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ABSTRACT  

  Abundance estimates are central to the field of ecology and are an important tool for wildlife 

managers. While many tools are available for estimating abundance from individually 

identifiable animals, it is much more difficult to estimate abundance of unmarked animals. Most 

species have no natural markings and capturing them to apply artificial marks is invasive. One 

step toward noninvasive abundance estimation is the use of passive “traps” such as remote 

cameras or acoustic recording devices. The continuous-time data from these traps can be used to 

estimate abundance, although most available methods still require individually identifiable 

animals. There is a great need for methods to estimate abundance from unmarked populations 

using these trap data. We developed three methods for estimating abundance of unmarked 

animals from remote camera trap data. We worked outside the conventional capture-recapture 

framework to rethink how continuous remote data are handled. In Chapter 1, we developed an 

Instantaneous Sampling (IS) estimator based in sampling theory that treats remote camera data 

like point counts. In Chapter 2, we applied a time-to-event framework to develop a Space-to-

Event (STE) and Time-to-Event (TTE) model to estimate abundance from trapping rate. We 

validated these methods on simulated populations with known abundance. All three methods 

produced unbiased estimates of abundance, regardless of animal movement rate. We performed a 

case study in which we estimated elk abundance from remote camera trap data in two study areas 

in Idaho. Estimates in one study area were comparable to an independent estimate of abundance 

from aerial surveys. In the other study area, other abundance methods are hard to implement, so 

our three models produced the first elk abundance estimates. The three methods developed here 

represent new ways of thinking about continuous-time remote camera data. These new methods 

allow biologists to estimate abundance from unmarked populations without tracking individuals 

over time. They have wide applications across species; biologists can select the method that best 

meets their specific circumstances. All three methods greatly reduce the amount of data required 

for analysis, which makes them practical management tools.  
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CHAPTER 1:  AN INSTANTANEOUS SAMPLING METHOD FOR ESTIMATING 

ABUNDANCE OF UNMARKED ANIMALS 

ABSTRACT 

Abundance estimates are central to wildlife management but can be expensive, time-

consuming, and dangerous to obtain. Remote camera traps are a way to estimate abundance non-

invasively, but current methods are severely limited when animals are not uniquely identifiable. 

For species such as elk (Cervus elaphus), assumptions of closure are hard to meet and 

independent detections are difficult to define. To address these challenges, we developed an 

Instantaneous Sampling (IS) density estimator for cameras. This method treats remote camera 

data as a random sample of density, similar to fixed area sampling. We evaluated this estimator 

with a simulation study and applied it to camera data from two field settings to estimate elk 

abundance. Results from the simulation study suggest that the IS method is an unbiased 

estimator of abundance. This new method allowed us to estimate elk population size in two 

distinct habitats, including one where no elk abundance estimates had ever been performed due 

to dense vegetation and steep topography. This new method is a non-invasive way to estimate 

abundance of unmarked animals and has broad applicability across many species. It reframes the 

traditional approach to camera trap data by using random samples of density instead of 

monitoring individuals. 

INTRODUCTION  

Abundance estimates are fundamental to the field of ecology and are an important piece 

of information for wildlife managers (Andrewartha and Birch 1954). Wildlife biologists estimate 

abundance to monitor populations’ responses to changes in habitat, climate, or other species. 

Abundance allows them to quantify the strength of inter-species interactions. Managers use 
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abundance to prioritize actions with the largest impact on a target species and then measure the 

success of those actions. For hunted species like deer (Odocoileus spp.) and elk (Cervus 

elaphus), abundance is important in setting harvest quotas and ensuring that harvest goals are 

met (Williams et al. 2002).  

Deer and elk abundance is vital information to managers, but it can be dangerous and 

expensive to estimate. Aerial surveys are common for estimating abundance, but aviation 

accidents are all too common and pose a fatal risk to wildlife professionals (Sasse 2003). For 

example, of all known job-related deaths, two-thirds were due to aviation accidents (Sasse 2003). 

Beyond the risk to human safety, aerial surveys are extremely expensive, can be stressful to 

animals, and are difficult to implement in low snow winters. Furthermore, aerial surveys are only 

practical in some deer and elk habitats; dense vegetation shields animals from view and makes 

aerial surveys impossible (Samuel et al. 1987). Wildlife managers in forested areas must instead 

rely on less informative abundance indices or trend estimates. Safer, cheaper methods to estimate 

deer and elk abundance from the ground would help alleviate these challenges. 

Remote cameras are a non-invasive and cost-effective way to estimate abundance for 

many species but present many challenges when applied to deer and elk (O’Connell et al. 2011). 

The majority of camera trap abundance studies use capture-recapture or mark-resight models that 

require individually identifiable animals (Foster and Harmsen 2012, Burton et al. 2015). These 

are useful for species with unique markings like tigers (Panthera tigris; Karanth 1995) but less 

so for animals without natural individual markings. Marking deer and elk is invasive and 

frequently requires extensive helicopter use. To decrease the number of costly helicopter 

surveys, biologists need an alternative method to estimate abundance from camera trap data for 

species with no individually identifiable characteristics.  
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Three methods currently exist to estimate abundance from unmarked animals from 

cameras, but these are limited when applied to deer and elk. These methods are the Spatial Count 

(SC) model (Chandler and Royle 2013), the Random Encounter Model (REM; Rowcliffe et al. 

2008), and N-mixture models (Royle 2004). They require assumptions that can be difficult to 

meet, especially with large ungulates. First, N-mixture models and the SC model are highly 

sensitive to camera spacing (Keever 2014, Royle et al. 2014). Cameras must be placed with great 

attention to animal home ranges and movement patterns so that individuals are captured on 

exactly one camera or on multiple cameras at different distances from the home range center, 

respectively. Home ranges and movement can be very difficult to know ahead of time or 

calculate at all (Chandler and Royle 2013). Second, N-mixture models assume closure at the 

home range level (Royle 2004). While this may work for fish in a lake, it is likely to be violated 

by ungulates with large and uneven home ranges. Next, the REM requires an independent 

estimate of animal movement rates, which can be difficult to obtain (Rowcliffe et al. 2008). 

Finally, the REM requires that each detection of an animal at a camera is independent of 

previous detections. It is particularly challenging to define independent detections at cameras, so 

they are arbitrarily defined by various criteria like time cutoffs (e.g., 30 min, 60 min, 1 day; 

Burton et al. 2015).  

Abundance estimation methods based in sampling theory may be able to overcome these 

challenges. Sampling theory allows ecologists to describe a population by the characteristics of a 

sample of that population (Cochran 1977). For example, the count of animals in a sampled area 

can be used to estimate abundance in a larger area of interest when the sampled area and study 

area size are known. This is the basis for many wildlife abundance estimation methods, including 

point counts, line transects, and distance sampling (Williams et al. 2002).  
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We used sampling theory to develop a novel Instantaneous Sampling (IS) method to 

estimate abundance from camera data. Due to the properties of probability, the IS estimator is 

not sensitive to camera spacing, does not assume small-scale closure, and does not require 

estimates of movement rates or arbitrary definitions of independent detections. We evaluated this 

estimator on simulated data and applied it to field data to estimate elk abundance in two study 

sites. In one study area, managers currently estimate elk abundance with aerial surveys but aim 

to decrease flight hours in the future. We compared abundance estimates from the IS method to 

the estimate from a recent aerial survey in this area. In the other study area, dense vegetation 

precludes aerial surveys; our application of the IS method produced the area’s first elk 

abundance estimate. 

