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ABSTRACT
Thermal convection is ubiquitous in nature as well as in many indus-
trial applications. The identification of effective control strategies to,
e.g. suppress or enhance the convective heat exchange under fixed
external thermal gradients is an outstanding fundamental and tech-
nological issue. In this work, we explore a novel approach, based
on a state-of-the-art Reinforcement Learning (RL) algorithm, which
is capable of significantly reducing the heat transport in a two-
dimensional Rayleigh–Bénard systembyapplying small temperature
fluctuations to the lower boundary of the system. By using numeri-
cal simulations, we show that our RL-based control is able to stabilise
the conductive regime and bring the onset of convection up to a
Rayleigh number Rac ≈ 3 · 104, whereas state-of-the-art linear con-
trollers have Rac ≈ 104. Additionally, for Ra > 3 · 104, our approach
outperforms other state-of-the-art control algorithms reducing the
heat flux by a factor of about 2.5. In the last part of the manuscript,
we address theoretical limits connected to controlling an unstable
and chaotic dynamics as the one considered here.We show that con-
trollability is hindered by observability and/or capabilities of actuat-
ing actions, which can be quantified in terms of characteristic time
delays. When these delays become comparable with the Lyapunov
time of the system, control becomes impossible.
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1. Introduction

Rayleigh–Bénard convection (RBC) provides a widely studied paradigm for thermally
driven flows, which are ubiquitous in nature and in industrial applications [1]. Buoyancy
effects, ultimately yielding to fluid dynamics instability, are determined by temperature gra-
dients [2] and impact on the heat transport. The control of RBC is an outstanding research
topic with fundamental scientific implications [3]. Additionally, preventing, mitigating or
enhancing such instabilities and/or regulating the heat transport is crucial in numerous
applications. Examples include crystal growth processes, e.g. to produce silicon wafers [4].
Indeed, while the speed of these processes benefits from increased temperature gradients,
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the quality of the outcome is endangered by fluidmotion (i.e. flow instability) that grows as
the thermal gradients increase. Thus the key problem addressed here: can we control and
stabilise fluid flows that, due to temperature gradients, would otherwise be unstable?

In the Boussinesq approximation, the fluid motion in RBC can be described via the
following equations [5]:

∂u
∂t

+ u · ∇∇∇u = −∇∇∇p + ν∇2u + ŷαg(T − T0), (1)

∂T
∂t

+ u · ∇∇∇T = κ∇2T, (2)

where t denotes the time, u the incompressible velocity field (∇∇∇ · u = 0), p the pressure,
ν the kinematic viscosity, α the thermal expansion coefficient, g the magnitude of the
acceleration of gravity (with direction ŷ), T0 a reference temperature and κ the thermal
diffusivity. For a fluid system confined between two parallel horizontal planes at distanceH
andwith temperaturesTC andTH = TC + �T, respectively for the top and the bottom ele-
ment (�T > 0), it is well known that the dynamics is regulated by three non-dimensional
parameters: the Rayleigh and Prandtl numbers and the aspect ratio of the cell (i.e. the ratio
between the cell height and width Lx), i.e.

Ra = gα(TH − TC)H3

κν
, Pr = ν/κ , � = H/Lx. (3)

Considering adiabatic side walls, amean heat flux, q, independent on the height establishes
on the cell:

q = 〈uyT〉x − κ∂y〈T〉x = const, (4)

where 〈·〉x indicates an average with respect to the x-axis, parallel to the plates, and • the
time averaging. The time-averaged heat flux is customarily reported in a non-dimensional
form, scaling it by the conductive heat flux, κ�T/H, which defines the Nusselt number

Nu = q
κ�T/H

. (5)

As the Rayleigh number overcomes a critical threshold, Rac, fluid motion is triggered
enhancing the heat exchange (Nu > 1).

Dubbed in terms of Rayleigh and Nusselt numbers, our control question becomes: can
we diminish, or minimise, Nusselt for a fixed Rayleigh number?

In recent years, diverse approaches have been proposed to tackle this issue. These can
be divided into passive and active control methods. Passive control methods include:
acceleration modulation [3,6], oscillating shear flows [7] and oscillating boundary tem-
peratures [8]. Active control methods include: velocity actuators [9] and perturbations of
the thermal boundary layer [10–12]. Many of these methods, although ingenious, are not
practical due, e.g. to the requirement of a perfect knowledge of the state of the system or
a starting condition close to the conductive state – something difficult to establish [11].
Another state-of-the-art active method, that is used in this paper as comparison, is based
on a linear control acting at the bottom thermal boundary layer [13]. The main difficulty
in controlling RBC resides in its chaotic behaviour and chaotic response to controlling
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actions. In recent years, Reinforcement Learning (RL) algorithms [14] have been proven
capable of solving complex control problems, dominating extremely hard challenges in
high-dimensional spaces (e.g. board games [15,16] and robotics [17]). RL is a supervised
Machine Learning (ML) [18] approach aimed at finding optimal control strategies. This is
achieved by successive trial-and-error interactions with a (simulated or real) environment
which iteratively improve an initial random control policy. Indeed, this is usually a rather
slow process which may take millions of trial-and-error episodes to converge [19].

RL has been applied in the physical sciences [20] and used in connection with fluid
flows [21], such as for training smart inertial or self-propelling particles [22–24], for
schooling of fishes [25,26], soaring of birds and gliders in turbulent environments [27,28],
optimal navigation in turbulent flows [29,30], drag reduction by active control in the
turbulent regime [31] and more [32–37].

