles - 

Travel 

Mileage obtained from owner. Vehicle emergy and CO2 data are calculated 

according sej/VKT per year and CO2e/VKT per 

year respectively, where VKT = Vehicle Kilometer 

Traveled. 

Furniture, 

Fixture, and 

Equipment 

Collected on site and calculated 

to derive weights. 

                                                   where W is weight 

of a                                                            or                                               

given material, i is the number of component 

materials, V is the volume, D is density, and Prm is 

the percentage of the component material. 

Building 

Construction 

Catalogued from architectural 

drawings and calculated to 

derive weights. 

                                                   where W is weight 

of a                                                          or                                               

given material, i is the number of component 

materials, V is the volume, D is density, and Prm is 

the percentage of the component material. 

Other Collected on-site Includes non-brewing water usage taken from 

owner’s account, waste based on owner’s weekly 

reported average. 

Table 1: The categories of on-site data, their data collection methods, and formulas (if necessary) for 

calculating weights or other denominator value used in emergy/LCA.  

3.5 Emergy data 
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After diagramming energy flows and calculating quantities, densities, and weights for the 

items inventoried, I carried out a comprehensive literature search in order to find previously 

calculated unit emergy values (UEVs) for the materials and energy inventoried. Recall that Unit 

Emergy Value, UEV, is defined as the amount of emergy that is needed to make 1 unit of 

product or service and is generally measured in joules or grams (Saladini et al., 2018). UEVs are 

the intensive expression of the unit of emergy, the solar emergy joule (sej). Finding UEVs from 

either published papers or calculating UEVs are necessary in order to determine the solar emergy 

of a product or service, which is calculated according to the following formula: 

𝐸𝑚 = ∑ 𝐸𝑖𝑈𝐸𝑉𝑖

𝑛

𝑖=1

 

where Ei stands for the energy content of the i-th independent input flow to the system and UEVi 

is the Unit Emergy Value of the i-th input flow. All the UEVs used in this study refer to the 

global emergy baseline of 12.0E+24 seJ y−1 (Brown et al., 2016).  

UEVs were found in the literature (see references in Appendix 4) for the majority of 

items catalogued during the inventory process. The only items for which UEVs had not been 

previously calculated were the brew ingredients and cleaning supplies. Ingredients such as hops, 

barley, and yeast were approximated based on agricultural data derived from Campbell and Ohrt 

(2009) whereas cleaning supplies were approximated from data by Brandt-Williams (2002). 

UEVs needed to be updated to the current global emergy baseline of 12.0E+24 seJ y−1 from 

Brown et al. (2016) according to the following formula: 

𝐶𝑈𝐸𝑉𝑥 = (
𝑃𝑈𝐸𝑉𝑥

𝑃𝐸𝑚𝐵𝑥
) ∗ 𝐶𝐸𝑚𝐵 
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where 𝐶𝑈𝐸𝑉𝑥 is the current UEV for material 𝑥, PUEVx is the previous UEV of material 𝑥 that 

was calculated from 𝑃𝐸𝑚𝐵𝑥 or previous global emergy baseline, and 𝐶𝐸𝑚𝐵 is the current 

global emergy baseline. 

3.6 LCA Data 

The inventory process and system diagramming phases of the emergy analysis served to 

inform what CO2e data needed to be collected for the LCA. I undertook a thorough search for 

previously cited CO2e data from product manufacturing and industry journals, government 

funded documents (IPCC), government agencies (EPA), and built environment and engineering 

literature. CO2e values were found for all items catalogued during the inventory process and 

inserted into the same Microsoft Excel database under the heading “CO2e intensity”, or CO2e per 

unit. To calculate annual CO2e per inventoried item, CO2e intensity was multiplied by the 

number of kilograms per unit (or other denominators such as kWh and VKT). In some cases, 

CO2e of inventoried items were referenced as complete items (e.g. Wildwood’s television and its 

iPad).  

After collecting all of the CO2e data for the inventoried items, the goal was to portray the 

business’s life cycle CO2e fluxes during the time at which the fluxes occurred. Although the 

brewing equipment and most operational inputs (e.g. ingredients and electricity) could be 

expressed in terms of real-time CO2e fluxes, the referenced CO2e figures with unique 

denominators (e.g. CO2e per vehicle kilometer traveled) made this task difficult because 

embedded within each km traveled by a vehicle are its lifecycle emissions (e.g. production of the 

vehicle, emissions from the 1 km, etc.,). Therefore, the CO2e of every fixed inventoried item was 
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annually amortized across the business’s predicted 60-year lifetime by dividing each item’s 

lifecycle CO2e by 60. Further, items were assigned lifetimes which allowed the model to 

represent the item’s depreciation or obsolescence over time. Most of the building construction 

and equipment materials were set to exist for the 60-year lifetime of the business because of their 

“lifetime guarantees”. However, items that experience heavy usage (e.g. equipment with moving 

parts) or have shorter lifetimes (e.g. Point-Of-Sale system) were assigned shorter life cycles and 

replenished over the business’s 60-year lifetime (see Appendix 2 for estimated lifetime 

numbers).  

Based on these measures, Wildwood’s gross life cycle emissions and emergy can now be 

computed. Gross life cycle emissions refer to life cycle CO2e and emergy if Wildwood continues 

current business practices across its 60-year lifetime, or business as usual. 

3.7 NETs and PV Data Collection  

The next step was to collect life cycle business CO2e and emergy from NETs and PV in 

order to calculate Wildwood’s net emissions and emergy. Wildwood’s net emissions and emergy 

refers to its gross business life cycle CO2e or emergy minus what is captured and stored from 

NETs and diverted from PV. This step was necessary in order to run the simulation models and 

effectively answer the first two research questions. To calculate what is captured and diverted 

from the NETs and PV, respectively, a life cycle inventory was first conducted for SRCA and 

pyrolysis followed by PV. Next, emergy and CO2e data were obtained for the SRCA, pyrolysis, 

and PV inventoried items and input into the Microsoft Excel database. 

3.8 Life Cycle Inventory: Pyrolysis  
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To conduct a life cycle inventory of pyrolysis, I first estimated that Wildwood would 

purchase a pyrolyzer (image 3) manufactured by Biochar Solutions Inc. (BSI) in order to turn 

SRCA feedstock into biochar via pyrolysis. The BSI pyrolyzer was selected based on data 

availability for that particular machine (e.g. conversion ratio of woody biomass to biochar, LCA 

studies on the machine). Research from Oneil et al. (2017), Puettman et al. (2019), and Severy et 

al. (2018) indicated that CO2e and emergy values were needed for fuel consumption, labor, 

machinery (embodied), and sequestration. 
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Figure 7: The BSI pyrolyzer (Biochar Solutions, Inc.) is a down-draft gasifier7 that uses chipped or 

ground feedstock, loaded into the top of the reactor. A blower draws air and exhaust gas through the 

reactor to a flare and thermal oxidizer, while char is removed from the bottom of the reactor with an 

auger, in a continuous process. Image Credit: Schatz Energy Research Center. 

 

3.81 Life Cycle Inventory: SRCA & PV 

I began the life cycle inventory for SRCA by conducting a synthesis of eight studies that 

each observed SRCA systems in temperate climates (Aylott, 2008; Bennick, 2008; Dillen et al, 

2013; Huber, 2018; Jameson, 2010; Labrecque, 2003; Navarro, 2012; Singh & Lal, 2000). The 

synthesis indicated that the main CO2e inventory items required to construct and maintain SRCA 

systems included: the plant nursery stock; machinery (embodied); labor; water and nutrients; and 

machinery (operational). Meanwhile, emergy values were needed for each CO2e input item as 

well as an extra sunlight energy inventory item. Sunlight as an SRCA emergy inventory item was 

necessary to show the previously available energy that was used up during net-primary 

productivity8.  

Regarding PV, CO2e and emergy associated with the initial materials extraction, 

manufacturing, use, and disposal/decommissioning of the solar panels are included in the per 

kWh and Joules denominators, respectively. Therefore, the only inventory item for UEV and 

CO2e was referred to as PV life cycle.  

3.82 Defining Production Capacity of NETs and PV 

 
7 A downdraft gasifier is a co-current reactor where air enters the gasifier at a certain height below the 

top. The product gas flows downward (giving the name downdraft) and leaves through a bed of hot ash. 

8 Net Primary Productivity refers to gross primary productivity, or the overall rate of energy capture, 

minus the rate of energy loss to metabolism and maintenance. 
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Prior to collecting CO2e and emergy data for SRCA, pyrolysis, and PV inventoried items, 

the geographical extent of SRCA production (e.g. land area) and climate-imposed growing 

constraints both needed to be defined. Defining land area and climate-imposed constraints 

determines the amount of biomass feedstock available for pyrolysis and the amount of biochar 

produced from the SRCA feedstock; both of these are needed for calculating CO2e and emergy 

figures per quantity of SRCA feedstock and biochar. As mentioned previously, the land area was 

originally defined via the “on-site” two-hectares of Wildwood. To assess the maximum amount 

of SRCA biomass that Wildwood is able to grow on-site, I derived a mean value from the eight 

SRCA systems that were selected as part of the synthesis discussed in the previous section. The 

results showed a growing season production average of roughly 10 tons (9195.5 kg or 9.1955 

megagrams (MG) of oven-dry biomass per hectare (Aylott, 2008; Bennick, 2008; Dillen, et al 

2013; Huber, 2018; Jameson, 2010; Labrecque, 2003; Navarro, 2012; Singh & Lal, 2000), or a 

production of 18.391 mg (18,391 kg) of dry-biomass on Wildwood’s two-hectare site per 

growing season. Further, the conversion rate of dry biomass to biochar is roughly 5:1 (Puettman 

et al. 2019) which means that in order to produce 1,000 kg of biochar, at least 5,000 kg of dry 

SRCA biomass feedstock are needed. Inventoried CO2e items for SRCA and pyrolysis were 

reported as positive figures (e.g. 211 kg Co2e) except for sequestration, which was reported as a 

negative figure to represent carbon capture from the trees and in the biochar from pyrolysis. 

Regarding the production capacity of PV, the majority of Wildwood’s electricity expenses occur 

during the summer (see appendix 3). Given the amount of space that Wildwood is capable of 

devoting to PV, Wildwood can generate all of its total annual electricity through on-site PV. 
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3.83 Pyrolysis Data Collection 

Fuel Consumption. Based on emission factors from data published by Severy et al. 

(2018) and Puettman et al. (2020), the BSI pyrolyzer emits an average of 211 kg CO2e for every 

1,000 kg of biochar produced from medium-chipped wood. Included in the 211 kg CO2e are the 

fuel emissions from harvesting the biomass, cutting logs to length, loading, grinding, chipping, 

hauling, and screening (see Oneil et al., 2017; Puettman et al. 2020 for complete emissions 

breakdown). Although CO2e emissions are higher for the production of medium-chipped wood 

than any other wood (e.g. chipped small or ground clean), medium-chipped wood stores the most 

fixed carbon in the biochar (see “Sequestration” below) (Puettman et al. 2020). Regarding 

emergy SRCA data, UEVs for SRCA were derived from forest plantation emergy data (Brown, 

2003).  

Machinery (embodied). CO2e data of the embodied machinery emissions from the BSI 

pyrolyzer do not exist. CO2e/kg of steel values were instead sourced from Giama & 

Papadopoulos (2016) and calculated according to a BSI unit weight of 10,000 kg. Steel UEVs 

were taken from Buranakarn (1998). 

Labor. The labor requirement differs depending on the pyrolyzer (Sahoo, 2019). BSI 

biochar production requires 0.92 labor hours per machine hour (Eggink et al. 2018; Severy, 

Chamberlin, & Jacobson, 2016) and processes biomass feedstock at an average rate of 385 kg/hr 

with a mean biochar production rate of 43 kg/hr (SERC, 2015). Therefore, an annual production 

of 18,391 kg of dry biomass per year on Wildwood’s two-hectare site would require 47.76 hours 

of BSI running time, or 43.94 labor hours per 18,391 kg of biomass. However, this does not 
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include BSI maintenance labor when the pyrolyzer experiences mechanical issues. Further, labor 

hours were not included in the CO2e figure for fuel emissions. Therefore, labor figures were 

estimated based on full-time employment of two people between early March (when biomass is 

harvested) to end of October (end of growing season) for a total of 2,720 working hours. Labor 

CO2e figures were selected from Rugani et al. (2012) and UEV labor data were selected from 

Campbell et al. (2013). 

Sequestration. Sequestration had a gross carbon “emission” of -3,043 kg CO2e per 1,000 

kg of biochar (Puettman et al., 2019; Severy et al., 2018). This was reported as a negative figure 

to represent the carbon uptake during tree growth and carbon content of the biochar and does not 

account for the emissions from the other inventoried SRCA and pyrolysis items.  

3.84 SRCA Data Collection 

Nursery Stock. Nursery stock Co2e were based on data collected by Hammond and Jones 

(2008) for 12,000 hybrid poplar trees per hectare according to Kumar & Nair, (2011). UEVs for 

SRCA nursery stock were taken from Buranakarn (1998). 

Maintenance Labor. Annual SRCA labor hours that included only maintenance time 

could not be found. Therefore, annual SRCA maintenance labor for two-hectares was estimated 

according to one individual working 1,000 hours during the growing season from April to 

September. CO2e figures from Rugani et al. (2012) were used. UEV labor data were selected 

from Campbell et al. (2013). 
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Water. Water demand for SRCA was based on 45 acre-inches9/acre or 2824.48 hectare-

millimeters of water per hectare per growing season (Shock, 2005). If 12 acre-inches = 326,000 

gallons of water, then two hectares of SRCA would require 6,041,729.48 gallons of water or 

22,870,433.97 liters per growing season. These figures were only used to calculate emergy 

SRCA water demand from UEVs calculated by Buenfil (2001) and not CO2e, as no CO2e data 

for irrigation water could be found. 

