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China
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aState Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; bSouthern Marine Science 
and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; cCenter for Monsoon System Research, Institute of Atmospheric 
Physics, Chinese Academy of Sciences, Beijing, China

ABSTRACT
Using the historical simulations from 27 models in phase 5 of the Coupled Model Intercomparison 
Project (CMIP5) and 27 models in phase 6 (CMIP6), the authors evaluated the differences between 
CMIP5 and CMIP6 models in simulating the climate mean of extreme temperature over China 
through comparison with observations during 1979–2005. The CMIP6 models reproduce well the 
spatial distribution of annual maxima of daily maximum temperature (TXx), annual minima of daily 
minimum temperature (TNn), and frost days (FD). The model spread in CMIP6 is reduced relative to 
CMIP5 for some temperature indices, such as TXx, warm spell duration index (WSDI), and warm 
days (TX90p). The multimodel median ensembles also capture the observed trend of extreme 
temperature. However, the CMIP6 models still have low skill in capturing TX90p and cold nights 
(TN10p) and have obvious cold biases or warm biases over the Tibetan Plateau. The ability of 
individual models varies for different indices, although some models outperform the others in 
terms of the average of all indices considered for different models. By comparing different version 
models from the same organization, the updated CMIP6 models show no significant difference 
from their counterparts from CMIP5 for some models. Compared with individual models, the 
median ensembles show better agreement with the observations for temperature indices and 
their means.

CMIP6和CMIP5模式对中国极端温度的模拟能力的评估
摘要
本文评估了CMIP5和CMIP6模式对中国在1979–2005年期间的极端温度的模拟性能。结果表明： 
CMIP6模式可以很好地再现年最大日最高气温，年最小日最低气温和霜冻日数的空间分布特 
征。对于年最大日最高气温，持续暖日日数和暖昼，CMIP6模式间的不确定性相对于CMIP5模 
式有所降低。并且，CMIP6模式也能表现出观测到的极端温度的趋势。然而，CMIP6模式再现 
暖昼和冷夜的能力仍然不足，特别是在青藏高原上存在明显的冷偏差或者暖偏差对于某些指 
数。单个CMIP6或CMIP5模式的模拟能力就不同的指数而有所不同，某些模式的模拟能力较为 
突出。对于一些来自同一机构不同版本的模式，改进的CMIP6模式与CMIP5模式的模拟结果没 
有明显差异。多模式中位数平均的模拟效果优于大多数单个模式。
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1. Introduction

Temperature extremes associated with global warming 
are of great concern because our society is susceptible to 
both the intensity and frequency of extreme tempera-
ture. The extreme temperature has been widely reported 
in China (Hou et al. 2014; Chen and Sun 2014; Ren et al. 
2020). In general, changes in extreme temperature and 
their influence on our society differ with the region and 
the category of extremes (IPCC 2012). Therefore, the 
assessment of extreme events is important.

The Coupled Model Intercomparison Project (CMIP) 
provides simulations of past, present, and future climate. 

The purpose of CMIP is to investigate and improve cli-
mate model diagnosis, intercomparison, data access, etc. 
Extensive research to evaluate model simulations of 
extreme temperature started with the release of phase 
5 of CMIP (CMIP5) models (Guo et al. 2013; Sillmann et al. 
2013a, 2013b; Zhou et al. 2014; Wang et al. 2020). Chen 
and Sun (2015) revealed that for some extreme tempera-
ture indices, the model spread in CMIP5 is reduced 
compared with CMIP3. Dong et al. (2015) indicated that 
the observed spatial pattern of extreme temperature is 
generally captured by CMIP5 models, but there are some 
wide disagreements about differences between models 
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and observations for the duration and frequency indices 
in some areas. Though some new components (Taylor, 
Stouffer, and Meehl 2012) have been added to several 
models in CMIP5, the coarse resolution of the models 
fails to provide the regional-scale information necessary 
for regional impact assessment. Climate models are 
incapable of simulating well extreme events occurring 
on a small spatial scale (Kong et al. 2019). Recently, some 
modeling groups have released their new CMIP6 simula-
tions (Eyring et al. 2016; O’Neill et al. 2016). However, few 
studies have compared models from CMIP5 and CMIP6 
in simulating temperature extremes in China. This is 
what we intend to address in this study. We focus on 
the performance of CMIP5 and CMIP6 models, and aim 
to answer two questions: What are the differences from 
CMIP5 to CMIP6 models in simulating temperature 
extremes in China? Which models perform better in 
this regard?

