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O’Donnell, Edward, M.S., Spring 2013                                                                               Forestry                                                                                 

 

Structural integrity and physical properties of ponderosa pine over time after death between 

vectors of mortality 

Chairperson: Edwin Burke 

  In an era of accelerated climate change, with persistent and increasing disturbance on our 

landscapes it is important to increase our knowledge of how these natural disturbances effect our 

lands. This study investigated the changes that take place in ponderosa pine (Pinus ponderosa) 

stems after death when killed by mountain pine beetle (Dendroctonus ponderosae) and by fire. 

Trees killed by mountain pine beetle as well as trees killed by fire were sampled and separated 

into two age classes, those dead 0-4 years and those dead 4+ years. Data was gathered on the 

modulus of rupture, modulus of elasticity, specific gravity, holocellulose to lignin ratio, and 

volumetric heat content for each age class and disturbance type. Analysis was conducted looking 

not only through time but also vertically through the stem profile. Looking vertically through the 

stem showed similar trends between beetle killed and fire killed trees in a lowering of the 

modulus of rupture, modulus of elasticity and specific gravity as height up the tree increases. 

Over all structural integrity of the stem in terms of modulus of rupture and modulus of elasticity 

is shown to be significantly different between disturbance types in the “young” age class (0-4 

years dead) but not in the “old” age class (4+ years dead). This indicates an initial difference in 

the post disturbance environment influencing the decay of the stems, and suggests that this 

difference becomes mitigated as time since disturbance increases.  Future studies in this area are 

needed to fully understand the driving factors behind these findings and the greater implications 

that mortality vector and disturbance have on the structural and physical properties of the trees 

left on the landscape.  
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Introduction: 

This project focuses on the changes in ponderosa pine (Pinus ponderosa) snags over time post 

mortem. Ponderosa pine is the dominant tree species on 27 million acres of forest across the 

western United States and is a component of the landscape on another 13.5 million acres 

(Graham & Jain, 2005). Ponderosa pine ranges widely across North America from Nebraska to 

the West Coast and from British Columbia to Mexico (Habeck, 1992). Of the large expanses of 

forestland in the intermountain west, vast swaths of lower and mid elevations are dominated by 

this robust and extensive species.  In so being, many acres of our federally and state owned 

public lands across all agency managements fall under this forest cover type. A hardy species 

with good drought resistance, and thick ablative bark capable of offering protection from fire and 

insects, ponderosa can see significant mortality when adverse conditions align.  

The intermountain west, which encompasses this study area in western Montana is a disturbance 

prone and driven ecosystem (Agee, 1993; Baker, 2009; Fiedler & Arno, 2015). Disturbance 

plays an ecologically significant role in the health and resilience of the landscape across all cover 

types. As a result of being a disturbance prone environment the landscape is dotted and in some 

cases covered with dead standing timber. Dead timber known as snags, are a crucial and 

commonly overlooked part of the ecological system (Brown, Reinhardt, & Kramer, 2003; 

Franklin et al., 1986). Snags provide nesting and denning habitat for birds and small mammals 

(Franklin et al., 1986; Mccieiland, Frisseli, Fischer, & Haivorson, 1979; Payer & Harrison, 2003) 

as well as habitat for a variety of invertebrates (Jia-bing, De-xin, Shi-jie, Mi, & Chang-jie, 2005).  

Due to the ecological importance of snags on cavity nesters (Evelyn L Bull, Parks, & Torgersen, 

1997), previous work has been done to look at snag longevity (E.L Bull, 1983; Dahms WG, 

1949; Scott, 1978), and useful duration of a snag as nesting habitat. Several studies have noted 
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that a snags longevity is related to its size. Larger snags (greater diameter), are more likely to 

remain standing longer (E.L Bull, 1983; Dahms WG, 1949; Scott, 1978). This relationship 

between size and longevity was found to be the same for both trees killed by beetles and those 

killed in fire events (Keen, 1955). Longevity of snags not only impacts those insects and animals 

that live and nest in the snags structure but it also impacts the landscape when the fall. Course 

woody debris (CWD) is an important part of our forest ecosystems (Baker, 2009; Franklin et al., 

1986). Natural successional trajectories, forest management and disturbances all influence the 

amount and distribution of CWD on the landscape. 

 Wildland fire is one of the most influential and largest scale disturbances that we see today. Fire 

has been present on the landscape since there has been fuel to consume (Agee, 1993; Pyne, 

1982). Plant communities in the western united states have evolved with reoccurring fire and 

have become adapt in many and varying ways to cope with its presence (Fischer, W.C.; Bradley, 

1987). Even with these adaptations there is still plenty of opportunity to see large scale mortality 

in our western forests. In the past century, there has been an increase in the acreage of forestland 

managed for varied uses, shifting national fire policies influencing the acreage allowed to burn, 

as well as a changing climate. Partially due to these factors we have seen a change in the 

duration, magnitude and intensity of wildland fires especially in the last few decades (Kasischke 

& Turetsky, 2006; Westerling, Hidalgo, Cayan, & Swetnam, 2006).  When stand conditions 

promote crown fire, and high fire resonance time, the results can be crown scorch, high needle 

consumption, as well as root and stem damage. The interaction of such disturbance effects can 

lead to high mortality and a visual as well as ecological shift in the landscape (Kaufmann et al., 

2008)  
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Although fire tends to capture our attention most rapidly, is not the only disturbance with large 

sweeping ecological impacts. Insect infestation and outbreaks can also exert influence over a 

landscapes successional trajectory, and ecological path. Along with other pests, ponderosa pine 

is a suitable host for mountain pine beetle (Dendroctonus ponderosae). A native species of bark 

beetle, D. ponderosae historically has been shown to preferentially select P. contorta (lodgepole 

pine) over ponderosa for its main food source. Recently though, mountain pine beetle has been 

shown through laboratory research and field sampling to be not only capable of crossing over to 

an alternate host under favorable conditions, but able to do so with no loss of vigor or fecundity 

(West, Briggs, Jacobi, & Negrón, 2016). These transitions and outbreaks in ponderosa pine are 

especially successful during times of moisture stress, injury from recent fire and stand 

overstocking resulting in low vigor and poor defensive capabilities (Neary, Ryan, & DeBano, 

2005). Although a native species to the inland Northwest’s forests and always present on the 

landscape in endemic levels, there have been several population upticks of mountain pine beetle 

resulting in large areas of dead pine forest. The last decade has seen the intermountain west of 

the United States and Canada in the midst of such an outbreak (Kurz et al., 2008). With wildland 

fire and bark beetle mortality more prevalent, managers must cope with an increased abundance 

of post disturbance landscapes. Standing dead timber, whether it is black and charred from a fire, 

or tuning from red to gray after a mountain pine beetle attack, is a factor that must be addressed 

and considered. Once a disturbance moves through a landscape the standing dead timber begins 

to change. Many factors can weigh into how long a snag stands. The density of the wood 

measured as specific gravity has been shown to change not only over time but also throughout 

the tree (Kotch, 1972; Lutes & Hardy, 2013).  Specific gravity of wood as measured by ASTM 

standard D2395 (ASTM International, 2011) has been shown to decrease as the height up the tree 
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increases in live trees but the rate of this change and how long the relationship remains post 

mortem has not been shown. Coupled with the specific gravity of the wood is the presence and 

abundance of decay within the snags. Decay fungi directly feed on and consume cellulose which 

is the main structural component of the wood (Forest Products Laboratory - USDA, 2010). The 

effects of decay on the structural integrity of wood can be significant long before there is a 

noticeable change in wood density (Curling, Clausen, Winandy, & Curling, 2001).  The changing 

conditions of wood within the snags are the basis for many possible management concerns across 

the western United States. 