 

 

 
 
 
 
 
 
 

 

 

 
9 One acre-inch is one twelfth of an acre-foot, equal to 3,630 cubic feet 
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Table 2: The inventoried items for pyrolysis, SRCA, and PV as well as emergy/year, kg CO2 emitted, and 

estimated life years (if necessary) 

 

3.85 PV Data Collection 

PV (lifecycle). A meta-analysis by Nugent and Sovacool (2014) of 41 comprehensive PV 

LCA studies found a mean lifetime CO2e value of 49.9 g CO2e/kWh from initial materials 

extraction, manufacturing, use and disposal/decommissioning. Life cycle UEV inventory items 

for PV were obtained from Raugei et al. (2006) and were expressed as seJ/J. 

3.9 Simulation Modeling 

Simulation modeling is an important method for ecological analysis (Bevers, 2002). 

Broadly speaking, a simulation model is an algorithm, typically implemented within a computer 

program, which propagates the states of a system forward through a set of rules or formulas that 

directly prescribe the next state (Hartig, 2018). Simulation models are used to describe systems 

that are difficult to capture or analyze due to their complexity (Hartig, 2018).  

Inventoried Item Category Emergy (seJ) / 
year 

(amortized) 

Kg CO2 emitted Estimated life 
in years 

(if necessary) 

Fuel consumption Pyrolysis n/a 211 kg Co2e/ 
1,000 kg biochar  

- 

Machinery (embodied) Pyrolysis 8.79E+14  6,376  60 

Labor Pyrolysis 5.69E+17 1,183 kg/year   - 

Sequestration Pyrolysis Included in 
pyrolysis 

embodied 

   -3,043 kg CO2e/  
1,000 kg biochar  

- 

Nursery Stock  SRCA 2.91E+16  11,960 30 

Maintenance Labor SRCA 1.55E+18 435 kg/year   - 

Water SRCA 8.71E+08  n/a   - 

PV (life cycle) PV 2.25E+11                       0.049 kg/kWh  25 



 30 

3.91 Wildwood Net Positive Model 

Two separate models were built in version 16.24 of Microsoft Excel to simulate net 

positive through emergy and CO2e emissions (Appendix 5a and 5b). The models pulled data 

from the CO2e and emergy inventory items of the brewery, NETs, and PV. Five main headings 

were created: Business as Usual; Offsets; Sequestration; Offsets & Sequestration, and Dynamic 

Chart Calculations. 

  Business as Usual. Business as usual data assume that business practices don’t change 

(e.g. electricity emissions are not reduced because of PV implementation). Under the business as 

usual heading are the “operating flows” and “carbon analysis” sub-headings. The operating flows 

sub-heading consists of variable inventory items that would increase depending on business 

growth. The separation of operating flows from carbon analysis allows the model to isolate 

business growth from other scenarios. Inventoried items under the carbon analysis sub-heading 

consist of fixed and variable inventoried CO2e or emergy items.  

Offsets. The Offsets heading allows for the isolation of PV compared to other scenarios 

(e.g. business as usual/NETs) and consists of Wildwood’s electricity data, the amortized annual 

embodied emissions from PV, and emissions avoided relative to electricity from the current grid 

mix. Other items under the heading (e.g. new total annual carbon, net total cumulative carbon) 

allow for the model to calculate the effect of avoided emissions over time. 

Sequestration. The sequestration heading encompasses the SRCA, Pyrolysis, and SRCA 

+ Pyrolysis sub-headings. The SRCA and Pyrolysis sub-headings include all the gross data from 
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CO2e or emergy associated from their life cycles. The SRCA + Pyrolysis sub-heading allows for 

their respective gross CO2e or emergy data to be combined in order to create net CO2e or emergy  

Offsets & Sequestration. The Offset heading and the Sequestration heading were 

previously created so that the data from each heading could create scenarios within the model 

irrespective of the other. However, the Offsets & Sequestration heading was created to analyze 

PV and the NETs together, thereby examining the net-effect when both are combined. 

Dynamic Chart Calculations. The last heading, Dynamic Chart Calculations, was created 

to take each heading and create scenarios within each simulation that are based on the final value 

of each respective heading and compare them to one another. The scenarios within each 

simulation express themselves graphically via x-axis/y-axis charts. 

               Lastly, other functions were built into the model that allowed for both the adjustment of 

business growth and the amount land required in hectares for the NETs. The latter was based on 

the fixed SRCA production value (as discussed in section 3.84 of 9195.5 kg or 9.1955 

megagrams (mg) of oven-dry biomass per hectare.  

Several model scenarios were run with differing model parameters and adjustments to 

determine the extent of NET emission offsets necessary for Wildwood to attain a net positive 

state. The first model scenario was a simulation to determine the feasibility of achieving a net 

positive state given SRCA production for only the two hectares on-site. The second model 

scenario involved the achievement of a net positive state given the production of SRCA from the 

two hectares on-site as well as offsite SRCA production. The third model scenario involved the 
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achievement of net positive state given a 3% business growth component. Lastly, a fourth model 

scenario was run that compared emergy to CO2e. 

3.92 Model Assumptions 

In order to constrain the study, the model includes several key assumptions (see also 

discussion regarding implications of the model’s assumptions). 

Business Lifetime. Based on equipment warrantees/guarantees, the owner’s interest in 

“getting as much out of the initial carbon debt as possible,” and his belief that the brewery and 

the vast majority of its industrial equipment will last at least 60 years, the model assumes a 60-

year brewery lifetime. 

Biochar Lifetime. Another key assumption was the lifetime of the biochar. The ratio of 

oxygen to organic carbon in biochar, the O/Corg ratio generally ranges from 0.2–0.6 O/Corg, 

which corresponds to a half-life of 1000-100 years (e.g. it will take 1000 and 100 years for half 

of the carbon in the biochar to break down when its O/Corg ratio value is 0.2 and 0.6, 

respectively) (Spokas, 2010). The molar O/Corg ratio set forth by EBC, a biochar industry 

standard in Europe, must be less than 0.4 in order to certify biochar (EBC, 2012). Therefore, the 

model assumes that the biochar’s O/Corg is less than 0.4, which corresponds to a half-life of no 

less than 550 years.  

Limits/Amount of PV Energy. Due to the fact that Wildwood has enough roof space or 

other space around the facility to house enough PV to generate all of its electricity needs on-site, 

the model’s PV simulations assume 100% electricity from PV.  
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Business Growth Assumptions. Although several simulations were run based on zero 

business growth, simulations that assume 3% business growth are included. This figure was a 

simple average of annual growth rates of the U.S. economy from 1948-2015 (Bureau of 

Economic Analysis, 2016).  

4 Results 

4.1 Insights from Depth Interviews 

The insights that arose from the depth interviews were interrelated and, in many respects, 

fed off of one another. These themes primarily included three critical items: Inability to pay for 

Personnel and Infrastructure, Lack of Revenue Generation, and No Formal Marketing and Sales 

Plan.  

Inability to Pay for Personnel and Infrastructure. An important challenge Wildwood faces 

in implementing net positive initiatives is the inability to obtain personnel and infrastructure. As 

explained in the next point, this was largely because of Wildwood’s inability to generate enough 

revenue to pay the personnel and purchase the infrastructure for the net positive strategies. 

Lack of Revenue Generation. Wildwood does not generate enough revenue to pay for the 

personnel and infrastructure. Sales are not significant in part because of the rural location. 

Wildwood chose a rural location in order to implement its sustainability goals, which the owner 

believed required a large plot of land. However, Wildwood in turn does not have the same access 

to markets as the breweries located in more urban areas, which in turn results in lower sales. The 

lack of a strong location on its own does not necessarily contribute to a lack of cash flow. Rather, 
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a formal marketing and sales plan is needed in order to generate revenue that could fund 

personnel and infrastructure. 

No Formal Marketing and Sales Plan. The inability to pay for personal/infrastructure and 

the lack of revenue generation are predicated on a lack of marketing and sales plan. Wildwood 

must overcome its weak market location by formally and creatively drafting and implementing a 

marketing and sales plan. Without this, Wildwood will not generate the revenue necessary to pay 

for the personnel and infrastructure required to create net positive initiatives. 

4.2 Category Emission Breakdown 

A breakdown of Wildwood’s current emissions by category demonstrates the extent of 

category emissions relative to one another. Emissions are amortized on an annual basis if 

necessary. According to figure 5, electricity contributes the vast majority of kg of CO2e at 

approx. 35,000, followed by >15,000 kg CO2e for natural gas, <10,000 kg CO2e for up-front 

emissions from building construction and equipment (amortized), approx. 7,500 kg CO2e for 

vehicles, approx. 6,000 kg CO2e for beer ingredients, <4,000 kg CO2e for canning raw materials, 

and a comparatively marginal amount of kg CO2e for labor, wood stove fuel, cleaning supplies, 

and other operational. In other words, over 60% of Wildwood’s current annual CO2e emissions 

are from electricity, 43%, and natural gas, 18.5%. Electricity and natural gas usage throughout 

the year (see appendix 3) shows that the majority of annual electricity usage was for cooling the 

brewery in the summer while the majority of natural gas usage was for heating the brewery in the 

winter. 
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Panel b of figure 5 portrays a granular look at the up-front (amortized) CO2e emissions 

from building construction, which includes other fixed (e.g. wood stove, sewer, etc.), Furniture, 

Fixtures, & Equipment (non-brewery equipment), Brewery Machines & Equipment, and 

Construction. Although Construction amortized across Wildwood’s lifetime makes up less than 

10% of emissions, approx. 95%, or 9,000 kg CO2e, of Wildwood’s upfront CO2e are from 

building construction. Meanwhile, brewery machines and equipment account for approx. 4%, or 

approx. 400 kg CO2e and Furniture, Fixtures, and Equipment and Other Fixed account for 

approx. 1%, or 100 kg of CO2e.  
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Figure 8: Panel a. breakdown of annual operational and up-front CO2e emissions by category and assumes 

no business growth. Panel b. granular look at the up-front emissions (shown as the lowest category in the 

top chart) that Wildwood incurs yearly when the net amount is amortized across a 60-year lifetime. Y-

axis is kgs of CO2e and the categories shown on the chart are the categories inventoried (Table 1). 

 

4.3 On-site Generation of SRCA, Pyrolysis, and PV 
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The 60-year simulation below assumes two hectares of on-site generation of SRCA, 

pyrolysis from the on-site SRCA biomass, and PV to address the first research question of: What 

are the types and impacts of net positive strategies an established business might use? 

As Figure 9 shows, over time, CO2e continues to rise because of the cumulative CO2e-

emitting business activities over time. However, when Wildwood adopts PV, they reduce more 

than 1/3 of CO2e emissions across their lifetime compared to business as usual. Although 

emissions are lowered when a business adopts net positive strategies, the CO2e sequestered from 

on-site NETs is not sufficient to reach a net positive state. As the figure shows, for this particular 

business, even net neutral is never attained with on-site net positive strategies. The reason net 

positive is never attained is largely due to the large size of the brewery as well as the inadequate 

amount (two hectares) of SRCA in production, which is far too small to produce enough SRCA 

biomass and corresponding biochar.  
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Figure 9: On-site generation of PV, SRCA & Pyrolysis over 60 years. Business as Usual (blue line) 

assumes Wildwood’s current business practices (which do not include on-site employment of NETs nor 

PV).  

 

 

4.4 On-site and Off-site Generation of SRCA, Pyrolysis, and PV 

The next simulation includes additional NET hectarage off-site. Again, a 60-year 

simulation was run in order to assess the impacts of on-site and offsite NETs on the business’s 

carbon footprint.  

As Figure 10 shows, when Wildwood adopts PV, they still reduce more than 1/3 CO2e 

emissions across their lifetime compared to business as usual. However, with regard to the extent 

of NETs needed to reach a net positive state, the simulation interpolated hectares needed for 

SRCA and pyrolysis based on Wildwood’s CO2e after PV and the amount the NETs can 

sequester per year. This interpolation was expressed as “after all measures” and shows a yearly 

average of 11.5 hectares of growing space (2 hectares on-site and 9.5 offsite) are needed to allow 

for achievement of a net positive state in 2068.  
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Figure 10: A 60-year simulation that includes both on-site and off-site NETs. 

 

4.5 On-site and Off-site Generation of SRCA, Pyrolysis, and PV with Growth 

The previous simulations addressed the impacts of net positive strategies on a business’s 

carbon footprint with no business growth. Many businesses have explicit growth objectives, 

related to sales, market share, or profitability. Hence, another simulation was conducted to 

include a 3% year-over-year growth rate.10  

 

 

 
10 This figure was based on a simple average of annual growth rates of the U.S. economy from 1948-2015 

(Bureau of Economic Analysis, 2016). It represents a rather conservative estimate, particularly for the 

craft-brew industry, which itself grew 4% in 2018 (Pellechia, 2019). 
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Figure 11: Panel a. shows 60-year simulation that assumes a 3% y/y business growth rate and a 3% y/y 

increase in SRCA and biochar output from pyrolysis. Panel b. shows hectares of SRCA required given the 

y/y increase of kgs of CO2e. 

 

Based on a 3% growth scenario, Wildwood would require a continual increase in off-site 

growing space beginning with approximately 18 hectares in 2025, approx. 30 hectares by 2046, 

and approx. 45 hectares by 2069 in order to reach a net positive state before the end of its 

projected 60-year business lifetime. 

4.6 Comparison of Emergy vs. LCA in Simulating Net Positive 

The next step in the analysis was to answer the second research question: What are the 

measurement issues associated with evaluating the impact of net positive strategies? I next ran 

simulations based on the emergy data. Figure 12 applies the same parameters and assumptions as 
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figure 10 including: no growth of business/NETs; inclusion of PV; and 11.5 acres of NETs, 

while including emergy over Wildwood’s 60-year lifetime. CO2e is also shown in the graph to 

show its relationship to emergy when NETs and PV are implemented in 2019 and throughout the 

lifetime of the brewery. 

