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ABSTRACT
Reproducibility is widely regarded as crucial for scientific studies,
yet there is still a lack of reproducibility in geospatial research.
New sources of crowdsourced geoinformation provide new oppor-
tunities, but also complicate the reproducibility situation.
Consequently, there is untapped potential in the domain of dis-
aster response to reuse scientific methodology. Shared, executable
scientific workflows can help in improving reproducibility. In this
paper, we created reproducible scientific workflows for disaster
response from three published studies using geosocial media
sources. They have been adapted to a scientific workflow manage-
ment system to investigate and evaluate their suitability for the
creation of geospatial footprints of wildfire events from Twitter
data. We investigated how scientific workflows adapt to various
analytical processes and compared their performance using
MODIS active fires data as ground truth. A systematic qualitative
and quantitative evaluation demonstrated that scientific work-
flows can help increase the reproducibility of geospatial analytics.

KEYWORDS
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Introduction

The past two decades have seen a massive increase in available geoinformation from
remote sensing and crowdsourced geosocial media (CGSM), as well as available geo-
computation methods (modelling, data mining, artificial intelligence). Because the means
of sharing data, methods, and knowledge have not kept up, there is substantial duplication
of efforts between research groups, institutions and practitioners. At the same time, we still
have insufficient knowledge about the transferability of specific results to other geographic
regions. In disaster response scenarios, a fast but reliable response is required, with disaster
response experts having to adapt protocols and processes to specific situations. Facilitating
reproducibility of methods and workflows would aid disaster response practices, but
reproducibility has been identified as a challenge in several domains (Editorials 2016),
including geospatial research (Nust et al. 2018).
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One possible approach to increase reproducibility are scientific workflow manage-
ment systems (SWMS) that help to conceptualise and manage the analysis process,
allowing for the creation and reuse of analytical tasks while providing a self-
documenting, executable visual language for analytics (Scheider et al. 2017). SWMS
usually have a graphical user interface, interactively representing an analytic process
as a directed graph with nodes (discrete stages or tasks in the analysis), and edges
(connections between these nodes representing the flow of data). This process graph
supports analysts when composing, executing, assessing, and modifying a workflow.
However, SWMS are not commonly used for geospatial analysis of established data
sources, and even less so for novel data sources such as CGSM.

This paper aims to contribute to our understanding on how to create reproducible
workflows for disaster response, using CGSM. Three scientific workflows from the litera-
ture are adapted to SWMS to investigate and evaluate their performance for creating
geospatial footprints of wildfires. Determining affected or vulnerable areas of wildfires
from CGSM is a crucial and challenging step in successful disaster response for which
geosocial media as of now has still untapped potential (Granell and Ostermann 2016).
We evaluate how scientific workflows perform in modelling these processes, identify
potentials and limitations and demonstrate how a scientific workflow can be a self-
documenting and interactive tool to support reproducibility of geospatial analysis.

The key contributions of this work are: (1) a demonstration of the implementation of
three recent disaster response analytics processes in a SWMS; (2) a qualitative and
quantitative evaluation of the outcomes of the three workflows; (3) an exploration of
the key common operations; (4) integration of the outcomes into the knowledge on
improving reproducibility of geosocial media analytics for disaster response.

Key concepts and related work

Geosocial media

Technologies such as smartphones with receivers for global navigation satellite systems,
cloud computing, and Web 2.0 allow users with no professional background to produce
geographic data, transforming the way it is collected, used, and disseminated. This has
facilitated new possibilities to discover geographic knowledge and to analyse human
behaviour from social media data (Miller and Goodchild 2015, Capineri et al. 2016). In
addition to offering previously inaccessible local and tacit knowledge, social media are
accessible in real time and at a fraction of the cost with respect to traditional methods.
However, many challenges remain, in particular relating to large volumes of noise in the
data (Ostermann and Spinsanti 2012), bias in contributions associated with demo-
graphics, internet use and technology access (Haworth et al. 2012), local variation in
usage (Zahra et al. 2017), integration with authoritative data sources (Schade et al. 2012),
trust and credibility (Flanagin and Metzger 2008), legal issues around privacy and liability
(Scassa 2013), and reproducibility due to volatility of content and terms of service
(Ostermann and Granell 2017). Despite these issues, studies have shown the potential
of CGSM to detect and track information about events, with application in several fields
such as disaster management, urban planning or health (Alexander 2013, Grajales et al.
2014, Shelton et al. 2015).
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Geospatial footprints

Geospatial events can be represented by their geospatial footprint, i.e. the area that is or
has been directly affected. Typically, there are three common steps in generating
geospatial footprints from diverse data sources: filtering, clustering, and shape
reconstruction.

