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REVIEW ARTICLE

The role of machine intelligence in photogrammetric 3D modeling
– an overview and perspectives
Rongjun Qin a,b,c and Armin Gruend

aDepartment of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA;
bDepartment of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA; cTranslational
Data Analytics Institute, The Ohio State University, Columbus, OH, USA; dInformation Architecture, ETH Zürich,
Zürich, Switzerland

ABSTRACT
The process of modern photogrammetry converts images and/or LiDAR
data into usable 2D/3D/4D products. The photogrammetric industry
offers engineering-grade hardware and software components for various
applications. While some components of the data processing pipeline
work already automatically, there is still substantial manual involvement
required in order to obtain reliable and high-quality results. The recent
development of machine learning techniques has attracted a great
attention in its potential to address complex tasks that traditionally
require manual inputs. It is therefore worth revisiting the role and
existing efforts of machine learning techniques in the field of
photogrammetry, as well as its neighboring field computer vision. This
paper provides an overview of the state-of-the-art efforts in machine
learning in bringing the automated and ‘intelligent’ component to
photogrammetry, computer vision and (to a lesser degree) to remote
sensing. We will primarily cover the relevant efforts following a typical
3D photogrammetric processing pipeline: (1) data acquisition (2) geo-
referencing/interest point matching (3) Digital Surface Model generation
(4) semantic interpretations, followed by conclusions and our insights.
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1. Introduction

Photogrammetry is a focused and widely applicable field, largely backboned by the geospatial indus-
try in 3D measurable model and process generation and mapping. Given the fact that photogram-
metry shares the geometric aspects of its neighboring disciplines – computer vision and computer
graphics, thus providing an integrated production line from data acquisition, geometric data proces-
sing, 2D/3D/4D interpretation, recognition modeling, to data administration and representation
(Gruen et al., 2009; Lu et al., 2004; Qin, 2015a; Qin et al., 2016; Shan et al., 2020). Although photo-
grammetric techniques aim at providing practical solutions for data generation and interpretation,
with often manual interactions (e.g. geometric modeling, object identification and monitoring), the
endeavors of the field are to develop more automated methods that involve the use of AI (artificial
intelligence) techniques to: (1) automate processes that traditionally require heavy manual operation
(e.g. building extraction and modeling) (Gruen and Wang, 1998; Lillesand et al., 2014); (2) improve
performance of processes in terms of efficiency and robustness (e.g. in point matching).
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Hereby, the term ‘Artificial Intelligence’ is sometimes regarded as misleading and might often
subject to wrong ideas and expectations: for instance Prof. Sebastian Thrun (Co-founder of the
On-Line Academy Udacity, former Google Vice-President) has remarked in a recent interview
with the German Newspaper DIE ZEIT: ‘(AI) is not a good choice of words. Existing systems are
not intelligent. Essentially, they do pattern recognition in large datasets. They can learn rules and
apply them. Missing are emotions, creativity, freedom of opinions, autonomy. A computer cannot
handle this’(ZEIT, 2020). On the other hand, ‘Machine Learning’ is a technical term that is explicitly
about computational methods that learn associations/functions from data rather than traditional
physical-model based methods. Therefore, in this paper, the term ‘Machine Intelligence’ largely
refers to machine learning techniques with services to the ‘intelligence’ aspects and needs of
applications.

AI methods, in case of successful performance, can potentially have a big impact on the Society at
large, the human behavior and everyday activities. As example, let us have a look at the technique of
face recognition.

Photogrammetric face measurement is by no means new. Already in Lacmann, 1950, 151 ff.
(Buchholtz, 1950), a number of examples can be found related to Medicine and Anthropology.
We find there already the structured light technique as measurement method. Of course, the tech-
niques have improved since then in different directions. Nowadays, already these methods are prac-
ticed in medical field such as orthodontics and others (Deli et al., 2013; Haleem and Javaid, 2019), as
well as anthropology such as skeleton reconstructions (Lussu and Marini, 2020). But the most recent
and relevant innovation is the face recognition which uses the 3D information from face measure-
ment plus AI techniques for recognition tasks. These systems (based on structured light techniques)
are already built into smartphones (e.g. iPhone X). A leading company in this field is Megvii Tech-
nology, China. They use the software Face ++ with the Deep Learning software FrameworkBrain ++,
and work on a number of applications, as for instance

- payments in shops (‘Smile to Pay’)
- replacement of boarding cards on airports
- ATM machine access
- 24-hours supermarket without personnel
- control of sleeping rooms in student dormitories
- control of public toilettes
- criminology
- traffic rules violations (China: 176 Mill. monitoring cameras, until 2020: 400 Mill. new ones)

An interesting application was reported from the train station of Zhengzhou early in 2018
(Stern.de, 2018). Some policemen were equipped with special sunglasses, including the required sen-
sors and connected to tablets with a database of criminals. This way 7 criminals could be recognized.