Similar to figure 10, this simulation shows that based on CO2e data, Wildwood can 

achieve a net positive state with 11.5 total hectares of SRCA by 2069. In contrast, the figure 

below shows that emergy steadily increases over time, even while NETs are employed. As 

carbon emissions are being sequestered, emergy (solar emjoules) increases because emergy 

measures the work done by the biosphere to create the raw materials (e.g., the wood’s carbon-

carbon bonds driven by sunlight energy) that are needed to sequester CO2, but does not directly 

take into account the benefit on the environment of CO2 reduction. Therefore, without directly 

tying the proportion of the emergy of activities within the biosphere and technosphere11, to CO2e, 

then it will be a challenge to successfully employ emergy analysis to understand net positive 

business strategies. 

 

 
11 Referred to here as the sphere in which all of Wildwood’s business activities occurs, the technosphere 

encompasses all of the technological objects manufactured by humans. 
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Figure 12: This simulation shows a comparison between how the model dealt with Emergy and LCA data 

to observe the measurement ability in evaluating net positive strategies. 

 

5 Discussion 

5.1 Off-site Net positive 

Given the type of NETs, constraints, and assumptions of this study, the only manner in 

which Wildwood can attain a “net positive state” during its 60-year lifetime is if it includes off-

site employment of NETs, thereby requiring an expanded, opportunistic system boundary. And, 

when net positive considers the total energy hierarchy of a business12, emergy analysis results 

shows that emergy increases as NETs are employed. Moe (2014) states that the primary aim of 

 
12 The environment and the economy are supported by various types and amounts of renewable and 

nonrenewable energies. These energies are transformed in a series of steps, converting one kind of energy 

to another kind, creating a hierarchy of energy concentration (e.g. information processed on a phone using 

electricity made possible by burning coal that originated from densely concentrated sunlight). 
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any thermodynamic system is to yield the maximum entropy and power as possible (Moe, 2014). 

Odum (1996) and Moe (2014) argue that the systems which prevail in a process of natural 

selection will be those that most maximally extract power from an available energy gradient and, 

in so doing, maximize the production of entropy, thus reradiating remaining energy at the lowest 

possible level. Wildwood is not taking advantage of reradiating remaining energy at the lowest 

possible level because of the high degree of losses to the system due to the size of the facility. 

This leads to the next discussion point. 

5.2 Wildwood’s Upfront Emissions 

The question of how much upfront building construction emissions could have been 

avoided is very important. Although the owner could not have envisioned producing only 300 

brewer’s barrels of beer after eight years of operation, had the brewery been designed around a 

maximum production capacity of a quarter or even half of the brewery’s current maximum 

production of 10,000 brewer’s barrels per year, then business lifetime emissions would be 

substantially lower. These reduced upfront emissions would largely be a result of a smaller slab 

and other building construction materials, less building construction labor, and reduced heating 

and cooling needed for a smaller space. Although on-site PV is capable of generating all of the 

electricity to meet the excess, emissions associated with the PV—49.9 grams CO2e/kWh almost 

exclusively from production of the panels (Nugent & Sovacool, 2014)—is less compared to 

others (e.g., coal is 82 grams CO2e/kWh (Edenhofer et al. 2014)), yet is still significant given the 

amount of electricity required for cooling. Emissions from heating via natural gas, which emits 

methane and CO2 during extraction and combustion (Edenhoder et al. 2014), respectively, would 
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also be lower if the space were designed and built in accordance with a lower production 

capacity. 

5.3 Emergy 

Until emergy is connected to the impact that a business has on climate change, it will be 

difficult for emergy analysis to be a useful environmental accounting tool for understanding the 

net effect that NET use has on a business’s life cycle emissions. A measure must be calculated 

that involves the amount of emergy required by the biosphere to deal with the ecological impacts 

of CO2e emissions released by a business. Inversely, the same measure could also be used to 

measure the work that the biosphere does not need to do if NETs were employed. A positive 

value (emergy required by biosphere to deal with business CO2e emissions) and a negative value 

(emergy not required by the biosphere to deal with business CO2e emissions) would allow for 

proper net positive emergy accounting. The implications of this extend toward not only the 

assessment of biosphere emergy in relation to business CO2e emissions, but also towards 

assessing the effectiveness of various NETs from a novel emergy/CO2e perspective. 

5.4 Challenges to Implementing Net Positive Initiatives 

Businesses achieving net positive may find themselves in a negative feedback loop where 

some function of the output of a system is fed back in a manner that tends to create stability. For 

example, the lack of implementing net positive strategies may be reinforced by the lack of 

personnel and infrastructure. Lack of personnel and infrastructure require financial resources that 

must be obtained from higher sales, which are in turn achieved from a formal marketing and 

sales plan. Businesses that seek to offer net positive benefits to the environment must have a 
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proper plan for marketing and sales. The lack of a proper marketing and sales plan negatively 

affects revenue generation, which is needed in order to pay the personnel and infrastructure to 

implement net positive strategies such as NETs and PV. 

Another issue that may affect sales for businesses interested in implementing net positive 

initiatives is the location of the business. The NETs observed in this paper take up a significant 

amount of land and businesses may choose a rural location in order to have access to that land. In 

turn, businesses in rural locations may not be able to reach the same markets as their urban 

counterparts, which could result in lower sales. However, the lack of a strong location on its own 

does not necessarily contribute to poor revenue generation. This simply indicates an ever more 

pressing need to come up with a creative marketing and sales plan in order to compensate for the 

lack of strong access to markets. 

5.5 Reconciling Low Hanging Fruit Before Implementing Net Positive Initiatives 

The “low hanging fruit” must be reconciled before considering employment of net 

positive initiatives. Before any negative emission technologies are employed, reduction of main 

source emissions must be explored including (primarily) design that reflects the programming of 

the facility, strategies such as on-site PV employment, potential alternatives to natural gas 

heating (not discussed much in this paper), and avoidance of using internal combustion engines. 

Alleviating emissions from the primary sources, in this case smart design, electricity, heating, 

and transportation, are the low hanging fruit and should be prioritized before implementing net 

positive initiatives. 

5.6 Implications of the Model’s Assumptions 



 46 

Several implications arise from the 60-year lifetime brewery assumption. A shorter 

business lifetime would most certainly require more extensive NET and energy offset initiatives. 

The higher the ratio of building construction materials CO2e (and to a lesser extent the machines 

and equipment) to business lifetime, the more extensive the NET initiatives must be to offset 

building construction CO2e emissions. A higher ratio of building construction CO2e to its 

lifetime means that the upfront amortized CO2e emissions is averaged over less time and is 

higher relative to amortized CO2e emissions over a longer brewery lifetime. Further, the opposite 

would be the case if the brewery outlives the 60-year lifetime. Although a longer brewery 

lifetime does not change the upfront emissions associated with the construction of the brewery, 

the amortized up-front emissions would be less because the emissions would be spread out over 

a longer period of time.  

Another implication relates to the Biochar Lifetime Assumption: If the model assumed 

that the molar O/Corg ratio value were greater than 0.4 (e.g. had a half-life of 100 years), then 

Wildwood would likely need to increase production of biochar to compensate for the CO2 that is 

released from the less stable biochar during the lifetime of the brewery by expanding NET even 

more. 

The model’s PV simulations assume 100% electricity from PV. The implications of this 

assumption are that if Wildwood weren’t able to generate all electricity needs on-site through PV 

(e.g. Wildwood generates half of their needs), then certainly more extensive NETs would be 

needed because emissions from business as usual electricity account for a large portion of overall 

emissions. 



 47 

The model’s 3% business growth assumption was included in several scenarios. The 

assumptions of the growth of the individual categories is as follows: Brewing 

Machinery/Equipment - 0%; Canning Raw Materials & Beer Ingredients - 3% Cleaning Supplies 

- 3%; Electricity – 1%; Heating – 0%; Vehicles & Travel - 3%; Labor - 1%; Furniture, Fixtures, 

Equipment – 0%; & Building Construction – 0%. One implication of this growth assumption is 

that if the business were to grow more than 3%, the extent of NETs employment would need to 

be greater than what was modeled during the 3% growth simulation. And due to growth, if the 

physical space of the facility would need to be expanded, then impacts will be much higher. 

Inversely, if Wildwood were to grow less than 3%, then the extent of NET employment would 

certainly be lower than if the business were to have more growth.  

Although growth is what most businesses strive for, the simulations show that growth is 

at odds with net positive, particularly given the need to use land for negative-emission 

technologies. A business must reconcile the extent of that which it externalizes if business 

growth is the goal (e.g. ever-increasing land needed to offset ever growing emissions from 

growth). Based on the data in this case study, approx. 45-hectares were required to achieve a net 

positive state in 60 years in order to compensate for even a modest 3% year-over-year growth 

rate. Such land may not be available in many places. Moreover, bio-sequestration forms of NETs 

may take up precious space that might be used for growing food, providing housing, conserving 

biodiversity, and other land use activities.  

5.7 Community Resilience as an Emergent Property of Net Positive Business   
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One way businesses can pursue a net positive state (by alleviating large CO2e emissions) 

is to localize as much of their business activities as possible. Alleviating business CO2e 

emissions by leveraging local supply of labor and materials creates a cascade of benefits for any 

locality including a strengthened local economy and a more resilient community. For example, 

local production of goods, local supply of labor, and local cycling of resources, not only can 

reduce CO2 emissions; these strategies also offer other benefits in terms of community resilience 

(Patel et al., 2017, UK Cabinet Office, 2010). When community members produce, manage, and 

earn a living from local resources and also use the local resources, then stronger economic 

(Rupasingha, 2013), environmental (Frank, et al 2005), and social properties result (Blanchard & 

Matthews, 2006). Local community members have “skin in the game” which creates strong 

community incentives for business success, economic livelihoods, community success, and 

protection of local ecosystems. Further, the use of local resources and avoidance of over-

dependence on external resources can help the community respond to, withstand, and recover 

from adverse situations, thereby creating community resilience (UK Cabinet Office, 2010). 

Businesses have many motivations to create community resilience (e.g. to improve the local 

economy, to strengthen the local fabric of the community, etc.) and mitigating environmental 

impacts are an important part of those motives.  

6 Conclusion and Key Lessons 

This case study has illustrated that Wildwood will be unable to achieve a net positive 

state during its 60-year lifetime on its two hectares using on-site NETs and PV strategies. 

Wildwood will be able to attain a net positive state by combining on-site and off-site NETs, 
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requiring a yearly average of 9.5 hectares of off-site NETs and two hectares on-site. Further, 

when a 3% growth scenario is simulated, Wildwood would require a continual increase in off-

site growing space starting with approx.18 hectares by 2025, approx. 30 hectares by 2046, and 

approx. 45 hectares by 2069 in order to reach a net positive state. 

In terms of the measurement issues, obtaining CO2e data from a life cycle assessment of 

the brewery/NETs demonstrated the best method for expressing the impacts of net positive 

strategies on the environment. In contrast, emergy continually increases even as NETs are 

employed, suggesting further research is needed to determine the amount of emergy required by 

the biosphere to deal with the ecological impacts of business CO2e emissions and the work that 

the biosphere does not need to do if NETs were employed. This further research would allow for 

proper net positive emergy accounting. 

In terms of the challenges a business faces in achieving a net positive state, businesses 

that seek to offer net positive benefits to the environment must have a proper plan for marketing 

and sales. The lack of a proper marketing and sales plan negatively affects revenue generation, 

which is needed in order to pay the personnel and infrastructure to implement net positive 

strategies such as NETs and PV. 

6.1 Key Lessons 

• The main challenges a business may face in achieving net positive include: (1) lack 

of personnel and infrastructure, (2) poor revenue generation, and (3) incomplete 

marketing and sales plan - The lack of implementing net positive strategies is 

reinforced by the lack of personnel and infrastructure. Lack of personnel and 

infrastructure require financial resources that must be obtained from higher sales, which 

are in turn achieved from a formal marketing and sales plan. 
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• Building a smaller facility at the outset would have reduced total lifetime business 

emissions and the extent of NET and PV initiatives - Had the brewery been designed 

around a maximum production capacity of a quarter or even half of the current maximum 

annual production of 10,000 brewer’s barrels, then overall business lifetime emissions 

would be substantially less due to decreased amortized building construction CO2e, and 

reduced heating and cooling emissions for a smaller facility. 

• On-site net positive is not possible in this study - The only manner in which net 

positive can be attained is if net positive includes on-site and off-site employment of 

NETs. 

• Endless business growth requires vast amounts of land to offset life cycle emissions 

through bio-sequestration based NETs - Given Wildwood’s life cycle emissions and 

the biosequestration NETs employed by the model, even a 3% year-over-year growth 

makes it impossible to obtain a net positive state without using vast amounts of land (up 

to 45 hectares to reach net positive by 2069). 

• CO2e data proved to be more useful in measuring net positive business life cycle 

impacts than emergy data - CO2e data have the ability to express negative values which 

is useful to represent the carbon drawdown ability of NETs. To make emergy more 

appropriate for net positive analysis, further research is needed to determine the amount 

of emergy required by the biosphere to deal with the ecological impacts of business CO2e 

emissions and the work that the biosphere does not need to do if NETs were employed. 

• Electricity, followed by heating (natural gas), building construction (amortized 

yearly), and amortized up-front emissions (mainly building construction) are the 

largest emission sources –Summer cooling is responsible for the majority of 

Wildwood’s electricity expenditure at over 30,000 kg of CO2e per year. Natural gas from 

heating the facility is the second largest emitting activity at approximately 15,000 kg 

CO2e per year. Building construction, the third largest emitting activity, represents 

roughly 600,000 kg of upfront emissions that, when amortized across the 60-year 

projected lifetime, equals roughly 10,000 kg per year. Travel due to business activities 

such as distribution is the fourth largest emitting activity at nearly 8,000 kg CO2e per 

year. 