Filtering techniques are applied to clean the data, reduce noise, and retain only
event-related information. Filtering can be geospatial, restricted to a certain region or
area; temporal, restricted to a certain timeframe; or based on semantics, utilising the
textual content. Geospatial filtering of CGSM is challenging because of the heterogeneity
and variety of locational information: a single post can contain coordinates provided by
the device’s GNNS, a place name suggested by the social media platform, a home
location in the user profile provided by the contributor, and any place mentioned in
the actual content. While the first two usually indicate where a post is from, the user
home location can indicate local knowledge, and the content can indicate which place(s)
the post is about. Furthermore, any place names must be geocoded before being useful
for further analysis, with the frequent problems of place name recognition, disambigua-
tion, and grounding (areas represented as points, etc.). In contrast, temporal filtering is
more straightforward, since most CGSM have a well-defined temporal signature, allow-
ing temporal filtering to detect events in CGSM streams by looking for a peak occur-
rences of a phenomenon within a short time window. Lastly, semantic filtering focuses
on the content of the messages, aiming to remove unrelated messages and enrich
related. Semantic filtering often relies on natural language processing (NLP) techniques
to extract keywords or content from unstructured text, and match or encode this
extracted content with knowledge representation methods such as ontologies.
Established NLP tools need adaptation to deal with the short text of CGSM annota-
tions/tags (Cheng et al. 2010). Most studies use keyword-based queries (Kongthon et al.
2012, Cerutti et al. 2016) or keyword co-occurrence (Spinsanti and Ostermann 2013).

Clustering consists of grouping a set of objects so that the within-group similarity is
higher than the between-group similarity, allowing the identification of events or
features of an event. Many clustering algorithms exist. We limit this introduction to
the two common algorithms that have been used in the three published studies that
have been adapted in this paper: k-means and DBSCAN. K-means algorithm (Macqueen
1967) is a distance-based method that produces elliptical clusters around a set of
centroids and is very sensitive to noise. It requires the number of clusters (k) as input,
determines k centroids in the data and clusters points by assigning them to the nearest
centroid. DBSCAN (Ester et al. 1996) is a density-based method that uses density thresh-
olds around each object to distinguish relevant data from noise. It infers the number of
clusters based on the data and can discover clusters of arbitrary shape. DBSCAN requires
the estimation of two parameters: how close points should be to each other to be
considered a part of a cluster (eps), and how many neighbours a point should have to be
included into a cluster (MinPoints). Using these parameters, it classifies points into core
points, border points (which define the clusters) and noise. A variation of DBSCAN is ST-
DBSCAN (Birant and Kut 2007), which explores the spatiotemporal behaviour of events
using a spatiotemporal distance function with space and time thresholds.
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Shape reconstruction algorithms are not commonly used in CGSM studies. Galton and
Duckham (2006) compare various methods for producing footprints, such as gift wrap-
ping, swinging arm, close pairs, Delaunay triangulation (Arampatzis et al. 2006), Voronoi-
based region approximation (Alani et al. 2010), alpha-shape (Edelsbrunner et al. 1983),
and power crust (Amenta et al. 2001). Convex hull algorithms are the simplest and most
frequently used, computing the smallest convex polygon that contains all the points in
the given geometry, without having any angle that exceeds 180 degrees between two
neighbouring edges. However, the convex hull does not represent well the boundaries
of a given set of points with a pronounced non-convex distribution. Concave hull
algorithms can be more efficient in these cases. A concave hull of a set of points can
be defined as the shape which minimises the area of the containing shape, allowing any
angle between the edges. The characteristic-shape algorithm used by Zhong et al. (2016)
is an example of a concave hull algorithm.

