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Drought stress is a major contributing factor to adult tree mortality and limits regeneration across 

the globe. Drought effects are often studied on a site level, but recent advances in remote sensing 

allow for observations of plant water status across broader geographic scales. The vegetation 

optical depth (VOD) derived from satellite sensor microwave backscatter has been shown to be 

sensitive to canopy water content, and can therefore provide useful information on how plant 

water status changes over time. We develop an index which quantifies the normalized difference 

between diurnal VOD retrievals (nVOD) across the western U.S. to determine where plant water 

status is sensitive to variations in water supply (soil moisture) and atmospheric water demand 

(VPD). Diurnal variability in canopy water content (as expressed through nVOD) was most 

sensitive to soil moisture variation at intermediate water deficits and sites with low tree cover. 

These areas occur in ecotones between forest and grasslands or shrublands, and also occur at 

values of climatic water deficit (CWD) where nVOD is most sensitive to both soil moisture and 

VPD variation.  
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Introduction 

 

Forest mortality rates have more than doubled in the western United States over the last 40 years 

(Van Mantgem et al., 2009). Elevated temperatures and increased water stress that characterize 

drought have been implicated as the largest contributing factors to the rising mortality rates 

observed across the globe (Allen et al., 2010). Drought events are occurring more frequently and 

with higher severity, and these trends are projected to continue as climate change progresses 

(Meehl et al., 2007). While negative impacts of drought have been observed in most ecosystems, 

research suggests that populations at dry range edges are less buffered from climate impacts and 

are more likely to exhibit increased mortality and regeneration failure under drought stress  

(Anderegg, Anderegg, Kerr, & Trugman, 2019; Davis et al., 2019; Young et al., 2017). These 

dry range edges are often transitional zones between plant physiognomic types where species 

live near the extent of their climatic tolerance. Moreover, these ecotones experience larger 

climatic variance due to greater land surface-atmosphere coupling (Koster et al., 2004; 

Seneviratne et al., 2010; Seneviratne, Lüthi, Litschi, & Schär, 2006), which potentially exposes 

dry edge species to larger negative impacts under directional climate shifts towards hotter and 

drier conditions. 

 

Drought is characterized by higher than normal temperatures and reduced precipitation, which 

affects plants by both increasing evaporative demand through rising vapor pressure deficit (VPD) 

and decreasing available soil moisture. Although warm temperature can accelerate soil drying 

through evapotranspiration, only precipitation recharges soil moisture. Precipitation dynamics 

are thus a first order control on soil moisture.  Research addressing plant responses to drought 

often focus on temperature/VPD (Novick et al., 2016; Williams et al., 2010) or precipitation and 

soil moisture dynamics (Goulden & Bales, 2019; Schwantes et al., 2018; Simeone et al., 2018), 

but it is recognized that both water supply and demand play a crucial role (Stephenson, 1990). 

Indeed, water supply and atmospheric demand are fundamentally linked (Trenberth & Shea, 

2005). Decreasing summer precipitation across much of the western U.S. has enhanced 

atmospheric aridity, challenging our ability to attribute drought induced vegetation change to 

either supply or demand (Holden et al., 2018).   
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There is mixed evidence on the relative importance of water supply and demand to plant growth 

and response to drought. Increasing temperatures and atmospheric demand have been identified 

as the primary contributing variables to drought stress in the southwestern U.S. (Williams et al., 

2013), and as a greater limiting factor to evapotranspiration than soil moisture in mesic forests at 

Ameriflux sites across the U.S. (Novick et al., 2016). However, soil moisture can impact 

vegetation productivity and transpiration regardless of VPD, especially at moderate to low levels 

of soil wetness (Seneviratne et al., 2010; Stocker et al., 2019). Papagiannopoulou et al. (2017) 

found that global vegetation dependence upon water availability has been under reported, with 

semi-arid and transitional ecosystems being primarily water-limited. Limited water availability 

was also largely responsible for the extensive forest mortality during the 2012-2015 California 

drought (Goulden & Bales, 2019) and the reduced vegetation productivity during the 2003 

European drought (Reichstein et al., 2007). Decreased supply and increased demand are often 

highly correlated over extended time periods, and land-atmosphere feedbacks between the two 

can magnify drought impacts (Holden et al., 2018; Martinez-Vilalta, Anderegg, Sapes, & Sala, 

2019; Seneviratne et al., 2010; Zhou et al., 2019) . However, VPD is more sensitive to 

temperature, which is widely predicted to increase globally as climate changes, while the impacts 

of climate change on precipitation and moisture availability are more variable (Burke & Brown, 

2008; Dannenberg, Wise, & Smith, 2019; IPCC, 2013; Novick et al., 2016; Pendergrass, Knutti, 

Lehner, Deser, & Sanderson, 2017). Therefore, it is important to understand how vegetation 

sensitivity to VPD and soil moisture dynamics varies spatially and in time to better quantify 

regional drought susceptibility as climate changes. Here, we seek to understand the relative 

influence of soil moisture and VPD variation on plant water status via their effects on canopy 

water content in the western U.S.  

 

Drought affects both plant growth and mortality risk. Drought limits plant growth, which has 

been shown to be a precursor to mortality (Anderegg et al., 2015; Berdanier & Clark, 2016; 

Bigler, Gavin, Gunning, & Veblen, 2007; Camarero, Gazol, Sangüesa-Barreda, Oliva, & 

Vicente-Serrano, 2015; Carnicer et al., 2011; Guada, Camarero, Sánchez-Salguero, & Cerrillo, 

2016). Moreover, drought-induced mortality can occur through reduction in plant relative water 

content and hydraulic failure (Anderegg et al., 2015; Martinez-Vilalta et al., 2019; Mcdowell et 

al., 2008; Simeone et al., 2018). The influence of drought on plant water status is most often 
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studied on a site level during natural or experimental drought using measurements such as leaf 

water potential (LWP) and percent loss of hydraulic conductance (PLC) (Anderegg et al., 2013; 

Choat et al., 2012; Martinez-Vilalta, Anderegg, McDowell et al., 2008). More recently, studies 

have emphasized the utility of relative water content (RWC) as a useful indicator of incipient 

mortality given its linkage to plant water supply and osmotic regulation (Martinez-Vilalta et al., 

2019; Sapes et al., 2019). While individual measurements have been successful in 

parameterizing and simulating the effect of drought on plant water status at the watershed scale 

(Anderegg et al., 2015; Simeone et al., 2018), remote sensing offers the possibility to expand 

monitoring to regional or larger scales. 