The paper is organized as follows. Section 2 describes 
the data and the temperature indices, as well as the 
methods. Model simulation of present-day extreme tem-
perature over China is presented in section 3. The final 
section provides conclusions.

2. Data and methods

2.1. Model output and observations

Simulated daily minimum and maximum temperature 
(TN and TX, respectively) outputs were retrieved 
through data portals of the Earth System Grid 
Federation (https://esgf-node.llnl.gov/projects/esgf- 
llnl/) using 27 CMIP6 (Table S1) and 27 CMIP5 (Table 
S2) models. Only the historical experiments were 
employed.

The CN05.1 0.25° × 0.25° daily temperature dataset 
(Wu and Gao 2013) was used as observations. 
Additionally, the daily minimum and maximum tem-
peratures from three reanalyses were also used: NCEP- 
1, NCEP-2, and ERA5 (Kalnay et al. 1996; Kanamitsu et al. 
2002; Hersbach et al. 2020).

2.2. Temperature indices and methods

Extreme temperature indices have been defined in pre-
vious studies (Frich et al. 2002; Sillmann et al. 2013a). 
Here, we selected eight temperature indices (Table 1). 
These indices include absolute indices (TXx and TNn), 
fixed threshold indices (ID, FD, TX90p, and TN10p), and 
duration indices (WSDI and CSDI). Together, these 
indices generally cover all aspects of temperature 
extremes.

This study uses data for 1979–2005 from models, 
observation, and reanalyses. Percentile indices for the 
observations and models were calculated relative to the 
period 1961–90 (except for NCEP-2 and ERA5, which cover 
a short time period, and are instead computed during the 
period of 1979–2008). Differences from using different 
reference periods to calculate percentile indices are rela-
tively small. A similar method can be found in Chen and 
Sun (2015). To further evaluate the overall skill in simulat-
ing these indices, an exploratory model climate perfor-
mance index (MCPI) and an exploratory model variability 
index (MVI) were used. To calculate MCPI, first, the median 
of the model is obtained by computing the multimodel 
median of individual indices and then relative errors are 
determined. The MVI is defined as: 

MVImr ¼
XF

f¼1

βmrf �
1

βmrf

� �2

; (1) 

where m is a given model, r is the reference data, β2 is 
the ratio between simulated and observed variance, and 
F is the overall number of variables. More detailed infor-
mation on the use of MCPI and MVI may be found in 
Gleckler, Taylor, and Doutriaux (2008).

We also selected the Taylor skill score (TS) to assess 
model skill; the TS is defined according to Wang et al. 
(2018) as: 

TS ¼ 4 1þ Rð Þ
2
=

σm

σ0
þ

σ0

σm

� �2

1þ R0ð Þ
2

" #

; (2) 

where R is the spatial correlation coefficient between the 
model and observation, and R0 is the maximum correla-
tion coefficient attainable (here, we use 0.999). 
Parameters σm and σ0 are the standard deviations of 
the simulated and observed patterns, respectively. The 
score is 1 for a perfect match between observation and 
model, and 0 for no match at all.

To facilitate intercomparison, all indices were interpo-
lated onto a 1.25° × 1.25° grid using bilinear interpolation.

Table 1. Definitions of extreme temperature indices used in this 
study (TX and TN indicate daily maximum temperature and daily 
minimum temperature, respectively).

Label Index definition Units

TXx Annual maximum value of daily maximum temperature °C
TNn Annual minimum value of daily minimum temperature °C
ID Annual number of days when TX < 0°C Days
FD Annual number of days when TN < 0°C Days
WSDI Annual number of days with at least six consecutive days 

when TX > 90th percentile
Days

CSDI Annual number of days with at least six consecutive days 
when TN < 10th percentile

Days

TX90p Percentage of days when TX > 90th percentile %
TN10p Percentage of days when TN < 10th percentile %
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3. Results