Reproducible scientific workflows

One important benefit of executable scientific workflows is their potential to increase
reproducibility. Reproducibility of a scientific study means that independent researchers
can derive the same results of the study by using the same data and methods. A close
concept to reproducibility is replicability, which means deriving similar results and
conclusions without necessarily using the same input data and methods (Ostermann
and Granell 2017). Ideally, scientific workflows are self-contained, executable, and self-
documenting and can be easily shared, facilitating reproducibility of scientific research
(Scheider et al. 2017).

Scientific workflows have different levels of granularity. A node (task) is atomic if it cannot
be decomposed into smaller nodes (i.e. it provides a single task/processing step), it does not
contain sub-task(s), and it has input ports and outputs ports that connect it to other (atomic
or composite) nodes. Atomic nodes can be grouped into composite or meta-nodes.

Scientific workflows are data-oriented, using mostly sequential or iterative dataflows to
communicate between nodes (next task uses the output of previous tasks as input, previous
tasks need to be completed to start the execution of the next task) (McPhillips et al. 2009).

Multiple granularity levels and consistency in the dataflows allow modularity: com-
plex processes can be decomposed in modular, reusable parts composed of simpler
operations. Interchangeable modules can be connected and subsequently executed.
This modularity makes scientific workflows adaptable to different users’ skills and
needs, and if combined with a user-friendly graphical user interface, allows non-expert
users to use and combine existing modules and expert users to modify or adapt
modules or nodes according to their specific requirements. Every change is also docu-
mented and saved in the workflow.

Methods

Selecting studies to reproduce

The studies to be reproduced should have four characteristics:
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(1) Datasets: Use of CGSM either as a standalone data source or in combination with
authoritative data (e.g. population data, meteorological data, etc.), for testing the
adaptability of scientific workflows to various datasets.

(2) Methods: Use of different methods to filter, cluster and summarise their point-
based data, for testing the modularity of the scientific workflows and the reuse of
tasks.

(3) Case study: Focus on disasters from natural hazards, for testing the adaptation of
scientific workflows to different applications.

(4) Year: Recent works, from 2012 onward.

Since our objective was not a comprehensive or representative meta-study but a first
investigation and exploration, we combined convenience sampling from our profes-
sional network and a systematic literature search to choose three studies. The systematic
literature search used the search terms ‘social media’, ‘spatial analysis’, and ‘disaster
response’ on Scopus database. We used a two-stage reviewing process for the returned
results: first scanning of abstracts, then in-depth evaluation of promising candidates. The
following paragraphs, Table 1 and Figure 1 all provide an overview of the three chosen
studies that fulfil all criteria.

Saravanou et al. (2015) use visual analytics on Twitter data to identify the areas
affected by a flood event. They collected Tweets through the Twitter Streaming API
and used lexicon keywords to extract flood-related Tweets. K-means clustering then
aggregated the point data into areas, experimenting and comparing the results using
different k values. Using a prioritisation approach, areas are sorted according to the
signal-to-noise ratio derived from comparing flood-related Tweets with the total
number of Tweets. To evaluate the results, the authors used ground truth
information.

Zhong et al. (2016) describe a technique for real-time tracking of wildfire peri-
meters based on curated crowdsourced data in the form of emergency calls, and
integrate it with authoritative data (population density and dynamic wind fields) to
increase estimation accuracy. Using ST-DBSCAN and shape-reconstruction (charac-
teristic shape) techniques, their analysis filtered and clustered emergency calls
based on topic, spatial location, and timing, constructing an evolving footprint of
the wildfire perimeter.