Under those new scenarios the major question is ‘How to keep privacy’? For instance, as of 2016
there are 117 Million Americans in the face recognition database of the FBI (Newman, 2016).

The recent prevalence of machine learning (interchangeable with the term ‘artificial intelligence’,
but more to the point) has shown a great potential in addressing complex tasks with impressive per-
formance, thus attracting attention in the field of photogrammetry and in particular in computer
vision (Hinton and Salakhutdinov, 2006; LeCun et al., 2015). Although neither AI itself, nor the
involvement of AI in the field is new, while the recent rise of their development have encouraged
us to revisit their role in the field of photogrammetry, as well as their already active role in computer
vision (Goodfellow et al., 2016; Szegedy et al., 2016). A very recent study in nature neuroscience
(Bonnen et al., 2020) indicated that the binocular viewing geometry evidentially shape the human
neural representation and therefore there is a great potential to utilize 3D modeling techniques to
enhance ‘AI’. There are a plethora of existing works that apply machine learning for solving spatially
related issues, and the recent top tier computer vision conferences (e.g. CVPR (IEEE Conference on
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Computer Vision and Pattern Recognition), ICCV (IEEE international conference on Computer
Vision), and ECCV (European Conference ion Computer Vision), etc.) are filled with machine learn-
ing (deep learning in particular) based works, with some of them relevant to photogrammetry and
remote sensing (Lu et al., 2020; Robinson et al., 2019) (Blaha et al., 2016; Ozcanli et al., 2016; Treible
et al., 2018). In this article, we provide a general overview of works that use machine learning and
address critical components of the photogrammetric data processing pipeline, including (1) data
acquisition; (2) geo-referencing; (3) Digital Surface Model generation; (4) semantic interpretation.
Examples are shown in Figure 1.

It should be noted that since some of these components share very similar objectives and topics
with their counterparts in computer vision, we introduce works from both fields without explicit dis-
tinctions. Due to the large body of existing works, our overview is not able to include each individual
work. However, we will cover works that are mostly representative in the sense of being ‘self-learning
& automated’ in solving matters related to the aforementioned four components.

This overview paper is organized as follows: Section 2 provides a technical overview on the topics
to be covered, including a very brief introduction of a typical photogrammetric processing pipeline,
as well as a general introduction of statistical learning and deep learning methods. Section 3 outlines
existing efforts in aspects related to the introduced photogrammetric data processing pipelines. Sec-
tion 4 draws conclusions with our general insights regarding the ‘self-learning’ in photogrammetry.

2. A technical overview

2.1. Photogrammetric data processing pipeline

Despite many other applications, in general, the photogrammetric data processing mainly refers to
the spatially related data production of various types, such as orthophotos, digital surface models
(DSM), digital terrain models (DTM), 3D polygonal/polyhedral models (all level of details) (Gröger
et al., 2007), 4D products (with the time dimension), and of course, applications associated with their
immediate level or final forms (Qin et al., 2016). The photogrammetric data processing pipeline,
since it can be very often executed fully automatically by using imagery from off-the-shelf cameras,
inexpensive sensor platforms like UAVs and Open Source or otherwise affordable software, allows
non-experts of various kinds to use it and produce 3D models for their domain applications. On
Facebook one can witness a large number of groups (e.g. Photogrammetry Group, https://www.
facebook.com/groups/3dphotogrammetry/), with partly several thousand members, who post their

Figure 1. Schematic images of major tasks in 3D photogrammetry and remote sensing.
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works on a daily basis. While most of these models look very attractive visually, usually nothing is
said about their fidelity and accuracy.