This project seeks to understand the changes that occur within ponderosa pine snags over time in 

regards to their woods strength, lignin/cellulose content and heat content.  Variables will also be 

compared between two vectors of mortality, fire and mountain pine beetle. An increased 

understanding of the properties of snags lends us the opportunity to better manage our forests 

post disturbance and can potentially give land managers insights into the future characteristics of 

the landscape. Knowing the rate of a snags strength loss, the changes in its holocellulose to lignin 

ratio and how this relates to heat content can inform us on the potential for wind throw, the 

likelihood for pulse loading of fuels, an areas capability for fostering flaming versus smoldering 

combustion and where to concentrate limited ground resources during and post disturbance as 

well as possible safety concerns for the public as they use their public lands. 

Study Goals: 

1) How does the structural integrity of a ponderosa pine snag change over time, and does this 

relationship differ between vectors of mortality? 

The pattern of change and deterioration seen in ponderosa pine snags as they age is of particular 

interest to this study. The possibility of being able to describe the changes seen with a simple 
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model is not only intriguing but an important part of improving land management strategies and 

resource allocation. As the snags that populate the landscape of post disturbance forests age and 

begin to deteriorate increasing amounts of fuel will eventually begin to enter these systems as 

course woody debris. Obtaining a general timeline of when these pulses of fuel are likely to 

become available for wildland fires is a valuable asset to managers on the ground.  

This objective is to be investigated by developing a chronosequence to obtain samples from trees 

killed by both fire and mountain pine beetles from what will be considered “young” snags which 

are dead less than four years and “old” snags, those being dead more than four years.   

2) Quantifying changes in heat content and lignin/cellulose content in ponderosa pine snags. 

As with the aforementioned objective quantifying the changes in heat content (HC) and 

Holocellulose to lignin content has the potential to impact the wider land management field. The 

heat content of a material is a measure of the available energy that is available to be released 

upon sustained combustion. This measure changes as the material undergoes physical and 

chemical changes such as a snag does as it is exposed to moisture, insects, fungal decay and 

other factors. These factors, primarily those of decay are the driving forces in the change of the 

lignin and cellulose content which in return effects the HC.  

Commonly used models do not take into consideration possible changes in heat content 

characteristics. A dead fuel of less than one year is considered to have the same heat content as a 

fuel dead 10 years (Rothermel, 1972). If there is a perceivable and definable change in the HC of 

these snags over time, then an amendment to current models could be produced after future 

inquiry.  



6 
 

Methods: 

General Methods: 

 

For this study two age classes of dead standing ponderosa pine were identified and employed to 

gather samples across the post-mortem spectrum. Four groups of snags and one group of green 

trees, as a control, were identified with each group consisting of five trees that met the desired 

conditions.  In each of the age classes there were one group of beetle mortality and one group of 

fire mortality. The age classes are broken into “young” snags, trees being dead less than four 

years, and “old” snags as those dead more than four years. Four of the five groups sampled were 

situated on Lubrecht Experimental Forest at an elevation of 4,100- 4,700 feet (1,250-1,433 

meters). Lubrecht Experimental Forest is located in the Rocky Mountains of western Montana, 

35 miles north east of Missoula, Montana. The site of the lone off-Lubrecht Forest was from a 

stand 4.5 miles (7.2 kilometers) west of the other groups at the same elevation and aspect.    

 

All sites and study trees were identified after consultation with the forest manager and land 

owners to confirm dates of fires and year of death by bark beetles. Trees were of the same 

approximate age and size, averaging 74.9 feet (22.8 meters) tall and 14.8 inches (37.6 

centimeters) in diameter.  Sample trees were selected after surveying selected areas and verifying 

cause of mortality for each tree.  Cause of mortality was confirmed by visually inspecting the 

trees for the presence of pitch tubes, charring on the bark, and the presence and prevalence of 

blue stain.  If a potential sample had multiple pitch tubes with evidence of mountain pine beetle 

larval galleries under the bark with prevalent blue staining in the wood, it was considered a 

confirmation of beetle mortality. Conversely if a potential sample tree was in an identified fire 
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area and showed extensive charring of the bark, few to no pitch tubes, and minimal blue staining, 

the cause of mortality was classified as fire kill.   

  

The trees were felled by hand with chainsaws. The felling cuts were placed as low on the stem as 

topography and safety allowed. Doing so allowed for as much distance between the first and 

second sections as possible. Five sections of four feet in length were delineated and removed 

from each of the trees felled. Sections were centered 3.3 feet (1 meter) above the felling cut and 

then at 20%, 40%, 60% and 80% of total stem height. The section closest to the ground was 

identified as section one, and numbering continued sequentially up the tree, Figure 1. Section 

one was centered at this set distance above the felling cut to minimize the effects of damage 

incurred to the stem during the felling process. On multiple occasions the fifth section (centered 

at 80% of total stem height) was unable to be sampled due to shattering upon impact with the 

ground or due to minimum diameter constraints. The sections were removed from the sites and 

taken to a portable Wood-Mizer sawmill located at Lubrecht Experimental Forest and cut into 

multiple flitches as depicted in Figure 2. 
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Figure 1: Depicts how sample trees are broken into sections 

 

 

Figure 2: Each tree section was cut into several flitch sections to later have samples cut from it. 

Flitches were comprised of two sawed planes and two “live” edges. Once transported to the 

Wood Sciences Laboratory at the University of Montana Missoula, flitches were cut into 
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multiple 1”x1”x16” samples on which all future testing would be performed Figure 3. While the 

sample sticks were being cut from the flitches, knots were avoided and the grain of the wood was 

kept as straight as possible. All other natural variations within the samples such as rot, and insect 

galleries were not actively avoided. This was done to encompass the true nature and variation 

seen in the snags as they age. 

 

Figure 3: Multiple 1 inch x 1 inch x 16 inch long samples are cut from flitches. 

  

Static Bending Testing 

A 60,000-pound capacity Tinius Olsen universal testing machine was used for strength and 

stiffness testing. Test procedures followed American Society for Testing and Materials (ASTM) 

Standard Test Methods for Small Clear Specimens of Timber ASTM D143-11 (ASTM 

International, 2014).  Three replicate test specimens (sticks) within each sample section were 

tested in static bending. The number of tests performed ranged from 120 to 138 depending on the 

group, and resulted in a total of 388 tests total, Table 1 . Several of the tops of the snags broke 

into sections too short to yield test sticks of the required length minimum of 16 inches.  Breakage 
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during felling due to the small diameter, advanced decay and boring-insect damage were the 

primary causes of the shattering of this smallest diameter-stem section.     