• The “low hanging fruit” must be reconciled before considering employment of net 

positive initiatives - Before any negative emission technologies are employed, reduction 
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of main source emissions must be explored including strategies such as on-site PV 

employment, and avoidance of using internal combustion engines. Alleviating emissions 

from the primary sources, in this case study electricity and heating, are the low hanging 

fruit. 
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Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. 

Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. World Meteorological Organization, 

Geneva, Switzerland, 32 pp.  

 

IRP (2019). Global Resources Outlook 2019: Natural Resources for the Future We Want. Oberle, 

B., Bringezu, S., Hatfeld-Dodds, S., Hellweg, S., Schandl, H., Clement, J., and Cabernard, L., 

Che, N., Chen, D., Droz-Georget , H., Ekins, P., Fischer-Kowalski, M., Flörke, M., Frank, S., 

Froemelt , A., Geschke, A., Haupt , M., Havlik, P., Hüfner, R., Lenzen, M., Lieber, M., Liu, B., 

Lu, Y., Lutter, S., Mehr , J., Miatto, A., Newth, D., Oberschelp , C., Obersteiner, M., Pfster, S., 

Piccoli, E., Schaldach, R., Schüngel, J., Sonderegger, T., Sudheshwar, A., Tanikawa, H., van der 

Voet, E., Walker, C., West, J., Wang, Z., Zhu, B. A Report of the International Resource Panel. 

United Nations Environment Programme. Nairobi, Kenya. 

 

Johansson, S., Doherty, S., & Rydberg, T. (2000) Sweden Food System Analysis. Proceedings to 

the First Biennial Energy Research Conference: Energy Quality and Transformities, September 

2-4, 1999, University of Florida, Gainseville 



 68 

 

Joustra, C., Yeh, D. (2015) Framework for net-zero and net-positive building water cycle 

management, Building Research & Information, 43:1, 121-132, DOI:10.1080/09613218. 

2015.961002 

 

Kenne, G.J. and Kloot, R.W. (2019) The Carbon Sequestration Potential of Regenerative 

Farming Practices in South Carolina, USA. American Journal of Climate Change, 8, 157-172. 

https://doi.org/10.4236/ajcc.2019.82009 

 

Khan, F., Sadiq, R., Veitch, B. (2004) Life cycle index (LInX): a new indexing procedure for 

process and product design and decision-making J. Clean. Prod., 12 (1) (2004), pp. 59-76 

 

Kim, H., Choi, M., Kang, D., Lee, S.M. (2011) Eco-Efficiency Evaluation of Automobiles and 

Bicycles as Personal Transportation, Emergy Synthesis 6: Theory and Applications of the 

Emergy Methodology Proceedings from the Sixth Biennial Emergy Conference, January 14 – 16, 

2010, Gainesville, Florida 

 

King, F.H. (1911) Farmers of Forty Centuries. Rodale Press, Inc., Emmaus, PA. 441 p   

 

Kingfisher (2018) Kingfisher Sustainability Report 2017/18. Retrieved from URL: 

www.kingfisher.com/sustainability/files/downloads/KFSR18_final_PDF_version.pdf. 



 69 

 

Klöpffer, W. (2014) Background and Future Prospects in Life Cycle Assessment, Springer 

Netherlands. 

 

Krishna, I. M., Manickam, V., Shah, A., & Davergave, N. (2017). Environmental Management: 

Science and Engineering for Industry: Butterworth-Heinemann.  

 

Kubota (2017) Business and CSR Activities (Full Report Version) Retrieved 10/28/19: 

https://www.kubota.com/report/pdf/pdf/report2017.pdf 

 

Kumar, B.M. & Nair, P.K.R. (2011) Carbon Sequestration Potential of Agroforestry Systems: 

Opportunities and Challenges; Springer: New York, NY, USA 

 

La Rosa, A.D. (2009) Emergy Evaluation of the Current Solid Waste Management System in a 

Sicilian District and Comparison with Future Scenarios. Emergy Synthesis 65: Theory and 

Applications of the Emergy Methodology Proceedings from the Fifth Biennial Emergy 

Conference, December 2009. Gainesville, Florida. Edited Brown, M.T. 

 

Lee, J.M., Braham, W.W. (2017) Building emergy analysis of Manhattan: density parameters for 

high-density and high-rise developments, Ecological Modeling., 363, pp. 157-171 

 



 70 

Lei, K., Wang, Z., ShanShin, T. (2008) Holistic emergy analysis of Macao Ecol. Eng., 32 (1) pp. 

30-43, 10.1016/j.ecoleng.2007.08.008 

 

Lei, K., Zhou, S., Hu, D., Guo, Z., Cao, A. (2011). Emergy analysis for tourism systems: 

principles and a case study for Macao, Ecological Complexity, 8, pp. 192-200 

 

Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J.E., Skjemstad, J.O., Luizão, F.J., 

Engelhard, M.H., Neves, E.G., Wirick, S. (2008). Stability of biomass-derived black carbon in 

soils, Geochimica et Cosmochimica Acta, 72 pp. 6078-6096 

 

Liebhardt, W. C., Francis, C. A., & Sands, M. (1985) Research needs for the development of 

resource efficient technologies. In: Workshop on Regenerative Farming Systems. Rodale 

Institute, presented to USAID, Washington, DC. 

 

Liu, G., Chen, B., Zhang, L. (2011) Analysis of resource and emission impacts: an emergy-based 

multiple spatial scale framework for urban ecological and economic evaluation. Entropy, 13, pp. 

720-743 

 

Lombardo, T. (2014) What Is the Lifespan of a Solar Panel?. Engineering.com. Retrieved from 

URL: https://www.engineering.com/DesignerEdge/DesignerEdgeArticles/ArticleID/7475/What-

Is-the-Lifespan-of-a-Solar-Panel.aspx 



 71 

 

Luderer, G. et al. (2016) Deep decarbonisation towards 1.5 ◦ C–2 ◦ C stabilisation Policy 

Findings from the ADVANCE Project 1st edn (Potsdam: Potsdam Institute of Climate Impact 

Research)     

 

Luderer, G., Pietzcker, R.C., Bertram, C., Kriegler, E., Meinshausen, M., and Edenhofer, O. 

(2013) Economic mitigation challenges: how further delay closes the door for achieving climate 

targets. Environ. Res. Lett. 8 34033    

 

Manfredi, S. , Scharff, H. , Barlaz, M. , Tonini, D. & Christensen, T.H. (2009) Landfilling of 

waste: accounting of greenhouse gases and global warming contributions. Waste Management & 

Research, 27, 825-836.   

 

Mang, P., & Reed, W. (2012) Designing from place: a regenerative framework and  

methodology. Building Research & Information, 40(1), 23–38.     

 

Meillaud, F., Gay, J.B., & Brown, M.T. (2005) Evaluation of a Building Using the Emergy 

Method Solar Energy. 79, no. 2: 204-12.   

 



 72 

Mikhail., C., (2008). Life-cycle Environmental Inventory of Passenger Transportation in the 

United States. PhD Thesis. Berkeley: Dept. of Civil Engineering. Accessible at 

http://www.sustainable-transportation.com/. 

 

Moe, K. (2014) Insulating Modernism: Isolated and Non-Isolated Thermodynamics in 

Architecture; Birkhauser Verlag AG: Basel, Switzerland, 2014. 

 

New Belgium. (2009). New Belgium Brewing Company. Retrieved from 

http://www.newbelgium.com/Files/the-carbon-footprint-of-fat-tire-amber-ale- 

 

Norris, J., Stones, P., Reverault, P. (2010) Light Goods Vehicle CO2 Emissions Study: Final 

report, AEA, Oxford Rep. ED05896, 2010 

 

Nugent, D. & Sovacool, B. K. (2014) Assessing the lifecycle greenhouse gas emissions from 

solar PV and wind energy: a critical meta-survey. Energy Policy 65, 229–244. 

 

Odum, H.T., Wang, F.C., Alexander, J.F., Gilliland, M., Miller, M., Sendzimer, J. (1987) 

"Energy Analysis of Environmental Value." Center for Wetland, University of Florida   

 



 73 

Oneil, E., Comnick, J.M, Rogers, L.W., and Puettmann, M.E. (2017). Waste to Wisdom: 

Integrating Feedstock Supply, Fire Risk and Life Cycle Assessment into a Wood to Energy 

Framework. Final Report on Task 4.2, 4.7 and 4.8. 50 pp. 

 

Minx, J., Lamb, W.F., Callaghan, M.W., Bornmann, L., Fuss, S. (2017) Fast growing research on 

negative emissions Environ. Res. Lett. 12 035007. 

 

Minx, J.C., et al. (2018) Negative emissions—Part 1: Research landscape and synthesis. Environ. 

Res. Lett. 13 063001. 

 

McDonough, W., Braungart, M. (2002). Cradle to cradle: remaking the way we make things. 

North Point Press, New York. 

 

Moe, K. 2014. Insulating modernism. Basel, Switzerland: Birkhauser Verlag. 

 

Moomaw, W., P. Burgherr, G. Heath, M. Lenzen, J. Nyboer, A. Verbruggen, (2011) Annex II: 

Methodology. In IPCC special Report on Renewable Energy Sources and Climate Change 

Mitigation [O. Edenhofer,R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, 

T. Zwickel, P. Eickemeier, G. Hansen, S. Schlomer, C. von Stechow (eds)], Cambridge 

University Press, Cambridge, United Kingdom and New York, NY, USA. 

 



 74 

Murali Krishna, I.V., Manickam, V., (2017) Stages in life cycle assessment in Environmental 

Management. 

 

Myhre, G., D. Shindell, F.‐M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.‐F. 

Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. 

Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The 

Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.‐K. Plattner, M. Tignor, 

S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge 

University Press, Cambridge, United Kingdom and New York, NY, USA. 

National Academies of Sciences, Engineering, and Medicine. (2019). Negative Emissions 

Technologies and Reliable Sequestration: A Research Agenda. Washington, DC: The National 

Academies Press. https://doi.org/10.17226/25259. 

 

National Institute of Building Sciences (2015). A Common Definition for Zero Energy 

Buildings, Energy Efficiency and Renewable Energy, DOE/EE-124, 16. 

 

Nordin, F., Ravald, A., Möller, K., Mohr J. (2017) Network management in emergent high-tech 

business contexts: Critical capabilities and activities. Industrial Marketing Management 

http://dx.doi.org/10.1016/j.indmarman.2017.09.024. 

 



 75 

Nriagu, J.O. (1996). History of global metal pollution. Science 272(5259):223-24. 

 

Odum, H.T. (1983) Systems Ecology: An Introduction. Wiley, New York. 

 

Odum, H.T. (1988) Self-organization, transformity, and information. Sci AAAS 242(4882):1132. 

 

Odum, H.T. (1995) Self-Organization and Maximum Empower. In: Hall CAS (ed) Maximum 

power: the ideas and applications. University Press of Colorado, Colorado. 

 

Odum, H.T. (1996) Environmental accounting: emergy and environmental decision making. 

Wiley, New York.  

 

Odum, H.T., Brown, M.T., Williams, S.B., (2000a) Handbook of Emergy Evaluation: A 

Compendium of Data for Emergy Computation Issued in a Series of Folios. Folio #1—

Introduction and Global Budget. Center for Environmental Policy, Environmental.  

 

Odum, H.T. (2000b) Handbook of emergy evaluation-folio #2 emergy of global processes. 

Center for environmental policy environmental engineering sciences, University of Florida, 

Gainesville, USA. http://www.epa.gov/aed/html/collaboration/emergycourse 

/presentations/Folio2.pdf. 

 



 76 

Odum, H.T. (2007) Environment, power, and society for the twenty-first century: the hierarchy 

of energy. Columbia University Press, New York. 

 

Onat, N.C., Kucukvar, M., Tatari, O. (2014) Scope-based carbon footprint analysis of U.S. 

residential and commercial buildings: an input–output hybrid life cycle assessment approach. 

Build Environ 72:53–62 

  

OSRAM (2009) Life Cycle Assessment of Illuminants: A Comparison of Light Bulbs, Compact 

Fluorescent Lamps and LED Lamps. Opto Semiconductors GmbH. 

http://www.osram.de/_global/ 

pdf/Consumer/General_Lighting/LED_Lamps/Life_Cycle_Assessment_of_Illuminants.pdf

 . 

 

Panwar, N. L.; Kaushik, S. C.; Kothari, S. (2011) Renewable and Sustainable Energy Rev. 15, 

1513–1524. 

 

Patel, S.S., Rogers, M.B., Amlôt, R., Rubin, G.J. (2017) What Do We Mean by ‘Community 

Resilience’? A Systematic Literature Review of How It Is Defined in the Literature. PLOS 

Currents Disasters. Feb 1 . Edition 1. 

 



 77 

Patton, M. Q. (2014) Qualitative research & evaluation methods: integrating theory and practice 

(4th ed.). Thousand Oaks, California: SAGE Publications Inc91320.  

 

Pearl, D., Oliver, A. (2013) Research into action: Mining dormant inherent potential so that 

urban infrastructure can act as a catalyst for positive change. Proceedings from the SB13 Stream 

5: Net Positive Buildings 10–23. 

 

Pearl, D., Oliver, A. (2015) The role of ‘early-phase mining’ in reframing net-positive 

development, Building Research & Information, 43:1, 34-48, DOI:10.1080/09613218. 

2014.939511. 

 

Pellechia, T. (2019) U.S. Craft Brew Industry 2018 Growth Was A Guarded 4%. Forbes. 

Retrieved from URL: https://www.forbes.com/sites/thomaspellechia/2019/04/04/u-s-craft-brew-

industry-2018-growth-was-a-guarded-4/#28433d8a2a70 

 

Peters, G.P. (2016) The ‘best available science’ to inform 1.5 ◦ C policy choices Nat. Clim. 

Change 6 646. 