The pipeline consists of two sets of broadly defined problems, (1) geometric processing, (2) object
labeling, topology reconstruction and change detection. Geometric processing (GP) refers to the pro-
cess of converting raw sensory data all the way to explicit 3D information, e.g. 3D measurements/3D
triangle meshes with photo-realistic textures. The second problem set, object labeling, topological
reconstruction and change detection (Anders et al., 2020; Cornelis et al., 2008; Diakité et al.,
2014; Liebelt and Schmid, 2010; Peng et al., 2019; Qin et al., 2016; Verdie et al., 2015), refer to
the processes of identifying the types of objects and their individual components (e.g. planar, cylind-
rical, polyhedral), modeling geometrical/topological relationships of these objects/components (Cor-
nelis et al., 2008; Foerstner, 1999; Lafarge et al., 2008; Liang et al., 2019), as well as tracking the
chronological differences of these objects based on the time-sequence datasets to build a 4D infor-
mation stack (Anders et al., 2020; Bouziani et al., 2010; Doxani et al., 2010; Goncaluves, 2010; Tian
et al., 2010).

These two problem sets are in concert with the low-level and mid/high-level vision problems in
computer vision (definition may slightly vary), where topics are even more widely defined (Forsyth
and Ponce, 2002). The low-level vision topics originally deals with tasks that stay in the retina level
that do not need cognition processes, e.g. edge/interest point extraction and image or point cloud
matching. The high-level vision problem usually refers to vision tasks that trigger cognition process,
e.g. object type recognition, human activity recognition and parsing. The latter have a direct tie to
intelligence and thus machine learning techniques are investigated in this area (Förstner andWrobel,
2016; Szeliski, 2010).

There are a few different taxonomies on machine learning methods based on different criterions.
To include the recently boosted deep neural networks, we differentiate the machine learning
methods into statistical learning (or shallow learning methods) (James et al., 2013) and deep learning
methods (primarily refers to the deep neural networks) (Goodfellow et al., 2016). The major differ-
ences between them are the complexity of the models and the use of manually crafted feature extrac-
tion method or implicitly learned representations (features) (LeCun et al., 2015), a schematic figure is
shown in Figure 2.

2.2. Statistical learning/shallow classifier

Prior to the recent prevalence of the deep neural networks (Krizhevsky et al., 2012; LeCun et al.,
2015), statistical learning plays a major role in the high-level vision problems or object

Figure 2. Difference between traditional machine learning (often called statistical learning) and deep learning (xenonstack, 2020).
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recognition/image classification in photogrammetry and remote sensing (Cheng et al., 2017; Costa
et al., 2017; Gómez et al., 2016; Huang and Zhang, 2013; Qin, 2015b; Wijaya et al., 2015). The stat-
istical learning methods mainly refer to learning methods that use sets of statistical tools for model-
ing and understanding complex datasets. Very often they are used in parallel to the machine learning
and artificial intelligence fields in computer science, broadly incorporating methods such as logistic
regression (Menard, 2018), support vector machine (Wang, 2005), decision trees (Friedl and Brod-
ley, 1997) and maximal-likelihood classifiers (Foody et al., 1992).

Given that the number of parameters which the statistical model is manageable is relatively small
(normally less than a few hundreds), such methods are also called shallow classifiers (Bianchini and
Scarselli, 2014). These methods have played predominant roles in the area of satellite image classifi-
cation (Ma et al., 2017), in particular in the application of land-cover & land-use change mapping
(Justice et al., 2015), having been implemented in multiple professional photogrammetry and remote
sensing software packages. Although in practice it is generally accepted that, to produce reasonably
high-accuracy land-cover maps, given the increasing amount of data to be processed for smart appli-
cations (high-frequency monitoring) (Ahmed et al., 2008; Qin, 2014; Rathinam et al., 2008), there
exists a high demand for further improvements in terms of fewer ad-hoc samples (those from the
images to be processed) and higher accuracy (Yosinski et al., 2014). Moreover, areas of interest
are also shifted to applications of intelligent interpretation of very-high resolution (sub-meter
level) satellite images, as well as 3D point cloud data produced by photogrammetry methods and
LiDAR sensors (Qin, 2019a; Qin, 2019b; Qin et al., 2015; Qin and Gruen, 2014; Tian, 2013).

Among all the statistical learning methods, Support Vector Machine (SVM) (Wang, 2005) and
Random Forest (RF) (Breiman, 2001) are two of the major representative methods used in classifying
very-high resolution data (Pal, 2005; Pal and Mather, 2005), and have been favorably applied in
many applications in object recognition, retrieval and modeling. Neural Networks (NN) is also
one of the comparable methods in classification, and normally refers to those with no more than
two hidden layers (Anderson, 1995; De Veaux and Ungar, 1997) (in contrast of the deep learning
neural network in the next section). In the field of computer vision, these methods have been widely
used in many intelligence-requiring applications including human action recognition, car detection,
face recognition (Galantucci et al., 2006), etc. (Oreifej and Liu, 2013; Osuna et al., 1997; Wang et al.,
2009).