3.1. Spatial pattern of temperature extremes

First, the spatial distribution of the annual mean from 
CN05.1 and the annual mean biases (departure of CMIP6 
and CMIP5 multimodel median ensembles from CN05.1) 
of four temperature indices (TXx, TNn, ID, and FD) during 
1979–2005 over China are shown in Figure 1. The 

observed TXx decreases from south to north in eastern 
China, and the line of maximum descent of TXx is from 
Southeast to Northwest China (Figure 1(a)). The tem-
perature gradients are also reasonably captured by the 
CMIP6 and CMIP5 multimodel medians (Figure S1(b,c)) 
but some biases are evident for the TXx relative to the 
observations (Figure 1(b,c)). The TXx is underestimated 
over parts of the Tibetan Plateau (TP) and Northeast 

Figure 1. Mean of observed TXx, TNn, ID, and FD indices (left column; see Table 1 for definitions) during 1979–2005. Middle and right 
columns display biases of CMIP5 and CMIP6 multimodel median ensembles when compared with observations. Units of TXx and TNn 
are °C; ID and FD are days.
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China but overestimated over parts of Xinjiang. 
Compared with CMIP5 models, these biases are reduced 
to some extent in CMIP6 models, especially over the TP 
(Figure S2(a)). The observed TNn (Figure 1(d)) is charac-
terized by north–south gradients. The TNn for CMIP5 
models displays substantially negative biases over parts 
of the TP, the Sichuan Basin, and South China, but 
exceeds its observed values over the north of 
Northeast China and parts of Xinjiang. These biases are 
also found in CMIP6 models, but with obviously smaller 
magnitude (Figure S2(b)). For example, compared with 
CIMP5, the negative bias over the TP is reduced by 38% 
in CMIP6. The average bias of TNn over China is −0.91°C 
from CMIP6 and −1.56°C from CMIP5. Overall, TXx and 
TNn have relatively obvious cold biases over the TP in 
both CMIP5 and CMIP6 models. This may be connected 
with the complex terrain in the TP (Flato et al. 2013), with 
the coarse resolutions of the climate models leading to 
difficulties in the model simulation that amplify the 
errors in this region compared with other regions.

The observed patterns of ID (Figure 1(g)) and FD 
(Figure 1(j)) show small values in some regions, such as 
in South China, while there are large values in the TP and 
Northeast China. The features of ID in China may be due 
to the strong moisture transport, Asian low, and so on 
(Wang et al. 2014). Regarding FD, water vapor cannot be 
ignored (Liu, Henderson, and Xu 2008). CMIP5 and 
CMIP6 models show a positive bias in ID over most 
parts of the northern China region, especially clearly in 
the TP (Figure S2(c)), with smaller magnitude in CMIP6 
models than in CMIP5 models. The bias over parts of 
Northwest China is reduced by 18% in CMIP6 relative to 
CMIP5. The area-weighted mean ID bias over China is 
25.42 days from CMIP6 and 27.47 days from CMIP5. For 
FD, CMIP6 models produce smaller systematic biases 
than CMIP5 models over parts of the TP and the 
Sichuan Basin (Figure S2(d)). The average bias over 
China is 8.45 days from CMIP6 and 12.27 days from 
CMIP5. In summary, CMIP6 models perform better in 
spatial distributions for the four indices TXx, TNn, ID, 
and FD.

In general, using percentile indices to assess model skill 
is difficult due to the threshold exceedance rate in the 
given period, which is nearly consistent for models, obser-
vations, and reanalyses (Sillmann et al. 2014). The WSDI 
shows large values (Figure 2(a)) over parts of the TP and 
Northwest China, and small values over parts of northern 
China and the Huanghuai area. CMIP5 and CMIP6 models 
simulate similar patterns of WSDI (Figure 2(b,c)), with 
negative biases over Northwest China, Northeast China, 
and so on, where CMIP6 models have smaller biases than 
CMIP5 models (Figure S2(e)). For instance, the bias over 
Northwest China is reduced by 13% in CMIP6 when 