Spinsanti and Ostermann (2013) designed a prototype to process information on wild-
fires from Twitter and Flickr. The main prototype modules are: (1) the sensor that retrieves
CGSM from Twitter Streaming API and Flickr Search API, (2) the analyser that classifies the

Table 1. Overview of selected studies’ main characteristics.
Paper Reference Data sources Analytical methods Case study

(Saravanou et al. 2015) Twitter, ground truth data Keyword filtering, k-means
algorithm, visual analytics

Flood

(Zhong et al. 2016) Emergency calls, population
density, wind speed and
direction

ST-DBSCAN + χ- shape algorithm Wildfires

(Spinsanti and
Ostermann 2013)

Twitter, Flickr, LAU2 municipality
data, CORINE land cover, MODIS
hotspot data

Filtering, geocoding, enrichment,
spatiotemporal clustering,
quality assessment

Forest fires
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topicality of each item using a decision tree, then geocodes relevant items based on
extracted place names, and scores their credibility based on contextual information such
as distance to nearest reported MODIS (Moderate Resolution Imaging Spectroradiometer)
hotspots; (3) the clusterer that searches for spatio-temporal patterns (events) in the data;
and (4) an interactive web map to visualise and communicate the results.

Creating scientific workflows in KNIME analytics platform

This paper uses the KNIME analytics platform (Berthold et al. 2009) to create
scientific workflows that replicate the selected published studies. KNIME is an
open source platform based on Eclipse, designed for data analysis, predictive
analytics and modelling. It has a graphical user interface, making it intuitive and
user-friendly. Additionally, it provides a broad range of functions including geos-
patial ones, which is uncommon in other SWMS (Scheider et al. 2017), and a large
community of users that continue to develop extensions. For example, with the
recently developed Open Spatial Analytics (OSA) plugin (Bellman et al. 2018), KNIME
supports a typical CGSM processing pipeline, i.e. it allows connection to the Twitter
Streaming/Search API, supports text processing, location extraction/geocoding
using a gazetteer and has DBSCAN, k-means, and self-organising map algorithms
already implemented in it. In addition, non-standard components can be added
using R or Python scripting.

From here on, we refer to the scientific workflows created from the three studies of
Saravanou et al. (2015), Zhong et al. (2016) and Spinsanti and Ostermann (2013) as SW1,
SW2, and SW3, respectively. We decided to use a single new data set for all three

Figure 1. Overview of selected studies’ main steps: (a) Saravanou et al. (2015), (b) Zhong et al. (2016)
and (c) Spinsanti and Ostermann (2013).
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workflows for two reasons: first, most of the original data was inaccessible because of
limitations in terms of service and API capabilities. Second, using different data set for
the three workflows would complicate a comparative evaluation.

Although most of the processing steps in the three studies can be replicated in
KNIME using existing nodes, some steps required nodes to execute custom R or Python
code. To increase consistency and modularity, we reused nodes within the three work-
flows whenever possible, combining individual nodes into five KNIME metanodes (see
also Figure 2):

(1) Input data metanode: Some nodes require a specific data format, which led to the
implementation of additional data transformation operations, increasing the
number of steps and nodes. The interchangeable modules for the different
types of input data support stream of Tweets, spreadsheets, JSON files, and
multiple files readers.

(2) Data transformation metanode: input data are filtered, transformed, and geo-
coded if necessary. While KNIME has a Google Address Geocoder node, the rate
limit of Google Maps API of 2500 free requests per day is too low for our data set,
leading to the implementation of different geocoding nodes (see next section).

(3) Clustering metanode: we use k-means and DBSCAN clustering algorithms which
are readily available in KNIME.

(4) Shape reconstruction metanode: converts cluster points into areas, using convex
hull or concave hull nodes.

(5) Visualisation metanode: visualisation of the spatial data and the results can be
performed within the platform or using any external GIS and exported as files.

Details and specifications of the metanodes for each SW are explained below (see the
section on 'Reproducing workflows in KNIME').

Figure 2. Combined view of SW1 (red – topmost), SW2 (blue – middle), SW3 (green – bottom) in the
KNIME interface. Reuse of tasks allows a reduction in execution time.
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Case study results and evaluation

This section describes the case study that applies and evaluates each of the work-
flows to data from a wildfire event. Twitter data were collected during the summer of
2017, using a similar query to the public Streaming API as Spinsanti and Ostermann
(2013), as it has shown to produce usable data. For our case study, we limited the
input data to Tweets generated on 25 July 2017, when major wildfires spread around
France. The data consist of 88,281 Tweets. The dataset of tweet IDs as well as the SWs
are available as additional material (DOI: 10.5281/zenodo.3271291) to this paper.
Using the same input data for all SWs allows us to compare systematically the SW
outputs qualitatively and quantitatively.