2.3. Deep learning

The concept of deep learning mainly operates in artificial neural networks (NN) – a hierarchical
learning model (using iterative functionals formulated into multiple layers) developed a few decades
ago (70s) (De Veaux and Ungar, 1997; Hampshire and Pearlmutter, 1991), where ‘deep’ refers to the
number of layers being larger than a normal NN (less than 3–5 layers) (Goodfellow et al., 2016).
Associated with the keywords ‘deep’ there are potentially a large amount of unknown parameters
involved, demanding for very large amounts of training samples (Krizhevsky et al., 2012; Schmidhu-
ber, 2015). The new development of neural networks begins in 2006 with Hinton’s work in his idea of
deep belief nets – a strategy of adding new layers of information while fixing parameters in previous
layers (Hinton and Salakhutdinov, 2006). The use of deep NN later achieved state-of-the-art results
in speech recognition (Hinton et al., 2012), traditionally worse than the state-of-the-art statistical
classifiers.

The real impact of deep learning in the community started from 2012 on (Krizhevsky et al., 2012),
when Hinton’s groups won the Image Large-Scale Visual Recognition Challenges (LSVRC) (Berg
et al., 2010; Russakovsky et al., 2015), achieving more than 10% improvement over the second
best algorithm in the competition. Since then papers in the vision community on deep learning tech-
niques in different applications are getting outdated very quickly and absorb a large part of the recent
top tier computer vision conferences. The deep learning in the AI community was summarized by
Andrew Beam and many others, as successful contribution to the modern engineering success
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(Beam, 2017): (1) larger availability of high-quality labeled datasets for training (e.g. crowd-sourcing
dataset), (2) much increased computing power; (3) solver-friendly node activation functions; (4)
engineering techniques for robust optimization techniques (i.e. dropout, batch normalization,
data augmentation) (Goodfellow et al., 2016). While the high performance does not necessarily indi-
cate a superior solution in all matters, the deep learning models bring along two other major pro-
blems: (1) More complex networks need larger-than-ever volumes of training samples, thus
raising the need for high-quality training samples in applications where crowd-sourcing label data
are not available. (2) Training such a complex system requires trials of parameter settings and
NN structure design that brings another dimension of hand-engineering, which so far has not
shown less efforts than traditional hand-crafting processing of features. Efforts were suggested to
address these problems: (1) Transfer learning allowing reuse of training samples from different
domains, or fine-tuning of the existing networks, meaning using a few layers attached to an existing
network (or at least part of it) for training with fewer samples (Jia et al., 2014; Larochelle, 2020; Taj-
bakhsh et al., 2016); (2) More robust regularization, optimization techniques, more efficient learning
and NN architectures (Goodfellow et al., 2016).

Attempts in the photogrammetry and remote sensing community started closely following the
success of the deep learning in the vision communities in some of the applications (Li et al., 2019;
Zhang et al., 2016). However, there is the common issue of lacking samples: this is particularly pro-
blematic for the photogrammetry and remote sensing datasets, since the size of the community is
relatively small in comparison to the CV community, with much fewer contributors developing stan-
dard training samples that are large enough for effective training of deep NN (although there exists
some data sets for particular types of sensors (Gerke, 2014)). The photogrammetry and remote sen-
sing datasets often capture the ground scene with similar perspectives (top-view). The great variety of
data from different sensor types, like multi-head cameras, multi/hyper spectral images, LiDAR, alti-
meter and synthetic aperture radar (SAR), etc., leads to even poorer availability of corresponding
training samples. Moreover, the variety and scales of objects in a small image patch vary from
very small objects to large metropolitan buildings or landscape features, introducing more issues
in the deep learning based recognition models (Cheng et al., 2017).

3. Existing efforts in photogrammetry and computer vision

Among the first applications of AI technology in photogrammetry were two projects executed within
the Swiss National Research Program 23 (NRP23) ‘Artificial Intelligence and Robotics’. Scientific-
technical goals of this nation-wide program were:

. Implementation and refinement of AI methods, especially in robotics

. Understanding of perceptions and learning processes; building bridges between AI and cognitive
sciences and psychology

In this context we worked on two problems under the project ‘Design and Analysis of Spatial
Image Sequences’: (a) using expert-system technology (‘low level AI’) to automate the sensor place-
ment task in close-range (especially industrial) applications (Mason and Gruen, 1994, 1995; Mason
and Këpuska, 1992) and (b) using Neural Network technology to automatically recognize signalized
ground control points in aerial images (Këpuska and Mason, 1995; Mason and Gruen, 1994; Mason
and Gruen, 1995; Mason and Këpuska, 1992). While project (a) led to quite successful solutions, pro-
ject (b) did not return the desired results. After spending much time on network training the recog-
nition performance was very instable.