METHODS 

Instantaneous Sampling Estimator 

We used sampling theory to develop an Instantaneous Sampling (IS) density estimator for 

cameras. This approach treats camera data as spatially and temporally replicated fixed-area 

counts. The number of animals in a given picture is a sample of density at an instant in time in 

the camera’s viewable area. When cameras are deployed to points selected at random with 

known selection probability, each photo is an instantaneous snapshot of overall density in the 

study area. Because cameras collect data continuously, photos across time serve as temporal 

replicates. Over many spatial and temporal replicates, the mean count nij at location i = 1, 2, …, 

M and occasion j = 1, 2, …, J is an estimate of local density (D̂) in the camera’s viewable area 

(aij), following: 

�̂� =
1

𝐽
∙

1

𝑀
∑ ∑

𝑛𝑖𝑗

𝑎𝑖𝑗

𝑀
𝑖=1

𝐽
𝑗=1          (Equation 1) 
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We calculate the camera’s viewable area (aij) as a circular sector defined by the lens 

angle (ij) in degrees and the maximum viewable distance (rij) as 

𝑎𝑖𝑗 = 𝜋𝑟𝑖𝑗
2 𝜃𝑖𝑗

360
        (Equation 2) 

The maximum viewable distance is defined by the trigger distance if using motion-sensor 

cameras or field landmarks if using time lapse cameras.  

Abundance (N̂) is then derived by multiplying density by the study area size (A) 

�̂� = 𝐴 ∗ �̂�         (Equation 3) 

to provide inference to the entire study area.  

Variance 

Because the cameras were not redeployed at each time step, we used bootstrapping to 

estimate the variance of N̂ (Efron and Tibshirani 1993). This helped account for any correlation 

among samples at a single camera. We sampled the cameras with replacement and created an 

encounter history with all observations at those cameras. We estimated variance as the standard 

deviation of a large number of abundance estimates from these datasets (e.g., 10,000 repetitions). 

In this analysis, bootstrapping was extremely efficient and not time-limiting. 

Simulation Study 

We performed a mechanistic simulation to verify that the Instantaneous Sampling 

estimator returns an unbiased estimate of abundance and its variance. We simulated two 

populations of 15 animals moving at different speeds. Every “animal” was an independent 

uncorrelated random walk with fixed step lengths and random turning angles, bounded within a 

30x30 unit area. All animals in the first population took steps of length 1 and animals in the 

second population took steps of length 3. Each random walk returned a list of xy-coordinates for 

1,000 steps. We sampled every tenth step and determined whether the animal was within one of 
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10 randomly placed 1x1 unit square “cameras”. At each camera and step, animals were 

“captured” if their random walk coordinates fell within the camera’s coordinates, inclusive of 

two borders. We created a spatially and temporally replicated encounter history from the count 

of animals at each camera and time step. We applied the IS estimator to this encounter history to 

estimate abundance for the study area. We repeated this for 1,000 datasets and estimated 

variance with the standard deviation of these abundance estimates.   

Estimating Elk Abundance in Idaho 

We applied the Instantaneous Sampling method to camera trap data to estimate elk 

abundance in the Idaho Panhandle and Beaverhead Mountains (Figure 1-1). The Beaverhead 

study area is characterized by high-desert grass-sagebrush communities and windswept hills. Elk 

are mostly unrestrained by topography or dense vegetation. Aerial surveys that are corrected for 

sightability bias (Samuel et al. 1987, 1992) are used to estimate elk abundance every few years in 

this area, against which we compared estimates from the IS method. In contrast, the Panhandle 

study area is a mixed-conifer forest with a patchwork of active logging. Dense vegetation and 

steep slopes prevent biologists from performing aerial surveys, so no abundance estimates 

currently exist.   

We deployed 160 remote cameras on elk winter range in February 2016. To define 

Beaverhead winter range, we created a 2km buffer around 3,525 Global Positioning System 

(GPS) locations from December 18, 2014 – March 20, 2015 from 33 calf and female elk. The 

493 km2 study area spanned an elevation range of 1,279 – 2,722 m. We defined the Panhandle 

study area as elk winter range as defined by Idaho Department of Fish and Game (IDFG).  

We randomly selected nine plots in each study area using Generalized Random 

Tessellation Sampling (GRTS; Stevens and Olsen 2004) with the R package spsurvey (Kincaid 
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and Olsen 2011, R Core Team 2015). GRTS sampling allows the user to “replace” plots in the 

ordered sample, so we eliminated two plots that were adjacent to higher ranked plots (Stevens 

and Olsen 2004). We also replaced two plots due to lack of accessibility during winter and/or 

lack of landowner approval.   

We divided each 1.5x1.5 km plot into nine equal sections and systematically placed one 

camera in each section. In two plots, we only deployed cameras in eight of the nine sub-plots due 

to access limitations. Within the bounds of the sub-plot, we targeted trails and ridges to 

maximize the probability of capture of elk, following general recommendations from camera 

trapping studies (O’Connell et al. 2011). We pointed cameras north to limit direct sunlight in the 

frame and cleared any vegetation obstructing the camera’s view. The infrared-flash, motion-

triggered cameras (Reconyx, Inc., Holmen, WI, USA) had high trigger sensitivity and took bursts 

of five pictures with no delay between trigger activations.  

In the Panhandle study area, we placed 80 cameras (Reconyx model XR6) on trees at an 

approximate height of 8 – 10 feet. Because there were few or no trees in the Beaverhead study 

area, we placed 80 cameras (Reconyx models HC600, PC800, and PC900) on T-posts at an 

approximate height of 4 – 5 feet. In addition to the motion trigger, Beaverhead cameras took 

pictures every five minutes from 06:00 – 18:00. Beaverhead cameras had long, unimpeded 

views, so we placed flagging at known intervals and only counted elk within a set distance of the 

camera. 

To obtain spatially and temporally replicated counts for the IS estimator, we counted all 

visible elk in a subset of photos taken between February 1 – 29, 2016. In the Beaverhead study 

area, we used photos taken on the hour, every hour, giving us 60 elk detections over the 80 

cameras and 696 sampling occasions. In the Panhandle study area, we had fewer elk detections 



8 

so we extended the length of our sampling occasion. We sampled photos taken within the first 60 

seconds of each hour and used the maximum count of elk in any single photo within that period. 

If no photos were taken during this time, we recorded a count of 0. We observed 21 elk 

detections over the 80 cameras and 696 sampling occasions.  

We calculated the visible camera area in both study areas by camera specifications 

(“Trailcam Pro” 2017) using Equation 2. In the Beaverhead, we based visible camera area on the 

Reconyx HC600 model, letting θ = 42°. We set r = 50m based on the flagging we deployed in 

the field. In the Panhandle, we let θ = 45.2° and r = 18.3m, the maximum trigger distance 

(Reconyx model XR6).  

We estimated variance by bootstrapping the datasets 10,000 times for each study area and 

calculating the standard deviation of their abundance estimates. 