compared with CMIP5. The average bias over the whole 
of China is −2.33 days from CMIP6 and −2.8 days from 
CMIP5. The observed CSDI has large values (Figure 2(d)) in 
South China and parts of Xinjiang, but mainly small values 
in the TP, Sichuan Basin, and North China. CMIP5 models 
(Figure 2(e)) underestimate values over most regions of 
China, while CMIP6 models (Figure 2(f)) overestimate CSDI 
over parts of North China, parts of South China, and parts 
of Xinjiang. The bias of CMIP6 models over parts of the 
middle and lower Yangtze River is obviously lower than 
that of CMIP5 models, with the bias reduced by 52% 
(Figure S2(f)). The average bias over China is −0.04 days 
from CMIP6 and −0.55 days from CMIP5. Figure 2(h–i, k–l) 
show a regional discrepancy in TX90p and a consistent 
overestimation of TN10p for CMIP5 and CMIP6 models in 
China. For TX90p, positive biases are found over parts of 
Southwest China, Xinjiang, Huanghuai area, Jianghuai 
area, and South China. CMIP6 models have notably smal-
ler biases than CMIP5 models for TX90p over some 
regions (Figure S2(g)), such as South China, the north of 
Sichuan Province, and the Huanghuai area, while both 
sets of models show comparable biases in magnitude 
for TN10p (Figure S2(h)), with an average bias of 1.7 
days over China from CMIP6 and 1.67 days from CMIP5.

The Taylor diagram (Taylor 2001) in Figure S3 shows 
that CMIP6 multimodel medians perform better than 
CMIP5 multimodel medians. It is also clear that the 
median ensemble is generally more skillful than the 
individual models for extreme temperature indices. 
From the results for TS (Figure S4), CMIP6 models show 
some improvements in CMIP5 models for temperature 
indices. Both CMIP5 and CMIP6 models show high skills 
for TXx, TNn, and FD, with TS above 0.9. Note that, for 
TX90p and TN10p, all models (CMIP6 and CMIP5) display 
obviously low skills, with TS below 0.3. In addition, the 
box and whisker plots (Figure S5) indicate that the root- 
mean-square errors (RMSEs) of the multimodel medians 
of CMIP6 are generally smaller than those of CMIP5 for 
most temperature indices. The uncertainties in CMIP6 
are reduced for some indices as indicated by the inter-
quartile model ranges. We also note that the magnitude 
of RMSEs of indices for reanalyses is comparable to the 
values of CMIP5 and CMIP6 models. However, the spread 
for the three reanalyses is similar to, or even larger than, 
that in the models. Therefore, caution should be exer-
cised when using these reanalyses for assessing models.

3.2. Temporal characteristics of extreme 
temperature indices

The temporal variations of indices over China for the 
observations, reanalyses, and models are displayed in 
Figure 3 for 1979–2005. We note that the multimodel 
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medians in both CMIP5 and CMIP6 have approximately 
the same magnitude. There are clear differences in the 
temporal characteristics of indices between models and 
observations for China. Compared with the observations, 
the multimodel median ensembles show smaller values 
for TXx and TNn (Figure 3(a–d)), but larger values for ID 
and FD.

The trends of indices for reanalyses and models are 
qualitatively similar to the observations, but differences 
remain (Figure 3(a–d)). The reanalyses display some dif-
ferences that are equal to, or larger than, the interquar-
tile model spread. This result is similar to a previous 
study (Sillmann et al. 2013a). We also note that CMIP5 
and CMIP6 models show better consistency with ERA5 

Figure 2. Mean of observed WSDI, CSDI, TX90p, and TN10p indices (left column; see Table 1 for definitions) during 1979–2005. Middle 
and right columns display biases of CMIP5 and CMIP6 multimodel median ensembles when compared with observations. Units of 
WSDI and CSDI are days; TX90p and TN10p are %.
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than with NCEP-1 and NCEP-2 for some indices, such as 
TXx and TNn.

The temporal characteristics of the percentile indices 
(Figure 3(e–h)) are clearly consistent with those of the 
indices TXx, TNn, ID, and FD for observations, reanalyses, 

and models. WSDI and TX90p show an increase, while 
CSDI and TN10p exhibit a decrease in models and rea-
nalyses, consistent with the observations. Overall, the 
cold temperature indices decrease with time and the 
warm temperature indices increase with time. CMIP5 

Figure 3. Spatial means of extreme temperature indices over China from 1979 to 2005 based on multimodel median ensembles of 
CMIP5 and CMIP6 models. Shading indicates the interquartile model range (between the 25th and 75th quartiles). Light pink indicates 
the CMIP6 multimodel ensemble and light blue indicates the CMIP5 multimodel ensemble. The observations from 1979 to 2005 are 
shown in black. Also shown are the reanalyses from 1979 to 2005: ERA5, NCEP-1, and NCEP-2. Units of TXx and TNn are °C; ID, FD, 
WSDI, and CSDI are days; TX90p and TN10p are %.
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and CMIP6 models also show high intermodel agree-
ment (Figure S6). Similar results can also be found in 
a previous study (Zhou et al. 2016).