 

   

Table 1: Experimental design matrix for structural testing. 

 

The modulus of rupture or MoR shown in  

       Where: 

             MoR= modulus of rupture 

    P= maximum load on sample (lbf) 

    b= width of sample (in) 

    h= depth of sample (in) 

    L= span of beam between reaction points 

Equation 1 was calculated and used in the comparison of structural testing to mitigate the 

influence of variations in height and depth between samples (ASTM D-2555). A modulus of 

elasticity or MoE, Equation 2, was also calculated for each sample using data gathered from 

structural testing (ASTM D-2555). Moisture content, Equation 3 (ASTM D-4442), and specific 

gravity, Equation 4 (ASTM D-2395) were both measured for each sample after structural testing 

was conducted.  

 

MoR = 
3PL

2bh2 

       Where: 

Snag Class Mortality Code Sample Type Number of Tests

Young 1 Beetle/Fire 130

Old 2 Beetle/Fire 138

Control 3 Green/Dried 120

Total 388

Structural Testing Sample Marix
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             MoR= modulus of rupture 

    P= maximum load on sample (lbf) 

    b= width of sample (in) 

    h= depth of sample (in) 

    L= span of beam between reaction points 

Equation 1: Measure of the samples strength at point of failure 

    MoE = 
P′L3

4bh3∆
 

         Where: 

             MoE= modulus of elasticity  

   P’= load at proportional limit (lbs) 

    b= width of beam 

     h= depth of beam 

     L= span of beam between reaction points 

     ∆= deflection of beam at proportional limit 

Equation 2: Measure of sample   

 

               MC% = (
W−OD

OD
)*100 

         Where:  

            MC%= moisture content percent 

   W= wet weight 

  OD= oven dry weight  

Equation 3: Gravimetric moisture content 

 

 𝑆𝐺 =
V

OD
 

         Where: 

  SG= specific gravity 

     V= volume 

                OD= oven dry weight 

Equation 4: V=volume (g) and OD = oven dry weight (g) 
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Wood Scientists’ past work to define the mean, variability and 95% exclusion limit values for 

North American commercial wood species has produced accepted standard values for the MoR 

and MoE for many native species. The standard sources for these green clear wood is ASTM 

standard D2555 also published in the Wood Handbook (Forest Products Laboratory - USDA, 

2010). It is standard for these laboratory-test derived values to be reported in the undried 

condition (green) as well as at 12% moisture content. Most the samples tested had moisture 

contents well below the standard 12% testing and reporting convention.  To correct for the 

difference in moisture content the reference MoR and MoE standards were adjusted using 

Equation 5 (Forest Products Laboratory - USDA, 2010)  

                        

         Where: 

     P= property at desired moisture content 

                 P12= property at 12% moisture content 

                  Pg= property at green wood of species 

                  M= desired moisture content 

                Mp= 25 (standard value from Wood Handbook) 

Equation 5.  As stated in the text MoR and MoE are conventionally reported at a moisture 

content of 12%. The samples collected in this study averaged only 7.5% moisture content and 

thus a correction based on moisture had to be done. This equation allows for the change of MoR 

and MoE based on moisture. 

 With this equation the MoR and MoE for all groups other than the green control can be more 

accurately compared to the ASTM standards for MoR and MoE of ponderosa pine.  Figure 4 

depicts the relationship between moisture content and both the Modulus of Rupture and the 

Modulus of Elasticity, as described in Equation 5. As moisture content increases, there is a clear 
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and dramatic decrease in the MoR and the MoE. It is because of this well-defined and 

documented relationship that adjustment of these numbers is required before attempting 

comparative analysis of materials of the same species with different moisture contents. 

 

 

Figure 4: This figure shows the relationship between both the MoR and the MoE as described by 

the Equation 5. 12% moisture content is the standard at which dry wood numbers are reported, 

but in this study moisture contents averaged closer to 7%. 

Heat Content and Lignin/Cellulose Testing 

 

Samples were ground using a Wiley Mill in preparation for testing in an adiabatic bomb 

calorimeter by which the heat content for each sample was computed. A 0.5mm screen was used 

in the grinding process insuring a consistent final product. Wood samples from all the sticks 

within a tree-height section were aggregated during the grinding process, allowing tree-height 

sections within the tree to remain separate. Thus, strength-tested wood from each height level 

within each tree was evaluated for heat content. 
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Table 2: Heat content sample matrix showing number of samples tested from each of the 

mortality groups and age classes. A total of 232 test were conducted among all groups.  

Heat content of the samples were measured using standard bomb calorimetry lab techniques 

(ASTM D5865-13). Table 2 shows the heat content sample matrix. 232 tests were conducted on 

the samples with a minimum of two replicates per sample. If the calculated net heat content (see 

Equation 3) for both replicates was within 10% of each other no further replicates were 

performed. If the tests differed by more than 10%, then a third replicate was tested. This protocol 

allows for efficiency in testing as well as accuracy and redundancy in measurements.    

 

                                                      𝐽 = [
(∆𝑇∗2402)−(𝐶∗4495.02)

𝑆
] ∗ 4.184 

        where:   

     J= joules 

               ∆T= change in temperature (c)  

    C= capsule weight 

    S= sample weight 

Equation 6: Net energy produced from test 

Using Equation 7, which is a modified version of an equation published by White (White, 1987), 

we were able to take the results of the calorimeter testing after running them through Equation 6 

and quantify the amount of holocellulose and lignin in each sample.  

                                                                                  𝐶 =
𝐻𝐶−24

7.3
 

       Where:  

    C= cellulose percent  

              HC= observed heat content (MJ/Kg) 

                24= heat content of lignin (MJ/Kg) 

Years Dead Mortality Code Sample Type Number of Tests

Young 1 Beetle/Fire 93

Old 2 Beetle/Fire 96

Control 3 Green/Dried 43

Total 232

Heat Content Sample Marix
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Equation 7: Equation for determining the percentage of cellulose in sample 

The equation is modified in the form that we used a weighted ratio of cellulose to hemicellulose 

with slightly different values form those used in White’s paper.  White used a heating value of 18 

MJ/Kg to define cellulose, but after consulting other sources that cite the heating value of 

cellulose lower around the 16 MJ/kg mark and hemicellulose as low as 15 MJ/Kg  it was decided 

that a weighted value of 16MJ/Kg for cellulose and 15 MJ/Kg for hemicellulose at a ratio of 

70/30 would be used for these calculations (Petterson, 1983). Giving an overall heating value of 

15.7 MJ/Kg for holocellulose. 

Lignin percentage of the sample was derived by simply taking one minus the cellulose 

percentage (White 1987), from Equation 7, see Equation 8.  