Reproducing workflows in KNIME

For the qualitative evaluation, we focused on the structure of the SW: Which steps are
reproduced without change, and which steps required an approximation or slightly
different replication? Since all SWs share the same input data, data transformation,
and visualisation metanodes, their evaluation is next, followed by the SW-specific
metanodes.

Input data: we adapted the input data metanode to read Tweets saved as JSON
objects in text files from a folder in a local repository. This change was required because,
as mentioned, the original data used in the selected works were not available.

Data transformation: this step was necessary to properly read the JSON data as a table
into KNIME and to remove unnecessary columns and symbols in the text of the Tweets.
This metanode approximates the data cleaning/filtering step adopted in the published
studies, which were not sufficiently described to reproduce exactly.

Visualisation: visualisation of results was not considered as a step in the original
workflows (expect for SW3 that used a Web Mapping Service to visualise and dissemi-
nate results). The MapViewer node allows to visualise the results within KNIME, but the
results were also exported as shapefiles.

SW1 Geocoding: The published study used a geographic bounding box to obtain
Tweets from the Streaming API, and then applied a keyword filtering on the geolocated
Tweets. This case study inverts the process by first retrieving Tweets based on keywords,
then using a lexical matching of content unigrams with the French subset of the
GeoNames gazetteer (http://www.geonames.org/). This allows to increase the amount
of usable data (usually only a small fraction (1–2%) of Tweets are geocoded) and to
identify what a Tweet is about, as opposed to where is it from.

SW1 Clustering: the published study is replicated using k-means algorithm with the
same k-values.

SW1 Footprint reconstruction: this metanode replicates the steps of prioritisation and
ranking by counting the number of Tweets in each cluster and ranking the clusters in
a descending order. The clusters containing the highest numbers of Tweets have been
used to identify the footprint.

SW2 Geocoding: similar to SW1. Also, for SW2 we had to approximate the geocoding
technique since the published study used emergency phone calls data that have been
filtered and structured into spatio-temporal data by an external office.

8 V. CERUTTI ET AL.
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SW2 Clustering: the published study used ST-DBSCAN, but for our case study the
DBSCAN node is sufficient since a fine temporal resolution of 1 day is used and the event
is already known and detected.

SW2 Footprint reconstruction: the published study is replicated by using the concave
hull algorithm from the OSA extension of KNIME.

SW3 Topicality: this metanode replicates the algorithm described in the published
study using a Python script to execute a decision tree created through supervised
learning (Spinsanti and Ostermann 2013). This is the only metanode in the SWs using
a scripting node to perform an operation, due to the unavailability of existing KNIME
nodes to execute that specific task.

SW3 Geocoding: this metanode replicates the geocoding of the published study by
looking at the Tweets’ text and compares unigrams with simple lexical matching to
place names of the LAU2 classification for French municipalities.

SW3 Clustering: the original spatio-temporal clustering of SatScan is replaced with the
DBSCAN algorithm, making the same assumption on the data as for SW2.

To summarise, SW1 replicates the original workflow the most accurately, SW2 is
the workflow with more approximations compared to the published study, and
SW3 falls in between. For a summary of replications and approximations used see
Table 2.

For a quantitative evaluation of the SW outputs, we looked into details of the number
of records and nodes as summarised in Table 3. After filtering, transformation and
geocoding, in SW1 and SW2 about half of the initial Tweets remained, while SW3
reduced the data set to fewer than 7000 Tweets, if filtering for only the top two of
four topicality classes. This reduces notably the execution time for the geocoding and
clustering metanodes in SW3. The metanodes that require more time to execute are the
geocoding in SW1 and SW2 and the clustering using DBSCAN algorithm in SW2 (SW2
uses different parameters than SW3).