RESULTS 

Simulation 

To evaluate abundance estimates from the IS estimator, we estimated abundance from 

simulated data with a known population size. We tested the estimator on two populations moving 

at different speeds to determine whether movement rate influenced abundance estimates. For the 

population of 15 with step length 1, the mean estimated abundance was 15.05 (SE = 4.29; Figure 

1-2). For the population with step length 3, the mean estimated abundance was 15.14 (SE 4.18). 

These results demonstrated that the estimator performed well when individuals moved randomly 

among the cameras and that the estimator was not sensitive to movement rates of animals. 

Field Test 

To evaluate the Instantaneous Sampling estimator in a real-world setting, we applied it to 

data from two sets of camera data. In the Beaverhead study area, we estimated 1,613 elk (SE 
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530). The 95% confidence interval covered the 2008 – 09 aerial survey estimate of 2,272 elk in 

this area (Figure 1-3). In the Panhandle study area, we estimated 1,258 elk (SE 596), which was 

the first abundance estimate for this elk population. Based on harvest statistics and expert 

opinion, this estimate was within the range of expected values for the study area. Together, these 

results demonstrated that the IS estimator produced reasonable estimates when applied in a field 

setting.  

DISCUSSION  

The Instantaneous Sampling method developed here represents a shift in the way we think about 

camera data. Instead of identifying unique individuals for a capture-recapture framework, the IS 

method uses sample counts of the entire population. This allowed us to estimate elk abundance 

from camera data, which has never been done before. In the Beaverhead study area, the IS 

method produced a similar elk abundance estimate to previous aerial surveys. In the Panhandle 

study area, the IS method produced the very first elk abundance estimate because no other 

methods have been viable. These results are promising for future applications of this method in 

the field.  

The IS method eliminates the major challenges associated with other abundance 

estimation methods for camera traps. Due to the properties of sampling theory, the IS method is 

not sensitive to camera spacing. Because each camera is a random sample of the population, 

cameras can be deployed without respect to individuals’ home ranges and movement. Next, the 

IS estimator treats the viewable area in front of the camera as an entire plot rather than as a 

sample of some larger area. Therefore, there is no assumption of closure at the home range level. 

Next, the IS estimator does not require estimates of species movement rates or definition of 

independent detections by time cutoffs. Although some species neatly file past cameras, elk tend 
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to mill around them. Elk detections in this study lasted anywhere from one second to six hours; 

defining an independent detection by a single time cutoff was impractical. The IS estimator 

instead assumes that animals re-randomize between sampled photos at each camera, which is not 

necessarily violated by the same animal being present in two consecutive samples.   

An additional benefit of this method is that it greatly reduces the number of photos 

needed for classification. Large-scale camera trapping studies produce enormous amounts of 

data. Classifying hundreds of thousands of photos is not sustainable as a long-term management 

tool. In this study alone, our cameras took 1.3 million photos in a 4-month field season. 

However, with this method we only had to analyze 4% of those pictures. The IS method is 

practical for managers who need real-time abundance estimates but have limited time and 

resources.  

The assumptions of the IS method warrant further exploration in varied field settings. The 

estimator assumes that animals move randomly across the landscape with respect to the cameras. 

For some animals this is a relatively realistic approximation of movement, but this may not apply 

to all species. Future work may incorporate landscape covariates into the IS estimator to account 

for non-random movement. Next, the calculation of viewable area at the camera warrants further 

research. The viewable distance may change with weather, time of day, or photo quality. These 

same factors can also influence observer error in identifying species and counting individuals 

(Folsom 2017). Future applications may benefit by incorporating detection probability at the 

observer level.  

For field implementation of this method, we suggest randomly deploying cameras that 

take pictures at predefined time intervals. Using only motion-sensor cameras introduces a level 

of uncertainty in the detection process. When motion-sensor cameras are used, occasions with no 
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photos can arise through two processes: either 1) animals were not present at the camera or 2) 

they were present and no picture was taken. Even though detection probability at the camera 

level can be quite high with certain models, we suggest eliminating this uncertainty. Many 

remote cameras can take both motion-triggered and time-lapse photos so this would not preclude 

collecting data for other uses.  

The underlying theory of the IS method may be relevant to other remotely collected data 

like acoustic recording devices. The IS method also has broad applicability across many species 

with no natural identifying characteristics. This noninvasive method reframes the way we 

approach continuous, remotely-collected species data.  
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FIGURES  

 

Figure 1-1. Sampling scheme for estimating elk abundance with the Instantaneous Sampling 

method in the Beaverhead and Panhandle study areas (gray areas, inset map; Beaverhead shown 

in detail, main map). In each study area, we delineated elk winter range (black grid cells) and 

randomly selected nine 1.5x1.5 km grid cells (red). We divided each selected grid cell into nine 

500x500m sub-cells and placed one camera in each, in a nested design. We deployed cameras 

from February 1 – 29, 2016 in both study areas.  
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Figure 1-2. Histogram of abundance estimates from 1,000 simulated populations using the 

Instantaneous Sampling estimator. Animals in simulated populations took fixed steps with length 

1 (a) or length 3 (b). The red line is truth (N = 15) and the blue line is mean estimated 

abundance.  
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Figure 1-3. Instantaneous Sampling estimates of elk abundance (circles) for the Beaverhead and 

Panhandle study areas with 95% confidence intervals and the 2008 – 09 aerial survey estimate 

for the Beaverhead (cross). The IS method estimated 1,613 elk (SE 530) in the Beaverhead and 

1,258 elk (SE 596) in the Panhandle for February 2016.  
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CHAPTER 2:  TWO NEW MODELS TO ESTIMATE ABUNDANCE USING TIME-TO-

EVENT ANALYSIS 

ABSTRACT  

Abundance is fundamental to ecology; accurate estimates are critical for understanding and 

managing populations. However, estimating abundance is frequently invasive, time-consuming, 

and expensive. Over the past few decades, remote traps such as cameras have been employed to 

estimate abundance noninvasively and less expensively. However, existing methods for 

estimating abundance from these data are quite limited when animals are not individually 

identifiable. In particular, these methods require arbitrary definitions of independent animal 

detections and knowledge of animals’ home ranges and movement patterns, which are difficult to 

define. In order to address these challenges, we developed two new methods for estimating 

abundance of unmarked animals from remote trap data. We used time-to-event analysis as a new 

framework for estimating abundance from trapping rate. The resulting Space-to-Event (STE) and 

Time-to-Event (TTE) models use the Poisson-exponential relationship to estimate abundance 

from the first animal detection in a sample. We evaluated these models on simulated random 

walk data and applied them to a case study of remote camera data to estimate elk abundance. 

Simulation results suggested that the STE and TTE models were unbiased estimators of 

abundance. When applied to field data, these models produced abundance estimates that were 

comparable to those from a recent aerial survey. They also estimated elk abundance in an area 

where this has previously been impossible. This paper provides a new framework for estimating 

abundance of unmarked animals from remote trapping data that addresses many of the 

challenges from currently available methods.  
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INTRODUCTION 

Understanding species’ abundance is central to ecology (Andrewartha and Birch 1954). 