In this work, we show that RL methods can be successfully applied for controlling a
Rayleigh–Bénard system at fixed Rayleigh number reducing (or suppressing) convective
effects. Considering a 2D proof-of-concept setup, we demonstrate that RL can significantly
outperform state-of-the-art linear methods [13] when allowed to apply (small) temper-
ature fluctuations at the bottom plate (see setup in Figure 1). In particular, we target a
minimization of the time-averaged Nusselt number (Equation 5), aiming at reducing its
instantaneous counterpart:

Nuinstant(t) = 〈uyT〉x,y − κ∂y〈T〉x,y
κ�T/H

, (6)

where the additional average along the vertical direction, y, amends instantaneous fluctu-
ations.

Finding controls fully stabilising RBCmight be, however, at all impossible. For a chaotic
system as RBC, this may happen, among others, when delays in controls or observation
become comparable with the Lyapunov time. We discuss this topic in the last part of the
paper employing RL to control the Lorenz attractor, a well-known, reduced version of
RBC [38].

The rest of this manuscript is organised as follows. In Section 2, we formalise the
Rayleigh–Bénard control problem and the implementation of both linear and RL controls.
In Section 3, we present the control results and comment on the induced flow structures. In
Section 4, we analyse physical factors that limit the RL control performance. The discussion
in Section 5 closes the paper.

2. Control-based convection reduction

In this section, we provide details of the Rayleigh–Bénard system considered, formalise
the control problem and introduce the control methods.

We consider an ideal gas (Pr = 0.71) in a two-dimensional Rayleigh–Bénard system
with � = 1 at an assigned Rayleigh number (cf. sketch and (x, y) coordinate system in
Figure 1).We assume the four cell sides to satisfy a non-slip boundary condition, the lateral
sides to be adiabatic, and a uniform temperature, TC, imposed at the top boundary. We
enforce the Rayleigh number by specifying the average temperature,

TH = 〈TB(x, t)〉x, (7)
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Figure 1. Schematics of linear (a) and Reinforcement Learning (b) control methods applied to a
Rayleigh–Bénard system and aiming at reducing convective effects (i.e. the Nusselt number). The sys-
tem consists of a domain with height, H, aspect ratio, � = 1, no-slip boundary conditions, constant
temperature TC on the top boundary, adiabatic side boundaries and a controllable bottom boundary
where the imposed temperature TB(x, t) can vary in space and time (according to the control proto-
col) while keeping a constant average 〈TB(x, t)〉x = TH . Because the average temperature of the bottom
plate is constant, the Rayleigh number is well defined and constant over time. The control protocol
of the linear controller (a) works by calculating the distance measure E(x, t) from the ideal state (cf.
Equation 10–11) and, based on linear relations, applies temperature corrections to the bottom plate.
The RL method (Figure 1b) uses a Neural Network controller which acquires flow state from a number
of probes at fixed locations and returns a temperature profile (see details in Figure 2). The parameters
of the Neural Network are automatically optimised by the RL method, during training. Moreover, in the
RL case, the temperature fluctuations at the bottom plate are piece-wise constant and can have only
prefixed temperature value between two states, hot or cold (cf. Equation 12). Operating with discrete
actions reduces significantly the complexity and the computational resources needed for training.

at the bottom boundary (where TB(x, t) is the instantaneous temperature at location x of
the bottom boundary). Temperature fluctuations with respect to such average,

T̂B(x, t) = TB(x, t) − TH , (8)

are left for control.
We aim at controlling T̂B(x, t) to minimise convective effects, which we quantify via

the time-averaged Nusselt number (cf. Equation 5). We further constrain the allowed
temperature fluctuations to

T̂B(x, t)| ≤ C ∀x, t, (9)

to prevent extreme and nonphysical temperature gradients (in similar spirit to the experi-
ments in [11]).

We simulate the flow dynamics through the Lattice–Boltzmann method (LBM) [5]
employing a double lattice, respectively for the velocity and for the temperature popula-
tions (with D2Q9 and D2Q4 schemes on a square lattice with sizes Nx = Ny; collisions
are resolved via the standard BGK relaxation). We opt for the LBM since it allows for fast,
extremely vectorizable, implementations which enables us to performmultiple (up to hun-
dreds) simulations concurrently on a GPU architecture. See Table 1 for relevant simulation
parameters; further implementation details are reported in Appendix 1.
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Table 1. Rayleigh–Bénard system and simulation parameters.

Parameters

Ra 103 −→ 107 Rayleigh Number
Pr 0.71 Prandtl Number
� 1 Aspect Ratio

Control
C 0.75 Control amplitude limit, Equation (9)
�t 16 −→ 180 Control loop (unit: LBM steps)
ti 0 (training) Start evaluation time, for averages in Equation (5)
” 150�t (test) ”
te 500�t End evaluation time, for averages in Equation (5)

Lattice Boltzmann simulation (Appendix 1)
NX = NY 20 −→ 350 Grid size
c2s 1/3 Speed of sound
τ 0.56 Relaxation time
TC 1 Top boundary temperature
TH 2 Bottom boundary mean temperature
τT (τ − 1/2)/Pr + 1/2 Temperature relaxation time
ν c2s (τ − 1/2) Kinematic viscosity
κ (2τT − 1)/4 Thermal diffusivity
αg Ra

κν

(TH − TC)N3Y
Effective gravity

Starting from a system in a (random) natural convective state (cf. experiments [11]),
controlling actions act continuously. Yet, to limit learning computational costs, T̂B(x, t) is
updatedwith a period,�t (i.e. control loop), longer than the LBM simulation step and scal-
ing with the convection time, tconvection ∼ H/Ubulk. We report in Table A1 the loop length,
which satisfies, approximately, �t ≈ 1/20 tconvection, and the system size, all of which are
Ra-dependent. Once more, for computational efficiency reasons, we retain the minimal
system size that enables us to quantify the (uncontrolled) Nusselt number within 5% error
(Appendix 1).