In the meantime, of course, the AI methods have developed further substantially, and it is high
time to look at these issues again.

The fields of photogrammetry and its industrial applications have been greatly impacted in the
past decades by the development of computer vision, e.g. largely fully automated triangulation
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(Fischler and Bolles, 1981; Snavely, 2010) and high performance per-pixel dense matching (Hirsch-
müller, 2005; Hirschmüller, 2008), etc., which traditionally rely on manual intervention in terms of
blunder elimination of tie point observations and measurement of high-quality DSMs (Digital Sur-
face Model). In particular, learning-based high resolution data interpretation, such as object extrac-
tion, action recognition and classification are attracting great attention (Forsyth and Ponce, 2002; Liu
et al., 2020), along with the development of deep learning (Schmidhuber, 2015). It is expected that
these traditionally manually intensive works in photogrammetry and remote sensing may profit con-
siderably from these new techniques. Although AI for geometric processing (from acquiring images
to obtaining standard orthophotos, point clouds and DSM products) in engineering practice is not
yet widely used, the intention for better and more robust performance using learning-based methods
were largely fueled by the CV community. In this section, we provide a non-inclusive and very brief
overview on the development of computer learning on topics relevant to a typical photogrammetry
and remote sensing processing pipeline (highlighted in bold thereafter).

3.1. Data acquisition

Data acquisition for photogrammetric purposes has changed dramatically in recent years. Satellite
images are nowadays available at very high spatial and time resolution, coming with stereo or
even triplet overlap and providing for many spectral channels. Aerial cameras are using the 5-
head principle, collecting nadir and 4 oblique images simultaneously from every point of view. In
close-range photogrammetry the old concept, in times of analogue imagery, was to generate as
few images as possible, because image taking and measurement was very time-consuming and costly.
Now we take rather too many pictures with the aim to get a very high overlap and redundancy in
measurement, and may through away those which are not needed or of insufficient quality.

Aerial photogrammetric image acquisition is pretty standard and normally consists of an image
block (or a few images only) with defined overlap to ensure the required theoretical accuracy and
mapping resolution. In old times this is done fully manually or with a timekeeper (Eisenbeiß,
2009; Mikhail et al., 2001), often aided by the use of GPS (global positioning system) and potentially
IMU (inertial measurement unit) systems (Colomina and Molina, 2014; Qin et al., 2013). The devel-
opment of automatic camera shutter integrated with the GPS/IMU offers the capability for path
planning and intelligent data acquisition, which largely boosts the use of the modern UAV-based
(Unmanned Aerial Vehicle) photogrammetry by non-experts for smart civil and environmental
applications (Boroujeni et al., 2012; Nex and Remondino, 2014; Pix4D, 2017).

However, in close-range applications like Cultural Heritage, underwater photogrammetry and
many others there exist a great variety of different network designs. For occasions where sensors
are not available to provide at least approximate exterior orientation parameters of the camera,
e.g. indoor mapping with low-cost sensors, or 3D modeling of complex-shaped object with handheld
cameras, a coarse model of the scene may be generated and then high-quality acquisition positions
can be redefined to set up the waypoints.

Given the high-cost of satellite images, the acquisition is very important, considering the potential
impact of high cloud coverage. Algorithms were developed to automatically detect cloud coverage
(Champion, 2012; Coakley and Bretherton, 1982) and for steering the camera angle to regions
with less clouds.