 

Pleguezuelo, C.R.R., Zuazo, V.H.D., Bielders, C., Bocanegra, C.A.J., Pereatorres, F., et al. 

(2015) Bioenergy farming using woody crops. A review. Agronomy for Sustainable 



 78 

Development, Springer Verlag/EDP Sciences/INRA, 35 (1), pp.95- 119. 10.1007/s13593-014-

0262-1 . hal-01284273. 

Preston, C.M., Schmidt, M.W.I. (2006) Black (pyrogenic) carbon: a synthesis of current 

knowledge and uncertainties with special consideration of boreal regions. Biogeosciences, 3, 

397–420.  

 

Puettmann, M., Sahoo, K., Wilson, K., Oneil, E. (2020) Life cycle assessment of biochar 

produced from forest residues using portable systems. Journal of Cleaner Production (In-

Review). 

 

Rahimifard, S., Stone, J., Lumsakul, P., Trollman H. (2018) Net Positive Manufacturing: A 

Restoring, Self-healing and Regenerative Approach to Future Industrial Development, Procedia 

Manufacturing 21, 2–9  

 

Rajaniemi, M., Mikkola, H., Ahokas, J. (2011) Greenhouse gas emissions from oats, barley, 

wheat, and rye production. Agron. Res. 1, 189–195. 

 

Rupasingha, A. (2013). “Locally Owned: Do Local Business Ownership and Size Matter for 

Local Economic Well-being?” Atlanta: Federal Reserve Bank of Atlanta  

 



 79 

Raugei, M., Bargigli, S., & Ulgiati, S. (2006) Technological Improvement and Innovation in 

Photovoltaics-New Emergy Calculations. Paper presented at the Fourth Biennial Emergy 

Conference, Gainesville, Florida, 2006.   

 

Reed, W. E. (2007) Shifting from ‘sustainability’ to regeneration. Building Research & 

Information, 35(6), 674–680. 

 

Renger, B., Birkeland, J., & Midmore, D. (2015) Net positive building carbon sequestration, 

Building Research & Information, 43:1, 11-24, DOI: 10.1080/09613218.2015.961001 

 

Rhodes, C. J. (2017). The imperative for regenerative agriculture. Science Progress, 100(1), 80-

129. 

 

Rogelj, J., Luderer, G., Pietzcker, R.C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015) 

Energy system transformations for limiting end-of-century warming to below 1.5 ◦ C Nat. Clim. 

Change 5, 519–27  

 

Rogelj, J. et al. (2018) Scenarios towards limiting climate change below 1.5 ◦ C Nat. Clim. 

Change 8, 325 

 



 80 

Rugani, B., Panasiuk, D., Benetto, E., (2012) An input-output based framework to evaluate 

human labour in life cycle assessment. Int. J. Life Cycle Assess. 17 (6), 795e812. 

 

Rustagi, N., Tilley, D.R., Schramski. J. (2008) Total Energy Requirements of a Living Extensive 

Green Roof. Paper presented at the Fifth Biennial Emergy Conference, Gainesville, Florida, 

2008.   

 

Sahoo, Kamalakanta, Edward Bilek, Richard Bergman, and Sudhagar Mani. (2019) “Techno-

Economic Analysis of Producing Solid Biofuels and Biochar from Forest Residues Using 

Portable Systems.” Applied Energy. 235: 578-590. 235 (2019): 578–90. 

https://doi.org/10.1016/j.apenergy.2018.10.076. 

 

Saladini, F., Gopalakrishnan, V., Bastianoni, S., Bakshi, B.R. (2018) Synergies between industry 

and nature—An emergy evaluation of a biodiesel production system integrated with ecological 

systems. Ecosyst. Serv., 30, 257–266.     

 

Schatz Energy Research Center (SERC). (2016). Biochar Testing and Results Report Waste to 

Wisdom: Task 3 (pp. 1–71).  Scienceman, D.M. (1987) Energy and emergy, Environmental 

Economics, Roland Leimgruber, Geneva (1987), pp. 257-276 (CFW86-26)   

 



 81 

Schlömer S., Bruckner, T., Fulton, L., Hertwich, E., McKinnon, A., Perczyk, D., Roy, J., 

Schaeffer, R., Sims, R., Smith, P., and Wiser, R., (2014) 2014: Annex III: Technology-specific 

cost and performance parameters. In Climate Change 2014: Mitigation of Climate Change. 

Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental 

Panel on Climate Change. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, 

et al. (eds.). Cambridge University Press, Cambridge, UK, and New York. Available at: 

https://www.ipcc.ch/report/ar5/wg3/. 

 

Severy, M., Carter, D., Chamberlin, C., Jacobson, A. (2016) Remote power generation part 1: 

technology selection Waste to Wisdom: Subtask 2.7. 2016. < http://wastetowisdom.com/ > 

(accessed 11.24.19). 

 

Severy, M.A., Carter, D.J., Palmer, K.D., Eggink, A.J., Chamberlin, C.E., Jacobson, A.E. (2018). 

Performance and emissions control of commercial-scale biochar production unit. ASBE. 

 

Sherwood, S., Uphoff, N. (2000) Soil health: research, practice and policy for a more 

regenerative agriculture. Appl Soil Ecol 15:85–97 

 

Shin, R., Searcy, C. (2018) Evaluating the Greenhouse Gas Emissions in the Craft Beer Industry: 

An Assessment of Challenges and Benefits of Greenhouse Gas Accounting, Sustainability, 

MDPI, Open Access Journal, vol. 10(11), pages 1-30, November. 



 82 

 

Shine, K. P., J. S. Fuglestvedt, K. Hailemariam, and N. Stuber (2005), Alternatives to the global 

warming potential for comparing climate impacts of emissions of greenhouse gases, Clim. 

Chang., 68, 281–302.  

 

Shock, C.C., Flock, R., Feibert, E., Pereira, A., O'Neill, M. (2005) Drip irrigation guide for 

growers of hybrid poplar. Oregon State University Extension Service. EM 8902. 

 

Siracusa, G., La Rosa, A.D., Aiello, A., Siracusa, V. (2007) Emergy analysis and environmental 

indices applied to a company producing aluminum extruded bars. Int. J. Sus. Dev. Plann. Vol. 2, 

No. 1 (2007) 75–87  

 

Smith, J.R. (1953) Tree Crops: A Permanent Agriculture The Devin-Adair Company. New York    

Smith, P. (2016) Soil carbon sequestration and biochar as negative emission technologies. Global 

Change Biology (2016) 22 , 1315–1324, doi: 10.1111/gcb.13178     

 

Socolow, R., Desmond, M., Aines, R., Blackstock, J., Bolland, O., Kaarsberg, T., Lewis, N., 

Mazzotti, M., Pfeffer, A., Sawyer, K., Siirola, J., Smit, B., Wilcox, J. (2011) Direct air capture of 

CO2 with chemicals: a technology assessment for the APS Panel on Public Affairs. American 

Physical Society. An in-depth assessment of direct air-capture technologies.     

 



 83 

Sovacool, B.K. (2008) Valuing the greenhouse gas emissions from nuclear power: A critical 

survey . Energy Policy , 36 (8): 2940 – 2953 .     

 

Spokas, K.A. (2010) Review of the stability of biochar in soils: predictability of O:C molar 

ratios. Carbon Management, 1, 289–303.      

 

Srinivasan, R.S., Braham, W.W., Campbell, D.E., Curcija, C.D. (2011) Re(De)fining net zero 

energy: Renewable emergy balance in environmental building design. Building and 

Environment, 47(C), 300-315.     

 

Srinivasan, R.S., Moe, K. (2015) The Hierarchy of Energy in Architecture Energy Analysis. 

Routledge      

 

Teehan, P., Kandlikar, M. (2013) Comparing Embodied Greenhouse Gas Emissions of Modern 

Computing and Electronics Products Environmental Science & Technology, 47 (9), 3997-4003.     

 

Terra Genesis Institute (2019) Regenerative Agriculture. Terra Genesis Institute. Retrieved from 

URL http://www.regenerativeagriculturedefinition.com/     

 



 84 

Torcellini, P., Pless, S., Deru, M., & Crawley, D. (2006) Zero energy buildings: A critical look at 

the definition. NREL/CP-550-39833, National Renewable Energy Laboratory (NREL), Golden, 

CO.     

 

Turner, L.K., Collins, F.G., (2013) Carbon dioxide equivalent (CO2-e) emissions: a comparison 

between geopolymer and OPC cement concrete, Const. Build. Mater. 43 125e130.     

 

Ulgiati, S., Odum, H.T., Bastianoni, S. (1994) Emergy use, environmental loading and 

sustainability. An emergy analysis of Italy Ecol. Modell., 73, pp. 215-268     

 

Ulgiati, S., Agostinho, F., Lomas, P.L., Ortega, E., Viglia, S., Zhang, P., & Zucaro, A. (2011) 

Criteria for Quality Assessment of Unit Emergy Values. Emergy Synthesis 6: Theory and 

Applications of the Emergy Methodology Proceedings from the Sixth Biennial Emergy 

Conference, January 14 – 16, 2010, Gainesville, Florida. Edited Brown, M.T.     

 

UNEP: United Nations Development Program. (2005) Human Development Report 2005. 

International Cooperation at a Crossroads; Aid, Trade and Security in an Unequal World. Human 

Development Report Office, New York, NY, USA. Retrieved November 1st, 2019 from 

http://hdr.undp.org/reports/global/2005/pdf/hdr05 summary.pdf      

 



 85 

U.S. Department of Energy (2015) A Common Definition for Zero Energy Buildings. Energy 

Efficiency and Renewable Energy. Sept. 2015, Prepared for the U.S. Department of Energy by 

the National Institute of Buldings Sciences     

 

U.S. EIA (2017) Monthly Energy Review. Energy Information Administration, April 2017, 

DOE/EIA‐0035(2019/2)     

 

U.S. EIA (2019) Monthly Energy Review. Energy Information Administration, Feb. 2019, 

DOE/EIA‐0035(2019/2)     

 

U.S. Environmental Protection Agency (EPA) (1995), Chapter 11: Mineral Products Industry, 

Subchapter 25 Clay Processing. AP 42, Fifth Edition, Volume I  

 

U.S. Environmental Protection Agency (EPA) (2006), Inventory of U.S. greenhouse gas 

emissions and sinks: 1990–2004, Rep. 430‐R‐06‐002, Washington, D. C.     

 

U.S. Environmental Protection Agency (EPA) (2016) Documentation for Greenhouse Gas 

Emission and Energy Factors Used in the Waste Reduction Model (WARM), Warm Version 14. 

Containers, Packaging, and Non-Durable Good Materials Chapters.      

 



 86 

Waldron, D., Miller, D. (2013) Regenerative sustainability at the neighbourhood scale: Potential 

and practicalities. University of British Columbia Regenerative Neighbourhoods Project, Kresge 

Foundation, Bullitt Foundation.     

 

Wildwood Brewing (2017) Wildwood’s Integrated System. Retrieved Nov. 23, 2019 from 

http://wildwoodbrewing.com/integrated-system/     

 

Yang, H., Li, Y., Shen, J., Hu, S. (2003) Evaluating waste treatment, recycle and reuse in 

industrial system an application of the eMergy approach. Ecological Modelling. 160(1–2):13–21.      

 

Yi, H., Srinivasan, R.S., Braham, W.W., Tilley, D.R. (2016) An ecological understanding of net-

zero energy building: Evaluation of sustainability based on emergy theory, Journal of Cleaner 

Production, vol. 143, pp. 654-71, 2017.     

 

Yin, R. K. (1994) Case study research: Design and methods (2nd ed.). London: Sage.   



 
 

 87 

Appendices 

 

Appendix 1: Interview Guide  

 

 

Many businesses have sustainability initiatives motivated by the goal to “be less bad,” or 

to strive to reduce negative environmental impacts (i.e., to reduce greenhouse gas emissions, to 

use less energy, to consume fewer natural resources, etc.). In contrast to reducing environmental 

impacts, some progressive businesses are attempting to actually restore the environment or to 

have positive environmental impacts.  The term "net positive" refers to strategies a business or 

institution uses to restore or renew the natural environment by sequestering carbon, generating 

more energy than it consumes, or regenerating natural resources beyond what it consumes.  

 

To study how a business works to achieve “net positive,” my research conducts a life 

cycle environmental audit of a brewery in Western Montana, Wildwood Brewery, using several 

environmental accounting tools. The aim is to address three fundamental questions: (1) What are 

the types and impacts of net positive strategies an established business might use?” (2) “What are 

the measurement issues associated with evaluating the impacts of those strategies?”; and (3) 

What are the challenges a business faces when implementing net positive strategies” To answer 

the third research question, I will conduct semi-structured interviews with the owner of 

Wildwood Brewing. The barriers and challenges will provide key insight to practitioners; i.e. 

business owners, industrial sectors, etc. The results of this study will help future researchers and 

practitioners involved in either the study or implementation of net positive business practices.      

 

Script: I am particularly interested in your experience in working to implement net positive 

business practices. 

  

The overarching themes that arise in the interviews will supplement the quantitative emergy 

analysis I am conducting on the brewery’s environmental impacts.  

 

All responses anonymous if you wish by creating pseudonyms when reporting results. 

  

The interviews are voluntary. You may skip any questions you don’t feel comfortable answering 

and you may end the interview at any time.  

  

Are you willing to be interviewed? 

Would it be okay with you if I recorded the interview? This will be used only to supplement my 

note-taking and the recording will be destroyed after my study is complete. We will not use/share 

this recording for any other reason. 

  

We would be happy to share a copy of our paper when it is complete.  If you would like a copy, 

may I have your business card?  

(To develop rapport): 

Can you tell me a little bit about who you are/your background and how you came to be 

interested in sustainable business practices? 
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What is your job title? 

 

How long have you worked at this company? 

 

What is your role in the company's sustainability initiatives?  

 

Are you familiar with the phrase “net positive” business practices?”   