 

 Remotely sensed vegetation optical depth data (VOD), which is derived from satellite-based 

microwave backscatter, has been identified as a means to measure broad-scale vegetation canopy 

water dynamics. High frequency microwaves do not fully penetrate the canopy, and therefore 

VOD retrievals using short wavelengths are minimally influenced by surface soil moisture, 

primarily picking up backscatter from leaves and the upper canopy (Konings & Gentine, 2017; 

Konings, Rao, & Steele-Dunne, 2019). VOD has been related to plant water status metrics 

including: 1) volumetric water content (VWC) (Konings & Gentine, 2017; Konings et al., 2019), 

2) LWP and above ground biomass (Momen et al., 2017), 3) RWC of plant canopies for 

predicting tree mortality from the 2012-2015 California drought (Rao, Anderegg, Sala, Martínez-

Vilalta, & Konings, 2019), 4) a stomatal sensitivity index and drought coupling metric 

(Anderegg et al., 2018; Konings, Williams, & Gentine, 2017; Konings & Gentine, 2017; Li et al., 

2017), 5) and seasonal canopy water content patterns in the African tropics (Konings et al., 

2017). Negative anomalies in the diurnal differences from microwave backscatter have also been 

shown to correlate with drought events over croplands in the USA, suggesting that the VOD 

signal is sensitive to drought stress when there is insufficient water available for plants to 

rehydrate (Schroeder, McDonald, Azarderakhsh, & Zimmermann, 2016).  

 

VOD has also been shown to be sensitive to above-ground biomass (Tian et al., 2016) which can 

potentially obscure our understanding of changes in plant water status. Consequently, we utilize 

long term VOD retrievals to examine the relative influence of soil moisture and VPD variation 

on canopy water content while accounting for the effects of varying biomass. As in other studies, 
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we assume that negative deviations between night and day VOD retrievals (∆) during the 

growing season signify that the plants are unable to replace water lost to transpiration during the 

day and are therefore experiencing some degree of water stress (Frolking et al., 2011; Schroeder 

et al., 2016). After accounting for the influence of seasonal changes in LAI we anticipate that 

positive diurnal anomalies in VPD (drier atmosphere) will result in negative diurnal anomalies in 

VOD (Fig. 1a), whereas we expect positive anomalies in soil moisture (greater soil moisture) to 

result in positive anomalies in VOD (Fig. 1b). If canopy water content is insensitive to 

supply/demand then we expect the relationships with VOD to be decoupled (Fig. 1).  

 

In this analysis we seek to answer two questions. First, where is canopy water content most 

sensitive to soil moisture and VPD variation and what characterizes these sites? Identifying areas 

where canopy water content is particularly sensitive to variation in supply and demand of water 

may provide insights into those regions in which we may expect climate impacts due to drought 

induced mortality.  Secondly, can we identify the relative influence of VPD and soil moisture 

variation on canopy water content and does this vary spatially? Although recent work has noted 

that VPD and soil moisture variation are often coupled (Novick et al., 2016; Seneviratne et al., 

2010; Zhou et al., 2019), these drivers have different rate constants with VPD varying at higher 

temporal frequencies than soil moisture (Figs. 2a & S4; Koster et al., 2004).  Higher variation in 

VPD can kill trees through extreme events (Kolb & Robberecht, 1996), whereas slower soil 

moisture variation is likely to trigger mortality over longer periods as progressive loss of 

hydraulic conductance causes RWC to cross mortality thresholds (Martinez-Vilalta et al., 2019; 

Mcdowell et al., 2008; Sapes et al., 2019; Simeone et al., 2018). Disentangling their relative 

influence on canopy water content may provide context for interpreting the relative importance 

of projected temperature and precipitation changes for the coming century.   

 

Methods 

 

Data  

 

VOD data used in this study comes from the X-band (10.7 GHz) of the Advanced Microwave 

Scanning Radiometer for EOS (AMSR-E) sensor that launched in May 2002 and then failed in 
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October 2011, and the Advanced Microwave Scanning Radiometer 2 (AMSR2) on the Global 

Change Observation Mission-1st Water (GCOM-W1) satellite that launched in July 2012. The 

data includes 25km resolution ascending (daytime at 1:30 pm local time) and descending 

(nighttime at 1:30 am local time) daily overpasses for the complete years 2003 to 2018 retrieved 

using the Land Parameter Retrieval Model (LPRM) algorithm (Owe, de Jeu, & Holmes, 2008), 

cropped to the extent of the Western United States (latitudes from 31 - 50 N, longitudes from 

102 - 125 W). Continuity between both sensors was handled using the X-band VOD from the 

land parameter data record (Du et al., 2017) (LPDR) generated from intercalibrated temperature 

brightness between the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and its 

successor AMSR2. The intercalibration removed noted biases in AMSR2 retrievals and allowed 

for a cohesive dataset spanning the duration of both products. While the VOD mean and 

variation between the two sensors is consistent, potential LPDR biases in the underlying 

brightness temperature used for calibration have still been identified (Du et al., 2017; Rao et al., 

2019). As we have standardized our data by mean and standard deviation, which is consistent 

across sensors, we do not believe that this is a problem for our application. Data used spanned 

from 2003 to 2018, with a gap between October 4, 2011 and May 18, 2012 when AMSR-E was 

out of operation and AMSR-2 had not yet launched. The LPDR product flags and removes pixels 

where land surface temperature < 273 K (assumed frozen soil) and where significant rainfall 

occurred. We also removed daily observations where both day and night retrievals were not 

present. 