3.2. Geo-referencing

The most influential development in the past two decades in the CV community that impacts the
geo-referencing tasks are probably the robust interest point extraction/matching (i.e. SIFT (Lowe,
2004), SURF (Bay et al., 2006), and many others) and the random sample consensus (RANSAC)
techniques (Fischler and Bolles, 1981) for blunder elimination, thus enabling robust fully automated
bundle adjustments (Deseilligny and Clery, 2011; Snavely, 2010). While the photogrammetry
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industry optimizes the robustness and accuracy of the geo-referencing tasks by optimizing individual
steps of the workflow, the CV communities are interested in performing free-network adjustment in
large, unordered image sets (acquired using unknown cameras and metadata, i.e. from internet
photos) (Agarwal et al., 2011; Frahm et al., 2010), where efforts were devoted to the development
of fast pair-wise graph matching algorithms (Wu, 2014), as well as intelligent algorithms for group-
ing images (Filliat, 2007) that might be geographically close (without an initial relative orientation
process). Given the fact that most of the high-performance point extractors and matchers are com-
putationally expensive, a learning-based method was also developed to predict the matchability
(Hartmann et al., 2014) of image pairs without performing the actual matching to avoid exhaustive
search. Moreover, such pose-estimation tasks have been attempted by deep learning methods, in
which end-to-end networks directly take image pairs and regress their six orientation parameters
(Dharmasiri et al., 2018; Kendall et al., 2015). Comparing to existing approaches, it is free from com-
plex geometric computations and handling of camera parameters and feature matches. Although it
has not achieved the state-of-the-art accuracy yet, it might have rooms for improvement.

3.3. Camera calibration

Camera calibration is regarded as a standard and well-established procedure before data acquisition
or during the geo-referencing (also regarded as self-calibration). It requires either known object-
space points or a cloud of well-distributed tie points, and the underlying principle for calibration
is the use of a set of pre-defined calibration models (also called ‘additional parameters’) in bundle
adjustment (Fraser, 2013; Gruen and Huang, 2013; Remondino and Fraser, 2006). In recent years
there are a few works that consider the use of machine learning models (i.e. neural networks) to
learn the non-linear relationship between the distorted and corrected 2D coordinate (Pedra et al.,
2013), by taking direct point measurements, as well as ‘black-box’ approaches that take ‘perceptual
of scenes’ as cues to directly predict distortion grids and intrinsic parameters of single images (Bog-
dan et al., 2018; Hold-Geoffroy et al., 2018). These novel attempts have demonstrated the possibility
of using data to directly predict corrected/rectified images, which might implicitly take scene con-
tents instead of rigorous geometric relationships. These methods are still far from be practical for
actual photogrammetric productions due to lack of uncertainty measures and being scene specific.

3.4. DSM generation by image matching

The development of image-based per-pixel dense matching for DSM generation has been quite sig-
nificant in the past decades and many techniques were developed both in the photogrammetry
(Gruen, 2012) and computer vision community, e.g. multi-image and constraint-based matching
(Zhang, 2005), dynamic programming (Veksler, 2005), semi-global matching (Hirschmüller,
2008), patch-based matching (Furukawa and Ponce, 2010), graph-cut (Vicente et al., 2008). Dense
matching can be generally categorized based on the number of images used for computation: (1)
stereo matching and (2) multi-view image matching. This leads to some fundamental algorithmic
differences (Broadhurst et al., 2001; Furukawa et al., 2010; Furukawa and Ponce, 2009; Zhang,
2005): for example, stereo matching is able to utilize the rectified epipolar images for easier algorithm
implementation (correspondences lying on the same row), while epipolar rectified images do not
generally exist for more than two images. An obvious advantage of multi-view matching is that it
is able to take redundant measurements to improve the robustness and accuracy of per-point match-
ing (Zhang and Gruen, 2006). A few algorithms have shown great advances in utilizing the multiple
observations such as multi-photo matching (Baltsavias, 1991), patch-based multi-view matching
(Furukawa and Ponce, 2010), voxel-based space carving (Broadhurst et al., 2001). The state-of-
the-art algorithms formulate the photo-consistency condition (computed from two or more images)
within a global energy optimization framework. Points matched through multi-image matching pro-
vide the optimal accuracy, while in practice if the occluded pixels (both in multi-image and stereo
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matching) are not handled carefully, it may pose negative impact on neighboring pixels through the
solver. For instance, the object space semi-global matching (SGM) algorithm (Bethmann and Luh-
mann, 2015) takes the average matching scores across multiple images, and turns the disparity com-
putation procedure in a voxel object space. Since a mechanism determining the occluded pixels
before averaging the scores is lacking, the results are not reported better than in the original algor-
ithms. Given that stereo-based matching algorithms are particularly effective, practical implemen-
tation sometimes favors a multi-depth fusion approach (multi-stereo algorithms) (Seitz et al.,
2006; Wenzel et al., 2013), where stereo matching are performed on permutated and selective
pairs and then a depth/DSM fusion step utilizes the redundant information in the object space.
This type of methods leaves the information fusion in the object space and can easily extend the
state-of-the-art stereo matching algorithms to multi-view scenario. However, a theoretically more
powerful concept is that of geometrically constrained multi-view matching. It allows to determine
the matching parameters for all images involved plus the object space coordinates of the point in
question in one simultaneous solution. By computation of the covariance matrix of all system
unknowns one has an excellent tool for quality analysis of the matching process. Depending on
the situation different constraints can be formulated: Epipolar-; collinearity-; X,Y-; Z-constraint.