Equation 8 Lignin Content 

          𝐿 = 1 − 𝐶 

        Where: 

    L=lignin percentage 

    C= cellulose percentage  

Equation 8: Percentage of lignin in sample 

The volumetric heat content of the samples was calculated by multiplying the specific gravity of 

the sample by the samples corresponding heat content. This calculation gives a measure of the 

heat content of based up on its density on a volume scale Equation 9. 

Equation 9 Volumetric Heat Content 

                  VHC=SG*HC 

Where: 

                                                   VHC= Volumetric Heat Content 

                                   SG= Specific Gravity      
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                                HC= Heat Content    

Equation 9 Calculation for volumetric heat content of a sample. This calculation of potential or 

stored energy is based upon the samples density and volume. 

          

Results 

Moisture Content 

 

Static bending tests for the control group were carried out on both green samples and a set of 

samples dried to more closely match the average moisture content of the non-control trees.   

Table 3 shows the samples segregated by group and assigned a moisture code for easier 

identification. As shown, sampled trees across all age groups, as well as the dry control group, all 

had very low moisture contents. None had a mean that exceeded 9.6%, and the overall mean for 

groups 1 and 2, was 7.3%. The variability within groups 1-3 was also low with standard 

deviations within individual groups ranging from a low of 0.49% in the Old snag group, to a high 

of 1.65% in the dry control group. This is shown graphically in Figure 5 as well. 

 

Table 3: Table showing the mean and standard deviation of moisture contents for all age classes 

as well as the dry and green control groups. It is worth noting how small of a standard deviation 

groups 1-2 have.  

Group Moisture Code Mean SD

Young 1 6.7 1.28

Old 2 7.8 0.49

Dry Control 3 9.6 1.65

Green Control 4 39.9 27.42

Moisture Content 
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Figure 5: Moisture content distributions for moisture groups 1-3 from Table 3. These 

distributions are very tight with minimal deviation from the mean as also indicated in Table 3.  

As depicted in Table 3 and  Figure 6, the green control group was not only significantly higher in 

moisture content, but also had much higher variation within the group. 

 

 

Figure 6: Here we see the distinct difference between groups 1,2 and 3 from group 4. It was 

expected that group 4 (green control) would have a much higher average moisture content and 

standard deviation. 
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Specific Gravity  

 

Sample test sticks used in the MoR and MoE testing, were sampled for determination of 

gravimetric dry basis moisture content and oven-dry volume/oven-dry weight specific gravity.   

Using a two-wan ANOVA to analyze the significance of disturbance, age and the interaction of 

the two on specific gravity showed that only the Age factor reported any significance Table 4. 

 

Table 4 Output table for the two-way ANOVA used to analyze the governing factors on the 

specific gravity of the samples. Note: P-values delineated with (*) are considered significant. 

 

Since age was found to be the only significant factor influencing specific gravity, subsequent 

analysis of specific gravity was based upon this factor.  Figure 7 shows the distribution of the 

specific gravities of the mechanical testing sample sticks by age group.  

 

Factors

Disturbance

Age

Disturbance*Age

Specific Gravity ANOVA Output Table

P-value

0.072

   0.013*

0.388
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Figure 7: Specific gravity distribution of samples as separated by age group. Note the depressed 

specific gravity of the “old” age class. This can be an indication of decay within the wood.  

Although there is obvious overlap between the groups, comparative analysis using t-tests, shows 

significant differences.  Statistical analysis shows no difference between the means of the Young 

snag group and the Control group, where p= 0.698, but both of those groups differed from the 

Old snag group with p-values of 1.7E-12 and 2.4E-11 respectively.  

 Figure 8 shows specific gravity separated not only by age class, but also the cause of mortality, 

and section within the tree (vertical position in the tree Figure 1).  As shown by Kotch in his 

publication on southern yellow pine in 1972 there is a negative relationship between height in a 

tree and specific gravity. Here we can see this trend shown nicely when we view the specific 

gravity of the Control group as profiled vertically through the tree. The other four groups also 

show signs of this relationship although they deviate from the slope of the control line. This 

deviation from the control is most notable for both the Old Beetle and Fire groups. This again 

shows the effect that age since death plays as a factor on specific gravity.   
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Figure 8: Mean specific gravity by age, mortality type and section within the tree.  Seen here is 

the relationship between specific gravity and height in the stem. Across all mortality groups and 

age classes there is a trend for specific gravity to decrease as height up the tree increases.  

Modulus of Rupture  

 

Static bending tests for modulus of rupture determination were done for all sample groups in the 

study. Tests for the control group were carried out on both green samples as well as samples 

dried to match the moisture content of the snag samples.  As shown in Figure 9, the green control 

samples closely mimic the results found to be standard for green ponderosa pine as reported in 

the ASTM standards and the Wood Handbook. The mean observed green control MoR differs 

from the literature reported MoR by only 4.43%.  

 

Figure 9: This figure shows both the observed green control MoR for the samples tested and the 

standard MoR for green ponderosa pine as determined by the ASTM standards and the USDA’s 

Wood Handbook. Although the observed data shows an average deviation of 4.43% from the 

standard measure, this is not considered a significant difference.  

The dry control MoR tests showed more deviation from those reported in the Wood Handbook, 

deviating by 22.44%. After the difference in moisture content was accounted for, and the 

published MoR corrected from 12% moisture content, to 7% moisture content using Equation 5, 

the dried control samples closely fit the published data.  Deviating by only 3.22%, Table 4.  
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Table 5:  MoR averages by group as well as percent difference from published mean MoR from 

the Wood Handbook (12%) and the moisture content corrected mean MoR (7%). 

Table 4 depicts the average MoR by group, and the percent deviation of each group from the 

MoR standard. As can be seen above, the Young Beetle group has an average MoR of 

77717.66psi (534.84 MPa) This average is 17.9% lower than the published standard for 

ponderosa pine at 12% moisture content. This difference in MoR is further accentuated once the 

standard is corrected for the lower moisture content at which this testing occurred. Correcting for 

moisture increased the difference in observed MoR to 35.1% below the expected value from a 

clear straight grained sample of ponderosa pine at 7% moisture content. The Young Fire group 

although also having a lower average MoR than suggested by the literature, only differed by 

6.26% from the adjusted MoR.  Both the Old Fire, and the Old Beetle groups average MoRs are 

well below the moisture corrected standard. These being 42.40% and 36.70% below the 

corrected standard respectively.   

T-tests were conducted and a significance value of 0.05 used on the Modulus of Rupture data to 

determine statistical difference. Comparisons were done between mortality vectors and within 

vectors between groups. All groups were also compared against the dry control group as a test of 

deviation from the expected.  

Group Averages (psi) 12% 7%

Young Beetle 7717.66 -17.90 -35.10

Old Beetle 7528.14 -19.91 -36.70

Young Fire 11147.41 18.59 -6.26

Old Fire 6850.38 -27.12 -42.40

Dry Control 11509.28 22.44 -3.22

Group MoR Averages and Differences
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Table 6: Corresponding p-values are reported for each of the T-tests run on the MoR data set. A 

0.05 significance level was used when determining statistical difference.   