 

Daytime and nighttime VOD observations were filtered using the methods from Konings & 

Gentine (2017) in order to mask out areas in the western US with problematic pixels. VOD daily 

pixels where the AMSR2 LPRM derived land surface temperature < 273 K (assumed frozen soil) 

were removed, as well as pixels on days where rainfall occurred in order to minimize the 

influence of canopy water interception. Rainfall data was taken from the PRISM climate group 

(Daly, Taylor, & Gibson, 1997), and aggregated from 4km to 25km to match the AMSR2 VOD 

resolution. Pixels where the average VOD over the 2013-2018 AMSR2 record is less than 0.1 are 

assumed to be unvegetated and removed from the data record so as not to pick up backscattering 

from surface soil water (Konings & Gentine, 2017). After filtering out problematic VOD 

retrievals, daily observations that do not have both a daytime and nighttime retrieval are removed 
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and pixels that do not have at least 150 pairs of daytime and nighttime VOD retrievals are 

identified as having insufficient temporal coverage and removed (Alexandra G. Konings & 

Gentine, 2017). Within the western U.S., we randomly subset 1000 points meeting the criteria 

above and extracted the LPDR VOD difference between night and day (∆) for each pixel to 

include the full cohesive AMSR-E and AMSR2 record. 

  

Daily VPD data was retrieved from the gridded meteorological climatology database gridMET 

(Abatzoglou, 2013) at a 4km resolution spanning the full years 2003-2018, cropped and 

aggregated to the 25km resolution of the VOD data.  

 

LAI data was retrieved across the years 2003-2018 from the 1 km resolution NASA MCD15A3H 

MODIS product (Myneni, Knyazikhin, Park, 2015), which combines the best acquisitions from 

the sensors on both the Terra and Aqua satellites to retrieve data over a 4-day period. The data 

was filtered using the quality assurance data field to filter out LAI retrieval pixels with high 

cloud cover and errors in the main retrieval algorithm. LAI data was then cropped, aggregated to 

25 km resolution, and linearly interpolated to daily observations to match the VOD data.  

 

Soil moisture data across the years 2003-2018 was extracted from daily soil moisture grids with 

250-meter resolution from TOPOFIRE (Holden et al., 2019) for centroid coordinates of the 1000 

pixels selected randomly from the cropped AMSR2 data with sufficient temporal coverage after 

the filtering described above. Briefly, the soil moisture grids were developed using a simple 

single layer daily soil water balance model, with terrain-resolved radiation, temperature and 

humidity grids as inputs, and a simple snow model described by Holden et al. (2018). 

Evapotranspiration was modeled using the Penman-Monteith equations recommended by the 

Food and Agriculture Organization (FAO; Allen, Pereira, Raes, & Smith, 1998) and adapted 

from the monthly model described by Dobrowski et al. (2013). In situ soil moisture data was also 

accessed through TOPOFIRE (Holden et al., 2019) for 331 combined snow telemetry (SNOTEL) 

and soil climate analysis network (SCAN) stations across the western U.S. that collected soil 

volumetric water content measurements at 8 inch depth across the years 2015-2018.  
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To determine if a plant exhibited water stress in response to changes in drought status we 

examined the sensitivity of the normalized difference between night and day VOD (nVOD; Eq. 

1) over the growing season (defined as April-September) to changes in normalized VPD, soil 

moisture, and LAI (Eqs. 2-4). To remove the inherent seasonality of the data, daily z-scores were 

calculated using the formulas: 

 

 

nVOD =       (1) 

 

 

VPD z-score =      (2) 

 

 

LAI z-score =      (3) 

 

 

SM z-score =      (4) 

 

 

where ∆ = the difference between night and day VOD retrievals; s = standard deviation; i 

represents daily observations during the growing season (April – September) across the study 

period (2003-2018); and j = +/- 5 day window centered on i across all years in the study period. 

 

We used climate normals for climatic water deficit (CWD) over the study period to examine how 

our model coefficients vary over climate gradients. Monthly derived estimates of CWD for the 

western U.S. were acquired from TerraClimate (Abatzoglou, Dobrowski, Parks, & Hegewisch, 

Δi− mean j (Δi)

sj(Δi)

vpdi− mean j (vpd i)

sj(vpdi)

laii− mean j(lai i)

sj(laii )

smi− mean j (smi)

sj (smi)
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2018) covering the period 2003-2017 (2018 data was not available at time of access) at 4km 

resolution and were aggregated to 25km to match the VOD data resolution. Monthly values were 

summed each year to get annual CWD, and then averaged to get mean annual CWD for the 

western U.S. at 25km resolution. 

 

Forest cover was taken from the MODIS MOD44B vegetation continuous fields (VCF) data 

product at 250-meter resolution for the year 2016 (Dimiceli, Carrol, Sohlberg, Kim, & 

Townshend, 2015). Data was cropped and aggregated to 25km to match VOD data.  

 

Land classification data was taken from National Lands Cover Database (NLCD) 2016 (Yang et 

al., 2018). Initially resampled from 30 meters to 100 meters using nearest neighbor interpolation, 

data was then aggregated to 25km by summing the total number of present pixels and dividing 

by the total number of pixels within the 25km to get fractional cover for each classification type. 

All data sources in this study are summarized in Table 1.  

 

Analysis 

 

All analysis was done in R (R Core Team, 2018), and all variables and climate information were 

prepared using the raster package (Hijmans, 2017) before daily data extraction. We extracted the 

LPDR VOD data at the subset of 1000 points to utilize the fused AMSR-E and AMSR2 record. 