Ecologists use abundance to quantify population responses to changes in habitat, climate, or the 

presence of other species. Abundance can be a key factor in political and management decisions, 

including listing and delisting species under the Endangered Species Act (Doak et al. 2015) and 

setting sustainable harvest quotas (Williams et al. 2002). For centuries, scientists have estimated 

abundance from individuals with individually identifiable traits. LaPlace’s ratio estimator (1786) 

eventually became the Lincoln-Petersen estimator (Petersen 1896, Lincoln 1930), and has since 

been expanded into dozens of capture-recapture models (Cooch and White 2017). However, 

many species have no natural markings that allow biologists to distinguish among individuals. 

Physically capturing animals to mark them is invasive, expensive, and frequently difficult to 

implement (Chandler and Royle 2013).  

To estimate abundance from animals with no markings (natural or artificial, such as 

collars or tags), ecologists have developed a host of count methods. These include point counts, 

line transects, distance sampling, and N-mixture models (Williams et al. 2002, Royle 2004). For 

these methods, ecologists sample for short amounts of time to meet the assumption that animals 

are frozen in time and space. This assumption of closure on a small scale may be reasonably well 

met in certain systems like lakes, but violations can seriously bias abundance estimates 

(Williams et al. 2002).  

Although movement is viewed as a nuisance for most count methods, it is actually useful 

information about the distribution of animals in space and thus, density (animals per unit area). 

In fact, spatial capture-recapture (SCR) models leverage animal movement to estimate 

abundance in a spatially defined area (Royle et al. 2014). Chandler and Royle (2013) extended 
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these SCR models to develop the Spatial Count (SC) model to estimate abundance of unmarked 

animals. However, the SC model assumes that there is a dense array of traps at different 

distances from each individual’s home range center. Since the locations of home range centers 

are unknown beforehand, this is logistically quite difficult to implement. Furthermore, this 

assumption is untestable; there is no way to tell whether an unmarked individual visited multiple 

traps without an additional data source. Because of the difficulty of meeting these assumptions, 

few authors have applied this novel but challenging SC model.   

Another new approach to estimating abundance from unmarked animals using movement 

is the Random Encounter Model (REM; Rowcliffe et al. 2008). To estimate abundance, the 

authors model contact rates between animals and remote camera traps. While this approach is 

promising, it requires independent estimates of animals’ movement rates, which are challenging 

to obtain (Rowcliffe et al. 2008). Furthermore, this method requires that each detection of a 

species is independent of previous detections, so the authors implement a time cutoff between 

pictures to define independent encounters. While this approach is common, time cutoffs are 

arbitrary (e.g., 30 min, 1 hour, 1 day; Burton et al. 2015) and can be hard to define across 

different observed behaviors (e.g., transiting, bedding, foraging).  

To address the challenges with currently available methods, we developed two novel 

methods to estimate abundance of unmarked animals using a continuous time-to-event 

framework. Time-to-event, or survival, models are used in fields as diverse as industry, 

medicine, and ecology, but have not yet been used to estimate abundance (Muenchow 1986). 

Ecologically, time-to-event models can estimate survival of animals (Cox and Oakes 1984), 

pollination rate (Muenchow 1986), and predator-prey encounters (Whittington et al. 2011). In 

recent statistical developments, they have been used to determine survey effort (Garrard et al. 
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2008) and estimate detection probability (Alldredge et al. 2007, Bischof et al. 2014). The time 

until detection of a species is related to abundance (McCarthy et al. 2013), but the exact 

relationship between the two has not yet been determined.  

In this paper we develop two novel applications of the time-to-event framework to 

estimate animal abundance, based on the relationship between trapping rate and abundance. A 

trap can be any stationary device that records the presence or absence of animals over time, like 

camera traps (O’Connell et al. 2011) or acoustic recording devices (Dawson and Efford 2009). If 

traps are placed in areas of varying animal density, trapping rate increases as animal density 

increases (Carbone et al. 2001, Rowcliffe et al. 2008, Rovero and Marshall 2009). One 

interpretation of this relationship is spatial; if many traps record animal presence or absence at a 

single point in time, more traps should detect animals if abundance is high than if it is low. We 

used this relationship to develop the Space-to-Event (STE) model, which estimates abundance of 

unmarked animals from spatial trapping rate. This same framework also translates across time; at 

a single trap, the waiting time between animal detections should be shorter in areas of high 

abundance than low. Using this relationship, the Time-to-Event (TTE) model maximizes spatial 

and temporal information and can account for heterogeneous density. We evaluated these models 

with simulated random walk data then applied them to a case study of camera trap data to 

estimate elk (Cervus elaphus) abundance in Idaho, USA. The two models do not assume small-

scale closure, they leverage animal movement during data collection, and they do not depend on 

arbitrary time cutoffs to define events.    
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METHODS 

Space-to-Event Model 

We developed a space-to-event (STE) model that uses spatial trapping rate to estimate 

abundance. Abundance is not directly observable, so we model it here as a latent variable. The 

Poisson distribution is frequently used to model abundance because it describes integer counts of 

animals that are randomly distributed in space (Royle 2004). To demonstrate this point, if a grid 

were overlaid on a landscape of randomly distributed animals, the number of animals Ni at a 

fixed point in time in any randomly selected grid cell i would be a random draw from the Poisson 

distribution. The parameter λ is the average number of animals in each grid cell, as shown in: 

𝑁𝑖 ~ 𝑃𝑜𝑖𝑠(𝜆)         (Equation 1) 

To estimate λ, we analyzed spatial trapping rate data in a time-to-event framework. Time-

to-event analyses describe the probability of some event of interest by observing the length of 

time before that event occurs (Cox and Oakes 1984). A special case of time-to-event analysis 

exists when the event of interest is Poisson distributed: the time until the first event is 

exponentially distributed (de Smith 2015). A classic example is cars passing through a stoplight. 

If cars move independently, the number of cars that pass through in a given amount of time is 

Poisson distributed and the time from any arbitrary starting point until the first car passes is 

exponentially distributed (Gerlough and Schuhl 1955). 

This same relationship applies to space as well as time. For our purposes, the event of 

interest is a detection of one individual of the target species. The observed space-to-event is the 

number of random plots sampled before we find the species. We show here that when there are a 

Poisson number of animals in each grid cell, the space-to-event is exponentially distributed. If 

many grid cells can be sampled at a given moment in time j, as is possible when many traps are 
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deployed, the number of grid cells that must be sampled before the species is detected (Si) is 

exponentially distributed, following: 

𝑆𝑗  ~ 𝐸𝑥𝑝(𝜆)         (Equation 2) 

To observe Sj, we sample random grid cells on a given instantaneous sampling occasion, 

j. We randomly draw one grid cell, and if it contains at least one animal, we record S = 1 and 

stop sampling. If it does not contain an animal, we draw another random grid cell. If this cell 

contains an animal, we record Sj = 2, and stop sampling. We continue these random draws until 

we find the first grid cell with an animal (Figure 2-1). We can repeat this process at multiple 

snapshots in time, j = 1, 2, …, J to create an encounter history of Sj. An example encounter 

history with J = 5 may look like Sj = {37, 5, NA, 1, 28}. This formulation assumes perfect 

detection within the grid cell, which we address later in this chapter. 

In practice, we can only sample a finite number of grid cells on each sampling occasion. 