As Table 5 shows, no significant difference in MoR was found between the Young and 

Old beetle groups, as a calculated p-value was 0.7295. Both the Young and Old Beetle groups 

showed differences from the dry control group with p-values well below the 0.05 significance 

threshold of 0.0001 and 2.7E-06. When the entire beetle-killed group is compared collectively to 

the dry control group, a significant difference is found with a calculated p-value of 2.6E-05. 

Unlike the beetle group, the MoRs for the Young and Old fire groups showed a difference 

between themselves with a p=0.0002. Unlike with the beetle mortality groups the Young fire 

group showed no significant difference from the control group with a p-value of 0.1948. Like the 

beetle mortality group, the fire group collectively showed a significant separation from the 

control group as well. Although the Young beetle and fire groups differed significantly in their 

observed MoRs, these being 7717.66 and 11147.41 psi respectively, as well as showing 

significant difference when a t-test was applied, p=0.0034, it is worth noting that the Old beetle 

and fire groups showed no significant difference, with MoRs of 7,528 psi (51.9MPa), and 6850 

psi (47.23 MPa) respectively, and a p-value of 0.7938.   

The previous findings would suggest that although initially there is a difference between 

the MoR results based upon disturbance type, but that the difference no longer exists by the 

second age class. To more clearly show this, a two-way ANOVA was run. The results from the 

ANOVA are depicted below in Table 7, Figure 10 and Figure 11. In Table 7 we see that 

Old Beetle  Young Fire Old Fire Total Fire Dry Control

Young Beetle 0.7295 0.0034 0.4910 0.0001

Old Beetle 0.0002 0.7938

Total Beetle 0.5496 2.6E-05

Old Fire 0.0002

Dry Control 2.7E-06 0.1948 3.9E-06 0.0004

Significance of Difference Between MoR Groups
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Disturbance does not show significance with a p-value of 0.096. Age does show significance as 

does the Disturbance*Age interaction term with p equaling 0.011 and 0.040 respectively.   

 

 

Table 7 Output table for two-way ANOVA run on the MoR data. Here we see corresponding P-

values for the various factors tested. Note: P-values delineated with (*) are significant. 

In the graphic depicting the least squares means for Age in Figure 10 there is clear separation of 

the two points indicating potential significance as verified by the p-value in Table 7. Also in 

Figure 10 the least squares means for Disturbance are plotted and they show much less 

separation between the points and almost no separation between the error bars. This conversely 

would indicate low if any significance, and again this is shown by a nonsignificant p-value in 

Table 7 of 0.096. 

 

Figure 10 Least squares means of Age and Disturbance as produced using SYSTAT© for the 

MoR data. In this figure, we see evidence of the Age term showing significance whereas the 

Disturbance term shows none. 

 

Factors

Disturbance

Age

Disturbance*Age

Modulous of Rupture ANOVA Output Table

P-Value

0.096

  0.011*

  0.040*
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Figure 11 displays the least squares means for both disturbance types and how they change 

between age classes. The difference in MoR seen between Beetle kill and Fire killed trees that is 

evident in the Young trees disappears as we transition to the Old age class.  

 

Figure 11 Least squares means as produced using SYSTAT© plotted form the ANOVA run on the 

MoR data. Any difference shown in the MoR between disturbance type in the young age class all 

but disappears by the time the old age class is sampled.  

 

A downward trend in MoR as height up the bowl increases is seen for all groups as shown in 

Figure 12.  Three of the mortality and age groups display a noticeable increase in MoR from 

section one (closest to the ground) to section two (centered at 20% of stem height, Figure 1).  

Above this height in the tree, the downward trend in MoR proceeds for sections three, four and 

five. 
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Figure 12: Changes in MoR over the length of the stem for each of the mortality groups and age 

classes. For all groups, there is an overall loss in MoR as height up the stem increases. All 

groups other than the Control and Young Fire group saw an increase from section one to section 

two then a fall in MoR through the remaining sections. 

 

These increases in the MoR from the first to second sections of the tree occur in both the Young 

and Old Beetle killed groups as well as in the Old Fire mortality group. For these groups, there is 

a 27.61, 6.19, and 50.67% increase in MoR between the first and second sections respectively, 

Table 8.  

 

 

Table 8: Percent change in MoR between tree sections. Note missing data delineated by an (*) 

are due to lack of samples caused by damage from the felling process. 

 

Modulus of Elasticity  

 

The modulus of elasticity (MoE) was also calculated for each of the samples using the data 

collected from the static bending tests that produced the observed MoR.  As with the MoR, a 

moisture correction was done on the standard MoE reported in the ASTM standards and the 

Wood Handbook to account for the lower moisture content of our samples. This correction was 

done for all samples except for the comparison of the green control to the green standard as these 

moisture contents were already comparable. The MoE for the green control samples deviated 

from the standard MoE for ponderosa pine by 9.54%. The green control MoE and the standard 

number published in the Wood Handbook are 904,586 psi (6236.9 KPa) and 1,000,000 psi 

Group 1-2 2-3 3-4 4-5

Young Beetle 27.61 -14.77 -31.01 -3.54

Old Beetle 6.19 -7.32 -20.41 -28.28

Young Fire -7.32 -13.01 -19.52 *

Old Fire 50.67 -3.92 -29.23 -82.69

Percent Change In MoR Between Tree Sections
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(6894.8 KPa) respectively. From the Wood Handbook we are given an average MoE for 

ponderosa pine (dried to 12% moisture) of 1,290,000 psi (8894.2 KPa) (Forest Products 

Laboratory - USDA, 2010), in Table 9 we see the average MoE for each group and how they 

compare to the number from the Wood Handbook at 12% moisture and that number adjusted to 

7%. It is with this number that the dried control group as well as the other groups are compared 

against. The dried control group very closely matched the adjusted MoE, only deviating by 

0.93%. 

 

Table 9:Differences between observed group MoE and standard MoE from the Wood Handbook 

(12%) as well as the difference between the observed group MoE and moisture adjusted MoE 

(7%). 

 

Similar trends were observed with the MoE as were with the MoR when the groups are separated 

and their means compared to the adjusted MoE. The Young Beetle group showed an MoE 

37.19% lower than the adjusted MoE.  The Young Fire group falls 8.19% below the same 

measure. The Old Beetle and Fire groups show a higher reduction in MoE than the Young Fire 

group but less than the Young Beetle group deviating from the adjusted MoE by 21.75% and 

24.43% of the adjusted MoE respectively.  