In the following sections, we provide details on the linear and RL-based controls.

2.1. Linear control

We build our reference control approach via a linear proportional-derivative (PD) con-
troller [13]. Our control loop prescribes instantaneously the temperature fluctuations at
the bottom boundary as

T̂B(x, t) = R(T̃B(x, t)) = −R((kP − kD∂t)E(x, t)) (10)

with kP, kD being constant parameters and the (signed) distance from the optimal conduc-
tive state (ux = uy = 0), E(x, t), satisfying

E(x, t) = 〈uy(x, y, t)〉y/V0, (11)

where V0 is a reference vertical velocity. To ensure the constraints given by Equations (7),
(9) we operate a clipping and renormalization operation,R(·), as described in Appendix 2.

Various other metrics, E(x, t), have been proposed leveraging, for instance, on the
shadow graph method (E(x, t) = (〈ρ(x, y, t)〉y − ρ0)/ρ0 [11]), and on the mid-line tem-
perature (E(x, t) = (T(x,H/2, t) − T1/2)/�T, with T1/2 = 1/2(TH + TC), [10]). These
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Table 2. Parameters used for the linear controls in Lattice Boltzmann units (cf. Equation (10); note: a P
controller is obtained by setting kD = 0 ). At Ra = 107 wewere unable to find PD controllers performing
better than P controllers, which were anyway ineffective.

P control PD control

Ra Nx = Ny kP kP kD

1 · 103 20 0.0 0.0 0.0
3 · 103 20 3.16 · 102 3.16 · 102 0.0
1 · 104 20 4.12 · 102 5.28 · 102 8.24 · 104
3 · 104 25 8.97 · 102 5.45 · 104 1.91 · 106
1 · 105 30 16.4 94.8 1.05 · 104
3 · 105 40 9.38 11.5 1.87 · 103
1 · 106 100 6.61 1.84 · 104 3.06 · 105
3 · 106 200 7.38 0.12 31.8
1 · 107 350 0.33 – –

metrics provide similar results and, in particular, an average Nusselt number for the con-
trolled systems within 5%. In this paper, we limit ourselves to a proof of concept for the
application of RL to control RB convection, without pretending to show optimality against
all other possible linear or non-linear controls, hence we limit our scope to state-of-the-
art linear controls. We opted for Equation (11) as it proved to be more stable. Note that,
by restricting to kD = 0, one obtains a linear proportional (P) controller. While suppos-
edly less powerful than a PD controller, in our case the two show similar performance.
The controller operates with the same space and time discretization of the LBM simula-
tions, with the time derivative of E(x, t) calculatedwith a first-order backwards scheme.We
identify the Rayleigh-dependent parameters kP and kD via a grid-search algorithm [39] for
Ra ≤ 3 · 106 (cf. values in Table 2). In case of higher Ra, due to the chaoticity of the system,
we were unable to find parameters consistently reducing the heat flux with respect to the
uncontrolled case.

2.2. Reinforcement learning-based control

In an RL context, we have a policy, π , that selects a temperature fluctuation, T̂(x, t), on the
basis of the observed system state. π is identified automatically through an optimization
process, which aims at maximising a reward signal. In our case, we define the system state,
the allowed controlling actions and the reward are as follows:

• The state space, S, includes observations of the temperature and velocity fields (i.e. of
nf = 3 scalar fields) probed on a regular grid in GX × GY = 8 × 8 nodes for the last
D = 4 time steps (i.e. t, t − �t, . . . , t − (D − 1)�t, where t is the current time). Note
that the probe grid has a coarser resolution than the lattice, i.e. GX < NX , GY < NY ,
which allows to reduce the complexity of the control problem. It holds, therefore,
S = R

D·nf ·GX ·GY .
• The action space, A, includes the temperature profiles for the lower boundary that

the controller can instantaneously enforce. We allow profiles which are piece-wise
constant functions on ns = 10 segments (cf. Figure 1). Moreover, each of the ns
function elements, T̃k (k = 1, 2, . . . , ns), can attain only two temperature levels, i.e.

T̃k ∈ {C,−C}. (12)
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To enforce the constraint in Equation (7), (9), we normalise the profile according to
Appendix 2, generating the final profile T̂k = R(T̃k). After normalization, the action
space includes 2ns − 1 distinct actions. While allowing for discontinuous temper-
ature profiles is unrealistic, it enables a significant reduction of the computational
complexity and the search difficulty in the action search space. We deem that RL
algorithms would be capable of finding suitable control strategies also when applied
in experiments with continuous temperature profiles, possibly after longer training,
due to their inherent flexibility. Furthermore, as far as the physics is concerned, a
discontinuous control in time/space or a continuous implementation with frequen-
cies and wavelengths high enough to fall in the dissipative-turbulent ranges should
nevertheless be equivalent.