During some occasions, none of our sampled grid cells will contain animals. This is still 

informative; the space-to-event is longer than M, the number of sampled grid cells. This is a case 

of right-censoring, which is widely adopted in survival and time-to-event analyses (Muenchow 

1986, Pyke and Thompson 1986, Castro-Santos and Haro 2003). In the encounter history above, 

we represent a right-censored sampling occasion as NA. 

The STE model uses the observed encounter history to estimate λ from the exponential 

likelihood. We include right-censored data by integrating the upper tail of the exponential 

cumulative distribution function (CDF, indicated by I(S≤M)). The full likelihood for λ given the 

encounter history Sj over j = 1, 2, …, J sampling occasions in M sampled grid cells is  

ℒ(λ|𝑆𝑗) = ∏ (𝐼(𝑆≤𝑀)𝜆𝑒−𝜆𝑆𝑗 + 𝐼(1−(𝑆≤𝑀)) ∫ 1 − 𝑒−𝜆𝑆𝑗
∞

𝑀
𝑑𝜆)𝐽

𝑗=1      (Equation 3) 
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where the estimated λ̂ is the average number of animals in each grid cell, or density per sampled 

unit. To estimate total abundance, we could draw an abundance N̂i, from the Poisson for each of 

the i = 1, 2, …, P grid cells in the study area and add them together. The sum of P independent 

Poisson random variables is a Poisson random variable with mean λP (Gallager 2013) so this is 

equivalent to �̂�~ 𝑃𝑜𝑖𝑠(λ̂𝑃). Therefore, our estimate of N̂ is based on the expected value of this 

distribution,  

𝐸[�̂�] =  �̂�𝑃        (Equation 4) 

The calculation of P is based on our sampling method. In practice, we randomly sample 

grid cells by deploying stationary traps, such as remote cameras. The trap itself defines the size 

and shape of the grid cells. This is a key point; the trap is not assumed to sample some larger 

area, the trap is in fact the grid cell. Trap areas may be irregularly shaped, but as long as the area 

is known, we can calculate P, the number of grid cells in the study area, with 

𝑃 =
𝐴

𝑎
         (Equation 5) 

where A is the study area size and a is the trap area. The trap area a is equipment-specific. We 

demonstrate this method using remote cameras because they collect continuous data with time-

stamped events, and we can calculate the visible area by published specifications. Although 

applied here to cameras, the general theory may apply to any kind of trap with a known area. For 

cameras, the trap area a is the circular sector defined by the lens angle θ (in degrees) and the 

trigger distance r 

𝑎 = 𝜋𝑟2 𝜃

360
         (Equation 6) 

where θ/360 is the portion of a circle that is viewed by the camera.  

We estimated the sampling variance of N̂ using the properties of maximum likelihood 

theory and the Delta method (Cooch and White 2015). We constrained λ≥0 using the log-link 
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function 𝑙𝑜𝑔(𝜆) = 𝛽 before optimizing the likelihood. After optimizing, we estimated the 

sampling variance 𝑉𝑎�̂�(�̂�) = −[𝐻]−1 where [H] was the estimated Hessian matrix. We then 

used the Delta method to estimate 𝑉𝑎�̂�(�̂�) where �̂� = 𝑃�̂� = 𝑃𝑒�̂�. In the case of a single variable 

transformation such as 𝑙𝑜𝑔(𝜆) = 𝛽, the Delta method can be represented by  

𝑉𝑎�̂�(�̂�) ≈ (
𝜕𝑁

𝜕𝛽
)

2

  𝑉𝑎�̂�(�̂�)        (Equation 7) 

where 
𝜕𝑁

𝜕𝛽
= 𝑃𝑒𝛽 is the first order partial derivative of �̂� = 𝑃𝑒𝛽. This is an approximation of the 

sampling variance of N̂.  

Time-to-Event Model 

We expanded the STE model into a Time-to-Event (TTE) model that can account for 

heterogeneous density across a landscape. The TTE model is based in the same theory as the 

STE model but uses observations in both time and space. Using the same Poisson-exponential 

relationship described above, the event of interest is still the first detection of the species of 

interest. However, instead of sampling at many traps at a single moment in time, here we sample 

a single trap for several consecutive periods in time. We record T, the first sampling period (k) in 

which we observe an animal (Figure 2-2). In practice, we sample grid cells by deploying traps 

such as cameras. As with the STE model, the trap itself defines the size and shape of the grid 

cell.  

It is easiest to begin by thinking of each period k as a snapshot in time. In a given grid 

cell i at time k = 1, animals are either present or not. If they are present, the time-to-event is 1 (T 

= 1) and we stop sampling (assuming perfect detection for now). If animals are not present, we 

wait a short time to allow them to move, and we take another snapshot at time k = 2. We repeat 

this for several consecutive sampling periods k = 1, 2, …, K to complete a single sampling 
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occasion j. If we do not observe an animal during a given sampling occasion (i.e., on any of the 

K sampling periods), we right-censor this occasion (expressed here as NA). An example 

encounter history Tij at trap i = 1, 2, …, M and occasion j = 1, 2, …, J with K = 5 sampling 

periods per sampling occasion is: 

 Sampling occasion 

 1 2 3 4 

Trap 1 3 1 NA NA 

Trap 2 NA 2 4 1 

Trap 3 NA NA NA 5 

 

We can estimate abundance when we make two constraints on the observation process. 

First, the length of time between each sampling period k should only be long enough to allow 

animals to move from one grid cell to a neighboring grid cell. Second, k should be small (e.g., 

five sampling periods per occasion). When these constraints are met, only animals from a 

localized cluster of grid cells are at risk of detection at a given trap and sampling occasion. Our 

observation of the first time-to-event is based on the average density in this cluster.  

Within these constraints, the number of animals in a single grid cell i changes at each 

time k. In essence, this is the same as sampling several neighboring grid cells at a single instant 

in time. Instead, a single grid cell is sampled at consecutive points in time as the animals 

themselves move. This is essentially the STE model on a localized scale.  

In practice, we let k be a period of time rather than a snapshot in time. The length of the 

period k follows the same constraint described above; it is equal to the amount of time it takes 

animals to move into a neighboring grid cell. This will depend on species’ movement rates and 

the size of the grid cell. We used a rough approximation of this time unit and encourage future 

work to determine the exact relationship between movement rate, grid cell size, and time unit.   
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Once we have observed our encounter history Tij, we estimate λ with the likelihood from 

the STE model, with an added dimension for the spatial replicates.   

ℒ(λ|𝑇𝑖𝑗) = ∏ ∏ (𝐼(𝑇≤𝐾)𝜆𝑒−𝜆𝑇𝑖𝑗 + 𝐼(1−(𝑇≤𝐾)) ∫ 1 − 𝑒−𝜆𝑇𝑖𝑗
∞

𝑡
𝑑𝜆)𝑀

𝑖=1
𝐽
𝑗=1      (Equation 8) 

where I(T≤K) indicates that an event occurred before the end of the given sampling occasion.  

Because the TTE method uses replicates in both space and time, we can model 

heterogeneous density by adding a linear model to λi, the average density at grid cell i in the 

general form   

log(𝜆𝑖) = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖                                       (Equation 9) 

where xi are a site-specific covariates.   

As with the STE model, we estimated abundance as N̂ = λP. We calculated the variance 

of N̂ using the estimated information matrix and the Delta method (Cooch and White 2015).  