Table 2. Summary of metanodes used in the SWs.
Task/SW SW1 SW2 SW3

Data Input A A A
Data Transformation A A A
Geocoding A A R
Clustering R A A
Footprint reconstruction R R A
Topicality – – R
Visualization A A A

Notes: R = Replicated, A = Approximated, – = Not applicable.

Table 3. Characteristics of SWs in numbers. *topicality + geocoding.
Number of . . . SW1 SW2 SW3

Records in input 88,281 88,281 88,281
Records after geocoding 43,280 43,280 6847*
Clusters 100,500,1000,5000 2 6
Atomic nodes 39 33 30
Metanodes 7 8 7
Common metanodes 4 5 5
Scripting nodes 0 0 1
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Geospatial footprints results

For the qualitative evaluation of geospatial footprints resulting from the SWs, we
examine how similar or different the footprints are and how they compare to the
ground truth.

We tested SW1 using the same values as in the published study (k = {10, 100,
500, 1000}) but added k = 5000 to test with larger number of clusters. Point clusters
are then transformed into areas using the convex hull algorithm and ranked
according to the number of Tweets in each cluster. For our dataset and case
study, k = 1000 produces the most meaningful results. Lower k values return very
large areas with many Tweets, while k = 5000 results in small areas and likely errors
of omission, with too few Tweets to derive meaningful or actionable information on
the event. Figure 3 shows the resulting footprints of SW1. Although several parts of
France seem to have been affected by wildfires, the south clearly is affected the
most.

SW2 has the same input, data transformation and geocoding meta-nodes as SW1, but
uses DBSCAN and concave hull. By iterative adjusting the two DBSCAN parameters of
eps and MinPoints, the best values for this case study are: eps = 0.1 and MinPoints = 10.
The resulting footprint of SW2 (Figure 4) shows fewer and smaller potentially affected
areas compared to the result of SW1, which are mostly located in the south coast of
France and in Corsica.

Figure 3. Resulting footprint of SW1.
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Since SW3 has fewer input data for the clustering, we used different values for
DBSCAN parameters to obtain meaningful results: eps = 1, MinPoints = 50. Figure 5
shows the results of SW3: potentially affected areas are grouped in 5 clusters; non-
affected areas are classified as noise. Clusters 0, Cluster 1 and Cluster 4 show a density of
municipalities that is substantially higher compared to the other ones, where munici-
palities are dispersed. Since many wildfires cross municipal boundaries and affect larger
areas, it is reasonable to suggest that Cluster 0, Cluster 1 and Cluster 4 identify areas
affected by the forest fire event of 25 July 2017.

To understand each SWs performance in identifying affected areas, we compared the
above footprints with ground truth data. Active fire data related to the event of
25 July 2017 have been retrieved from the Fire Information for Resource Management
System (FIRMS) archive, which provides data derived from satellite observations from
both the MODIS and the Visible Infrared Imaging Radiometer Suite in shapefile format.
MODIS active fire is selected for comparison.

On 25 July there were a total of 92 active wildfires, of which 88 in southern France.
A visual qualitative comparison between the geospatial footprints resulting from the
SWs and the MODIS active fire data is reported in Figure 6 for southern France.

For a quantitative comparison, we calculate the percentage of active fires that fall
within the geospatial footprints of each SW. For SW1, SW2, and SW3 these are 34.1% (30
out of 88), 39.8% (35 out of 88) and 59.1% (52 out of 88), respectively. Although SW1
identifies bigger areas, these correspond to fewer fires.

Figure 4. Resulting footprint of SW2.
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Figure 5. Resulting footprint of SW3.

Figure 6. Comparison of resulting footprints from SW1 (red), SW2 (blue) and SW3 (green) with
MODIS active fires (yellow dots) in the South of France for 25 July 2017.
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Another quantitative measure is to compare the complexity of polygons forming the
footprints, in terms of area, number of vertices, amplitude and convexity.