Since dense matching (surface reconstruction) normally refers to the low-to-mid level vision pro-
blems, most of the development in the past decades focused on formulating the matching as global
energy minimization problem (Boykov et al., 2001). Fairly recent developments (in the past few
years) have shifted part of the focus to methods utilizing deep learning techniques in aid of such
low-level vision problems. For example, Zbontar and Lecun (Zbontar and LeCun, 2016) used a Sia-
mese network that learns the similarity scores through a two-channel convolutional neural network:
the training takes texture patches of positive and negative matches from the benchmark dataset (i.e.
KITTI and Middleburry) (Geiger et al., 2012; Scharstein and Szeliski, 2002; Scharstein and Szeliski,
2014). The top performers in these two benchmarks used similarity scores from the trained network,
and some of these methods also learn the cost – propagation paths (Seki and Pollefeys, 2017). This
shows that the hyper-parameterized deep learning models are able to accommodate the variations of
the particular datasets, thus rendering better similarity scores leading to better performances in
dense matching (Scharstein and Szeliski, 2014). There are attempts that aim to take the stereo match-
ing problem as a per-pixel regression problems, which takes a stereo pair as an input and outputs a
disparity map (Chang and Chen, 2018; Zhang et al., 2019), and they have shown better performances
in benchmark datasets. However, the performance of these algorithms in practical applications is still
questionable, as most of them were only applied to similar datasets where the training samples came
from. Essentially, to make fair comparisons to classical methods, one needs to show that that these
learning-based methods consistently outperform across different datasets, while not requiring new
samples from those datasets for training. However, this probably involves another field of study
related to the transferability of the networks (Celik et al., 2020; Yosinski et al., 2014).

3.5. Semantic interpretation

The interpretation/understanding and 3D modeling of a scene has a direct connection to machine
intelligence. As already mentioned in Section 2.2 and 2.3, in the photogrammetry & remote sensing
community this largely refers to image content classification (top-view or oblique) and reality/ semi-
generic based 3D modeling. With the increasing exposure to deep learning the topic of interpreting
aerial/satellite images are gaining great attentions in the Geo and CV communities, evidenced by
recent worldwide learning challenges: (1) Kaggle satellite recognition challenge (Planet, 2017); (2)
IARPA (Intelligence Advanced Research Projects Activity) functional mapping of the world chal-
lenge (IARPA, 2017) and (3) USSOCOM (United States Special Operations Command) urban 3D
building detection challenge (USSOCOM, 2017), as well as the annual Earth-vision workshop
(Tuia et al., 2015) hosted by both communities.
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Land-cover classification of VHR images, where traditionally statistical learning methods were
actively practiced, now use the concept of deep learning for boosting performances (Krizhevsky
et al., 2012). Although the requirements of a large amount of samples were not addressed for
VHR data classification, a compromised solution used by the researchers is to perform a fine-tuning
using existing networks (Tajbakhsh et al., 2016), where the last (or the last a few) layers will be
retrained with fewer samples on the aerial/satellite dataset. Another popular solution is to use the
fully connected convolutional neural networks (Long et al., 2015). This usually still adopts the exist-
ing networks trained from ImageNets (Marmanis et al., 2016; Russakovsky et al., 2015; Sherrah,
2016) while adding a deconvolution layer for training using fully classified images as training.
There are quite a few works adopting this approach to remote sensing data for building detection
and classification (Bittner et al., 2017; Zhong et al., 2016). However, the required training samples
are somewhat different from those in traditional landcover classification, as this requires a fully
per-pixel labeled data as the input for classification. Although there is in general a lack of training
datasets, the ISPRS website provides a benchmark based on the Vaihingen data with fully labeled
references for training and testing (Blaha et al., 2016; Gerke, 2014; ISPRS, 2018). The semantic seg-
mentation in CV (Liu et al., 2019a; McCormac et al., 2017; Wang et al., 2020), has also been inten-
sively investigated, with the potential to be used in SLAM and self-driving systems for perception.