Simulation 

We performed a mechanistic simulation to verify that the Space-to-Event and Time-to-

Event models returned unbiased estimates of abundance. For each model, we simulated two 

populations of 15 animals moving at different speeds. Each “animal” was a list of xy-coordinates 

from an uncorrelated random walk of 1,000 steps, bounded within a 30x30 unit area. Each walk 

used fixed step lengths (length 1 for the “slow” population, and length 3 for the “fast” 

population) and random turning angles. For both models, we randomly placed 10 “traps,” which 

were 1x1 unit squares. Animals were “captured” at a given trap and sampling occasion if their 

random walk coordinates fell within the trap’s coordinates, inclusive of two borders. We ran 

10,000 simulations for each population and model.  

For the STE model, we sampled animals on every tenth step. We observed each trap in 

order and recorded the number of the first trap that captured an animal. This was our observation 
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of Sj at that sampling occasion. We repeated this on all sampling occasions, which created an 

encounter history of the first trap-to-event on 100 occasions.  

For the TTE model, we sampled animals during 5-step sampling occasions (with each 

step as a sampling period). We started one sampling occasion every 15 steps. At each trap and 

sampling occasion, we recorded the number of steps until the first animal was caught in the trap. 

We repeated this at all traps and sampling occasions, which created an encounter history of first 

time-to-event on 67 occasions at 10 cameras.  

Estimating elk abundance 

Image classification 

To evaluate the STE and TTE models on field data, we applied them to two sets of 

camera data to estimate elk abundance. For a detailed description of our study areas and field 

methods, refer to Chapter 1. In summary, we deployed 160 remote cameras in the Panhandle and 

Beaverhead study areas (defined by elk winter range) in February 2016. We randomly selected 

nine plots in each study area with Generalized Random Tessellation Sampling (GRTS, Stevens 

and Olsen 2004). We systematically placed nine cameras in each plot. In the Panhandle, we 

placed motion-triggered cameras on trees and cleared any vegetation obstructing their view. In 

the Beaverhead, we placed motion triggered and time lapse cameras on T-posts and placed 

flagging at known intervals in front of the camera. We only counted elk within a set distance of 

the camera to avoid miscounting and misclassification. 

We calculated visible camera area in both study areas by camera specifications 

(TrailcamPro 2017). In the Beaverhead, we based visible camera area on the Reconyx HC600 

model, letting θ = 42°. We set r = 50m based on the flagging we deployed in the field. In the 
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Panhandle, we let θ = 45.2° and r = 18.3m, the maximum trigger distance (Reconyx model 

XR6).  

Space-to-Event Model 

For the STE model, we created temporally replicated encounter histories of the first 

camera until an elk detection. In each study area, we created a randomly ordered list of cameras. 

On each sampling occasion, we recorded Sj, the first camera on that list to detect an elk. 

Although the sampling should be instantaneous, we defined the sampling period as 1 minute to 

ensure we had enough detections. Any photos of elk during that one minute counted as a 

detection. We sampled each camera for one minute every 10 minutes, between 6-9 am and 6-9 

pm from February 1-13, 2016. During the 583 sampling occasions, we recorded 208 observations 

in the Beaverhead and 33 observations in the Panhandle.  

Time-to-Event Model 

To implement the TTE model, we defined the sampling period length by estimating the 

average time for elk to move between grid cells. We defined the distance between grid cells as 

30m, based on a 30x30m square, which was approximately the same area as a single Beaverhead 

camera. We calculated median elk speed from 122 GPS collars in the Beaverhead and Panhandle 

in January 2015, which was approximately 30 m/hr (IDFG unpublished data). From these 

calculations we set the sampling period length to one hour. 

We created spatially and temporally replicated encounter histories of the time until first 

elk detection. We sampled every 8 hours throughout February 2016. Each four-hour sampling 

occasion consisted of four 1-hour periods. We recorded the first period in which an elk was 

detected, if any. If no elk were detected during a given sampling period, we right-censored that 

period.  
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RESULTS 

Simulation 

To evaluate the STE and TTE models, we estimated abundance from simulated data with a 

known population size. We applied the two models to two populations of 15 individuals moving 

at different speeds (slow and fast) to determine whether movement rate influenced estimated 

abundance.  

The STE model appeared to produce an unbiased estimate of abundance for both 

populations (Figure 2-3). For the slow population, the mean estimated population size was 15.04 

individuals. Mean estimated standard error through the Delta method was 3.78, whereas the 

standard error calculated from the 10,000 population estimates was 4.40. For the fast population, 

the mean estimated abundance was 14.97 individuals. Mean estimated standard error through the 

Delta method was 3.78. The standard error calculated from the repeated estimates was 4.10. This 

demonstrated that the model was not sensitive to movement rates of animals and that it 

performed as intended for randomly moving individuals.  

The TTE model appeared to slightly underestimate abundance for both simulated 

populations (Figure 2-3). Coverage by the 95% confidence intervals was higher (86%) for the 

fast population than the slow population (64%). For the slow population, the mean estimated 

abundance was 12.52 individuals. The standard error calculated from the repeated estimates was 

2.56 and the mean standard error estimated with the Delta method was 1.85. For the fast 

population, the mean estimated abundance was 14.30 and the mean estimated standard error 

from the Delta method was 1.98. The standard error calculated from the repeated estimates was 

2.46.  
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Field 

To evaluate the STE and TTE models in a real-world setting, we applied them to two sets 

of camera data to estimate elk abundance. We first checked the assumption that animals move 

independently. The elk in our camera traps mainly appeared in groups of one or two (Figure 2-4). 

Therefore, we believe this assumption was reasonably well met.  

Over the 583 sampling occasions in the STE dataset, we recorded 208 observations in the 

Beaverhead and 33 observations in the Panhandle for the STE model. For the TTE model, over 

the 80 cameras and 84 sampling occasions, we recorded 101 elk detections in the Beaverhead 

and 80 detections in the Panhandle. 

In the Beaverhead study area, the STE model estimated 1,405 elk (SE 133.4) and the TTE 

model estimated 2,217 elk (SE 211.6, Figure 2-5). The TTE estimate was comparable to the 

2008-09 aerial survey estimates of 2,272 elk. In the Panhandle study area, the STE model 

estimated 1,368 elk (SE 238.4) and the TTE estimated 5,670 elk (SE 633.4). There were no 

existing estimates of elk abundance in this study area to compare with the STE and TTE 

estimates. Based on harvest statistics and expert knowledge of the area, these estimates appear to 

be within the range of possible values. 

DISCUSSION 

The two methods developed here represent a new framework for estimating abundance of 

unmarked animals. These novel applications of time-to-event analysis utilize continuous-time 

data in a new way. Simulation results suggested that the STE model was an unbiased estimator 

of abundance regardless of species’ movement rate. The TTE simulation showed high coverage 

of the 95% confidence intervals for the simulated population moving at a faster speed. This 

indicated that the animals in the slower population had insufficient time to re-randomize at every 
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time step, which may have introduced correlation between the samples. The simulations also 

indicated that the Delta method underestimated the variance of N̂. This was likely due to the non-

linear transformation on λ and could be improved with a higher-order approximation (Cooch and 

White 2015). 