What does it mean to you?  

 

What is your company doing with respect to becoming net positive?  

  

1.   How long have you been working to implement “net positive” business practices? 

 

a. What motivated you/the company to value net positive business practices? 

What are the goals? 

Who influenced you/company to do this? 

 

b. What protocol/methodology do you use? 

 

c. How/why did were these methods selected? What are the pros/cons of the methods?  

 

d. Who in the company is engaged in the initiative? How do they participate? Is there 

anybody who should be involved who is not? 

 

e. What information do you use to stay on top of the business practices? Where do you 

get that information? 

  

3. How far along in the process are you? Walk me through the process, step-by-step. 

  

a. What resources are required to do this well? (people, time, money, data, culture, shared 

values, etc.) 

 

b. What frustrates you the most about this process? 

 

c. Does your company experience conflict over this process/using this 

information?  Describe it for me. Who/what/etc. How is this conflict resolved? 

  

4. What are some of the fixed and/or variable costs associated with implementing net positive 

business practices? 

  

a. How is this number/information used in decision making? 

  

b. What are the barriers to allowing your company’s efforts to value implementation of net 

positive? (Hurdles/constraints) 

  

What advice would you have to overcome those barriers? 
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5. How satisfied are you with your company’s efforts to implement net positive practices? 

  

         Probe:  what could it do to improve? What are next steps? 

  

6. If I were to visit your company as an outsider, what do you think would most surprise me 

about your company’s work in this area? 

  

7. If you were to identify companies who are “best in class” in implementing net positive 

practices, who would they be and why? 

          

a. What are the characteristics of companies who are doing this well? 

  

8. As you see it/from your perspective/based on your experience: 

  

a. What are the pros/cons of attempting to become net positive? 

  

9. What were some of the main challenges to implementing net positive that you had not 

envisioned prior to implementation? 

 

a. Why these challenges come to pass?  

  

b. What could you have done differently to avoid the challenges? 

 

10. If you could give anybody advice looking to implement net positive business practices, what 

advice would this be and why? 

 

11. What are your thoughts/observations about the adoption rates of net positive business 

practices? How do you envision net positive becoming more broadly adopted? What is needed to 

stimulate broader adoption? This could be policy considerations, educational considerations, etc. 

 

12. Any remaining thoughts on net positive?  

 

 

 

Appendix 2: Inventory for Brewery Life Cycle CO2e and Emergy 

 
 

Inventoried Item Category 
Emergy (seJ) / 

year (amortized) 
CO2 kg / year 
(amortized) 

Estimated life, 
years 

Malt Silo (Gray) Brewery Machines & Equipment 7.85E+13 9 60 

Malt Silo (White) Brewery Machines & Equipment 1.66E+14 20 60 

Malt Silo (White) Brewery Machines & Equipment 1.66E+14 20 60 

Cable Conveyors (inside) Brewery Machines & Equipment 6.47E+13 8 60 
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Malt Hopper Brewery Machines & Equipment 1.76E+13 2 60 

Malt Mill Brewery Machines & Equipment 5.72E+13 7 60 

Grist Hopper Brewery Machines & Equipment 1.32E+13 2 60 

Screw Auger Brewery Machines & Equipment 6.59E+12 1 60 

Bucket Elevator Brewery Machines & Equipment 8.34E+13 10 60 

Chain Drag Conveyor Brewery Machines & Equipment 4.40E+13 5 60 

Hose Brewery Machines & Equipment 3.79E+14 46 30 

Mash Kettle Brewery Machines & Equipment 7.56E+13 9 60 

Lauter Tun Brewery Machines & Equipment 1.01E+14 12 60 

Brew Kettle Brewery Machines & Equipment 8.88E+13 11 60 

Whirlpool Kettle Brewery Machines & Equipment 6.59E+13 8 60 

Brewhouse pipes, pumps, 
and platform 

Brewery Machines & Equipment 4.40E+13 5 60 

Wort Chiller Brewery Machines & Equipment 1.40E+14 17 60 

Fermenter (Double Brew) 
(1/3) 

Brewery Machines & Equipment 5.18E+13 6 60 

Fermenter (Double Brew) 
(2/3) 

Brewery Machines & Equipment 5.18E+13 6 60 

Fermenter (Double Brew) 
(3/3) 

Brewery Machines & Equipment 5.18E+13 6 60 

Fermenter (Single Brew) 
(1/3) 

Brewery Machines & Equipment 3.99E+13 5 60 

Fermenter (Single Brew) 
(2/3) 

Brewery Machines & Equipment 3.99E+13 5 60 

Fermenter (Single Brew) 
(3/3) 

Brewery Machines & Equipment 3.99E+13 5 60 

Beer Filter Brewery Machines & Equipment 2.15E+14 26 20 

ACSV5 Brewery Machines & Equipment 1.20E+14 15 20 

Homemade Depalletizer Brewery Machines & Equipment 5.68E+12 1 60 

Elf Full w/ Conveyor Brewery Machines & Equipment 1.52E+13 2 60 

Shaker Table Framework Brewery Machines & Equipment 3.27E+12 0.4 60 

500 ML Twist Rinser Brewery Machines & Equipment 4.71E+12 1 30 

Twist Rinser Stand Brewery Machines & Equipment 7.58E+11 0.56 60 

Rotary Table Brewery Machines & Equipment 6.58E+12 1 60 

Can Feed Extension Brewery Machines & Equipment 3.19E+11 0.4 60 

Lid Cage Brewery Machines & Equipment 1.20E+11 0.01 60 

Collection Table Assy Brewery Machines & Equipment 2.67E+12 0.3 60 

Electrical Junction Box Brewery Machines & Equipment 5.98E+11 0.07 60 

Spare Parts/Tooling Box Brewery Machines & Equipment 5.58E+11 0.07 60 

Domino Printer Brewery Machines & Equipment 1.52E+13 4 10 

Boiler Brewery Machines & Equipment 2.05E+13 2 60 

Chiller Brewery Machines & Equipment 8.97E+13 11 60 

Hot Liquor Tank (1/2) Brewery Machines & Equipment 7.18E+13 9 60 
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Hot Liquor Tank (2/2) Brewery Machines & Equipment 7.18E+13 9 60 

Glycol Tank (1/2) Brewery Machines & Equipment 4.40E+13 5 60 

Glycol Tank (2/2) Brewery Machines & Equipment 4.40E+13 5 60 

Keg Washing Machine Brewery Machines & Equipment 9.09E+13 11 25 

1/2 barrel kegs  Brewery Machines & Equipment 1.50E+14 18 60 

1/6 barrel kegs  Brewery Machines & Equipment 1.65E+13 2 60 

Water/Ice tank Brewery Machines & Equipment 2.65E+13 3 60 

16 oz. Standard Brite Can Canning Raw Materials 7.55E+15 3,851 N/A 

Aluminum Can Crown Canning Raw Materials 1.63E+15 834 N/A 

16 oz. standard shrink 
sleeve 

Canning Raw Materials 1.78E+14 22 N/A 

Case Tray (Role-over or 
Auto-locking) 

Canning Raw Materials 1.11E+15 134 N/A 

Standard QuadPak Can 
Carrier 

Canning Raw Materials 1.32E+15 456 N/A 

Malt (lbs) Beer Ingredients 4.78E+17 3,420 N/A 

Hops (lbs) Beer Ingredients 3.98E+14 3 N/A 

Yeast (lbs) Beer Ingredients 2.75E+14 2 N/A 

Water (including 
restroom) 

Beer Ingredients 1.04E+14 - N/A 

CO2 Beer Ingredients 1.70E+11 2,722 N/A 

dodecyl benzene 
sulphonic acid 

Cleaning Supplies 1.99E+12 1 N/A 

Phosphate (Phosphoric 
Acid) 

Cleaning Supplies 6.45E+12 3 N/A 

Sodium Hydroxide 
Cleaner 

Cleaning Supplies 1.76E+13 8 N/A 

Parecetic Acid Cleaning Supplies 1.99E+13 10 N/A 

Electrical (kWh) Electricity 6.06E+16 35,349 N/A 

Gas (Therms) Heating 4.00E+16 14,318 N/A 

Wood Stove Fuel Heating 3.55E+15 1,461 N/A 

Water (Not from Brewing) Other Operational 7.52E+13 - N/A 

Bar Top 
Furniture, Fixtures, and 
Equipment 

2.05E+12 1 60 

Bar Top Base 
Furniture, Fixtures, and 
Equipment 

1.04E+12 0 60 

Bar Support 
Furniture, Fixtures, and 
Equipment 

1.21E+12 0 60 

Pint Glasses 
Furniture, Fixtures, and 
Equipment 

5.84E+13 3 5 

Tap 
Furniture, Fixtures, and 
Equipment 

6.58E+11 0 20 
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Tap Hoses 
Furniture, Fixtures, and 
Equipment 

1.69E+12 0 10 

Sink 
Furniture, Fixtures, and 
Equipment 

4.57E+12 1 60 

Wood Tap Holding 
Structure 

Construction 3.92E+12 2 60 

Taproom Bar Chairs (9 
Total) 

Furniture, Fixtures, and 
Equipment 

9.66E+12 2 30 

Taproom Table Chairs 
Furniture, Fixtures, and 
Equipment 

1.05E+13 2 60 

Taproom Table Tops 
Furniture, Fixtures, and 
Equipment 

3.80E+14 46 60 

Taproom Table Legs 
Furniture, Fixtures, and 
Equipment 

6.98E+12 1 60 

Ipad 
Furniture, Fixtures, and 
Equipment 

2.50E+11 0.03 10 

Television 
Furniture, Fixtures, and 
Equipment 

2.45E+13 3 10 

Cabinets Structure Construction 3.30E+12 1 60 

Cabinet Doors Construction 1.50E+12 1 60 

Labor (inception to 
present) 

Labor 1.42E+19 10,875 N/A 

Labor (yearly) Labor 2.31E+18 1,766 N/A 

Sewer Other Fixed 5.48E+13 7 60 

Forklift without Battery Vehicles - Travel 4.45E+14 54 40 

Forklift Battery - 48.3 kwh 
capacity 

Vehicles - Travel 9.92E+14 120 10 

Mercedes Benz Sprinter 
3500 

Vehicles - Travel 3.66E+16 2,033 N/A 

Truck Dodge 3500 Vehicles - Travel 1.46E+16 1,996 N/A 

Kubota L3130 Vehicles - Travel 1.14E+15 156 N/A 

Lights (4 fixtures - 24 total 
T5 Flourescent) 

Other 7.36E+12 1 20 

Driveway and Parking 
Gravel 

Construction 2.38E+15 14 60 

Wood Stove-QuadraFire 
3100 Millenium 

Other Fixed 1.14E+13 1 60 

Waste (general) Other Operational 9.89E+14 - N/A 

Outside Taproom 
Columns and Other 
Support 

Construction 4.09E+13 17 60 

Outside Taproom Roof Construction 1.89E+14 23 60 

Outside Taproom Slab Construction 3.03E+15 1,454 60 

Outside Taproom Chairs 
Furniture, Fixtures, and 
Equipment 

8.09E+12 2 60 

Outside Taproom Metal 
Tables 

Furniture, Fixtures, and 
Equipment 

3.19E+13 4 60 
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Outside Taproom Sink 
Furniture, Fixtures, and 
Equipment 

5.78E+12 1 60 

Outside Taproom 
Refrigerator 

Furniture, Fixtures, and 
Equipment 

4.06E+13 5 20 

Main Roof Construction 1.64E+14 20 60 

Stucco Construction 5.81E+12 3 60 

Main Slab (and Footings) Construction 1.39E+16 3,715 60 

Recycled Timber Construction 2.10E+13 9 60 

Non-Recycled Timber Construction 8.08E+13 33 60 

Other General Lumber Construction 5.10E+14 210 60 

Plywood Construction 1.48E+14 78 60 

Laminated Veneer 
Lumber 

Construction 1.08E+14 57 60 

Straw Bales Construction 0.00E+00 1 60 

Insulated Panels Construction 0.00E+00 96 60 

Vinyl Tiles Construction 2.18E+14 80 60 

Windows Construction 3.73E+15 203 40 

Doors Construction 3.09E+14 127 60 

Corrugated steel (roof 
leftover material) 

Construction 2.20E+13 3 60 

Exterior Concrete and 
Culverts 

Construction 5.62E+15 2,700 60 

EPS Insulation (shed) Construction 1.40E+13 5 60 

Building Hardware and 
rebar 

Construction 4.24E+12 1 60 

Demolition Construction  0.00E+00 120 60 

 
 
 
Appendix 3 – Energy Consumption (electricity and natural gas) 
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Appendix 4: Co2e and Emergy Sources 

 
                Item Sources for CO2e             Emergy Sources 

Natural Gas U.S. Environmental Protection 
Agency (EPA) (2006) 

Brown and Ulgiati, (2002); Häyhä et 
al., (2011) 

Labor, Rugani, B. et al. (2012) Campbell, D.E. et al. 2013 

Elec - Coal Edenhofer, O. et al. (2014) Brown and Ulgiati, (2002); Häyhä et 
al., (2011) 

Elec - Natural Gas Edenhofer, O. et al. (2014) Brown and Ulgiati, (2002); Häyhä et 
al., (2011) 

Elec - Oil Sovacool , B.K. (2008)  Brown et al., (2012) 

Elec - Nuclear Edenhofer, O. et al. (2014) Häyhä et al., (2011); Brown and 
Ulgiati, (2004) 

Elec - Hydro Edenhofer, O. et al. (2014) Häyhä et al., 2011; Brown and 
Ulgiati, (2004) 

Elec - Wind Edenhofer, O. et al. (2014) Häyhä et al., 2011; Brown and 
Ulgiati, (2004) 

Elec - Geothermal Edenhofer, O. et al. (2014) Brown and Ulgiati, (2002) 