From those 1000 points, 100 were removed because they were just outside the US domain of the 

gridMet VPD data, and a further 178 were removed because the 25km pixel contained greater 

than 20% of agriculture/urban land cover. The remaining 722 25km pixels (Fig. 2b) across the 

western US are treated as independent ‘sites’ over which we examine the relationship between 

nVOD and drought metrics.  

 

At each site, daily time series (Fig. 2a) were developed for nVOD and biophysical drivers (soil 

moisture and VPD). To isolate effects of soil moisture and VPD, we first removed the effect of 

LAI on nVOD by fitting a general additive model (GAM) relating nVOD to LAI z-scores and 

then extracting the residuals of this fit from the nVOD time series. We used the GAM function 

from the mgcv package (Wood, 2011) with 4 degrees of freedom to avoid model overfitting.   
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We then fitted a multiple linear regression using soil moisture and VPD z-scores as the 

predictors and the GAM nVOD residuals as the response variable. We calculated correlograms 

for each time series to visualize serial autocorrelation, and then adjusted standard error estimates 

of the model coefficients using a Newey-West estimator (Newey & West, 1986) to account for 

this autocorrelation and re-ran a coefficient test to assess updated p-values. We then extracted 

standardized coefficients, model R2, and updated p-values which account for serial 

autocorrelation. Since all variables are standardized, the coefficients can be interpreted as 

dimensionless sensitivity indices of the response variable to the predictors. 

 

We compared linear model coefficients to site climatic conditions as represented by the mean 

annual CWD to examine how nVOD sensitivity differed across a water availability gradient. We 

additionally examined how nVOD coefficients varied as a function of temporal climate 

variability using the standard deviation of annual CWD values. The relationships between the 

coefficients and climate conditions were curvilinear and were fitted with GAMs. Lastly, we 

examined the relationships between model coefficients and tree cover.  

 

To supplement the linear regression analysis, we constructed a separate boosted regression tree 

(BRT) model for each site using the gbm.step function from the dismo R package (Hijmans, 

Phillips, Leathwick, & Elith, 2017). We utilized a learning rate and bag fraction set to .005 and 

0.6 respectively to model the sensitivity of nVOD to daily LAI, soil moisture, and VPD z-scores. 

We extracted relative variable influences, cross validation correlation means, and partial 

dependence plots for the BRTs at each site. 

 

To further corroborate our results obtained using modeled soil moisture, we repeated both the 

linear regression and BRT analysis using nVOD, LAI, and VPD data at pixels containing 

SNOTEL soil moisture measurements. nVOD, LAI, and VPD z-scores were calculated over the 

full timespan, while SNOTEL soil moisture z-scores were calculated over the years of available 

observational data (2015-2018). 

 

 



 

10 

Results 

 

Soil moisture and VPD linear model (LM) coefficients were significant (p-value < .05) at 642 

and 458 of the 722 sites (75% and 63%) respectively in the final analysis. 655 of the 722 sample 

sites (91%) exhibited greater sensitivity to soil moisture than to VPD, with larger standardized 

coefficient absolute values than VPD. The difference in variable influence can be observed in the 

example time series (Fig. 2a) and regression results (Figs. 3a & 3b) for a single site. The time 

series shows that daily nVOD dynamics more closely resemble those of normalized soil moisture 

than VPD. This is further reflected in the regression results that display a tighter nVOD LM fit 

with soil moisture, as well as in figure 3c where low nVOD values are primarily concentrated at 

the lowest soil moistures regardless of the corresponding VPD value. These variable 

contributions to the nVOD response are reinforced by the site partial dependence plots from our 

BRT analysis (Fig. S1). Although the variables at some sites show a degree of nonlinearity, the 

overall BRT results correspond with the results from the linear models. VPD standardized 

coefficients exhibited greater absolute values in the Southwestern states of Arizona, Utah, New 

Mexico, and Colorado, while the bulk of both insignificant VPD and soil moisture coefficients 

occurred in the Pacific Northwest (Fig. 4).   

 

LM VPD and soil moisture coefficients exhibited respective minimums (large negative 

coefficients) and maximums (large positive coefficients) respectively at a similar mean annual 

site CWD of roughly 800 mm; the absolute value of the coefficients declined as CWD increased 

and leveled off for both soil moisture and VPD between 1200- and 1500-mm (Fig. 5). Soil 

moisture coefficients were better explained by the curvilinear relationship to CWD than the VPD 

coefficients; GAM deviance explained (D2) values were 0.31 and 0.18 respectively. The general 

patterns observed in both the relative influence of coefficients and the coefficient relationship 

with CWD are also present in the SNOTEL analysis using in situ soil moisture measurements 

(Fig. S2). There is, however, more uncertainty in these models given that they were fit using 4 

years of data. Moreover, SNOTEL stations are primarily located in more mesic, higher elevation 

areas with lower deficits. Thus, we do not observe leveling off in the coefficient relationship 

with CWD (Fig. S2).  
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The largest absolute value of soil moisture and VPD LM coefficients occur at sites with low tree 

cover (Figs. 6a & 6b). Model selection by AIC determined that there is a curvilinear relationship 

between LM coefficients and tree cover (GAM D2 = 0.21 for soil moisture and 0.28 for VPD). 

Both variable coefficients trended towards 0 as tree cover increased, with soil moisture 

coefficients showing a steep drop in influence after ~40% cover and VPD coefficients having the 

steepest slope between roughly 20% and 50% cover before leveling off.  Mean site CWD is 

strongly linked with percent tree cover (GAM D2 = 0.632), with tree cover declining as CWD 

increases. The curve begins to level off near 0% cover and ~800 mm deficit (Fig. 6c), a value 

consistent with the CWD value with the largest standardized coefficients for soil moisture and 

VPD. The most ‘sensitive’ coefficients (absolute value of coefficients >85th percentile) primarily 

occurred at low tree cover, which we defined as sites having anywhere between 1-20% tree 

cover. Of the 109 sites that met this criterion, 77 (70.6%) of the soil moisture and 83 (76.1%) of 

the VPD coefficients fell within our defined low tree cover range (Fig. 7). While soil moisture 

and VPD both have a similar number of sensitive sites within this range, they occupy different 

geographic regions. ‘Sensitive’ sites for soil moisture were primarily located north of 40 in 

Montana and Wyoming, while sensitive sites for VPD were concentrated in New Mexico, 

Colorado, and Utah. 