Our camera trap case study demonstrated that the STE and TTE models could be used in 

the field to estimate abundance. In the Beaverhead study area, the TTE estimate was comparable 

to an independent estimate of abundance using an aerial survey. In both study areas, the STE 

estimate was lower than the TTE estimate, which may have been due to spatial autocorrelation 

among samples. Our nested study design likely led to high spatial correlation between cameras. 

This could have artificially inflated the observed space-to-event and deflated abundance 

estimates. Future implementations of the STE and TTE models should use random camera 

placement.  

In the Panhandle study area, the STE and TTE methods allowed us to estimate elk 

abundance where no other methods to do so have been possible. The STE and TTE estimates 

differed from each other more in the Panhandle than in the Beaverhead. One potential 

explanation for this is that elk in the Panhandle were more restricted by steep slopes and dense 

vegetation than in the Beaverhead, which may have led to non-random movement among our 

cameras. Future efforts may explore the impact of violating the random movement assumption of 

our two models.  

The time-to-event framework developed here helps address many challenges with 

estimating abundance from unmarked animals with remote trap data. First, N-mixture models 

and the Spatial Count (SC) model (Chandler and Royle 2013) are sensitive to trap spacing. It can 

be difficult to determine animal home range size and movement patterns ahead of time, which 
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can bias estimates if not done correctly (Chandler and Royle 2013, Keever 2014). Because the 

STE and TTE models are based in random sampling of the landscape rather than within the 

(unknown) home range of an individual, they are not sensitive to trap spacing. Second, the 

Random Encounter Model (REM) (Rowcliffe et al. 2008) requires classification of independent 

contacts between animals and the cameras. Across a string of photos, biologists must make 

arbitrary definitions of independent contacts, often using time cutoffs or other criteria (Burton et 

al. 2015). Because the STE and TTE methods use randomized sampling, they do not require this 

kind of definition of independent contacts. Finally, the Random Encounter Model (REM) 

requires independent estimates of species’ movement rates, which can be difficult to obtain 

(Rowcliffe et al. 2014). The STE uses snapshots in time, so estimates are independent of 

movement rate. The TTE model reduces the impact of movement rate by using short sampling 

occasions.  

When applied to camera trap data, the STE and TTE methods improve upon several 

camera-specific issues. First, they eliminate the need to count group size from a series of photos. 

The SC model and N-mixture models require accurate counts of individuals at each trap, which 

can be prohibitive for some species. For instance, elk tend to mill around cameras, moving in and 

out of view over a long period of time, which makes counting individuals impossible. In contrast, 

the STE and TTE models depend solely on the first detection of an animal, so there is no need to 

count individuals. The STE and TTE models also greatly decrease the number of photos required 

for analysis. Currently, tens of thousands of remote cameras are deployed around the world, 

which produce millions of pictures (Steenweg et al. 2017). Until photograph classification can be 

fully automated, large-scale camera trap studies are limited by the man hours required to classify 
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millions of pictures. By using only the first animal detection on each occasion, The STE and 

TTE models use only a sample of photos, which can greatly decrease this workload.  

As with any observation method, detection of animals is rarely perfect in the field. 

Abundance estimates can be biased low unless imperfect detection is taken into account 

(MacKenzie et al. 2002). We suggest a future extension of the STE and TTE models to account 

for imperfect detection that uses the geometric and gamma distributions. It is described here in 

the context of the TTE model. A trap with imperfect detection may miss an animal on its first z 

visits to a trap, but capture it on the (z+1)st visit. The sum of exponential waiting times is gamma 

distributed, so the waiting time until the (z+1)st visit is a gamma distributed random variable 

(Mood et al. 1974). The full likelihood of λi uses observations of Tij, the gamma distributed time-

to-event at trap i  = 1, 2, …, M on occasion j = 1, 2, …, J with k = 1, 2, …, K sampling periods 

per occasion. It also uses z, a geometric-distributed count of the number of occasions missed. 

Right-censored occasions are indicated by I(1-(T≤K)) when there are no observations by the end of 

the sampling occasion j. The full likelihood in the shape-rate formulation is 

ℒ(𝜆𝑖|𝑇𝑖𝑗) = ∏ ∏ ∑ (𝐼(𝑇≤𝐾)𝑝(1 − 𝑝)𝑧 𝜆𝑖
𝑧+1

𝛤(𝑧+1)
𝑇𝑖𝑗

𝑧𝑒−𝜆𝑖𝑇𝑖𝑗 +∞
𝑧=0

𝑀
𝑖=1

𝐽
𝑗=1

                                                      𝐼(1−(𝑇≤𝐾))𝑝(1 − 𝑝)𝑧 ∫
1

𝛤(𝑧+1)
𝛾(𝑧 + 1, 𝜆𝑖𝑇𝑖𝑗)𝑑𝜆

∞

𝑡
)       (Equation 10) 

Further development of the geometric-gamma formulation is needed because there is a near 

singularity in the Hessian matrix.  

The STE and TTE models developed here are a novel approach for estimating abundance 

of unmarked animals. Previous methods for estimating abundance from unmarked animals 

ignore the relationship between animal encounter rate and abundance, which our models exploit. 

Additional work on the TTE model may adjust the estimation of the length of the sampling 

period k to more accurately reflect the relationship between movement and trap size. The STE 
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and TTE models fit naturally with camera data, and we encourage future work into applications 

with other continuous-time data. The time-to-event framework developed in this paper is a 

promising path forward toward completely non-invasive population monitoring.  

LITERATURE CITED 

Alldredge, M. W., K. H. Pollock, T. R. Simons, J. A. Collazo, and S. A. Shriner. 2007. Time-of-

detection method for estimating abundance from point-count surveys. The Auk 124:653–

664. 

Andrewartha, H. G., and C. Birch. 1954. The distribution and abundance of animals. First 

edition. University of Chicago Press, Chicago. 

Bischof, R., S. Hameed, H. Ali, M. Kabir, M. Younas, K. A. Shah, J. U. Din, and M. A. Nawaz. 

2014. Using time-to-event analysis to complement hierarchical methods when assessing 

determinants of photographic detectability during camera trapping. Methods in Ecology and 

Evolution 5:44–53. 

Burton, A. C., E. Neilson, D. Moreira, A. Ladle, R. Steenweg, J. T. Fisher, E. Bayne, and S. 

Boutin. 2015. Wildlife camera trapping: a review and recommendations for linking surveys 

to ecological processes. Journal of Applied Ecology 52:675–685. 

Carbone, C., S. Christie, K. Conforti, T. Coulson, N. Franklin, J. R. Ginsberg, M. Griffiths, J. 

Holden, K. Kawanishi, M. Kinnaird, R. Laidlaw, A. Lynam, D. W. MacDonald, D. Martyr, 

C. McDougal, L. Nath, T. O’Brien, J. Seidensticker, D. J. L. Smith, M. Sunquist, R. Tilson, 

and W. N. Wan Shahruddin. 2001. The use of photographic rates to estimate densities of 

tigers and other cryptic mammals. Animal Conservation 4:75–79. 

Castro-Santos, T., and A. Haro. 2003. Quantifying migratory delay: a new application of survival 

analysis methods. Canadian Journal of Fisheries and Aquatic Sciences 60:986–996. 



35 

Chandler, R. B., and J. A. Royle. 2013. Spatially explicit models for inference about density in 

unmarked or partially marked populations. Annals of Applied Statistics 7:936–954. 