Elec - Solar PV Edenhofer, O. et al. (2014) Nugent, D. & Sovacool, B. K. (2014 

Elec - Solar Thermal IPCC (2014) Paoli (2008) 

Aluminum Hammond, G. & Jones, C. (2008) Buranakarn V., (1998) 

Asphalt U.S. Environmental Protection 
Agency (EPA) (1995) 

Cabezas et al., (2010) 

Cement Hanle, L. J. (2004)  Buranakarn V., (1998) 

Concrete, ready-mixed Turner, L.K. & Collins, F.G., (2013)  Buranakarn V., (1998) 

Glass U.S. Environmental Protection 
Agency (EPA) (2016)   

Buranakarn V., (1998) 

Gypsum product/Drywall ENTEC (2006)  Odum, H.T. (1996) 
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Gravel/Sand Akan, M.O.A. et al. (2017) Cabezas et al., (2010) 

HDPE (high density polysterene) Feraldi, R. et al. (2011) Buranakarn V., (1998) 

Insulation, EPS/XPS board Giama, E. & Papadopoulos, A. M. 
(2016) 

Meillaud et al., (2005) 

Insulation, fiber City of Winnipeg (2012)  Buranakarn V., (1998) 

Lumber/ Wood flooring See "Other General Lumber" below 
for carbon intensity reference 

Buranakarn V., (1998) 

Paint Hammond, G. & Jones, C. (2008) Buranakarn V., (1998) 

Paper Hammond, G. & Jones, C. (2008) Meillaud et al., (2005) 

Particle board New Belgium. (2009) Buranakarn V., (1998) 

Photovoltaic arrays (w/ support 
structure and cable) 

Nugent, D. & Sovacool, B. K. (2014) Raugei et al., 2006 

Plastics Hammond, G. & Jones, C. (2008) Meillaud et al., (2005) 

Plywood or Veneer (softwood) Hammond, G. & Jones, C. (2008) Buranakarn V., (1998) 

Plywood or Veneer (hardwood) Bergman, R., et al. (2014) Buranakarn V., (1998) 

Plywood (laminated) Hammond, G. & Jones, C. (2008) Buranakarn V., (1998) 

PVC Baruch, S. (2018)  Buranakarn V., (1998) 

Steel (iron) Giama, E. & Papadopoulos, A. M. 
(2016) 

Buranakarn V., (1998) 

Vinyl Floor (PVC) Armstrong World Industries (2014)  Buranakarn V., (1998) 

Recycled Plastics, MSW Dormer, A. et al. (2013) La Rosa (2009) 

Recycled Aluminum, MSW Hammond, G. & Jones, C. (2008) Almeida, C.M.V.B. (2010) 

Wastes, other solid Manfredi, S. et al. (2009)  Buranakarn V., (1998) 

Demolition Chang, Y. et al. (2013) Buranakarn V., (1998) 

dodecyl benzene sulphonic acid City of Winnipeg (2012)  Brandt-Williams (2002) 

Phosphate (Phosphoric Acid) City of Winnipeg (2012)  Brandt-Williams (2002) 

Sodium Hydroxide Cleaner City of Winnipeg (2012)  Brandt-Williams (2002) 

Parecetic Acid City of Winnipeg (2012)  Brandt-Williams (2002) 

Van - Mercedes Benz Sprinter Norris, J., et al. (2010) Kim, H., et al. (2011)  

Truck - Dodge 3500 Mikhail., C., (2008).  Kim, H., et al. (2011)  

Kubota Tractor Kubota (2017) Kim, H., et al. (2011)  

Spray Foam Hammond, G. & Jones, C. (2008) Buranakarn V., (1998) 

PVC Pipe Hammond, G. & Jones, C. (2008) Buranakarn V., (1998) 

Refrigerator Teehan, P. & Kandlikar, M.(2013)  Odum, 1987, Buranakarn V., 1998. 

Non Recycled Timber Hammond, G. & Jones, C. (2008) Buranakarn V., (1998) 

Other General Timber Hammond, G. & Jones, C. (2008) Buranakarn V., (1998) 

Strawbales Hammond, G. & Jones, C. (2008)  Johannson, et al. (2000) 

Yeast COFALEC (2006)  Johannson, et al. (2000) 

Hops Shin, R. & Searcy, C. (2018)  Campbell, D.E. and Ohrt, A. (2009 

Malted Barley Rajaniemi, M. et al. (2011) Campbell, D.E. and Ohrt, A. (2009 

Television Gonzalez, A. et al. (2012)  Odum, 1987, Buranakarn V., 1998. 

Ipad Apple (2012) Odum, 1987, Buranakarn V., 1998. 
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Appendix 5a (Model Summary) – Emergy  

  Operation 
yr 

8 9 10 11 12 13 14 

  Calendar 
yr 

2020 2021 2022 2023 2024 2025 2026 

  Barrels 
cumulativ

e 

2,400 2,700 3,000 3,300 3,600 3,900 4,200 

BUSINESS AS 
USUAL 

         

OPERATING 
FLOWS 

Measured 
in 

Inc / yr 
after 2019 

       

Electricity kWh 1.00% 119,746 120,943 122,152 123,374 124,608 125,854 127,112 

Natural Gas therms 0.00% 2,698 2,698 2,698 2,698 2,698 2,698 2,698 

Wood Stove Fuel kg 0.00% 3,175 3,175 3,175 3,175 3,175 3,175 3,175 

Water (not used 
in brewing) 

kg 0.00% 86,307 86,307 86,307 86,307 86,307 86,307 86,307 

Labor hours 1.00% 4,101 4,142 4,183 4,225 4,267 4,310 4,353 

Vehicles & Travel VKT 3.00% 17,270 17,788 18,322 18,871 19,437 20,020 20,621 

Beer Ingredients kg 3.00% 132,592 136,570 140,667 144,887 149,233 153,710 158,322 

Cleaning Supplies kg 3.00% 16 17 17 18 18 19 19 

Canning Raw 
Materials 

kg 3.00% 1,023 1,054 1,086 1,118 1,152 1,186 1,222 

          

Emergy ANALYSIS 
(everything in 
sej) 

         

Amortized 
[embodied] 

         

Construction   3.E+16 3.E+16 3.E+16 3.E+16 3.E+16 3.E+16 3.E+16 

Brewery 
Machines & 
Equipment 

  3.E+15 3.E+15 3.E+15 3.E+15 3.E+15 3.E+15 3.E+15 

Furniture, 
Fixtures, and 
Equipment 

  6.E+14 6.E+14 6.E+14 6.E+14 6.E+14 6.E+14 6.E+14 

Other Fixed   7.E+13 7.E+13 7.E+13 7.E+13 7.E+13 7.E+13 7.E+13 

Total Annual 
Amortized 
Emergy 

  3.E+16 3.E+16 3.E+16 3.E+16 3.E+16 3.E+16 3.E+16 

Cumulative 
Amortized 
Emergy 

  3.E+17 3.E+17 3.E+17 4.E+17 4.E+17 4.E+17 5.E+17 

          

Accelerated to 
first year 

         

Construction   2.E+18 2.E+18 2.E+18 2.E+18 2.E+18 2.E+18 2.E+18 

Brewery 
Machines & 
Equipment 

  2.E+17 2.E+17 2.E+17 2.E+17 2.E+17 2.E+17 2.E+17 

Furniture, 
Fixtures, and 
Equipment 

  4.E+16 4.E+16 4.E+16 4.E+16 4.E+16 4.E+16 4.E+16 
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Other Fixed   5.E+15 5.E+15 5.E+15 5.E+15 5.E+15 5.E+15 5.E+15 

Total Accelerated 
to first year 

  2.E+18 2.E+18 2.E+18 2.E+18 2.E+18 2.E+18 2.E+18 

          

Operational sej / unit Inc / yr 
after 2019 

       

Electricity 5.11E+11 1.00% 6.E+16 6.E+16 6.E+16 6.E+16 6.E+16 6.E+16 7.E+16 

Natural Gas 1.48E+13 0.00% 4.E+16 4.E+16 4.E+16 4.E+16 4.E+16 4.E+16 4.E+16 

Wood Stove Fuel 1.12E+12 0.00% 4.E+15 4.E+15 4.E+15 4.E+15 4.E+15 4.E+15 4.E+15 

Water (not used 
in brewing) 

8.71E+08 0.00% 8.E+13 8.E+13 8.E+13 8.E+13 8.E+13 8.E+13 8.E+13 

Labor 5.69E+14 1.00% 2.E+18 2.E+18 2.E+18 2.E+18 2.E+18 2.E+18 2.E+18 

Vehicles & Travel not a 
single 
value 

3.00% 8.E+16 8.E+16 9.E+16 9.E+16 9.E+16 1.E+17 1.E+17 

Beer Ingredients not a 
single 
value 

3.00% 5.E+17 5.E+17 5.E+17 5.E+17 6.E+17 6.E+17 6.E+17 

Cleaning Supplies not a 
single 
value 

3.00% 5.E+13 5.E+13 5.E+13 5.E+13 5.E+13 5.E+13 6.E+13 

Canning Raw 
Materials 

not a 
single 
value 

3.00% 1.E+16 1.E+16 1.E+16 1.E+16 1.E+16 1.E+16 1.E+16 

Total Annual 
Operational 
Emergy 

  3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 

          

          

Electricity   5.E+17 5.E+17 6.E+17 7.E+17 7.E+17 8.E+17 9.E+17 

Natural Gas   4.E+17 4.E+17 4.E+17 5.E+17 5.E+17 6.E+17 6.E+17 

Wood Stove Fuel   3.E+16 3.E+16 4.E+16 4.E+16 4.E+16 5.E+16 5.E+16 

Water (not used 
in brewing) 

  6.E+14 7.E+14 8.E+14 8.E+14 9.E+14 1.E+15 1.E+15 

Labor   2.E+19 2.E+19 2.E+19 3.E+19 3.E+19 3.E+19 3.E+19 

Vehicles & Travel   6.E+17 7.E+17 8.E+17 9.E+17 1.E+18 1.E+18 1.E+18 

Beer Ingredients   4.E+18 4.E+18 5.E+18 5.E+18 6.E+18 7.E+18 7.E+18 

Cleaning Supplies   4.E+14 4.E+14 5.E+14 5.E+14 6.E+14 6.E+14 7.E+14 

Canning Raw 
Materials 

  9.E+16 1.E+17 1.E+17 1.E+17 1.E+17 2.E+17 2.E+17 

Cumulative 
Operational 
Carbon 

  2.E+19 3.E+19 3.E+19 3.E+19 4.E+19 4.E+19 4.E+19 

          

Total Annual 
Emergy 

  3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 

Cumulative 
Emergy 

  2.E+19 3.E+19 3.E+19 3.E+19 4.E+19 4.E+19 4.E+19 

          

OFFSETS          

Photovoltaics          

          

kWh produced   119,746 119,746 119,746 119,746 119,746 119,746 119,746 

Emergy Analysis          

Annual          
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Amortized 
[embodied] 

2.25E+11 sej / kWh 3.E+16 3.E+16 3.E+16 3.E+16 3.E+16 3.E+16 3.E+16 

(Offset)   -6.E+16 -6.E+16 -6.E+16 -6.E+16 -6.E+16 -6.E+16 -6.E+16 

Net emissions   -3.E+16 -3.E+16 -3.E+16 -3.E+16 -3.E+16 -3.E+16 -3.E+16 

Cumulative          

Amortized 
[embodied] 

  3.E+16 5.E+16 8.E+16 1.E+17 1.E+17 2.E+17 2.E+17 

(Offset)   -6.E+16 -1.E+17 -2.E+17 -2.E+17 -3.E+17 -4.E+17 -4.E+17 

Net emissions   -3.E+16 -7.E+16 -1.E+17 -1.E+17 -2.E+17 -2.E+17 -2.E+17 

New Total Annual 
Emergy 

  3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 

New Total 
Cumulative 
Emergy 

  2.E+19 3.E+19 3.E+19 3.E+19 4.E+19 4.E+19 4.E+19 

          

SEQUESTRATION          

Short rotation 
coppice 
agroforestry 
(SRCA) 

         

Emergy analysis          

Annual kg CO2 / 
unit 

        

Amortized 
[embodied] 

1.12E+12 sej / kg 
coppice 

    2.E+16 2.E+16 2.E+16 

Operational       2.E+16 2.E+16 2.E+16 

Labor 1.14E+12 sej / kg 
coppice 

    2.E+16 2.E+16 2.E+16 

Water 4.35E+07 sej / kg 
coppice 

    8.E+11 8.E+11 8.E+11 

(Offset)          

Net emissions       4.E+16 4.E+16 4.E+16 

Cumulative          

Amortized 
[embodied] 

      2.E+16 4.E+16 6.E+16 

Operational       2.E+16 4.E+16 6.E+16 

Labor       2.E+16 4.E+16 6.E+16 

Water       8.E+11 2.E+12 2.E+12 

(Offset)       0.E+00 0.E+00 0.E+00 

Net emissions       4.E+16 8.E+16 1.E+17 

          

Hectares 
Required 

         

          

Pyrolysis 
(Biochar) 

         

Emergy analysis          

Annual          

Amortized 
[embodied] 

9.E+14 sej / yr     9.E+14 9.E+14 9.E+14 

Operational       4.E+16 4.E+16 4.E+16 

Labor 1.E+13 sej / kg 
biochar 

    4.E+16 4.E+16 4.E+16 

Fuel 0.E+00 sej / kg 
biochar 

    0.E+00 0.E+00 0.E+00 
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(Sequestered) 0.E+00 sej / kg 
biochar 

    0.E+00 0.E+00 0.E+00 

Net emissions       4.E+16 4.E+16 4.E+16 

Cumulative          

Amortized 
[embodied] 

      9.E+14 2.E+15 3.E+15 

Operational       4.E+16 8.E+16 1.E+17 

Labor       4.E+16 8.E+16 1.E+17 

Fuel       0.E+00 0.E+00 0.E+00 

(Sequestered)       0.E+00 0.E+00 0.E+00 

Net emissions       4.E+16 9.E+16 1.E+17 

          