• The reward function defines the goal of the control problem. We define the reward,
rl+1, as the negative instantaneous Nusselt number (cf. Equation 6) which results
from applying a temperature profile al ∈ A at time tl. In formulas, it holds

rl+1 = −Nuinstant(tl+1). (13)

Note that the RL controller aims at maximising the reward accumulated over time
(rather than the instantaneous reward), which minimises the average Nusselt num-
ber, Equation (5), as desired.

We employ the Proximal Policy Optimization (PPO) RL algorithm [40], which belongs
to the family of Policy Gradient Methods. Starting from a random initial condition, Pol-
icy Gradient Methods search iteratively (and probabilistically) for optimal (or sufficient)
policies by gradient ascent (based on local estimates of the performance). Specifically, this
optimization employs a probability distribution, π(ai|si), on the action space conditioned
to the instantaneous system state. At each step of the control loop, we sample and apply
an action according to the distribution π(a|s). Notably, the sampling operation is essen-
tial at training time, to ensure an adequate balance between exploration and exploitation,
while at test time, this stochastic approach can be turned deterministic by restricting to the
action with highest associated probability. In our case, at test time we used the determinis-
tic approach for Ra < 3 · 106 and the stochastic approach for Ra ≥ 3 · 106, as this allowed
for higher performance.

The PPO algorithm is model free, i.e. it does not need assumptions on the nature of the
control problem. Besides, it does not generally require significant hyperparameter tuning,
as often happens for RL algorithms (e.g. value-based method [40]). Due to a lack of stan-
dard hyperparameters for flow control, the hyperparameters employed are based on the
work on RL for games by Burda et al. [41]. See Appendix 3 for the specific values.

When the state vector si is high dimensional (or even continuous), it is common to
parameterise the policy function in probabilistic terms as π(ai|si) = π(ai|si; θ), for a
parameter vector θ [15]. This parameterization can be done via different kinds of func-
tions and, currently, neural networks are a popular choice [42]. In the simplest case, as
used here, the neural network is a multilayer perceptron [14] (MLP) which is often used
in RL [41]. An MPL is a fully connected network in which neurons are stacked in layers
and information flows in a pre-defined direction from the input to the output neurons via
‘hidden’ neuron layers. The ith neuron in the (n + 1)th layer operates returning the value
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h(n+1)
i , which satisfies

h(n+1)
i = σ

⎛
⎝b(n)

i +
∑
j
A(n)
ij h(n)

j

⎞
⎠ , (14)

where the h(n)
j ’s are the outputs of the neurons of the previous layer (the nth one), which

thus undergo an affine transformation via the matrix A(n)
ij and the biases b(n)

i . The non-
linear activation function σ provides the network with the capability of approximating
non-linear functions [42]. During training, the parameters θ get updated through back
propagation [43] (according to the loss defined by the PPO algorithm) which results in
progressive improvements of the policy function.

To increase the computational efficiency, we opt for a policy function factorised as
follows:

π(ai|si) = π
(
T̃1, T̃2, . . . , T̃ns

∣∣∣si
)

=
ns∏
k=1

πk

(
T̃k

∣∣∣si
)
. (15)

In other words, we address the marginal distributions of the local temperature values
T̃1, T̃2, . . . , T̃ns . We generate the marginals by an MLP (with two hidden layers each with
σ(·) = Tanh(·) activation) that has ns final outputs, y1, y2, . . . , yns , returned by sigmoid
activation functions, in formulas:

yk = φ(zk) = 1
1 + exp(−zk)

, k = 1, 2, . . . , ns (16)

Figure 2. Sketch of the neural network determining the policy adopted by the RL-based controller (pol-
icy network, π , cf. Figure 1(b) for the complete setup). The input of the policy network is a state vector,
s, which stacks the values of temperature and both velocity components for the current and the previ-
ous D−1 = 3 timesteps. Temperature and velocity are read on an evenly spaced grid of size GX = 8 by
GY = 8. Hence, shas dimension nf · GX · GY · D = 3 · 8 · 8 · 4 = 768. The policy networkπ is composed
of two fully connected feed forward layers with nneurons = 64 neurons and σ(·) = tanh(·) activation.
The network output is provided by one fully connected layer with σ(·) = φ(·) activation (Equation 16).
This returns theprobability vector y = [y1, y2, . . . , yns ]. The kjth bottomsegment has temperature Cwith
probability yk (Equation 17). This probability distribution gets sampled to produce a proposed tempera-
ture profile T̃ = (T̃1, T̃2, . . . , T̃ns). The final temperature fluctuations T̂1, T̂2, . . . , T̂ns are generated with
the normalization step in Equation (A7) (cf. Equations (7) and (9)). The temperature profile obtained
is applied to the bottom plate during a time interval �t (control loop), after which the procedure is
repeated.
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with zk = ∑
j A

(2)
kj h

(2)
j + b(2)

k (see Figure 2, note that 0 ≤ φ(zk) ≤ 1). The values
y1, y2, . . . , yns provide the parameters for ns Bernoulli distributions that determine, at
random, the binary selection between the temperature levels {−C,C}. In formulas, it holds

πk

(
T̃k = +C

∣∣∣si
)

= Bernoulli(p = yk). (17)

The final temperature profile is then determined via Equation (12) and the normalization
in Equation (A5). We refer to Figure 2 for further details on the network.