Amplitude (Ampl) is the frequency of vibrations of the boundary of the polygon,
intended as an increase of the boundary of the polygon compared to the boundary of
its convex hull, and can be measured with the following formula (Brinkhoff et al. 1995):

Ampl polð Þ ¼ boundary polð Þ � boundary convex hull polð Þð Þð Þ=boundary polð Þ

If Ampl= 0, the polygon is convex. The higher the amplitude, the longer the boundary
is compared to the convex hull.

The convexity (Conv) of a polygon is intended as shape deviation of the polygon from
its convex hull (Brinkhoff et al. 1995):

Conv polð Þ ¼ area convex hull polð Þð Þ � area polð Þð Þ=area convex hull polð Þð Þ

Conv= 0 for convex polygons. The higher the convexity, the higher the deviation of
the polygon from its convex hull and the smaller the area.

Both amplitude and convexity are in the interval [0,1]. Values close to 0 indicate
convex objects.

The 36 polygons of SW1 have amplitude and convexity of 0 because they are convex
and the number of vertices is low (between 4 and 10). Compared to the resulting
polygons of SW2 and SW3, SW1 polygons have significant larger average area
(578 km2). SW2 has a similar number of polygons (29), but with a smaller average area
(36 km2). These polygons are more complex with an average convexity of 0.27, and an
average amplitude of 0.073. SW3 has more polygons (158) with an average area of
33 km2 (similar to SW2). SW3 polygons are also more complex: the average convexity is
0.23 and average amplitude is 0.173. These polygons have a high number of vertices
which means they have a more detailed shape compared to polygons of SW1 and SW2.
For details compare Table 4.

The complexity of the polygons is the result of the shape reconstruction algorithm
adopted for SW1 (convex hull) and SW2 (concave hull) and of the geocoding method
used for SW3 (which geocodes for municipality areas instead of location points), which
also leads to SW3’s clusters forming discontinuous areas, while for SW1 and SW2 each

Table 4. Descriptive statistics for the polygons forming footprints of SW1, SW2, SW3.
SW1 SW2 SW3

Percentage of active fires 34.1% 39.8% 59.1%
Number of polygons 36 29 158
Polygons area (km2) Average 578.3 36.3 33.1

Total 20,821.96 1054 5235.26
Number of vertices Min 4 4 12

Max 10 63 1053
Mean 6.47 11.41 102.67

Convexity Min 0 0 0.059
Max 0 0.895 0.933
Mean 0 0.271 0.226
Sd 0 0.315 0.108

Amplitude Min 0 0 0.015
Max 0 0.457 0.494
Mean 0 0.073 0.173
Sd 0 0.127 0.104
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cluster corresponds to a continuous region. Both footprints resulting from SW2 and SW3
have similar convexity, but the shape of polygons in SW2 depends on the number of
Tweets that are in a cluster and their spatial distribution. In SW3 the shape of the
polygons corresponds to municipality units and it is independent of the input dataset.

Discussion

Geospatial footprints to represent areas affected by wildfires can be used for an initial
evaluation and assessment of the impact of the event by emergency managers. Shape
complexity needs to be considered when using the footprints as an emergency tool: the
geospatial footprint resulting from SW2, even though it covers almost 40% of the active
fires, identifies polygons with complex shapes that give non-meaningful insights in
terms of affected areas, while SW1’s footprint returns very large affected areas which
can be misleading. In addition, we can also consider the impact of the number of Tweets
in the polygons that contain active fires: the SW with higher number of Tweets in these
areas performs better than the others. The count of Tweets is 509, 144 and 1569 in SW1,
SW2 and SW3 polygons, respectively. For the case study of this paper, the resulting
geospatial footprint of SW3 performs the best in identifying active fires and affected
areas around them, even if these areas are quite discontinuous and correspond to
municipality units, while the extent of bushfire events not always matches administra-
tive boundaries. The number of Tweets used as input data and their spatial distribution
have a significant impact on the size, shape and number of polygons generated by SW1
and SW2, so for a different dataset these two workflows may perform better than SW3.