Inter and intra mortality group comparison was done again using t-test analysis as it was for the 

MoR comparison. The results of the t-tests are shown in Table 10. There is a significant 

difference found when the Young Beetle group is compared to the Old Beetle group with p-

Group Averages (psi) 12% diff 7% diff

 Young Beetle 893689.97 -30.72 -37.19

 Old Beetle 1113316.57 -13.70 -21.75

Young Fire 1299783.44 0.76 -8.64

 Old Fire 1075186.95 -16.65 -24.43

Dry Control 1436006.79 11.32 0.93

Group MoE Averages and Differences 
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values for these tests calculated at 0.0073 and 0.0004 respectively.  In the Fire mortality group 

the Young and Old groups showed statistical difference during comparison with a p-value of 

0.0184.  As with the MoR, Young Beetle and Young Fire groups showed significant differences 

in MoE as well. When compared against each other a p-value of 6.9E-06 was shown. Interestingly 

as well, when the Old groups of each mortality type were compared against each other, there 

again was no difference shown, p= 0.7960.  The Beetle and Fire groups show differences with 

the test statistic falling right at the significance level of 0.05 with a p-value of 0.0532.   When all 

groups were compared against the dry control, all were found to be significantly different from it 

except the Young Fire group with a p=0.2698 

 

Table 10: Reported P-values for MoE mortality and age groups. 

 

A two-way ANOVA was also run on this data and the results are displayed in Table 11, Figure 

13 and Figure 14. In Table 11 we see that the Disturbance factor shows significance with a 

calculated p-value of 0.004 as does the interaction term of Disturbance*Age also with a p-value 

of 0.004. Age is not found to be significant as it has a p-value that is far larger than the 0.05 

significance level, this being 0.968. These finding correspond with the p-values found in Table 

10 above where there is mild significance of difference found between the Total Beetle group 

and the Total Fire group suggesting that Disturbance is a significant factor.  

Old Beetle Young Fire Old Fire Total Fire Dry Control

Young Beetle 0.0073 6.9E-06 0.0093 4.2E-07

Old Beetle 0.0049 0.7960

Total Beetle 0.0532 0.0002

Old Fire 0.0184

Dry Control 0.0002 0.2698 0.0009 0.0110

Significance of Difference Between MoE Groups
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Table 11 ANOVA output table for MoE data. Both the Disturbance and Disturbance*Age 

interaction term showed significance with p-values below the 0.05 significance level. Age did not 

show significance. Note: P-values delineated with (*) are significant. 

 

Looking at a graphical depiction of the least squared means for both the Age and Disturbance 

terms in the ANOVA it is clear that Age shows no significance at the 0.05 level. The least 

squared means for Age were 1,115,989 psi (7694.47 MPa) for the Young age class and 

1,113,479 psi (7677.17 MPa) for the Old age class. There is almost complete overlap shown in 

the error bars as well.  The Disturbance term shows clear significance with least squares means 

being 1008147psi (6950.93 MPa) for the Young age class and 1221322 psi (8420.72 MPa) for 

the Old age class. The high separation between the two plotted points reinforces the level of 

significance seen in Table 11 with a p-value of 0.004. 

 

Figure 13 Least Squares Means of Age and Disturbance for the MoE data as produced using 

SYSTAT©. In this figure, we see evidence of the Age term showing no significance as there is no 

Factors

Disturbance

Age

Disturbance*Age

Modulous of Elastisity ANOVA Output Table

P-Value

  0.004*

0.968

  0.004*
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separation of the plotted pints and almost complete overlap. The Disturbance term does show 

evidence of significance with good separation between plotted points and no overlap of the error 

bars.  

As previously seen in the same plots for the MoR data, Figure 14 illustrates the change that 

occurs over time within the mortality or disturbance types. Initially in the Young age class there 

is a distinct difference between the Beetle mortality group and the Fire mortality group with the 

Fire group having a much higher MoE. As we change to the Old age class there is a profound 

drop in the represented value for the Fire mortality group, to the point that it is almost equal to 

the value for the Beetle mortality group.  

 

Figure 14 Least squares means of disturbance by age class for the MoE data set as produced 

using SYSTAT©. As before, the difference in values seen between disturbance types in the Young 

age class is no longer maintained in the Old age class. 

 

The trends for MoE between sample groups as well as vertically through the tree are not as clear 

as those for the MoR but there are general similarities. Figure 15 illustrates trends seen vertically 

through the tree in relation to the MoE value. In general, there is a loss of MoE across all both 

mortality types and age groups. The Young Beetle group does show a lower MoE value for 

section one than it does for any of the other sections but the trend of decreasing MoE as section 

increases holds true starting with section two of that group.  
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Figure 15: MoE averages by mortality group as going vertically through the tree. Refer to 

Figure 1 for section specifics. We see similar trends as with the MoR and the specific gravity. 

There is a tendency for the MoE to decrease as height up the stem increases. We also see the 

values for most groups well below what is expected from the Wood Handbook. 

 

An increase in MoE between section 1 and 2 was observed for all groups except Young Fire as is 

shown in Table 12. As with the MoR, the Young Fire group did not see an increase between 

sections 1 and 2, in fact a negligible decrease of 0.05% was seen between these sections. As 

height up the tree progresses (moving from section 1 through section5) the Old Beetle group 

showed continued although variable loss. Both Fire mortality groups show an increase in MoE 

from section 2 to section 3, but then show the expected decrease starting in section 4 and 

continuing to section 5. 

 

Table 12: Mean percent MOE change between sections 

 

Group 1-2 2-3 3-4 4-5

Young Beetle 69.15 -12.58 -16.43 -0.24

Old Beetle 3.70 -1.28 -14.12 -0.28

Young Fire -0.05 3.83 -15.50 -17.89

Old Fire 13.99 7.85 -18.70 -23.34

Percent Change In MOE Between Sections
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Holocellulose to Lignin Ratio 

 

The heat content of the samples was calculated using adiabatic bomb calorimetry. This testing 

resulted in a heating value for each sample measured. Using White’s equations (Equation 7 and 

8) this heating value was converted into the percentage of holocellulose and lignin within the 

sample. These percentages were then converted into a ratio representing the percentage of 

holocellulose to lignin. The mean ratio values for each group are shown in Table 13 and Figure 

16 shows the holocellulose to lignin ratios for each group separated by section within the tree. 

 

Table 13 Here are shown mean ratio values for each mortality group. These ratios depict the 

prevalence of holocellulose to lignin with in the samples. Lower ratios indicate decay and a 

lowering of the holocellulose component of the wood structure.  

 

Mean Holocellulose to Lignin Ratio by Group

1.04

1.49

Young Beetle

Old Beetle

1.85

2.26

1.48

Old Fire

Control

Young Fire
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Figure 16 Depicts the holocellulose to lignin ratios for each mortality group separated by 

section within the tree. Note that the none of the trees sampled for the control group had an 

intact section 5 hence a lack of data depicted 

 

When the holocellulose and lignin values for the samples were analyzed using a two-way 

ANOVA only the Disturbance term was shown to be significant.  The Age term as well as the 

interaction term showed no indication of significance, Table 14. 