3. Results

We compare the linear and RB-based control methods on nine different scenarios with
Rayleigh number ranging between Ra = 103 (just before the onset of convection) and
Ra = 107 (mild turbulence, see TableA1). Figure 3 provides a summary of the performance
of the methods in terms of the (ensemble) averaged Nusselt number. Until Ra ≈ 104, the
RL control and state-of-the-art linear control deliver similar performance. At higher Ra
numbers, in which the Rayleigh–Bénard system is more complex and chaotic, RL controls
significantly outperform linear methods. This entails an increment of the critical Rayleigh
number, which increases from ≈ 103, in the uncontrolled case, to ≈ 104, in case of linear
control, and to≈ 3 · 104 in case of RL-based controls. Above the critical Rayleigh, RL con-
trols manage a reduction of the Nusselt number which remains approximately constant,

Figure 3. Comparison ofNusselt number, averagedover time and ensemble,measured for uncontrolled
and controlled Rayleigh–Bénard systems (note that all the systems are initialised in a natural convec-
tive state).We observe that the critical Rayleigh number, Rac , increaseswhenwe control the system,with
Rac = 104 in case of state-of-the-art linear control and Rac = 3 · 104 in case of the RL-based control. Fur-
thermore, for Ra > Rac , theRL control achieves aNusselt number consistently lower thanwhatmeasured
in case of the uncontrolled systemand for state-of-the-art linear controls (P andPD controllers have com-
parable performance at all the considered Rayleigh numbers, see also [13]). The error bars are estimated
asμNu/

√
N, whereN = 161 is the number of statistically independent samplings of theNusselt number.
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for our specific experiment, it holds

Nuuncontrolled − NuRL ≈ 2.5 for Ra < 3 · 106.
In contrast, the linear method scores only

Nuuncontrolled − Nulinear ≈ 1.5 for Ra < 106,

while at higher Rayleigh it results completely ineffective.
The reduction of the average Nusselt number is an indicator of the overall suppression –

or the reduction – of convective effects, yet it does not provide insightful and quantitative
information on the characteristics of the control and of the flow. In Figure 4, we compare
the controls in terms of the time histories of the (ensemble-averaged) Nusselt number.
We include four different scenarios. For Ra = 3 · 104, the RL control is able to stabilise
the system (Nu ≈ 1) while both linear control methods result in periodic orbits [13]. At
Ra = 105, RL controls are also unable to stabilise the system; yet, this does not result in
any periodic flows as in the case of linear control. Finally, at Ra = 106 we observe a time-
varyingNusselt number even usingRL-based controls. To better understand the RL control
strategy, in Figures 5 and 6, we plot the instantaneous velocity streamlines for the last two
scenarios.

Figure 4. Timeevolutionof theNusselt number at fourdifferentRayleigh regimes,with the control start-
ing at t = 0. The time axis is in units of control loop length,�t (cf. Table A1). Up to Ra = 3 · 104 (a,b), the
RL control is able to stabilise the system (i.e. Nu ≈ 1), which is in contrast with linearmethods that result
in a unsteady flow. At Ra = 105 (c), the RL control is also unable to fully stabilise the system, yet, contrar-
ily to the linear case, it still results in a flow having stationaryNu. For Ra = 106 (d) the performance of RL
is not as stable as at lower Ra, the control however still manages to reduce the average Nusselt number
significantly. (a) Ra = 1 · 104, (b) Ra = 3 · 104, (c) Ra = 1 · 105 and (d) Ra = 1 · 106.
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Figure 5. Instantaneous stream lines at different times, at Ra = 105, comparison of cases without con-
trol (a), with linear control (b) and with RL-based control (c). Note that the time is given in units of �t
(i.e. control loop length, cf. Table A1. Note that the snapshots are taken at different instants). RL controls
establish a flow regime like a ‘double cell mode’ which features a steady Nusselt number (see Figure 4c).
This is in contrast with linear methods which rather produce a flowwith fluctuating Nusselt. The double
cell flow field has a significantly lower Nusselt number than the uncontrolled case, as heat transport to
the topboundary canonly happen via diffusion through the interface between the two cells. This ‘double
cell’ control strategy is established by the RL control with any external supervision.

For the case Ra = 105 (see Figure 5 c), the RL control steers and stabilises the
system towards a configuration that resembles a double cell. This reduces convec-
tive effects by halving the effective Rayleigh number, Raeff , defined by the relation
Nuuncontrolled(Raeff ) ≈ NuRL(Ra). In particular, we can compute an effective Rayleigh
number, Raeff , by observing that the double cell structure can be constructed as two verti-
cally stacked Rayleigh–Bénard systems with halved temperature difference and height (i.e.
in formulas, �T′ = �T/2 and H′ = H/2). It thus results in an effective Rayleigh number
satisfying

Raeff = gα�T′H′3

νκ
= 1

16
gα�TH3

νκ
= 1

16
Ra, (18)

which is in line with the observed reduction in Nusselt.
At Ra = 3 · 106, it appears that the RL control attempts, yet fails, to establish the ‘double

cell’ configuration observed at lower Ra (cf. Figure 6 c). Likely, this is connected to the
increased instability of the double cell configuration as Rayleigh increases.