 

Contrary to our expectations, we observed a positive response to VPD and negative response to 

soil moisture at 65 (9%) and 36 (5%) sites respectively. These sites were primarily located in the 

Pacific Northwest and were concentrated at values of CWD below 500 mm and tree cover above 

30% for both soil moisture and VPD (Figs. 4 & 5; Figs. 6a & 6b). Of the sites that exhibited 

these unexpected patterns, 19 and 6 sites fell below the significance threshold of P < .05 for soil 

moisture and VPD respectively. 

 

Discussion 

 

Where is canopy water content most sensitive to soil moisture and VPD variation? 

  

Diurnal variability in canopy water content (as expressed through nVOD) showed the most 

sensitivity to soil moisture variation at intermediate water deficits and sites with low tree cover 
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(Figs. 5 & 6). These areas appear to occur in ecotones between forest and grasslands or 

shrublands (Fig. 6c). These ecotones also occur at values of CWD that exhibit the highest nVOD 

sensitivity to both soil moisture and VPD.  

 

Research has identified species populations at dry range edge margins and transition zones as the 

most vulnerable to drought (Allen & Breshears, 1998; Anderegg et al., 2019; Davis et al., 2019; 

Young et al., 2017), and some have linked that greater vulnerability to high climate variability 

(Anderegg et al., 2019). Transition zones have also been identified as hotspots for land-

atmosphere coupling where soil moisture feeds back on both evapotranspiration and subsequent 

precipitation, resulting in enhanced climate variability (Koster et al., 2004; Seneviratne et al., 

2010, 2006). In these areas low soil moisture decreases evapotranspiration which leads to 

increased atmospheric aridity, thus decreasing the atmospheric moisture that can recharge soil 

moisture through precipitation and further exacerbating drought (Zhou et al., 2019). Our results 

suggest that areas where vegetation water sensitivity is greatest are these transitional zones with 

higher climatic variability, greater land atmosphere coupling, and greater negative feedbacks 

associated with low soil moisture.  

 

Our results also show that canopy water content sensitivity is tied to climate variability, 

emphasizing the relationship between land-atmosphere coupling and plant water status 

sensitivity. The sites that have the lowest sensitivity to soil moisture and VPD z-scores also have 

the lowest interannual CWD variability (Fig. S3). While the coarse resolution of our study makes 

it more challenging to pinpoint specific transition zones and identify what vegetation is primarily 

controlling the nVOD response, our analysis suggests that vegetation water sensitivity is greatest 

in areas of the western US that represent forest to non-forest ecotones.  

 

The relationship between tree cover and CWD suggests that forest transition zones with low tree 

cover exist at the climatic boundaries that can support trees. These areas are where the majority 

of the most sensitive sites are located (Figs. 6a, 6b, 7), leading us to hypothesize that water 

content in these trees is more vulnerable to increases in demand and reductions in supply that 

come with directional climate change. The more dramatic fluctuations in canopy water content at 

these sites could leave trees more likely to exceed their hydraulic safety margin and cross the 
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drought mortality thresholds associated with decreasing water content when exposed to drought 

(Brodrick & Asner, 2017; Choat et al., 2012; Martinez-Vilalta et al., 2019; Sapes et al., 2019). It 

is difficult to tell if this is driven primarily by greater sensitivity in trees or if shrub- and/or 

grasslands are dominating the signal. However, nVOD sensitivity declines at higher values of 

CWD (Fig. 5) where tree cover is negligible, suggesting that canopy water content sensitivity is 

greatest in transition zones from forest to non-forest.  

 

The canopy water content sensitivity to site climate and climate variability has repercussions as 

climate change continues. More mesic environments that experience an increase in deficit and 

climatic variance may show increasing sensitivity to anomalies in water supply and demand as 

moisture reserves are depleted and average temperatures increase. This greater sensitivity to 

drought could have implications for these transitional ecosystems, as mortality at dry edges can 

lead to regeneration failure and range shifts (Allen & Breshears, 1998; Davis et al., 2019; Lenoir, 

Gégout, Marquet, De Ruffray, & Brisse, 2008). 

 

Our study is constrained by the coarse resolution of the nVOD data used and does not parse out 

differential species-specific ranges or hydraulic traits and responses, which are known to 

influence drought susceptibility (Anderegg et al., 2019; Anderegg et al., 2018; Bréda, Huc, 

Granier, & Dreyer, 2006). There is a lot of variability in the linear model coefficients at low tree 

cover that encompasses decoupled sites as well as the most sensitive ones.  For example, low tree 

cover can be found in sites with well distributed cover, small pockets of dense trees across a 

25km pixel, or even an upper tree line that is exposed to low water deficits and is less susceptible 

to drought. The coarse resolution and lack of accounting for species specific responses likely 

accounts for the observed variability in our results. The coarse resolution of the analysis also 

limits our ability to account for topoclimatic effects and the effect of enhanced supply in 

hydraulic convergence zones that are known to help buffer vegetation from climate variability 

(Dobrowski, 2011; McLaughlin et al., 2017). Despite the fact that these factors add noise to our 

analysis, coherent spatial patterns of sensitivity still emerge.  