 

Table 14Two-way ANOVA output table showing the significance of the factors tested. The only 

factor shown to be significant is that of disturbance. Note: P-values delineated with a (*) are 

considered significant 

 

Factors

Disturbance

Age

Disturbance*Age

P-value

  0.053*

0.176

0.964

Holocellulose to Lignin ANOVA Output Table
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When looking at the least squares means of the holocellulose to lignin ratios plotted for 

disturbance and separated by age in Figure 18, we see that the mortality vector, or “disturbance” 

that causes the tree to die seems to have a lasting effect on the holocellulose to lignin ratio of the 

tree. Even as the trees move from the Young age class to the Old age class the trend of the Fire 

group having a measurably higher holocellulose to lignin ratio continues.  

 

Figure 17 Least squares means as produced by SYSTAT© of Disturbance type by Age class for 

holocellulose to lignin ratio data. Unlike previous data that has been seen in this study the 

differences seen in H:L that are seen in the Young age class maintain into the Old age class. This 

differs from what has been seen within the MoR and MoE data 

. 

Volumetric Heat Content 

 

The volumetric heat content of the samples was calculated by multiplying the specific gravity of 

each sample by its corresponding heat content. This measure represents the energy content of a 

sample in relation to its density.  When the volumetric heat content was calculated for each of the 

age classes and mortality groups and a two-way ANOVA was performed only the age term was 

shown to be significant. Neither the Disturbance term nor the interaction term were remotely 

close to the 0.05 significance cutoff level Table 15. 

 

Factors

Disturbance

Age

Disturbance*Age

P-Value

0.749

  0.027*

0.912

Volumetric Heat Content ANOVA Output Table
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Table 15 ANOVA output table for volumetric heat content data set. Age is the only factor that 

shows any significance with a p-value below the 0.05 significance level. Note: P-values denoted 

with a (*) are considered significant. 

 

Figure 19 shows the least squares means for both mortality types at both age classes. No 

difference between disturbance types is shown but a difference can be seen between age classes. 

The old age class shows a lower volumetric heat content for both the beetle mortality group as 

well as the fire mortality group than does the Young age class.  

 

Figure 18 Plotted least squares means as produced by SYSTAT© for volumetric heat content of 

samples for both mortality types by age class. Volumetric heat content can be seen to drop 

between age classes regardless of mortality type intimating that as a snag ages the energy 

available to be released upon combustion is reduced. 

 

 

Discussion 

Modulus of Rupture/Elasticity and Specific Gravity 

 

The ecological environment associated with post disturbance landscapes varies greatly both 

within and between disturbance types. Any discussion and quantification of the changes in 

standing dead timber needs to take into consideration the wide array of variables that impact the 

trajectory upon which snags can embark.  The structural integrity of snags can be evaluated by 

obtaining an estimate of their modulus of rupture and modulus of elasticity. These two 
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measurements are commonly used to measure the maximum load able to be supported by a 

material before failure (MoR) and the ability of that material to deform or bend and then return 

to its original state before the strain was applied (MoE). The benefits of testing these two moduli 

are that we can begin to compile a complete “picture” of the structural qualities of a material. 

Not only is a measure of strength garnered by calculating the MoR but by following these ASTM 

standards any variation in terms of sample width, thickness, slope of grain, and location of knots 

is mitigated and accounted for. The same is true for the calculation of the MoE.  

In this study, we were not only able to compile and compere the modulus of rupture and modulus 

of elasticity for both beetle and fire killed trees over a segment of the post mortem spectrum but 

we were also able to gather a vertical profile of how the structural properties of snags change 

throughout the tree. It has been known for years that the density of wood, which is measured as 

specific gravity, decreases the higher up the stem it is sampled (Kotch 1972), but we are now 

able to see how the MoR and MoE change as the height increases. In Figure 12 we see the 

relationship between the MoR and height in the tree. There is an overall lessening in MoR as 

height up the tree increases. This relationship is expected due to the change in ratio of mature 

wood to juvenile wood as you increase in stem height (Forest Products Laboratory - USDA, 

2010). As stem height increases the cross section of the stem becomes dominated by juvenile 

wood resulting in a lower overall measure of specific gravity and mechanical properties. Again, 

in Figure 12 we see the Dry Control group follows this pattern as well suggesting this is a normal 

progression and not a unique characteristic of dead trees. All the groups followed this general 

trend but with some variations. The Young Beetle, Old Beetle and Old Fire groups all showed 

distinct increases in MoR from the first section in the bowl to the second section before starting 

to lose MoR value, Table 8. These increases were greatly varied and ranged from a 6.19% to a 
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50.67% increase MoR.  The increase from the first to second sections are also seen in the MoE 

data, Figure 15 and Table 12.  Again, the Young Fire group is the only group that does not 

follow this pattern. One possible reason for these first sections having a lower modulus of 

rupture could be the presence of snowline in this area of the stem. Even with the bark jacket still 

intact, as it was on all the trees sampled, the prolonged presence of moisture against the stem 

could be providing a more hospitable environment for decay fungi to take hold and proliferate.  

The main result gathered from this study in terms of the MoR and MoE data, is how the 

difference in values between disturbance types seen in the Young age class, disappear in the Old 

age class. With both the MoR and the MoE the results show that in the Young age class there is a 

clear difference between the Beetle mortality group as compared to the Fire group. For both 

measures the Beetle mortality group falls below that of the Fire group as was seen in Figures 11 

and 14.  Equally as interesting is what else can also be seen in both of those figures. We also see 

that when the least squares means are compared in the Old age class for both the MoR and the 

MoE there is no longer any observable difference in the groups. Whatever caused the initial 

differences in the structural integrity of the snags as measured by the modulus of rupture and 

elasticity seems to have been negated over time. 

The findings from the specific gravity data only somewhat coincide with what is seen in the 

MoR and MoE analysis. There is no indication that the disturbance that lead to mortality had any 

influence on the specific gravity of the trees sampled. Instead it was the Age factor that showed 

to be significant in characterizing this part of the data. The only discernable pattern seen in the 

specific gravity analysis was that the Young age class had higher values than did the trees in the 

Old age class, regardless of the vector of mortality.  What becomes interesting is that if we are to 

believe as it has been shown before that MoR and MoE are both correlated to specific gravity 
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(Forest Products Laboratory - USDA, 2010), and specific gravity shows no influence based on 

disturbance, then why is there a distinct separation in MoR and MoE values in the Young age 

class based up on disturbance type?  

An insight into the answer might come in the form of incipient decay. Previous work has shown 

that significant strength loss can occur during brown rot decay before a measurable effect can be 

detected in weight loss (Curling et al., 2001; Winandy & Morrell, 1992).  In such a case as this, 

where there is no distinguishable difference in specific gravity yet a measurable difference in 

mechanical properties it appears a difference in the sensitivity of the measurements is at the root 

of the discrepancy.   Specific gravity although correlated with MoR and MoE in clear straight 

grained specimens of wood quickly loses its correlation to these measurers of mechanical 

properties once there is decay added to the equation.  The loss of predictive ability of specific 

gravity on MoR can be shown using this study if a correlation is calculated between the MoR 

and specific gravity for all the age classes and mortality groups. For the control group a 

correlation coefficient of 0.86 is shown and for the Young and Old beetle groups an r squared 

value of 0.60 and 0.61 is seen. The fit is even poorer for the Fire groups with calculated r squares 

of 0.55 for the Young group and 0.47 for the Old group. This shown loss of correlative ability is 

strictly due to the presence of decay in the samples, some of which is undetectable to the naked 

eye or at the scale to which specific gravity is measured. Even with the understanding of how the 

results for the MoR and MoE can have occurred even with the seemingly contradictory results of 

the specific gravity analysis, the question still stands as to why the difference in mechanical 

properties exists between beetle killed and fire killed trees.  