These results were achieved with less than an hour of training time on an Nvidia V100
for the caseswith lowRayleighnumber (Ra � 105).However, at Ra � 106 the optimization
took up to 150 h of computing time (the majority of which is spent in simulations and
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Figure 6. Instantaneous stream lines at Ra = 3 · 106, comparison of cases without control (a), with lin-
ear control (b), andwith RL-based control (c).We observe that the RL control still tries to enforce a ‘double
cell’ flow, as in the lower Rayleigh case (Figure 5). The structure is, however, far less pronounced and
convective effects are much stronger. This is likely due to the increased instability and chaoticity of the
system, which increases the learning and controlling difficulty. Yet, we can observe a small alteration in
the flow structure (cf. lower cell, larger in size than in uncontrolled conditions) which results in a slightly
lower Nusselt number.

the minority of which is spent in updating the policy). For further details on the training
process of the RL controller, see Appendix 4.

4. Limits to learning and control

In this section, we discuss possible limits to the capability of learning automatic con-
trols when aiming at suppressing convection. Our arguments are grounded on physics
concepts and thus apply in general to control problems for non-linear/chaotic dynamics.
Indeed, physical limitations might likely render some control problems unsolvable, either
in absolute terms or by employing data-driven learning methods [44].

In Section 2, we showed that RL controls are capable of substantially outperforming
linear methods in the presence of sufficient control complexity (Ra � 104). It remains,
however, unclear how far these controls are from optimality, especially at high Ra. Here we
address the physics factors certainly hindering learning and controlling capabilities.

Having sufficient time and spatial resolution on the relevant state of the system is an
obvious requirement to allow a successful control. Such resolution, however, is not defined
in absolute terms, rather it connects to the typical scales of the system and, in case of a
chaotic behaviour, with the Lyapunov time and associated length scale. In our case, at fixed
Ra, learnability and controllability connect with the number and density of probes, with
the time and space resolution of the control, but also with its ‘distance’ with respect to the
bulk of the flow.
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The system state is observed via a number of probes in fixed position (see Figure 1 b). For
a typical (buoyant) velocity in the cell, vb, there is a timescale associated with the delay with
which a probe records a sudden change (e.g. creation/change of a plume) in the system.
When this timescale becomes comparable or larger than the Lyapunov time, it appears
hopeless for any control to learn and disentangle features from the probe readings. In other
words, as Ra increases, we expect that a higher and higher number of probes becomes
necessary (but not sufficient) in order to learn control policies.

Besides, our choice to control the system via the bottom plate temperature fluctuations
entails another typical delay: the time taken to thermal adjustments to propagate inside
the cell. In particular, in a cell at rest, this is the diffusion time, tD ∼ H2/κ ∼ Ra1/2. If
the delay gets larger or comparable to the Lyapunov time, controlling the system becomes,
again, likely impossible.

To illustrate this concept, we rely on a well-known low-dimensional model inspired by
RBC: the Lorenz attractor. The attractor state is three-dimensional and its variables (usually
denoted by x, y, z; see Appendix 5) represent the flow angular velocity, the horizontal tem-
perature fluctuations and the vertical temperature fluctuations. We consider an RL control
acting on the horizontal temperature fluctuations (y variable) that aims at either minimis-
ing or maximising the sign changes of the angular velocity (i.e. maximising or minimising
the frequency of sign changes of the x variable). In other words, the control aims at keep-
ing the flow rotation direction maximally consistent or, conversely, at magnifying the rate
of velocity inversions. In this simplified context, we can easily quantify the effects of an
artificial delay in the control on the overall control performance (Figure 7). Consistently
with our previous observations, when the artificial delay approaches the Lyapunov time
the control performance significantly degrades.

Figure 7. Performance loss due to an artificial delay imposed to anRL controller operating on the Lorenz
attractor. The controller, operating on the y variable of the system (reduced model for the RBC horizon-
tal temperature fluctuations) aims at either maximising (LA oscillator) or minimising (LA stabiliser) the
number of sign changes of the x (in RBC terms the angular velocity of the flow). The delay, on the hori-
zontal axis, is scaled on the Lyapunov time, λ−1, of the system (with λ the largest Lyapunov exponent).
In case of a delay in the control loop comparable in size to the Lyapunov time, the control performance
diminishes significantly.
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Figure 8. Average Nusselt number for an RL agent observing the Rayleigh–Bénard environment at
different probe density, all of which are lower than the baseline employed in Section 3. The grid sizes (i.e
information) used to sample the state of the system at theRa considered does not seem to play key role
in limiting the final control performance of the RL agent.

Notably, in our original 2DRBC control problem (Section 2), control limitations are not
connected to delays in observability. In fact, as we consider coarser and coarser grids of
probes, the control performance does not diminish significantly (cf. Figure 8; surprisingly,
observations via only 4 allow similar control performance to what achieved employing 64
probes). This suggests that other mechanisms than insufficient probing determine the per-
formance, most likely, the excessively long propagation time (in relation to the Lyapunov
time) needed by the controlling actions to traverse the cell from the boundary to the bulk.
This could be possibly lowered by considering different control and actuation strategies.

5. Discussion

In this paper, we considered the issue of suppressing convective effects in a 2D
Rayleigh–Bénard cell, by applying small temperature fluctuations at the bottom plate. In
our proof of concept comparison, limited to a square cell and fixed Pr, we showed that con-
trols based on RL are able to significantly outperform state-of-the-art linear approaches.
Specifically, RL is capable of discovering controls stabilising the Rayleigh–Bénard system
up to a critical Rayleigh number that is approximately 3 times larger than achievable by
state-of-the-art linear controllers and 30 times larger than in the uncontrolled case. Sec-
ond, when the purely conductive state could not be achieved, the RL still produces control
strategies capable of reducing convection, which are significantly better than linear algo-
rithms. The RL control achieves this by inducing an unstable flow mode, similar to a
stacked double-cell, yet not utilised in the context of RBC control.