The quantitative comparison of resulting footprints with MODIS active fires represents
a first step for evaluating the accuracy of the results. Further investigation into the utility
of the generated footprints could involve a more detailed quantitative comparison of
footprint area (i.e. match between footprint and ground truth of burned area), and an
extensive user evaluation in which practitioners test and comment on the generated
footprint. Both are out-of-scope for this paper, but based on our results we can already
propose that any analysis of footprint surface and burned area would require additional
datasets, because the CGSM is likely to be too sparse and heterogeneously distributed to
allow precise delineation of burned areas.

Recent studies such as Spinsanti and Ostermann (2013) have already shown that
CGSM can contribute to detection of wildfire events. CGSM may not be used as
standalone source of information for precise identification of events boundaries but
can still be a useful resource to determine hotspots, most affected areas or areas at risk
that do not yet appear on any earth observation products.

Social media represent a communication channel that cannot be ignored in the
analysis of disaster events. Personal communication with disaster managers during
events organised by the GEO-SAFE project (GEO-SAFE 2016, 2017, 2018) has revealed
that they monitor social media networks in order to identify and reduce the spread of
misinformation, which is rarely intentional, but still poses a significant threat. In case of
higher data volumes, this would also require NLP techniques to pre-filter the incoming
information based on content. Additional content analysis may also provide useful
details about the event (e.g. blocked roads, shelters, etc.).
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In order to determine which additional datasets are needed for a comprehensive
footprint, a wider user evaluation is required. Such a user evaluation should be facili-
tated by the results of the present study, as our aim to increase reproducibility would
also ease comparable user evaluations. Such user evaluations would be an important
step towards producing ready-to-use footprints, which are out of this paper’s scope.

Conclusion

Research on geospatial analysis of CGSM uses many different data sets and sources,
analysis tools, and methods at different geographic scales. To improve a researcher’s or
practitioner’s ability to benefit from the diverse options available, we need to facilitate
reproduction and replication of studies. To contribute to improved reproducibility, we
demonstrated the replication of three different geospatial disaster analytics from the
published literature in SWMS. We then showed how the resulting replicated scientific
workflows obtain geospatial footprints of bushfire events from Twitter data, followed by
a systematic, qualitative and quantitative comparison and evaluation of key common
operations and results between workflows and with respect to ground truth data.

Reproducibility and replicability of scientific studies is fundamental to ensure the
advancement of knowledge. As described in Nust et al. (2018), for a work to be fully
reproducible, input data, analysis methods including code, and detailed results need to
be available. None of the original selected papers provide such full reproducibility,
lacking in input data or details about used tools and software. This led us to replicate
the studies, i.e. we had to substitute or alter the workflow from the original. The spatio-
temporal extent of the case study data affected the choice of the clustering algorithm
used in SW2 and SW3 and allowed us to replace ST-DBSCAN – which is currently not
available in KNIME – with DBSCAN. Two of the papers (Spinsanti and Ostermann 2013,
Saravanou et al. 2015) used Twitter data, for which Twitter’s terms of service prohibit
free sharing. In this case, sharing only the tweets IDs provides a step towards better
reproducibility.

The adaptability of the chosen workflow management system (KNIME) to different
input data formats, databases and real-time connections to the Twitter Streaming API
and the Twitter Search API allows it to deal with the different types and formats of
crowdsourced data. The possibility to aggregate nodes into metanodes allows the user
to organise tasks into modules that can be easily reused when creating a new workflow.
The numerous available nodes for data mining in KNIME represent an additional poten-
tial for testing different data filtering methods. In addition, the system lets the user
visualise the intermediate and final results internally without the need to export them
into other systems; this allows the user to easily modify parameters and adjust steps as
they are created.

While our results are promising, much work remains before scientists and practi-
tioners alike can benefit from shared, reproducible workflows to improve disaster
response. In principle, the approach is system agnostic, i.e. our use of KNIME is the
result of matching functionality and convenience. Its free and open source character
makes it in principle available to everyone. However, this paper also highlights the
fundamental problem of using data sets which are publicly available but for which terms
of service prohibit free re-distribution. This hints at the need to have reference
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implementations using common benchmarks for comparison, so that potential users can
make an informed decision based on their own available data, which workflow promises
the best results. Such an open repository has yet to be developed.
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