 

Given that nVOD represents the ability of plants to replace water lost via transpiration to 

maintain water content, it is not surprising that the metric is less sensitive at sites that have a low 
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mean annual CWD. These sites have more available water and lower atmospheric demand, and 

therefore are more likely to have sufficient soil water for maintaining canopy water content even 

during extended periods without precipitation when soils have below average moisture levels or 

the atmosphere has above average VPD. These sites represent conditions where plant water 

status is decoupled from changes in daily supply/demand in our conceptual model (Fig. 1). Low 

CWD is also associated with low climatic variance, and therefore the z-score values representing 

our variables’ deviation from mean seasonal conditions may not represent a sufficient imbalance 

in supply or demand to be reflected by a response in plant water content. The regions where 

these sites are, such as the PNW, represent the bulk of where insignificant coefficients are 

located (Fig. 4).  

 

We do, however, see sites in these locations that are not decoupled and show the opposite 

response from our expectations in the conceptual model, where the difference between night and 

day increases despite negative soil moisture and positive VPD z-scores.  Konings et al. (2017) 

observed similar unexpected responses in a study examining the response of QuickSCAT and 

RapidScat Ku band pm/am microwave backscatter ratios during the dry season in tropical central 

Africa (Konings et al., 2017). These authors hypothesized that it was either due to dry season 

leaf flushing or VPD driven increases in evapotranspiration. While this may help explain our 

results, the lack of significant positive VPD coefficients suggests that the opposite response we 

observe may be more driven by moisture surplus and deeper soil water. Evapotranspiration 

becomes more decoupled from soil moisture in wetter regions (Seneviratne et al., 2010), and in 

forested areas deep soil water availability can drive tree drought response (Goulden & Bales, 

2019). As these sites are located in mesic areas with low CWD and higher forest cover (Figs. 6 & 

7) it is possible that soil moisture depletion during the growing season either does not leave the 

soil dry enough to inhibit plant rehydration, or mature trees with deeper roots in these locations 

are more reliant on deeper more stable water sources such as groundwater that may be less 

reflected in the modeled soil moisture product used in this study. For these areas tree water 

responses to drought are more likely to occur over extended time periods that lead to depletions 

of longer term water sources (as observed by Asner et al., 2016; Berdanier & Clark, 2016; 

Brodrick, Anderegg, & Asner, 2019; Goulden & Bales, 2019), and are not likely to show up 

strongly in an analysis of responses to daily changes in water supply and demand.  
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Can we identify the relative influence of VPD and soil moisture variation on canopy water 

content and does this vary spatially?  

 

In our analysis, changes in soil moisture variability emerged as the dominant driver of canopy 

water content dynamics (nVOD) at 91% of sites. These results are consistent with research that 

identifies soil moisture as a primary control on vegetation growth, including crops (Littell, 

Peterson, & Tjoelker, 2008; Papagiannopoulou et al., 2017; Reichstein et al., 2007; Stocker et al., 

2019; Wurster et al., 2019), and studies that suggest that the impacts of anomalies in VPD are 

generally short term compared to the persistent effects of soil moisture anomalies (Koster et al., 

2004). Even after normalization it is evident from our example time series (Fig. 2a) and the 

corresponding correlograms (Fig. S4) that soil moisture and nVOD have lower frequency 

variation over time and retain a degree of memory, while VPD z-scores exhibit higher frequency 

variation over time and retain less memory. Soil moisture deficits can impact plant water status 

regardless of VPD as soil moisture and VPD become decoupled under dry conditions (Stocker et 

al., 2019). Our results suggest that this is the case with canopy water content dynamics as well. 

The lowest values of the nVOD residuals primarily occur at the lowest soil moisture z-scores, 

regardless of corresponding VPD value (Fig. 3c). Soil moisture and VPD cannot be treated as 

entirely independent due to their inherent correlation (Fig. S5; Holden et al., 2018; Seneviratne et 

al., 2010; Zhou et al., 2019), and therefore their influence cannot be totally separated into 

individual contributions to changing vegetation water status. However, the variable standardized 

coefficients and time constants observed in the correlograms support our interpretation that 

canopy water content is more sensitive to lower frequency soil moisture variation than the higher 

frequency variation of VPD.     

 

Greater nVOD sensitivity to soil moisture likely manifests itself in two possible ways. One, 

when soil moisture is low plants are unable to replace water lost to transpiration during the day, 

which occurs even if VPD is relatively low. While VPD values may fluctuate day to day, periods 

of low soil moisture are likely to continue until a precipitation event. The difference between day 

and night canopy water content will decline as the plants ability to rehydrate declines (Frolking 

et al., 2011; Schroeder et al., 2016). The lack of supply could result in increased PLC and an 
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overall reduction in xylem conductivity resulting in decreased canopy water content (Martinez-

Vilalta et al., 2019; Sapes et al., 2019). Secondly, the difference between night and day plant 

water content may be driven instead by stomatal response to low soil moisture availability 

(Mcdowell et al., 2008; Sperry, Hacke, Oren, & Comstock, 2002; Sperry & Love, 2015). When 

the soil is relatively dry, plants may close their stomata early in the day or keep them closed to 

minimize water lost to transpiration regardless of the strength of evaporative demand, and 

therefore exhibit reduced differences between night and day water content due to tighter stomatal 

control. This tighter stomatal regulation can lead to overall reductions in canopy water content. 

The reduced water content occurs either from long term lack of water supply or from decreased 

carbon assimilation that leads to depleted carbon reserves and reduced osmotic regulation, which 

leads to loss of cell turgor and decreased hydraulic conductance (Martinez-Vilalta et al., 2019; 

Sapes et al., 2019). These different physiological responses, where transpiration is reduced by 

xylem cavitation or by stomatal closure, are commonly referred to as isohydry and anisohydry 

and represent a range in plant hydraulic regulation strategies. Isohydric plants more tightly 

regulate stomates, and therefore buffer water loss, while anisohydric plants maintain higher 

stomatal conductivity under dry soil conditions and transpiration is reduced when xylem 

cavitation impairs conductance (Garcia-Forner et al., 2016; Mcdowell et al., 2008). Plants fall 

along a spectrum between these two strategies, and while our study cannot identify the direct 

physiological responses that led to reductions in nVOD, they both represent a response to 

drought and both strategies can leave plants susceptible to drought mortality (Choat et al., 2012; 

Garcia-Forner et al., 2016; Mcdowell et al., 2008; Sapes et al., 2019).  