Actually no guarantee exists on the optimality of the controls found by RL. Similarly
it holds for the linear controls, which additionally need vast manual intervention for the
identification of the parameters. However, as we showed numerically, theoretical bounds
to controllability hold which are regulated by the chaotic nature of the system, i.e. by
its Lyapunov exponents, in connection with the (space and time) resolution of the sys-
tem observations as well as with the actuation capabilities. We quantified such theoretical
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bounds in terms of delays, in observability and/or in actuation: whenever these become
comparable to the Lyapunov time, the control becomes impossible.

There is potential for the replication of this work in an actual experimental setting.
However, training a controller only via experiments might take an excessively long time
to converge. Recent developments in RL showed already the possibility of employing con-
trollers partially trained on simulations (transfer learning [17]). Furthermore, the efficient
design of experiments could be informed by further research in mapping the influence of
the system parameters (e.g. aspect ratio, Pr number, locations and type of sensors) on the
control and performance.

This would not only be a large step for the control of flows but also for RL where
practical/industrial uses are still mostly lacking [14].
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Appendices

Appendix 1. Rayleigh–Bénard simulation details

We simulate the Rayleigh–Bénard system via the lattice Boltzmann method (LBM) that we imple-
ment in a vectorised way on a GPU. We employ the following methods and schemes

• Velocity population: D2Q9 scheme, afterwards indicated by fi(x, t);
• Temperature population: D2Q4 scheme;
• Collision model: BGK collision operator [5,45];
• Forcing scheme: As seen in [5] most forcing schemes can be formulated as follows:

fi(x + ei�t, t + �t) − fi(x, t) = [�i(x, t) + Si(x, t)]�t (A1)

ueq = 1
ρ

∑
i
fiei + A

F�t
ρ

(A2)

with Si and A defined by scheme. We choose the scheme by He et al. [46] for its improved
accuracy which reads

A = 1
2

(A3)

Si =
(
1 − �t

2τ

)
f eqi
ρ

ei − u
c2s

F (A4)

• Boundary model: bounce-back rule enforcing no-slip boundary conditions [5].

To limit the training time, we implemented the LBM vectorising on the simulations. This enabled
us to simulate multiple concurrent, fully independent, Rayleigh–Bénard systems within a single
process. This eliminates the overhead of having numerous individual processes running on a single
GPU which would increase the CPU communication overhead. Validation of the simulation code
has been done by comparison with analytical solutions of diffusion and flows resulting from forcing,
and comparisons of Nusselt number at different Rayleigh numbers [47].

When an RL controller selects a temperature profile for the bottom boundary this is endured
for number of LBM steps (this defines one environment step, or env step, with length �t and is
chosen to be approximately 1/20th of the convection time). The reason for these, so-called, sticky
actions is that within one env step the system does not change significantly. Allowing quicker actions
would not only be physically meaningless but also possibly detrimental to the performance (this is
a known issue when training RL agents for games where actions need to be sustained to make an
impact [41]). Furthermore, due to our need to investigate the transient behaviour, we set the episode

https://github.com/hill-a/stable-baselines
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Table A1. Rayleigh–Bénard environments considered. For each Rayleigh number we report the LBM
grid employed (size NX × NY ), the uncontrolled Nusselt number measured from LBM simulations and a
validation reference from the literature.

Ra NX and NY

Length 1 env step (i.e.
control loop length)
(units: lbm steps) Nu Nu reference [47]

1 · 103 20 16 1.000 1.000
3 · 103 20 16 1.141
1 · 104 20 30 2.090 2.15
3 · 104 25 60 2.753
1 · 105 30 60 3.847 3.91
3 · 105 40 60 4.768
1 · 106 100 60 6.136 6.3
3 · 106 200 100 7.500
1 · 107 350 180 10.900

length to 500 env steps (i.e. 500 actions can be taken before the evaluation stops). In this way, the
transient is extinguished within the first 150 env steps. After each episode, the system is reset to a
random, fully developed, convective RB state.

In dependence on the Rayleigh number (i.e. system size), it takes between millions and billions
env steps to converge to a control strategy. To limit the computing time, we consider the smallest
possible system that gives a good estimate for the uncontrolled Nusselt number (error within few
percent).

In Table A1, we report the considered Rayleigh numbers and related system sizes.

Appendix 2. Control amplitude normalization

To limit the amplitude of the temperature fluctuations and ensure their zero-average (see Equa-
tions (7), (9)), we employ the following three normalization steps, indicated by R(·) in the
manuscript. Let T̃B(x, t) be the temperature fluctuation proposed by either the linear control or the
RL-based control, we obtain T̂B(x, t) as

T̃′
B(x, t) = Clip(T̃B(x, t),−C,C) (A5)

T̃′′
B(x, t) = T̃′

B(x, t) − 〈T̃′
B(x, t)〉x (A6)

T̂B(x, t) = T̃′′
B(x, t)

maxx′(1, |T̃′′
B(x, t)|/C)

. (A7)

Note that the first operation is a clipping of the local temperature fluctuation between ±C, which is
necessary only for the linear control case.

Appendix 3. RL algorithm implementation and hyperparameters

In this appendix, we elaborate on our design choices about the implementation of RL for
Rayleigh–Bénard control.