Cooch, E. G., and G. C. White, editors. 2017. Program MARK: A Gentle Introduction. 17th 

edition. 

Cooch, E., and G. C. White. 2015. Appendix B - The “Delta method”... Program MARK: A 

gentle introduction 1:1–29. 

Cox, D. R., and D. Oakes. 1984. Analysis of survival data. First edition. CRC Press. 

Dawson, D. K., and M. G. Efford. 2009. Bird population density estimated from acoustic signals. 

Journal of Applied Ecology 46:1201–1209. 

Doak, D. F., G. K. H. Boor, V. J. Bakker, W. F. Morris, A. Louthan, S. A. Morrison, A. Stanley, 

and L. B. Crowder. 2015. Recommendations for improving recovery criteria under the US 

Endangered Species Act. BioScience 65:189–199. 

Gallager, R. G. 2013. Poisson processes. Pages 74–108Stochastic Processes: Theory for 

Applications. Cambridge University Press, New York. 

Garrard, G. E., S. A. Bekessy, M. A. McCarthy, and B. A. Wintle. 2008. When have we looked 

hard enough? A novel method for setting minimum survey effort protocols for flora 

surveys. Austral Ecology 33:986–998. 

Gerlough, D. L., and A. Schuhl. 1955. Use of Poisson distribution in highway traffic. Eno 

Foundation for Highway Traffic Control. 

Keever, A. C. 2014. Use of N-mixture models for estimating white-tailed deer populations and 

impacts of predator removal and interspecific competition. 

LaPlace, P. S. 1786. Sur les naissances, les mariages et les morts. Page 693–702. Histoire de 

L’Academie Royale des Sciences. Paris. 



36 

Lincoln, F. C. 1930. Calculating waterfowl abundance on the basis of banding returns. 

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew, and C. A. Langtimm. 

2002. Estimating site occupancy rates when detection probabilities are less than one. 

Ecology 83:2248–2255. 

McCarthy, M. A., J. L. Moore, W. K. Morris, K. M. Parris, G. E. Garrard, P. A. Vesk, L. 

Rumpff, K. M. Giljohann, J. S. Camac, S. S. Bau, T. Friend, B. Harrison, and B. Yue. 2013. 

The influence of abundance on detectability. Oikos 122:717–726. 

Mood, A. M., F. A. Graybill, and D. C. Boes. 1974. Introduction to the Theory of Statistics. 

Third edition. McGraw-Hill, Singapore. 

Muenchow, G. 1986. Ecological use of failure time analysis. Ecology 67:246–250. 

O’Connell, A. F., J. D. Nichols, and K. U. Karanth, editors. 2011. Camera traps in animal 

ecology: methods and analyses. 

Petersen, C. G. J. 1896. The yearly immigration of young plaice into the Limfjord from the 

German Sea. Report of the Danish Biological Station 6:1–48. 

Pyke, D. A., and J. N. Thompson. 1986. Statistical analysis of survival and removal rate 

experiments. Ecology 67:240–245. 

Rovero, F., and A. R. Marshall. 2009. Camera trapping photographic rate as an index of density 

in forest ungulates. Journal of Applied Ecology 46:1011–1017. 

Rowcliffe, J. M., J. Field, S. T. Turvey, and C. Carbone. 2008. Estimating animal density using 

camera traps without the need for individual recognition. Journal of Applied Ecology 

45:1228–1236. 

Rowcliffe, J. M., R. Kays, B. Kranstauber, C. Carbone, and P. A. Jansen. 2014. Quantifying 

levels of animal activity using camera-trap data. Methods in Ecology and Evolution 



37 

5:1170–1179. 

Royle, J. A. 2004. N-Mixture Models for Estimating Population Size from Spatially Replicated 

Counts. Biometrics 60:108–115. 

Royle, J. A., R. B. Chandler, R. Sollmann, and B. Gardner. 2014. Spatial capture-recapture. 

Elsevier. 

de Smith, M. J. 2015. STATSREF: Statistical Analysis Handbook - a web-based statistics 

resource. The Winchelsea Press, Winchelsea, UK. 

Steenweg, R., M. Hebblewhite, R. Kays, J. Ahumada, J. T. Fisher, C. Burton, S. E. Townsend, C. 

Carbone, J. M. Rowcliffe, J. Whittington, J. Brodie, J. A. Royle, A. Switalski, A. P. 

Clevenger, N. Heim, and L. N. Rich. 2017. Scaling up camera traps: monitoring the planet’s 

biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment 

15:26–34. 

Stevens, D. L., and A. R. Olsen. 2004. Spatially balanced sampling of natural resources. Journal 

of the American Statistical Association 99:262–278. 

TrailcamPro. 2017. Reconyx game camera reviews. https://www.trailcampro.com. 

Whittington, J., M. Hebblewhite, N. J. Decesare, L. Neufeld, M. Bradley, J. Wilmshurst, and M. 

Musiani. 2011. Caribou encounters with wolves increase near roads and trails: A time-to-

event approach. Journal of Applied Ecology 48:1535–1542. 

Williams, B. K., J. D. Nichols, and M. J. Conroy. 2002. Analysis and management of animal 

populations. Academic Press. 



38 

FIGURES 

  

Figure 2-1. Conceptual diagram of the Space-to-Event (STE) model. An array of grid cells with 

known area are randomly sampled. In the case of cameras, the shape of the grid cell is a circular 

sector rather than a rectangle. On each occasion j = 1, 2, …, J the observed space-to-event Sj is 

the number of the first trap i = 1, 2, …, M (here, M = 3) that contains the species of interest. a) At 

j = 1, the first trap that contains an animal is trap 3, so S1 = 3. b) At j = 2, although both traps 2 

and 3 contain an animal, we record the first trap in the series {2, 3}, so S2 = 2. 
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Figure 2-2. Conceptual diagram of the Time-to-Event (TTE) model at a single trap i and a single 

occasion j. When using cameras, the shape of the grid cell is a circular sector rather than a 

rectangle. Successive samples are taken at each period k = 1, 2, …, K (Here, K = 3). The 

observed time-to-event Tij is equal to the period k in which the grid cell first contains an animal. 

There are no animals in the trap in a) k = 1 or b) k = 2, so for this camera and sampling occasion, 

Tij = 3.  
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Figure 2-3. Histogram of abundance estimates from 10,000 simulated populations using the 

Space-to-event (a, b) and Time-to-Event (c, d) models. Simulated animals took fixed steps with 

either length 1 (a, c) or length 3 (b, d). The red line is truth (N = 15) and the blue line is mean 

estimated abundance.  
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Figure 2-4. Elk group size from the Beaverhead and Panhandle camera data in February 2016. 

Most elk occurred in groups of 1 or 2.  
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Figure 2-5. Space-to-Event (STE) and Time-to-Event (TTE) estimates of elk abundance in the 

Beaverhead and Panhandle study areas with 95% confidence intervals. In the Beaverhead study 

area, the STE model estimated 1,405 elk (SE 133.4) and the TTE model estimated 2,217 elk (SE 

211.6). In the Panhandle study area, the STE model estimated 1,368 elk (SE 238.4) and the TTE 

estimated 5,670 elk (SE 633.4).  
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