 

The greater relative importance of soil moisture variation on canopy water content dynamics has 

implications for forecasting how plant water dynamics will be influenced under future climate 

change. While VPD is primarily projected to continue increasing with temperature, 

understanding how precipitation regimes and moisture availability will be impacted by climate 

change is more uncertain (Pendergrass, Knutti, Lehner, Deser, & Sanderson, 2017; IPCC, 2013). 

Summer precipitation in the western U.S. is predicted to decrease in frequency and amount but 

increase in variability, which reduces water supply and can leave longer periods between soil 

moisture recharge (Holden et al., 2018; Rupp, Abatzoglou, & Mote, 2017; USGCRP, 2017). Our 

results suggest that precipitation variability is underemphasized as a primary control on plant 
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water status, via regulation of soil water supply. Therefore, predicted precipitation trends are 

likely to increasingly trigger plant drought responses as climate changes, which will lead to 

reduced canopy water content and possibly greater rates of drought-induced mortality. 

 

The few sites where VPD emerged as the dominant variable were located in the southwestern 

U.S., which is where trees have been identified as especially susceptible to rising temperatures 

and evaporative demand (Williams et al., 2010; Williams et al., 2013). The top 15% of the sites 

most ‘sensitive’ to VPD (Fig. 7) as well as the 67 sites at which VPD coefficients were larger 

than soil moisture coefficients were concentrated in this region (Fig. 4). These results agree with 

the findings of  Williams et al. (2010) and Williams et al. (2013) that areas in the southwestern 

U.S. are especially sensitive to atmospheric demand and may become more susceptible as it 

increases with warming. However, there are still a larger proportion of sites in the region that 

show soil moisture as the more influential variable. Additionally, the BRT partial dependence 

plots for many of these sites show greater soil moisture variable influence (Fig. S6) as well as a 

larger influence of LAI in the southwestern region (Figs. S6 & S7). This may be driven partially 

by high LAI sensitivity to the precipitation patterns in the southwestern U.S., where vegetation 

growth is more sensitive to pulses of moisture that come from summer precipitation events 

during the North American monsoon and occurs later in the season (Tang, Vivoni, Muñoz-

Arriola, & Lettenmaier, 2012; Watts et al., 2007). By removing the influence of biomass from 

the nVOD signal some of the influence of soil moisture pulses is also removed due to variable 

correlation (Fig. S7), which may leave the canopy water content at some of the sites to appear as 

more controlled by VPD variation.  

 

Although we removed the direct influence of seasonality of biomass on nVOD dynamics, it is 

possible that in doing so we have lost some of the information from vegetation drought response 

and from our soil moisture and VPD variables. Defoliation can be a physiological response to 

drought, and reduced growth and biomass can indicate higher susceptibility to a subsequent 

drought event (Camarero et al., 2015; Carnicer et al., 2011; Guada et al., 2016). Both the soil 

moisture and VPD z-scores are correlated to LAI z-scores, and by treating LAI as the first order 

influence on nVOD we assume that any correlation between the variables is primarily driven by 

LAI. While this is not necessarily the case due to the complex interactions along the soil plant 
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atmosphere continuum, this approach allows us to remove the influence of biomass dynamics on 

nVOD and focus more specifically on canopy water content sensitivity. Nonetheless, information 

lost by removing the influence of biomass is unlikely to change the overall pattern of larger soil 

moisture coefficients. The correlation coefficients were generally greater between soil moisture 

and LAI z-scores (Fig. S7), so the influence of soil moisture was more likely to be negatively 

influenced such as in the southwest region. This is reinforced by our BRT model results that 

included LAI z-scores as a predictor variable in addition to the soil moisture and VPD z-scores. 

Even with LAI z-scores as a direct predictor in models describing nVOD, soil moisture still 

emerged as the most influential variable at 88% of the sites, with LAI replacing VPD in relative 

importance at many of the southwestern sites (Fig. S8).     

 

Soil moisture dynamics for the entire 25km cell was characterized using a 250m cell at the 

centroid of the coarser pixel. There is potential error introduced due to these types of scale 

mismatches. However, in situ point validations have been previously used for 25km resolution 

satellite microwave soil moisture products showing reasonable agreement (Draper, Walker, 

Steinle, de Jeu, & Holmes, 2009; Njoku, Jackson, Lakshmi, Chan, & Nghiem, 2003; Reichle et 

al., 2007). Additionally, our analysis using SNOTEL soil moisture was consistent with our 

broader analysis, which supports our interpretation of the results. Further, individual tree LWP 

and biomass measurements have been shown to correspond with 25km resolution VOD and LAI 

dynamics (Momen et al., 2017). Other potential sources of error include dew and canopy 

interception interfering with the microwave backscatter (Konings & Gentine, 2017; Konings et 

al., 2019), which may lead to more saturated VOD retrievals in wet environments. This is 

minimized in the LPDR product by removing days with significant precipitation (Du et al., 

2017). Even then only small differences were observed in the VOD relationship with LWP and 

biomass between analyses using precipitation filtered vs unfiltered VOD data (Momen et al., 

2017), so it is unlikely to be a significant source of error or bias. 