3.3. Relative model skills

The abilities of models in simulating the eight tempera-
ture indices vary from one model to another (Figure S7 
(a) summarizes the relative errors of each model in 
simulating the temperature indices in the form of 
a ‘portrait’ diagram). No models perform well relative 
to the observations for all indices. For instance, the 
model NorESM2-MM outperforms other typical models 
for most indices, but has a large relative error in TX90p. 
Some CMIP5 models reveal large biases for most tem-
perature indices, such as INMCM4. Additionally, consis-
tent with the results of a previous multimodel study 
(Sillmann et al. 2013a), the median ensembles of the 
two CMIP sets of models generally outperform individual 
models, due to offsetting of the systematic errors of 
individual models in the multimodel median ensembles. 
CMIP6 median ensembles show a better agreement with 
the observations than CMIP5 median ensembles for 
most temperature indices. A comparison between 
a subset of 13 CMIP6 models and their 12 CMIP5 pre-
decessors was also conducted (Figure S8). We found that 
most of the 13 affiliated CMIP6 simulations show no 
obvious difference from their CMIP5 counterparts for 
climate simulations.

The top 20 models that present a relatively smaller 
MVI consist of almost equal numbers of CMIP6 models 
and CMIP5 models (Figure S7(b)). CESM1(BGC) and 
CCSM4 perform best among all models (both CMIP5 
and CMIP6). Compared with CMIP5 models, their corre-
sponding updated versions in CMIP6 (such as IPSL-CM6A 
-LR corresponds to IPSL-CM5A-LR, UKESM1-0-LL corre-
spond to HadGEM2-ES, GFDL-ESM4 corresponds to 
GFDL-ESM2G and GFDL-ESM2M) show no obvious 
improvement in simulating interannual variability. 
Some updated models display poorer performance 
than the old models. For example, CanESM5 performs 
worse than CanESM2.

4. Conclusions

In this study, we have analyzed the performance of 
CMIP5 and CMIP6 models in reproducing extreme tem-
perature over China by comparing the results with 
observations and three reanalyses. The main results 
may be summarized as follows.

The trends and spatial features of the temperature 
indices over China are reproduced reasonably well by 
the CMIP6 multimodel median ensembles. However, 
there are some discrepancies for models relative to the 
observations. For instance, there is a cold bias of TXx and 
TNn apparent over the TP, while positive biases of ID are 
found over most areas in China. Nevertheless, the 
observed decreases in ID and FD are captured well by 
the models. Increases are simulated for TXx and TNn, in 
agreement with the observations. These good skills are 
also found in percentile indices. Similar results are 
obtained with the CMIP5 simulations, but CMIP6 models 
outperform CMIP5 models for most temperature indices.

The median ensembles in both CMIP5 and CMIP6 
models appear to perform better than individual mod-
els. However, intermodel uncertainties in spatial and 
temporal variations have comparable magnitude 
between CMIP6 and CMIP5.

Three reanalysis datasets show relatively good agree-
ment with the observations, although there are obvious 
discrepancies. The difference between reanalyses is lar-
ger than, or similar to, the interquartile model spread of 
CMIP5 and CMIP6 models for some indices. Therefore, 
caution should be exercised when using these reanalysis 
datasets for model evaluations at the regional scale.

The performance of individual models was measured 
using the MCPI and MVI for extreme temperature indices. 
We found that the updated CMIP6 models show no 
significant difference from their counterparts from CMIP5.

Note that we have not analyzed the physical pro-
cesses. Extreme temperature can be affected by land- 
use or land-cover changes (Avila et al. 2012). We have 
also not discussed the results of the projected changes 
of these indices over China for CMIP6 models. These 
aspects need to be studied further.
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