SRCA + Pyrolysis          

Emergy analysis          

Annual          

Amortized 
[embodied] 

  0.00E+00 0.00E+00 0.00E+00 0.00E+0
0 

2.14E+1
6 

2.14E+16 2.14E+1
6 

Operational   0.00E+00 0.00E+00 0.00E+00 0.00E+0
0 

6.27E+1
6 

6.27E+16 6.27E+1
6 

(Sequestered)   0.00E+00 0.00E+00 0.00E+00 0.00E+0
0 

0.00E+0
0 

0.00E+00 0.00E+0
0 

Net emissions   0.00E+00 0.00E+00 0.00E+00 0.00E+0
0 

8.42E+1
6 

8.42E+16 8.42E+1
6 

Cumulative          

Amortized 
[embodied] 

  0.00E+00 0.00E+00 0.00E+00 0.00E+0
0 

2.14E+1
6 

4.29E+16 6.43E+1
6 

Operational   0.00E+00 0.00E+00 0.00E+00 0.00E+0
0 

6.27E+1
6 

1.25E+17 1.88E+1
7 

(Sequestered)   0.00E+00 0.00E+00 0.00E+00 0.00E+0
0 

0.00E+0
0 

0.00E+00 0.00E+0
0 

Net emissions   0.00E+00 0.00E+00 0.00E+00 0.00E+0
0 

8.42E+1
6 

1.68E+17 2.52E+1
7 

          

New Total Annual 
Emergy 

  3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 

New Total 
Cumulative 
Emergy 

  2.E+19 3.E+19 3.E+19 3.E+19 4.E+19 4.E+19 4.E+19 

          

OFFSETS & 
SEQUESTRATION 

         

Total Annual Net 
Emergy Emissions 

  -3.E+16 -3.E+16 -3.E+16 -3.E+16 5.E+16 5.E+16 5.E+16 

Total Cumulative 
Net Emergy 
Emissions 

  -3.E+16 -7.E+16 -1.E+17 -1.E+17 -9.E+16 -4.E+16 1.E+16 

New Total Annual 
Emergy 

  3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 3.E+18 

New Total 
Cumulative 
Emergy 

  2.E+19 3.E+19 3.E+19 3.E+19 4.E+19 4.E+19 4.E+19 

Net Positive   #N/A #N/A #N/A #N/A #N/A #N/A #N/A 
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Amortized 
Accelerated to 
first year 

  2.E+18 2.E+18 2.E+18 2.E+18 3.E+18 3.E+18 3.E+18 

Cumulative O & S   6.E+16 1.E+17 2.E+17 2.E+17 2.E+17 2.E+17 2.E+17 

          

Emergy 
NEUTRALITY 
REACHED 

      #N/A #N/A #N/A 

          

Dynamic Chart 
Calculations 

         

Positive PV   3.E+16 7.E+16 1.E+17 1.E+17 2.E+17 2.E+17 2.E+17 

Positive 
SRCA+Pyro 

  0.E+00 0.E+00 0.E+00 0.E+00 -2.E+17 -3.E+17 -5.E+17 

Negative 
SRCA+Pyro 

  0.E+00 0.E+00 0.E+00 0.E+00 -8.E+16 -2.E+17 -3.E+17 

          

Total - Positive   2.E+19 3.E+19 3.E+19 3.E+19 4.E+19 4.E+19 4.E+19 

After all   2.E+19 3.E+19 3.E+19 3.E+19 4.E+19 4.E+19 4.E+19 

Business as Usual   2.E+19 3.E+19 3.E+19 3.E+19 4.E+19 4.E+19 4.E+19 
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Appendix 5b (model summary) – Carbon 

 
  Operation 

yr 
8 9 10 11 12 13 14 

  Calendar yr 2020 2021 2022 2023 2024 2025 2026 

  Barrels 
fixed 

300 300 300 300 300 300 300 

  Barrels 300 300 300 300 300 300 300 

  Barrels 
cumulative 

2,400 2,700 3,000 3,300 3,600 3,900 4,200 

BUSINESS AS 
USUAL 

         

OPERATING 
FLOWS 

Measured 
in 

Inc / yr 
after 2019 

       

Electricity kWh 1.00% 119,746 120,943 122,152 123,374 124,608 125,854 127,112 

Natural Gas therms 0.00% 2,698 2,698 2,698 2,698 2,698 2,698 2,698 

Wood Stove 
Fuel 

kg 0.00% 3,175 3,175 3,175 3,175 3,175 3,175 3,175 

Water (not 
used in 
brewing) 

kg 0.00% 86,307 86,307 86,307 86,307 86,307 86,307 86,307 

Labor hours 1.00% 4,101 4,142 4,183 4,225 4,267 4,310 4,353 

Vehicles & 
Travel 

VKT 3.00% 17,270 17,788 18,322 18,871 19,437 20,020 20,621 

Beer 
Ingredients 

kg 3.00% 132,592 136,570 140,667 144,887 149,233 153,710 158,322 

Cleaning 
Supplies 

kg 3.00% 16 17 17 18 18 19 19 

Canning Raw 
Materials 

kg 3.00% 1,023 1,054 1,086 1,118 1,152 1,186 1,222 

          

CARBON 
ANALYSIS 
(everything in 
kg CO2e) 

         

Amortized 
[embodied] 

         

Construction   8,970 8,970 8,970 8,970 8,970 8,970 8,970 

Brewery 
Machines & 
Equipment 

  351 351 351 351 351 351 351 

Furniture, 
Fixtures, and 
Equipment 

  70 70 70 70 70 70 70 

Other Fixed   9 9 9 9 9 9 9 

Total Annual 
Amortized 
Carbon 

  9,401 9,401 9,401 9,401 9,401 9,401 9,401 

Cumulative 
Amortized 
Carbon 

  75,210 84,611 94,012 103,413 112,815 122,216 131,617 
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Accelerated 
to first year 

         

Construction   609,988 609,988 609,988 609,988 609,988 609,988 609,988 

Brewery 
Machines & 
Equipment 

  23,899 23,899 23,899 23,899 23,899 23,899 23,899 

Furniture, 
Fixtures, and 
Equipment 

  4,794 4,794 4,794 4,794 4,794 4,794 4,794 

Other Fixed   602 602 602 602 602 602 602 

Total 
Accelerated 
to first year 

  639,283 639,283 639,283 639,283 639,283 639,283 639,283 

          

Operational kg CO2 / 
unit 

Inc / yr 
after 2019 

       

Electricity 0.30 1.00% 35,703 36,060 36,420 36,785 37,152 37,524 37,899 

Natural Gas 5.31 0.00% 14,318 14,318 14,318 14,318 14,318 14,318 14,318 

Wood Stove 
Fuel 

0.46 0.00% 1,461 1,461 1,461 1,461 1,461 1,461 1,461 

Water (not 
used in 
brewing) 

- 0.00% - - - - - - - 

Labor 0.44 1.00% 1,784 1,802 1,820 1,838 1,856 1,875 1,893 

Vehicles & 
Travel 

not a 
single 
value 

3.00% 7,757 7,990 8,230 8,477 8,731 8,993 9,263 

Beer 
Ingredients 

not a 
single 
value 

3.00% 6,331 6,521 6,716 6,918 7,125 7,339 7,559 

Cleaning 
Supplies 

not a 
single 
value 

3.00% 23 23 24 25 26 26 27 

Canning Raw 
Materials 

not a 
single 
value 

3.00% 5,456 5,620 5,789 5,962 6,141 6,325 6,515 

Total Annual 
Operational 
Carbon 

  72,833 73,795 74,778 75,783 76,811 77,862 78,936 

          

          

Electricity   284,480 320,540 356,960 393,745 430,897 468,421 506,321 

Natural Gas   126,652 140,971 155,289 169,607 183,926 198,244 212,562 

Wood Stove 
Fuel 

  11,685 13,145 14,606 16,066 17,527 18,987 20,448 

Water (not 
used in 
brewing) 

  - - - - - - - 

Labor   14,425 16,226 18,046 19,884 21,740 23,615 25,508 

Vehicles & 
Travel 

  60,478 68,468 76,698 85,175 93,906 102,899 112,162 

Beer 
Ingredients 

  49,355 55,876 62,592 69,510 76,635 83,975 91,534 

Cleaning 
Supplies 

  177 201 225 250 275 302 329 
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Canning Raw 
Materials 

  42,538 48,158 53,947 59,909 66,051 72,376 78,891 

Cumulative 
Operational 
Carbon 

  589,791 663,586 738,364 814,147 890,957 968,819 1,047,755 

          

Total Annual 
Carbon 

  82,234 83,196 84,179 85,184 86,212 87,263 88,337 

Cumulative 
Carbon 

  665,001 748,197 832,376 917,560 1,003,772 1,091,035 1,179,372 

          

OFFSETS          

Photovoltaics          

          

kWh 
produced 

  119,746 119,746 119,746 119,746 119,746 119,746 119,746 

Carbon 
Analysis 

         

Annual          

Amortized 
[embodied] 

0.04 kg CO2 / 
kWh 

4,910 4,910 4,910 4,910 4,910 4,910 4,910 

(Offset)   (35,703) (35,703) (35,703) (35,703) (35,703) (35,703) (35,703) 

Net emissions   (30,793) (30,793) (30,793) (30,793) (30,793) (30,793) (30,793) 

Cumulative          

Amortized 
[embodied] 

  4,910 9,819 14,729 19,638 24,548 29,457 34,367 

(Offset)   (35,703) (71,405) (107,108) (142,811) (178,514) (214,216) (249,919) 

Net emissions   (30,793) (61,586) (92,380) (123,173) (153,966) (184,759) (215,552) 

New Total 
Annual 
Carbon 

  51,441 52,403 53,386 54,391 55,419 56,470 57,544 

New Total 
Cumulative 
Carbon 

  634,208 686,610 739,996 794,387 849,806 906,276 963,820 

          

SEQUESTRATI
ON 

         

Short rotation 
coppice 
agroforestry 
(SRCA) 

         

Carbon 
analysis 

         

Annual kg CO2 / 
unit 

        

Amortized 
[embodied] 

 kg CO2 / kg 
coppice 

    - - - 

Operational       16 16 16 

Labor 0.00 kg CO2 / kg 
coppice 

    16 16 16 

Water - kg CO2 / kg 
coppice 

    - - - 

Net emissions       16 16 16 

Cumulative          
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Amortized 
[embodied] 

      - - - 

Operational       16 32 48 

Labor       16 32 48 

Water       - - - 

Net emissions       16 32 48 

          

Hectares 
Required 

      2.00 2.00 2.00 

          

Pyrolysis 
(Biochar) 

         

Carbon 
analysis 

         

Annual          

Amortized 
[embodied] 

106.268 kg COG / yr     106 106 106 

Operational       808 808 808 

Labor 0.009 kg CO2 / kg 
biochar 

    32 32 32 

Fuel 0.211 kg CO2 / kg 
biochar 

    776 776 776 

(Sequestered) (3.043) kg CO2 / kg 
biochar 

    (11,192) (11,192) (11,192) 

Net emissions       (10,278) (10,278) (10,278) 

Cumulative          

Amortized 
[embodied] 

      106 213 319 

Operational       808 1,616 2,424 

Labor       32 64 96 

Fuel       776 1,552 2,328 

(Sequestered)       (11,192) (22,384) (33,576) 

Net emissions       (10,278) (20,556) (30,833) 

          

SRCA + 
Pyrolysis 

         

Carbon 
analysis 

         

Annual          

Amortized 
[embodied] 

  - - - - 106 106 106 

Operational   - - - - 824 824 824 

(Sequestered)   - - - - (11,192) (11,192) (11,192) 

Net emissions   - - - - (10,262) (10,262) (10,262) 

Cumulative          

Amortized 
[embodied] 

  - - - - 106 213 319 

Operational   - - - - 824 1,648 2,472 

(Sequestered)   - - - - (11,192) (22,384) (33,576) 

Net emissions   - - - - (10,262) (20,524) (30,785) 

          

New Total 
Annual 
Carbon 

  72,833 73,795 74,778 75,783 66,549 67,600 68,674 
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New Total 
Cumulative 
Carbon 

  665,001 748,197 832,376 917,560 993,510 1,070,511 1,148,586 

          

OFFSETS & 
SEQUESTRATI
ON 

         

Total Annual 
Net Carbon 
Emissions 

  (30,793) (30,793) (30,793) (30,793) (41,055) (41,055) (41,055) 

Total 
Cumulative 
Net Carbon 
Emissions 

  (30,793) (61,586) (92,380) (123,173) (164,228) (205,283) (246,338) 

New Total 
Annual 
Carbon 

  42,040 43,001 43,985 44,990 35,756 36,806 37,881 

New Total 
Cumulative 
Carbon 

  634,208 686,610 739,996 794,387 839,544 885,752 933,034 

Net Positive   #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

          

Amortized 
Accelerated 
to first year 

  299,484 299,484 299,484 299,484 305,541 305,541 305,541 

Cumulative O 
& S 

  35,703 71,405 107,108 142,811 188,882 234,953 281,024 

          

CARBON 
NEUTRALITY 
REACHED 

      #N/A #N/A #N/A 

          

Dynamic 
Chart 
Calculations 

         

Positive PV   30,793 61,586 92,380 123,173 153,966 184,759 215,552 

Positive 
SRCA+Pyro 

  - - - - 10,262 20,524 30,785 

Negative 
SRCA+Pyro 

  - - - - - - - 

          

Total - 
Positive 

  634,208 686,610 739,996 794,387 839,544 885,752 933,034 

After all   634,208 686,610 739,996 794,387 839,544 885,752 933,034 

Business as 
Usual 

  665,001 748,197 832,376 917,560 1,003,772 1,091,035 1,179,372 

 