As one of the photogrammetric products, the point clouds generated from multi-view stereo/
stereo or LiDAR scanning are sometimes considered as raw input for many applications such as
classification and change detection (Hebel et al., 2013; Liu et al., 2019b; Teo and Shih, 2013).
Although there have been many approaches for point clouds classification, obtaining high-quality
classified point clouds in practice (e.g. for projects at city scale using data such as airborne or mobile
LiDAR) is still a semi-automated approach that requires operator interactions with algorithms of
choice, data specific parameter tuning, training data collection and direct point editing. Classification
approaches for point clouds are very much in line with machine learning methods from early stat-
istical classifiers such as SVM or random forest (RF) based point clouds classification (Li et al., 2016;
Rau et al., 2014; Zhang et al., 2013), to nowadays deep learning based models (Chen et al., 2020; Qi
et al., 2017a; Qi et al., 2017b; Shi and Rajkumar, 2020), in which PointNet (Qi et al., 2017a) was the
pioneer work that explores structural information for segmentation with unstructured inputs.
Although it is no longer the top-performing approach, it drives many other methods that bring
the capacity of approaches to a notable level. Today, the benchmark datasets and open competitions
(such as IEEE data fusion contest (Le Saux et al., 2019)) explicitly designed tasks with training data
that match the needed training data volume for deep learning models (Hackel et al., 2017; Niemeyer
et al., 2014; Tong et al., 2020), in which the traditional methods (shallow classifiers) are somewhat
less competent. Nevertheless, it should be noted that in practical applications, the volume of available
data for training is still of critical concern, which might be insufficient to drive deep learning models.

4. Conclusions

Due to changes in sensor technology and computing capabilities photogrammetric data acquisition
and processing has changed fundamentally during the past four decades. Currently we witness the
development of automated and self-learning (‘intelligent’) solutions in the field of computer vision,
photogrammetry and remote sensing. This paper provides a very brief overview of the major devel-
opments relevant to the fields of photogrammetry and remote sensing. Our description is somewhat
general and far from being inclusive as a technical review. Indeed, given such fast developments, it is
impossible to cover the contents even with an extended manuscript. The take-away messages from
this manuscript are mainly a brief skim on the relevant developments in different areas of photo-
grammetry and remote sensing. It is seen that as compared to other applications that having gained
large success in AI (e.g. speech recognition has been successfully used in many AI devices), vision-
based AI is relatively preliminary. Although the great breakthrough in using deep learning methods
for object recognition has driven a large amount research investigations, its practical uses are limited
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by (1) processing 2D/3D signals and associated AI tasks are far more complicated, and (2) there is in
general a lack of representative and large enough datasets for various photogrammetry & remote sen-
sing based applications. Thus image-based AI in the field of photogrammetry is mostly still a topic
for exploration. In particular, practical AI algorithms in remote sensing (i.e. land-cover classifi-
cation), are still based on traditional statistical learning methods, with a success rate of 75–90%
(e.g. overall accuracy) in good quality images with well-crafted training samples. Transferring the
learning samples from other datasets to different applications remains to be challenging, but it is
becoming more important in the training-data demanding deep learning.

The essence of deep learning is to utilize complex and non-linear models to approximate pro-
cesses that are of complex nature. Some of the existing methods taking such a process as a ‘black-
box’ mapping that sometimes ignore the nature of their rigorous physical models, will likely to
turn these deep learning models to be very problem- and data- specific with no transparent mech-
anisms, which eventually weill yield non-trustworthy systems. For example, a recent work (Jin et al.,
2020) comparing feature point/descriptor extraction methods in a very data baseline, shows that
these ‘black-box’ models, claimed as ‘best’ in their respectively tested dataset, are not even as robust
and as accurate as manually crafted features (Lowe, 2004) more than a decade ago when bringing
them into practice. Therefore, it is worth to rethink, that when it comes to professional practice, a
more organic use of these ‘intelligent’ models, for example, by only placing them to specific com-
ponents that traditionally do not well, or to devise the ‘black-box’ models to be more transparent
and analyzable. This is helpful to develop more trustworthy and intelligent systems for data proces-
sing and interpretation.

Although the AI based methods are not yet widely used in the geo-community, given the expo-
nential growth of the machine learning fields and data science, and the need for developing trust-
worthy AI approaches, will likely drive useful products to be possibly used in practice in a few
years. Apart from that, fully automated general image understanding remains an elusive problem
for many years to come.
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