• Discretization of the bottom boundary in 10 sections.A literature study [48,49] and preliminary
experiments have shown that large/continuous action spaces are currently rather challenging
for the convergence of RL methods. In our preliminary experiments, we observed that dis-
cretising TB in 20 sections was even less effective that in 10 sections, and that 5 sections were
instead insufficient to get the desired performance.

• 3 layer multilayer perceptron (MLP) for state encoding.We considered this option over a con-
volutional neural network (CNN) applied on the entire lattice. The latter had significantly
longer training times and lower final performance. Besides, we included in the state observed
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by the MLP the system readings in the D previous env steps, which is known to be beneficial
for performance [41].

• PPO algorithm. We considered this option over value-based methods which were however
more difficult to operate with due to the need of extensive hyperparameter tuning. Further-
more,we used the open source implementation of PPO included in the stable-baselines python
library [50] (note: training PPOdemands for a so-called auxiliary value function [40]. For that
we employed a separate neural network having the same structure as the policy function).

A.1 Hyperparameters

We used the work by Burda et al. [41] as a starting point for our choice of the hyperparameters.
We specifically considered two separate hyperparameter sets. (i) targeting final performance over
training speed, used for Ra ≤ 106. (ii) targeting speed over final performance, used only on the
highest Rayleigh number case (Ra > 106) and for the research on the probe density. Below one can
see the PPO hyperparameters used (see [14,40] for further explanations).

• Number of concurrent environments: 512 (set 2: 128)
• Number of roll-out steps: 128
• Number of samples training samples: 512 · 128 = 65, 536 (set 2: 128 · 128 = 16, 384 )
• Entropy coefficient cs: 0.01
• Learning rate α: 2.5 · 10−4

• Discount factor γ : 0.99
• Number of mini-batches: 8 (set 2: 16)
• Number of epoch when optimising the surrogate: 4 (set 2: 32)
• Value function coefficient for the loss calculation: 0.5
• Factor for trade-off of bias vs. variance for Generalised Advantage Estimator �: 0.95
• PPO Clip-range: 0.2

Appendix 4. Training curves

We report in Figure 1 the learning curves for our RL control (performance vs. length of the training
session). These curves provide information on the time necessary to converge to a strategy and thus
are an indication of the difficulty and stability of the process. Note that a training step is equivalent
to an environment step. We employ the terminology ‘training step’ for constancy with RL literature.

Figure A1. Performance of RL during training (case of the Rayleigh–Bénard system). We report the
average Nusselt number and its fluctuations computed among a batch of 512 concurrent training envi-
ronments. (a) ‘low’Ra (0 � Ra � 3 · 104) in which the control achieves Nu ≈ 1 in a stable way, (b)‘mid’
Ra (3 · 104 � Ra � 1 · 106) which still gives stable learning behaviour but converges to Nu > 1 and,
lastly, (c) ‘high’ Ra (1 · 106 � Ra) in which the higher chaoticity of the system makes a full stabilization
impossible. (a) Ra = 3 · 104 (‘low’). (b) Ra = 3 · 105 (‘mid’) and (c) Ra = 3 · 106 (‘high’).
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Figure A2. System trajectorieswith RL control, respectively aiming atminimising (a) andmaximising (b)
the number of x sign changes. In (a.1) and (b.1), we report two reference uncontrolled cases which differ
only by the initialization state, x(−5), y(−5), z(−5). Panel (a) shows that the RL agent is able to fully
stabilise the system on an unstable equilibrium by using a complex strategy in three steps (I: controlling
the system such that it approaches x, y, z = 0 which results in a peak (II) which after going through
x = 0 ends close enough to an unstable equilibrium (III) such that the control is able to fully stabilise the
system). Furthermore, Figure 2(a) shows that the RL agent is able to find and stabilise a unstable periodic
orbits with a desired property of a high frequency of sign changes of x.

We stress that the PPO algorithm converged to similar controllers with analogous performance
when repeating the training experiments (checked up to Ra = 106).

Appendix 5. Implementation Lorentz Attractor Control

To illustrate our argument that a delay comparable to the Lyapunov time is detrimental to the control
performance, we introduce two control problems defined on the Lorentz Attractor (LA). These LA
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control problems are defined considering the following equations:

ẋ = σ(y − x), (A8)

ẏ = x(ρ − z) − y + a, (A9)

ż = xy − βz, (A10)

subject to |a| ≤ 1 (A11)

with a being a relatively small controllable parameter, and σ = 10, ρ = 28 and β = 8/3. The con-
trol loop and integration loop (via RK4) have the same time stepping �t = 0.05. The two control
problems are as follows:

(a) ‘LA stabiliser’. We aim at minimising the frequency with which the flow direction changes
(i.e. the frequency of x sign changes). Reward: Ri = −1 if xi−1xi < 0 and zero otherwise;

(b) ‘LA oscillator’. Similar to LA stabiliser but with inverse goal. Reward: Ri = +1 if xi−1xi < 0
and zero otherwise.

We start the system in a random state around the attractor, the controller is anMLP network, and
we use the PPO RL algorithm (similarly to our approach for the complete Rayleigh–Bénard case).
We furthermore limit the control to three states, a = −1 ∨ 0 ∨ 1, for training speed purposes.

Applying RL on these control problems with no delay results in the behaviours shown in Figure 2.
The control develops complex strategies to maximise/minimise the frequency of sign changes of x.
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