 

Conclusion 

 

We show that diurnal plant water content has a stronger coupling to soil moisture than VPD 

dynamics at a majority of sites across the western U.S. Plant water content was decoupled from 
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changes in both soil moisture and VPD at wetter environments with less climatic variance and 

showed the greatest sensitivity at sites with intermediate water deficits where tree cover was low, 

likely representing transitional ecosystems with greater land-atmosphere coupling. Our study 

outlines large scale spatial and climatic patterns of daily plant water responses to changing 

metrics of drought across the western U.S.; highlighting the importance of soil moisture to plants 

in maintaining and recovering canopy water content, especially in transitional climate zones with 

low tree cover. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

20 

Tables 

 

Data Product Time Basis Native Resolution Study Use 

AMSR-E Vegetation 

Optical Depth (VOD) 

Daily 25 km VOD as a proxy for 

canopy water content 

AMSR2 VOD Daily 25 km VOD as a proxy for 

canopy water content 

gridMet vapor 

pressure deficit 

(VPD) 

Daily 4 km Atmospheric water 

demand as expressed 

by VPD 

MODIS leaf area 

index (LAI) 

4-day 1 km Above-ground 

biomass as expressed 

by LAI 

TOPOFIRE soil 

moisture 

Daily 250 m Water supply as 

expressed by soil 

moisture 

TerraClimate climatic 

water deficit (CWD) 

Monthly 4 km Mean site climate as 

expressed by mean 

yearly CWD 

MODIS vegetation 

continuous fields 

(VCF) percent tree 

cover 

Yearly 250 m Percent tree cover to 

characterize site 

vegetation 

NLCD land cover 

type classification 

Yearly 30 m Land cover 

classification to filter 

out urban and 

agricultural areas 

TOPOFIRE 

SNOTEL/SCAN soil 

moisture 

Daily N/A In situ soil moisture 

measurements taken 

from individual 

stations to validate 

results using modeled 

soil moisture product 

 

Table 1: Summary table of data products used in the study and their time basis, native 

resolution, and what these data were used for 
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Figures 

 

 

 
 

 

 

Figure 1:  Predicted response of nVOD to changes in VPD/soil moisture (left column) when 

plant water status is sensitive to changes in water demand/supply, (right column) when water 

status is decoupled from changes in water demand/supply 
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Figure 2: a) daily time series from 2003 to 2018 of nVOD against LAI, VPD, and soil moisture z-

scores for example point from b) distribution of final 722 sites used in analysis; example point in 

red box. c) distribution of nVOD at example site. The large gap in the time series represents the 

period between October 4, 2011 and May 18, 2012 when AMSR-E was down and AMSR2 not yet 

functional. 
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Figure 3:  Linear relationship at sample site in figure 2 between nVOD and a) soil moisture and 

b) VPD z-scores after accounting for influence of LAI seasonality on nVOD.  c) Continuous 

response of nVOD residuals to respective daily VPD and soil moisture z-scores. The relationship 

in a, b, and c was derived from a time series spanning 15 years and comprised of 1874 days of 

observations during the months April-September. 
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Figure 4: Geographic distribution of nVOD sensitivity (standardized regression coefficients) 

from multiple linear regression models relating nVOD to a) VPD and b) soil moisture after 

accounting for the influence of LAI seasonality. All coefficients are statistically significant (p < 

.05) after accounting for serial autocorrelation using a Newey-West estimator to alter variable 

standard errors. Coefficient color gradient is opposite for VPD and soil moisture so that relative 

variable influence for the expected response can be compared using the same color scale. 

 

 

 

 
 

Figure 5: Variation of model coefficients along site climatic water deficit normals (CWD) for a) 

VPD and b) soil moisture fit with a general additive model. CWD represents the average annual 

value for the years 2003-2017 
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Figure 6: Variation of linear model standardized a) VPD and b) soil moisture coefficients across 

site percent tree cover and c) the relationship between percent tree cover and site annual CWD 
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Figure 7: Spatial distribution of the most sensitive linear model coefficients (absolute value of 

coefficients > 85th percentile) for a) VPD, and b) soil moisture compared to the spatial 

distribution of low tree cover (1-20%) in the western US at 25km resolution. 76.1% and 70.6% 

of ‘sensitive’ VPD and soil moisture coefficients respectively fall within the distribution of low 

tree cover, shown on the map in green. 
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Supplementary Figures 

 

 
 

Figure S1: Partial dependence plots and relative contribution (in parenthesis) of soil moisture 

(left), LAI (center), and VPD (right) to nVOD for a boosted regression tree for same example site 

from Figures 2 & 3. 
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Figure S2: Variation of model coefficients for SNOTEL sites along site climatic water deficit 

(CWD) for a) VPD and b) soil moisture fit with a general additive model. CWD represents the 

average annual value for the years 2003-2017. 

 

 

 

 
 

Figure S3: Standardized linear model coefficients for a) VPD and b) soil moisture plotted 

against site interannual CWD variability represented by standard deviation. Interannual CWD 

standard deviation calculated over the years 2003-2017. 
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Figure S4: Correlogram outputs for timeseries of nVOD (top), soil moisture (middle), and VPD 

(bottom). Y-axis is the autocorrelation value and x-axis is the observation lag in days over which 

the ACF is calculated. The dashed blue lines are the 95% significance bounds for variable 

autocorrelation, and the timeseries is taken from the same example site as Figures 2 & 3. 
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Figure S5: Correlation coefficients for the soil moisture and VPD z-scores calculated at each 

site over April-September from 2003-2018. 

 

 
Figure S6: Partial dependence plots and relative contribution (in parenthesis) of soil moisture 

(left), LAI (center), and VPD (right) to nVOD for a boosted regression tree at a site in the 

southwest where VPD was more influential in the multiple linear model. 
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Figure S7: Spatial distribution for the correlation coefficients between LAI and a) VPD and b) 

soil moisture across the months of April-September for years 2003-2018. 

 

 

 

 

Figure S8: Most influential predictor variable for site boosted regression tree (BRT; left) and 

linear (right) models. Variable influence based on relative variable influence output from BRT  

and by coefficient absolute value from linear model. 