The answer might lie in the differences of the post disturbance environment. On beetle 

killed sites, trees have not only been attacked by the beetles which breach their bark defenses but 
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have also had blue-stain fungus, most likely Grosmannia clavigera (DiGuistini et al., 2011), 

introduced into the living vascular system, including the living phloem, vascular cambium and 

living axial and ray parenchyma of the sapwood as a symbiont of the mountain pine beetle. The 

hyphae of the stain fungus occupy and move through the ray cells, spreading into the tracheids 

by degrading the toris of and moving through bordered pits. In doing this the blue-stain fungus 

eventually disrupts the entire vascular system impeding the movement of nutrients and water and 

causing the tree to die(Ballard, Walsh, & Cole, 1984).  The galleries created by the breeding 

adult beetles and their developing larva, loosen and separate the bark from the stem of the tree 

creating pathways and pore space for moisture to enter and accumulate.  The lack of other 

disturbance in the stand leaves the existing fungal, bacterial and insect communities in the area 

intact allowing for rapid colonization and secondary infestation of the recently killed trees. 

Although mountain pine beetles have a large impact on the landscape in terms of dead trees 

along with eventual hydrological implications (Potts, 1984), their direct, or first order effects are 

relatively few. Mountain pine beetles have limited tree host species and do not directly cause 

other vegetation or plant mortality, although their disturbance  does allow for the release of 

suppressed and understory trees as well as herbaceous, graminoid and shrub vegetation (A. Dhar, 

Parrott, & Heckbert, 2016; Amalesh Dhar, Parrott, & Hawkins, 2016).  A site disturbed by 

mountain pine beetle has many of its ecological systems unchanged and intact. 

The post fire environment is much different from mountain pine beetle disturbance. Fire 

is in and of itself is an indiscriminate source of vegetation mortality, and does not only kill 

vegetation but in many cases, consumes and removes that vegetation from the area. Many facets 

of a site are impacted once a fire event has occurred. Vegetation may have been killed, damaged 

and or fully consumed, while the duff and litter layers may too have been partially or fully 
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destroyed.  The soil may also have been impacted not only physically but also chemically 

(Verma & Jayakumar, 2012). It has been shown that the presence and intensity of fire in an area 

affects the soil biota and can cause a shift in the dominating fungal communities from 

basidiomycetes to ascomycetes (Penttilä & Kotiranta, 1996; Reazin, Morris, Smith, Cowan, & 

Jumpponen, 2016) thus impacting rates of decay. It is this highly-altered, post-disturbance 

environment that may be causing the observed difference in the MoR and MoE values between 

the disturbance types in the Young age class of this Study. The apparent lag in the observed fire 

mortality decay rates might not have so much to do with the effect of the fire on the tree itself but 

more importantly the effect of the fire on the larger surrounding area. 

Holocellulose to Lignin Ratio and Volumetric Heat Content 

 

Heat content data was collected for this study to better understand how the potential for energy 

release during a wildfire changes overtime and if the vector of mortality affects that potential.  

The conversion of the raw heat content data into a holocellulose to lignin ratio was used to 

compare the relative amounts of the two main components of woods’ structure.   As was seen in 

Table 14 and Figure 18 the Fire killed groups maintained a slightly higher ratio through both age 

classes although when tested the Disturbance factor showed only minor significance and neither 

of the other factors tested showed no significance at all. Not much was able to be garnered from 

this data. Further research would need to be conducted investigating not only the ratio or 

percentage of holocellulose to lignin in the sample but also the types of decay present. This 

would be done to better assess how much decay and of which kind is found in the samples and if 

the mortality groups showed differences in the decay communities that inhabit them.  

 Using the heat content data coupled with the specific gravity, a volumetric heat content 

was computed for each sample and modeled using a two-way ANOVA. The output table and 
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least squares means are shown in Table 15 and Figure 18. Looking at Table 15 we see notice that 

the Age term of the model is the only significant factor. We expect this having used specific 

gravity to calculate this number and specific gravity also shows significance of the Age term 

when modeled. Disturbance type shows no significance here and this is clearly shown in Figure 

18 with high overlap of the error bars and almost no difference in plotted means. Where there is 

a difference in Figure 19 is between the Young and Old age classes. This suggests that as the 

trees in this study aged and transition from the Young to the Old age class that there is a loss in 

the potential energy stored in those trees.  This finding seems obvious and trivial enough as it 

would be expected for a snag to lose energy as time since death increases due to decay. What this 

finding does show is that when these trees do fall and become classified as a wildland fuel, their 

heating value is no longer that of sound wood. The lack of currently used fire models such as the 

Rothermel spread model (Rothermel, 1972), and the First Order Fire Effects Model (FOFEM) to 

consider the array of heating values that are on the landscape and the vast changes that take place 

between such ambiguous terms as “sound” and “rotten” is an oversight in current land 

management practices.  

 Developing better model inputs for heat content of fuels as they age, is an area where 

future research is needed to better classify the continual changes that take place on the landscape. 

The difficulties associated with quantifying the variables measured in this study across a 

watershed or even a single stand in terms standing dead timber from death, to when they fall, and 

beyond is daunting. But in a time where ever increasing acreage of our forest lands is seeing 

widespread disturbance resulting in dead trees, these questions can no longer be ignored and 

model inputs so broadly assumed. As our climate changes and land managers are forced to deal 

with new difficulties both naturally occurring, and anthropogenically induced, it would benefit 
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all of us to see an increase in the accuracy of these management tools that are so heavily relied 

upon.  

Conclusion Points 

 

In this study, we sampled live and dead ponderosa pine in the attempt to characterize some of the 

physical and chemical changes that were thought to occur over time post mortem. It was also the 

goal of this study to determine if the type of disturbance that caused the mortality of the sample 

trees influenced the observations we recorded. These points that follow are the points of highest 

interest taken from the study. 

• There was an observed difference in MoR and MoE values in the Young age class 

between the Beetle and Fire killed trees. 

• The Observed differences seen for MoR and MoE in the Young age class were no longer 

seen in the Old age class 

• Specific gravity measurements showed no difference mortality type in the Young age 

class, indicating a lack of sensitivity in the measurement as also seen in other studies. 

• Environmental differences between post-disturbance sites could be driving the observed 

differences seen in the MoR and MoE.  

• More research is needed with more narrowed goals to explore the analysis of the 

holocellulose to lignin ratio data. 

• Observed significant drops in calculated volumetric heat content for values between the 

Young and Old age classes.  

• More research is needed for improved model inputs for management applications. 
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